xref: /freebsd/sys/dev/netmap/netmap.c (revision d8096b2df282d7a50e56eddba523bcdda1676106)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi
5  * Copyright (C) 2011-2016 Luigi Rizzo
6  * Copyright (C) 2011-2016 Giuseppe Lettieri
7  * Copyright (C) 2011-2016 Vincenzo Maffione
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *   1. Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *   2. Redistributions in binary form must reproduce the above copyright
16  *      notice, this list of conditions and the following disclaimer in the
17  *      documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 
33 /*
34  * $FreeBSD$
35  *
36  * This module supports memory mapped access to network devices,
37  * see netmap(4).
38  *
39  * The module uses a large, memory pool allocated by the kernel
40  * and accessible as mmapped memory by multiple userspace threads/processes.
41  * The memory pool contains packet buffers and "netmap rings",
42  * i.e. user-accessible copies of the interface's queues.
43  *
44  * Access to the network card works like this:
45  * 1. a process/thread issues one or more open() on /dev/netmap, to create
46  *    select()able file descriptor on which events are reported.
47  * 2. on each descriptor, the process issues an ioctl() to identify
48  *    the interface that should report events to the file descriptor.
49  * 3. on each descriptor, the process issues an mmap() request to
50  *    map the shared memory region within the process' address space.
51  *    The list of interesting queues is indicated by a location in
52  *    the shared memory region.
53  * 4. using the functions in the netmap(4) userspace API, a process
54  *    can look up the occupation state of a queue, access memory buffers,
55  *    and retrieve received packets or enqueue packets to transmit.
56  * 5. using some ioctl()s the process can synchronize the userspace view
57  *    of the queue with the actual status in the kernel. This includes both
58  *    receiving the notification of new packets, and transmitting new
59  *    packets on the output interface.
60  * 6. select() or poll() can be used to wait for events on individual
61  *    transmit or receive queues (or all queues for a given interface).
62  *
63 
64 		SYNCHRONIZATION (USER)
65 
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73 
74 		LOCKING (INTERNAL)
75 
76 Within the kernel, access to the netmap rings is protected as follows:
77 
78 - a spinlock on each ring, to handle producer/consumer races on
79   RX rings attached to the host stack (against multiple host
80   threads writing from the host stack to the same ring),
81   and on 'destination' rings attached to a VALE switch
82   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83   protecting multiple active senders for the same destination)
84 
85 - an atomic variable to guarantee that there is at most one
86   instance of *_*xsync() on the ring at any time.
87   For rings connected to user file
88   descriptors, an atomic_test_and_set() protects this, and the
89   lock on the ring is not actually used.
90   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91   is also used to prevent multiple executions (the driver might indeed
92   already guarantee this).
93   For NIC TX rings connected to a VALE switch, the lock arbitrates
94   access to the queue (both when allocating buffers and when pushing
95   them out).
96 
97 - *xsync() should be protected against initializations of the card.
98   On FreeBSD most devices have the reset routine protected by
99   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100   the RING protection on rx_reset(), this should be added.
101 
102   On linux there is an external lock on the tx path, which probably
103   also arbitrates access to the reset routine. XXX to be revised
104 
105 - a per-interface core_lock protecting access from the host stack
106   while interfaces may be detached from netmap mode.
107   XXX there should be no need for this lock if we detach the interfaces
108   only while they are down.
109 
110 
111 --- VALE SWITCH ---
112 
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115 
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123 
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130 
131  */
132 
133 
134 /* --- internals ----
135  *
136  * Roadmap to the code that implements the above.
137  *
138  * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139  * >    select()able file descriptor on which events are reported.
140  *
141  *  	Internally, we allocate a netmap_priv_d structure, that will be
142  *  	initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143  *  	structure for each open().
144  *
145  *      os-specific:
146  *  	    FreeBSD: see netmap_open() (netmap_freebsd.c)
147  *  	    linux:   see linux_netmap_open() (netmap_linux.c)
148  *
149  * > 2. on each descriptor, the process issues an ioctl() to identify
150  * >    the interface that should report events to the file descriptor.
151  *
152  * 	Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153  * 	Most important things happen in netmap_get_na() and
154  * 	netmap_do_regif(), called from there. Additional details can be
155  * 	found in the comments above those functions.
156  *
157  * 	In all cases, this action creates/takes-a-reference-to a
158  * 	netmap_*_adapter describing the port, and allocates a netmap_if
159  * 	and all necessary netmap rings, filling them with netmap buffers.
160  *
161  *      In this phase, the sync callbacks for each ring are set (these are used
162  *      in steps 5 and 6 below).  The callbacks depend on the type of adapter.
163  *      The adapter creation/initialization code puts them in the
164  * 	netmap_adapter (fields na->nm_txsync and na->nm_rxsync).  Then, they
165  * 	are copied from there to the netmap_kring's during netmap_do_regif(), by
166  * 	the nm_krings_create() callback.  All the nm_krings_create callbacks
167  * 	actually call netmap_krings_create() to perform this and the other
168  * 	common stuff. netmap_krings_create() also takes care of the host rings,
169  * 	if needed, by setting their sync callbacks appropriately.
170  *
171  * 	Additional actions depend on the kind of netmap_adapter that has been
172  * 	registered:
173  *
174  * 	- netmap_hw_adapter:  	     [netmap.c]
175  * 	     This is a system netdev/ifp with native netmap support.
176  * 	     The ifp is detached from the host stack by redirecting:
177  * 	       - transmissions (from the network stack) to netmap_transmit()
178  * 	       - receive notifications to the nm_notify() callback for
179  * 	         this adapter. The callback is normally netmap_notify(), unless
180  * 	         the ifp is attached to a bridge using bwrap, in which case it
181  * 	         is netmap_bwrap_intr_notify().
182  *
183  * 	- netmap_generic_adapter:      [netmap_generic.c]
184  * 	      A system netdev/ifp without native netmap support.
185  *
186  * 	(the decision about native/non native support is taken in
187  * 	 netmap_get_hw_na(), called by netmap_get_na())
188  *
189  * 	- netmap_vp_adapter 		[netmap_vale.c]
190  * 	      Returned by netmap_get_bdg_na().
191  * 	      This is a persistent or ephemeral VALE port. Ephemeral ports
192  * 	      are created on the fly if they don't already exist, and are
193  * 	      always attached to a bridge.
194  * 	      Persistent VALE ports must must be created separately, and i
195  * 	      then attached like normal NICs. The NIOCREGIF we are examining
196  * 	      will find them only if they had previously been created and
197  * 	      attached (see VALE_CTL below).
198  *
199  * 	- netmap_pipe_adapter 	      [netmap_pipe.c]
200  * 	      Returned by netmap_get_pipe_na().
201  * 	      Both pipe ends are created, if they didn't already exist.
202  *
203  * 	- netmap_monitor_adapter      [netmap_monitor.c]
204  * 	      Returned by netmap_get_monitor_na().
205  * 	      If successful, the nm_sync callbacks of the monitored adapter
206  * 	      will be intercepted by the returned monitor.
207  *
208  * 	- netmap_bwrap_adapter	      [netmap_vale.c]
209  * 	      Cannot be obtained in this way, see VALE_CTL below
210  *
211  *
212  * 	os-specific:
213  * 	    linux: we first go through linux_netmap_ioctl() to
214  * 	           adapt the FreeBSD interface to the linux one.
215  *
216  *
217  * > 3. on each descriptor, the process issues an mmap() request to
218  * >    map the shared memory region within the process' address space.
219  * >    The list of interesting queues is indicated by a location in
220  * >    the shared memory region.
221  *
222  *      os-specific:
223  *  	    FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224  *  	    linux:   linux_netmap_mmap (netmap_linux.c).
225  *
226  * > 4. using the functions in the netmap(4) userspace API, a process
227  * >    can look up the occupation state of a queue, access memory buffers,
228  * >    and retrieve received packets or enqueue packets to transmit.
229  *
230  * 	these actions do not involve the kernel.
231  *
232  * > 5. using some ioctl()s the process can synchronize the userspace view
233  * >    of the queue with the actual status in the kernel. This includes both
234  * >    receiving the notification of new packets, and transmitting new
235  * >    packets on the output interface.
236  *
237  * 	These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238  * 	cases. They invoke the nm_sync callbacks on the netmap_kring
239  * 	structures, as initialized in step 2 and maybe later modified
240  * 	by a monitor. Monitors, however, will always call the original
241  * 	callback before doing anything else.
242  *
243  *
244  * > 6. select() or poll() can be used to wait for events on individual
245  * >    transmit or receive queues (or all queues for a given interface).
246  *
247  * 	Implemented in netmap_poll(). This will call the same nm_sync()
248  * 	callbacks as in step 5 above.
249  *
250  * 	os-specific:
251  * 		linux: we first go through linux_netmap_poll() to adapt
252  * 		       the FreeBSD interface to the linux one.
253  *
254  *
255  *  ----  VALE_CTL -----
256  *
257  *  VALE switches are controlled by issuing a NIOCREGIF with a non-null
258  *  nr_cmd in the nmreq structure. These subcommands are handled by
259  *  netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260  *  and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261  *  subcommands, respectively.
262  *
263  *  Any network interface known to the system (including a persistent VALE
264  *  port) can be attached to a VALE switch by issuing the
265  *  NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266  *  look exactly like ephemeral VALE ports (as created in step 2 above).  The
267  *  attachment of other interfaces, instead, requires the creation of a
268  *  netmap_bwrap_adapter.  Moreover, the attached interface must be put in
269  *  netmap mode. This may require the creation of a netmap_generic_adapter if
270  *  we have no native support for the interface, or if generic adapters have
271  *  been forced by sysctl.
272  *
273  *  Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274  *  called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275  *  callback.  In the case of the bwrap, the callback creates the
276  *  netmap_bwrap_adapter.  The initialization of the bwrap is then
277  *  completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278  *  callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279  *  A generic adapter for the wrapped ifp will be created if needed, when
280  *  netmap_get_bdg_na() calls netmap_get_hw_na().
281  *
282  *
283  *  ---- DATAPATHS -----
284  *
285  *              -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286  *
287  *    na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288  *
289  *    - tx from netmap userspace:
290  *	 concurrently:
291  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292  *                kring->nm_sync() == DEVICE_netmap_txsync()
293  *           2) device interrupt handler
294  *                na->nm_notify()  == netmap_notify()
295  *    - rx from netmap userspace:
296  *       concurrently:
297  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298  *                kring->nm_sync() == DEVICE_netmap_rxsync()
299  *           2) device interrupt handler
300  *                na->nm_notify()  == netmap_notify()
301  *    - rx from host stack
302  *       concurrently:
303  *           1) host stack
304  *                netmap_transmit()
305  *                  na->nm_notify  == netmap_notify()
306  *           2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307  *                kring->nm_sync() == netmap_rxsync_from_host
308  *                  netmap_rxsync_from_host(na, NULL, NULL)
309  *    - tx to host stack
310  *           ioctl(NIOCTXSYNC)/netmap_poll() in process context
311  *             kring->nm_sync() == netmap_txsync_to_host
312  *               netmap_txsync_to_host(na)
313  *                 nm_os_send_up()
314  *                   FreeBSD: na->if_input() == ether_input()
315  *                   linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316  *
317  *
318  *               -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319  *
320  *    na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321  *
322  *    - tx from netmap userspace:
323  *       concurrently:
324  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325  *               kring->nm_sync() == generic_netmap_txsync()
326  *                   nm_os_generic_xmit_frame()
327  *                       linux:   dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328  *                           ifp->ndo_start_xmit == generic_ndo_start_xmit()
329  *                               gna->save_start_xmit == orig. dev. start_xmit
330  *                       FreeBSD: na->if_transmit() == orig. dev if_transmit
331  *           2) generic_mbuf_destructor()
332  *                   na->nm_notify() == netmap_notify()
333  *    - rx from netmap userspace:
334  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335  *               kring->nm_sync() == generic_netmap_rxsync()
336  *                   mbq_safe_dequeue()
337  *           2) device driver
338  *               generic_rx_handler()
339  *                   mbq_safe_enqueue()
340  *                   na->nm_notify() == netmap_notify()
341  *    - rx from host stack
342  *        FreeBSD: same as native
343  *        Linux: same as native except:
344  *           1) host stack
345  *               dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346  *                   ifp->ndo_start_xmit == generic_ndo_start_xmit()
347  *                       netmap_transmit()
348  *                           na->nm_notify() == netmap_notify()
349  *    - tx to host stack (same as native):
350  *
351  *
352  *                           -= VALE =-
353  *
354  *   INCOMING:
355  *
356  *      - VALE ports:
357  *          ioctl(NIOCTXSYNC)/netmap_poll() in process context
358  *              kring->nm_sync() == netmap_vp_txsync()
359  *
360  *      - system device with native support:
361  *         from cable:
362  *             interrupt
363  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
365  *                     netmap_vp_txsync()
366  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
367  *         from host stack:
368  *             netmap_transmit()
369  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370  *                     kring->nm_sync() == netmap_rxsync_from_host()
371  *                     netmap_vp_txsync()
372  *
373  *      - system device with generic support:
374  *         from device driver:
375  *            generic_rx_handler()
376  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377  *                     kring->nm_sync() == generic_netmap_rxsync()
378  *                     netmap_vp_txsync()
379  *                     kring->nm_sync() == generic_netmap_rxsync()
380  *         from host stack:
381  *            netmap_transmit()
382  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383  *                     kring->nm_sync() == netmap_rxsync_from_host()
384  *                     netmap_vp_txsync()
385  *
386  *   (all cases) --> nm_bdg_flush()
387  *                      dest_na->nm_notify() == (see below)
388  *
389  *   OUTGOING:
390  *
391  *      - VALE ports:
392  *         concurrently:
393  *             1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394  *                    kring->nm_sync() == netmap_vp_rxsync()
395  *             2) from nm_bdg_flush()
396  *                    na->nm_notify() == netmap_notify()
397  *
398  *      - system device with native support:
399  *          to cable:
400  *             na->nm_notify() == netmap_bwrap_notify()
401  *                 netmap_vp_rxsync()
402  *                 kring->nm_sync() == DEVICE_netmap_txsync()
403  *                 netmap_vp_rxsync()
404  *          to host stack:
405  *                 netmap_vp_rxsync()
406  *                 kring->nm_sync() == netmap_txsync_to_host
407  *                 netmap_vp_rxsync_locked()
408  *
409  *      - system device with generic adapter:
410  *          to device driver:
411  *             na->nm_notify() == netmap_bwrap_notify()
412  *                 netmap_vp_rxsync()
413  *                 kring->nm_sync() == generic_netmap_txsync()
414  *                 netmap_vp_rxsync()
415  *          to host stack:
416  *                 netmap_vp_rxsync()
417  *                 kring->nm_sync() == netmap_txsync_to_host
418  *                 netmap_vp_rxsync()
419  *
420  */
421 
422 /*
423  * OS-specific code that is used only within this file.
424  * Other OS-specific code that must be accessed by drivers
425  * is present in netmap_kern.h
426  */
427 
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h>	/* defines used in kernel.h */
433 #include <sys/kernel.h>	/* types used in module initialization */
434 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
435 #include <sys/filio.h>	/* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h>	/* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/proc.h>
441 #include <sys/rwlock.h>
442 #include <sys/socket.h> /* sockaddrs */
443 #include <sys/selinfo.h>
444 #include <sys/sysctl.h>
445 #include <sys/jail.h>
446 #include <sys/epoch.h>
447 #include <net/vnet.h>
448 #include <net/if.h>
449 #include <net/if_var.h>
450 #include <net/bpf.h>		/* BIOCIMMEDIATE */
451 #include <machine/bus.h>	/* bus_dmamap_* */
452 #include <sys/endian.h>
453 #include <sys/refcount.h>
454 #include <net/ethernet.h>	/* ETHER_BPF_MTAP */
455 
456 
457 #elif defined(linux)
458 
459 #include "bsd_glue.h"
460 
461 #elif defined(__APPLE__)
462 
463 #warning OSX support is only partial
464 #include "osx_glue.h"
465 
466 #elif defined (_WIN32)
467 
468 #include "win_glue.h"
469 
470 #else
471 
472 #error	Unsupported platform
473 
474 #endif /* unsupported */
475 
476 /*
477  * common headers
478  */
479 #include <net/netmap.h>
480 #include <dev/netmap/netmap_kern.h>
481 #include <dev/netmap/netmap_mem2.h>
482 
483 
484 /* user-controlled variables */
485 int netmap_verbose;
486 #ifdef CONFIG_NETMAP_DEBUG
487 int netmap_debug;
488 #endif /* CONFIG_NETMAP_DEBUG */
489 
490 static int netmap_no_timestamp; /* don't timestamp on rxsync */
491 int netmap_no_pendintr = 1;
492 int netmap_txsync_retry = 2;
493 static int netmap_fwd = 0;	/* force transparent forwarding */
494 
495 /*
496  * netmap_admode selects the netmap mode to use.
497  * Invalid values are reset to NETMAP_ADMODE_BEST
498  */
499 enum {	NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
500 	NETMAP_ADMODE_NATIVE,	/* either native or none */
501 	NETMAP_ADMODE_GENERIC,	/* force generic */
502 	NETMAP_ADMODE_LAST };
503 static int netmap_admode = NETMAP_ADMODE_BEST;
504 
505 /* netmap_generic_mit controls mitigation of RX notifications for
506  * the generic netmap adapter. The value is a time interval in
507  * nanoseconds. */
508 int netmap_generic_mit = 100*1000;
509 
510 /* We use by default netmap-aware qdiscs with generic netmap adapters,
511  * even if there can be a little performance hit with hardware NICs.
512  * However, using the qdisc is the safer approach, for two reasons:
513  * 1) it prevents non-fifo qdiscs to break the TX notification
514  *    scheme, which is based on mbuf destructors when txqdisc is
515  *    not used.
516  * 2) it makes it possible to transmit over software devices that
517  *    change skb->dev, like bridge, veth, ...
518  *
519  * Anyway users looking for the best performance should
520  * use native adapters.
521  */
522 #ifdef linux
523 int netmap_generic_txqdisc = 1;
524 #endif
525 
526 /* Default number of slots and queues for generic adapters. */
527 int netmap_generic_ringsize = 1024;
528 int netmap_generic_rings = 1;
529 
530 /* Non-zero to enable checksum offloading in NIC drivers */
531 int netmap_generic_hwcsum = 0;
532 
533 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
534 int ptnet_vnet_hdr = 1;
535 
536 /*
537  * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
538  * in some other operating systems
539  */
540 SYSBEGIN(main_init);
541 
542 SYSCTL_DECL(_dev_netmap);
543 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
544     "Netmap args");
545 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
546 		CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
547 #ifdef CONFIG_NETMAP_DEBUG
548 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
549 		CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
550 #endif /* CONFIG_NETMAP_DEBUG */
551 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
552 		CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
553 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
554 		0, "Always look for new received packets.");
555 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
556 		&netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
557 
558 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
559 		"Force NR_FORWARD mode");
560 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
561 		"Adapter mode. 0 selects the best option available,"
562 		"1 forces native adapter, 2 forces emulated adapter");
563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
564 		0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
565 		"1 to enable checksum generation by the NIC");
566 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
567 		0, "RX notification interval in nanoseconds");
568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
569 		&netmap_generic_ringsize, 0,
570 		"Number of per-ring slots for emulated netmap mode");
571 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
572 		&netmap_generic_rings, 0,
573 		"Number of TX/RX queues for emulated netmap adapters");
574 #ifdef linux
575 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
576 		&netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
577 #endif
578 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
579 		0, "Allow ptnet devices to use virtio-net headers");
580 
581 SYSEND;
582 
583 NMG_LOCK_T	netmap_global_lock;
584 
585 /*
586  * mark the ring as stopped, and run through the locks
587  * to make sure other users get to see it.
