1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi 5 * Copyright (C) 2011-2016 Luigi Rizzo 6 * Copyright (C) 2011-2016 Giuseppe Lettieri 7 * Copyright (C) 2011-2016 Vincenzo Maffione 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 33 /* 34 * $FreeBSD$ 35 * 36 * This module supports memory mapped access to network devices, 37 * see netmap(4). 38 * 39 * The module uses a large, memory pool allocated by the kernel 40 * and accessible as mmapped memory by multiple userspace threads/processes. 41 * The memory pool contains packet buffers and "netmap rings", 42 * i.e. user-accessible copies of the interface's queues. 43 * 44 * Access to the network card works like this: 45 * 1. a process/thread issues one or more open() on /dev/netmap, to create 46 * select()able file descriptor on which events are reported. 47 * 2. on each descriptor, the process issues an ioctl() to identify 48 * the interface that should report events to the file descriptor. 49 * 3. on each descriptor, the process issues an mmap() request to 50 * map the shared memory region within the process' address space. 51 * The list of interesting queues is indicated by a location in 52 * the shared memory region. 53 * 4. using the functions in the netmap(4) userspace API, a process 54 * can look up the occupation state of a queue, access memory buffers, 55 * and retrieve received packets or enqueue packets to transmit. 56 * 5. using some ioctl()s the process can synchronize the userspace view 57 * of the queue with the actual status in the kernel. This includes both 58 * receiving the notification of new packets, and transmitting new 59 * packets on the output interface. 60 * 6. select() or poll() can be used to wait for events on individual 61 * transmit or receive queues (or all queues for a given interface). 62 * 63 64 SYNCHRONIZATION (USER) 65 66 The netmap rings and data structures may be shared among multiple 67 user threads or even independent processes. 68 Any synchronization among those threads/processes is delegated 69 to the threads themselves. Only one thread at a time can be in 70 a system call on the same netmap ring. The OS does not enforce 71 this and only guarantees against system crashes in case of 72 invalid usage. 73 74 LOCKING (INTERNAL) 75 76 Within the kernel, access to the netmap rings is protected as follows: 77 78 - a spinlock on each ring, to handle producer/consumer races on 79 RX rings attached to the host stack (against multiple host 80 threads writing from the host stack to the same ring), 81 and on 'destination' rings attached to a VALE switch 82 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 83 protecting multiple active senders for the same destination) 84 85 - an atomic variable to guarantee that there is at most one 86 instance of *_*xsync() on the ring at any time. 87 For rings connected to user file 88 descriptors, an atomic_test_and_set() protects this, and the 89 lock on the ring is not actually used. 90 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 91 is also used to prevent multiple executions (the driver might indeed 92 already guarantee this). 93 For NIC TX rings connected to a VALE switch, the lock arbitrates 94 access to the queue (both when allocating buffers and when pushing 95 them out). 96 97 - *xsync() should be protected against initializations of the card. 98 On FreeBSD most devices have the reset routine protected by 99 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 100 the RING protection on rx_reset(), this should be added. 101 102 On linux there is an external lock on the tx path, which probably 103 also arbitrates access to the reset routine. XXX to be revised 104 105 - a per-interface core_lock protecting access from the host stack 106 while interfaces may be detached from netmap mode. 107 XXX there should be no need for this lock if we detach the interfaces 108 only while they are down. 109 110 111 --- VALE SWITCH --- 112 113 NMG_LOCK() serializes all modifications to switches and ports. 114 A switch cannot be deleted until all ports are gone. 115 116 For each switch, an SX lock (RWlock on linux) protects 117 deletion of ports. When configuring or deleting a new port, the 118 lock is acquired in exclusive mode (after holding NMG_LOCK). 119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 120 The lock is held throughout the entire forwarding cycle, 121 during which the thread may incur in a page fault. 122 Hence it is important that sleepable shared locks are used. 123 124 On the rx ring, the per-port lock is grabbed initially to reserve 125 a number of slot in the ring, then the lock is released, 126 packets are copied from source to destination, and then 127 the lock is acquired again and the receive ring is updated. 128 (A similar thing is done on the tx ring for NIC and host stack 129 ports attached to the switch) 130 131 */ 132 133 134 /* --- internals ---- 135 * 136 * Roadmap to the code that implements the above. 137 * 138 * > 1. a process/thread issues one or more open() on /dev/netmap, to create 139 * > select()able file descriptor on which events are reported. 140 * 141 * Internally, we allocate a netmap_priv_d structure, that will be 142 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d 143 * structure for each open(). 144 * 145 * os-specific: 146 * FreeBSD: see netmap_open() (netmap_freebsd.c) 147 * linux: see linux_netmap_open() (netmap_linux.c) 148 * 149 * > 2. on each descriptor, the process issues an ioctl() to identify 150 * > the interface that should report events to the file descriptor. 151 * 152 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0. 153 * Most important things happen in netmap_get_na() and 154 * netmap_do_regif(), called from there. Additional details can be 155 * found in the comments above those functions. 156 * 157 * In all cases, this action creates/takes-a-reference-to a 158 * netmap_*_adapter describing the port, and allocates a netmap_if 159 * and all necessary netmap rings, filling them with netmap buffers. 160 * 161 * In this phase, the sync callbacks for each ring are set (these are used 162 * in steps 5 and 6 below). The callbacks depend on the type of adapter. 163 * The adapter creation/initialization code puts them in the 164 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they 165 * are copied from there to the netmap_kring's during netmap_do_regif(), by 166 * the nm_krings_create() callback. All the nm_krings_create callbacks 167 * actually call netmap_krings_create() to perform this and the other 168 * common stuff. netmap_krings_create() also takes care of the host rings, 169 * if needed, by setting their sync callbacks appropriately. 170 * 171 * Additional actions depend on the kind of netmap_adapter that has been 172 * registered: 173 * 174 * - netmap_hw_adapter: [netmap.c] 175 * This is a system netdev/ifp with native netmap support. 176 * The ifp is detached from the host stack by redirecting: 177 * - transmissions (from the network stack) to netmap_transmit() 178 * - receive notifications to the nm_notify() callback for 179 * this adapter. The callback is normally netmap_notify(), unless 180 * the ifp is attached to a bridge using bwrap, in which case it 181 * is netmap_bwrap_intr_notify(). 