xref: /freebsd/sys/dev/netmap/netmap.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi
5  * Copyright (C) 2011-2016 Luigi Rizzo
6  * Copyright (C) 2011-2016 Giuseppe Lettieri
7  * Copyright (C) 2011-2016 Vincenzo Maffione
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *   1. Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *   2. Redistributions in binary form must reproduce the above copyright
16  *      notice, this list of conditions and the following disclaimer in the
17  *      documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 
33 /*
34  * $FreeBSD$
35  *
36  * This module supports memory mapped access to network devices,
37  * see netmap(4).
38  *
39  * The module uses a large, memory pool allocated by the kernel
40  * and accessible as mmapped memory by multiple userspace threads/processes.
41  * The memory pool contains packet buffers and "netmap rings",
42  * i.e. user-accessible copies of the interface's queues.
43  *
44  * Access to the network card works like this:
45  * 1. a process/thread issues one or more open() on /dev/netmap, to create
46  *    select()able file descriptor on which events are reported.
47  * 2. on each descriptor, the process issues an ioctl() to identify
48  *    the interface that should report events to the file descriptor.
49  * 3. on each descriptor, the process issues an mmap() request to
50  *    map the shared memory region within the process' address space.
51  *    The list of interesting queues is indicated by a location in
52  *    the shared memory region.
53  * 4. using the functions in the netmap(4) userspace API, a process
54  *    can look up the occupation state of a queue, access memory buffers,
55  *    and retrieve received packets or enqueue packets to transmit.
56  * 5. using some ioctl()s the process can synchronize the userspace view
57  *    of the queue with the actual status in the kernel. This includes both
58  *    receiving the notification of new packets, and transmitting new
59  *    packets on the output interface.
60  * 6. select() or poll() can be used to wait for events on individual
61  *    transmit or receive queues (or all queues for a given interface).
62  *
63 
64 		SYNCHRONIZATION (USER)
65 
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73 
74 		LOCKING (INTERNAL)
75 
76 Within the kernel, access to the netmap rings is protected as follows:
77 
78 - a spinlock on each ring, to handle producer/consumer races on
79   RX rings attached to the host stack (against multiple host
80   threads writing from the host stack to the same ring),
81   and on 'destination' rings attached to a VALE switch
82   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83   protecting multiple active senders for the same destination)
84 
85 - an atomic variable to guarantee that there is at most one
86   instance of *_*xsync() on the ring at any time.
87   For rings connected to user file
88   descriptors, an atomic_test_and_set() protects this, and the
89   lock on the ring is not actually used.
90   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91   is also used to prevent multiple executions (the driver might indeed
92   already guarantee this).
93   For NIC TX rings connected to a VALE switch, the lock arbitrates
94   access to the queue (both when allocating buffers and when pushing
95   them out).
96 
97 - *xsync() should be protected against initializations of the card.
98   On FreeBSD most devices have the reset routine protected by
99   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100   the RING protection on rx_reset(), this should be added.
101 
102   On linux there is an external lock on the tx path, which probably
103   also arbitrates access to the reset routine. XXX to be revised
104 
105 - a per-interface core_lock protecting access from the host stack
106   while interfaces may be detached from netmap mode.
107   XXX there should be no need for this lock if we detach the interfaces
108   only while they are down.
109 
110 
111 --- VALE SWITCH ---
112 
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115 
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123 
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130 
131  */
132 
133 
134 /* --- internals ----
135  *
136  * Roadmap to the code that implements the above.
137  *
138  * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139  * >    select()able file descriptor on which events are reported.
140  *
141  *  	Internally, we allocate a netmap_priv_d structure, that will be
142  *  	initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143  *  	structure for each open().
144  *
145  *      os-specific:
146  *  	    FreeBSD: see netmap_open() (netmap_freebsd.c)
147  *  	    linux:   see linux_netmap_open() (netmap_linux.c)
148  *
149  * > 2. on each descriptor, the process issues an ioctl() to identify
150  * >    the interface that should report events to the file descriptor.
151  *
152  * 	Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153  * 	Most important things happen in netmap_get_na() and
154  * 	netmap_do_regif(), called from there. Additional details can be
155  * 	found in the comments above those functions.
156  *
157  * 	In all cases, this action creates/takes-a-reference-to a
158  * 	netmap_*_adapter describing the port, and allocates a netmap_if
159  * 	and all necessary netmap rings, filling them with netmap buffers.
160  *
161  *      In this phase, the sync callbacks for each ring are set (these are used
162  *      in steps 5 and 6 below).  The callbacks depend on the type of adapter.
163  *      The adapter creation/initialization code puts them in the
164  * 	netmap_adapter (fields na->nm_txsync and na->nm_rxsync).  Then, they
165  * 	are copied from there to the netmap_kring's during netmap_do_regif(), by
166  * 	the nm_krings_create() callback.  All the nm_krings_create callbacks
167  * 	actually call netmap_krings_create() to perform this and the other
168  * 	common stuff. netmap_krings_create() also takes care of the host rings,
169  * 	if needed, by setting their sync callbacks appropriately.
170  *
171  * 	Additional actions depend on the kind of netmap_adapter that has been
172  * 	registered:
173  *
174  * 	- netmap_hw_adapter:  	     [netmap.c]
175  * 	     This is a system netdev/ifp with native netmap support.
176  * 	     The ifp is detached from the host stack by redirecting:
177  * 	       - transmissions (from the network stack) to netmap_transmit()
178  * 	       - receive notifications to the nm_notify() callback for
179  * 	         this adapter. The callback is normally netmap_notify(), unless
180  * 	         the ifp is attached to a bridge using bwrap, in which case it
181  * 	         is netmap_bwrap_intr_notify().
182  *
183  * 	- netmap_generic_adapter:      [netmap_generic.c]
184  * 	      A system netdev/ifp without native netmap support.
185  *
186  * 	(the decision about native/non native support is taken in
187  * 	 netmap_get_hw_na(), called by netmap_get_na())
188  *
189  * 	- netmap_vp_adapter 		[netmap_vale.c]
190  * 	      Returned by netmap_get_bdg_na().
191  * 	      This is a persistent or ephemeral VALE port. Ephemeral ports
192  * 	      are created on the fly if they don't already exist, and are
193  * 	      always attached to a bridge.
194  * 	      Persistent VALE ports must must be created separately, and i
195  * 	      then attached like normal NICs. The NIOCREGIF we are examining
196  * 	      will find them only if they had previosly been created and
197  * 	      attached (see VALE_CTL below).
198  *
199  * 	- netmap_pipe_adapter 	      [netmap_pipe.c]
200  * 	      Returned by netmap_get_pipe_na().
201  * 	      Both pipe ends are created, if they didn't already exist.
202  *
203  * 	- netmap_monitor_adapter      [netmap_monitor.c]
204  * 	      Returned by netmap_get_monitor_na().
205  * 	      If successful, the nm_sync callbacks of the monitored adapter
206  * 	      will be intercepted by the returned monitor.
207  *
208  * 	- netmap_bwrap_adapter	      [netmap_vale.c]
209  * 	      Cannot be obtained in this way, see VALE_CTL below
210  *
211  *
212  * 	os-specific:
213  * 	    linux: we first go through linux_netmap_ioctl() to
214  * 	           adapt the FreeBSD interface to the linux one.
215  *
216  *
217  * > 3. on each descriptor, the process issues an mmap() request to
218  * >    map the shared memory region within the process' address space.
219  * >    The list of interesting queues is indicated by a location in
220  * >    the shared memory region.
221  *
222  *      os-specific:
223  *  	    FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224  *  	    linux:   linux_netmap_mmap (netmap_linux.c).
225  *
226  * > 4. using the functions in the netmap(4) userspace API, a process
227  * >    can look up the occupation state of a queue, access memory buffers,
228  * >    and retrieve received packets or enqueue packets to transmit.
229  *
230  * 	these actions do not involve the kernel.
231  *
232  * > 5. using some ioctl()s the process can synchronize the userspace view
233  * >    of the queue with the actual status in the kernel. This includes both
234  * >    receiving the notification of new packets, and transmitting new
235  * >    packets on the output interface.
236  *
237  * 	These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238  * 	cases. They invoke the nm_sync callbacks on the netmap_kring
239  * 	structures, as initialized in step 2 and maybe later modified
240  * 	by a monitor. Monitors, however, will always call the original
241  * 	callback before doing anything else.
242  *
243  *
244  * > 6. select() or poll() can be used to wait for events on individual
245  * >    transmit or receive queues (or all queues for a given interface).
246  *
247  * 	Implemented in netmap_poll(). This will call the same nm_sync()
248  * 	callbacks as in step 5 above.
249  *
250  * 	os-specific:
251  * 		linux: we first go through linux_netmap_poll() to adapt
252  * 		       the FreeBSD interface to the linux one.
253  *
254  *
255  *  ----  VALE_CTL -----
256  *
257  *  VALE switches are controlled by issuing a NIOCREGIF with a non-null
258  *  nr_cmd in the nmreq structure. These subcommands are handled by
259  *  netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260  *  and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261  *  subcommands, respectively.
262  *
263  *  Any network interface known to the system (including a persistent VALE
264  *  port) can be attached to a VALE switch by issuing the
265  *  NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266  *  look exactly like ephemeral VALE ports (as created in step 2 above).  The
267  *  attachment of other interfaces, instead, requires the creation of a
268  *  netmap_bwrap_adapter.  Moreover, the attached interface must be put in
269  *  netmap mode. This may require the creation of a netmap_generic_adapter if
270  *  we have no native support for the interface, or if generic adapters have
271  *  been forced by sysctl.
272  *
273  *  Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274  *  called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275  *  callback.  In the case of the bwrap, the callback creates the
276  *  netmap_bwrap_adapter.  The initialization of the bwrap is then
277  *  completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278  *  callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279  *  A generic adapter for the wrapped ifp will be created if needed, when
280  *  netmap_get_bdg_na() calls netmap_get_hw_na().
281  *
282  *
283  *  ---- DATAPATHS -----
284  *
285  *              -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286  *
287  *    na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288  *
289  *    - tx from netmap userspace:
290  *	 concurrently:
291  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292  *                kring->nm_sync() == DEVICE_netmap_txsync()
293  *           2) device interrupt handler
294  *                na->nm_notify()  == netmap_notify()
295  *    - rx from netmap userspace:
296  *       concurrently:
297  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298  *                kring->nm_sync() == DEVICE_netmap_rxsync()
299  *           2) device interrupt handler
300  *                na->nm_notify()  == netmap_notify()
301  *    - rx from host stack
302  *       concurrently:
303  *           1) host stack
304  *                netmap_transmit()
305  *                  na->nm_notify  == netmap_notify()
306  *           2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307  *                kring->nm_sync() == netmap_rxsync_from_host
308  *                  netmap_rxsync_from_host(na, NULL, NULL)
309  *    - tx to host stack
310  *           ioctl(NIOCTXSYNC)/netmap_poll() in process context
311  *             kring->nm_sync() == netmap_txsync_to_host
312  *               netmap_txsync_to_host(na)
313  *                 nm_os_send_up()
314  *                   FreeBSD: na->if_input() == ether_input()
315  *                   linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316  *
317  *
318  *               -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319  *
320  *    na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321  *
322  *    - tx from netmap userspace:
323  *       concurrently:
324  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325  *               kring->nm_sync() == generic_netmap_txsync()
326  *                   nm_os_generic_xmit_frame()
327  *                       linux:   dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328  *                           ifp->ndo_start_xmit == generic_ndo_start_xmit()
329  *                               gna->save_start_xmit == orig. dev. start_xmit
330  *                       FreeBSD: na->if_transmit() == orig. dev if_transmit
331  *           2) generic_mbuf_destructor()
332  *                   na->nm_notify() == netmap_notify()
333  *    - rx from netmap userspace:
334  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335  *               kring->nm_sync() == generic_netmap_rxsync()
336  *                   mbq_safe_dequeue()
337  *           2) device driver
338  *               generic_rx_handler()
339  *                   mbq_safe_enqueue()
340  *                   na->nm_notify() == netmap_notify()
341  *    - rx from host stack
342  *        FreeBSD: same as native
343  *        Linux: same as native except:
344  *           1) host stack
345  *               dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346  *                   ifp->ndo_start_xmit == generic_ndo_start_xmit()
347  *                       netmap_transmit()
348  *                           na->nm_notify() == netmap_notify()
349  *    - tx to host stack (same as native):
350  *
351  *
352  *                           -= VALE =-
353  *
354  *   INCOMING:
355  *
356  *      - VALE ports:
357  *          ioctl(NIOCTXSYNC)/netmap_poll() in process context
358  *              kring->nm_sync() == netmap_vp_txsync()
359  *
360  *      - system device with native support:
361  *         from cable:
362  *             interrupt
363  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
365  *                     netmap_vp_txsync()
366  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
367  *         from host stack:
368  *             netmap_transmit()
369  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370  *                     kring->nm_sync() == netmap_rxsync_from_host()
371  *                     netmap_vp_txsync()
372  *
373  *      - system device with generic support:
374  *         from device driver:
375  *            generic_rx_handler()
376  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377  *                     kring->nm_sync() == generic_netmap_rxsync()
378  *                     netmap_vp_txsync()
379  *                     kring->nm_sync() == generic_netmap_rxsync()
380  *         from host stack:
381  *            netmap_transmit()
382  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383  *                     kring->nm_sync() == netmap_rxsync_from_host()
384  *                     netmap_vp_txsync()
385  *
386  *   (all cases) --> nm_bdg_flush()
387  *                      dest_na->nm_notify() == (see below)
388  *
389  *   OUTGOING:
390  *
391  *      - VALE ports:
392  *         concurrently:
393  *             1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394  *                    kring->nm_sync() == netmap_vp_rxsync()
395  *             2) from nm_bdg_flush()
396  *                    na->nm_notify() == netmap_notify()
397  *
398  *      - system device with native support:
399  *          to cable:
400  *             na->nm_notify() == netmap_bwrap_notify()
401  *                 netmap_vp_rxsync()
402  *                 kring->nm_sync() == DEVICE_netmap_txsync()
403  *                 netmap_vp_rxsync()
404  *          to host stack:
405  *                 netmap_vp_rxsync()
406  *                 kring->nm_sync() == netmap_txsync_to_host
407  *                 netmap_vp_rxsync_locked()
408  *
409  *      - system device with generic adapter:
410  *          to device driver:
411  *             na->nm_notify() == netmap_bwrap_notify()
412  *                 netmap_vp_rxsync()
413  *                 kring->nm_sync() == generic_netmap_txsync()
414  *                 netmap_vp_rxsync()
415  *          to host stack:
416  *                 netmap_vp_rxsync()
417  *                 kring->nm_sync() == netmap_txsync_to_host
418  *                 netmap_vp_rxsync()
419  *
420  */
421 
422 /*
423  * OS-specific code that is used only within this file.
424  * Other OS-specific code that must be accessed by drivers
425  * is present in netmap_kern.h
426  */
427 
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h>	/* defines used in kernel.h */
433 #include <sys/kernel.h>	/* types used in module initialization */
434 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
435 #include <sys/filio.h>	/* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h>	/* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/rwlock.h>
441 #include <sys/socket.h> /* sockaddrs */
442 #include <sys/selinfo.h>
443 #include <sys/sysctl.h>
444 #include <sys/jail.h>
445 #include <net/vnet.h>
446 #include <net/if.h>
447 #include <net/if_var.h>
448 #include <net/bpf.h>		/* BIOCIMMEDIATE */
449 #include <machine/bus.h>	/* bus_dmamap_* */
450 #include <sys/endian.h>
451 #include <sys/refcount.h>
452 
453 
454 #elif defined(linux)
455 
456 #include "bsd_glue.h"
457 
458 #elif defined(__APPLE__)
459 
460 #warning OSX support is only partial
461 #include "osx_glue.h"
462 
463 #elif defined (_WIN32)
464 
465 #include "win_glue.h"
466 
467 #else
468 
469 #error	Unsupported platform
470 
471 #endif /* unsupported */
472 
473 /*
474  * common headers
475  */
476 #include <net/netmap.h>
477 #include <dev/netmap/netmap_kern.h>
478 #include <dev/netmap/netmap_mem2.h>
479 
480 
481 /* user-controlled variables */
482 int netmap_verbose;
483 
484 static int netmap_no_timestamp; /* don't timestamp on rxsync */
485 int netmap_no_pendintr = 1;
486 int netmap_txsync_retry = 2;
487 static int netmap_fwd = 0;	/* force transparent forwarding */
488 
489 /*
490  * netmap_admode selects the netmap mode to use.
491  * Invalid values are reset to NETMAP_ADMODE_BEST
492  */
493 enum {	NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
494 	NETMAP_ADMODE_NATIVE,	/* either native or none */
495 	NETMAP_ADMODE_GENERIC,	/* force generic */
496 	NETMAP_ADMODE_LAST };
497 static int netmap_admode = NETMAP_ADMODE_BEST;
498 
499 /* netmap_generic_mit controls mitigation of RX notifications for
500  * the generic netmap adapter. The value is a time interval in
501  * nanoseconds. */
502 int netmap_generic_mit = 100*1000;
503 
504 /* We use by default netmap-aware qdiscs with generic netmap adapters,
505  * even if there can be a little performance hit with hardware NICs.