588  * stopped must be either NR_KR_STOPPED (for unbounded stop)
589  * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
590  */
591 static void
592 netmap_disable_ring(struct netmap_kring *kr, int stopped)
593 {
594 	nm_kr_stop(kr, stopped);
595 	// XXX check if nm_kr_stop is sufficient
596 	mtx_lock(&kr->q_lock);
597 	mtx_unlock(&kr->q_lock);
598 	nm_kr_put(kr);
599 }
600 
601 /* stop or enable a single ring */
602 void
603 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
604 {
605 	if (stopped)
606 		netmap_disable_ring(NMR(na, t)[ring_id], stopped);
607 	else
608 		NMR(na, t)[ring_id]->nkr_stopped = 0;
609 }
610 
611 
612 /* stop or enable all the rings of na */
613 void
614 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
615 {
616 	int i;
617 	enum txrx t;
618 
619 	if (!nm_netmap_on(na))
620 		return;
621 
622 	if (netmap_verbose) {
623 		nm_prinf("%s: %sable all rings", na->name,
624 		    (stopped ? "dis" : "en"));
625 	}
626 	for_rx_tx(t) {
627 		for (i = 0; i < netmap_real_rings(na, t); i++) {
628 			netmap_set_ring(na, i, t, stopped);
629 		}
630 	}
631 }
632 
633 /*
634  * Convenience function used in drivers.  Waits for current txsync()s/rxsync()s
635  * to finish and prevents any new one from starting.  Call this before turning
636  * netmap mode off, or before removing the hardware rings (e.g., on module
637  * onload).
638  */
639 void
640 netmap_disable_all_rings(struct ifnet *ifp)
641 {
642 	if (NM_NA_VALID(ifp)) {
643 		netmap_set_all_rings(NA(ifp), NM_KR_LOCKED);
644 	}
645 }
646 
647 /*
648  * Convenience function used in drivers.  Re-enables rxsync and txsync on the
649  * adapter's rings In linux drivers, this should be placed near each
650  * napi_enable().
651  */
652 void
653 netmap_enable_all_rings(struct ifnet *ifp)
654 {
655 	if (NM_NA_VALID(ifp)) {
656 		netmap_set_all_rings(NA(ifp), 0 /* enabled */);
657 	}
658 }
659 
660 void
661 netmap_make_zombie(struct ifnet *ifp)
662 {
663 	if (NM_NA_VALID(ifp)) {
664 		struct netmap_adapter *na = NA(ifp);
665 		netmap_set_all_rings(na, NM_KR_LOCKED);
666 		na->na_flags |= NAF_ZOMBIE;
667 		netmap_set_all_rings(na, 0);
668 	}
669 }
670 
671 void
672 netmap_undo_zombie(struct ifnet *ifp)
673 {
674 	if (NM_NA_VALID(ifp)) {
675 		struct netmap_adapter *na = NA(ifp);
676 		if (na->na_flags & NAF_ZOMBIE) {
677 			netmap_set_all_rings(na, NM_KR_LOCKED);
678 			na->na_flags &= ~NAF_ZOMBIE;
679 			netmap_set_all_rings(na, 0);
680 		}
681 	}
682 }
683 
684 /*
685  * generic bound_checking function
686  */
687 u_int
688 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
689 {
690 	u_int oldv = *v;
691 	const char *op = NULL;
692 
693 	if (dflt < lo)
694 		dflt = lo;
695 	if (dflt > hi)
696 		dflt = hi;
697 	if (oldv < lo) {
698 		*v = dflt;
699 		op = "Bump";
700 	} else if (oldv > hi) {
701 		*v = hi;
702 		op = "Clamp";
703 	}
704 	if (op && msg)
705 		nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
706 	return *v;
707 }
708 
709 
710 /*
711  * packet-dump function, user-supplied or static buffer.
712  * The destination buffer must be at least 30+4*len
713  */
714 const char *
715 nm_dump_buf(char *p, int len, int lim, char *dst)
716 {
717 	static char _dst[8192];
718 	int i, j, i0;
719 	static char hex[] ="0123456789abcdef";
720 	char *o;	/* output position */
721 
722 #define P_HI(x)	hex[((x) & 0xf0)>>4]
723 #define P_LO(x)	hex[((x) & 0xf)]
724 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
725 	if (!dst)
726 		dst = _dst;
727 	if (lim <= 0 || lim > len)
728 		lim = len;
729 	o = dst;
730 	sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
731 	o += strlen(o);
732 	/* hexdump routine */
733 	for (i = 0; i < lim; ) {
734 		sprintf(o, "%5d: ", i);
735 		o += strlen(o);
736 		memset(o, ' ', 48);
737 		i0 = i;
738 		for (j=0; j < 16 && i < lim; i++, j++) {
739 			o[j*3] = P_HI(p[i]);
740 			o[j*3+1] = P_LO(p[i]);
741 		}
742 		i = i0;
743 		for (j=0; j < 16 && i < lim; i++, j++)
744 			o[j + 48] = P_C(p[i]);
745 		o[j+48] = '\n';
746 		o += j+49;
747 	}
748 	*o = '\0';
749 #undef P_HI
750 #undef P_LO
751 #undef P_C
752 	return dst;
753 }
754 
755 
756 /*
757  * Fetch configuration from the device, to cope with dynamic
758  * reconfigurations after loading the module.
759  */
760 /* call with NMG_LOCK held */
761 int
762 netmap_update_config(struct netmap_adapter *na)
763 {
764 	struct nm_config_info info;
765 
766 	if (na->ifp && !nm_is_bwrap(na)) {
767 		strlcpy(na->name, na->ifp->if_xname, sizeof(na->name));
768 	}
769 
770 	bzero(&info, sizeof(info));
771 	if (na->nm_config == NULL ||
772 	    na->nm_config(na, &info)) {
773 		/* take whatever we had at init time */
774 		info.num_tx_rings = na->num_tx_rings;
775 		info.num_tx_descs = na->num_tx_desc;
776 		info.num_rx_rings = na->num_rx_rings;
777 		info.num_rx_descs = na->num_rx_desc;
778 		info.rx_buf_maxsize = na->rx_buf_maxsize;
779 	}
780 
781 	if (na->num_tx_rings == info.num_tx_rings &&
782 	    na->num_tx_desc == info.num_tx_descs &&
783 	    na->num_rx_rings == info.num_rx_rings &&
784 	    na->num_rx_desc == info.num_rx_descs &&
785 	    na->rx_buf_maxsize == info.rx_buf_maxsize)
786 		return 0; /* nothing changed */
787 	if (na->active_fds == 0) {
788 		na->num_tx_rings = info.num_tx_rings;
789 		na->num_tx_desc = info.num_tx_descs;
790 		na->num_rx_rings = info.num_rx_rings;
791 		na->num_rx_desc = info.num_rx_descs;
792 		na->rx_buf_maxsize = info.rx_buf_maxsize;
793 		if (netmap_verbose)
794 			nm_prinf("configuration changed for %s: txring %d x %d, "
795 				"rxring %d x %d, rxbufsz %d",
796 				na->name, na->num_tx_rings, na->num_tx_desc,
797 				na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
798 		return 0;
799 	}
800 	nm_prerr("WARNING: configuration changed for %s while active: "
801 		"txring %d x %d, rxring %d x %d, rxbufsz %d",
802 		na->name, info.num_tx_rings, info.num_tx_descs,
803 		info.num_rx_rings, info.num_rx_descs,
804 		info.rx_buf_maxsize);
805 	return 1;
806 }
807 
808 /* nm_sync callbacks for the host rings */
809 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
810 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
811 
812 static int
813 netmap_default_bufcfg(struct netmap_kring *kring, uint64_t target)
814 {
815 	kring->hwbuf_len = target;
816 	kring->buf_align = 0; /* no alignment */
817 	return 0;
818 }
819 
820 /* create the krings array and initialize the fields common to all adapters.
821  * The array layout is this:
822  *
823  *                    +----------+
824  * na->tx_rings ----->|          | \
825  *                    |          |  } na->num_tx_ring
826  *                    |          | /
827  *                    +----------+
828  *                    |          |    host tx kring
829  * na->rx_rings ----> +----------+
830  *                    |          | \
831  *                    |          |  } na->num_rx_rings
832  *                    |          | /
833  *                    +----------+
834  *                    |          |    host rx kring
835  *                    +----------+
836  * na->tailroom ----->|          | \
837  *                    |          |  } tailroom bytes
838  *                    |          | /
839  *                    +----------+
840  *
841  * Note: for compatibility, host krings are created even when not needed.
842  * The tailroom space is currently used by vale ports for allocating leases.
843  */
844 /* call with NMG_LOCK held */
845 int
846 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
847 {
848 	u_int i, len, ndesc;
849 	struct netmap_kring *kring;
850 	u_int n[NR_TXRX];
851 	enum txrx t;
852 	int err = 0;
853 
854 	if (na->tx_rings != NULL) {
855 		if (netmap_debug & NM_DEBUG_ON)
856 			nm_prerr("warning: krings were already created");
857 		return 0;
858 	}
859 
860 	/* account for the (possibly fake) host rings */
861 	n[NR_TX] = netmap_all_rings(na, NR_TX);
862 	n[NR_RX] = netmap_all_rings(na, NR_RX);
863 
864 	len = (n[NR_TX] + n[NR_RX]) *
865 		(sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
866 		+ tailroom;
867 
868 	na->tx_rings = nm_os_malloc((size_t)len);
869 	if (na->tx_rings == NULL) {
870 		nm_prerr("Cannot allocate krings");
871 		return ENOMEM;
872 	}
873 	na->rx_rings = na->tx_rings + n[NR_TX];
874 	na->tailroom = na->rx_rings + n[NR_RX];
875 
876 	/* link the krings in the krings array */
877 	kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
878 	for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
879 		na->tx_rings[i] = kring;
880 		kring++;
881 	}
882 
883 	/*
884 	 * All fields in krings are 0 except the one initialized below.
885 	 * but better be explicit on important kring fields.
886 	 */
887 	for_rx_tx(t) {
888 		ndesc = nma_get_ndesc(na, t);
889 		for (i = 0; i < n[t]; i++) {
890 			kring = NMR(na, t)[i];
891 			bzero(kring, sizeof(*kring));
892 			kring->notify_na = na;
893 			kring->ring_id = i;
894 			kring->tx = t;
895 			kring->nkr_num_slots = ndesc;
896 			kring->nr_mode = NKR_NETMAP_OFF;
897 			kring->nr_pending_mode = NKR_NETMAP_OFF;
898 			if (i < nma_get_nrings(na, t)) {
899 				kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
900 				kring->nm_bufcfg = na->nm_bufcfg;
901 				if (kring->nm_bufcfg == NULL)
902 					kring->nm_bufcfg = netmap_default_bufcfg;
903 			} else {
904 				if (!(na->na_flags & NAF_HOST_RINGS))
905 					kring->nr_kflags |= NKR_FAKERING;
906 				kring->nm_sync = (t == NR_TX ?
907 						netmap_txsync_to_host:
908 						netmap_rxsync_from_host);
909 				kring->nm_bufcfg = netmap_default_bufcfg;
910 			}
911 			kring->nm_notify = na->nm_notify;
912 			kring->rhead = kring->rcur = kring->nr_hwcur = 0;
913 			/*
914 			 * IMPORTANT: Always keep one slot empty.
915 			 */
916 			kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
917 			snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
918 					nm_txrx2str(t), i);
919 			nm_prdis("ktx %s h %d c %d t %d",
920 				kring->name, kring->rhead, kring->rcur, kring->rtail);
921 			err = nm_os_selinfo_init(&kring->si, kring->name);
922 			if (err) {
923 				netmap_krings_delete(na);
924 				return err;
925 			}
926 			mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
927 			kring->na = na;	/* setting this field marks the mutex as initialized */
928 		}
929 		err = nm_os_selinfo_init(&na->si[t], na->name);
930 		if (err) {
931 			netmap_krings_delete(na);
932 			return err;
933 		}
934 	}
935 
936 	return 0;
937 }
938 
939 
940 /* undo the actions performed by netmap_krings_create */
941 /* call with NMG_LOCK held */
942 void
943 netmap_krings_delete(struct netmap_adapter *na)
944 {
945 	struct netmap_kring **kring = na->tx_rings;
946 	enum txrx t;
947 
948 	if (na->tx_rings == NULL) {
949 		if (netmap_debug & NM_DEBUG_ON)
950 			nm_prerr("warning: krings were already deleted");
951 		return;
952 	}
953 
954 	for_rx_tx(t)
955 		nm_os_selinfo_uninit(&na->si[t]);
956 
957 	/* we rely on the krings layout described above */
958 	for ( ; kring != na->tailroom; kring++) {
959 		if ((*kring)->na != NULL)
960 			mtx_destroy(&(*kring)->q_lock);
961 		nm_os_selinfo_uninit(&(*kring)->si);
962 	}
963 	nm_os_free(na->tx_rings);
964 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
965 }
966 
967 
968 /*
969  * Destructor for NIC ports. They also have an mbuf queue
970  * on the rings connected to the host so we need to purge
971  * them first.
972  */
973 /* call with NMG_LOCK held */
974 void
975 netmap_hw_krings_delete(struct netmap_adapter *na)
976 {
977 	u_int lim = netmap_real_rings(na, NR_RX), i;
978 
979 	for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
980 		struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
981 		nm_prdis("destroy sw mbq with len %d", mbq_len(q));
982 		mbq_purge(q);
983 		mbq_safe_fini(q);
984 	}
985 	netmap_krings_delete(na);
986 }
987 
988 void
989 netmap_mem_restore(struct netmap_adapter *na)
990 {
991 	if (na->nm_mem_prev) {
992 		netmap_mem_put(na->nm_mem);
993 		na->nm_mem = na->nm_mem_prev;
994 		na->nm_mem_prev = NULL;
995 	}
996 }
997 
998 static void
999 netmap_mem_drop(struct netmap_adapter *na)
1000 {
1001 	netmap_mem_deref(na->nm_mem, na);
1002 
1003 	if (na->active_fds <= 0) {
1004 		/* if the native allocator had been overridden on regif,
1005 		 * restore it now and drop the temporary one
1006 		 */
1007 		netmap_mem_restore(na);
1008 	}
1009 }
1010 
1011 static void
1012 netmap_update_hostrings_mode(struct netmap_adapter *na)
1013 {
1014 	enum txrx t;
1015 	struct netmap_kring *kring;
1016 	int i;
1017 
1018 	for_rx_tx(t) {
1019 		for (i = nma_get_nrings(na, t);
1020 		     i < netmap_real_rings(na, t); i++) {
1021 			kring = NMR(na, t)[i];
1022 			kring->nr_mode = kring->nr_pending_mode;
1023 		}
1024 	}
1025 }
1026 
1027 /*
1028  * Undo everything that was done in netmap_do_regif(). In particular,
1029  * call nm_register(ifp,0) to stop netmap mode on the interface and
1030  * revert to normal operation.
1031  */
1032 /* call with NMG_LOCK held */
1033 static void netmap_unset_ringid(struct netmap_priv_d *);
1034 static void netmap_krings_put(struct netmap_priv_d *);
1035 void
1036 netmap_do_unregif(struct netmap_priv_d *priv)
1037 {
1038 	struct netmap_adapter *na = priv->np_na;
1039 
1040 	NMG_LOCK_ASSERT();
1041 	na->active_fds--;
1042 	/* unset nr_pending_mode and possibly release exclusive mode */
1043 	netmap_krings_put(priv);
1044 
1045 #ifdef	WITH_MONITOR
1046 	/* XXX check whether we have to do something with monitor
1047 	 * when rings change nr_mode. */
1048 	if (na->active_fds <= 0) {
1049 		/* walk through all the rings and tell any monitor
1050 		 * that the port is going to exit netmap mode
1051 		 */
1052 		netmap_monitor_stop(na);
1053 	}
1054 #endif
1055 
1056 	if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1057 		netmap_set_all_rings(na, NM_KR_LOCKED);
1058 		na->nm_register(na, 0);
1059 		netmap_set_all_rings(na, 0);
1060 	}
1061 
1062 	/* delete rings and buffers that are no longer needed */
1063 	netmap_mem_rings_delete(na);
1064 
1065 	if (na->active_fds <= 0) {	/* last instance */
1066 		/*
1067 		 * (TO CHECK) We enter here
1068 		 * when the last reference to this file descriptor goes
1069 		 * away. This means we cannot have any pending poll()
1070 		 * or interrupt routine operating on the structure.
1071 		 * XXX The file may be closed in a thread while
1072 		 * another thread is using it.
1073 		 * Linux keeps the file opened until the last reference
1074 		 * by any outstanding ioctl/poll or mmap is gone.
1075 		 * FreeBSD does not track mmap()s (but we do) and
1076 		 * wakes up any sleeping poll(). Need to check what
1077 		 * happens if the close() occurs while a concurrent
1078 		 * syscall is running.
1079 		 */
1080 		if (netmap_debug & NM_DEBUG_ON)
1081 			nm_prinf("deleting last instance for %s", na->name);
1082 
1083 		if (nm_netmap_on(na)) {
1084 			nm_prerr("BUG: netmap on while going to delete the krings");
1085 		}
1086 
1087 		na->nm_krings_delete(na);
1088 
1089 		/* restore the default number of host tx and rx rings */
1090 		if (na->na_flags & NAF_HOST_RINGS) {
1091 			na->num_host_tx_rings = 1;
1092 			na->num_host_rx_rings = 1;
1093 		} else {
1094 			na->num_host_tx_rings = 0;
1095 			na->num_host_rx_rings = 0;
1096 		}
1097 	}
1098 
1099 	/* possibly decrement counter of tx_si/rx_si users */
1100 	netmap_unset_ringid(priv);
1101 	/* delete the nifp */
1102 	netmap_mem_if_delete(na, priv->np_nifp);
1103 	/* drop the allocator */
1104 	netmap_mem_drop(na);
1105 	/* mark the priv as unregistered */
1106 	priv->np_na = NULL;
1107 	priv->np_nifp = NULL;
1108 }
1109 
1110 struct netmap_priv_d*
1111 netmap_priv_new(void)
1112 {
1113 	struct netmap_priv_d *priv;
1114 
1115 	priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1116 	if (priv == NULL)
1117 		return NULL;
1118 	priv->np_refs = 1;
1119 	nm_os_get_module();
1120 	return priv;
1121 }
1122 
1123 /*
1124  * Destructor of the netmap_priv_d, called when the fd is closed
1125  * Action: undo all the things done by NIOCREGIF,
1126  * On FreeBSD we need to track whether there are active mmap()s,
1127  * and we use np_active_mmaps for that. On linux, the field is always 0.
1128  * Return: 1 if we can free priv, 0 otherwise.
1129  *
1130  */
1131 /* call with NMG_LOCK held */
1132 void
1133 netmap_priv_delete(struct netmap_priv_d *priv)
1134 {
1135 	struct netmap_adapter *na = priv->np_na;
1136 
1137 	/* number of active references to this fd */
1138 	if (--priv->np_refs > 0) {
1139 		return;
1140 	}
1141 	nm_os_put_module();
1142 	if (na) {
1143 		netmap_do_unregif(priv);
1144 	}
1145 	netmap_unget_na(na, priv->np_ifp);
1146 	bzero(priv, sizeof(*priv));	/* for safety */
1147 	nm_os_free(priv);
1148 }
1149 
1150 
1151 /* call with NMG_LOCK *not* held */
1152 void
1153 netmap_dtor(void *data)
1154 {
1155 	struct netmap_priv_d *priv = data;
1156 
1157 	NMG_LOCK();
1158 	netmap_priv_delete(priv);
1159 	NMG_UNLOCK();
1160 }
1161 
1162 
1163 /*
1164  * Handlers for synchronization of the rings from/to the host stack.
1165  * These are associated to a network interface and are just another
1166  * ring pair managed by userspace.
1167  *
1168  * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1169  * flags):
1170  *
1171  * - Before releasing buffers on hw RX rings, the application can mark
1172  *   them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1173  *   will be forwarded to the host stack, similarly to what happened if
1174  *   the application moved them to the host TX ring.
1175  *
1176  * - Before releasing buffers on the host RX ring, the application can
1177  *   mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1178  *   they will be forwarded to the hw TX rings, saving the application
1179  *   from doing the same task in user-space.
1180  *
1181  * Transparent forwarding can be enabled per-ring, by setting the NR_FORWARD
1182  * flag, or globally with the netmap_fwd sysctl.
1183  *
1184  * The transfer NIC --> host is relatively easy, just encapsulate
1185  * into mbufs and we are done. The host --> NIC side is slightly
1186  * harder because there might not be room in the tx ring so it
1187  * might take a while before releasing the buffer.
1188  */
1189 
1190 
1191 /*
1192  * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1193  * We do not need to lock because the queue is private.
1194  * After this call the queue is empty.