182 * 183 * - netmap_generic_adapter: [netmap_generic.c] 184 * A system netdev/ifp without native netmap support. 185 * 186 * (the decision about native/non native support is taken in 187 * netmap_get_hw_na(), called by netmap_get_na()) 188 * 189 * - netmap_vp_adapter [netmap_vale.c] 190 * Returned by netmap_get_bdg_na(). 191 * This is a persistent or ephemeral VALE port. Ephemeral ports 192 * are created on the fly if they don't already exist, and are 193 * always attached to a bridge. 194 * Persistent VALE ports must must be created separately, and i 195 * then attached like normal NICs. The NIOCREGIF we are examining 196 * will find them only if they had previosly been created and 197 * attached (see VALE_CTL below). 198 * 199 * - netmap_pipe_adapter [netmap_pipe.c] 200 * Returned by netmap_get_pipe_na(). 201 * Both pipe ends are created, if they didn't already exist. 202 * 203 * - netmap_monitor_adapter [netmap_monitor.c] 204 * Returned by netmap_get_monitor_na(). 205 * If successful, the nm_sync callbacks of the monitored adapter 206 * will be intercepted by the returned monitor. 207 * 208 * - netmap_bwrap_adapter [netmap_vale.c] 209 * Cannot be obtained in this way, see VALE_CTL below 210 * 211 * 212 * os-specific: 213 * linux: we first go through linux_netmap_ioctl() to 214 * adapt the FreeBSD interface to the linux one. 215 * 216 * 217 * > 3. on each descriptor, the process issues an mmap() request to 218 * > map the shared memory region within the process' address space. 219 * > The list of interesting queues is indicated by a location in 220 * > the shared memory region. 221 * 222 * os-specific: 223 * FreeBSD: netmap_mmap_single (netmap_freebsd.c). 224 * linux: linux_netmap_mmap (netmap_linux.c). 225 * 226 * > 4. using the functions in the netmap(4) userspace API, a process 227 * > can look up the occupation state of a queue, access memory buffers, 228 * > and retrieve received packets or enqueue packets to transmit. 229 * 230 * these actions do not involve the kernel. 231 * 232 * > 5. using some ioctl()s the process can synchronize the userspace view 233 * > of the queue with the actual status in the kernel. This includes both 234 * > receiving the notification of new packets, and transmitting new 235 * > packets on the output interface. 236 * 237 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC 238 * cases. They invoke the nm_sync callbacks on the netmap_kring 239 * structures, as initialized in step 2 and maybe later modified 240 * by a monitor. Monitors, however, will always call the original 241 * callback before doing anything else. 242 * 243 * 244 * > 6. select() or poll() can be used to wait for events on individual 245 * > transmit or receive queues (or all queues for a given interface). 246 * 247 * Implemented in netmap_poll(). This will call the same nm_sync() 248 * callbacks as in step 5 above. 249 * 250 * os-specific: 251 * linux: we first go through linux_netmap_poll() to adapt 252 * the FreeBSD interface to the linux one. 253 * 254 * 255 * ---- VALE_CTL ----- 256 * 257 * VALE switches are controlled by issuing a NIOCREGIF with a non-null 258 * nr_cmd in the nmreq structure. These subcommands are handled by 259 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created 260 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF 261 * subcommands, respectively. 262 * 263 * Any network interface known to the system (including a persistent VALE 264 * port) can be attached to a VALE switch by issuing the 265 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports 266 * look exactly like ephemeral VALE ports (as created in step 2 above). The 267 * attachment of other interfaces, instead, requires the creation of a 268 * netmap_bwrap_adapter. Moreover, the attached interface must be put in 269 * netmap mode. This may require the creation of a netmap_generic_adapter if 270 * we have no native support for the interface, or if generic adapters have 271 * been forced by sysctl. 272 * 273 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(), 274 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach() 275 * callback. In the case of the bwrap, the callback creates the 276 * netmap_bwrap_adapter. The initialization of the bwrap is then 277 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl() 278 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c). 279 * A generic adapter for the wrapped ifp will be created if needed, when 280 * netmap_get_bdg_na() calls netmap_get_hw_na(). 281 * 282 * 283 * ---- DATAPATHS ----- 284 * 285 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =- 286 * 287 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach() 288 * 289 * - tx from netmap userspace: 290 * concurrently: 291 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 292 * kring->nm_sync() == DEVICE_netmap_txsync() 293 * 2) device interrupt handler 294 * na->nm_notify() == netmap_notify() 295 * - rx from netmap userspace: 296 * concurrently: 297 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 298 * kring->nm_sync() == DEVICE_netmap_rxsync() 299 * 2) device interrupt handler 300 * na->nm_notify() == netmap_notify() 301 * - rx from host stack 302 * concurrently: 303 * 1) host stack 304 * netmap_transmit() 305 * na->nm_notify == netmap_notify() 306 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context 307 * kring->nm_sync() == netmap_rxsync_from_host 308 * netmap_rxsync_from_host(na, NULL, NULL) 309 * - tx to host stack 310 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 311 * kring->nm_sync() == netmap_txsync_to_host 312 * netmap_txsync_to_host(na) 313 * nm_os_send_up() 314 * FreeBSD: na->if_input() == ether_input() 315 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX 316 * 317 * 318 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =- 319 * 320 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach() 321 * 322 * - tx from netmap userspace: 323 * concurrently: 324 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 325 * kring->nm_sync() == generic_netmap_txsync() 326 * nm_os_generic_xmit_frame() 327 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX 328 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 329 * gna->save_start_xmit == orig. dev. start_xmit 330 * FreeBSD: na->if_transmit() == orig. dev if_transmit 331 * 2) generic_mbuf_destructor() 332 * na->nm_notify() == netmap_notify() 333 * - rx from netmap userspace: 334 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 335 * kring->nm_sync() == generic_netmap_rxsync() 336 * mbq_safe_dequeue() 337 * 2) device driver 338 * generic_rx_handler() 339 * mbq_safe_enqueue() 340 * na->nm_notify() == netmap_notify() 341 * - rx from host stack 342 * FreeBSD: same as native 343 * Linux: same as native except: 344 * 1) host stack 345 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX 346 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 347 * netmap_transmit() 348 * na->nm_notify() == netmap_notify() 349 * - tx to host stack (same as native): 350 * 351 * 352 * -= VALE =- 353 * 354 * INCOMING: 355 * 356 * - VALE ports: 357 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 358 * kring->nm_sync() == netmap_vp_txsync() 359 * 360 * - system device with native support: 361 * from cable: 362 * interrupt 363 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 364 * kring->nm_sync() == DEVICE_netmap_rxsync() 