506  * However, using the qdisc is the safer approach, for two reasons:
507  * 1) it prevents non-fifo qdiscs to break the TX notification
508  *    scheme, which is based on mbuf destructors when txqdisc is
509  *    not used.
510  * 2) it makes it possible to transmit over software devices that
511  *    change skb->dev, like bridge, veth, ...
512  *
513  * Anyway users looking for the best performance should
514  * use native adapters.
515  */
516 #ifdef linux
517 int netmap_generic_txqdisc = 1;
518 #endif
519 
520 /* Default number of slots and queues for generic adapters. */
521 int netmap_generic_ringsize = 1024;
522 int netmap_generic_rings = 1;
523 
524 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
525 int ptnet_vnet_hdr = 1;
526 
527 /* 0 if ptnetmap should not use worker threads for TX processing */
528 int ptnetmap_tx_workers = 1;
529 
530 /*
531  * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
532  * in some other operating systems
533  */
534 SYSBEGIN(main_init);
535 
536 SYSCTL_DECL(_dev_netmap);
537 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
538 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
539 		CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
540 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
541 		CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
542 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
543 		0, "Always look for new received packets.");
544 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
545 		&netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
546 
547 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
548 		"Force NR_FORWARD mode");
549 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
550 		"Adapter mode. 0 selects the best option available,"
551 		"1 forces native adapter, 2 forces emulated adapter");
552 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
553 		0, "RX notification interval in nanoseconds");
554 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
555 		&netmap_generic_ringsize, 0,
556 		"Number of per-ring slots for emulated netmap mode");
557 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
558 		&netmap_generic_rings, 0,
559 		"Number of TX/RX queues for emulated netmap adapters");
560 #ifdef linux
561 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
562 		&netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
563 #endif
564 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
565 		0, "Allow ptnet devices to use virtio-net headers");
566 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnetmap_tx_workers, CTLFLAG_RW,
567 		&ptnetmap_tx_workers, 0, "Use worker threads for pnetmap TX processing");
568 
569 SYSEND;
570 
571 NMG_LOCK_T	netmap_global_lock;
572 
573 /*
574  * mark the ring as stopped, and run through the locks
575  * to make sure other users get to see it.
576  * stopped must be either NR_KR_STOPPED (for unbounded stop)
577  * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
578  */
579 static void
580 netmap_disable_ring(struct netmap_kring *kr, int stopped)
581 {
582 	nm_kr_stop(kr, stopped);
583 	// XXX check if nm_kr_stop is sufficient
584 	mtx_lock(&kr->q_lock);
585 	mtx_unlock(&kr->q_lock);
586 	nm_kr_put(kr);
587 }
588 
589 /* stop or enable a single ring */
590 void
591 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
592 {
593 	if (stopped)
594 		netmap_disable_ring(NMR(na, t)[ring_id], stopped);
595 	else
596 		NMR(na, t)[ring_id]->nkr_stopped = 0;
597 }
598 
599 
600 /* stop or enable all the rings of na */
601 void
602 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
603 {
604 	int i;
605 	enum txrx t;
606 
607 	if (!nm_netmap_on(na))
608 		return;
609 
610 	for_rx_tx(t) {
611 		for (i = 0; i < netmap_real_rings(na, t); i++) {
612 			netmap_set_ring(na, i, t, stopped);
613 		}
614 	}
615 }
616 
617 /*
618  * Convenience function used in drivers.  Waits for current txsync()s/rxsync()s
619  * to finish and prevents any new one from starting.  Call this before turning
620  * netmap mode off, or before removing the hardware rings (e.g., on module
621  * onload).
622  */
623 void
624 netmap_disable_all_rings(struct ifnet *ifp)
625 {
626 	if (NM_NA_VALID(ifp)) {
627 		netmap_set_all_rings(NA(ifp), NM_KR_STOPPED);
628 	}
629 }
630 
631 /*
632  * Convenience function used in drivers.  Re-enables rxsync and txsync on the
633  * adapter's rings In linux drivers, this should be placed near each
634  * napi_enable().
635  */
636 void
637 netmap_enable_all_rings(struct ifnet *ifp)
638 {
639 	if (NM_NA_VALID(ifp)) {
640 		netmap_set_all_rings(NA(ifp), 0 /* enabled */);
641 	}
642 }
643 
644 void
645 netmap_make_zombie(struct ifnet *ifp)
646 {
647 	if (NM_NA_VALID(ifp)) {
648 		struct netmap_adapter *na = NA(ifp);
649 		netmap_set_all_rings(na, NM_KR_LOCKED);
650 		na->na_flags |= NAF_ZOMBIE;
651 		netmap_set_all_rings(na, 0);
652 	}
653 }
654 
655 void
656 netmap_undo_zombie(struct ifnet *ifp)
657 {
658 	if (NM_NA_VALID(ifp)) {
659 		struct netmap_adapter *na = NA(ifp);
660 		if (na->na_flags & NAF_ZOMBIE) {
661 			netmap_set_all_rings(na, NM_KR_LOCKED);
662 			na->na_flags &= ~NAF_ZOMBIE;
663 			netmap_set_all_rings(na, 0);
664 		}
665 	}
666 }
667 
668 /*
669  * generic bound_checking function
670  */
671 u_int
672 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
673 {
674 	u_int oldv = *v;
675 	const char *op = NULL;
676 
677 	if (dflt < lo)
678 		dflt = lo;
679 	if (dflt > hi)
680 		dflt = hi;
681 	if (oldv < lo) {
682 		*v = dflt;
683 		op = "Bump";
684 	} else if (oldv > hi) {
685 		*v = hi;
686 		op = "Clamp";
687 	}
688 	if (op && msg)
689 		nm_prinf("%s %s to %d (was %d)\n", op, msg, *v, oldv);
690 	return *v;
691 }
692 
693 
694 /*
695  * packet-dump function, user-supplied or static buffer.
696  * The destination buffer must be at least 30+4*len
697  */
698 const char *
699 nm_dump_buf(char *p, int len, int lim, char *dst)
700 {
701 	static char _dst[8192];
702 	int i, j, i0;
703 	static char hex[] ="0123456789abcdef";
704 	char *o;	/* output position */
705 
706 #define P_HI(x)	hex[((x) & 0xf0)>>4]
707 #define P_LO(x)	hex[((x) & 0xf)]
708 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
709 	if (!dst)
710 		dst = _dst;
711 	if (lim <= 0 || lim > len)
712 		lim = len;
713 	o = dst;
714 	sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
715 	o += strlen(o);
716 	/* hexdump routine */
717 	for (i = 0; i < lim; ) {
718 		sprintf(o, "%5d: ", i);
719 		o += strlen(o);
720 		memset(o, ' ', 48);
721 		i0 = i;
722 		for (j=0; j < 16 && i < lim; i++, j++) {
723 			o[j*3] = P_HI(p[i]);
724 			o[j*3+1] = P_LO(p[i]);
725 		}
726 		i = i0;
727 		for (j=0; j < 16 && i < lim; i++, j++)
728 			o[j + 48] = P_C(p[i]);
729 		o[j+48] = '\n';
730 		o += j+49;
731 	}
732 	*o = '\0';
733 #undef P_HI
734 #undef P_LO
735 #undef P_C
736 	return dst;
737 }
738 
739 
740 /*
741  * Fetch configuration from the device, to cope with dynamic
742  * reconfigurations after loading the module.
743  */
744 /* call with NMG_LOCK held */
745 int
746 netmap_update_config(struct netmap_adapter *na)
747 {
748 	struct nm_config_info info;
749 
750 	bzero(&info, sizeof(info));
751 	if (na->nm_config == NULL ||
752 	    na->nm_config(na, &info)) {
753 		/* take whatever we had at init time */
754 		info.num_tx_rings = na->num_tx_rings;
755 		info.num_tx_descs = na->num_tx_desc;
756 		info.num_rx_rings = na->num_rx_rings;
757 		info.num_rx_descs = na->num_rx_desc;
758 		info.rx_buf_maxsize = na->rx_buf_maxsize;
759 	}
760 
761 	if (na->num_tx_rings == info.num_tx_rings &&
762 	    na->num_tx_desc == info.num_tx_descs &&
763 	    na->num_rx_rings == info.num_rx_rings &&
764 	    na->num_rx_desc == info.num_rx_descs &&
765 	    na->rx_buf_maxsize == info.rx_buf_maxsize)
766 		return 0; /* nothing changed */
767 	if (na->active_fds == 0) {
768 		na->num_tx_rings = info.num_tx_rings;
769 		na->num_tx_desc = info.num_tx_descs;
770 		na->num_rx_rings = info.num_rx_rings;
771 		na->num_rx_desc = info.num_rx_descs;
772 		na->rx_buf_maxsize = info.rx_buf_maxsize;
773 		D("configuration changed for %s: txring %d x %d, "
774 			"rxring %d x %d, rxbufsz %d",
775 			na->name, na->num_tx_rings, na->num_tx_desc,
776 			na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
777 		return 0;
778 	}
779 	D("WARNING: configuration changed for %s while active: "
780 		"txring %d x %d, rxring %d x %d, rxbufsz %d",
781 		na->name, info.num_tx_rings, info.num_tx_descs,
782 		info.num_rx_rings, info.num_rx_descs,
783 		info.rx_buf_maxsize);
784 	return 1;
785 }
786 
787 /* nm_sync callbacks for the host rings */
788 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
789 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
790 
791 /* create the krings array and initialize the fields common to all adapters.
792  * The array layout is this:
793  *
794  *                    +----------+
795  * na->tx_rings ----->|          | \
796  *                    |          |  } na->num_tx_ring
797  *                    |          | /
798  *                    +----------+
799  *                    |          |    host tx kring
800  * na->rx_rings ----> +----------+
801  *                    |          | \
802  *                    |          |  } na->num_rx_rings
803  *                    |          | /
804  *                    +----------+
805  *                    |          |    host rx kring
806  *                    +----------+
807  * na->tailroom ----->|          | \
808  *                    |          |  } tailroom bytes
809  *                    |          | /
810  *                    +----------+
811  *
812  * Note: for compatibility, host krings are created even when not needed.
813  * The tailroom space is currently used by vale ports for allocating leases.
814  */
815 /* call with NMG_LOCK held */
816 int
817 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
818 {
819 	u_int i, len, ndesc;
820 	struct netmap_kring *kring;
821 	u_int n[NR_TXRX];
822 	enum txrx t;
823 
824 	if (na->tx_rings != NULL) {
825 		D("warning: krings were already created");
826 		return 0;
827 	}
828 
829 	/* account for the (possibly fake) host rings */
830 	n[NR_TX] = na->num_tx_rings + 1;
831 	n[NR_RX] = na->num_rx_rings + 1;
832 
833 	len = (n[NR_TX] + n[NR_RX]) *
834 		(sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
835 		+ tailroom;
836 
837 	na->tx_rings = nm_os_malloc((size_t)len);
838 	if (na->tx_rings == NULL) {
839 		D("Cannot allocate krings");
840 		return ENOMEM;
841 	}
842 	na->rx_rings = na->tx_rings + n[NR_TX];
843 	na->tailroom = na->rx_rings + n[NR_RX];
844 
845 	/* link the krings in the krings array */
846 	kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
847 	for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
848 		na->tx_rings[i] = kring;
849 		kring++;
850 	}
851 
852 	/*
853 	 * All fields in krings are 0 except the one initialized below.
854 	 * but better be explicit on important kring fields.
855 	 */
856 	for_rx_tx(t) {
857 		ndesc = nma_get_ndesc(na, t);
858 		for (i = 0; i < n[t]; i++) {
859 			kring = NMR(na, t)[i];
860 			bzero(kring, sizeof(*kring));
861 			kring->na = na;
862 			kring->notify_na = na;
863 			kring->ring_id = i;
864 			kring->tx = t;
865 			kring->nkr_num_slots = ndesc;
866 			kring->nr_mode = NKR_NETMAP_OFF;
867 			kring->nr_pending_mode = NKR_NETMAP_OFF;
868 			if (i < nma_get_nrings(na, t)) {
869 				kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
870 			} else {
871 				if (!(na->na_flags & NAF_HOST_RINGS))
872 					kring->nr_kflags |= NKR_FAKERING;
873 				kring->nm_sync = (t == NR_TX ?
874 						netmap_txsync_to_host:
875 						netmap_rxsync_from_host);
876 			}
877 			kring->nm_notify = na->nm_notify;
878 			kring->rhead = kring->rcur = kring->nr_hwcur = 0;
879 			/*
880 			 * IMPORTANT: Always keep one slot empty.
881 			 */
882 			kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
883 			snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
884 					nm_txrx2str(t), i);
885 			ND("ktx %s h %d c %d t %d",
886 				kring->name, kring->rhead, kring->rcur, kring->rtail);
887 			mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
888 			nm_os_selinfo_init(&kring->si);
889 		}
890 		nm_os_selinfo_init(&na->si[t]);
891 	}
892 
893 
894 	return 0;
895 }
896 
897 
898 /* undo the actions performed by netmap_krings_create */
899 /* call with NMG_LOCK held */
900 void
901 netmap_krings_delete(struct netmap_adapter *na)
902 {
903 	struct netmap_kring **kring = na->tx_rings;
904 	enum txrx t;
905 
906 	if (na->tx_rings == NULL) {
907 		D("warning: krings were already deleted");
908 		return;
909 	}
910 
911 	for_rx_tx(t)
912 		nm_os_selinfo_uninit(&na->si[t]);
913 
914 	/* we rely on the krings layout described above */
915 	for ( ; kring != na->tailroom; kring++) {
916 		mtx_destroy(&(*kring)->q_lock);
917 		nm_os_selinfo_uninit(&(*kring)->si);
918 	}
919 	nm_os_free(na->tx_rings);
920 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
921 }
922 
923 
924 /*
925  * Destructor for NIC ports. They also have an mbuf queue
926  * on the rings connected to the host so we need to purge
927  * them first.
928  */
929 /* call with NMG_LOCK held */
930 void
931 netmap_hw_krings_delete(struct netmap_adapter *na)
932 {
933 	struct mbq *q = &na->rx_rings[na->num_rx_rings]->rx_queue;
934 
935 	ND("destroy sw mbq with len %d", mbq_len(q));
936 	mbq_purge(q);
937 	mbq_safe_fini(q);
938 	netmap_krings_delete(na);
939 }
940 
941 static void
942 netmap_mem_drop(struct netmap_adapter *na)
943 {
944 	int last = netmap_mem_deref(na->nm_mem, na);
945 	/* if the native allocator had been overrided on regif,
946 	 * restore it now and drop the temporary one
947 	 */
948 	if (last && na->nm_mem_prev) {
949 		netmap_mem_put(na->nm_mem);
950 		na->nm_mem = na->nm_mem_prev;
951 		na->nm_mem_prev = NULL;
952 	}
953 }
954 
955 /*
956  * Undo everything that was done in netmap_do_regif(). In particular,
957  * call nm_register(ifp,0) to stop netmap mode on the interface and
958  * revert to normal operation.
959  */
960 /* call with NMG_LOCK held */
961 static void netmap_unset_ringid(struct netmap_priv_d *);
962 static void netmap_krings_put(struct netmap_priv_d *);
963 void
964 netmap_do_unregif(struct netmap_priv_d *priv)
965 {
966 	struct netmap_adapter *na = priv->np_na;
967 
968 	NMG_LOCK_ASSERT();
969 	na->active_fds--;
970 	/* unset nr_pending_mode and possibly release exclusive mode */
971 	netmap_krings_put(priv);
972 
973 #ifdef	WITH_MONITOR
974 	/* XXX check whether we have to do something with monitor
975 	 * when rings change nr_mode. */
976 	if (na->active_fds <= 0) {
977 		/* walk through all the rings and tell any monitor
978 		 * that the port is going to exit netmap mode
979 		 */
980 		netmap_monitor_stop(na);
981 	}
982 #endif
983 
984 	if (na->active_fds <= 0 || nm_kring_pending(priv)) {
985 		na->nm_register(na, 0);
986 	}
987 
988 	/* delete rings and buffers that are no longer needed */
989 	netmap_mem_rings_delete(na);
990 
991 	if (na->active_fds <= 0) {	/* last instance */
992 		/*
993 		 * (TO CHECK) We enter here
994 		 * when the last reference to this file descriptor goes
995 		 * away. This means we cannot have any pending poll()
996 		 * or interrupt routine operating on the structure.
997 		 * XXX The file may be closed in a thread while
998 		 * another thread is using it.
999 		 * Linux keeps the file opened until the last reference
1000 		 * by any outstanding ioctl/poll or mmap is gone.
1001 		 * FreeBSD does not track mmap()s (but we do) and
1002 		 * wakes up any sleeping poll(). Need to check what
1003 		 * happens if the close() occurs while a concurrent
1004 		 * syscall is running.