1195  */
1196 static void
1197 netmap_send_up(struct ifnet *dst, struct mbq *q)
1198 {
1199 	struct mbuf *m;
1200 	struct mbuf *head = NULL, *prev = NULL;
1201 #ifdef __FreeBSD__
1202 	struct epoch_tracker et;
1203 
1204 	NET_EPOCH_ENTER(et);
1205 #endif /* __FreeBSD__ */
1206 	/* Send packets up, outside the lock; head/prev machinery
1207 	 * is only useful for Windows. */
1208 	while ((m = mbq_dequeue(q)) != NULL) {
1209 		if (netmap_debug & NM_DEBUG_HOST)
1210 			nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1211 		prev = nm_os_send_up(dst, m, prev);
1212 		if (head == NULL)
1213 			head = prev;
1214 	}
1215 	if (head)
1216 		nm_os_send_up(dst, NULL, head);
1217 #ifdef __FreeBSD__
1218 	NET_EPOCH_EXIT(et);
1219 #endif /* __FreeBSD__ */
1220 	mbq_fini(q);
1221 }
1222 
1223 
1224 /*
1225  * Scan the buffers from hwcur to ring->head, and put a copy of those
1226  * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1227  * Drop remaining packets in the unlikely event
1228  * of an mbuf shortage.
1229  */
1230 static void
1231 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1232 {
1233 	u_int const lim = kring->nkr_num_slots - 1;
1234 	u_int const head = kring->rhead;
1235 	u_int n;
1236 	struct netmap_adapter *na = kring->na;
1237 
1238 	for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1239 		struct mbuf *m;
1240 		struct netmap_slot *slot = &kring->ring->slot[n];
1241 
1242 		if ((slot->flags & NS_FORWARD) == 0 && !force)
1243 			continue;
1244 		if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1245 			nm_prlim(5, "bad pkt at %d len %d", n, slot->len);
1246 			continue;
1247 		}
1248 		slot->flags &= ~NS_FORWARD; // XXX needed ?
1249 		/* XXX TODO: adapt to the case of a multisegment packet */
1250 		m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1251 
1252 		if (m == NULL)
1253 			break;
1254 		mbq_enqueue(q, m);
1255 	}
1256 }
1257 
1258 static inline int
1259 _nm_may_forward(struct netmap_kring *kring)
1260 {
1261 	return	((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1262 		 kring->na->na_flags & NAF_HOST_RINGS &&
1263 		 kring->tx == NR_RX);
1264 }
1265 
1266 static inline int
1267 nm_may_forward_up(struct netmap_kring *kring)
1268 {
1269 	return	_nm_may_forward(kring) &&
1270 		 kring->ring_id != kring->na->num_rx_rings;
1271 }
1272 
1273 static inline int
1274 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1275 {
1276 	return	_nm_may_forward(kring) &&
1277 		 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1278 		 kring->ring_id == kring->na->num_rx_rings;
1279 }
1280 
1281 /*
1282  * Send to the NIC rings packets marked NS_FORWARD between
1283  * kring->nr_hwcur and kring->rhead.
1284  * Called under kring->rx_queue.lock on the sw rx ring.
1285  *
1286  * It can only be called if the user opened all the TX hw rings,
1287  * see NAF_CAN_FORWARD_DOWN flag.
1288  * We can touch the TX netmap rings (slots, head and cur) since
1289  * we are in poll/ioctl system call context, and the application
1290  * is not supposed to touch the ring (using a different thread)
1291  * during the execution of the system call.
1292  */
1293 static u_int
1294 netmap_sw_to_nic(struct netmap_adapter *na)
1295 {
1296 	struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1297 	struct netmap_slot *rxslot = kring->ring->slot;
1298 	u_int i, rxcur = kring->nr_hwcur;
1299 	u_int const head = kring->rhead;
1300 	u_int const src_lim = kring->nkr_num_slots - 1;
1301 	u_int sent = 0;
1302 
1303 	/* scan rings to find space, then fill as much as possible */
1304 	for (i = 0; i < na->num_tx_rings; i++) {
1305 		struct netmap_kring *kdst = na->tx_rings[i];
1306 		struct netmap_ring *rdst = kdst->ring;
1307 		u_int const dst_lim = kdst->nkr_num_slots - 1;
1308 
1309 		/* XXX do we trust ring or kring->rcur,rtail ? */
1310 		for (; rxcur != head && !nm_ring_empty(rdst);
1311 		     rxcur = nm_next(rxcur, src_lim) ) {
1312 			struct netmap_slot *src, *dst, tmp;
1313 			u_int dst_head = rdst->head;
1314 
1315 			src = &rxslot[rxcur];
1316 			if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1317 				continue;
1318 
1319 			sent++;
1320 
1321 			dst = &rdst->slot[dst_head];
1322 
1323 			tmp = *src;
1324 
1325 			src->buf_idx = dst->buf_idx;
1326 			src->flags = NS_BUF_CHANGED;
1327 
1328 			dst->buf_idx = tmp.buf_idx;
1329 			dst->len = tmp.len;
1330 			dst->flags = NS_BUF_CHANGED;
1331 
1332 			rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1333 		}
1334 		/* if (sent) XXX txsync ? it would be just an optimization */
1335 	}
1336 	return sent;
1337 }
1338 
1339 
1340 /*
1341  * netmap_txsync_to_host() passes packets up. We are called from a
1342  * system call in user process context, and the only contention
1343  * can be among multiple user threads erroneously calling
1344  * this routine concurrently.
1345  */
1346 static int
1347 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1348 {
1349 	struct netmap_adapter *na = kring->na;
1350 	u_int const lim = kring->nkr_num_slots - 1;
1351 	u_int const head = kring->rhead;
1352 	struct mbq q;
1353 
1354 	/* Take packets from hwcur to head and pass them up.
1355 	 * Force hwcur = head since netmap_grab_packets() stops at head
1356 	 */
1357 	mbq_init(&q);
1358 	netmap_grab_packets(kring, &q, 1 /* force */);
1359 	nm_prdis("have %d pkts in queue", mbq_len(&q));
1360 	kring->nr_hwcur = head;
1361 	kring->nr_hwtail = head + lim;
1362 	if (kring->nr_hwtail > lim)
1363 		kring->nr_hwtail -= lim + 1;
1364 
1365 	netmap_send_up(na->ifp, &q);
1366 	return 0;
1367 }
1368 
1369 
1370 /*
1371  * rxsync backend for packets coming from the host stack.
1372  * They have been put in kring->rx_queue by netmap_transmit().
1373  * We protect access to the kring using kring->rx_queue.lock
1374  *
1375  * also moves to the nic hw rings any packet the user has marked
1376  * for transparent-mode forwarding, then sets the NR_FORWARD
1377  * flag in the kring to let the caller push them out
1378  */
1379 static int
1380 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1381 {
1382 	struct netmap_adapter *na = kring->na;
1383 	struct netmap_ring *ring = kring->ring;
1384 	u_int nm_i, n;
1385 	u_int const lim = kring->nkr_num_slots - 1;
1386 	u_int const head = kring->rhead;
1387 	int ret = 0;
1388 	struct mbq *q = &kring->rx_queue, fq;
1389 
1390 	mbq_init(&fq); /* fq holds packets to be freed */
1391 
1392 	mbq_lock(q);
1393 
1394 	/* First part: import newly received packets */
1395 	n = mbq_len(q);
1396 	if (n) { /* grab packets from the queue */
1397 		struct mbuf *m;
1398 		uint32_t stop_i;
1399 
1400 		nm_i = kring->nr_hwtail;
1401 		stop_i = nm_prev(kring->nr_hwcur, lim);
1402 		while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1403 			int len = MBUF_LEN(m);
1404 			struct netmap_slot *slot = &ring->slot[nm_i];
1405 
1406 			m_copydata(m, 0, len, NMB(na, slot));
1407 			nm_prdis("nm %d len %d", nm_i, len);
1408 			if (netmap_debug & NM_DEBUG_HOST)
1409 				nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1410 
1411 			slot->len = len;
1412 			slot->flags = 0;
1413 			nm_i = nm_next(nm_i, lim);
1414 			mbq_enqueue(&fq, m);
1415 		}
1416 		kring->nr_hwtail = nm_i;
1417 	}
1418 
1419 	/*
1420 	 * Second part: skip past packets that userspace has released.
1421 	 */
1422 	nm_i = kring->nr_hwcur;
1423 	if (nm_i != head) { /* something was released */
1424 		if (nm_may_forward_down(kring, flags)) {
1425 			ret = netmap_sw_to_nic(na);
1426 			if (ret > 0) {
1427 				kring->nr_kflags |= NR_FORWARD;
1428 				ret = 0;
1429 			}
1430 		}
1431 		kring->nr_hwcur = head;
1432 	}
1433 
1434 	mbq_unlock(q);
1435 
1436 	mbq_purge(&fq);
1437 	mbq_fini(&fq);
1438 
1439 	return ret;
1440 }
1441 
1442 
1443 /* Get a netmap adapter for the port.
1444  *
1445  * If it is possible to satisfy the request, return 0
1446  * with *na containing the netmap adapter found.
1447  * Otherwise return an error code, with *na containing NULL.
1448  *
1449  * When the port is attached to a bridge, we always return
1450  * EBUSY.
1451  * Otherwise, if the port is already bound to a file descriptor,
1452  * then we unconditionally return the existing adapter into *na.
1453  * In all the other cases, we return (into *na) either native,
1454  * generic or NULL, according to the following table:
1455  *
1456  *					native_support
1457  * active_fds   dev.netmap.admode         YES     NO
1458  * -------------------------------------------------------
1459  *    >0              *                 NA(ifp) NA(ifp)
1460  *
1461  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
1462  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
1463  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
1464  *
1465  */
1466 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1467 int
1468 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1469 {
1470 	/* generic support */
1471 	int i = netmap_admode;	/* Take a snapshot. */
1472 	struct netmap_adapter *prev_na;
1473 	int error = 0;
1474 
1475 	*na = NULL; /* default */
1476 
1477 	/* reset in case of invalid value */
1478 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1479 		i = netmap_admode = NETMAP_ADMODE_BEST;
1480 
1481 	if (NM_NA_VALID(ifp)) {
1482 		prev_na = NA(ifp);
1483 		/* If an adapter already exists, return it if
1484 		 * there are active file descriptors or if
1485 		 * netmap is not forced to use generic
1486 		 * adapters.
1487 		 */
1488 		if (NETMAP_OWNED_BY_ANY(prev_na)
1489 			|| i != NETMAP_ADMODE_GENERIC
1490 			|| prev_na->na_flags & NAF_FORCE_NATIVE
1491 #ifdef WITH_PIPES
1492 			/* ugly, but we cannot allow an adapter switch
1493 			 * if some pipe is referring to this one
1494 			 */
1495 			|| prev_na->na_next_pipe > 0
1496 #endif
1497 		) {
1498 			*na = prev_na;
1499 			goto assign_mem;
1500 		}
1501 	}
1502 
1503 	/* If there isn't native support and netmap is not allowed
1504 	 * to use generic adapters, we cannot satisfy the request.
1505 	 */
1506 	if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1507 		return EOPNOTSUPP;
1508 
1509 	/* Otherwise, create a generic adapter and return it,
1510 	 * saving the previously used netmap adapter, if any.
1511 	 *
1512 	 * Note that here 'prev_na', if not NULL, MUST be a
1513 	 * native adapter, and CANNOT be a generic one. This is
1514 	 * true because generic adapters are created on demand, and
1515 	 * destroyed when not used anymore. Therefore, if the adapter
1516 	 * currently attached to an interface 'ifp' is generic, it
1517 	 * must be that
1518 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1519 	 * Consequently, if NA(ifp) is generic, we will enter one of
1520 	 * the branches above. This ensures that we never override
1521 	 * a generic adapter with another generic adapter.
1522 	 */
1523 	error = generic_netmap_attach(ifp);
1524 	if (error)
1525 		return error;
1526 
1527 	*na = NA(ifp);
1528 
1529 assign_mem:
1530 	if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1531 	    (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1532 		(*na)->nm_mem_prev = (*na)->nm_mem;
1533 		(*na)->nm_mem = netmap_mem_get(nmd);
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 /*
1540  * MUST BE CALLED UNDER NMG_LOCK()
1541  *
1542  * Get a refcounted reference to a netmap adapter attached
1543  * to the interface specified by req.
1544  * This is always called in the execution of an ioctl().
1545  *
1546  * Return ENXIO if the interface specified by the request does
1547  * not exist, ENOTSUP if netmap is not supported by the interface,
1548  * EBUSY if the interface is already attached to a bridge,
1549  * EINVAL if parameters are invalid, ENOMEM if needed resources
1550  * could not be allocated.
1551  * If successful, hold a reference to the netmap adapter.
1552  *
1553  * If the interface specified by req is a system one, also keep
1554  * a reference to it and return a valid *ifp.
1555  */
1556 int
1557 netmap_get_na(struct nmreq_header *hdr,
1558 	      struct netmap_adapter **na, struct ifnet **ifp,
1559 	      struct netmap_mem_d *nmd, int create)
1560 {
1561 	struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1562 	int error = 0;
1563 	struct netmap_adapter *ret = NULL;
1564 	int nmd_ref = 0;
1565 
1566 	*na = NULL;     /* default return value */
1567 	*ifp = NULL;
1568 
1569 	if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1570 		return EINVAL;
1571 	}
1572 
1573 	if (req->nr_mode == NR_REG_PIPE_MASTER ||
1574 			req->nr_mode == NR_REG_PIPE_SLAVE) {
1575 		/* Do not accept deprecated pipe modes. */
1576 		nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1577 		return EINVAL;
1578 	}
1579 
1580 	NMG_LOCK_ASSERT();
1581 
1582 	/* if the request contain a memid, try to find the
1583 	 * corresponding memory region
1584 	 */
1585 	if (nmd == NULL && req->nr_mem_id) {
1586 		nmd = netmap_mem_find(req->nr_mem_id);
1587 		if (nmd == NULL)
1588 			return EINVAL;
1589 		/* keep the rereference */
1590 		nmd_ref = 1;
1591 	}
1592 
1593 	/* We cascade through all possible types of netmap adapter.
1594 	 * All netmap_get_*_na() functions return an error and an na,
1595 	 * with the following combinations:
1596 	 *
1597 	 * error    na
1598 	 *   0	   NULL		type doesn't match
1599 	 *  !0	   NULL		type matches, but na creation/lookup failed
1600 	 *   0	  !NULL		type matches and na created/found
1601 	 *  !0    !NULL		impossible
1602 	 */
1603 	error = netmap_get_null_na(hdr, na, nmd, create);
1604 	if (error || *na != NULL)
1605 		goto out;
1606 
1607 	/* try to see if this is a monitor port */
1608 	error = netmap_get_monitor_na(hdr, na, nmd, create);
1609 	if (error || *na != NULL)
1610 		goto out;
1611 
1612 	/* try to see if this is a pipe port */
1613 	error = netmap_get_pipe_na(hdr, na, nmd, create);
1614 	if (error || *na != NULL)
1615 		goto out;
1616 
1617 	/* try to see if this is a vale port */
1618 	error = netmap_get_vale_na(hdr, na, nmd, create);
1619 	if (error)
1620 		goto out;
1621 
1622 	if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1623 		goto out;
1624 
1625 	/*
1626 	 * This must be a hardware na, lookup the name in the system.
1627 	 * Note that by hardware we actually mean "it shows up in ifconfig".
1628 	 * This may still be a tap, a veth/epair, or even a
1629 	 * persistent VALE port.
1630 	 */
1631 	*ifp = ifunit_ref(hdr->nr_name);
1632 	if (*ifp == NULL) {
1633 		error = ENXIO;
1634 		goto out;
1635 	}
1636 
1637 	error = netmap_get_hw_na(*ifp, nmd, &ret);
1638 	if (error)
1639 		goto out;
1640 
1641 	*na = ret;
1642 	netmap_adapter_get(ret);
1643 
1644 	/*
1645 	 * if the adapter supports the host rings and it is not already open,
1646 	 * try to set the number of host rings as requested by the user
1647 	 */
1648 	if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) {
1649 		if (req->nr_host_tx_rings)
1650 			(*na)->num_host_tx_rings = req->nr_host_tx_rings;
1651 		if (req->nr_host_rx_rings)
1652 			(*na)->num_host_rx_rings = req->nr_host_rx_rings;
1653 	}
1654 	nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings,
1655 			(*na)->num_host_rx_rings);
1656 
1657 out:
1658 	if (error) {
1659 		if (ret)
1660 			netmap_adapter_put(ret);
1661 		if (*ifp) {
1662 			if_rele(*ifp);
1663 			*ifp = NULL;
1664 		}
1665 	}
1666 	if (nmd_ref)
1667 		netmap_mem_put(nmd);
1668 
1669 	return error;
1670 }
1671 
1672 /* undo netmap_get_na() */
1673 void
1674 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1675 {
1676 	if (ifp)
1677 		if_rele(ifp);
1678 	if (na)
1679 		netmap_adapter_put(na);
1680 }
1681 
1682 
1683 #define NM_FAIL_ON(t) do {						\
1684 	if (unlikely(t)) {						\
1685 		nm_prlim(5, "%s: fail '" #t "' "				\
1686 			"h %d c %d t %d "				\
1687 			"rh %d rc %d rt %d "				\
1688 			"hc %d ht %d",					\
1689 			kring->name,					\
1690 			head, cur, ring->tail,				\
1691 			kring->rhead, kring->rcur, kring->rtail,	\
1692 			kring->nr_hwcur, kring->nr_hwtail);		\
1693 		return kring->nkr_num_slots;				\
1694 	}								\
1695 } while (0)
1696 
1697 /*
1698  * validate parameters on entry for *_txsync()
1699  * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1700  * in case of error.
1701  *
1702  * rhead, rcur and rtail=hwtail are stored from previous round.
1703  * hwcur is the next packet to send to the ring.
1704  *
1705  * We want
1706  *    hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1707  *
1708  * hwcur, rhead, rtail and hwtail are reliable
1709  */
1710 u_int
1711 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1712 {
1713 	u_int head = NM_ACCESS_ONCE(ring->head);
1714 	u_int cur = NM_ACCESS_ONCE(ring->cur);
1715 	u_int n = kring->nkr_num_slots;
1716 
1717 	nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1718 		kring->name,
1719 		kring->nr_hwcur, kring->nr_hwtail,
1720 		ring->head, ring->cur, ring->tail);
1721 #if 1 /* kernel sanity checks; but we can trust the kring. */
1722 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1723 	    kring->rtail >= n ||  kring->nr_hwtail >= n);
1724 #endif /* kernel sanity checks */
1725 	/*
1726 	 * user sanity checks. We only use head,
1727 	 * A, B, ... are possible positions for head:
1728 	 *
1729 	 *  0    A  rhead   B  rtail   C  n-1
1730 	 *  0    D  rtail   E  rhead   F  n-1
1731 	 *
1732 	 * B, F, D are valid. A, C, E are wrong
1733 	 */
1734 	if (kring->rtail >= kring->rhead) {
1735 		/* want rhead <= head <= rtail */
1736 		NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1737 		/* and also head <= cur <= rtail */
1738 		NM_FAIL_ON(cur < head || cur > kring->rtail);
1739 	} else { /* here rtail < rhead */
1740 		/* we need head outside rtail .. rhead */
1741 		NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1742 
1743 		/* two cases now: head <= rtail or head >= rhead  */
1744 		if (head <= kring->rtail) {
1745 			/* want head <= cur <= rtail */
1746 			NM_FAIL_ON(cur < head || cur > kring->rtail);
1747 		} else { /* head >= rhead */
1748 			/* cur must be outside rtail..head */
1749 			NM_FAIL_ON(cur > kring->rtail && cur < head);
1750 		}
1751 	}
1752 	if (ring->tail != kring->rtail) {
1753 		nm_prlim(5, "%s tail overwritten was %d need %d", kring->name,
1754 			ring->tail, kring->rtail);
1755 		ring->tail = kring->rtail;
1756 	}
1757 	kring->rhead = head;
1758 	kring->rcur = cur;
1759 	return head;
1760 }
1761 
1762 
1763 /*
1764  * validate parameters on entry for *_rxsync()
1765  * Returns ring->head if ok, kring->nkr_num_slots on error.
1766  *
1767  * For a valid configuration,
1768  * hwcur <= head <= cur <= tail <= hwtail
1769  *
1770  * We only consider head and cur.
1771  * hwcur and hwtail are reliable.