365 * netmap_vp_txsync() 366 * kring->nm_sync() == DEVICE_netmap_rxsync() 367 * from host stack: 368 * netmap_transmit() 369 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 370 * kring->nm_sync() == netmap_rxsync_from_host() 371 * netmap_vp_txsync() 372 * 373 * - system device with generic support: 374 * from device driver: 375 * generic_rx_handler() 376 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 377 * kring->nm_sync() == generic_netmap_rxsync() 378 * netmap_vp_txsync() 379 * kring->nm_sync() == generic_netmap_rxsync() 380 * from host stack: 381 * netmap_transmit() 382 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 383 * kring->nm_sync() == netmap_rxsync_from_host() 384 * netmap_vp_txsync() 385 * 386 * (all cases) --> nm_bdg_flush() 387 * dest_na->nm_notify() == (see below) 388 * 389 * OUTGOING: 390 * 391 * - VALE ports: 392 * concurrently: 393 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 394 * kring->nm_sync() == netmap_vp_rxsync() 395 * 2) from nm_bdg_flush() 396 * na->nm_notify() == netmap_notify() 397 * 398 * - system device with native support: 399 * to cable: 400 * na->nm_notify() == netmap_bwrap_notify() 401 * netmap_vp_rxsync() 402 * kring->nm_sync() == DEVICE_netmap_txsync() 403 * netmap_vp_rxsync() 404 * to host stack: 405 * netmap_vp_rxsync() 406 * kring->nm_sync() == netmap_txsync_to_host 407 * netmap_vp_rxsync_locked() 408 * 409 * - system device with generic adapter: 410 * to device driver: 411 * na->nm_notify() == netmap_bwrap_notify() 412 * netmap_vp_rxsync() 413 * kring->nm_sync() == generic_netmap_txsync() 414 * netmap_vp_rxsync() 415 * to host stack: 416 * netmap_vp_rxsync() 417 * kring->nm_sync() == netmap_txsync_to_host 418 * netmap_vp_rxsync() 419 * 420 */ 421 422 /* 423 * OS-specific code that is used only within this file. 424 * Other OS-specific code that must be accessed by drivers 425 * is present in netmap_kern.h 426 */ 427 428 #if defined(__FreeBSD__) 429 #include <sys/cdefs.h> /* prerequisite */ 430 #include <sys/types.h> 431 #include <sys/errno.h> 432 #include <sys/param.h> /* defines used in kernel.h */ 433 #include <sys/kernel.h> /* types used in module initialization */ 434 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 435 #include <sys/filio.h> /* FIONBIO */ 436 #include <sys/sockio.h> 437 #include <sys/socketvar.h> /* struct socket */ 438 #include <sys/malloc.h> 439 #include <sys/poll.h> 440 #include <sys/proc.h> 441 #include <sys/rwlock.h> 442 #include <sys/socket.h> /* sockaddrs */ 443 #include <sys/selinfo.h> 444 #include <sys/sysctl.h> 445 #include <sys/jail.h> 446 #include <sys/epoch.h> 447 #include <net/vnet.h> 448 #include <net/if.h> 449 #include <net/if_var.h> 450 #include <net/bpf.h> /* BIOCIMMEDIATE */ 451 #include <machine/bus.h> /* bus_dmamap_* */ 452 #include <sys/endian.h> 453 #include <sys/refcount.h> 454 #include <net/ethernet.h> /* ETHER_BPF_MTAP */ 455 456 457 #elif defined(linux) 458 459 #include "bsd_glue.h" 460 461 #elif defined(__APPLE__) 462 463 #warning OSX support is only partial 464 #include "osx_glue.h" 465 466 #elif defined (_WIN32) 467 468 #include "win_glue.h" 469 470 #else 471 472 #error Unsupported platform 473 474 #endif /* unsupported */ 475 476 /* 477 * common headers 478 */ 479 #include <net/netmap.h> 480 #include <dev/netmap/netmap_kern.h> 481 #include <dev/netmap/netmap_mem2.h> 482 483 484 /* user-controlled variables */ 485 int netmap_verbose; 486 #ifdef CONFIG_NETMAP_DEBUG 487 int netmap_debug; 488 #endif /* CONFIG_NETMAP_DEBUG */ 489 490 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 491 int netmap_no_pendintr = 1; 492 int netmap_txsync_retry = 2; 493 static int netmap_fwd = 0; /* force transparent forwarding */ 494 495 /* 496 * netmap_admode selects the netmap mode to use. 497 * Invalid values are reset to NETMAP_ADMODE_BEST 498 */ 499 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 500 NETMAP_ADMODE_NATIVE, /* either native or none */ 501 NETMAP_ADMODE_GENERIC, /* force generic */ 502 NETMAP_ADMODE_LAST }; 503 static int netmap_admode = NETMAP_ADMODE_BEST; 504 505 /* netmap_generic_mit controls mitigation of RX notifications for 506 * the generic netmap adapter. The value is a time interval in 507 * nanoseconds. */ 508 int netmap_generic_mit = 100*1000; 509 510 /* We use by default netmap-aware qdiscs with generic netmap adapters, 511 * even if there can be a little performance hit with hardware NICs. 512 * However, using the qdisc is the safer approach, for two reasons: 513 * 1) it prevents non-fifo qdiscs to break the TX notification 514 * scheme, which is based on mbuf destructors when txqdisc is 515 * not used. 516 * 2) it makes it possible to transmit over software devices that 517 * change skb->dev, like bridge, veth, ... 518 * 519 * Anyway users looking for the best performance should 520 * use native adapters. 521 */ 522 #ifdef linux 523 int netmap_generic_txqdisc = 1; 524 #endif 525 526 /* Default number of slots and queues for generic adapters. */ 527 int netmap_generic_ringsize = 1024; 528 int netmap_generic_rings = 1; 529 530 /* Non-zero to enable checksum offloading in NIC drivers */ 531 int netmap_generic_hwcsum = 0; 532 533 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */ 534 int ptnet_vnet_hdr = 1; 535 536 /* 537 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated 538 * in some other operating systems 539 */ 540 SYSBEGIN(main_init); 541 542 SYSCTL_DECL(_dev_netmap); 543 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 544 "Netmap args"); 545 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 546 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 547 #ifdef CONFIG_NETMAP_DEBUG 548 SYSCTL_INT(_dev_netmap, OID_AUTO, debug, 549 CTLFLAG_RW, &netmap_debug, 0, "Debug messages"); 550 #endif /* CONFIG_NETMAP_DEBUG */ 551 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 552 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 553 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr, 554 0, "Always look for new received packets."); 555 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 556 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush."); 557 558 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0, 559 "Force NR_FORWARD mode"); 560 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0, 561 "Adapter mode. 0 selects the best option available," 562 "1 forces native adapter, 2 forces emulated adapter"); 563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum, 564 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default)," 565 "1 to enable checksum generation by the NIC"); 566 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 567 0, "RX notification interval in nanoseconds"); 568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, 569 &netmap_generic_ringsize, 0, 570 "Number of per-ring slots for emulated netmap mode"); 571 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW, 572 &netmap_generic_rings, 0, 573 "Number of TX/RX queues for emulated netmap adapters"); 574 #ifdef linux 575 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW, 576 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters"); 577 #endif 578 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr, 579 0, "Allow ptnet devices to use virtio-net headers"); 580 581 SYSEND; 582 583 NMG_LOCK_T