1005 		 */
1006 		if (netmap_verbose)
1007 			D("deleting last instance for %s", na->name);
1008 
1009 		if (nm_netmap_on(na)) {
1010 			D("BUG: netmap on while going to delete the krings");
1011 		}
1012 
1013 		na->nm_krings_delete(na);
1014 	}
1015 
1016 	/* possibily decrement counter of tx_si/rx_si users */
1017 	netmap_unset_ringid(priv);
1018 	/* delete the nifp */
1019 	netmap_mem_if_delete(na, priv->np_nifp);
1020 	/* drop the allocator */
1021 	netmap_mem_drop(na);
1022 	/* mark the priv as unregistered */
1023 	priv->np_na = NULL;
1024 	priv->np_nifp = NULL;
1025 }
1026 
1027 /* call with NMG_LOCK held */
1028 static __inline int
1029 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
1030 {
1031 	return (priv->np_na != NULL &&
1032 		(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
1033 }
1034 
1035 struct netmap_priv_d*
1036 netmap_priv_new(void)
1037 {
1038 	struct netmap_priv_d *priv;
1039 
1040 	priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1041 	if (priv == NULL)
1042 		return NULL;
1043 	priv->np_refs = 1;
1044 	nm_os_get_module();
1045 	return priv;
1046 }
1047 
1048 /*
1049  * Destructor of the netmap_priv_d, called when the fd is closed
1050  * Action: undo all the things done by NIOCREGIF,
1051  * On FreeBSD we need to track whether there are active mmap()s,
1052  * and we use np_active_mmaps for that. On linux, the field is always 0.
1053  * Return: 1 if we can free priv, 0 otherwise.
1054  *
1055  */
1056 /* call with NMG_LOCK held */
1057 void
1058 netmap_priv_delete(struct netmap_priv_d *priv)
1059 {
1060 	struct netmap_adapter *na = priv->np_na;
1061 
1062 	/* number of active references to this fd */
1063 	if (--priv->np_refs > 0) {
1064 		return;
1065 	}
1066 	nm_os_put_module();
1067 	if (na) {
1068 		netmap_do_unregif(priv);
1069 	}
1070 	netmap_unget_na(na, priv->np_ifp);
1071 	bzero(priv, sizeof(*priv));	/* for safety */
1072 	nm_os_free(priv);
1073 }
1074 
1075 
1076 /* call with NMG_LOCK *not* held */
1077 void
1078 netmap_dtor(void *data)
1079 {
1080 	struct netmap_priv_d *priv = data;
1081 
1082 	NMG_LOCK();
1083 	netmap_priv_delete(priv);
1084 	NMG_UNLOCK();
1085 }
1086 
1087 
1088 /*
1089  * Handlers for synchronization of the rings from/to the host stack.
1090  * These are associated to a network interface and are just another
1091  * ring pair managed by userspace.
1092  *
1093  * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1094  * flags):
1095  *
1096  * - Before releasing buffers on hw RX rings, the application can mark
1097  *   them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1098  *   will be forwarded to the host stack, similarly to what happened if
1099  *   the application moved them to the host TX ring.
1100  *
1101  * - Before releasing buffers on the host RX ring, the application can
1102  *   mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1103  *   they will be forwarded to the hw TX rings, saving the application
1104  *   from doing the same task in user-space.
1105  *
1106  * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD
1107  * flag, or globally with the netmap_fwd sysctl.
1108  *
1109  * The transfer NIC --> host is relatively easy, just encapsulate
1110  * into mbufs and we are done. The host --> NIC side is slightly
1111  * harder because there might not be room in the tx ring so it
1112  * might take a while before releasing the buffer.
1113  */
1114 
1115 
1116 /*
1117  * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1118  * We do not need to lock because the queue is private.
1119  * After this call the queue is empty.
1120  */
1121 static void
1122 netmap_send_up(struct ifnet *dst, struct mbq *q)
1123 {
1124 	struct mbuf *m;
1125 	struct mbuf *head = NULL, *prev = NULL;
1126 
1127 	/* Send packets up, outside the lock; head/prev machinery
1128 	 * is only useful for Windows. */
1129 	while ((m = mbq_dequeue(q)) != NULL) {
1130 		if (netmap_verbose & NM_VERB_HOST)
1131 			D("sending up pkt %p size %d", m, MBUF_LEN(m));
1132 		prev = nm_os_send_up(dst, m, prev);
1133 		if (head == NULL)
1134 			head = prev;
1135 	}
1136 	if (head)
1137 		nm_os_send_up(dst, NULL, head);
1138 	mbq_fini(q);
1139 }
1140 
1141 
1142 /*
1143  * Scan the buffers from hwcur to ring->head, and put a copy of those
1144  * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1145  * Drop remaining packets in the unlikely event
1146  * of an mbuf shortage.
1147  */
1148 static void
1149 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1150 {
1151 	u_int const lim = kring->nkr_num_slots - 1;
1152 	u_int const head = kring->rhead;
1153 	u_int n;
1154 	struct netmap_adapter *na = kring->na;
1155 
1156 	for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1157 		struct mbuf *m;
1158 		struct netmap_slot *slot = &kring->ring->slot[n];
1159 
1160 		if ((slot->flags & NS_FORWARD) == 0 && !force)
1161 			continue;
1162 		if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1163 			RD(5, "bad pkt at %d len %d", n, slot->len);
1164 			continue;
1165 		}
1166 		slot->flags &= ~NS_FORWARD; // XXX needed ?
1167 		/* XXX TODO: adapt to the case of a multisegment packet */
1168 		m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1169 
1170 		if (m == NULL)
1171 			break;
1172 		mbq_enqueue(q, m);
1173 	}
1174 }
1175 
1176 static inline int
1177 _nm_may_forward(struct netmap_kring *kring)
1178 {
1179 	return	((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1180 		 kring->na->na_flags & NAF_HOST_RINGS &&
1181 		 kring->tx == NR_RX);
1182 }
1183 
1184 static inline int
1185 nm_may_forward_up(struct netmap_kring *kring)
1186 {
1187 	return	_nm_may_forward(kring) &&
1188 		 kring->ring_id != kring->na->num_rx_rings;
1189 }
1190 
1191 static inline int
1192 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1193 {
1194 	return	_nm_may_forward(kring) &&
1195 		 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1196 		 kring->ring_id == kring->na->num_rx_rings;
1197 }
1198 
1199 /*
1200  * Send to the NIC rings packets marked NS_FORWARD between
1201  * kring->nr_hwcur and kring->rhead.
1202  * Called under kring->rx_queue.lock on the sw rx ring.
1203  *
1204  * It can only be called if the user opened all the TX hw rings,
1205  * see NAF_CAN_FORWARD_DOWN flag.
1206  * We can touch the TX netmap rings (slots, head and cur) since
1207  * we are in poll/ioctl system call context, and the application
1208  * is not supposed to touch the ring (using a different thread)
1209  * during the execution of the system call.
1210  */
1211 static u_int
1212 netmap_sw_to_nic(struct netmap_adapter *na)
1213 {
1214 	struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1215 	struct netmap_slot *rxslot = kring->ring->slot;
1216 	u_int i, rxcur = kring->nr_hwcur;
1217 	u_int const head = kring->rhead;
1218 	u_int const src_lim = kring->nkr_num_slots - 1;
1219 	u_int sent = 0;
1220 
1221 	/* scan rings to find space, then fill as much as possible */
1222 	for (i = 0; i < na->num_tx_rings; i++) {
1223 		struct netmap_kring *kdst = na->tx_rings[i];
1224 		struct netmap_ring *rdst = kdst->ring;
1225 		u_int const dst_lim = kdst->nkr_num_slots - 1;
1226 
1227 		/* XXX do we trust ring or kring->rcur,rtail ? */
1228 		for (; rxcur != head && !nm_ring_empty(rdst);
1229 		     rxcur = nm_next(rxcur, src_lim) ) {
1230 			struct netmap_slot *src, *dst, tmp;
1231 			u_int dst_head = rdst->head;
1232 
1233 			src = &rxslot[rxcur];
1234 			if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1235 				continue;
1236 
1237 			sent++;
1238 
1239 			dst = &rdst->slot[dst_head];
1240 
1241 			tmp = *src;
1242 
1243 			src->buf_idx = dst->buf_idx;
1244 			src->flags = NS_BUF_CHANGED;
1245 
1246 			dst->buf_idx = tmp.buf_idx;
1247 			dst->len = tmp.len;
1248 			dst->flags = NS_BUF_CHANGED;
1249 
1250 			rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1251 		}
1252 		/* if (sent) XXX txsync ? it would be just an optimization */
1253 	}
1254 	return sent;
1255 }
1256 
1257 
1258 /*
1259  * netmap_txsync_to_host() passes packets up. We are called from a
1260  * system call in user process context, and the only contention
1261  * can be among multiple user threads erroneously calling
1262  * this routine concurrently.
1263  */
1264 static int
1265 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1266 {
1267 	struct netmap_adapter *na = kring->na;
1268 	u_int const lim = kring->nkr_num_slots - 1;
1269 	u_int const head = kring->rhead;
1270 	struct mbq q;
1271 
1272 	/* Take packets from hwcur to head and pass them up.
1273 	 * Force hwcur = head since netmap_grab_packets() stops at head
1274 	 */
1275 	mbq_init(&q);
1276 	netmap_grab_packets(kring, &q, 1 /* force */);
1277 	ND("have %d pkts in queue", mbq_len(&q));
1278 	kring->nr_hwcur = head;
1279 	kring->nr_hwtail = head + lim;
1280 	if (kring->nr_hwtail > lim)
1281 		kring->nr_hwtail -= lim + 1;
1282 
1283 	netmap_send_up(na->ifp, &q);
1284 	return 0;
1285 }
1286 
1287 
1288 /*
1289  * rxsync backend for packets coming from the host stack.
1290  * They have been put in kring->rx_queue by netmap_transmit().
1291  * We protect access to the kring using kring->rx_queue.lock
1292  *
1293  * also moves to the nic hw rings any packet the user has marked
1294  * for transparent-mode forwarding, then sets the NR_FORWARD
1295  * flag in the kring to let the caller push them out
1296  */
1297 static int
1298 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1299 {
1300 	struct netmap_adapter *na = kring->na;
1301 	struct netmap_ring *ring = kring->ring;
1302 	u_int nm_i, n;
1303 	u_int const lim = kring->nkr_num_slots - 1;
1304 	u_int const head = kring->rhead;
1305 	int ret = 0;
1306 	struct mbq *q = &kring->rx_queue, fq;
1307 
1308 	mbq_init(&fq); /* fq holds packets to be freed */
1309 
1310 	mbq_lock(q);
1311 
1312 	/* First part: import newly received packets */
1313 	n = mbq_len(q);
1314 	if (n) { /* grab packets from the queue */
1315 		struct mbuf *m;
1316 		uint32_t stop_i;
1317 
1318 		nm_i = kring->nr_hwtail;
1319 		stop_i = nm_prev(kring->nr_hwcur, lim);
1320 		while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1321 			int len = MBUF_LEN(m);
1322 			struct netmap_slot *slot = &ring->slot[nm_i];
1323 
1324 			m_copydata(m, 0, len, NMB(na, slot));
1325 			ND("nm %d len %d", nm_i, len);
1326 			if (netmap_verbose)
1327 				D("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1328 
1329 			slot->len = len;
1330 			slot->flags = 0;
1331 			nm_i = nm_next(nm_i, lim);
1332 			mbq_enqueue(&fq, m);
1333 		}
1334 		kring->nr_hwtail = nm_i;
1335 	}
1336 
1337 	/*
1338 	 * Second part: skip past packets that userspace has released.
1339 	 */
1340 	nm_i = kring->nr_hwcur;
1341 	if (nm_i != head) { /* something was released */
1342 		if (nm_may_forward_down(kring, flags)) {
1343 			ret = netmap_sw_to_nic(na);
1344 			if (ret > 0) {
1345 				kring->nr_kflags |= NR_FORWARD;
1346 				ret = 0;
1347 			}
1348 		}
1349 		kring->nr_hwcur = head;
1350 	}
1351 
1352 	mbq_unlock(q);
1353 
1354 	mbq_purge(&fq);
1355 	mbq_fini(&fq);
1356 
1357 	return ret;
1358 }
1359 
1360 
1361 /* Get a netmap adapter for the port.
1362  *
1363  * If it is possible to satisfy the request, return 0
1364  * with *na containing the netmap adapter found.
1365  * Otherwise return an error code, with *na containing NULL.
1366  *
1367  * When the port is attached to a bridge, we always return
1368  * EBUSY.
1369  * Otherwise, if the port is already bound to a file descriptor,
1370  * then we unconditionally return the existing adapter into *na.
1371  * In all the other cases, we return (into *na) either native,
1372  * generic or NULL, according to the following table:
1373  *
1374  *					native_support
1375  * active_fds   dev.netmap.admode         YES     NO
1376  * -------------------------------------------------------
1377  *    >0              *                 NA(ifp) NA(ifp)
1378  *
1379  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
1380  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
1381  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
1382  *
1383  */
1384 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1385 int
1386 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1387 {
1388 	/* generic support */
1389 	int i = netmap_admode;	/* Take a snapshot. */
1390 	struct netmap_adapter *prev_na;
1391 	int error = 0;
1392 
1393 	*na = NULL; /* default */
1394 
1395 	/* reset in case of invalid value */
1396 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1397 		i = netmap_admode = NETMAP_ADMODE_BEST;
1398 
1399 	if (NM_NA_VALID(ifp)) {
1400 		prev_na = NA(ifp);
1401 		/* If an adapter already exists, return it if
1402 		 * there are active file descriptors or if
1403 		 * netmap is not forced to use generic
1404 		 * adapters.
1405 		 */
1406 		if (NETMAP_OWNED_BY_ANY(prev_na)
1407 			|| i != NETMAP_ADMODE_GENERIC
1408 			|| prev_na->na_flags & NAF_FORCE_NATIVE
1409 #ifdef WITH_PIPES
1410 			/* ugly, but we cannot allow an adapter switch
1411 			 * if some pipe is referring to this one
1412 			 */
1413 			|| prev_na->na_next_pipe > 0
1414 #endif
1415 		) {
1416 			*na = prev_na;
1417 			goto assign_mem;
1418 		}
1419 	}
1420 
1421 	/* If there isn't native support and netmap is not allowed
1422 	 * to use generic adapters, we cannot satisfy the request.
1423 	 */
1424 	if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1425 		return EOPNOTSUPP;
1426 
1427 	/* Otherwise, create a generic adapter and return it,
1428 	 * saving the previously used netmap adapter, if any.
1429 	 *
1430 	 * Note that here 'prev_na', if not NULL, MUST be a
1431 	 * native adapter, and CANNOT be a generic one. This is
1432 	 * true because generic adapters are created on demand, and
1433 	 * destroyed when not used anymore. Therefore, if the adapter
1434 	 * currently attached to an interface 'ifp' is generic, it
1435 	 * must be that
1436 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1437 	 * Consequently, if NA(ifp) is generic, we will enter one of
1438 	 * the branches above. This ensures that we never override
1439 	 * a generic adapter with another generic adapter.
1440 	 */
1441 	error = generic_netmap_attach(ifp);
1442 	if (error)
1443 		return error;
1444 
1445 	*na = NA(ifp);
1446 
1447 assign_mem:
1448 	if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1449 	    (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1450 		(*na)->nm_mem_prev = (*na)->nm_mem;
1451 		(*na)->nm_mem = netmap_mem_get(nmd);
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 /*
1458  * MUST BE CALLED UNDER NMG_LOCK()
1459  *
1460  * Get a refcounted reference to a netmap adapter attached
1461  * to the interface specified by req.
1462  * This is always called in the execution of an ioctl().
1463  *
1464  * Return ENXIO if the interface specified by the request does
1465  * not exist, ENOTSUP if netmap is not supported by the interface,
1466  * EBUSY if the interface is already attached to a bridge,
1467  * EINVAL if parameters are invalid, ENOMEM if needed resources
1468  * could not be allocated.
1469  * If successful, hold a reference to the netmap adapter.
1470  *
1471  * If the interface specified by req is a system one, also keep
1472  * a reference to it and return a valid *ifp.
1473  */
1474 int
1475 netmap_get_na(struct nmreq_header *hdr,
1476 	      struct netmap_adapter **na, struct ifnet **ifp,
1477 	      struct netmap_mem_d *nmd, int create)
1478 {
1479 	struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1480 	int error = 0;
1481 	struct netmap_adapter *ret = NULL;
1482 	int nmd_ref = 0;
1483 
1484 	*na = NULL;     /* default return value */
1485 	*ifp = NULL;
1486 
1487 	if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1488 		return EINVAL;
1489 	}
1490 
1491 	if (req->nr_mode == NR_REG_PIPE_MASTER ||
1492 			req->nr_mode == NR_REG_PIPE_SLAVE) {
1493 		/* Do not accept deprecated pipe modes. */
1494 		D("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1495 		return EINVAL;
1496 	}
1497 
1498 	NMG_LOCK_ASSERT();
1499 
1500 	/* if the request contain a memid, try to find the
1501 	 * corresponding memory region
1502 	 */
1503 	if (nmd == NULL && req->nr_mem_id) {
1504 		nmd = netmap_mem_find(req->nr_mem_id);
1505 		if (nmd == NULL)
1506 			return EINVAL;
1507 		/* keep the rereference */
1508 		nmd_ref = 1;
1509 	}
1510 
1511 	/* We cascade through all possible types of netmap adapter.