1772  *
1773  */
1774 u_int
1775 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1776 {
1777 	uint32_t const n = kring->nkr_num_slots;
1778 	uint32_t head, cur;
1779 
1780 	nm_prdis(5,"%s kc %d kt %d h %d c %d t %d",
1781 		kring->name,
1782 		kring->nr_hwcur, kring->nr_hwtail,
1783 		ring->head, ring->cur, ring->tail);
1784 	/*
1785 	 * Before storing the new values, we should check they do not
1786 	 * move backwards. However:
1787 	 * - head is not an issue because the previous value is hwcur;
1788 	 * - cur could in principle go back, however it does not matter
1789 	 *   because we are processing a brand new rxsync()
1790 	 */
1791 	cur = kring->rcur = NM_ACCESS_ONCE(ring->cur);
1792 	head = kring->rhead = NM_ACCESS_ONCE(ring->head);
1793 #if 1 /* kernel sanity checks */
1794 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1795 #endif /* kernel sanity checks */
1796 	/* user sanity checks */
1797 	if (kring->nr_hwtail >= kring->nr_hwcur) {
1798 		/* want hwcur <= rhead <= hwtail */
1799 		NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1800 		/* and also rhead <= rcur <= hwtail */
1801 		NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1802 	} else {
1803 		/* we need rhead outside hwtail..hwcur */
1804 		NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1805 		/* two cases now: head <= hwtail or head >= hwcur  */
1806 		if (head <= kring->nr_hwtail) {
1807 			/* want head <= cur <= hwtail */
1808 			NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1809 		} else {
1810 			/* cur must be outside hwtail..head */
1811 			NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1812 		}
1813 	}
1814 	if (ring->tail != kring->rtail) {
1815 		nm_prlim(5, "%s tail overwritten was %d need %d",
1816 			kring->name,
1817 			ring->tail, kring->rtail);
1818 		ring->tail = kring->rtail;
1819 	}
1820 	return head;
1821 }
1822 
1823 
1824 /*
1825  * Error routine called when txsync/rxsync detects an error.
1826  * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1827  * Return 1 on reinit.
1828  *
1829  * This routine is only called by the upper half of the kernel.
1830  * It only reads hwcur (which is changed only by the upper half, too)
1831  * and hwtail (which may be changed by the lower half, but only on
1832  * a tx ring and only to increase it, so any error will be recovered
1833  * on the next call). For the above, we don't strictly need to call
1834  * it under lock.
1835  */
1836 int
1837 netmap_ring_reinit(struct netmap_kring *kring)
1838 {
1839 	struct netmap_ring *ring = kring->ring;
1840 	u_int i, lim = kring->nkr_num_slots - 1;
1841 	int errors = 0;
1842 
1843 	// XXX KASSERT nm_kr_tryget
1844 	nm_prlim(10, "called for %s", kring->name);
1845 	// XXX probably wrong to trust userspace
1846 	kring->rhead = ring->head;
1847 	kring->rcur  = ring->cur;
1848 	kring->rtail = ring->tail;
1849 
1850 	if (ring->cur > lim)
1851 		errors++;
1852 	if (ring->head > lim)
1853 		errors++;
1854 	if (ring->tail > lim)
1855 		errors++;
1856 	for (i = 0; i <= lim; i++) {
1857 		u_int idx = ring->slot[i].buf_idx;
1858 		u_int len = ring->slot[i].len;
1859 		if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1860 			nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1861 			ring->slot[i].buf_idx = 0;
1862 			ring->slot[i].len = 0;
1863 		} else if (len > NETMAP_BUF_SIZE(kring->na)) {
1864 			ring->slot[i].len = 0;
1865 			nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len);
1866 		}
1867 	}
1868 	if (errors) {
1869 		nm_prlim(10, "total %d errors", errors);
1870 		nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d",
1871 			kring->name,
1872 			ring->cur, kring->nr_hwcur,
1873 			ring->tail, kring->nr_hwtail);
1874 		ring->head = kring->rhead = kring->nr_hwcur;
1875 		ring->cur  = kring->rcur  = kring->nr_hwcur;
1876 		ring->tail = kring->rtail = kring->nr_hwtail;
1877 	}
1878 	return (errors ? 1 : 0);
1879 }
1880 
1881 /* interpret the ringid and flags fields of an nmreq, by translating them
1882  * into a pair of intervals of ring indices:
1883  *
1884  * [priv->np_txqfirst, priv->np_txqlast) and
1885  * [priv->np_rxqfirst, priv->np_rxqlast)
1886  *
1887  */
1888 int
1889 netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr)
1890 {
1891 	struct netmap_adapter *na = priv->np_na;
1892 	struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body;
1893 	int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1894 	enum txrx t;
1895 	u_int j;
1896 	u_int nr_flags = reg->nr_flags, nr_mode = reg->nr_mode,
1897 	      nr_ringid = reg->nr_ringid;
1898 
1899 	for_rx_tx(t) {
1900 		if (nr_flags & excluded_direction[t]) {
1901 			priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1902 			continue;
1903 		}
1904 		switch (nr_mode) {
1905 		case NR_REG_ALL_NIC:
1906 		case NR_REG_NULL:
1907 			priv->np_qfirst[t] = 0;
1908 			priv->np_qlast[t] = nma_get_nrings(na, t);
1909 			nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1910 				priv->np_qfirst[t], priv->np_qlast[t]);
1911 			break;
1912 		case NR_REG_SW:
1913 		case NR_REG_NIC_SW:
1914 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1915 				nm_prerr("host rings not supported");
1916 				return EINVAL;
1917 			}
1918 			priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1919 				nma_get_nrings(na, t) : 0);
1920 			priv->np_qlast[t] = netmap_all_rings(na, t);
1921 			nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1922 				nm_txrx2str(t),
1923 				priv->np_qfirst[t], priv->np_qlast[t]);
1924 			break;
1925 		case NR_REG_ONE_NIC:
1926 			if (nr_ringid >= na->num_tx_rings &&
1927 					nr_ringid >= na->num_rx_rings) {
1928 				nm_prerr("invalid ring id %d", nr_ringid);
1929 				return EINVAL;
1930 			}
1931 			/* if not enough rings, use the first one */
1932 			j = nr_ringid;
1933 			if (j >= nma_get_nrings(na, t))
1934 				j = 0;
1935 			priv->np_qfirst[t] = j;
1936 			priv->np_qlast[t] = j + 1;
1937 			nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t),
1938 				priv->np_qfirst[t], priv->np_qlast[t]);
1939 			break;
1940 		case NR_REG_ONE_SW:
1941 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1942 				nm_prerr("host rings not supported");
1943 				return EINVAL;
1944 			}
1945 			if (nr_ringid >= na->num_host_tx_rings &&
1946 					nr_ringid >= na->num_host_rx_rings) {
1947 				nm_prerr("invalid ring id %d", nr_ringid);
1948 				return EINVAL;
1949 			}
1950 			/* if not enough rings, use the first one */
1951 			j = nr_ringid;
1952 			if (j >= nma_get_host_nrings(na, t))
1953 				j = 0;
1954 			priv->np_qfirst[t] = nma_get_nrings(na, t) + j;
1955 			priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1;
1956 			nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t),
1957 				priv->np_qfirst[t], priv->np_qlast[t]);
1958 			break;
1959 		default:
1960 			nm_prerr("invalid regif type %d", nr_mode);
1961 			return EINVAL;
1962 		}
1963 	}
1964 	priv->np_flags = nr_flags;
1965 
1966 	/* Allow transparent forwarding mode in the host --> nic
1967 	 * direction only if all the TX hw rings have been opened. */
1968 	if (priv->np_qfirst[NR_TX] == 0 &&
1969 			priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1970 		priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1971 	}
1972 
1973 	if (netmap_verbose) {
1974 		nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1975 			na->name,
1976 			priv->np_qfirst[NR_TX],
1977 			priv->np_qlast[NR_TX],
1978 			priv->np_qfirst[NR_RX],
1979 			priv->np_qlast[NR_RX],
1980 			nr_ringid);
1981 	}
1982 	return 0;
1983 }
1984 
1985 
1986 /*
1987  * Set the ring ID. For devices with a single queue, a request
1988  * for all rings is the same as a single ring.
1989  */
1990 static int
1991 netmap_set_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr)
1992 {
1993 	struct netmap_adapter *na = priv->np_na;
1994 	struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body;
1995 	int error;
1996 	enum txrx t;
1997 
1998 	error = netmap_interp_ringid(priv, hdr);
1999 	if (error) {
2000 		return error;
2001 	}
2002 
2003 	priv->np_txpoll = (reg->nr_flags & NR_NO_TX_POLL) ? 0 : 1;
2004 
2005 	/* optimization: count the users registered for more than
2006 	 * one ring, which are the ones sleeping on the global queue.
2007 	 * The default netmap_notify() callback will then
2008 	 * avoid signaling the global queue if nobody is using it
2009 	 */
2010 	for_rx_tx(t) {
2011 		if (nm_si_user(priv, t))
2012 			na->si_users[t]++;
2013 	}
2014 	return 0;
2015 }
2016 
2017 static void
2018 netmap_unset_ringid(struct netmap_priv_d *priv)
2019 {
2020 	struct netmap_adapter *na = priv->np_na;
2021 	enum txrx t;
2022 
2023 	for_rx_tx(t) {
2024 		if (nm_si_user(priv, t))
2025 			na->si_users[t]--;
2026 		priv->np_qfirst[t] = priv->np_qlast[t] = 0;
2027 	}
2028 	priv->np_flags = 0;
2029 	priv->np_txpoll = 0;
2030 	priv->np_kloop_state = 0;
2031 }
2032 
2033 #define within_sel(p_, t_, i_)					  	  \
2034 	((i_) < (p_)->np_qlast[(t_)])
2035 #define nonempty_sel(p_, t_)						  \
2036 	(within_sel((p_), (t_), (p_)->np_qfirst[(t_)]))
2037 #define foreach_selected_ring(p_, t_, i_, kring_)			  \
2038 	for ((t_) = nonempty_sel((p_), NR_RX) ? NR_RX : NR_TX,		  \
2039 	     (i_) = (p_)->np_qfirst[(t_)];				  \
2040 	     (t_ == NR_RX ||						  \
2041 	      (t == NR_TX && within_sel((p_), (t_), (i_)))) &&     	  \
2042 	      ((kring_) = NMR((p_)->np_na, (t_))[(i_)]); 		  \
2043 	     (i_) = within_sel((p_), (t_), (i_) + 1) ? (i_) + 1 :         \
2044 		(++(t_) < NR_TXRX ? (p_)->np_qfirst[(t_)] : (i_)))
2045 
2046 
2047 /* Set the nr_pending_mode for the requested rings.
2048  * If requested, also try to get exclusive access to the rings, provided
2049  * the rings we want to bind are not exclusively owned by a previous bind.
2050  */
2051 static int
2052 netmap_krings_get(struct netmap_priv_d *priv)
2053 {
2054 	struct netmap_adapter *na = priv->np_na;
2055 	u_int i;
2056 	struct netmap_kring *kring;
2057 	int excl = (priv->np_flags & NR_EXCLUSIVE);
2058 	enum txrx t;
2059 
2060 	if (netmap_debug & NM_DEBUG_ON)
2061 		nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
2062 			na->name,
2063 			priv->np_qfirst[NR_TX],
2064 			priv->np_qlast[NR_TX],
2065 			priv->np_qfirst[NR_RX],
2066 			priv->np_qlast[NR_RX]);
2067 
2068 	/* first round: check that all the requested rings
2069 	 * are neither already exclusively owned, nor we
2070 	 * want exclusive ownership when they are already in use
2071 	 */
2072 	foreach_selected_ring(priv, t, i, kring) {
2073 		if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
2074 		    (kring->users && excl))
2075 		{
2076 			nm_prdis("ring %s busy", kring->name);
2077 			return EBUSY;
2078 		}
2079 	}
2080 
2081 	/* second round: increment usage count (possibly marking them
2082 	 * as exclusive) and set the nr_pending_mode
2083 	 */
2084 	foreach_selected_ring(priv, t, i, kring) {
2085 		kring->users++;
2086 		if (excl)
2087 			kring->nr_kflags |= NKR_EXCLUSIVE;
2088 		kring->nr_pending_mode = NKR_NETMAP_ON;
2089 	}
2090 
2091 	return 0;
2092 
2093 }
2094 
2095 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
2096  * if was asked on regif, and unset the nr_pending_mode if we are the
2097  * last users of the involved rings. */
2098 static void
2099 netmap_krings_put(struct netmap_priv_d *priv)
2100 {
2101 	u_int i;
2102 	struct netmap_kring *kring;
2103 	int excl = (priv->np_flags & NR_EXCLUSIVE);
2104 	enum txrx t;
2105 
2106 	nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)",
2107 			na->name,
2108 			priv->np_qfirst[NR_TX],
2109 			priv->np_qlast[NR_TX],
2110 			priv->np_qfirst[NR_RX],
2111 			priv->np_qlast[MR_RX]);
2112 
2113 	foreach_selected_ring(priv, t, i, kring) {
2114 		if (excl)
2115 			kring->nr_kflags &= ~NKR_EXCLUSIVE;
2116 		kring->users--;
2117 		if (kring->users == 0)
2118 			kring->nr_pending_mode = NKR_NETMAP_OFF;
2119 	}
2120 }
2121 
2122 static int
2123 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2124 {
2125 	return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2126 }
2127 
2128 /* Validate the CSB entries for both directions (atok and ktoa).
2129  * To be called under NMG_LOCK(). */
2130 static int
2131 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2132 {
2133 	struct nm_csb_atok *csb_atok_base =
2134 		(struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2135 	struct nm_csb_ktoa *csb_ktoa_base =
2136 		(struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2137 	enum txrx t;
2138 	int num_rings[NR_TXRX], tot_rings;
2139 	size_t entry_size[2];
2140 	void *csb_start[2];
2141 	int i;
2142 
2143 	if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2144 		nm_prerr("Cannot update CSB while kloop is running");
2145 		return EBUSY;
2146 	}
2147 
2148 	tot_rings = 0;
2149 	for_rx_tx(t) {
2150 		num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2151 		tot_rings += num_rings[t];
2152 	}
2153 	if (tot_rings <= 0)
2154 		return 0;
2155 
2156 	if (!(priv->np_flags & NR_EXCLUSIVE)) {
2157 		nm_prerr("CSB mode requires NR_EXCLUSIVE");
2158 		return EINVAL;
2159 	}
2160 
2161 	entry_size[0] = sizeof(*csb_atok_base);
2162 	entry_size[1] = sizeof(*csb_ktoa_base);
2163 	csb_start[0] = (void *)csb_atok_base;
2164 	csb_start[1] = (void *)csb_ktoa_base;
2165 
2166 	for (i = 0; i < 2; i++) {
2167 		/* On Linux we could use access_ok() to simplify
2168 		 * the validation. However, the advantage of
2169 		 * this approach is that it works also on
2170 		 * FreeBSD. */
2171 		size_t csb_size = tot_rings * entry_size[i];
2172 		void *tmp;
2173 		int err;
2174 
2175 		if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2176 			nm_prerr("Unaligned CSB address");
2177 			return EINVAL;
2178 		}
2179 
2180 		tmp = nm_os_malloc(csb_size);
2181 		if (!tmp)
2182 			return ENOMEM;
2183 		if (i == 0) {
2184 			/* Application --> kernel direction. */
2185 			err = copyin(csb_start[i], tmp, csb_size);
2186 		} else {
2187 			/* Kernel --> application direction. */
2188 			memset(tmp, 0, csb_size);
2189 			err = copyout(tmp, csb_start[i], csb_size);
2190 		}
2191 		nm_os_free(tmp);
2192 		if (err) {
2193 			nm_prerr("Invalid CSB address");
2194 			return err;
2195 		}
2196 	}
2197 
2198 	priv->np_csb_atok_base = csb_atok_base;
2199 	priv->np_csb_ktoa_base = csb_ktoa_base;
2200 
2201 	/* Initialize the CSB. */
2202 	for_rx_tx(t) {
2203 		for (i = 0; i < num_rings[t]; i++) {
2204 			struct netmap_kring *kring =
2205 				NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2206 			struct nm_csb_atok *csb_atok = csb_atok_base + i;
2207 			struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2208 
2209 			if (t == NR_RX) {
2210 				csb_atok += num_rings[NR_TX];
2211 				csb_ktoa += num_rings[NR_TX];
2212 			}
2213 
2214 			CSB_WRITE(csb_atok, head, kring->rhead);
2215 			CSB_WRITE(csb_atok, cur, kring->rcur);
2216 			CSB_WRITE(csb_atok, appl_need_kick, 1);
2217 			CSB_WRITE(csb_atok, sync_flags, 1);
2218 			CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2219 			CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2220 			CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2221 
2222 			nm_prinf("csb_init for kring %s: head %u, cur %u, "
2223 				"hwcur %u, hwtail %u", kring->name,
2224 				kring->rhead, kring->rcur, kring->nr_hwcur,
2225 				kring->nr_hwtail);
2226 		}
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 /* Ensure that the netmap adapter can support the given MTU.
2233  * @return EINVAL if the na cannot be set to mtu, 0 otherwise.
2234  */
2235 int
2236 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) {
2237 	unsigned nbs = NETMAP_BUF_SIZE(na);
2238 
2239 	if (mtu <= na->rx_buf_maxsize) {
2240 		/* The MTU fits a single NIC slot. We only
2241 		 * Need to check that netmap buffers are
2242 		 * large enough to hold an MTU. NS_MOREFRAG
2243 		 * cannot be used in this case. */
2244 		if (nbs < mtu) {
2245 			nm_prerr("error: netmap buf size (%u) "
2246 				 "< device MTU (%u)", nbs, mtu);
2247 			return EINVAL;
2248 		}
2249 	} else {
2250 		/* More NIC slots may be needed to receive
2251 		 * or transmit a single packet. Check that
2252 		 * the adapter supports NS_MOREFRAG and that
2253 		 * netmap buffers are large enough to hold
2254 		 * the maximum per-slot size. */
2255 		if (!(na->na_flags & NAF_MOREFRAG)) {
2256 			nm_prerr("error: large MTU (%d) needed "
2257 				 "but %s does not support "
2258 				 "NS_MOREFRAG", mtu,
2259 				 na->ifp->if_xname);
2260 			return EINVAL;
2261 		} else if (nbs < na->rx_buf_maxsize) {
2262 			nm_prerr("error: using NS_MOREFRAG on "
2263 				 "%s requires netmap buf size "
2264 				 ">= %u", na->ifp->if_xname,
2265 				 na->rx_buf_maxsize);
2266 			return EINVAL;
2267 		} else {
2268 			nm_prinf("info: netmap application on "
2269 				 "%s needs to support "
2270 				 "NS_MOREFRAG "
2271 				 "(MTU=%u,netmap_buf_size=%u)",
2272 				 na->ifp->if_xname, mtu, nbs);
2273 		}
2274 	}
2275 	return 0;
2276 }
2277 
2278 /* Handle the offset option, if present in the hdr.
2279  * Returns 0 on success, or an error.