netmap_global_lock; 584 585 /* 586 * mark the ring as stopped, and run through the locks 587 * to make sure other users get to see it. 588 * stopped must be either NR_KR_STOPPED (for unbounded stop) 589 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes) 590 */ 591 static void 592 netmap_disable_ring(struct netmap_kring *kr, int stopped) 593 { 594 nm_kr_stop(kr, stopped); 595 // XXX check if nm_kr_stop is sufficient 596 mtx_lock(&kr->q_lock); 597 mtx_unlock(&kr->q_lock); 598 nm_kr_put(kr); 599 } 600 601 /* stop or enable a single ring */ 602 void 603 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped) 604 { 605 if (stopped) 606 netmap_disable_ring(NMR(na, t)[ring_id], stopped); 607 else 608 NMR(na, t)[ring_id]->nkr_stopped = 0; 609 } 610 611 612 /* stop or enable all the rings of na */ 613 void 614 netmap_set_all_rings(struct netmap_adapter *na, int stopped) 615 { 616 int i; 617 enum txrx t; 618 619 if (!nm_netmap_on(na)) 620 return; 621 622 if (netmap_verbose) { 623 nm_prinf("%s: %sable all rings", na->name, 624 (stopped ? "dis" : "en")); 625 } 626 for_rx_tx(t) { 627 for (i = 0; i < netmap_real_rings(na, t); i++) { 628 netmap_set_ring(na, i, t, stopped); 629 } 630 } 631 } 632 633 /* 634 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s 635 * to finish and prevents any new one from starting. Call this before turning 636 * netmap mode off, or before removing the hardware rings (e.g., on module 637 * onload). 638 */ 639 void 640 netmap_disable_all_rings(struct ifnet *ifp) 641 { 642 if (NM_NA_VALID(ifp)) { 643 netmap_set_all_rings(NA(ifp), NM_KR_LOCKED); 644 } 645 } 646 647 /* 648 * Convenience function used in drivers. Re-enables rxsync and txsync on the 649 * adapter's rings In linux drivers, this should be placed near each 650 * napi_enable(). 651 */ 652 void 653 netmap_enable_all_rings(struct ifnet *ifp) 654 { 655 if (NM_NA_VALID(ifp)) { 656 netmap_set_all_rings(NA(ifp), 0 /* enabled */); 657 } 658 } 659 660 void 661 netmap_make_zombie(struct ifnet *ifp) 662 { 663 if (NM_NA_VALID(ifp)) { 664 struct netmap_adapter *na = NA(ifp); 665 netmap_set_all_rings(na, NM_KR_LOCKED); 666 na->na_flags |= NAF_ZOMBIE; 667 netmap_set_all_rings(na, 0); 668 } 669 } 670 671 void 672 netmap_undo_zombie(struct ifnet *ifp) 673 { 674 if (NM_NA_VALID(ifp)) { 675 struct netmap_adapter *na = NA(ifp); 676 if (na->na_flags & NAF_ZOMBIE) { 677 netmap_set_all_rings(na, NM_KR_LOCKED); 678 na->na_flags &= ~NAF_ZOMBIE; 679 netmap_set_all_rings(na, 0); 680 } 681 } 682 } 683 684 /* 685 * generic bound_checking function 686 */ 687 u_int 688 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 689 { 690 u_int oldv = *v; 691 const char *op = NULL; 692 693 if (dflt < lo) 694 dflt = lo; 695 if (dflt > hi) 696 dflt = hi; 697 if (oldv < lo) { 698 *v = dflt; 699 op = "Bump"; 700 } else if (oldv > hi) { 701 *v = hi; 702 op = "Clamp"; 703 } 704 if (op && msg) 705 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv); 706 return *v; 707 } 708 709 710 /* 711 * packet-dump function, user-supplied or static buffer. 712 * The destination buffer must be at least 30+4*len 713 */ 714 const char * 715 nm_dump_buf(char *p, int len, int lim, char *dst) 716 { 717 static char _dst[8192]; 718 int i, j, i0; 719 static char hex[] ="0123456789abcdef"; 720 char *o; /* output position */ 721 722 #define P_HI(x) hex[((x) & 0xf0)>>4] 723 #define P_LO(x) hex[((x) & 0xf)] 724 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 725 if (!dst) 726 dst = _dst; 727 if (lim <= 0 || lim > len) 728 lim = len; 729 o = dst; 730 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 731 o += strlen(o); 732 /* hexdump routine */ 733 for (i = 0; i < lim; ) { 734 sprintf(o, "%5d: ", i); 735 o += strlen(o); 736 memset(o, ' ', 48); 737 i0 = i; 738 for (j=0; j < 16 && i < lim; i++, j++) { 739 o[j*3] = P_HI(p[i]); 740 o[j*3+1] = P_LO(p[i]); 741 } 742 i = i0; 743 for (j=0; j < 16 && i < lim; i++, j++) 744 o[j + 48] = P_C(p[i]); 745 o[j+48] = '\n'; 746 o += j+49; 747 } 748 *o = '\0'; 749 #undef P_HI 750 #undef P_LO 751 #undef P_C 752 return dst; 753 } 754 755 756 /* 757 * Fetch configuration from the device, to cope with dynamic 758 * reconfigurations after loading the module. 759 */ 760 /* call with NMG_LOCK held */ 761 int 762 netmap_update_config(struct netmap_adapter *na) 763 { 764 struct nm_config_info info; 765 766 bzero(&info, sizeof(info)); 767 if (na->nm_config == NULL || 768 na->nm_config(na, &info)) { 769 /* take whatever we had at init time */ 770 info.num_tx_rings = na->num_tx_rings; 771 info.num_tx_descs = na->num_tx_desc; 772 info.num_rx_rings = na->num_rx_rings; 773 info.num_rx_descs = na->num_rx_desc; 774 info.rx_buf_maxsize = na->rx_buf_maxsize; 775 } 776 777 if (na->num_tx_rings == info.num_tx_rings && 778 na->num_tx_desc == info.num_tx_descs && 779 na->num_rx_rings == info.num_rx_rings && 780 na->num_rx_desc == info.num_rx_descs && 781 na->rx_buf_maxsize == info.rx_buf_maxsize) 782 return 0; /* nothing changed */ 783 if (na->active_fds == 0) { 784 na->num_tx_rings = info.num_tx_rings; 785 na->num_tx_desc = info.num_tx_descs; 786 na->num_rx_rings = info.num_rx_rings; 787 na->num_rx_desc = info.num_rx_descs; 788 na->rx_buf_maxsize = info.rx_buf_maxsize; 789 if (netmap_verbose) 790 nm_prinf("configuration changed for %s: txring %d x %d, " 791 "rxring %d x %d, rxbufsz %d", 792 na->name, na->num_tx_rings, na->num_tx_desc, 793 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize); 794 return 0; 795 } 796 nm_prerr("WARNING: configuration changed for %s while active: " 797 "txring %d x %d, rxring %d x %d, rxbufsz %d", 798 na->name, info.num_tx_rings, info.num_tx_descs, 799 info.num_rx_rings, info.num_rx_descs, 800 info.rx_buf_maxsize); 801 return 1; 802 } 803 804 /* nm_sync callbacks for the host rings */ 805 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags); 806 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags); 807 808 /* create the krings array and initialize the fields common to all adapters. 809 * The array layout is this: 810 * 811 * +----------+ 812 * na->tx_rings ----->| | \ 813 * | | } na->num_tx_ring 814 * | | / 815 * +----------+ 816 * | | host tx kring 817 * na->rx_rings ----> +----------+ 818 * | | \ 819 * | | } na->num_rx_rings 820 * | | / 821 * +----------+ 822 * | | host rx kring 823 * +----------+ 824 * na->tailroom ----->| | \ 825 * | | } tailroom bytes 826 * | | / 827 * +----------+ 828 * 829 * Note: for compatibility, host krings are created even when not needed. 830 * The tailroom space is currently used by vale ports for allocating leases. 831 */ 832 /* call with NMG_LOCK held */ 833 int 834 netmap_krings_create(struct netmap_adapter *na, u_int tailroom) 835 { 836 u_int i, len, ndesc; 837 struct netmap_kring *kring; 838 u_int n[NR_TXRX]; 839 enum txrx t; 840 int err = 0; 841 842 if (na->tx_rings != NULL) { 843 if (netmap_debug & NM_DEBUG_ON) 844 nm_prerr("warning: krings were already created"); 845 return 0; 846 } 847 848 /* account for the (possibly fake) host rings */ 849 n[NR_TX] = netmap_all_rings(na, NR_TX); 850 n[NR_RX] = netmap_all_rings(na, NR_RX); 851 852 len = (n[NR_TX] + n[NR_RX]) * 853 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *)) 854 + tailroom; 855 856 na->tx_rings = nm_os_malloc((size_t)len); 857 if (na->tx_rings == NULL) { 858 nm_prerr("Cannot allocate krings"); 859 return ENOMEM; 860 } 861 na->rx_rings = na->tx_rings + n[NR_TX]; 862 na->tailroom = na->rx_rings + n[NR_RX]; 863 864 /* link the krings in the krings array */ 865 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom); 866 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) { 867 na->tx_rings[i] = kring; 868 kring++; 869 } 870 871 /* 872 * All fields in krings are 0 except the one initialized below. 