1512 	 * All netmap_get_*_na() functions return an error and an na,
1513 	 * with the following combinations:
1514 	 *
1515 	 * error    na
1516 	 *   0	   NULL		type doesn't match
1517 	 *  !0	   NULL		type matches, but na creation/lookup failed
1518 	 *   0	  !NULL		type matches and na created/found
1519 	 *  !0    !NULL		impossible
1520 	 */
1521 
1522 	/* try to see if this is a ptnetmap port */
1523 	error = netmap_get_pt_host_na(hdr, na, nmd, create);
1524 	if (error || *na != NULL)
1525 		goto out;
1526 
1527 	/* try to see if this is a monitor port */
1528 	error = netmap_get_monitor_na(hdr, na, nmd, create);
1529 	if (error || *na != NULL)
1530 		goto out;
1531 
1532 	/* try to see if this is a pipe port */
1533 	error = netmap_get_pipe_na(hdr, na, nmd, create);
1534 	if (error || *na != NULL)
1535 		goto out;
1536 
1537 	/* try to see if this is a bridge port */
1538 	error = netmap_get_bdg_na(hdr, na, nmd, create);
1539 	if (error)
1540 		goto out;
1541 
1542 	if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1543 		goto out;
1544 
1545 	/*
1546 	 * This must be a hardware na, lookup the name in the system.
1547 	 * Note that by hardware we actually mean "it shows up in ifconfig".
1548 	 * This may still be a tap, a veth/epair, or even a
1549 	 * persistent VALE port.
1550 	 */
1551 	*ifp = ifunit_ref(hdr->nr_name);
1552 	if (*ifp == NULL) {
1553 		error = ENXIO;
1554 		goto out;
1555 	}
1556 
1557 	error = netmap_get_hw_na(*ifp, nmd, &ret);
1558 	if (error)
1559 		goto out;
1560 
1561 	*na = ret;
1562 	netmap_adapter_get(ret);
1563 
1564 out:
1565 	if (error) {
1566 		if (ret)
1567 			netmap_adapter_put(ret);
1568 		if (*ifp) {
1569 			if_rele(*ifp);
1570 			*ifp = NULL;
1571 		}
1572 	}
1573 	if (nmd_ref)
1574 		netmap_mem_put(nmd);
1575 
1576 	return error;
1577 }
1578 
1579 /* undo netmap_get_na() */
1580 void
1581 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1582 {
1583 	if (ifp)
1584 		if_rele(ifp);
1585 	if (na)
1586 		netmap_adapter_put(na);
1587 }
1588 
1589 
1590 #define NM_FAIL_ON(t) do {						\
1591 	if (unlikely(t)) {						\
1592 		RD(5, "%s: fail '" #t "' "				\
1593 			"h %d c %d t %d "				\
1594 			"rh %d rc %d rt %d "				\
1595 			"hc %d ht %d",					\
1596 			kring->name,					\
1597 			head, cur, ring->tail,				\
1598 			kring->rhead, kring->rcur, kring->rtail,	\
1599 			kring->nr_hwcur, kring->nr_hwtail);		\
1600 		return kring->nkr_num_slots;				\
1601 	}								\
1602 } while (0)
1603 
1604 /*
1605  * validate parameters on entry for *_txsync()
1606  * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1607  * in case of error.
1608  *
1609  * rhead, rcur and rtail=hwtail are stored from previous round.
1610  * hwcur is the next packet to send to the ring.
1611  *
1612  * We want
1613  *    hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1614  *
1615  * hwcur, rhead, rtail and hwtail are reliable
1616  */
1617 u_int
1618 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1619 {
1620 	u_int head = ring->head; /* read only once */
1621 	u_int cur = ring->cur; /* read only once */
1622 	u_int n = kring->nkr_num_slots;
1623 
1624 	ND(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1625 		kring->name,
1626 		kring->nr_hwcur, kring->nr_hwtail,
1627 		ring->head, ring->cur, ring->tail);
1628 #if 1 /* kernel sanity checks; but we can trust the kring. */
1629 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1630 	    kring->rtail >= n ||  kring->nr_hwtail >= n);
1631 #endif /* kernel sanity checks */
1632 	/*
1633 	 * user sanity checks. We only use head,
1634 	 * A, B, ... are possible positions for head:
1635 	 *
1636 	 *  0    A  rhead   B  rtail   C  n-1
1637 	 *  0    D  rtail   E  rhead   F  n-1
1638 	 *
1639 	 * B, F, D are valid. A, C, E are wrong
1640 	 */
1641 	if (kring->rtail >= kring->rhead) {
1642 		/* want rhead <= head <= rtail */
1643 		NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1644 		/* and also head <= cur <= rtail */
1645 		NM_FAIL_ON(cur < head || cur > kring->rtail);
1646 	} else { /* here rtail < rhead */
1647 		/* we need head outside rtail .. rhead */
1648 		NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1649 
1650 		/* two cases now: head <= rtail or head >= rhead  */
1651 		if (head <= kring->rtail) {
1652 			/* want head <= cur <= rtail */
1653 			NM_FAIL_ON(cur < head || cur > kring->rtail);
1654 		} else { /* head >= rhead */
1655 			/* cur must be outside rtail..head */
1656 			NM_FAIL_ON(cur > kring->rtail && cur < head);
1657 		}
1658 	}
1659 	if (ring->tail != kring->rtail) {
1660 		RD(5, "%s tail overwritten was %d need %d", kring->name,
1661 			ring->tail, kring->rtail);
1662 		ring->tail = kring->rtail;
1663 	}
1664 	kring->rhead = head;
1665 	kring->rcur = cur;
1666 	return head;
1667 }
1668 
1669 
1670 /*
1671  * validate parameters on entry for *_rxsync()
1672  * Returns ring->head if ok, kring->nkr_num_slots on error.
1673  *
1674  * For a valid configuration,
1675  * hwcur <= head <= cur <= tail <= hwtail
1676  *
1677  * We only consider head and cur.
1678  * hwcur and hwtail are reliable.
1679  *
1680  */
1681 u_int
1682 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1683 {
1684 	uint32_t const n = kring->nkr_num_slots;
1685 	uint32_t head, cur;
1686 
1687 	ND(5,"%s kc %d kt %d h %d c %d t %d",
1688 		kring->name,
1689 		kring->nr_hwcur, kring->nr_hwtail,
1690 		ring->head, ring->cur, ring->tail);
1691 	/*
1692 	 * Before storing the new values, we should check they do not
1693 	 * move backwards. However:
1694 	 * - head is not an issue because the previous value is hwcur;
1695 	 * - cur could in principle go back, however it does not matter
1696 	 *   because we are processing a brand new rxsync()
1697 	 */
1698 	cur = kring->rcur = ring->cur;	/* read only once */
1699 	head = kring->rhead = ring->head;	/* read only once */
1700 #if 1 /* kernel sanity checks */
1701 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1702 #endif /* kernel sanity checks */
1703 	/* user sanity checks */
1704 	if (kring->nr_hwtail >= kring->nr_hwcur) {
1705 		/* want hwcur <= rhead <= hwtail */
1706 		NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1707 		/* and also rhead <= rcur <= hwtail */
1708 		NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1709 	} else {
1710 		/* we need rhead outside hwtail..hwcur */
1711 		NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1712 		/* two cases now: head <= hwtail or head >= hwcur  */
1713 		if (head <= kring->nr_hwtail) {
1714 			/* want head <= cur <= hwtail */
1715 			NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1716 		} else {
1717 			/* cur must be outside hwtail..head */
1718 			NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1719 		}
1720 	}
1721 	if (ring->tail != kring->rtail) {
1722 		RD(5, "%s tail overwritten was %d need %d",
1723 			kring->name,
1724 			ring->tail, kring->rtail);
1725 		ring->tail = kring->rtail;
1726 	}
1727 	return head;
1728 }
1729 
1730 
1731 /*
1732  * Error routine called when txsync/rxsync detects an error.
1733  * Can't do much more than resetting head =cur = hwcur, tail = hwtail
1734  * Return 1 on reinit.
1735  *
1736  * This routine is only called by the upper half of the kernel.
1737  * It only reads hwcur (which is changed only by the upper half, too)
1738  * and hwtail (which may be changed by the lower half, but only on
1739  * a tx ring and only to increase it, so any error will be recovered
1740  * on the next call). For the above, we don't strictly need to call
1741  * it under lock.
1742  */
1743 int
1744 netmap_ring_reinit(struct netmap_kring *kring)
1745 {
1746 	struct netmap_ring *ring = kring->ring;
1747 	u_int i, lim = kring->nkr_num_slots - 1;
1748 	int errors = 0;
1749 
1750 	// XXX KASSERT nm_kr_tryget
1751 	RD(10, "called for %s", kring->name);
1752 	// XXX probably wrong to trust userspace
1753 	kring->rhead = ring->head;
1754 	kring->rcur  = ring->cur;
1755 	kring->rtail = ring->tail;
1756 
1757 	if (ring->cur > lim)
1758 		errors++;
1759 	if (ring->head > lim)
1760 		errors++;
1761 	if (ring->tail > lim)
1762 		errors++;
1763 	for (i = 0; i <= lim; i++) {
1764 		u_int idx = ring->slot[i].buf_idx;
1765 		u_int len = ring->slot[i].len;
1766 		if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1767 			RD(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1768 			ring->slot[i].buf_idx = 0;
1769 			ring->slot[i].len = 0;
1770 		} else if (len > NETMAP_BUF_SIZE(kring->na)) {
1771 			ring->slot[i].len = 0;
1772 			RD(5, "bad len at slot %d idx %d len %d", i, idx, len);
1773 		}
1774 	}
1775 	if (errors) {
1776 		RD(10, "total %d errors", errors);
1777 		RD(10, "%s reinit, cur %d -> %d tail %d -> %d",
1778 			kring->name,
1779 			ring->cur, kring->nr_hwcur,
1780 			ring->tail, kring->nr_hwtail);
1781 		ring->head = kring->rhead = kring->nr_hwcur;
1782 		ring->cur  = kring->rcur  = kring->nr_hwcur;
1783 		ring->tail = kring->rtail = kring->nr_hwtail;
1784 	}
1785 	return (errors ? 1 : 0);
1786 }
1787 
1788 /* interpret the ringid and flags fields of an nmreq, by translating them
1789  * into a pair of intervals of ring indices:
1790  *
1791  * [priv->np_txqfirst, priv->np_txqlast) and
1792  * [priv->np_rxqfirst, priv->np_rxqlast)
1793  *
1794  */
1795 int
1796 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1797 			uint16_t nr_ringid, uint64_t nr_flags)
1798 {
1799 	struct netmap_adapter *na = priv->np_na;
1800 	int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1801 	enum txrx t;
1802 	u_int j;
1803 
1804 	if ((nr_flags & NR_PTNETMAP_HOST) && ((nr_mode != NR_REG_ALL_NIC) ||
1805 			nr_flags & (NR_RX_RINGS_ONLY|NR_TX_RINGS_ONLY))) {
1806 		D("Error: only NR_REG_ALL_NIC supported with netmap passthrough");
1807 		return EINVAL;
1808 	}
1809 
1810 	for_rx_tx(t) {
1811 		if (nr_flags & excluded_direction[t]) {
1812 			priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1813 			continue;
1814 		}
1815 		switch (nr_mode) {
1816 		case NR_REG_ALL_NIC:
1817 			priv->np_qfirst[t] = 0;
1818 			priv->np_qlast[t] = nma_get_nrings(na, t);
1819 			ND("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1820 				priv->np_qfirst[t], priv->np_qlast[t]);
1821 			break;
1822 		case NR_REG_SW:
1823 		case NR_REG_NIC_SW:
1824 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1825 				D("host rings not supported");
1826 				return EINVAL;
1827 			}
1828 			priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1829 				nma_get_nrings(na, t) : 0);
1830 			priv->np_qlast[t] = nma_get_nrings(na, t) + 1;
1831 			ND("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1832 				nm_txrx2str(t),
1833 				priv->np_qfirst[t], priv->np_qlast[t]);
1834 			break;
1835 		case NR_REG_ONE_NIC:
1836 			if (nr_ringid >= na->num_tx_rings &&
1837 					nr_ringid >= na->num_rx_rings) {
1838 				D("invalid ring id %d", nr_ringid);
1839 				return EINVAL;
1840 			}
1841 			/* if not enough rings, use the first one */
1842 			j = nr_ringid;
1843 			if (j >= nma_get_nrings(na, t))
1844 				j = 0;
1845 			priv->np_qfirst[t] = j;
1846 			priv->np_qlast[t] = j + 1;
1847 			ND("ONE_NIC: %s %d %d", nm_txrx2str(t),
1848 				priv->np_qfirst[t], priv->np_qlast[t]);
1849 			break;
1850 		default:
1851 			D("invalid regif type %d", nr_mode);
1852 			return EINVAL;
1853 		}
1854 	}
1855 	priv->np_flags = nr_flags | nr_mode; // TODO
1856 
1857 	/* Allow transparent forwarding mode in the host --> nic
1858 	 * direction only if all the TX hw rings have been opened. */
1859 	if (priv->np_qfirst[NR_TX] == 0 &&
1860 			priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1861 		priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1862 	}
1863 
1864 	if (netmap_verbose) {
1865 		D("%s: tx [%d,%d) rx [%d,%d) id %d",
1866 			na->name,
1867 			priv->np_qfirst[NR_TX],
1868 			priv->np_qlast[NR_TX],
1869 			priv->np_qfirst[NR_RX],
1870 			priv->np_qlast[NR_RX],
1871 			nr_ringid);
1872 	}
1873 	return 0;
1874 }
1875 
1876 
1877 /*
1878  * Set the ring ID. For devices with a single queue, a request
1879  * for all rings is the same as a single ring.
1880  */
1881 static int
1882 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1883 		uint16_t nr_ringid, uint64_t nr_flags)
1884 {
1885 	struct netmap_adapter *na = priv->np_na;
1886 	int error;
1887 	enum txrx t;
1888 
1889 	error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags);
1890 	if (error) {
1891 		return error;
1892 	}
1893 
1894 	priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1;
1895 
1896 	/* optimization: count the users registered for more than
1897 	 * one ring, which are the ones sleeping on the global queue.
1898 	 * The default netmap_notify() callback will then
1899 	 * avoid signaling the global queue if nobody is using it
1900 	 */
1901 	for_rx_tx(t) {
1902 		if (nm_si_user(priv, t))
1903 			na->si_users[t]++;
1904 	}
1905 	return 0;
1906 }
1907 
1908 static void
1909 netmap_unset_ringid(struct netmap_priv_d *priv)
1910 {
1911 	struct netmap_adapter *na = priv->np_na;
1912 	enum txrx t;
1913 
1914 	for_rx_tx(t) {
1915 		if (nm_si_user(priv, t))
1916 			na->si_users[t]--;
1917 		priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1918 	}
1919 	priv->np_flags = 0;
1920 	priv->np_txpoll = 0;
1921 }
1922 
1923 
1924 /* Set the nr_pending_mode for the requested rings.
1925  * If requested, also try to get exclusive access to the rings, provided
1926  * the rings we want to bind are not exclusively owned by a previous bind.
1927  */
1928 static int
1929 netmap_krings_get(struct netmap_priv_d *priv)
1930 {
1931 	struct netmap_adapter *na = priv->np_na;
1932 	u_int i;
1933 	struct netmap_kring *kring;
1934 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1935 	enum txrx t;
1936 
1937 	if (netmap_verbose)
1938 		D("%s: grabbing tx [%d, %d) rx [%d, %d)",
1939 			na->name,
1940 			priv->np_qfirst[NR_TX],
1941 			priv->np_qlast[NR_TX],
1942 			priv->np_qfirst[NR_RX],
1943 			priv->np_qlast[NR_RX]);
1944 
1945 	/* first round: check that all the requested rings
1946 	 * are neither alread exclusively owned, nor we
1947 	 * want exclusive ownership when they are already in use
1948 	 */
1949 	for_rx_tx(t) {
1950 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1951 			kring = NMR(na, t)[i];
1952 			if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
1953 			    (kring->users && excl))
1954 			{
1955 				ND("ring %s busy", kring->name);
1956 				return EBUSY;
1957 			}
1958 		}
1959 	}
1960 
1961 	/* second round: increment usage count (possibly marking them
1962 	 * as exclusive) and set the nr_pending_mode
1963 	 */
1964 	for_rx_tx(t) {
1965 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1966 			kring = NMR(na, t)[i];
1967 			kring->users++;
1968 			if (excl)
1969 				kring->nr_kflags |= NKR_EXCLUSIVE;
1970 	                kring->nr_pending_mode = NKR_NETMAP_ON;
1971 		}
1972 	}
1973 
1974 	return 0;
1975 
1976 }
1977 
1978 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
1979  * if was asked on regif, and unset the nr_pending_mode if we are the
1980  * last users of the involved rings. */
1981 static void
1982 netmap_krings_put(struct netmap_priv_d *priv)
1983 {
1984 	struct netmap_adapter *na = priv->np_na;
1985 	u_int i;
1986 	struct netmap_kring *kring;
1987 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1988 	enum txrx t;
1989 
1990 	ND("%s: releasing tx [%d, %d) rx [%d, %d)",
1991 			na->name,
1992 			priv->np_qfirst[NR_TX],
1993 			priv->np_qlast[NR_TX],
1994 			priv->np_qfirst[NR_RX],
1995 			priv->np_qlast[MR_RX]);
1996 
1997 	for_rx_tx(t) {
1998 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1999 			kring = NMR(na, t)[i];
2000 			if (excl)
2001 				kring->nr_kflags &= ~NKR_EXCLUSIVE;
2002 			kring->users--;
2003 			if (kring->users == 0)
2004 				kring->nr_pending_mode = NKR_NETMAP_OFF;
2005 		}
2006 	}
2007 }
2008 
2009 static int
2010 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2011 {
2012 	return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2013 }
2014 
2015 /*
2016  * possibly move the interface to netmap-mode.