2280  */
2281 static int
2282 netmap_offsets_init(struct netmap_priv_d *priv, struct nmreq_header *hdr)
2283 {
2284 	struct nmreq_opt_offsets *opt;
2285 	struct netmap_adapter *na = priv->np_na;
2286 	struct netmap_kring *kring;
2287 	uint64_t mask = 0, bits = 0, maxbits = sizeof(uint64_t) * 8,
2288 		 max_offset = 0, initial_offset = 0, min_gap = 0;
2289 	u_int i;
2290 	enum txrx t;
2291 	int error = 0;
2292 
2293 	opt = (struct nmreq_opt_offsets *)
2294 		nmreq_getoption(hdr, NETMAP_REQ_OPT_OFFSETS);
2295 	if (opt == NULL)
2296 		return 0;
2297 
2298 	if (!(na->na_flags & NAF_OFFSETS)) {
2299 		if (netmap_verbose)
2300 			nm_prerr("%s does not support offsets",
2301 				na->name);
2302 		error = EOPNOTSUPP;
2303 		goto out;
2304 	}
2305 
2306 	/* check sanity of the opt values */
2307 	max_offset = opt->nro_max_offset;
2308 	min_gap = opt->nro_min_gap;
2309 	initial_offset = opt->nro_initial_offset;
2310 	bits = opt->nro_offset_bits;
2311 
2312 	if (bits > maxbits) {
2313 		if (netmap_verbose)
2314 			nm_prerr("bits: %llu too large (max %llu)",
2315 				(unsigned long long)bits,
2316 				(unsigned long long)maxbits);
2317 		error = EINVAL;
2318 		goto out;
2319 	}
2320 	/* we take bits == 0 as a request to use the entire field */
2321 	if (bits == 0 || bits == maxbits) {
2322 		/* shifting a type by sizeof(type) is undefined */
2323 		bits = maxbits;
2324 		mask = 0xffffffffffffffff;
2325 	} else {
2326 		mask = (1ULL << bits) - 1;
2327 	}
2328 	if (max_offset > NETMAP_BUF_SIZE(na)) {
2329 		if (netmap_verbose)
2330 			nm_prerr("max offset %llu > buf size %u",
2331 				(unsigned long long)max_offset, NETMAP_BUF_SIZE(na));
2332 		error = EINVAL;
2333 		goto out;
2334 	}
2335 	if ((max_offset & mask) != max_offset) {
2336 		if (netmap_verbose)
2337 			nm_prerr("max offset %llu to large for %llu bits",
2338 				(unsigned long long)max_offset,
2339 				(unsigned long long)bits);
2340 		error = EINVAL;
2341 		goto out;
2342 	}
2343 	if (initial_offset > max_offset) {
2344 		if (netmap_verbose)
2345 			nm_prerr("initial offset %llu > max offset %llu",
2346 				(unsigned long long)initial_offset,
2347 				(unsigned long long)max_offset);
2348 		error = EINVAL;
2349 		goto out;
2350 	}
2351 
2352 	/* initialize the kring and ring fields. */
2353 	foreach_selected_ring(priv, t, i, kring) {
2354 		struct netmap_kring *kring = NMR(na, t)[i];
2355 		struct netmap_ring *ring = kring->ring;
2356 		u_int j;
2357 
2358 		/* it the ring is already in use we check that the
2359 		 * new request is compatible with the existing one
2360 		 */
2361 		if (kring->offset_mask) {
2362 			if ((kring->offset_mask & mask) != mask ||
2363 			     kring->offset_max < max_offset) {
2364 				if (netmap_verbose)
2365 					nm_prinf("%s: cannot increase"
2366 						 "offset mask and/or max"
2367 						 "(current: mask=%llx,max=%llu",
2368 							kring->name,
2369 							(unsigned long long)kring->offset_mask,
2370 							(unsigned long long)kring->offset_max);
2371 				error = EBUSY;
2372 				goto out;
2373 			}
2374 			mask = kring->offset_mask;
2375 			max_offset = kring->offset_max;
2376 		} else {
2377 			kring->offset_mask = mask;
2378 			*(uint64_t *)(uintptr_t)&ring->offset_mask = mask;
2379 			kring->offset_max = max_offset;
2380 			kring->offset_gap = min_gap;
2381 		}
2382 
2383 		/* if there is an initial offset, put it into
2384 		 * all the slots
2385 		 *
2386 		 * Note: we cannot change the offsets if the
2387 		 * ring is already in use.
2388 		 */
2389 		if (!initial_offset || kring->users > 1)
2390 			continue;
2391 
2392 		for (j = 0; j < kring->nkr_num_slots; j++) {
2393 			struct netmap_slot *slot = ring->slot + j;
2394 
2395 			nm_write_offset(kring, slot, initial_offset);
2396 		}
2397 	}
2398 
2399 out:
2400 	opt->nro_opt.nro_status = error;
2401 	if (!error) {
2402 		opt->nro_max_offset = max_offset;
2403 	}
2404 	return error;
2405 
2406 }
2407 
2408 
2409 /* set the hardware buffer length in each one of the newly opened rings
2410  * (hwbuf_len field in the kring struct). The purpose it to select
2411  * the maximum supported input buffer lenght that will not cause writes
2412  * outside of the available space, even when offsets are in use.
2413  */
2414 static int
2415 netmap_compute_buf_len(struct netmap_priv_d *priv)
2416 {
2417 	enum txrx t;
2418 	u_int i;
2419 	struct netmap_kring *kring;
2420 	int error = 0;
2421 	unsigned mtu = 0;
2422 	struct netmap_adapter *na = priv->np_na;
2423 	uint64_t target;
2424 
2425 	foreach_selected_ring(priv, t, i, kring) {
2426 		/* rings that are already active have their hwbuf_len
2427 		 * already set and we cannot change it.
2428 		 */
2429 		if (kring->users > 1)
2430 			continue;
2431 
2432 		/* For netmap buffers which are not shared among several ring
2433 		 * slots (the normal case), the available space is the buf size
2434 		 * minus the max offset declared by the user at open time.  If
2435 		 * the user plans to have several slots pointing to different
2436 		 * offsets into the same large buffer, she must also declare a
2437 		 * "minimum gap" between two such consecutive offsets. In this
2438 		 * case the user-declared 'offset_gap' is taken as the
2439 		 * available space and offset_max is ignored.
2440 		 */
2441 
2442 		/* start with the normal case (unshared buffers) */
2443 		target = NETMAP_BUF_SIZE(kring->na) -
2444 			kring->offset_max;
2445 		/* if offset_gap is zero, the user does not intend to use
2446 		 * shared buffers. In this case the minimum gap between
2447 		 * two consective offsets into the same buffer can be
2448 		 * assumed to be equal to the buffer size. In this way
2449 		 * offset_gap always contains the available space ignoring
2450 		 * offset_max. This may be used by drivers of NICs that
2451 		 * are guaranteed to never write more than MTU bytes, even
2452 		 * if the input buffer is larger: if the MTU is less
2453 		 * than the target they can set hwbuf_len to offset_gap.
2454 		 */
2455 		if (!kring->offset_gap)
2456 			kring->offset_gap =
2457 				NETMAP_BUF_SIZE(kring->na);
2458 
2459 		if (kring->offset_gap < target)
2460 			target = kring->offset_gap;
2461 		error = kring->nm_bufcfg(kring, target);
2462 		if (error)
2463 			goto out;
2464 
2465 		*(uint64_t *)(uintptr_t)&kring->ring->buf_align = kring->buf_align;
2466 
2467 		if (mtu && t == NR_RX && kring->hwbuf_len < mtu) {
2468 			if (!(na->na_flags & NAF_MOREFRAG)) {
2469 				nm_prerr("error: large MTU (%d) needed "
2470 					 "but %s does not support "
2471 					 "NS_MOREFRAG", mtu,
2472 					 na->name);
2473 				error = EINVAL;
2474 				goto out;
2475 			} else {
2476 				nm_prinf("info: netmap application on "
2477 					 "%s needs to support "
2478 					 "NS_MOREFRAG "
2479 					 "(MTU=%u,buf_size=%llu)",
2480 					 kring->name, mtu,
2481 					 (unsigned long long)kring->hwbuf_len);
2482 			}
2483 		}
2484 	}
2485 out:
2486 	return error;
2487 }
2488 
2489 /*
2490  * possibly move the interface to netmap-mode.
2491  * If success it returns a pointer to netmap_if, otherwise NULL.
2492  * This must be called with NMG_LOCK held.
2493  *
2494  * The following na callbacks are called in the process:
2495  *
2496  * na->nm_config()			[by netmap_update_config]
2497  * (get current number and size of rings)
2498  *
2499  *  	We have a generic one for linux (netmap_linux_config).
2500  *  	The bwrap has to override this, since it has to forward
2501  *  	the request to the wrapped adapter (netmap_bwrap_config).
2502  *
2503  *
2504  * na->nm_krings_create()
2505  * (create and init the krings array)
2506  *
2507  * 	One of the following:
2508  *
2509  *	* netmap_hw_krings_create, 			(hw ports)
2510  *		creates the standard layout for the krings
2511  * 		and adds the mbq (used for the host rings).
2512  *
2513  * 	* netmap_vp_krings_create			(VALE ports)
2514  * 		add leases and scratchpads
2515  *
2516  * 	* netmap_pipe_krings_create			(pipes)
2517  * 		create the krings and rings of both ends and
2518  * 		cross-link them
2519  *
2520  *      * netmap_monitor_krings_create 			(monitors)
2521  *      	avoid allocating the mbq
2522  *
2523  *      * netmap_bwrap_krings_create			(bwraps)
2524  *      	create both the brap krings array,
2525  *      	the krings array of the wrapped adapter, and
2526  *      	(if needed) the fake array for the host adapter
2527  *
2528  * na->nm_register(, 1)
2529  * (put the adapter in netmap mode)
2530  *
2531  * 	This may be one of the following:
2532  *
2533  * 	* netmap_hw_reg				        (hw ports)
2534  * 		checks that the ifp is still there, then calls
2535  * 		the hardware specific callback;
2536  *
2537  * 	* netmap_vp_reg					(VALE ports)
2538  *		If the port is connected to a bridge,
2539  *		set the NAF_NETMAP_ON flag under the
2540  *		bridge write lock.
2541  *
2542  *	* netmap_pipe_reg				(pipes)
2543  *		inform the other pipe end that it is no
2544  *		longer responsible for the lifetime of this
2545  *		pipe end
2546  *
2547  *	* netmap_monitor_reg				(monitors)
2548  *		intercept the sync callbacks of the monitored
2549  *		rings
2550  *
2551  *	* netmap_bwrap_reg				(bwraps)
2552  *		cross-link the bwrap and hwna rings,
2553  *		forward the request to the hwna, override
2554  *		the hwna notify callback (to get the frames
2555  *		coming from outside go through the bridge).
2556  *
2557  *
2558  */
2559 int
2560 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2561 	struct nmreq_header *hdr)
2562 {
2563 	struct netmap_if *nifp = NULL;
2564 	int error;
2565 
2566 	NMG_LOCK_ASSERT();
2567 	priv->np_na = na;     /* store the reference */
2568 	error = netmap_mem_finalize(na->nm_mem, na);
2569 	if (error)
2570 		goto err;
2571 
2572 	if (na->active_fds == 0) {
2573 
2574 		/* cache the allocator info in the na */
2575 		error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2576 		if (error)
2577 			goto err_drop_mem;
2578 		nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2579 					    na->na_lut.objsize);
2580 
2581 		/* ring configuration may have changed, fetch from the card */
2582 		netmap_update_config(na);
2583 	}
2584 
2585 	/* compute the range of tx and rx rings to monitor */
2586 	error = netmap_set_ringid(priv, hdr);
2587 	if (error)
2588 		goto err_put_lut;
2589 
2590 	if (na->active_fds == 0) {
2591 		/*
2592 		 * If this is the first registration of the adapter,
2593 		 * perform sanity checks and create the in-kernel view
2594 		 * of the netmap rings (the netmap krings).
2595 		 */
2596 		if (na->ifp && nm_priv_rx_enabled(priv)) {
2597 			/* This netmap adapter is attached to an ifnet. */
2598 			unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2599 
2600 			nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2601 				na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na));
2602 
2603 			if (na->rx_buf_maxsize == 0) {
2604 				nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2605 				error = EIO;
2606 				goto err_drop_mem;
2607 			}
2608 
2609 			error = netmap_buf_size_validate(na, mtu);
2610 			if (error)
2611 				goto err_drop_mem;
2612 		}
2613 
2614 		/*
2615 		 * Depending on the adapter, this may also create
2616 		 * the netmap rings themselves
2617 		 */
2618 		error = na->nm_krings_create(na);
2619 		if (error)
2620 			goto err_put_lut;
2621 
2622 	}
2623 
2624 	/* now the krings must exist and we can check whether some
2625 	 * previous bind has exclusive ownership on them, and set
2626 	 * nr_pending_mode
2627 	 */
2628 	error = netmap_krings_get(priv);
2629 	if (error)
2630 		goto err_del_krings;
2631 
2632 	/* create all needed missing netmap rings */
2633 	error = netmap_mem_rings_create(na);
2634 	if (error)
2635 		goto err_rel_excl;
2636 
2637 	/* initialize offsets if requested */
2638 	error = netmap_offsets_init(priv, hdr);
2639 	if (error)
2640 		goto err_rel_excl;
2641 
2642 	/* compute and validate the buf lengths */
2643 	error = netmap_compute_buf_len(priv);
2644 	if (error)
2645 		goto err_rel_excl;
2646 
2647 	/* in all cases, create a new netmap if */
2648 	nifp = netmap_mem_if_new(na, priv);
2649 	if (nifp == NULL) {
2650 		error = ENOMEM;
2651 		goto err_rel_excl;
2652 	}
2653 
2654 	if (nm_kring_pending(priv)) {
2655 		/* Some kring is switching mode, tell the adapter to
2656 		 * react on this. */
2657 		netmap_set_all_rings(na, NM_KR_LOCKED);
2658 		error = na->nm_register(na, 1);
2659 		netmap_set_all_rings(na, 0);
2660 		if (error)
2661 			goto err_del_if;
2662 	}
2663 
2664 	/* Commit the reference. */
2665 	na->active_fds++;
2666 
2667 	/*
2668 	 * advertise that the interface is ready by setting np_nifp.
2669 	 * The barrier is needed because readers (poll, *SYNC and mmap)
2670 	 * check for priv->np_nifp != NULL without locking
2671 	 */
2672 	mb(); /* make sure previous writes are visible to all CPUs */
2673 	priv->np_nifp = nifp;
2674 
2675 	return 0;
2676 
2677 err_del_if:
2678 	netmap_mem_if_delete(na, nifp);
2679 err_rel_excl:
2680 	netmap_krings_put(priv);
2681 	netmap_mem_rings_delete(na);
2682 err_del_krings:
2683 	if (na->active_fds == 0)
2684 		na->nm_krings_delete(na);
2685 err_put_lut:
2686 	if (na->active_fds == 0)
2687 		memset(&na->na_lut, 0, sizeof(na->na_lut));
2688 err_drop_mem:
2689 	netmap_mem_drop(na);
2690 err:
2691 	priv->np_na = NULL;
2692 	return error;
2693 }
2694 
2695 
2696 /*
2697  * update kring and ring at the end of rxsync/txsync.
2698  */
2699 static inline void
2700 nm_sync_finalize(struct netmap_kring *kring)
2701 {
2702 	/*
2703 	 * Update ring tail to what the kernel knows
2704 	 * After txsync: head/rhead/hwcur might be behind cur/rcur
2705 	 * if no carrier.
2706 	 */
2707 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
2708 
2709 	nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2710 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
2711 		kring->rhead, kring->rcur, kring->rtail);
2712 }
2713 
2714 /* set ring timestamp */
2715 static inline void
2716 ring_timestamp_set(struct netmap_ring *ring)
2717 {
2718 	if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2719 		microtime(&ring->ts);
2720 	}
2721 }
2722 
2723 static int nmreq_copyin(struct nmreq_header *, int);
2724 static int nmreq_copyout(struct nmreq_header *, int);
2725 static int nmreq_checkoptions(struct nmreq_header *);
2726 
2727 /*
2728  * ioctl(2) support for the "netmap" device.
2729  *
2730  * Following a list of accepted commands:
2731  * - NIOCCTRL		device control API
2732  * - NIOCTXSYNC		sync TX rings
2733  * - NIOCRXSYNC		sync RX rings
2734  * - SIOCGIFADDR	just for convenience
2735  * - NIOCGINFO		deprecated (legacy API)
2736  * - NIOCREGIF		deprecated (legacy API)
2737  *
2738  * Return 0 on success, errno otherwise.
2739  */
2740 int
2741 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2742 		struct thread *td, int nr_body_is_user)
2743 {
2744 	struct mbq q;	/* packets from RX hw queues to host stack */
2745 	struct netmap_adapter *na = NULL;
2746 	struct netmap_mem_d *nmd = NULL;
2747 	struct ifnet *ifp = NULL;
2748 	int error = 0;
2749 	u_int i, qfirst, qlast;
2750 	struct netmap_kring **krings;
2751 	int sync_flags;
2752 	enum txrx t;
2753 
2754 	switch (cmd) {
2755 	case NIOCCTRL: {
2756 		struct nmreq_header *hdr = (struct nmreq_header *)data;
2757 
2758 		if (hdr->nr_version < NETMAP_MIN_API ||
2759 		    hdr->nr_version > NETMAP_MAX_API) {
2760 			nm_prerr("API mismatch: got %d need %d",
2761 				hdr->nr_version, NETMAP_API);
2762 			return EINVAL;
2763 		}
2764 
2765 		/* Make a kernel-space copy of the user-space nr_body.
2766 		 * For convenience, the nr_body pointer and the pointers
2767 		 * in the options list will be replaced with their
2768 		 * kernel-space counterparts. The original pointers are
2769 		 * saved internally and later restored by nmreq_copyout
2770 		 */
2771 		error = nmreq_copyin(hdr, nr_body_is_user);
2772 		if (error) {
2773 			return error;
2774 		}
2775 
2776 		/* Sanitize hdr->nr_name. */
2777 		hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2778 
2779 		switch (hdr->nr_reqtype) {
2780 		case NETMAP_REQ_REGISTER: {
2781 			struct nmreq_register *req =
2782 				(struct nmreq_register *)(uintptr_t)hdr->nr_body;
2783 			struct netmap_if *nifp;
2784 
2785 			/* Protect access to priv from concurrent requests. */
2786 			NMG_LOCK();
2787 			do {
2788 				struct nmreq_option *opt;
2789 				u_int memflags;
2790 
2791 				if (priv->np_nifp != NULL) {	/* thread already registered */
2792 					error = EBUSY;
2793 					break;
2794 				}
2795 
2796 #ifdef WITH_EXTMEM
2797 				opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM);
2798 				if (opt != NULL) {
2799 					struct nmreq_opt_extmem *e =
2800 						(struct nmreq_opt_extmem *)opt;
2801 
2802 					nmd = netmap_mem_ext_create(e->nro_usrptr,
2803 							&e->nro_info, &error);
2804 					opt->nro_status = error;
2805 					if (nmd == NULL)
2806 						break;
2807 				}
2808 #endif /* WITH_EXTMEM */
2809 
2810 				if (nmd == NULL && req->nr_mem_id) {
2811 					/* find the allocator and get a reference */
2812 					nmd = netmap_mem_find(req->nr_mem_id);
2813 					if (nmd == NULL) {
2814 						if (netmap_verbose) {
2815 							nm_prerr("%s: failed to find mem_id %u",
2816 									hdr->nr_name, req->nr_mem_id);
2817 						}
2818 						error = EINVAL;
2819 						break;
2820 					}
2821 				}
2822 				/* find the interface and a reference */
2823 				error = netmap_get_na(hdr, &na, &ifp, nmd,
2824 						      1 /* create */); /* keep reference */
2825 				if (error)
2826 					break;
2827 				if (NETMAP_OWNED_BY_KERN(na)) {
2828 					error = EBUSY;
2829 					break;
2830 				}
2831 
2832 				if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2833 					nm_prerr("virt_hdr_len=%d, but application does "
2834 						"not accept it", na->virt_hdr_len);
2835 					error = EIO;
2836 					break;
2837 				}
2838 
2839 				error = netmap_do_regif(priv, na, hdr);
2840 				if (error) {    /* reg. failed, release priv and ref */
2841 					break;
2842 				}
2843 
2844 				opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2845 				if (opt != NULL) {
2846 					struct nmreq_opt_csb *csbo =
2847 						(struct nmreq_opt_csb *)opt;
2848 					error = netmap_csb_validate(priv, csbo);
2849 					opt->nro_status = error;
2850 					if (error) {
2851 						netmap_do_unregif(priv);
2852 						break;
2853 					}
2854 				}
2855 
2856 				nifp = priv->np_nifp;
2857 
2858 				/* return the offset of the netmap_if object */
2859 				req->nr_rx_rings = na->num_rx_rings;
2860 				req->nr_tx_rings = na->num_tx_rings;
2861 				req->nr_rx_slots = na->num_rx_desc;
2862 				req->nr_tx_slots = na->num_tx_desc;
2863 				req->nr_host_tx_rings = na->num_host_tx_rings;
2864 				req->nr_host_rx_rings = na->num_host_rx_rings;
2865 				error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2866 					&req->nr_mem_id);
2867 				if (error) {
2868 					netmap_do_unregif(priv);
2869 					break;
2870 				}
2871 				if (memflags & NETMAP_MEM_PRIVATE) {
2872 					*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2873 				}
2874 				for_rx_tx(t) {
2875 					priv->np_si[t] = nm_si_user(priv, t) ?