873 * but better be explicit on important kring fields. 874 */ 875 for_rx_tx(t) { 876 ndesc = nma_get_ndesc(na, t); 877 for (i = 0; i < n[t]; i++) { 878 kring = NMR(na, t)[i]; 879 bzero(kring, sizeof(*kring)); 880 kring->notify_na = na; 881 kring->ring_id = i; 882 kring->tx = t; 883 kring->nkr_num_slots = ndesc; 884 kring->nr_mode = NKR_NETMAP_OFF; 885 kring->nr_pending_mode = NKR_NETMAP_OFF; 886 if (i < nma_get_nrings(na, t)) { 887 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync); 888 } else { 889 if (!(na->na_flags & NAF_HOST_RINGS)) 890 kring->nr_kflags |= NKR_FAKERING; 891 kring->nm_sync = (t == NR_TX ? 892 netmap_txsync_to_host: 893 netmap_rxsync_from_host); 894 } 895 kring->nm_notify = na->nm_notify; 896 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 897 /* 898 * IMPORTANT: Always keep one slot empty. 899 */ 900 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0); 901 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name, 902 nm_txrx2str(t), i); 903 nm_prdis("ktx %s h %d c %d t %d", 904 kring->name, kring->rhead, kring->rcur, kring->rtail); 905 err = nm_os_selinfo_init(&kring->si, kring->name); 906 if (err) { 907 netmap_krings_delete(na); 908 return err; 909 } 910 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF); 911 kring->na = na; /* setting this field marks the mutex as initialized */ 912 } 913 err = nm_os_selinfo_init(&na->si[t], na->name); 914 if (err) { 915 netmap_krings_delete(na); 916 return err; 917 } 918 } 919 920 return 0; 921 } 922 923 924 /* undo the actions performed by netmap_krings_create */ 925 /* call with NMG_LOCK held */ 926 void 927 netmap_krings_delete(struct netmap_adapter *na) 928 { 929 struct netmap_kring **kring = na->tx_rings; 930 enum txrx t; 931 932 if (na->tx_rings == NULL) { 933 if (netmap_debug & NM_DEBUG_ON) 934 nm_prerr("warning: krings were already deleted"); 935 return; 936 } 937 938 for_rx_tx(t) 939 nm_os_selinfo_uninit(&na->si[t]); 940 941 /* we rely on the krings layout described above */ 942 for ( ; kring != na->tailroom; kring++) { 943 if ((*kring)->na != NULL) 944 mtx_destroy(&(*kring)->q_lock); 945 nm_os_selinfo_uninit(&(*kring)->si); 946 } 947 nm_os_free(na->tx_rings); 948 na->tx_rings = na->rx_rings = na->tailroom = NULL; 949 } 950 951 952 /* 953 * Destructor for NIC ports. They also have an mbuf queue 954 * on the rings connected to the host so we need to purge 955 * them first. 956 */ 957 /* call with NMG_LOCK held */ 958 void 959 netmap_hw_krings_delete(struct netmap_adapter *na) 960 { 961 u_int lim = netmap_real_rings(na, NR_RX), i; 962 963 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) { 964 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue; 965 nm_prdis("destroy sw mbq with len %d", mbq_len(q)); 966 mbq_purge(q); 967 mbq_safe_fini(q); 968 } 969 netmap_krings_delete(na); 970 } 971 972 static void 973 netmap_mem_drop(struct netmap_adapter *na) 974 { 975 int last = netmap_mem_deref(na->nm_mem, na); 976 /* if the native allocator had been overrided on regif, 977 * restore it now and drop the temporary one 978 */ 979 if (last && na->nm_mem_prev) { 980 netmap_mem_put(na->nm_mem); 981 na->nm_mem = na->nm_mem_prev; 982 na->nm_mem_prev = NULL; 983 } 984 } 985 986 /* 987 * Undo everything that was done in netmap_do_regif(). In particular, 988 * call nm_register(ifp,0) to stop netmap mode on the interface and 989 * revert to normal operation. 990 */ 991 /* call with NMG_LOCK held */ 992 static void netmap_unset_ringid(struct netmap_priv_d *); 993 static void netmap_krings_put(struct netmap_priv_d *); 994 void 995 netmap_do_unregif(struct netmap_priv_d *priv) 996 { 997 struct netmap_adapter *na = priv->np_na; 998 999 NMG_LOCK_ASSERT(); 1000 na->active_fds--; 1001 /* unset nr_pending_mode and possibly release exclusive mode */ 1002 netmap_krings_put(priv); 1003 1004 #ifdef WITH_MONITOR 1005 /* XXX check whether we have to do something with monitor 1006 * when rings change nr_mode. */ 1007 if (na->active_fds <= 0) { 1008 /* walk through all the rings and tell any monitor 1009 * that the port is going to exit netmap mode 1010 */ 1011 netmap_monitor_stop(na); 1012 } 1013 #endif 1014 1015 if (na->active_fds <= 0 || nm_kring_pending(priv)) { 1016 na->nm_register(na, 0); 1017 } 1018 1019 /* delete rings and buffers that are no longer needed */ 1020 netmap_mem_rings_delete(na); 1021 1022 if (na->active_fds <= 0) { /* last instance */ 1023 /* 1024 * (TO CHECK) We enter here 1025 * when the last reference to this file descriptor goes 1026 * away. This means we cannot have any pending poll() 1027 * or interrupt routine operating on the structure. 1028 * XXX The file may be closed in a thread while 1029 * another thread is using it. 1030 * Linux keeps the file opened until the last reference 1031 * by any outstanding ioctl/poll or mmap is gone. 1032 * FreeBSD does not track mmap()s (but we do) and 1033 * wakes up any sleeping poll(). Need to check what 1034 * happens if the close() occurs while a concurrent 1035 * syscall is running. 1036 */ 1037 if (netmap_debug & NM_DEBUG_ON) 1038 nm_prinf("deleting last instance for %s", na->name); 1039 1040 if (nm_netmap_on(na)) { 1041 nm_prerr("BUG: netmap on while going to delete the krings"); 1042 } 1043 1044 na->nm_krings_delete(na); 1045 1046 /* restore the default number of host tx and rx rings */ 1047 if (na->na_flags & NAF_HOST_RINGS) { 1048 na->num_host_tx_rings = 1; 1049 na->num_host_rx_rings = 1; 1050 } else { 1051 na->num_host_tx_rings = 0; 1052 na->num_host_rx_rings = 0; 1053 } 1054 } 1055 1056 /* possibily decrement counter of tx_si/rx_si users */ 1057 netmap_unset_ringid(priv); 1058 /* delete the nifp */ 1059 netmap_mem_if_delete(na, priv->np_nifp); 1060 /* drop the allocator */ 1061 netmap_mem_drop(na); 1062 /* mark the priv as unregistered */ 1063 priv->np_na = NULL; 1064 priv->np_nifp = NULL; 1065 } 1066 1067 struct netmap_priv_d* 1068 netmap_priv_new(void) 1069 { 1070 struct netmap_priv_d *priv; 1071 1072 priv = nm_os_malloc(sizeof(struct netmap_priv_d)); 1073 if (priv == NULL) 1074 return NULL; 1075 priv->np_refs = 1; 1076 nm_os_get_module(); 1077 return priv; 1078 } 1079 1080 /* 1081 * Destructor of the netmap_priv_d, called when the fd is closed 1082 * Action: undo all the things done by NIOCREGIF, 1083 * On FreeBSD we need to track whether there are active mmap()s, 1084 * and we use np_active_mmaps for that. On linux, the field is always 0. 1085 * Return: 1 if we can free priv, 0 otherwise. 1086 * 1087 */ 1088 /* call with NMG_LOCK held */ 1089 void 1090 netmap_priv_delete(struct netmap_priv_d *priv) 1091 { 1092 struct netmap_adapter *na = priv->np_na; 1093 1094 /* number of active references to this fd */ 1095 if (--priv->np_refs > 0) { 1096 return; 1097 } 1098 nm_os_put_module(); 1099 if (na) { 1100 netmap_do_unregif(priv); 1101 } 1102 netmap_unget_na(na, priv->np_ifp); 1103 bzero(priv, sizeof(*priv)); /* for safety */ 1104 nm_os_free(priv); 1105 } 1106 1107 1108 /* call with NMG_LOCK *not* held */ 1109 void 1110 netmap_dtor(void *data) 1111 { 1112 struct netmap_priv_d *priv = data; 1113 1114 NMG_LOCK(); 1115 netmap_priv_delete(priv); 1116 NMG_UNLOCK(); 1117 } 1118 1119 1120 /* 1121 * Handlers for synchronization of the rings from/to the host stack. 