2017  * If success it returns a pointer to netmap_if, otherwise NULL.
2018  * This must be called with NMG_LOCK held.
2019  *
2020  * The following na callbacks are called in the process:
2021  *
2022  * na->nm_config()			[by netmap_update_config]
2023  * (get current number and size of rings)
2024  *
2025  *  	We have a generic one for linux (netmap_linux_config).
2026  *  	The bwrap has to override this, since it has to forward
2027  *  	the request to the wrapped adapter (netmap_bwrap_config).
2028  *
2029  *
2030  * na->nm_krings_create()
2031  * (create and init the krings array)
2032  *
2033  * 	One of the following:
2034  *
2035  *	* netmap_hw_krings_create, 			(hw ports)
2036  *		creates the standard layout for the krings
2037  * 		and adds the mbq (used for the host rings).
2038  *
2039  * 	* netmap_vp_krings_create			(VALE ports)
2040  * 		add leases and scratchpads
2041  *
2042  * 	* netmap_pipe_krings_create			(pipes)
2043  * 		create the krings and rings of both ends and
2044  * 		cross-link them
2045  *
2046  *      * netmap_monitor_krings_create 			(monitors)
2047  *      	avoid allocating the mbq
2048  *
2049  *      * netmap_bwrap_krings_create			(bwraps)
2050  *      	create both the brap krings array,
2051  *      	the krings array of the wrapped adapter, and
2052  *      	(if needed) the fake array for the host adapter
2053  *
2054  * na->nm_register(, 1)
2055  * (put the adapter in netmap mode)
2056  *
2057  * 	This may be one of the following:
2058  *
2059  * 	* netmap_hw_reg				        (hw ports)
2060  * 		checks that the ifp is still there, then calls
2061  * 		the hardware specific callback;
2062  *
2063  * 	* netmap_vp_reg					(VALE ports)
2064  *		If the port is connected to a bridge,
2065  *		set the NAF_NETMAP_ON flag under the
2066  *		bridge write lock.
2067  *
2068  *	* netmap_pipe_reg				(pipes)
2069  *		inform the other pipe end that it is no
2070  *		longer responsible for the lifetime of this
2071  *		pipe end
2072  *
2073  *	* netmap_monitor_reg				(monitors)
2074  *		intercept the sync callbacks of the monitored
2075  *		rings
2076  *
2077  *	* netmap_bwrap_reg				(bwraps)
2078  *		cross-link the bwrap and hwna rings,
2079  *		forward the request to the hwna, override
2080  *		the hwna notify callback (to get the frames
2081  *		coming from outside go through the bridge).
2082  *
2083  *
2084  */
2085 int
2086 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2087 	uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags)
2088 {
2089 	struct netmap_if *nifp = NULL;
2090 	int error;
2091 
2092 	NMG_LOCK_ASSERT();
2093 	priv->np_na = na;     /* store the reference */
2094 	error = netmap_mem_finalize(na->nm_mem, na);
2095 	if (error)
2096 		goto err;
2097 
2098 	if (na->active_fds == 0) {
2099 
2100 		/* cache the allocator info in the na */
2101 		error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2102 		if (error)
2103 			goto err_drop_mem;
2104 		ND("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2105 					    na->na_lut.objsize);
2106 
2107 		/* ring configuration may have changed, fetch from the card */
2108 		netmap_update_config(na);
2109 	}
2110 
2111 	/* compute the range of tx and rx rings to monitor */
2112 	error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags);
2113 	if (error)
2114 		goto err_put_lut;
2115 
2116 	if (na->active_fds == 0) {
2117 		/*
2118 		 * If this is the first registration of the adapter,
2119 		 * perform sanity checks and create the in-kernel view
2120 		 * of the netmap rings (the netmap krings).
2121 		 */
2122 		if (na->ifp && nm_priv_rx_enabled(priv)) {
2123 			/* This netmap adapter is attached to an ifnet. */
2124 			unsigned nbs = NETMAP_BUF_SIZE(na);
2125 			unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2126 
2127 			ND("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2128 					na->name, mtu, na->rx_buf_maxsize, nbs);
2129 
2130 			if (na->rx_buf_maxsize == 0) {
2131 				D("%s: error: rx_buf_maxsize == 0", na->name);
2132 				error = EIO;
2133 				goto err_drop_mem;
2134 			}
2135 
2136 			if (mtu <= na->rx_buf_maxsize) {
2137 				/* The MTU fits a single NIC slot. We only
2138 				 * Need to check that netmap buffers are
2139 				 * large enough to hold an MTU. NS_MOREFRAG
2140 				 * cannot be used in this case. */
2141 				if (nbs < mtu) {
2142 					nm_prerr("error: netmap buf size (%u) "
2143 						"< device MTU (%u)\n", nbs, mtu);
2144 					error = EINVAL;
2145 					goto err_drop_mem;
2146 				}
2147 			} else {
2148 				/* More NIC slots may be needed to receive
2149 				 * or transmit a single packet. Check that
2150 				 * the adapter supports NS_MOREFRAG and that
2151 				 * netmap buffers are large enough to hold
2152 				 * the maximum per-slot size. */
2153 				if (!(na->na_flags & NAF_MOREFRAG)) {
2154 					nm_prerr("error: large MTU (%d) needed "
2155 						"but %s does not support "
2156 						"NS_MOREFRAG\n", mtu,
2157 						na->ifp->if_xname);
2158 					error = EINVAL;
2159 					goto err_drop_mem;
2160 				} else if (nbs < na->rx_buf_maxsize) {
2161 					nm_prerr("error: using NS_MOREFRAG on "
2162 						"%s requires netmap buf size "
2163 						">= %u\n", na->ifp->if_xname,
2164 						na->rx_buf_maxsize);
2165 					error = EINVAL;
2166 					goto err_drop_mem;
2167 				} else {
2168 					nm_prinf("info: netmap application on "
2169 						"%s needs to support "
2170 						"NS_MOREFRAG "
2171 						"(MTU=%u,netmap_buf_size=%u)\n",
2172 						na->ifp->if_xname, mtu, nbs);
2173 				}
2174 			}
2175 		}
2176 
2177 		/*
2178 		 * Depending on the adapter, this may also create
2179 		 * the netmap rings themselves
2180 		 */
2181 		error = na->nm_krings_create(na);
2182 		if (error)
2183 			goto err_put_lut;
2184 
2185 	}
2186 
2187 	/* now the krings must exist and we can check whether some
2188 	 * previous bind has exclusive ownership on them, and set
2189 	 * nr_pending_mode
2190 	 */
2191 	error = netmap_krings_get(priv);
2192 	if (error)
2193 		goto err_del_krings;
2194 
2195 	/* create all needed missing netmap rings */
2196 	error = netmap_mem_rings_create(na);
2197 	if (error)
2198 		goto err_rel_excl;
2199 
2200 	/* in all cases, create a new netmap if */
2201 	nifp = netmap_mem_if_new(na, priv);
2202 	if (nifp == NULL) {
2203 		error = ENOMEM;
2204 		goto err_rel_excl;
2205 	}
2206 
2207 	if (nm_kring_pending(priv)) {
2208 		/* Some kring is switching mode, tell the adapter to
2209 		 * react on this. */
2210 		error = na->nm_register(na, 1);
2211 		if (error)
2212 			goto err_del_if;
2213 	}
2214 
2215 	/* Commit the reference. */
2216 	na->active_fds++;
2217 
2218 	/*
2219 	 * advertise that the interface is ready by setting np_nifp.
2220 	 * The barrier is needed because readers (poll, *SYNC and mmap)
2221 	 * check for priv->np_nifp != NULL without locking
2222 	 */
2223 	mb(); /* make sure previous writes are visible to all CPUs */
2224 	priv->np_nifp = nifp;
2225 
2226 	return 0;
2227 
2228 err_del_if:
2229 	netmap_mem_if_delete(na, nifp);
2230 err_rel_excl:
2231 	netmap_krings_put(priv);
2232 	netmap_mem_rings_delete(na);
2233 err_del_krings:
2234 	if (na->active_fds == 0)
2235 		na->nm_krings_delete(na);
2236 err_put_lut:
2237 	if (na->active_fds == 0)
2238 		memset(&na->na_lut, 0, sizeof(na->na_lut));
2239 err_drop_mem:
2240 	netmap_mem_drop(na);
2241 err:
2242 	priv->np_na = NULL;
2243 	return error;
2244 }
2245 
2246 
2247 /*
2248  * update kring and ring at the end of rxsync/txsync.
2249  */
2250 static inline void
2251 nm_sync_finalize(struct netmap_kring *kring)
2252 {
2253 	/*
2254 	 * Update ring tail to what the kernel knows
2255 	 * After txsync: head/rhead/hwcur might be behind cur/rcur
2256 	 * if no carrier.
2257 	 */
2258 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
2259 
2260 	ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2261 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
2262 		kring->rhead, kring->rcur, kring->rtail);
2263 }
2264 
2265 /* set ring timestamp */
2266 static inline void
2267 ring_timestamp_set(struct netmap_ring *ring)
2268 {
2269 	if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2270 		microtime(&ring->ts);
2271 	}
2272 }
2273 
2274 static int nmreq_copyin(struct nmreq_header *, int);
2275 static int nmreq_copyout(struct nmreq_header *, int);
2276 static int nmreq_checkoptions(struct nmreq_header *);
2277 
2278 /*
2279  * ioctl(2) support for the "netmap" device.
2280  *
2281  * Following a list of accepted commands:
2282  * - NIOCCTRL		device control API
2283  * - NIOCTXSYNC		sync TX rings
2284  * - NIOCRXSYNC		sync RX rings
2285  * - SIOCGIFADDR	just for convenience
2286  * - NIOCGINFO		deprecated (legacy API)
2287  * - NIOCREGIF		deprecated (legacy API)
2288  *
2289  * Return 0 on success, errno otherwise.
2290  */
2291 int
2292 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2293 		struct thread *td, int nr_body_is_user)
2294 {
2295 	struct mbq q;	/* packets from RX hw queues to host stack */
2296 	struct netmap_adapter *na = NULL;
2297 	struct netmap_mem_d *nmd = NULL;
2298 	struct ifnet *ifp = NULL;
2299 	int error = 0;
2300 	u_int i, qfirst, qlast;
2301 	struct netmap_if *nifp;
2302 	struct netmap_kring **krings;
2303 	int sync_flags;
2304 	enum txrx t;
2305 
2306 	switch (cmd) {
2307 	case NIOCCTRL: {
2308 		struct nmreq_header *hdr = (struct nmreq_header *)data;
2309 
2310 		if (hdr->nr_version != NETMAP_API) {
2311 			D("API mismatch for reqtype %d: got %d need %d",
2312 				hdr->nr_version,
2313 				hdr->nr_version, NETMAP_API);
2314 			hdr->nr_version = NETMAP_API;
2315 		}
2316 		if (hdr->nr_version < NETMAP_MIN_API ||
2317 		    hdr->nr_version > NETMAP_MAX_API) {
2318 			return EINVAL;
2319 		}
2320 
2321 		/* Make a kernel-space copy of the user-space nr_body.
2322 		 * For convenince, the nr_body pointer and the pointers
2323 		 * in the options list will be replaced with their
2324 		 * kernel-space counterparts. The original pointers are
2325 		 * saved internally and later restored by nmreq_copyout
2326 		 */
2327 		error = nmreq_copyin(hdr, nr_body_is_user);
2328 		if (error) {
2329 			return error;
2330 		}
2331 
2332 		/* Sanitize hdr->nr_name. */
2333 		hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2334 
2335 		switch (hdr->nr_reqtype) {
2336 		case NETMAP_REQ_REGISTER: {
2337 			struct nmreq_register *req =
2338 				(struct nmreq_register *)(uintptr_t)hdr->nr_body;
2339 			/* Protect access to priv from concurrent requests. */
2340 			NMG_LOCK();
2341 			do {
2342 				u_int memflags;
2343 #ifdef WITH_EXTMEM
2344 				struct nmreq_option *opt;
2345 #endif /* WITH_EXTMEM */
2346 
2347 				if (priv->np_nifp != NULL) {	/* thread already registered */
2348 					error = EBUSY;
2349 					break;
2350 				}
2351 
2352 #ifdef WITH_EXTMEM
2353 				opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2354 						NETMAP_REQ_OPT_EXTMEM);
2355 				if (opt != NULL) {
2356 					struct nmreq_opt_extmem *e =
2357 						(struct nmreq_opt_extmem *)opt;
2358 
2359 					error = nmreq_checkduplicate(opt);
2360 					if (error) {
2361 						opt->nro_status = error;
2362 						break;
2363 					}
2364 					nmd = netmap_mem_ext_create(e->nro_usrptr,
2365 							&e->nro_info, &error);
2366 					opt->nro_status = error;
2367 					if (nmd == NULL)
2368 						break;
2369 				}
2370 #endif /* WITH_EXTMEM */
2371 
2372 				if (nmd == NULL && req->nr_mem_id) {
2373 					/* find the allocator and get a reference */
2374 					nmd = netmap_mem_find(req->nr_mem_id);
2375 					if (nmd == NULL) {
2376 						error = EINVAL;
2377 						break;
2378 					}
2379 				}
2380 				/* find the interface and a reference */
2381 				error = netmap_get_na(hdr, &na, &ifp, nmd,
2382 						      1 /* create */); /* keep reference */
2383 				if (error)
2384 					break;
2385 				if (NETMAP_OWNED_BY_KERN(na)) {
2386 					error = EBUSY;
2387 					break;
2388 				}
2389 
2390 				if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2391 					error = EIO;
2392 					break;
2393 				}
2394 
2395 				error = netmap_do_regif(priv, na, req->nr_mode,
2396 							req->nr_ringid, req->nr_flags);
2397 				if (error) {    /* reg. failed, release priv and ref */
2398 					break;
2399 				}
2400 				nifp = priv->np_nifp;
2401 				priv->np_td = td; /* for debugging purposes */
2402 
2403 				/* return the offset of the netmap_if object */
2404 				req->nr_rx_rings = na->num_rx_rings;
2405 				req->nr_tx_rings = na->num_tx_rings;
2406 				req->nr_rx_slots = na->num_rx_desc;
2407 				req->nr_tx_slots = na->num_tx_desc;
2408 				error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2409 					&req->nr_mem_id);
2410 				if (error) {
2411 					netmap_do_unregif(priv);
2412 					break;
2413 				}
2414 				if (memflags & NETMAP_MEM_PRIVATE) {
2415 					*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2416 				}
2417 				for_rx_tx(t) {
2418 					priv->np_si[t] = nm_si_user(priv, t) ?