2876 						&na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2877 				}
2878 
2879 				if (req->nr_extra_bufs) {
2880 					if (netmap_verbose)
2881 						nm_prinf("requested %d extra buffers",
2882 							req->nr_extra_bufs);
2883 					req->nr_extra_bufs = netmap_extra_alloc(na,
2884 						&nifp->ni_bufs_head, req->nr_extra_bufs);
2885 					if (netmap_verbose)
2886 						nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2887 				} else {
2888 					nifp->ni_bufs_head = 0;
2889 				}
2890 				req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2891 
2892 				error = nmreq_checkoptions(hdr);
2893 				if (error) {
2894 					netmap_do_unregif(priv);
2895 					break;
2896 				}
2897 
2898 				/* store ifp reference so that priv destructor may release it */
2899 				priv->np_ifp = ifp;
2900 			} while (0);
2901 			if (error) {
2902 				netmap_unget_na(na, ifp);
2903 			}
2904 			/* release the reference from netmap_mem_find() or
2905 			 * netmap_mem_ext_create()
2906 			 */
2907 			if (nmd)
2908 				netmap_mem_put(nmd);
2909 			NMG_UNLOCK();
2910 			break;
2911 		}
2912 
2913 		case NETMAP_REQ_PORT_INFO_GET: {
2914 			struct nmreq_port_info_get *req =
2915 				(struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2916 			int nmd_ref = 0;
2917 
2918 			NMG_LOCK();
2919 			do {
2920 				u_int memflags;
2921 
2922 				if (hdr->nr_name[0] != '\0') {
2923 					/* Build a nmreq_register out of the nmreq_port_info_get,
2924 					 * so that we can call netmap_get_na(). */
2925 					struct nmreq_register regreq;
2926 					bzero(&regreq, sizeof(regreq));
2927 					regreq.nr_mode = NR_REG_ALL_NIC;
2928 					regreq.nr_tx_slots = req->nr_tx_slots;
2929 					regreq.nr_rx_slots = req->nr_rx_slots;
2930 					regreq.nr_tx_rings = req->nr_tx_rings;
2931 					regreq.nr_rx_rings = req->nr_rx_rings;
2932 					regreq.nr_host_tx_rings = req->nr_host_tx_rings;
2933 					regreq.nr_host_rx_rings = req->nr_host_rx_rings;
2934 					regreq.nr_mem_id = req->nr_mem_id;
2935 
2936 					/* get a refcount */
2937 					hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2938 					hdr->nr_body = (uintptr_t)&regreq;
2939 					error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2940 					hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2941 					hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2942 					if (error) {
2943 						na = NULL;
2944 						ifp = NULL;
2945 						break;
2946 					}
2947 					nmd = na->nm_mem; /* get memory allocator */
2948 				} else {
2949 					nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2950 					if (nmd == NULL) {
2951 						if (netmap_verbose)
2952 							nm_prerr("%s: failed to find mem_id %u",
2953 									hdr->nr_name,
2954 									req->nr_mem_id ? req->nr_mem_id : 1);
2955 						error = EINVAL;
2956 						break;
2957 					}
2958 					nmd_ref = 1;
2959 				}
2960 
2961 				error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2962 					&req->nr_mem_id);
2963 				if (error)
2964 					break;
2965 				if (na == NULL) /* only memory info */
2966 					break;
2967 				netmap_update_config(na);
2968 				req->nr_rx_rings = na->num_rx_rings;
2969 				req->nr_tx_rings = na->num_tx_rings;
2970 				req->nr_rx_slots = na->num_rx_desc;
2971 				req->nr_tx_slots = na->num_tx_desc;
2972 				req->nr_host_tx_rings = na->num_host_tx_rings;
2973 				req->nr_host_rx_rings = na->num_host_rx_rings;
2974 			} while (0);
2975 			netmap_unget_na(na, ifp);
2976 			if (nmd_ref)
2977 				netmap_mem_put(nmd);
2978 			NMG_UNLOCK();
2979 			break;
2980 		}
2981 #ifdef WITH_VALE
2982 		case NETMAP_REQ_VALE_ATTACH: {
2983 			error = netmap_bdg_attach(hdr, NULL /* userspace request */);
2984 			break;
2985 		}
2986 
2987 		case NETMAP_REQ_VALE_DETACH: {
2988 			error = netmap_bdg_detach(hdr, NULL /* userspace request */);
2989 			break;
2990 		}
2991 
2992 		case NETMAP_REQ_PORT_HDR_SET: {
2993 			struct nmreq_port_hdr *req =
2994 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2995 			/* Build a nmreq_register out of the nmreq_port_hdr,
2996 			 * so that we can call netmap_get_bdg_na(). */
2997 			struct nmreq_register regreq;
2998 			bzero(&regreq, sizeof(regreq));
2999 			regreq.nr_mode = NR_REG_ALL_NIC;
3000 
3001 			/* For now we only support virtio-net headers, and only for
3002 			 * VALE ports, but this may change in future. Valid lengths
3003 			 * for the virtio-net header are 0 (no header), 10 and 12. */
3004 			if (req->nr_hdr_len != 0 &&
3005 				req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
3006 					req->nr_hdr_len != 12) {
3007 				if (netmap_verbose)
3008 					nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
3009 				error = EINVAL;
3010 				break;
3011 			}
3012 			NMG_LOCK();
3013 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3014 			hdr->nr_body = (uintptr_t)&regreq;
3015 			error = netmap_get_vale_na(hdr, &na, NULL, 0);
3016 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
3017 			hdr->nr_body = (uintptr_t)req;
3018 			if (na && !error) {
3019 				struct netmap_vp_adapter *vpna =
3020 					(struct netmap_vp_adapter *)na;
3021 				na->virt_hdr_len = req->nr_hdr_len;
3022 				if (na->virt_hdr_len) {
3023 					vpna->mfs = NETMAP_BUF_SIZE(na);
3024 				}
3025 				if (netmap_verbose)
3026 					nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
3027 				netmap_adapter_put(na);
3028 			} else if (!na) {
3029 				error = ENXIO;
3030 			}
3031 			NMG_UNLOCK();
3032 			break;
3033 		}
3034 
3035 		case NETMAP_REQ_PORT_HDR_GET: {
3036 			/* Get vnet-header length for this netmap port */
3037 			struct nmreq_port_hdr *req =
3038 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
3039 			/* Build a nmreq_register out of the nmreq_port_hdr,
3040 			 * so that we can call netmap_get_bdg_na(). */
3041 			struct nmreq_register regreq;
3042 			struct ifnet *ifp;
3043 
3044 			bzero(&regreq, sizeof(regreq));
3045 			regreq.nr_mode = NR_REG_ALL_NIC;
3046 			NMG_LOCK();
3047 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3048 			hdr->nr_body = (uintptr_t)&regreq;
3049 			error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
3050 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
3051 			hdr->nr_body = (uintptr_t)req;
3052 			if (na && !error) {
3053 				req->nr_hdr_len = na->virt_hdr_len;
3054 			}
3055 			netmap_unget_na(na, ifp);
3056 			NMG_UNLOCK();
3057 			break;
3058 		}
3059 
3060 		case NETMAP_REQ_VALE_LIST: {
3061 			error = netmap_vale_list(hdr);
3062 			break;
3063 		}
3064 
3065 		case NETMAP_REQ_VALE_NEWIF: {
3066 			error = nm_vi_create(hdr);
3067 			break;
3068 		}
3069 
3070 		case NETMAP_REQ_VALE_DELIF: {
3071 			error = nm_vi_destroy(hdr->nr_name);
3072 			break;
3073 		}
3074 #endif  /* WITH_VALE */
3075 
3076 		case NETMAP_REQ_VALE_POLLING_ENABLE:
3077 		case NETMAP_REQ_VALE_POLLING_DISABLE: {
3078 			error = nm_bdg_polling(hdr);
3079 			break;
3080 		}
3081 		case NETMAP_REQ_POOLS_INFO_GET: {
3082 			/* Get information from the memory allocator used for
3083 			 * hdr->nr_name. */
3084 			struct nmreq_pools_info *req =
3085 				(struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
3086 			NMG_LOCK();
3087 			do {
3088 				/* Build a nmreq_register out of the nmreq_pools_info,
3089 				 * so that we can call netmap_get_na(). */
3090 				struct nmreq_register regreq;
3091 				bzero(&regreq, sizeof(regreq));
3092 				regreq.nr_mem_id = req->nr_mem_id;
3093 				regreq.nr_mode = NR_REG_ALL_NIC;
3094 
3095 				hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3096 				hdr->nr_body = (uintptr_t)&regreq;
3097 				error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
3098 				hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
3099 				hdr->nr_body = (uintptr_t)req; /* reset nr_body */
3100 				if (error) {
3101 					na = NULL;
3102 					ifp = NULL;
3103 					break;
3104 				}
3105 				nmd = na->nm_mem; /* grab the memory allocator */
3106 				if (nmd == NULL) {
3107 					error = EINVAL;
3108 					break;
3109 				}
3110 
3111 				/* Finalize the memory allocator, get the pools
3112 				 * information and release the allocator. */
3113 				error = netmap_mem_finalize(nmd, na);
3114 				if (error) {
3115 					break;
3116 				}
3117 				error = netmap_mem_pools_info_get(req, nmd);
3118 				netmap_mem_drop(na);
3119 			} while (0);
3120 			netmap_unget_na(na, ifp);
3121 			NMG_UNLOCK();
3122 			break;
3123 		}
3124 
3125 		case NETMAP_REQ_CSB_ENABLE: {
3126 			struct nmreq_option *opt;
3127 
3128 			opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
3129 			if (opt == NULL) {
3130 				error = EINVAL;
3131 			} else {
3132 				struct nmreq_opt_csb *csbo =
3133 					(struct nmreq_opt_csb *)opt;
3134 				NMG_LOCK();
3135 				error = netmap_csb_validate(priv, csbo);
3136 				NMG_UNLOCK();
3137 				opt->nro_status = error;
3138 			}
3139 			break;
3140 		}
3141 
3142 		case NETMAP_REQ_SYNC_KLOOP_START: {
3143 			error = netmap_sync_kloop(priv, hdr);
3144 			break;
3145 		}
3146 
3147 		case NETMAP_REQ_SYNC_KLOOP_STOP: {
3148 			error = netmap_sync_kloop_stop(priv);
3149 			break;
3150 		}
3151 
3152 		default: {
3153 			error = EINVAL;
3154 			break;
3155 		}
3156 		}
3157 		/* Write back request body to userspace and reset the
3158 		 * user-space pointer. */
3159 		error = nmreq_copyout(hdr, error);
3160 		break;
3161 	}
3162 
3163 	case NIOCTXSYNC:
3164 	case NIOCRXSYNC: {
3165 		if (unlikely(priv->np_nifp == NULL)) {
3166 			error = ENXIO;
3167 			break;
3168 		}
3169 		mb(); /* make sure following reads are not from cache */
3170 
3171 		if (unlikely(priv->np_csb_atok_base)) {
3172 			nm_prerr("Invalid sync in CSB mode");
3173 			error = EBUSY;
3174 			break;
3175 		}
3176 
3177 		na = priv->np_na;      /* we have a reference */
3178 
3179 		mbq_init(&q);
3180 		t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
3181 		krings = NMR(na, t);
3182 		qfirst = priv->np_qfirst[t];
3183 		qlast = priv->np_qlast[t];
3184 		sync_flags = priv->np_sync_flags;
3185 
3186 		for (i = qfirst; i < qlast; i++) {
3187 			struct netmap_kring *kring = krings[i];
3188 			struct netmap_ring *ring = kring->ring;
3189 
3190 			if (unlikely(nm_kr_tryget(kring, 1, &error))) {
3191 				error = (error ? EIO : 0);
3192 				continue;
3193 			}
3194 
3195 			if (cmd == NIOCTXSYNC) {
3196 				if (netmap_debug & NM_DEBUG_TXSYNC)
3197 					nm_prinf("pre txsync ring %d cur %d hwcur %d",
3198 					    i, ring->cur,
3199 					    kring->nr_hwcur);
3200 				if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3201 					netmap_ring_reinit(kring);
3202 				} else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
3203 					nm_sync_finalize(kring);
3204 				}
3205 				if (netmap_debug & NM_DEBUG_TXSYNC)
3206 					nm_prinf("post txsync ring %d cur %d hwcur %d",
3207 					    i, ring->cur,
3208 					    kring->nr_hwcur);
3209 			} else {
3210 				if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3211 					netmap_ring_reinit(kring);
3212 				}
3213 				if (nm_may_forward_up(kring)) {
3214 					/* transparent forwarding, see netmap_poll() */
3215 					netmap_grab_packets(kring, &q, netmap_fwd);
3216 				}
3217 				if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
3218 					nm_sync_finalize(kring);
3219 				}
3220 				ring_timestamp_set(ring);
3221 			}
3222 			nm_kr_put(kring);
3223 		}
3224 
3225 		if (mbq_peek(&q)) {
3226 			netmap_send_up(na->ifp, &q);
3227 		}
3228 
3229 		break;
3230 	}
3231 
3232 	default: {
3233 		return netmap_ioctl_legacy(priv, cmd, data, td);
3234 		break;
3235 	}
3236 	}
3237 
3238 	return (error);
3239 }
3240 
3241 size_t
3242 nmreq_size_by_type(uint16_t nr_reqtype)
3243 {
3244 	switch (nr_reqtype) {
3245 	case NETMAP_REQ_REGISTER:
3246 		return sizeof(struct nmreq_register);
3247 	case NETMAP_REQ_PORT_INFO_GET:
3248 		return sizeof(struct nmreq_port_info_get);
3249 	case NETMAP_REQ_VALE_ATTACH:
3250 		return sizeof(struct nmreq_vale_attach);
3251 	case NETMAP_REQ_VALE_DETACH:
3252 		return sizeof(struct nmreq_vale_detach);
3253 	case NETMAP_REQ_VALE_LIST:
3254 		return sizeof(struct nmreq_vale_list);
3255 	case NETMAP_REQ_PORT_HDR_SET:
3256 	case NETMAP_REQ_PORT_HDR_GET:
3257 		return sizeof(struct nmreq_port_hdr);
3258 	case NETMAP_REQ_VALE_NEWIF:
3259 		return sizeof(struct nmreq_vale_newif);
3260 	case NETMAP_REQ_VALE_DELIF:
3261 	case NETMAP_REQ_SYNC_KLOOP_STOP:
3262 	case NETMAP_REQ_CSB_ENABLE:
3263 		return 0;
3264 	case NETMAP_REQ_VALE_POLLING_ENABLE:
3265 	case NETMAP_REQ_VALE_POLLING_DISABLE:
3266 		return sizeof(struct nmreq_vale_polling);
3267 	case NETMAP_REQ_POOLS_INFO_GET:
3268 		return sizeof(struct nmreq_pools_info);
3269 	case NETMAP_REQ_SYNC_KLOOP_START:
3270 		return sizeof(struct nmreq_sync_kloop_start);
3271 	}
3272 	return 0;
3273 }
3274 
3275 static size_t
3276 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
3277 {
3278 	size_t rv = sizeof(struct nmreq_option);
3279 #ifdef NETMAP_REQ_OPT_DEBUG
3280 	if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
3281 		return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
3282 #endif /* NETMAP_REQ_OPT_DEBUG */
3283 	switch (nro_reqtype) {
3284 #ifdef WITH_EXTMEM
3285 	case NETMAP_REQ_OPT_EXTMEM:
3286 		rv = sizeof(struct nmreq_opt_extmem);
3287 		break;
3288 #endif /* WITH_EXTMEM */
3289 	case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
3290 		if (nro_size >= rv)
3291 			rv = nro_size;
3292 		break;
3293 	case NETMAP_REQ_OPT_CSB:
3294 		rv = sizeof(struct nmreq_opt_csb);
3295 		break;
3296 	case NETMAP_REQ_OPT_SYNC_KLOOP_MODE:
3297 		rv = sizeof(struct nmreq_opt_sync_kloop_mode);
3298 		break;
3299 	case NETMAP_REQ_OPT_OFFSETS:
3300 		rv = sizeof(struct nmreq_opt_offsets);
3301 		break;
3302 	}
3303 	/* subtract the common header */
3304 	return rv - sizeof(struct nmreq_option);
3305 }
3306 
3307 /*
3308  * nmreq_copyin: create an in-kernel version of the request.
3309  *
3310  * We build the following data structure:
3311  *
3312  * hdr -> +-------+                buf
3313  *        |       |          +---------------+
3314  *        +-------+          |usr body ptr   |
3315  *        |options|-.        +---------------+
3316  *        +-------+ |        |usr options ptr|
3317  *        |body   |--------->+---------------+
3318  *        +-------+ |        |               |
3319  *                  |        |  copy of body |
3320  *                  |        |               |
3321  *                  |        +---------------+
3322  *                  |        |    NULL       |
3323  *                  |        +---------------+
3324  *                  |    .---|               |\
3325  *                  |    |   +---------------+ |
3326  *                  | .------|               | |
3327  *                  | |  |   +---------------+  \ option table
3328  *                  | |  |   |      ...      |  / indexed by option
3329  *                  | |  |   +---------------+ |  type
3330  *                  | |  |   |               | |
3331  *                  | |  |   +---------------+/
3332  *                  | |  |   |usr next ptr 1 |
3333  *                  `-|----->+---------------+
3334  *                    |  |   | copy of opt 1 |
3335  *                    |  |   |               |
3336  *                    |  | .-| nro_next      |
3337  *                    |  | | +---------------+
3338  *                    |  | | |usr next ptr 2 |
3339  *                    |  `-`>+---------------+
3340  *                    |      | copy of opt 2 |
3341  *                    |      |               |
3342  *                    |    .-| nro_next      |
3343  *                    |    | +---------------+
3344  *                    |    | |               |
3345  *                    ~    ~ ~      ...      ~
3346  *                    |    .-|               |
3347  *                    `----->+---------------+
3348  *                         | |usr next ptr n |
3349  *                         `>+---------------+
3350  *                           | copy of opt n |
3351  *                           |               |
3352  *                           | nro_next(NULL)|
3353  *                           +---------------+
3354  *
3355  * The options and body fields of the hdr structure are overwritten
3356  * with in-kernel valid pointers inside the buf. The original user
3357  * pointers are saved in the buf and restored on copyout.
3358  * The list of options is copied and the pointers adjusted. The
3359  * original pointers are saved before the option they belonged.
3360  *
3361  * The option table has an entry for every available option.  Entries
3362  * for options that have not been passed contain NULL.
3363  *
3364  */
3365 
3366 int
3367 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
3368 {
3369 	size_t rqsz, optsz, bufsz;
3370 	int error = 0;
3371 	char *ker = NULL, *p;
3372 	struct nmreq_option **next, *src, **opt_tab;
3373 	uint64_t *ptrs;
3374 
3375 	if (hdr->nr_reserved) {
3376 		if (netmap_verbose)
3377 			nm_prerr("nr_reserved must be zero");
3378 		return EINVAL;
3379 	}
3380 
3381 	if (!nr_body_is_user)
3382 		return 0;
3383 
3384 	hdr->nr_reserved = nr_body_is_user;
3385 
3386 	/* compute the total size of the buffer */
3387 	rqsz = nmreq_size_by_type(hdr->nr_reqtype);
3388 	if (rqsz > NETMAP_REQ_MAXSIZE) {
3389 		error = EMSGSIZE;
3390 		goto out_err;
3391 	}
3392 	if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
3393 		(!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
3394 		/* Request body expected, but not found; or
3395 		 * request body found but unexpected. */
3396 		if (netmap_verbose)
3397 			nm_prerr("nr_body expected but not found, or vice versa");
3398 		error = EINVAL;
3399 		goto out_err;
3400 	}
3401 
3402 	/*
3403 	 * The buffer size must be large enough to store the request body,
3404 	 * all the possible options and the additional user pointers
3405 	 * (2+NETMAP_REQ_OPT_MAX). Note that the maximum size of body plus
3406 	 * options can not exceed NETMAP_REQ_MAXSIZE;
3407 	 */
3408 	bufsz = (2 + NETMAP_REQ_OPT_MAX) * sizeof(void *) + NETMAP_REQ_MAXSIZE +
3409 		NETMAP_REQ_OPT_MAX * sizeof(opt_tab);
3410 
3411 	ker = nm_os_malloc(bufsz);
3412 	if (ker == NULL) {
3413 		error = ENOMEM;
3414 		goto out_err;
3415 	}
3416 	p = ker;	/* write pointer into the buffer */
3417 
3418 	/* make a copy of the user pointers */
3419 	ptrs = (uint64_t*)p;
3420 	*ptrs++ = hdr->nr_body;
3421 	*ptrs++ = hdr->nr_options;
3422 	p = (char *)ptrs;
3423 
3424 	/* copy the body */
3425 	error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz);
3426 	if (error)
3427 		goto out_restore;
3428 	/* overwrite the user pointer with the in-kernel one */
3429 	hdr->nr_body = (uintptr_t)p;
3430 	p += rqsz;
3431 	/* start of the options table */
3432 	opt_tab = (struct nmreq_option **)p;
3433 	p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX;
3434 
3435 	/* copy the options */
3436 	next = (struct nmreq_option **)&hdr->nr_options;
3437 	src = *next;
3438 	while (src) {
3439 		struct nmreq_option *opt;
3440 
3441 		/* copy the option header */
3442 		ptrs = (uint64_t *)p;
3443 		opt = (struct nmreq_option *)(ptrs + 1);
3444 		error = copyin(src, opt, sizeof(*src));
3445 		if (error)
3446 			goto out_restore;
3447 		rqsz += sizeof(*src);
3448 		/* make a copy of the user next pointer */
3449 		*ptrs = opt->nro_next;
3450 		/* overwrite the user pointer with the in-kernel one */
3451 		*next = opt;
3452 
3453 		/* initialize the option as not supported.