1122 * These are associated to a network interface and are just another 1123 * ring pair managed by userspace. 1124 * 1125 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD 1126 * flags): 1127 * 1128 * - Before releasing buffers on hw RX rings, the application can mark 1129 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they 1130 * will be forwarded to the host stack, similarly to what happened if 1131 * the application moved them to the host TX ring. 1132 * 1133 * - Before releasing buffers on the host RX ring, the application can 1134 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(), 1135 * they will be forwarded to the hw TX rings, saving the application 1136 * from doing the same task in user-space. 1137 * 1138 * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD 1139 * flag, or globally with the netmap_fwd sysctl. 1140 * 1141 * The transfer NIC --> host is relatively easy, just encapsulate 1142 * into mbufs and we are done. The host --> NIC side is slightly 1143 * harder because there might not be room in the tx ring so it 1144 * might take a while before releasing the buffer. 1145 */ 1146 1147 1148 /* 1149 * Pass a whole queue of mbufs to the host stack as coming from 'dst' 1150 * We do not need to lock because the queue is private. 1151 * After this call the queue is empty. 1152 */ 1153 static void 1154 netmap_send_up(struct ifnet *dst, struct mbq *q) 1155 { 1156 struct mbuf *m; 1157 struct mbuf *head = NULL, *prev = NULL; 1158 #ifdef __FreeBSD__ 1159 struct epoch_tracker et; 1160 1161 NET_EPOCH_ENTER(et); 1162 #endif /* __FreeBSD__ */ 1163 /* Send packets up, outside the lock; head/prev machinery 1164 * is only useful for Windows. */ 1165 while ((m = mbq_dequeue(q)) != NULL) { 1166 if (netmap_debug & NM_DEBUG_HOST) 1167 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m)); 1168 prev = nm_os_send_up(dst, m, prev); 1169 if (head == NULL) 1170 head = prev; 1171 } 1172 if (head) 1173 nm_os_send_up(dst, NULL, head); 1174 #ifdef __FreeBSD__ 1175 NET_EPOCH_EXIT(et); 1176 #endif /* __FreeBSD__ */ 1177 mbq_fini(q); 1178 } 1179 1180 1181 /* 1182 * Scan the buffers from hwcur to ring->head, and put a copy of those 1183 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs. 1184 * Drop remaining packets in the unlikely event 1185 * of an mbuf shortage. 1186 */ 1187 static void 1188 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 1189 { 1190 u_int const lim = kring->nkr_num_slots - 1; 1191 u_int const head = kring->rhead; 1192 u_int n; 1193 struct netmap_adapter *na = kring->na; 1194 1195 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 1196 struct mbuf *m; 1197 struct netmap_slot *slot = &kring->ring->slot[n]; 1198 1199 if ((slot->flags & NS_FORWARD) == 0 && !force) 1200 continue; 1201 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) { 1202 nm_prlim(5, "bad pkt at %d len %d", n, slot->len); 1203 continue; 1204 } 1205 slot->flags &= ~NS_FORWARD; // XXX needed ? 1206 /* XXX TODO: adapt to the case of a multisegment packet */ 1207 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL); 1208 1209 if (m == NULL) 1210 break; 1211 mbq_enqueue(q, m); 1212 } 1213 } 1214 1215 static inline int 1216 _nm_may_forward(struct netmap_kring *kring) 1217 { 1218 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) && 1219 kring->na->na_flags & NAF_HOST_RINGS && 1220 kring->tx == NR_RX); 1221 } 1222 1223 static inline int 1224 nm_may_forward_up(struct netmap_kring *kring) 1225 { 1226 return _nm_may_forward(kring) && 1227 kring->ring_id != kring->na->num_rx_rings; 1228 } 1229 1230 static inline int 1231 nm_may_forward_down(struct netmap_kring *kring, int sync_flags) 1232 { 1233 return _nm_may_forward(kring) && 1234 (sync_flags & NAF_CAN_FORWARD_DOWN) && 1235 kring->ring_id == kring->na->num_rx_rings; 1236 } 1237 1238 /* 1239 * Send to the NIC rings packets marked NS_FORWARD between 1240 * kring->nr_hwcur and kring->rhead. 1241 * Called under kring->rx_queue.lock on the sw rx ring. 1242 * 1243 * It can only be called if the user opened all the TX hw rings, 1244 * see NAF_CAN_FORWARD_DOWN flag. 1245 * We can touch the TX netmap rings (slots, head and cur) since 1246 * we are in poll/ioctl system call context, and the application 1247 * is not supposed to touch the ring (using a different thread) 1248 * during the execution of the system call. 1249 */ 1250 static u_int 1251 netmap_sw_to_nic(struct netmap_adapter *na) 1252 { 1253 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings]; 1254 struct netmap_slot *rxslot = kring->ring->slot; 1255 u_int i, rxcur = kring->nr_hwcur; 1256 u_int const head = kring->rhead; 1257 u_int const src_lim = kring->nkr_num_slots - 1; 1258 u_int sent = 0; 1259 1260 /* scan rings to find space, then fill as much as possible */ 1261 for (i = 0; i < na->num_tx_rings; i++) { 1262 struct netmap_kring *kdst = na->tx_rings[i]; 1263 struct netmap_ring *rdst = kdst->ring; 1264 u_int const dst_lim = kdst->nkr_num_slots - 1; 1265 1266 /* XXX do we trust ring or kring->rcur,rtail ? */ 1267 for (; rxcur != head && !nm_ring_empty(rdst); 1268 rxcur = nm_next(rxcur, src_lim) ) { 1269 struct netmap_slot *src, *dst, tmp; 1270 u_int dst_head = rdst->head; 1271 1272 src = &rxslot[rxcur]; 1273 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 1274 continue; 1275 1276 sent++; 1277 1278 dst = &rdst->slot[dst_head]; 1279 1280 tmp = *src; 1281 1282 src->buf_idx = dst->buf_idx; 1283 src->flags = NS_BUF_CHANGED; 1284 1285 dst->buf_idx = tmp.buf_idx; 1286 dst->len = tmp.len; 1287 dst->flags = NS_BUF_CHANGED; 1288 1289 rdst->head = rdst->cur = nm_next(dst_head, dst_lim); 1290 } 1291 /* if (sent) XXX txsync ? it would be just an optimization */ 1292 } 1293 return sent; 1294 } 1295 1296 1297 /* 1298 * netmap_txsync_to_host() passes packets up. We are called from a 1299 * system call in user process context, and the only contention 1300 * can be among multiple user threads erroneously calling 1301 * this routine concurrently. 1302 */ 1303 static int 1304 netmap_txsync_to_host(struct netmap_kring *kring, int flags) 1305 { 1306 struct netmap_adapter *na = kring->na; 1307 u_int const lim = kring->nkr_num_slots - 1; 1308 u_int const head = kring->rhead; 1309 struct mbq q; 1310 1311 /* Take packets from hwcur to head and pass them up. 1312 * Force hwcur = head since netmap_grab_packets() stops at head 1313 */ 1314 mbq_init(&q); 1315 netmap_grab_packets(kring, &q, 1 /* force */); 1316 nm_prdis("have %d pkts in queue", mbq_len(&q)); 1317 kring->nr_hwcur = head; 1318 kring->nr_hwtail = head + lim; 1319 if (kring->nr_hwtail > lim) 1320 kring->nr_hwtail -= lim + 1; 1321 1322 netmap_send_up(na->ifp, &q); 1323 return 0; 1324 } 1325 1326 1327 /* 1328 * rxsync backend for packets coming from the host stack. 1329 * They have been put in kring->rx_queue by netmap_transmit(). 