2419 						&na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2420 				}
2421 
2422 				if (req->nr_extra_bufs) {
2423 					if (netmap_verbose)
2424 						D("requested %d extra buffers",
2425 							req->nr_extra_bufs);
2426 					req->nr_extra_bufs = netmap_extra_alloc(na,
2427 						&nifp->ni_bufs_head, req->nr_extra_bufs);
2428 					if (netmap_verbose)
2429 						D("got %d extra buffers", req->nr_extra_bufs);
2430 				}
2431 				req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2432 
2433 				error = nmreq_checkoptions(hdr);
2434 				if (error) {
2435 					netmap_do_unregif(priv);
2436 					break;
2437 				}
2438 
2439 				/* store ifp reference so that priv destructor may release it */
2440 				priv->np_ifp = ifp;
2441 			} while (0);
2442 			if (error) {
2443 				netmap_unget_na(na, ifp);
2444 			}
2445 			/* release the reference from netmap_mem_find() or
2446 			 * netmap_mem_ext_create()
2447 			 */
2448 			if (nmd)
2449 				netmap_mem_put(nmd);
2450 			NMG_UNLOCK();
2451 			break;
2452 		}
2453 
2454 		case NETMAP_REQ_PORT_INFO_GET: {
2455 			struct nmreq_port_info_get *req =
2456 				(struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2457 
2458 			NMG_LOCK();
2459 			do {
2460 				u_int memflags;
2461 
2462 				if (hdr->nr_name[0] != '\0') {
2463 					/* Build a nmreq_register out of the nmreq_port_info_get,
2464 					 * so that we can call netmap_get_na(). */
2465 					struct nmreq_register regreq;
2466 					bzero(&regreq, sizeof(regreq));
2467 					regreq.nr_tx_slots = req->nr_tx_slots;
2468 					regreq.nr_rx_slots = req->nr_rx_slots;
2469 					regreq.nr_tx_rings = req->nr_tx_rings;
2470 					regreq.nr_rx_rings = req->nr_rx_rings;
2471 					regreq.nr_mem_id = req->nr_mem_id;
2472 
2473 					/* get a refcount */
2474 					hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2475 					hdr->nr_body = (uintptr_t)&regreq;
2476 					error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2477 					hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2478 					hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2479 					if (error) {
2480 						na = NULL;
2481 						ifp = NULL;
2482 						break;
2483 					}
2484 					nmd = na->nm_mem; /* get memory allocator */
2485 				} else {
2486 					nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2487 					if (nmd == NULL) {
2488 						error = EINVAL;
2489 						break;
2490 					}
2491 				}
2492 
2493 				error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2494 					&req->nr_mem_id);
2495 				if (error)
2496 					break;
2497 				if (na == NULL) /* only memory info */
2498 					break;
2499 				req->nr_offset = 0;
2500 				req->nr_rx_slots = req->nr_tx_slots = 0;
2501 				netmap_update_config(na);
2502 				req->nr_rx_rings = na->num_rx_rings;
2503 				req->nr_tx_rings = na->num_tx_rings;
2504 				req->nr_rx_slots = na->num_rx_desc;
2505 				req->nr_tx_slots = na->num_tx_desc;
2506 			} while (0);
2507 			netmap_unget_na(na, ifp);
2508 			NMG_UNLOCK();
2509 			break;
2510 		}
2511 #ifdef WITH_VALE
2512 		case NETMAP_REQ_VALE_ATTACH: {
2513 			error = nm_bdg_ctl_attach(hdr, NULL /* userspace request */);
2514 			break;
2515 		}
2516 
2517 		case NETMAP_REQ_VALE_DETACH: {
2518 			error = nm_bdg_ctl_detach(hdr, NULL /* userspace request */);
2519 			break;
2520 		}
2521 
2522 		case NETMAP_REQ_VALE_LIST: {
2523 			error = netmap_bdg_list(hdr);
2524 			break;
2525 		}
2526 
2527 		case NETMAP_REQ_PORT_HDR_SET: {
2528 			struct nmreq_port_hdr *req =
2529 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2530 			/* Build a nmreq_register out of the nmreq_port_hdr,
2531 			 * so that we can call netmap_get_bdg_na(). */
2532 			struct nmreq_register regreq;
2533 			bzero(&regreq, sizeof(regreq));
2534 			/* For now we only support virtio-net headers, and only for
2535 			 * VALE ports, but this may change in future. Valid lengths
2536 			 * for the virtio-net header are 0 (no header), 10 and 12. */
2537 			if (req->nr_hdr_len != 0 &&
2538 				req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
2539 					req->nr_hdr_len != 12) {
2540 				error = EINVAL;
2541 				break;
2542 			}
2543 			NMG_LOCK();
2544 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2545 			hdr->nr_body = (uintptr_t)&regreq;
2546 			error = netmap_get_bdg_na(hdr, &na, NULL, 0);
2547 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
2548 			hdr->nr_body = (uintptr_t)req;
2549 			if (na && !error) {
2550 				struct netmap_vp_adapter *vpna =
2551 					(struct netmap_vp_adapter *)na;
2552 				na->virt_hdr_len = req->nr_hdr_len;
2553 				if (na->virt_hdr_len) {
2554 					vpna->mfs = NETMAP_BUF_SIZE(na);
2555 				}
2556 				D("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
2557 				netmap_adapter_put(na);
2558 			} else if (!na) {
2559 				error = ENXIO;
2560 			}
2561 			NMG_UNLOCK();
2562 			break;
2563 		}
2564 
2565 		case NETMAP_REQ_PORT_HDR_GET: {
2566 			/* Get vnet-header length for this netmap port */
2567 			struct nmreq_port_hdr *req =
2568 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2569 			/* Build a nmreq_register out of the nmreq_port_hdr,
2570 			 * so that we can call netmap_get_bdg_na(). */
2571 			struct nmreq_register regreq;
2572 			struct ifnet *ifp;
2573 
2574 			bzero(&regreq, sizeof(regreq));
2575 			NMG_LOCK();
2576 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2577 			hdr->nr_body = (uintptr_t)&regreq;
2578 			error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
2579 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
2580 			hdr->nr_body = (uintptr_t)req;
2581 			if (na && !error) {
2582 				req->nr_hdr_len = na->virt_hdr_len;
2583 			}
2584 			netmap_unget_na(na, ifp);
2585 			NMG_UNLOCK();
2586 			break;
2587 		}
2588 
2589 		case NETMAP_REQ_VALE_NEWIF: {
2590 			error = nm_vi_create(hdr);
2591 			break;
2592 		}
2593 
2594 		case NETMAP_REQ_VALE_DELIF: {
2595 			error = nm_vi_destroy(hdr->nr_name);
2596 			break;
2597 		}
2598 
2599 		case NETMAP_REQ_VALE_POLLING_ENABLE:
2600 		case NETMAP_REQ_VALE_POLLING_DISABLE: {
2601 			error = nm_bdg_polling(hdr);
2602 			break;
2603 		}
2604 #endif  /* WITH_VALE */
2605 		case NETMAP_REQ_POOLS_INFO_GET: {
2606 			struct nmreq_pools_info *req =
2607 				(struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
2608 			/* Get information from the memory allocator. This
2609 			 * netmap device must already be bound to a port.
2610 			 * Note that hdr->nr_name is ignored. */
2611 			NMG_LOCK();
2612 			if (priv->np_na && priv->np_na->nm_mem) {
2613 				struct netmap_mem_d *nmd = priv->np_na->nm_mem;
2614 				error = netmap_mem_pools_info_get(req, nmd);
2615 			} else {
2616 				error = EINVAL;
2617 			}
2618 			NMG_UNLOCK();
2619 			break;
2620 		}
2621 
2622 		default: {
2623 			error = EINVAL;
2624 			break;
2625 		}
2626 		}
2627 		/* Write back request body to userspace and reset the
2628 		 * user-space pointer. */
2629 		error = nmreq_copyout(hdr, error);
2630 		break;
2631 	}
2632 
2633 	case NIOCTXSYNC:
2634 	case NIOCRXSYNC: {
2635 		nifp = priv->np_nifp;
2636 
2637 		if (nifp == NULL) {
2638 			error = ENXIO;
2639 			break;
2640 		}
2641 		mb(); /* make sure following reads are not from cache */
2642 
2643 		na = priv->np_na;      /* we have a reference */
2644 
2645 		if (na == NULL) {
2646 			D("Internal error: nifp != NULL && na == NULL");
2647 			error = ENXIO;
2648 			break;
2649 		}
2650 
2651 		mbq_init(&q);
2652 		t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
2653 		krings = NMR(na, t);
2654 		qfirst = priv->np_qfirst[t];
2655 		qlast = priv->np_qlast[t];
2656 		sync_flags = priv->np_sync_flags;
2657 
2658 		for (i = qfirst; i < qlast; i++) {
2659 			struct netmap_kring *kring = krings[i];
2660 			struct netmap_ring *ring = kring->ring;
2661 
2662 			if (unlikely(nm_kr_tryget(kring, 1, &error))) {
2663 				error = (error ? EIO : 0);
2664 				continue;
2665 			}
2666 
2667 			if (cmd == NIOCTXSYNC) {
2668 				if (netmap_verbose & NM_VERB_TXSYNC)
2669 					D("pre txsync ring %d cur %d hwcur %d",
2670 					    i, ring->cur,
2671 					    kring->nr_hwcur);
2672 				if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2673 					netmap_ring_reinit(kring);
2674 				} else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
2675 					nm_sync_finalize(kring);
2676 				}
2677 				if (netmap_verbose & NM_VERB_TXSYNC)
2678 					D("post txsync ring %d cur %d hwcur %d",
2679 					    i, ring->cur,
2680 					    kring->nr_hwcur);
2681 			} else {
2682 				if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2683 					netmap_ring_reinit(kring);
2684 				}
2685 				if (nm_may_forward_up(kring)) {
2686 					/* transparent forwarding, see netmap_poll() */
2687 					netmap_grab_packets(kring, &q, netmap_fwd);
2688 				}
2689 				if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
2690 					nm_sync_finalize(kring);
2691 				}
2692 				ring_timestamp_set(ring);
2693 			}
2694 			nm_kr_put(kring);
2695 		}
2696 
2697 		if (mbq_peek(&q)) {
2698 			netmap_send_up(na->ifp, &q);
2699 		}
2700 
2701 		break;
2702 	}
2703 
2704 	default: {
2705 		return netmap_ioctl_legacy(priv, cmd, data, td);
2706 		break;
2707 	}
2708 	}
2709 
2710 	return (error);
2711 }
2712 
2713 size_t
2714 nmreq_size_by_type(uint16_t nr_reqtype)
2715 {
2716 	switch (nr_reqtype) {
2717 	case NETMAP_REQ_REGISTER:
2718 		return sizeof(struct nmreq_register);
2719 	case NETMAP_REQ_PORT_INFO_GET:
2720 		return sizeof(struct nmreq_port_info_get);
2721 	case NETMAP_REQ_VALE_ATTACH:
2722 		return sizeof(struct nmreq_vale_attach);
2723 	case NETMAP_REQ_VALE_DETACH:
2724 		return sizeof(struct nmreq_vale_detach);
2725 	case NETMAP_REQ_VALE_LIST:
2726 		return sizeof(struct nmreq_vale_list);
2727 	case NETMAP_REQ_PORT_HDR_SET:
2728 	case NETMAP_REQ_PORT_HDR_GET:
2729 		return sizeof(struct nmreq_port_hdr);
2730 	case NETMAP_REQ_VALE_NEWIF:
2731 		return sizeof(struct nmreq_vale_newif);
2732 	case NETMAP_REQ_VALE_DELIF:
2733 		return 0;
2734 	case NETMAP_REQ_VALE_POLLING_ENABLE:
2735 	case NETMAP_REQ_VALE_POLLING_DISABLE:
2736 		return sizeof(struct nmreq_vale_polling);
2737 	case NETMAP_REQ_POOLS_INFO_GET:
2738 		return sizeof(struct nmreq_pools_info);
2739 	}
2740 	return 0;
2741 }
2742 
2743 static size_t
2744 nmreq_opt_size_by_type(uint16_t nro_reqtype)
2745 {
2746 	size_t rv = sizeof(struct nmreq_option);
2747 #ifdef NETMAP_REQ_OPT_DEBUG
2748 	if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
2749 		return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
2750 #endif /* NETMAP_REQ_OPT_DEBUG */
2751 	switch (nro_reqtype) {
2752 #ifdef WITH_EXTMEM
2753 	case NETMAP_REQ_OPT_EXTMEM:
2754 		rv = sizeof(struct nmreq_opt_extmem);
2755 		break;
2756 #endif /* WITH_EXTMEM */
2757 	}
2758 	/* subtract the common header */
2759 	return rv - sizeof(struct nmreq_option);
2760 }
2761 
2762 int
2763 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
2764 {
2765 	size_t rqsz, optsz, bufsz;
2766 	int error;
2767 	char *ker = NULL, *p;
2768 	struct nmreq_option **next, *src;
2769 	struct nmreq_option buf;
2770 	uint64_t *ptrs;
2771 
2772 	if (hdr->nr_reserved)
2773 		return EINVAL;
2774 
2775 	if (!nr_body_is_user)
2776 		return 0;
2777 
2778 	hdr->nr_reserved = nr_body_is_user;
2779 
2780 	/* compute the total size of the buffer */
2781 	rqsz = nmreq_size_by_type(hdr->nr_reqtype);
2782 	if (rqsz > NETMAP_REQ_MAXSIZE) {
2783 		error = EMSGSIZE;
2784 		goto out_err;
2785 	}
2786 	if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
2787 		(!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
2788 		/* Request body expected, but not found; or
2789 		 * request body found but unexpected. */
2790 		error = EINVAL;
2791 		goto out_err;
2792 	}
2793 
2794 	bufsz = 2 * sizeof(void *) + rqsz;
2795 	optsz = 0;
2796 	for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src;
2797 	     src = (struct nmreq_option *)(uintptr_t)buf.nro_next)
2798 	{
2799 		error = copyin(src, &buf, sizeof(*src));
2800 		if (error)
2801 			goto out_err;
2802 		optsz += sizeof(*src);
2803 		optsz += nmreq_opt_size_by_type(buf.nro_reqtype);
2804 		if (rqsz + optsz > NETMAP_REQ_MAXSIZE) {
2805 			error = EMSGSIZE;
2806 			goto out_err;
2807 		}
2808 		bufsz += optsz + sizeof(void *);
2809 	}
2810 
2811 	ker = nm_os_malloc(bufsz);
2812 	if (ker == NULL) {
2813 		error = ENOMEM;
2814 		goto out_err;
2815 	}
2816 	p = ker;
2817 
2818 	/* make a copy of the user pointers */
2819 	ptrs = (uint64_t*)p;
2820 	*ptrs++ = hdr->nr_body;
2821 	*ptrs++ = hdr->nr_options;
2822 	p = (char *)ptrs;
2823 
2824 	/* copy the body */
2825 	error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz);
2826 	if (error)
2827 		goto out_restore;
2828 	/* overwrite the user pointer with the in-kernel one */
2829 	hdr->nr_body = (uintptr_t)p;
2830 	p += rqsz;
2831 
2832 	/* copy the options */
2833 	next = (struct nmreq_option **)&hdr->nr_options;
2834 	src = *next;
2835 	while (src) {
2836 		struct nmreq_option *opt;
2837 
2838 		/* copy the option header */
2839 		ptrs = (uint64_t *)p;
2840 		opt = (struct nmreq_option *)(ptrs + 1);
2841 		error = copyin(src, opt, sizeof(*src));
2842 		if (error)
2843 			goto out_restore;
2844 		/* make a copy of the user next pointer */
2845 		*ptrs = opt->nro_next;
2846 		/* overwrite the user pointer with the in-kernel one */
2847 		*next = opt;
2848 
2849 		/* initialize the option as not supported.
2850 		 * Recognized options will update this field.
2851 		 */
2852 		opt->nro_status = EOPNOTSUPP;
2853 
2854 		p = (char *)(opt + 1);
2855 
2856 		/* copy the option body */
2857 		optsz = nmreq_opt_size_by_type(opt->nro_reqtype);
2858 		if (optsz) {
2859 			/* the option body follows the option header */
2860 			error = copyin(src + 1, p, optsz);
2861 			if (error)
2862 				goto out_restore;
2863 			p += optsz;
2864 		}
2865 
2866 		/* move to next option */
2867 		next = (struct nmreq_option **)&opt->nro_next;
2868 		src = *next;
2869 	}
2870 	return 0;
2871 
2872 out_restore:
2873 	ptrs = (uint64_t *)ker;
2874 	hdr->nr_body = *ptrs++;
2875 	hdr->nr_options = *ptrs++;
2876 	hdr->nr_reserved = 0;
2877 	nm_os_free(ker);
2878 out_err:
2879 	return error;
2880 }
2881 
2882 static int
2883 nmreq_copyout(struct nmreq_header *hdr, int rerror)
2884 {
2885 	struct nmreq_option *src, *dst;
2886 	void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
2887 	uint64_t *ptrs;
2888 	size_t bodysz;
2889 	int error;
2890 
2891 	if (!hdr->nr_reserved)
2892 		return rerror;
2893 
2894 	/* restore the user pointers in the header */
2895 	ptrs = (uint64_t *)ker - 2;
2896 	bufstart = ptrs;
2897 	hdr->nr_body = *ptrs++;
2898 	src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
2899 	hdr->nr_options = *ptrs;
2900 
2901 	if (!rerror) {
2902 		/* copy the body */
2903 		bodysz = nmreq_size_by_type(hdr->nr_reqtype);
2904 		error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
2905 		if (error) {
2906 			rerror = error;
2907 			goto out;
2908 		}
2909 	}
2910 
2911 	/* copy the options */
2912 	dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
2913 	while (src) {
2914 		size_t optsz;
2915 		uint64_t next;
2916 
2917 		/* restore the user pointer */
2918 		next = src->nro_next;
2919 		ptrs = (uint64_t *)src - 1;
2920 		src->nro_next = *ptrs;
2921 
2922 		/* always copy the option header */
2923 		error = copyout(src, dst, sizeof(*src));
2924 		if (error) {
2925 			rerror = error;
2926 			goto out;
2927 		}
2928 
2929 		/* copy the option body only if there was no error */
2930 		if (!rerror && !src->nro_status) {
2931 			optsz = nmreq_opt_size_by_type(src->nro_reqtype);
2932 			if (optsz) {
2933 				error = copyout(src + 1, dst + 1, optsz);
2934 				if (error) {
2935 					rerror = error;
2936 					goto out;
2937 				}
2938 			}
2939 		}
2940 		src = (struct nmreq_option *)(uintptr_t)next;
2941 		dst = (struct nmreq_option *)(uintptr_t)*ptrs;
2942 	}
2943 
2944 
2945 out:
2946 	hdr->nr_reserved = 0;
2947 	nm_os_free(bufstart);
2948 	return rerror;
2949 }
2950 
2951 struct nmreq_option *
2952 nmreq_findoption(struct nmreq_option *opt, uint16_t reqtype)
2953 {
2954 	for ( ; opt; opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
2955 		if (opt->nro_reqtype == reqtype)
2956 			return opt;
2957 	return NULL;
2958 }
2959 
2960 int
2961 nmreq_checkduplicate(struct nmreq_option *opt) {
2962 	uint16_t type = opt->nro_reqtype;
2963 	int dup = 0;
2964 
2965 	while ((opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)opt->nro_next,
2966 			type))) {
2967 		dup++;
2968 		opt->nro_status = EINVAL;
2969 	}
2970 	return (dup ? EINVAL : 0);
2971 }
2972 
2973 static int
2974 nmreq_checkoptions(struct nmreq_header *hdr)
2975 {
2976 	struct nmreq_option *opt;
2977 	/* return error if there is still any option
2978 	 * marked as not supported
2979 	 */
2980 
2981 	for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
2982 	     opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
2983 		if (opt->nro_status == EOPNOTSUPP)
2984 			return EOPNOTSUPP;
2985 
2986 	return 0;
2987 }
2988 
2989 /*
2990  * select(2) and poll(2) handlers for the "netmap" device.