3454 		 * Recognized options will update this field.
3455 		 */
3456 		opt->nro_status = EOPNOTSUPP;
3457 
3458 		/* check for invalid types */
3459 		if (opt->nro_reqtype < 1) {
3460 			if (netmap_verbose)
3461 				nm_prinf("invalid option type: %u", opt->nro_reqtype);
3462 			opt->nro_status = EINVAL;
3463 			error = EINVAL;
3464 			goto next;
3465 		}
3466 
3467 		if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) {
3468 			/* opt->nro_status is already EOPNOTSUPP */
3469 			error = EOPNOTSUPP;
3470 			goto next;
3471 		}
3472 
3473 		/* if the type is valid, index the option in the table
3474 		 * unless it is a duplicate.
3475 		 */
3476 		if (opt_tab[opt->nro_reqtype] != NULL) {
3477 			if (netmap_verbose)
3478 				nm_prinf("duplicate option: %u", opt->nro_reqtype);
3479 			opt->nro_status = EINVAL;
3480 			opt_tab[opt->nro_reqtype]->nro_status = EINVAL;
3481 			error = EINVAL;
3482 			goto next;
3483 		}
3484 		opt_tab[opt->nro_reqtype] = opt;
3485 
3486 		p = (char *)(opt + 1);
3487 
3488 		/* copy the option body */
3489 		optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3490 						opt->nro_size);
3491 		/* check optsz and nro_size to avoid for possible integer overflows of rqsz */
3492 		if ((optsz > NETMAP_REQ_MAXSIZE) || (opt->nro_size > NETMAP_REQ_MAXSIZE)
3493 				|| (rqsz + optsz > NETMAP_REQ_MAXSIZE)
3494 				|| (optsz > 0 && rqsz + optsz <= rqsz)) {
3495 			error = EMSGSIZE;
3496 			goto out_restore;
3497 		}
3498 		rqsz += optsz;
3499 		if (optsz) {
3500 			/* the option body follows the option header */
3501 			error = copyin(src + 1, p, optsz);
3502 			if (error)
3503 				goto out_restore;
3504 			p += optsz;
3505 		}
3506 
3507 	next:
3508 		/* move to next option */
3509 		next = (struct nmreq_option **)&opt->nro_next;
3510 		src = *next;
3511 	}
3512 	if (error)
3513 		nmreq_copyout(hdr, error);
3514 	return error;
3515 
3516 out_restore:
3517 	ptrs = (uint64_t *)ker;
3518 	hdr->nr_body = *ptrs++;
3519 	hdr->nr_options = *ptrs++;
3520 	hdr->nr_reserved = 0;
3521 	nm_os_free(ker);
3522 out_err:
3523 	return error;
3524 }
3525 
3526 static int
3527 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3528 {
3529 	struct nmreq_option *src, *dst;
3530 	void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3531 	uint64_t *ptrs;
3532 	size_t bodysz;
3533 	int error;
3534 
3535 	if (!hdr->nr_reserved)
3536 		return rerror;
3537 
3538 	/* restore the user pointers in the header */
3539 	ptrs = (uint64_t *)ker - 2;
3540 	bufstart = ptrs;
3541 	hdr->nr_body = *ptrs++;
3542 	src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3543 	hdr->nr_options = *ptrs;
3544 
3545 	if (!rerror) {
3546 		/* copy the body */
3547 		bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3548 		error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3549 		if (error) {
3550 			rerror = error;
3551 			goto out;
3552 		}
3553 	}
3554 
3555 	/* copy the options */
3556 	dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3557 	while (src) {
3558 		size_t optsz;
3559 		uint64_t next;
3560 
3561 		/* restore the user pointer */
3562 		next = src->nro_next;
3563 		ptrs = (uint64_t *)src - 1;
3564 		src->nro_next = *ptrs;
3565 
3566 		/* always copy the option header */
3567 		error = copyout(src, dst, sizeof(*src));
3568 		if (error) {
3569 			rerror = error;
3570 			goto out;
3571 		}
3572 
3573 		/* copy the option body only if there was no error */
3574 		if (!rerror && !src->nro_status) {
3575 			optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3576 							src->nro_size);
3577 			if (optsz) {
3578 				error = copyout(src + 1, dst + 1, optsz);
3579 				if (error) {
3580 					rerror = error;
3581 					goto out;
3582 				}
3583 			}
3584 		}
3585 		src = (struct nmreq_option *)(uintptr_t)next;
3586 		dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3587 	}
3588 
3589 
3590 out:
3591 	hdr->nr_reserved = 0;
3592 	nm_os_free(bufstart);
3593 	return rerror;
3594 }
3595 
3596 struct nmreq_option *
3597 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype)
3598 {
3599 	struct nmreq_option **opt_tab;
3600 
3601 	if (!hdr->nr_options)
3602 		return NULL;
3603 
3604 	opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) -
3605 	    (NETMAP_REQ_OPT_MAX + 1);
3606 	return opt_tab[reqtype];
3607 }
3608 
3609 static int
3610 nmreq_checkoptions(struct nmreq_header *hdr)
3611 {
3612 	struct nmreq_option *opt;
3613 	/* return error if there is still any option
3614 	 * marked as not supported
3615 	 */
3616 
3617 	for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3618 	     opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3619 		if (opt->nro_status == EOPNOTSUPP)
3620 			return EOPNOTSUPP;
3621 
3622 	return 0;
3623 }
3624 
3625 /*
3626  * select(2) and poll(2) handlers for the "netmap" device.
3627  *
3628  * Can be called for one or more queues.
3629  * Return true the event mask corresponding to ready events.
3630  * If there are no ready events (and 'sr' is not NULL), do a
3631  * selrecord on either individual selinfo or on the global one.
3632  * Device-dependent parts (locking and sync of tx/rx rings)
3633  * are done through callbacks.
3634  *
3635  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3636  * The first one is remapped to pwait as selrecord() uses the name as an
3637  * hidden argument.
3638  */
3639 int
3640 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3641 {
3642 	struct netmap_adapter *na;
3643 	struct netmap_kring *kring;
3644 	struct netmap_ring *ring;
3645 	u_int i, want[NR_TXRX], revents = 0;
3646 	NM_SELINFO_T *si[NR_TXRX];
3647 #define want_tx want[NR_TX]
3648 #define want_rx want[NR_RX]
3649 	struct mbq q;	/* packets from RX hw queues to host stack */
3650 
3651 	/*
3652 	 * In order to avoid nested locks, we need to "double check"
3653 	 * txsync and rxsync if we decide to do a selrecord().
3654 	 * retry_tx (and retry_rx, later) prevent looping forever.
3655 	 */
3656 	int retry_tx = 1, retry_rx = 1;
3657 
3658 	/* Transparent mode: send_down is 1 if we have found some
3659 	 * packets to forward (host RX ring --> NIC) during the rx
3660 	 * scan and we have not sent them down to the NIC yet.
3661 	 * Transparent mode requires to bind all rings to a single
3662 	 * file descriptor.
3663 	 */
3664 	int send_down = 0;
3665 	int sync_flags = priv->np_sync_flags;
3666 
3667 	mbq_init(&q);
3668 
3669 	if (unlikely(priv->np_nifp == NULL)) {
3670 		return POLLERR;
3671 	}
3672 	mb(); /* make sure following reads are not from cache */
3673 
3674 	na = priv->np_na;
3675 
3676 	if (unlikely(!nm_netmap_on(na)))
3677 		return POLLERR;
3678 
3679 	if (unlikely(priv->np_csb_atok_base)) {
3680 		nm_prerr("Invalid poll in CSB mode");
3681 		return POLLERR;
3682 	}
3683 
3684 	if (netmap_debug & NM_DEBUG_ON)
3685 		nm_prinf("device %s events 0x%x", na->name, events);
3686 	want_tx = events & (POLLOUT | POLLWRNORM);
3687 	want_rx = events & (POLLIN | POLLRDNORM);
3688 
3689 	/*
3690 	 * If the card has more than one queue AND the file descriptor is
3691 	 * bound to all of them, we sleep on the "global" selinfo, otherwise
3692 	 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3693 	 * per file descriptor).
3694 	 * The interrupt routine in the driver wake one or the other
3695 	 * (or both) depending on which clients are active.
3696 	 *
3697 	 * rxsync() is only called if we run out of buffers on a POLLIN.
3698 	 * txsync() is called if we run out of buffers on POLLOUT, or
3699 	 * there are pending packets to send. The latter can be disabled
3700 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3701 	 */
3702 	si[NR_RX] = priv->np_si[NR_RX];
3703 	si[NR_TX] = priv->np_si[NR_TX];
3704 
3705 #ifdef __FreeBSD__
3706 	/*
3707 	 * We start with a lock free round which is cheap if we have
3708 	 * slots available. If this fails, then lock and call the sync
3709 	 * routines. We can't do this on Linux, as the contract says
3710 	 * that we must call nm_os_selrecord() unconditionally.
3711 	 */
3712 	if (want_tx) {
3713 		const enum txrx t = NR_TX;
3714 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3715 			kring = NMR(na, t)[i];
3716 			if (kring->ring->cur != kring->ring->tail) {
3717 				/* Some unseen TX space is available, so what
3718 				 * we don't need to run txsync. */
3719 				revents |= want[t];
3720 				want[t] = 0;
3721 				break;
3722 			}
3723 		}
3724 	}
3725 	if (want_rx) {
3726 		const enum txrx t = NR_RX;
3727 		int rxsync_needed = 0;
3728 
3729 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3730 			kring = NMR(na, t)[i];
3731 			if (kring->ring->cur == kring->ring->tail
3732 				|| kring->rhead != kring->ring->head) {
3733 				/* There are no unseen packets on this ring,
3734 				 * or there are some buffers to be returned
3735 				 * to the netmap port. We therefore go ahead
3736 				 * and run rxsync. */
3737 				rxsync_needed = 1;
3738 				break;
3739 			}
3740 		}
3741 		if (!rxsync_needed) {
3742 			revents |= want_rx;
3743 			want_rx = 0;
3744 		}
3745 	}
3746 #endif
3747 
3748 #ifdef linux
3749 	/* The selrecord must be unconditional on linux. */
3750 	nm_os_selrecord(sr, si[NR_RX]);
3751 	nm_os_selrecord(sr, si[NR_TX]);
3752 #endif /* linux */
3753 
3754 	/*
3755 	 * If we want to push packets out (priv->np_txpoll) or
3756 	 * want_tx is still set, we must issue txsync calls
3757 	 * (on all rings, to avoid that the tx rings stall).
3758 	 * Fortunately, normal tx mode has np_txpoll set.
3759 	 */
3760 	if (priv->np_txpoll || want_tx) {
3761 		/*
3762 		 * The first round checks if anyone is ready, if not
3763 		 * do a selrecord and another round to handle races.
3764 		 * want_tx goes to 0 if any space is found, and is
3765 		 * used to skip rings with no pending transmissions.
3766 		 */
3767 flush_tx:
3768 		for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3769 			int found = 0;
3770 
3771 			kring = na->tx_rings[i];
3772 			ring = kring->ring;
3773 
3774 			/*
3775 			 * Don't try to txsync this TX ring if we already found some
3776 			 * space in some of the TX rings (want_tx == 0) and there are no
3777 			 * TX slots in this ring that need to be flushed to the NIC
3778 			 * (head == hwcur).
3779 			 */
3780 			if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3781 				continue;
3782 
3783 			if (nm_kr_tryget(kring, 1, &revents))
3784 				continue;
3785 
3786 			if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3787 				netmap_ring_reinit(kring);
3788 				revents |= POLLERR;
3789 			} else {
3790 				if (kring->nm_sync(kring, sync_flags))
3791 					revents |= POLLERR;
3792 				else
3793 					nm_sync_finalize(kring);
3794 			}
3795 
3796 			/*
3797 			 * If we found new slots, notify potential
3798 			 * listeners on the same ring.
3799 			 * Since we just did a txsync, look at the copies
3800 			 * of cur,tail in the kring.
3801 			 */
3802 			found = kring->rcur != kring->rtail;
3803 			nm_kr_put(kring);
3804 			if (found) { /* notify other listeners */
3805 				revents |= want_tx;
3806 				want_tx = 0;
3807 #ifndef linux
3808 				kring->nm_notify(kring, 0);
3809 #endif /* linux */
3810 			}
3811 		}
3812 		/* if there were any packet to forward we must have handled them by now */
3813 		send_down = 0;
3814 		if (want_tx && retry_tx && sr) {
3815 #ifndef linux
3816 			nm_os_selrecord(sr, si[NR_TX]);
3817 #endif /* !linux */
3818 			retry_tx = 0;
3819 			goto flush_tx;
3820 		}
3821 	}
3822 
3823 	/*
3824 	 * If want_rx is still set scan receive rings.
3825 	 * Do it on all rings because otherwise we starve.
3826 	 */
3827 	if (want_rx) {
3828 		/* two rounds here for race avoidance */
3829 do_retry_rx:
3830 		for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3831 			int found = 0;
3832 
3833 			kring = na->rx_rings[i];
3834 			ring = kring->ring;
3835 
3836 			if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3837 				continue;
3838 
3839 			if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3840 				netmap_ring_reinit(kring);
3841 				revents |= POLLERR;
3842 			}
3843 			/* now we can use kring->rcur, rtail */
3844 
3845 			/*
3846 			 * transparent mode support: collect packets from
3847 			 * hw rxring(s) that have been released by the user
3848 			 */
3849 			if (nm_may_forward_up(kring)) {
3850 				netmap_grab_packets(kring, &q, netmap_fwd);
3851 			}
3852 
3853 			/* Clear the NR_FORWARD flag anyway, it may be set by
3854 			 * the nm_sync() below only on for the host RX ring (see
3855 			 * netmap_rxsync_from_host()). */
3856 			kring->nr_kflags &= ~NR_FORWARD;
3857 			if (kring->nm_sync(kring, sync_flags))
3858 				revents |= POLLERR;
3859 			else
3860 				nm_sync_finalize(kring);
3861 			send_down |= (kring->nr_kflags & NR_FORWARD);
3862 			ring_timestamp_set(ring);
3863 			found = kring->rcur != kring->rtail;
3864 			nm_kr_put(kring);
3865 			if (found) {
3866 				revents |= want_rx;
3867 				retry_rx = 0;
3868 #ifndef linux
3869 				kring->nm_notify(kring, 0);
3870 #endif /* linux */
3871 			}
3872 		}
3873 
3874 #ifndef linux
3875 		if (retry_rx && sr) {
3876 			nm_os_selrecord(sr, si[NR_RX]);
3877 		}
3878 #endif /* !linux */
3879 		if (send_down || retry_rx) {
3880 			retry_rx = 0;
3881 			if (send_down)
3882 				goto flush_tx; /* and retry_rx */
3883 			else
3884 				goto do_retry_rx;
3885 		}
3886 	}
3887 
3888 	/*
3889 	 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3890 	 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3891 	 * to the host stack.
3892 	 */
3893 
3894 	if (mbq_peek(&q)) {
3895 		netmap_send_up(na->ifp, &q);
3896 	}
3897 
3898 	return (revents);
3899 #undef want_tx
3900 #undef want_rx
3901 }
3902 
3903 int
3904 nma_intr_enable(struct netmap_adapter *na, int onoff)
3905 {
3906 	bool changed = false;
3907 	enum txrx t;
3908 	int i;
3909 
3910 	for_rx_tx(t) {
3911 		for (i = 0; i < nma_get_nrings(na, t); i++) {
3912 			struct netmap_kring *kring = NMR(na, t)[i];
3913 			int on = !(kring->nr_kflags & NKR_NOINTR);
3914 
3915 			if (!!onoff != !!on) {
3916 				changed = true;
3917 			}
3918 			if (onoff) {
3919 				kring->nr_kflags &= ~NKR_NOINTR;
3920 			} else {
3921 				kring->nr_kflags |= NKR_NOINTR;
3922 			}
3923 		}
3924 	}
3925 
3926 	if (!changed) {
3927 		return 0; /* nothing to do */
3928 	}
3929 
3930 	if (!na->nm_intr) {
3931 		nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3932 		  na->name);
3933 		return -1;
3934 	}
3935 
3936 	na->nm_intr(na, onoff);
3937 
3938 	return 0;
3939 }
3940 
3941 
3942 /*-------------------- driver support routines -------------------*/
3943 
3944 /* default notify callback */
3945 static int
3946 netmap_notify(struct netmap_kring *kring, int flags)
3947 {
3948 	struct netmap_adapter *na = kring->notify_na;
3949 	enum txrx t = kring->tx;
3950 
3951 	nm_os_selwakeup(&kring->si);
3952 	/* optimization: avoid a wake up on the global
3953 	 * queue if nobody has registered for more
3954 	 * than one ring
3955 	 */
3956 	if (na->si_users[t] > 0)
3957 		nm_os_selwakeup(&na->si[t]);
3958 
3959 	return NM_IRQ_COMPLETED;
3960 }
3961 
3962 /* called by all routines that create netmap_adapters.
3963  * provide some defaults and get a reference to the
3964  * memory allocator
3965  */
3966 int
3967 netmap_attach_common(struct netmap_adapter *na)
3968 {
3969 	if (!na->rx_buf_maxsize) {
3970 		/* Set a conservative default (larger is safer). */
3971 		na->rx_buf_maxsize = PAGE_SIZE;
3972 	}
3973 
3974 #ifdef __FreeBSD__
3975 	if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3976 		na->if_input = na->ifp->if_input; /* for netmap_send_up */
3977 	}
3978 	na->pdev = na; /* make sure netmap_mem_map() is called */
3979 #endif /* __FreeBSD__ */
3980 	if (na->na_flags & NAF_HOST_RINGS) {
3981 		if (na->num_host_rx_rings == 0)
3982 			na->num_host_rx_rings = 1;
3983 		if (na->num_host_tx_rings == 0)
3984 			na->num_host_tx_rings = 1;
3985 	}
3986 	if (na->nm_krings_create == NULL) {
3987 		/* we assume that we have been called by a driver,
3988 		 * since other port types all provide their own
3989 		 * nm_krings_create
3990 		 */
3991 		na->nm_krings_create = netmap_hw_krings_create;
3992 		na->nm_krings_delete = netmap_hw_krings_delete;
3993 	}
3994 	if (na->nm_notify == NULL)
3995 		na->nm_notify = netmap_notify;
3996 	na->active_fds = 0;
3997 
3998 	if (na->nm_mem == NULL) {
3999 		/* use iommu or global allocator */
4000 		na->nm_mem = netmap_mem_get_iommu(na);
4001 	}
4002 	if (na->nm_bdg_attach == NULL)
4003 		/* no special nm_bdg_attach callback. On VALE
4004 		 * attach, we need to interpose a bwrap
4005 		 */
4006 		na->nm_bdg_attach = netmap_default_bdg_attach;
4007 
4008 	return 0;
4009 }
4010 
4011 /* Wrapper for the register callback provided netmap-enabled
4012  * hardware drivers.
4013  * nm_iszombie(na) means that the driver module has been
4014  * unloaded, so we cannot call into it.
4015  * nm_os_ifnet_lock() must guarantee mutual exclusion with
4016  * module unloading.