1330 * We protect access to the kring using kring->rx_queue.lock 1331 * 1332 * also moves to the nic hw rings any packet the user has marked 1333 * for transparent-mode forwarding, then sets the NR_FORWARD 1334 * flag in the kring to let the caller push them out 1335 */ 1336 static int 1337 netmap_rxsync_from_host(struct netmap_kring *kring, int flags) 1338 { 1339 struct netmap_adapter *na = kring->na; 1340 struct netmap_ring *ring = kring->ring; 1341 u_int nm_i, n; 1342 u_int const lim = kring->nkr_num_slots - 1; 1343 u_int const head = kring->rhead; 1344 int ret = 0; 1345 struct mbq *q = &kring->rx_queue, fq; 1346 1347 mbq_init(&fq); /* fq holds packets to be freed */ 1348 1349 mbq_lock(q); 1350 1351 /* First part: import newly received packets */ 1352 n = mbq_len(q); 1353 if (n) { /* grab packets from the queue */ 1354 struct mbuf *m; 1355 uint32_t stop_i; 1356 1357 nm_i = kring->nr_hwtail; 1358 stop_i = nm_prev(kring->nr_hwcur, lim); 1359 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 1360 int len = MBUF_LEN(m); 1361 struct netmap_slot *slot = &ring->slot[nm_i]; 1362 1363 m_copydata(m, 0, len, NMB(na, slot)); 1364 nm_prdis("nm %d len %d", nm_i, len); 1365 if (netmap_debug & NM_DEBUG_HOST) 1366 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL)); 1367 1368 slot->len = len; 1369 slot->flags = 0; 1370 nm_i = nm_next(nm_i, lim); 1371 mbq_enqueue(&fq, m); 1372 } 1373 kring->nr_hwtail = nm_i; 1374 } 1375 1376 /* 1377 * Second part: skip past packets that userspace has released. 1378 */ 1379 nm_i = kring->nr_hwcur; 1380 if (nm_i != head) { /* something was released */ 1381 if (nm_may_forward_down(kring, flags)) { 1382 ret = netmap_sw_to_nic(na); 1383 if (ret > 0) { 1384 kring->nr_kflags |= NR_FORWARD; 1385 ret = 0; 1386 } 1387 } 1388 kring->nr_hwcur = head; 1389 } 1390 1391 mbq_unlock(q); 1392 1393 mbq_purge(&fq); 1394 mbq_fini(&fq); 1395 1396 return ret; 1397 } 1398 1399 1400 /* Get a netmap adapter for the port. 1401 * 1402 * If it is possible to satisfy the request, return 0 1403 * with *na containing the netmap adapter found. 1404 * Otherwise return an error code, with *na containing NULL. 1405 * 1406 * When the port is attached to a bridge, we always return 1407 * EBUSY. 1408 * Otherwise, if the port is already bound to a file descriptor, 1409 * then we unconditionally return the existing adapter into *na. 1410 * In all the other cases, we return (into *na) either native, 1411 * generic or NULL, according to the following table: 1412 * 1413 * native_support 1414 * active_fds dev.netmap.admode YES NO 1415 * ------------------------------------------------------- 1416 * >0 * NA(ifp) NA(ifp) 1417 * 1418 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1419 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1420 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1421 * 1422 */ 1423 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */ 1424 int 1425 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na) 1426 { 1427 /* generic support */ 1428 int i = netmap_admode; /* Take a snapshot. */ 1429 struct netmap_adapter *prev_na; 1430 int error = 0; 1431 1432 *na = NULL; /* default */ 1433 1434 /* reset in case of invalid value */ 1435 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1436 i = netmap_admode = NETMAP_ADMODE_BEST; 1437 1438 if (NM_NA_VALID(ifp)) { 1439 prev_na = NA(ifp); 1440 /* If an adapter already exists, return it if 1441 * there are active file descriptors or if 1442 * netmap is not forced to use generic 1443 * adapters. 1444 */ 1445 if (NETMAP_OWNED_BY_ANY(prev_na) 1446 || i != NETMAP_ADMODE_GENERIC 1447 || prev_na->na_flags & NAF_FORCE_NATIVE 1448 #ifdef WITH_PIPES 1449 /* ugly, but we cannot allow an adapter switch 1450 * if some pipe is referring to this one 1451 */ 1452 || prev_na->na_next_pipe > 0 1453 #endif 1454 ) { 1455 *na = prev_na; 1456 goto assign_mem; 1457 } 1458 } 1459 1460 /* If there isn't native support and netmap is not allowed 1461 * to use generic adapters, we cannot satisfy the request. 1462 */ 1463 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE) 1464 return EOPNOTSUPP; 1465 1466 /* Otherwise, create a generic adapter and return it, 1467 * saving the previously used netmap adapter, if any. 1468 * 1469 * Note that here 'prev_na', if not NULL, MUST be a 1470 * native adapter, and CANNOT be a generic one. This is 1471 * true because generic adapters are created on demand, and 1472 * destroyed when not used anymore. Therefore, if the adapter 1473 * currently attached to an interface 'ifp' is generic, it 1474 * must be that 1475 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1476 * Consequently, if NA(ifp) is generic, we will enter one of 1477 * the branches above. This ensures that we never override 1478 * a generic adapter with another generic adapter. 1479 */ 1480 error = generic_netmap_attach(ifp); 1481 if (error) 1482 return error; 1483 1484 *na = NA(ifp); 1485 1486 assign_mem: 1487 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) && 1488 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) { 1489 (*na)->nm_mem_prev = (*na)->nm_mem; 1490 (*na)->nm_mem = netmap_mem_get(nmd); 1491 } 1492 1493 return 0; 1494 } 1495 1496 /* 1497 * MUST BE CALLED UNDER NMG_LOCK() 1498 * 1499 * Get a refcounted reference to a netmap adapter attached 1500 * to the interface specified by req. 1501 * This is always called in the execution of an ioctl(). 1502 * 1503 * Return ENXIO if the interface specified by the request does 1504 * not exist, ENOTSUP if netmap is not supported by the interface, 1505 * EBUSY if the interface is already attached to a bridge, 1506 * EINVAL if parameters are invalid, ENOMEM if needed resources 1507 * could not be allocated. 1508 * If successful, hold a reference to the netmap adapter. 1509 * 1510 * If the interface specified by req is a system one, also keep 1511 * a reference to it and return a valid *ifp. 1512 */ 1513 int 1514 netmap_get_na(struct nmreq_header *hdr, 1515 struct netmap_adapter **na, struct ifnet **ifp, 1516 struct netmap_mem_d *nmd, int create) 1517 { 1518 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; 1519 int error = 0; 1520 struct netmap_adapter *ret = NULL; 1521 int nmd_ref = 0; 1522 1523 *na = NULL; /* default return value */ 1524 *ifp = NULL; 1525 1526 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { 1527 return EINVAL; 1528 } 1529 1530 if (req->nr_mode == NR_REG_PIPE_MASTER || 1531 req->nr_mode == NR_REG_PIPE_SLAVE) { 1532 /* Do not accept deprecated pipe modes. */ 1533 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax"); 1534 return EINVAL; 1535 } 1536 1537 NMG_LOCK_ASSERT(); 1538 1539 /* if the request contain a memid, try to find the 1540 * corresponding memory region 1541 */ 1542 if (nmd == NULL && req->nr_mem_id) { 1543 nmd = netmap_mem_find(req->nr_mem_id); 1544 if (nmd == NULL) 1545 return EINVAL; 1546 /* keep the rereference */ 1547 nmd_ref = 1; 1548 } 1549 1550 /* We cascade through all possible types of netmap adapter. 