2991  *
2992  * Can be called for one or more queues.
2993  * Return true the event mask corresponding to ready events.
2994  * If there are no ready events, do a selrecord on either individual
2995  * selinfo or on the global one.
2996  * Device-dependent parts (locking and sync of tx/rx rings)
2997  * are done through callbacks.
2998  *
2999  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3000  * The first one is remapped to pwait as selrecord() uses the name as an
3001  * hidden argument.
3002  */
3003 int
3004 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3005 {
3006 	struct netmap_adapter *na;
3007 	struct netmap_kring *kring;
3008 	struct netmap_ring *ring;
3009 	u_int i, check_all_tx, check_all_rx, want[NR_TXRX], revents = 0;
3010 #define want_tx want[NR_TX]
3011 #define want_rx want[NR_RX]
3012 	struct mbq q;	/* packets from RX hw queues to host stack */
3013 
3014 	/*
3015 	 * In order to avoid nested locks, we need to "double check"
3016 	 * txsync and rxsync if we decide to do a selrecord().
3017 	 * retry_tx (and retry_rx, later) prevent looping forever.
3018 	 */
3019 	int retry_tx = 1, retry_rx = 1;
3020 
3021 	/* Transparent mode: send_down is 1 if we have found some
3022 	 * packets to forward (host RX ring --> NIC) during the rx
3023 	 * scan and we have not sent them down to the NIC yet.
3024 	 * Transparent mode requires to bind all rings to a single
3025 	 * file descriptor.
3026 	 */
3027 	int send_down = 0;
3028 	int sync_flags = priv->np_sync_flags;
3029 
3030 	mbq_init(&q);
3031 
3032 	if (priv->np_nifp == NULL) {
3033 		D("No if registered");
3034 		return POLLERR;
3035 	}
3036 	mb(); /* make sure following reads are not from cache */
3037 
3038 	na = priv->np_na;
3039 
3040 	if (!nm_netmap_on(na))
3041 		return POLLERR;
3042 
3043 	if (netmap_verbose & 0x8000)
3044 		D("device %s events 0x%x", na->name, events);
3045 	want_tx = events & (POLLOUT | POLLWRNORM);
3046 	want_rx = events & (POLLIN | POLLRDNORM);
3047 
3048 	/*
3049 	 * check_all_{tx|rx} are set if the card has more than one queue AND
3050 	 * the file descriptor is bound to all of them. If so, we sleep on
3051 	 * the "global" selinfo, otherwise we sleep on individual selinfo
3052 	 * (FreeBSD only allows two selinfo's per file descriptor).
3053 	 * The interrupt routine in the driver wake one or the other
3054 	 * (or both) depending on which clients are active.
3055 	 *
3056 	 * rxsync() is only called if we run out of buffers on a POLLIN.
3057 	 * txsync() is called if we run out of buffers on POLLOUT, or
3058 	 * there are pending packets to send. The latter can be disabled
3059 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3060 	 */
3061 	check_all_tx = nm_si_user(priv, NR_TX);
3062 	check_all_rx = nm_si_user(priv, NR_RX);
3063 
3064 #ifdef __FreeBSD__
3065 	/*
3066 	 * We start with a lock free round which is cheap if we have
3067 	 * slots available. If this fails, then lock and call the sync
3068 	 * routines. We can't do this on Linux, as the contract says
3069 	 * that we must call nm_os_selrecord() unconditionally.
3070 	 */
3071 	if (want_tx) {
3072 		enum txrx t = NR_TX;
3073 		for (i = priv->np_qfirst[t]; want[t] && i < priv->np_qlast[t]; i++) {
3074 			kring = NMR(na, t)[i];
3075 			/* XXX compare ring->cur and kring->tail */
3076 			if (!nm_ring_empty(kring->ring)) {
3077 				revents |= want[t];
3078 				want[t] = 0;	/* also breaks the loop */
3079 			}
3080 		}
3081 	}
3082 	if (want_rx) {
3083 		enum txrx t = NR_RX;
3084 		want_rx = 0; /* look for a reason to run the handlers */
3085 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3086 			kring = NMR(na, t)[i];
3087 			if (kring->ring->cur == kring->ring->tail /* try fetch new buffers */
3088 			    || kring->rhead != kring->ring->head /* release buffers */) {
3089 				want_rx = 1;
3090 			}
3091 		}
3092 		if (!want_rx)
3093 			revents |= events & (POLLIN | POLLRDNORM); /* we have data */
3094 	}
3095 #endif
3096 
3097 #ifdef linux
3098 	/* The selrecord must be unconditional on linux. */
3099 	nm_os_selrecord(sr, check_all_tx ?
3100 	    &na->si[NR_TX] : &na->tx_rings[priv->np_qfirst[NR_TX]]->si);
3101 	nm_os_selrecord(sr, check_all_rx ?
3102 		&na->si[NR_RX] : &na->rx_rings[priv->np_qfirst[NR_RX]]->si);
3103 #endif /* linux */
3104 
3105 	/*
3106 	 * If we want to push packets out (priv->np_txpoll) or
3107 	 * want_tx is still set, we must issue txsync calls
3108 	 * (on all rings, to avoid that the tx rings stall).
3109 	 * Fortunately, normal tx mode has np_txpoll set.
3110 	 */
3111 	if (priv->np_txpoll || want_tx) {
3112 		/*
3113 		 * The first round checks if anyone is ready, if not
3114 		 * do a selrecord and another round to handle races.
3115 		 * want_tx goes to 0 if any space is found, and is
3116 		 * used to skip rings with no pending transmissions.
3117 		 */
3118 flush_tx:
3119 		for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3120 			int found = 0;
3121 
3122 			kring = na->tx_rings[i];
3123 			ring = kring->ring;
3124 
3125 			/*
3126 			 * Don't try to txsync this TX ring if we already found some
3127 			 * space in some of the TX rings (want_tx == 0) and there are no
3128 			 * TX slots in this ring that need to be flushed to the NIC
3129 			 * (head == hwcur).
3130 			 */
3131 			if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3132 				continue;
3133 
3134 			if (nm_kr_tryget(kring, 1, &revents))
3135 				continue;
3136 
3137 			if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3138 				netmap_ring_reinit(kring);
3139 				revents |= POLLERR;
3140 			} else {
3141 				if (kring->nm_sync(kring, sync_flags))
3142 					revents |= POLLERR;
3143 				else
3144 					nm_sync_finalize(kring);
3145 			}
3146 
3147 			/*
3148 			 * If we found new slots, notify potential
3149 			 * listeners on the same ring.
3150 			 * Since we just did a txsync, look at the copies
3151 			 * of cur,tail in the kring.
3152 			 */
3153 			found = kring->rcur != kring->rtail;
3154 			nm_kr_put(kring);
3155 			if (found) { /* notify other listeners */
3156 				revents |= want_tx;
3157 				want_tx = 0;
3158 #ifndef linux
3159 				kring->nm_notify(kring, 0);
3160 #endif /* linux */
3161 			}
3162 		}
3163 		/* if there were any packet to forward we must have handled them by now */
3164 		send_down = 0;
3165 		if (want_tx && retry_tx && sr) {
3166 #ifndef linux
3167 			nm_os_selrecord(sr, check_all_tx ?
3168 			    &na->si[NR_TX] : &na->tx_rings[priv->np_qfirst[NR_TX]]->si);
3169 #endif /* !linux */
3170 			retry_tx = 0;
3171 			goto flush_tx;
3172 		}
3173 	}
3174 
3175 	/*
3176 	 * If want_rx is still set scan receive rings.
3177 	 * Do it on all rings because otherwise we starve.
3178 	 */
3179 	if (want_rx) {
3180 		/* two rounds here for race avoidance */
3181 do_retry_rx:
3182 		for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3183 			int found = 0;
3184 
3185 			kring = na->rx_rings[i];
3186 			ring = kring->ring;
3187 
3188 			if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3189 				continue;
3190 
3191 			if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3192 				netmap_ring_reinit(kring);
3193 				revents |= POLLERR;
3194 			}
3195 			/* now we can use kring->rcur, rtail */
3196 
3197 			/*
3198 			 * transparent mode support: collect packets from
3199 			 * hw rxring(s) that have been released by the user
3200 			 */
3201 			if (nm_may_forward_up(kring)) {
3202 				netmap_grab_packets(kring, &q, netmap_fwd);
3203 			}
3204 
3205 			/* Clear the NR_FORWARD flag anyway, it may be set by
3206 			 * the nm_sync() below only on for the host RX ring (see
3207 			 * netmap_rxsync_from_host()). */
3208 			kring->nr_kflags &= ~NR_FORWARD;
3209 			if (kring->nm_sync(kring, sync_flags))
3210 				revents |= POLLERR;
3211 			else
3212 				nm_sync_finalize(kring);
3213 			send_down |= (kring->nr_kflags & NR_FORWARD);
3214 			ring_timestamp_set(ring);
3215 			found = kring->rcur != kring->rtail;
3216 			nm_kr_put(kring);
3217 			if (found) {
3218 				revents |= want_rx;
3219 				retry_rx = 0;
3220 #ifndef linux
3221 				kring->nm_notify(kring, 0);
3222 #endif /* linux */
3223 			}
3224 		}
3225 
3226 #ifndef linux
3227 		if (retry_rx && sr) {
3228 			nm_os_selrecord(sr, check_all_rx ?
3229 			    &na->si[NR_RX] : &na->rx_rings[priv->np_qfirst[NR_RX]]->si);
3230 		}
3231 #endif /* !linux */
3232 		if (send_down || retry_rx) {
3233 			retry_rx = 0;
3234 			if (send_down)
3235 				goto flush_tx; /* and retry_rx */
3236 			else
3237 				goto do_retry_rx;
3238 		}
3239 	}
3240 
3241 	/*
3242 	 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3243 	 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3244 	 * to the host stack.
3245 	 */
3246 
3247 	if (mbq_peek(&q)) {
3248 		netmap_send_up(na->ifp, &q);
3249 	}
3250 
3251 	return (revents);
3252 #undef want_tx
3253 #undef want_rx
3254 }
3255 
3256 int
3257 nma_intr_enable(struct netmap_adapter *na, int onoff)
3258 {
3259 	bool changed = false;
3260 	enum txrx t;
3261 	int i;
3262 
3263 	for_rx_tx(t) {
3264 		for (i = 0; i < nma_get_nrings(na, t); i++) {
3265 			struct netmap_kring *kring = NMR(na, t)[i];
3266 			int on = !(kring->nr_kflags & NKR_NOINTR);
3267 
3268 			if (!!onoff != !!on) {
3269 				changed = true;
3270 			}
3271 			if (onoff) {
3272 				kring->nr_kflags &= ~NKR_NOINTR;
3273 			} else {
3274 				kring->nr_kflags |= NKR_NOINTR;
3275 			}
3276 		}
3277 	}
3278 
3279 	if (!changed) {
3280 		return 0; /* nothing to do */
3281 	}
3282 
3283 	if (!na->nm_intr) {
3284 		D("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3285 		  na->name);
3286 		return -1;
3287 	}
3288 
3289 	na->nm_intr(na, onoff);
3290 
3291 	return 0;
3292 }
3293 
3294 
3295 /*-------------------- driver support routines -------------------*/
3296 
3297 /* default notify callback */
3298 static int
3299 netmap_notify(struct netmap_kring *kring, int flags)
3300 {
3301 	struct netmap_adapter *na = kring->notify_na;
3302 	enum txrx t = kring->tx;
3303 
3304 	nm_os_selwakeup(&kring->si);
3305 	/* optimization: avoid a wake up on the global
3306 	 * queue if nobody has registered for more
3307 	 * than one ring
3308 	 */
3309 	if (na->si_users[t] > 0)
3310 		nm_os_selwakeup(&na->si[t]);
3311 
3312 	return NM_IRQ_COMPLETED;
3313 }
3314 
3315 /* called by all routines that create netmap_adapters.
3316  * provide some defaults and get a reference to the
3317  * memory allocator
3318  */
3319 int
3320 netmap_attach_common(struct netmap_adapter *na)
3321 {
3322 	if (na->num_tx_rings == 0 || na->num_rx_rings == 0) {
3323 		D("%s: invalid rings tx %d rx %d",
3324 			na->name, na->num_tx_rings, na->num_rx_rings);
3325 		return EINVAL;
3326 	}
3327 
3328 	if (!na->rx_buf_maxsize) {
3329 		/* Set a conservative default (larger is safer). */
3330 		na->rx_buf_maxsize = PAGE_SIZE;
3331 	}
3332 
3333 #ifdef __FreeBSD__
3334 	if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3335 		na->if_input = na->ifp->if_input; /* for netmap_send_up */
3336 	}
3337 	na->pdev = na; /* make sure netmap_mem_map() is called */
3338 #endif /* __FreeBSD__ */
3339 	if (na->nm_krings_create == NULL) {
3340 		/* we assume that we have been called by a driver,
3341 		 * since other port types all provide their own
3342 		 * nm_krings_create
3343 		 */
3344 		na->nm_krings_create = netmap_hw_krings_create;
3345 		na->nm_krings_delete = netmap_hw_krings_delete;
3346 	}
3347 	if (na->nm_notify == NULL)
3348 		na->nm_notify = netmap_notify;
3349 	na->active_fds = 0;
3350 
3351 	if (na->nm_mem == NULL) {
3352 		/* use the global allocator */
3353 		na->nm_mem = netmap_mem_get(&nm_mem);
3354 	}
3355 #ifdef WITH_VALE
3356 	if (na->nm_bdg_attach == NULL)
3357 		/* no special nm_bdg_attach callback. On VALE
3358 		 * attach, we need to interpose a bwrap
3359 		 */
3360 		na->nm_bdg_attach = netmap_bwrap_attach;
3361 #endif
3362 
3363 	return 0;
3364 }
3365 
3366 /* Wrapper for the register callback provided netmap-enabled
3367  * hardware drivers.
3368  * nm_iszombie(na) means that the driver module has been
3369  * unloaded, so we cannot call into it.
3370  * nm_os_ifnet_lock() must guarantee mutual exclusion with
3371  * module unloading.
3372  */
3373 static int
3374 netmap_hw_reg(struct netmap_adapter *na, int onoff)
3375 {
3376 	struct netmap_hw_adapter *hwna =
3377 		(struct netmap_hw_adapter*)na;
3378 	int error = 0;
3379 
3380 	nm_os_ifnet_lock();
3381 
3382 	if (nm_iszombie(na)) {
3383 		if (onoff) {
3384 			error = ENXIO;
3385 		} else if (na != NULL) {
3386 			na->na_flags &= ~NAF_NETMAP_ON;
3387 		}
3388 		goto out;
3389 	}
3390 
3391 	error = hwna->nm_hw_register(na, onoff);
3392 
3393 out:
3394 	nm_os_ifnet_unlock();
3395 
3396 	return error;
3397 }
3398 
3399 static void
3400 netmap_hw_dtor(struct netmap_adapter *na)
3401 {
3402 	if (nm_iszombie(na) || na->ifp == NULL)
3403 		return;
3404 
3405 	WNA(na->ifp) = NULL;
3406 }
3407 
3408 
3409 /*
3410  * Allocate a netmap_adapter object, and initialize it from the
3411  * 'arg' passed by the driver on attach.
3412  * We allocate a block of memory of 'size' bytes, which has room
3413  * for struct netmap_adapter plus additional room private to
3414  * the caller.
3415  * Return 0 on success, ENOMEM otherwise.