4017  */
4018 static int
4019 netmap_hw_reg(struct netmap_adapter *na, int onoff)
4020 {
4021 	struct netmap_hw_adapter *hwna =
4022 		(struct netmap_hw_adapter*)na;
4023 	int error = 0;
4024 
4025 	nm_os_ifnet_lock();
4026 
4027 	if (nm_iszombie(na)) {
4028 		if (onoff) {
4029 			error = ENXIO;
4030 		} else if (na != NULL) {
4031 			na->na_flags &= ~NAF_NETMAP_ON;
4032 		}
4033 		goto out;
4034 	}
4035 
4036 	error = hwna->nm_hw_register(na, onoff);
4037 
4038 out:
4039 	nm_os_ifnet_unlock();
4040 
4041 	return error;
4042 }
4043 
4044 static void
4045 netmap_hw_dtor(struct netmap_adapter *na)
4046 {
4047 	if (na->ifp == NULL)
4048 		return;
4049 
4050 	NM_DETACH_NA(na->ifp);
4051 }
4052 
4053 
4054 /*
4055  * Allocate a netmap_adapter object, and initialize it from the
4056  * 'arg' passed by the driver on attach.
4057  * We allocate a block of memory of 'size' bytes, which has room
4058  * for struct netmap_adapter plus additional room private to
4059  * the caller.
4060  * Return 0 on success, ENOMEM otherwise.
4061  */
4062 int
4063 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
4064 {
4065 	struct netmap_hw_adapter *hwna = NULL;
4066 	struct ifnet *ifp = NULL;
4067 
4068 	if (size < sizeof(struct netmap_hw_adapter)) {
4069 		if (netmap_debug & NM_DEBUG_ON)
4070 			nm_prerr("Invalid netmap adapter size %d", (int)size);
4071 		return EINVAL;
4072 	}
4073 
4074 	if (arg == NULL || arg->ifp == NULL) {
4075 		if (netmap_debug & NM_DEBUG_ON)
4076 			nm_prerr("either arg or arg->ifp is NULL");
4077 		return EINVAL;
4078 	}
4079 
4080 	if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
4081 		if (netmap_debug & NM_DEBUG_ON)
4082 			nm_prerr("%s: invalid rings tx %d rx %d",
4083 				arg->name, arg->num_tx_rings, arg->num_rx_rings);
4084 		return EINVAL;
4085 	}
4086 
4087 	ifp = arg->ifp;
4088 	if (NM_NA_CLASH(ifp)) {
4089 		/* If NA(ifp) is not null but there is no valid netmap
4090 		 * adapter it means that someone else is using the same
4091 		 * pointer (e.g. ax25_ptr on linux). This happens for
4092 		 * instance when also PF_RING is in use. */
4093 		nm_prerr("Error: netmap adapter hook is busy");
4094 		return EBUSY;
4095 	}
4096 
4097 	hwna = nm_os_malloc(size);
4098 	if (hwna == NULL)
4099 		goto fail;
4100 	hwna->up = *arg;
4101 	hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
4102 	strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
4103 	if (override_reg) {
4104 		hwna->nm_hw_register = hwna->up.nm_register;
4105 		hwna->up.nm_register = netmap_hw_reg;
4106 	}
4107 	if (netmap_attach_common(&hwna->up)) {
4108 		nm_os_free(hwna);
4109 		goto fail;
4110 	}
4111 	netmap_adapter_get(&hwna->up);
4112 
4113 	NM_ATTACH_NA(ifp, &hwna->up);
4114 
4115 	nm_os_onattach(ifp);
4116 
4117 	if (arg->nm_dtor == NULL) {
4118 		hwna->up.nm_dtor = netmap_hw_dtor;
4119 	}
4120 
4121 	if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
4122 	    hwna->up.num_tx_rings, hwna->up.num_tx_desc,
4123 	    hwna->up.num_rx_rings, hwna->up.num_rx_desc);
4124 	return 0;
4125 
4126 fail:
4127 	nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
4128 	return (hwna ? EINVAL : ENOMEM);
4129 }
4130 
4131 
4132 int
4133 netmap_attach(struct netmap_adapter *arg)
4134 {
4135 	return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
4136 			1 /* override nm_reg */);
4137 }
4138 
4139 
4140 void
4141 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
4142 {
4143 	if (!na) {
4144 		return;
4145 	}
4146 
4147 	refcount_acquire(&na->na_refcount);
4148 }
4149 
4150 
4151 /* returns 1 iff the netmap_adapter is destroyed */
4152 int
4153 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
4154 {
4155 	if (!na)
4156 		return 1;
4157 
4158 	if (!refcount_release(&na->na_refcount))
4159 		return 0;
4160 
4161 	if (na->nm_dtor)
4162 		na->nm_dtor(na);
4163 
4164 	if (na->tx_rings) { /* XXX should not happen */
4165 		if (netmap_debug & NM_DEBUG_ON)
4166 			nm_prerr("freeing leftover tx_rings");
4167 		na->nm_krings_delete(na);
4168 	}
4169 	netmap_pipe_dealloc(na);
4170 	if (na->nm_mem)
4171 		netmap_mem_put(na->nm_mem);
4172 	bzero(na, sizeof(*na));
4173 	nm_os_free(na);
4174 
4175 	return 1;
4176 }
4177 
4178 /* nm_krings_create callback for all hardware native adapters */
4179 int
4180 netmap_hw_krings_create(struct netmap_adapter *na)
4181 {
4182 	int ret = netmap_krings_create(na, 0);
4183 	if (ret == 0) {
4184 		/* initialize the mbq for the sw rx ring */
4185 		u_int lim = netmap_real_rings(na, NR_RX), i;
4186 		for (i = na->num_rx_rings; i < lim; i++) {
4187 			mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
4188 		}
4189 		nm_prdis("initialized sw rx queue %d", na->num_rx_rings);
4190 	}
4191 	return ret;
4192 }
4193 
4194 
4195 
4196 /*
4197  * Called on module unload by the netmap-enabled drivers
4198  */
4199 void
4200 netmap_detach(struct ifnet *ifp)
4201 {
4202 	struct netmap_adapter *na;
4203 
4204 	NMG_LOCK();
4205 
4206 	if (!NM_NA_VALID(ifp)) {
4207 		NMG_UNLOCK();
4208 		return;
4209 	}
4210 
4211 	na = NA(ifp);
4212 	netmap_set_all_rings(na, NM_KR_LOCKED);
4213 	/*
4214 	 * if the netmap adapter is not native, somebody
4215 	 * changed it, so we can not release it here.
4216 	 * The NAF_ZOMBIE flag will notify the new owner that
4217 	 * the driver is gone.
4218 	 */
4219 	if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
4220 		na->na_flags |= NAF_ZOMBIE;
4221 	}
4222 	/* give active users a chance to notice that NAF_ZOMBIE has been
4223 	 * turned on, so that they can stop and return an error to userspace.
4224 	 * Note that this becomes a NOP if there are no active users and,
4225 	 * therefore, the put() above has deleted the na, since now NA(ifp) is
4226 	 * NULL.
4227 	 */
4228 	netmap_enable_all_rings(ifp);
4229 	NMG_UNLOCK();
4230 }
4231 
4232 
4233 /*
4234  * Intercept packets from the network stack and pass them
4235  * to netmap as incoming packets on the 'software' ring.
4236  *
4237  * We only store packets in a bounded mbq and then copy them
4238  * in the relevant rxsync routine.
4239  *
4240  * We rely on the OS to make sure that the ifp and na do not go
4241  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
4242  * In nm_register() or whenever there is a reinitialization,
4243  * we make sure to make the mode change visible here.
4244  */
4245 int
4246 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
4247 {
4248 	struct netmap_adapter *na = NA(ifp);
4249 	struct netmap_kring *kring, *tx_kring;
4250 	u_int len = MBUF_LEN(m);
4251 	u_int error = ENOBUFS;
4252 	unsigned int txr;
4253 	struct mbq *q;
4254 	int busy;
4255 	u_int i;
4256 
4257 	i = MBUF_TXQ(m);
4258 	if (i >= na->num_host_rx_rings) {
4259 		i = i % na->num_host_rx_rings;
4260 	}
4261 	kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
4262 
4263 	// XXX [Linux] we do not need this lock
4264 	// if we follow the down/configure/up protocol -gl
4265 	// mtx_lock(&na->core_lock);
4266 
4267 	if (!nm_netmap_on(na)) {
4268 		nm_prerr("%s not in netmap mode anymore", na->name);
4269 		error = ENXIO;
4270 		goto done;
4271 	}
4272 
4273 	txr = MBUF_TXQ(m);
4274 	if (txr >= na->num_tx_rings) {
4275 		txr %= na->num_tx_rings;
4276 	}
4277 	tx_kring = NMR(na, NR_TX)[txr];
4278 
4279 	if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
4280 		return MBUF_TRANSMIT(na, ifp, m);
4281 	}
4282 
4283 	q = &kring->rx_queue;
4284 
4285 	// XXX reconsider long packets if we handle fragments
4286 	if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
4287 		nm_prerr("%s from_host, drop packet size %d > %d", na->name,
4288 			len, NETMAP_BUF_SIZE(na));
4289 		goto done;
4290 	}
4291 
4292 	if (!netmap_generic_hwcsum) {
4293 		if (nm_os_mbuf_has_csum_offld(m)) {
4294 			nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name);
4295 			goto done;
4296 		}
4297 	}
4298 
4299 	if (nm_os_mbuf_has_seg_offld(m)) {
4300 		nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name);
4301 		goto done;
4302 	}
4303 
4304 #ifdef __FreeBSD__
4305 	ETHER_BPF_MTAP(ifp, m);
4306 #endif /* __FreeBSD__ */
4307 
4308 	/* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
4309 	 * and maybe other instances of netmap_transmit (the latter
4310 	 * not possible on Linux).
4311 	 * We enqueue the mbuf only if we are sure there is going to be
4312 	 * enough room in the host RX ring, otherwise we drop it.
4313 	 */
4314 	mbq_lock(q);
4315 
4316 	busy = kring->nr_hwtail - kring->nr_hwcur;
4317 	if (busy < 0)
4318 		busy += kring->nkr_num_slots;
4319 	if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
4320 		nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
4321 			kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
4322 	} else {
4323 		mbq_enqueue(q, m);
4324 		nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q));
4325 		/* notify outside the lock */
4326 		m = NULL;
4327 		error = 0;
4328 	}
4329 	mbq_unlock(q);
4330 
4331 done:
4332 	if (m) {
4333 		if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4334 		m_freem(m);
4335 	}
4336 	/* unconditionally wake up listeners */
4337 	kring->nm_notify(kring, 0);
4338 	/* this is normally netmap_notify(), but for nics
4339 	 * connected to a bridge it is netmap_bwrap_intr_notify(),
4340 	 * that possibly forwards the frames through the switch
4341 	 */
4342 
4343 	return (error);
4344 }
4345 
4346 
4347 /*
4348  * Reset function to be called by the driver routines when reinitializing
4349  * a hardware ring. The driver is in charge of locking to protect the kring
4350  * while this operation is being performed. This is normally achieved by
4351  * calling netmap_disable_all_rings() before triggering a reset.
4352  * If the kring is not in netmap mode, return NULL to inform the caller
4353  * that this is the case.
4354  * If the kring is in netmap mode, set hwofs so that the netmap indices
4355  * seen by userspace (head/cut/tail) do not change, although the internal
4356  * NIC indices have been reset to 0.
4357  * In any case, adjust kring->nr_mode.
4358  */
4359 struct netmap_slot *
4360 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
4361 	u_int new_cur)
4362 {
4363 	struct netmap_kring *kring;
4364 	u_int new_hwtail, new_hwofs;
4365 
4366 	if (!nm_native_on(na)) {
4367 		nm_prdis("interface not in native netmap mode");
4368 		return NULL;	/* nothing to reinitialize */
4369 	}
4370 
4371 	if (tx == NR_TX) {
4372 		if (n >= na->num_tx_rings)
4373 			return NULL;
4374 		kring = na->tx_rings[n];
4375 		/*
4376 		 * Set hwofs to rhead, so that slots[rhead] is mapped to
4377 		 * the NIC internal slot 0, and thus the netmap buffer
4378 		 * at rhead is the next to be transmitted. Transmissions
4379 		 * that were pending before the reset are considered as
4380 		 * sent, so that we can have hwcur = rhead. All the slots
4381 		 * are now owned by the user, so we can also reinit hwtail.
4382 		 */
4383 		new_hwofs = kring->rhead;
4384 		new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1);
4385 	} else {
4386 		if (n >= na->num_rx_rings)
4387 			return NULL;
4388 		kring = na->rx_rings[n];
4389 		/*
4390 		 * Set hwofs to hwtail, so that slots[hwtail] is mapped to
4391 		 * the NIC internal slot 0, and thus the netmap buffer
4392 		 * at hwtail is the next to be given to the NIC.
4393 		 * Unread slots (the ones in [rhead,hwtail[) are owned by
4394 		 * the user, and thus the caller cannot give them
4395 		 * to the NIC right now.
4396 		 */
4397 		new_hwofs = kring->nr_hwtail;
4398 		new_hwtail = kring->nr_hwtail;
4399 	}
4400 	if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4401 		kring->nr_mode = NKR_NETMAP_OFF;
4402 		return NULL;
4403 	}
4404 	if (netmap_verbose) {
4405 	    nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name,
4406 	        kring->nr_hwcur, kring->rhead,
4407 	        kring->nr_hwtail, new_hwtail,
4408 		kring->nkr_hwofs, new_hwofs);
4409 	}
4410 	kring->nr_hwcur = kring->rhead;
4411 	kring->nr_hwtail = new_hwtail;
4412 	kring->nkr_hwofs = new_hwofs;
4413 
4414 	/*
4415 	 * Wakeup on the individual and global selwait
4416 	 * We do the wakeup here, but the ring is not yet reconfigured.
4417 	 * However, we are under lock so there are no races.
4418 	 */
4419 	kring->nr_mode = NKR_NETMAP_ON;
4420 	kring->nm_notify(kring, 0);
4421 	return kring->ring->slot;
4422 }
4423 
4424 
4425 /*
4426  * Dispatch rx/tx interrupts to the netmap rings.
4427  *
4428  * "work_done" is non-null on the RX path, NULL for the TX path.
4429  * We rely on the OS to make sure that there is only one active
4430  * instance per queue, and that there is appropriate locking.
4431  *
4432  * The 'notify' routine depends on what the ring is attached to.
4433  * - for a netmap file descriptor, do a selwakeup on the individual
4434  *   waitqueue, plus one on the global one if needed
4435  *   (see netmap_notify)
4436  * - for a nic connected to a switch, call the proper forwarding routine
4437  *   (see netmap_bwrap_intr_notify)
4438  */
4439 int
4440 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4441 {
4442 	struct netmap_kring *kring;
4443 	enum txrx t = (work_done ? NR_RX : NR_TX);
4444 
4445 	q &= NETMAP_RING_MASK;
4446 
4447 	if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4448 	        nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4449 	}
4450 
4451 	if (q >= nma_get_nrings(na, t))
4452 		return NM_IRQ_PASS; // not a physical queue
4453 
4454 	kring = NMR(na, t)[q];
4455 
4456 	if (kring->nr_mode == NKR_NETMAP_OFF) {
4457 		return NM_IRQ_PASS;
4458 	}
4459 
4460 	if (t == NR_RX) {
4461 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
4462 		*work_done = 1; /* do not fire napi again */
4463 	}
4464 
4465 	return kring->nm_notify(kring, 0);
4466 }
4467 
4468 
4469 /*
4470  * Default functions to handle rx/tx interrupts from a physical device.
4471  * "work_done" is non-null on the RX path, NULL for the TX path.
4472  *
4473  * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4474  * so that the caller proceeds with regular processing.
4475  * Otherwise call netmap_common_irq().
4476  *
4477  * If the card is connected to a netmap file descriptor,
4478  * do a selwakeup on the individual queue, plus one on the global one
4479  * if needed (multiqueue card _and_ there are multiqueue listeners),
4480  * and return NR_IRQ_COMPLETED.
4481  *
4482  * Finally, if called on rx from an interface connected to a switch,
4483  * calls the proper forwarding routine.
4484  */
4485 int
4486 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
4487 {
4488 	struct netmap_adapter *na = NA(ifp);
4489 
4490 	/*
4491 	 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4492 	 * we still use the regular driver even though the previous
4493 	 * check fails. It is unclear whether we should use
4494 	 * nm_native_on() here.
4495 	 */
4496 	if (!nm_netmap_on(na))
4497 		return NM_IRQ_PASS;
4498 
4499 	if (na->na_flags & NAF_SKIP_INTR) {
4500 		nm_prdis("use regular interrupt");
4501 		return NM_IRQ_PASS;
4502 	}
4503 
4504 	return netmap_common_irq(na, q, work_done);
4505 }
4506 
4507 /* set/clear native flags and if_transmit/netdev_ops */
4508 void
4509 nm_set_native_flags(struct netmap_adapter *na)
4510 {
4511 	struct ifnet *ifp = na->ifp;
4512 
4513 	/* We do the setup for intercepting packets only if we are the
4514 	 * first user of this adapter. */
4515 	if (na->active_fds > 0) {
4516 		return;
4517 	}
4518 
4519 	na->na_flags |= NAF_NETMAP_ON;
4520 	nm_os_onenter(ifp);
4521 	netmap_update_hostrings_mode(na);
4522 }
4523 
4524 void
4525 nm_clear_native_flags(struct netmap_adapter *na)
4526 {
4527 	struct ifnet *ifp = na->ifp;
4528 
4529 	/* We undo the setup for intercepting packets only if we are the
4530 	 * last user of this adapter. */
4531 	if (na->active_fds > 0) {
4532 		return;
4533 	}
4534 
4535 	netmap_update_hostrings_mode(na);
4536 	nm_os_onexit(ifp);
4537 
4538 	na->na_flags &= ~NAF_NETMAP_ON;
4539 }
4540 
4541 void
4542 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff)
4543 {
4544 	enum txrx t;
4545 
4546 	for_rx_tx(t) {
4547 		int i;
4548 
4549 		for (i = 0; i < netmap_real_rings(na, t); i++) {
4550 			struct netmap_kring *kring = NMR(na, t)[i];
4551 
4552 			if (onoff && nm_kring_pending_on(kring))
4553 				kring->nr_mode = NKR_NETMAP_ON;
4554 			else if (!onoff && nm_kring_pending_off(kring))
4555 				kring->nr_mode = NKR_NETMAP_OFF;
4556 		}
4557 	}
4558 }
4559 
4560 /*
4561  * Module loader and unloader
4562  *
4563  * netmap_init() creates the /dev/netmap device and initializes
4564  * all global variables. Returns 0 on success, errno on failure
4565  * (but there is no chance)
4566  *
4567  * netmap_fini() destroys everything.
4568  */
4569 
4570 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4571 extern struct cdevsw netmap_cdevsw;
4572 
4573 
4574 void
4575 netmap_fini(void)
4576 {
4577 	if (netmap_dev)
4578 		destroy_dev(netmap_dev);
4579 	/* we assume that there are no longer netmap users */
4580 	nm_os_ifnet_fini();
4581 	netmap_uninit_bridges();
4582 	netmap_mem_fini();
4583 	NMG_LOCK_DESTROY();
4584 	nm_prinf("netmap: unloaded module.");
4585 }
4586 
4587 
4588 int
4589 netmap_init(void)
4590 {
4591 	int error;
4592 
4593 	NMG_LOCK_INIT();
4594 
4595 	error = netmap_mem_init();
4596 	if (error != 0)
4597 		goto fail;
4598 	/*
4599 	 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4600 	 * when the module is compiled in.
4601 	 * XXX could use make_dev_credv() to get error number
4602 	 */
4603 	netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4604 		&netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4605 			      "netmap");
4606 	if (!netmap_dev)
4607 		goto fail;
4608 
4609 	error = netmap_init_bridges();
4610 	if (error)
4611 		goto fail;
4612 
4613 #ifdef __FreeBSD__
4614 	nm_os_vi_init_index();
4615 #endif
4616 
4617 	error = nm_os_ifnet_init();
4618 	if (error)
4619 		goto fail;
4620 
4621 #if !defined(__FreeBSD__) || defined(KLD_MODULE)
4622 	nm_prinf("netmap: loaded module");
4623 #endif
4624 	return (0);
4625 fail:
4626 	netmap_fini();
4627 	return (EINVAL); /* may be incorrect */
4628 }
4629