3416  */
3417 int
3418 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
3419 {
3420 	struct netmap_hw_adapter *hwna = NULL;
3421 	struct ifnet *ifp = NULL;
3422 
3423 	if (size < sizeof(struct netmap_hw_adapter)) {
3424 		D("Invalid netmap adapter size %d", (int)size);
3425 		return EINVAL;
3426 	}
3427 
3428 	if (arg == NULL || arg->ifp == NULL)
3429 		goto fail;
3430 
3431 	ifp = arg->ifp;
3432 	if (NA(ifp) && !NM_NA_VALID(ifp)) {
3433 		/* If NA(ifp) is not null but there is no valid netmap
3434 		 * adapter it means that someone else is using the same
3435 		 * pointer (e.g. ax25_ptr on linux). This happens for
3436 		 * instance when also PF_RING is in use. */
3437 		D("Error: netmap adapter hook is busy");
3438 		return EBUSY;
3439 	}
3440 
3441 	hwna = nm_os_malloc(size);
3442 	if (hwna == NULL)
3443 		goto fail;
3444 	hwna->up = *arg;
3445 	hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
3446 	strncpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
3447 	if (override_reg) {
3448 		hwna->nm_hw_register = hwna->up.nm_register;
3449 		hwna->up.nm_register = netmap_hw_reg;
3450 	}
3451 	if (netmap_attach_common(&hwna->up)) {
3452 		nm_os_free(hwna);
3453 		goto fail;
3454 	}
3455 	netmap_adapter_get(&hwna->up);
3456 
3457 	NM_ATTACH_NA(ifp, &hwna->up);
3458 
3459 #ifdef linux
3460 	if (ifp->netdev_ops) {
3461 		/* prepare a clone of the netdev ops */
3462 #ifndef NETMAP_LINUX_HAVE_NETDEV_OPS
3463 		hwna->nm_ndo.ndo_start_xmit = ifp->netdev_ops;
3464 #else
3465 		hwna->nm_ndo = *ifp->netdev_ops;
3466 #endif /* NETMAP_LINUX_HAVE_NETDEV_OPS */
3467 	}
3468 	hwna->nm_ndo.ndo_start_xmit = linux_netmap_start_xmit;
3469 	hwna->nm_ndo.ndo_change_mtu = linux_netmap_change_mtu;
3470 	if (ifp->ethtool_ops) {
3471 		hwna->nm_eto = *ifp->ethtool_ops;
3472 	}
3473 	hwna->nm_eto.set_ringparam = linux_netmap_set_ringparam;
3474 #ifdef NETMAP_LINUX_HAVE_SET_CHANNELS
3475 	hwna->nm_eto.set_channels = linux_netmap_set_channels;
3476 #endif /* NETMAP_LINUX_HAVE_SET_CHANNELS */
3477 	if (arg->nm_config == NULL) {
3478 		hwna->up.nm_config = netmap_linux_config;
3479 	}
3480 #endif /* linux */
3481 	if (arg->nm_dtor == NULL) {
3482 		hwna->up.nm_dtor = netmap_hw_dtor;
3483 	}
3484 
3485 	if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
3486 	    hwna->up.num_tx_rings, hwna->up.num_tx_desc,
3487 	    hwna->up.num_rx_rings, hwna->up.num_rx_desc);
3488 	return 0;
3489 
3490 fail:
3491 	D("fail, arg %p ifp %p na %p", arg, ifp, hwna);
3492 	return (hwna ? EINVAL : ENOMEM);
3493 }
3494 
3495 
3496 int
3497 netmap_attach(struct netmap_adapter *arg)
3498 {
3499 	return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
3500 			1 /* override nm_reg */);
3501 }
3502 
3503 
3504 void
3505 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
3506 {
3507 	if (!na) {
3508 		return;
3509 	}
3510 
3511 	refcount_acquire(&na->na_refcount);
3512 }
3513 
3514 
3515 /* returns 1 iff the netmap_adapter is destroyed */
3516 int
3517 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
3518 {
3519 	if (!na)
3520 		return 1;
3521 
3522 	if (!refcount_release(&na->na_refcount))
3523 		return 0;
3524 
3525 	if (na->nm_dtor)
3526 		na->nm_dtor(na);
3527 
3528 	if (na->tx_rings) { /* XXX should not happen */
3529 		D("freeing leftover tx_rings");
3530 		na->nm_krings_delete(na);
3531 	}
3532 	netmap_pipe_dealloc(na);
3533 	if (na->nm_mem)
3534 		netmap_mem_put(na->nm_mem);
3535 	bzero(na, sizeof(*na));
3536 	nm_os_free(na);
3537 
3538 	return 1;
3539 }
3540 
3541 /* nm_krings_create callback for all hardware native adapters */
3542 int
3543 netmap_hw_krings_create(struct netmap_adapter *na)
3544 {
3545 	int ret = netmap_krings_create(na, 0);
3546 	if (ret == 0) {
3547 		/* initialize the mbq for the sw rx ring */
3548 		mbq_safe_init(&na->rx_rings[na->num_rx_rings]->rx_queue);
3549 		ND("initialized sw rx queue %d", na->num_rx_rings);
3550 	}
3551 	return ret;
3552 }
3553 
3554 
3555 
3556 /*
3557  * Called on module unload by the netmap-enabled drivers
3558  */
3559 void
3560 netmap_detach(struct ifnet *ifp)
3561 {
3562 	struct netmap_adapter *na = NA(ifp);
3563 
3564 	if (!na)
3565 		return;
3566 
3567 	NMG_LOCK();
3568 	netmap_set_all_rings(na, NM_KR_LOCKED);
3569 	/*
3570 	 * if the netmap adapter is not native, somebody
3571 	 * changed it, so we can not release it here.
3572 	 * The NAF_ZOMBIE flag will notify the new owner that
3573 	 * the driver is gone.
3574 	 */
3575 	if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
3576 		na->na_flags |= NAF_ZOMBIE;
3577 	}
3578 	/* give active users a chance to notice that NAF_ZOMBIE has been
3579 	 * turned on, so that they can stop and return an error to userspace.
3580 	 * Note that this becomes a NOP if there are no active users and,
3581 	 * therefore, the put() above has deleted the na, since now NA(ifp) is
3582 	 * NULL.
3583 	 */
3584 	netmap_enable_all_rings(ifp);
3585 	NMG_UNLOCK();
3586 }
3587 
3588 
3589 /*
3590  * Intercept packets from the network stack and pass them
3591  * to netmap as incoming packets on the 'software' ring.
3592  *
3593  * We only store packets in a bounded mbq and then copy them
3594  * in the relevant rxsync routine.
3595  *
3596  * We rely on the OS to make sure that the ifp and na do not go
3597  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
3598  * In nm_register() or whenever there is a reinitialization,
3599  * we make sure to make the mode change visible here.
3600  */
3601 int
3602 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
3603 {
3604 	struct netmap_adapter *na = NA(ifp);
3605 	struct netmap_kring *kring, *tx_kring;
3606 	u_int len = MBUF_LEN(m);
3607 	u_int error = ENOBUFS;
3608 	unsigned int txr;
3609 	struct mbq *q;
3610 	int busy;
3611 
3612 	kring = na->rx_rings[na->num_rx_rings];
3613 	// XXX [Linux] we do not need this lock
3614 	// if we follow the down/configure/up protocol -gl
3615 	// mtx_lock(&na->core_lock);
3616 
3617 	if (!nm_netmap_on(na)) {
3618 		D("%s not in netmap mode anymore", na->name);
3619 		error = ENXIO;
3620 		goto done;
3621 	}
3622 
3623 	txr = MBUF_TXQ(m);
3624 	if (txr >= na->num_tx_rings) {
3625 		txr %= na->num_tx_rings;
3626 	}
3627 	tx_kring = NMR(na, NR_TX)[txr];
3628 
3629 	if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
3630 		return MBUF_TRANSMIT(na, ifp, m);
3631 	}
3632 
3633 	q = &kring->rx_queue;
3634 
3635 	// XXX reconsider long packets if we handle fragments
3636 	if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
3637 		D("%s from_host, drop packet size %d > %d", na->name,
3638 			len, NETMAP_BUF_SIZE(na));
3639 		goto done;
3640 	}
3641 
3642 	if (nm_os_mbuf_has_offld(m)) {
3643 		RD(1, "%s drop mbuf that needs offloadings", na->name);
3644 		goto done;
3645 	}
3646 
3647 	/* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
3648 	 * and maybe other instances of netmap_transmit (the latter
3649 	 * not possible on Linux).
3650 	 * We enqueue the mbuf only if we are sure there is going to be
3651 	 * enough room in the host RX ring, otherwise we drop it.
3652 	 */
3653 	mbq_lock(q);
3654 
3655 	busy = kring->nr_hwtail - kring->nr_hwcur;
3656 	if (busy < 0)
3657 		busy += kring->nkr_num_slots;
3658 	if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
3659 		RD(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
3660 			kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
3661 	} else {
3662 		mbq_enqueue(q, m);
3663 		ND(2, "%s %d bufs in queue", na->name, mbq_len(q));
3664 		/* notify outside the lock */
3665 		m = NULL;
3666 		error = 0;
3667 	}
3668 	mbq_unlock(q);
3669 
3670 done:
3671 	if (m)
3672 		m_freem(m);
3673 	/* unconditionally wake up listeners */
3674 	kring->nm_notify(kring, 0);
3675 	/* this is normally netmap_notify(), but for nics
3676 	 * connected to a bridge it is netmap_bwrap_intr_notify(),
3677 	 * that possibly forwards the frames through the switch
3678 	 */
3679 
3680 	return (error);
3681 }
3682 
3683 
3684 /*
3685  * netmap_reset() is called by the driver routines when reinitializing
3686  * a ring. The driver is in charge of locking to protect the kring.
3687  * If native netmap mode is not set just return NULL.
3688  * If native netmap mode is set, in particular, we have to set nr_mode to
3689  * NKR_NETMAP_ON.
3690  */
3691 struct netmap_slot *
3692 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
3693 	u_int new_cur)
3694 {
3695 	struct netmap_kring *kring;
3696 	int new_hwofs, lim;
3697 
3698 	if (!nm_native_on(na)) {
3699 		ND("interface not in native netmap mode");
3700 		return NULL;	/* nothing to reinitialize */
3701 	}
3702 
3703 	/* XXX note- in the new scheme, we are not guaranteed to be
3704 	 * under lock (e.g. when called on a device reset).
3705 	 * In this case, we should set a flag and do not trust too
3706 	 * much the values. In practice: TODO
3707 	 * - set a RESET flag somewhere in the kring
3708 	 * - do the processing in a conservative way
3709 	 * - let the *sync() fixup at the end.
3710 	 */
3711 	if (tx == NR_TX) {
3712 		if (n >= na->num_tx_rings)
3713 			return NULL;
3714 
3715 		kring = na->tx_rings[n];
3716 
3717 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
3718 			kring->nr_mode = NKR_NETMAP_OFF;
3719 			return NULL;
3720 		}
3721 
3722 		// XXX check whether we should use hwcur or rcur
3723 		new_hwofs = kring->nr_hwcur - new_cur;
3724 	} else {
3725 		if (n >= na->num_rx_rings)
3726 			return NULL;
3727 		kring = na->rx_rings[n];
3728 
3729 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
3730 			kring->nr_mode = NKR_NETMAP_OFF;
3731 			return NULL;
3732 		}
3733 
3734 		new_hwofs = kring->nr_hwtail - new_cur;
3735 	}
3736 	lim = kring->nkr_num_slots - 1;
3737 	if (new_hwofs > lim)
3738 		new_hwofs -= lim + 1;
3739 
3740 	/* Always set the new offset value and realign the ring. */
3741 	if (netmap_verbose)
3742 	    D("%s %s%d hwofs %d -> %d, hwtail %d -> %d",
3743 		na->name,
3744 		tx == NR_TX ? "TX" : "RX", n,
3745 		kring->nkr_hwofs, new_hwofs,
3746 		kring->nr_hwtail,
3747 		tx == NR_TX ? lim : kring->nr_hwtail);
3748 	kring->nkr_hwofs = new_hwofs;
3749 	if (tx == NR_TX) {
3750 		kring->nr_hwtail = kring->nr_hwcur + lim;
3751 		if (kring->nr_hwtail > lim)
3752 			kring->nr_hwtail -= lim + 1;
3753 	}
3754 
3755 	/*
3756 	 * Wakeup on the individual and global selwait
3757 	 * We do the wakeup here, but the ring is not yet reconfigured.
3758 	 * However, we are under lock so there are no races.
3759 	 */
3760 	kring->nr_mode = NKR_NETMAP_ON;
3761 	kring->nm_notify(kring, 0);
3762 	return kring->ring->slot;
3763 }
3764 
3765 
3766 /*
3767  * Dispatch rx/tx interrupts to the netmap rings.
3768  *
3769  * "work_done" is non-null on the RX path, NULL for the TX path.
3770  * We rely on the OS to make sure that there is only one active
3771  * instance per queue, and that there is appropriate locking.
3772  *
3773  * The 'notify' routine depends on what the ring is attached to.
3774  * - for a netmap file descriptor, do a selwakeup on the individual
3775  *   waitqueue, plus one on the global one if needed
3776  *   (see netmap_notify)
3777  * - for a nic connected to a switch, call the proper forwarding routine
3778  *   (see netmap_bwrap_intr_notify)
3779  */
3780 int
3781 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
3782 {
3783 	struct netmap_kring *kring;
3784 	enum txrx t = (work_done ? NR_RX : NR_TX);
3785 
3786 	q &= NETMAP_RING_MASK;
3787 
3788 	if (netmap_verbose) {
3789 	        RD(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
3790 	}
3791 
3792 	if (q >= nma_get_nrings(na, t))
3793 		return NM_IRQ_PASS; // not a physical queue
3794 
3795 	kring = NMR(na, t)[q];
3796 
3797 	if (kring->nr_mode == NKR_NETMAP_OFF) {
3798 		return NM_IRQ_PASS;
3799 	}
3800 
3801 	if (t == NR_RX) {
3802 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
3803 		*work_done = 1; /* do not fire napi again */
3804 	}
3805 
3806 	return kring->nm_notify(kring, 0);
3807 }
3808 
3809 
3810 /*
3811  * Default functions to handle rx/tx interrupts from a physical device.
3812  * "work_done" is non-null on the RX path, NULL for the TX path.
3813  *
3814  * If the card is not in netmap mode, simply return NM_IRQ_PASS,
3815  * so that the caller proceeds with regular processing.
3816  * Otherwise call netmap_common_irq().
3817  *
3818  * If the card is connected to a netmap file descriptor,
3819  * do a selwakeup on the individual queue, plus one on the global one
3820  * if needed (multiqueue card _and_ there are multiqueue listeners),
3821  * and return NR_IRQ_COMPLETED.
3822  *
3823  * Finally, if called on rx from an interface connected to a switch,
3824  * calls the proper forwarding routine.
3825  */
3826 int
3827 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
3828 {
3829 	struct netmap_adapter *na = NA(ifp);
3830 
3831 	/*
3832 	 * XXX emulated netmap mode sets NAF_SKIP_INTR so
3833 	 * we still use the regular driver even though the previous
3834 	 * check fails. It is unclear whether we should use
3835 	 * nm_native_on() here.
3836 	 */
3837 	if (!nm_netmap_on(na))
3838 		return NM_IRQ_PASS;
3839 
3840 	if (na->na_flags & NAF_SKIP_INTR) {
3841 		ND("use regular interrupt");
3842 		return NM_IRQ_PASS;
3843 	}
3844 
3845 	return netmap_common_irq(na, q, work_done);
3846 }
3847 
3848 
3849 /*
3850  * Module loader and unloader
3851  *
3852  * netmap_init() creates the /dev/netmap device and initializes
3853  * all global variables. Returns 0 on success, errno on failure
3854  * (but there is no chance)
3855  *
3856  * netmap_fini() destroys everything.
3857  */
3858 
3859 static struct cdev *netmap_dev; /* /dev/netmap character device. */
3860 extern struct cdevsw netmap_cdevsw;
3861 
3862 
3863 void
3864 netmap_fini(void)
3865 {
3866 	if (netmap_dev)
3867 		destroy_dev(netmap_dev);
3868 	/* we assume that there are no longer netmap users */
3869 	nm_os_ifnet_fini();
3870 	netmap_uninit_bridges();
3871 	netmap_mem_fini();
3872 	NMG_LOCK_DESTROY();
3873 	nm_prinf("netmap: unloaded module.\n");
3874 }
3875 
3876 
3877 int
3878 netmap_init(void)
3879 {
3880 	int error;
3881 
3882 	NMG_LOCK_INIT();
3883 
3884 	error = netmap_mem_init();
3885 	if (error != 0)
3886 		goto fail;
3887 	/*
3888 	 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
3889 	 * when the module is compiled in.
3890 	 * XXX could use make_dev_credv() to get error number
3891 	 */
3892 	netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
3893 		&netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
3894 			      "netmap");
3895 	if (!netmap_dev)
3896 		goto fail;
3897 
3898 	error = netmap_init_bridges();
3899 	if (error)
3900 		goto fail;
3901 
3902 #ifdef __FreeBSD__
3903 	nm_os_vi_init_index();
3904 #endif
3905 
3906 	error = nm_os_ifnet_init();
3907 	if (error)
3908 		goto fail;
3909 
3910 	nm_prinf("netmap: loaded module\n");
3911 	return (0);
3912 fail:
3913 	netmap_fini();
3914 	return (EINVAL); /* may be incorrect */
3915 }
3916