1551 * All netmap_get_*_na() functions return an error and an na, 1552 * with the following combinations: 1553 * 1554 * error na 1555 * 0 NULL type doesn't match 1556 * !0 NULL type matches, but na creation/lookup failed 1557 * 0 !NULL type matches and na created/found 1558 * !0 !NULL impossible 1559 */ 1560 error = netmap_get_null_na(hdr, na, nmd, create); 1561 if (error || *na != NULL) 1562 goto out; 1563 1564 /* try to see if this is a monitor port */ 1565 error = netmap_get_monitor_na(hdr, na, nmd, create); 1566 if (error || *na != NULL) 1567 goto out; 1568 1569 /* try to see if this is a pipe port */ 1570 error = netmap_get_pipe_na(hdr, na, nmd, create); 1571 if (error || *na != NULL) 1572 goto out; 1573 1574 /* try to see if this is a bridge port */ 1575 error = netmap_get_vale_na(hdr, na, nmd, create); 1576 if (error) 1577 goto out; 1578 1579 if (*na != NULL) /* valid match in netmap_get_bdg_na() */ 1580 goto out; 1581 1582 /* 1583 * This must be a hardware na, lookup the name in the system. 1584 * Note that by hardware we actually mean "it shows up in ifconfig". 1585 * This may still be a tap, a veth/epair, or even a 1586 * persistent VALE port. 1587 */ 1588 *ifp = ifunit_ref(hdr->nr_name); 1589 if (*ifp == NULL) { 1590 error = ENXIO; 1591 goto out; 1592 } 1593 1594 error = netmap_get_hw_na(*ifp, nmd, &ret); 1595 if (error) 1596 goto out; 1597 1598 *na = ret; 1599 netmap_adapter_get(ret); 1600 1601 /* 1602 * if the adapter supports the host rings and it is not alread open, 1603 * try to set the number of host rings as requested by the user 1604 */ 1605 if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) { 1606 if (req->nr_host_tx_rings) 1607 (*na)->num_host_tx_rings = req->nr_host_tx_rings; 1608 if (req->nr_host_rx_rings) 1609 (*na)->num_host_rx_rings = req->nr_host_rx_rings; 1610 } 1611 nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings, 1612 (*na)->num_host_rx_rings); 1613 1614 out: 1615 if (error) { 1616 if (ret) 1617 netmap_adapter_put(ret); 1618 if (*ifp) { 1619 if_rele(*ifp); 1620 *ifp = NULL; 1621 } 1622 } 1623 if (nmd_ref) 1624 netmap_mem_put(nmd); 1625 1626 return error; 1627 } 1628 1629 /* undo netmap_get_na() */ 1630 void 1631 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp) 1632 { 1633 if (ifp) 1634 if_rele(ifp); 1635 if (na) 1636 netmap_adapter_put(na); 1637 } 1638 1639 1640 #define NM_FAIL_ON(t) do { \ 1641 if (unlikely(t)) { \ 1642 nm_prlim(5, "%s: fail '" #t "' " \ 1643 "h %d c %d t %d " \ 1644 "rh %d rc %d rt %d " \ 1645 "hc %d ht %d", \ 1646 kring->name, \ 1647 head, cur, ring->tail, \ 1648 kring->rhead, kring->rcur, kring->rtail, \ 1649 kring->nr_hwcur, kring->nr_hwtail); \ 1650 return kring->nkr_num_slots; \ 1651 } \ 1652 } while (0) 1653 1654 /* 1655 * validate parameters on entry for *_txsync() 1656 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1657 * in case of error. 1658 * 1659 * rhead, rcur and rtail=hwtail are stored from previous round. 1660 * hwcur is the next packet to send to the ring. 1661 * 1662 * We want 1663 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1664 * 1665 * hwcur, rhead, rtail and hwtail are reliable 1666 */ 1667 u_int 1668 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1669 { 1670 u_int head = ring->head; /* read only once */ 1671 u_int cur = ring->cur; /* read only once */ 1672 u_int n = kring->nkr_num_slots; 1673 1674 nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1675 kring->name, 1676 kring->nr_hwcur, kring->nr_hwtail, 1677 ring->head, ring->cur, ring->tail); 1678 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1679 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n || 1680 kring->rtail >= n || kring->nr_hwtail >= n); 1681 #endif /* kernel sanity checks */ 1682 /* 1683 * user sanity checks. We only use head, 1684 * A, B, ... are possible positions for head: 1685 * 1686 * 0 A rhead B rtail C n-1 1687 * 0 D rtail E rhead F n-1 1688 * 1689 * B, F, D are valid. A, C, E are wrong 1690 */ 1691 if (kring->rtail >= kring->rhead) { 1692 /* want rhead <= head <= rtail */ 1693 NM_FAIL_ON(head < kring->rhead || head > kring->rtail); 1694 /* and also head <= cur <= rtail */ 1695 NM_FAIL_ON(cur < head || cur > kring->rtail); 1696 } else { /* here rtail < rhead */ 1697 /* we need head outside rtail .. rhead */ 1698 NM_FAIL_ON(head > kring->rtail && head < kring->rhead); 1699 1700 /* two cases now: head <= rtail or head >= rhead */ 1701 if (head <= kring->rtail) { 1702 /* want head <= cur <= rtail */ 1703 NM_FAIL_ON(cur < head || cur > kring->rtail); 1704 } else { /* head >= rhead */ 1705 /* cur must be outside rtail..head */ 1706 NM_FAIL_ON(cur > kring->rtail && cur < head); 1707 } 1708 } 1709 if (ring->tail != kring->rtail) { 1710 nm_prlim(5, "%s tail overwritten was %d need %d", kring->name, 1711 ring->tail, kring->rtail); 1712 ring->tail = kring->rtail; 1713 } 1714 kring->rhead = head; 1715 kring->rcur = cur; 1716 return head; 1717 } 1718 1719 1720 /* 1721 * validate parameters on entry for *_rxsync() 1722 * Returns ring->head if ok, kring->nkr_num_slots on error. 1723 * 1724 * For a valid configuration, 1725 * hwcur <= head <= cur <= tail <= hwtail 1726 * 1727 * We only consider head and cur. 1728 * hwcur and hwtail are reliable. 1729 * 1730 */ 1731 u_int 1732 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1733 { 1734 uint32_t const n = kring->nkr_num_slots; 1735 uint32_t head, cur; 1736 1737 nm_prdis(5,"%s kc %d kt %d h %d c %d t %d", 1738 kring->name, 1739 kring->nr_hwcur, kring->nr_hwtail, 1740 ring->head, ring->cur, ring->tail); 1741 /* 1742 * Before storing the new values, we should check they do not 1743 * move backwards. However: 1744 * - head is not an issue because the previous value is hwcur; 1745 * - cur could in principle go back, however it does not matter 1746 * because we are processing a brand new rxsync() 1747 */ 1748 cur = kring->rcur = ring->cur; /* read only once */ 1749 head = kring->rhead = ring->head; /* read only once */ 1750 #if 1 /* kernel sanity checks */ 1751 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n); 1752 #endif /* kernel sanity checks */ 1753 /* user sanity checks */ 1754 if (kring->nr_hwtail >= kring->nr_hwcur) { 1755 /* want hwcur <= rhead <= hwtail */ 1756 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail); 1757 /* and also rhead <= rcur <= hwtail */ 1758 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1759 } else { 1760 /* we need rhead outside hwtail..hwcur */ 1761 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail); 1762 /* two cases now: head <= hwtail or head >= hwcur */ 1763 if (head <= kring->nr_hwtail) { 1764 /* want head <= cur <= hwtail */ 1765 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1766 } else { 1767 /* cur must be outside hwtail..head */ 1768 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail); 1769 } 1770 } 1771 if (ring->tail != kring->rtail) { 1772 nm_prlim(5, "%s tail overwritten was %d need %d", 1773 kring->name, 1774 ring->tail, kring->rtail); 1775 ring->tail = kring->rtail; 1776 } 1777 return head; 1778 } 1779 1780 1781 /* 1782 * Error routine called when txsync/rxsync detects an error. 1783 * Can't do much more than resetting head = cur = hwcur, tail = hwtail 1784 * Return 1 on reinit. 1785 * 1786 * This routine is only called by the upper half of the kernel. 1787 * It only reads hwcur (which is changed only by the upper half, too) 1788 * and hwtail (which may be changed by the lower half, but only on 1789 * a tx ring and only to increase it, so any error will be recovered 1790 * on the next call). For the above, we don't strictly need to call 1791 * it under lock. 1792 */ 1793 int 1794 netmap_ring_reinit(struct netmap_kring *kring) 1795 { 1796 struct netmap_ring *ring = kring->ring; 1797 u_int i, lim = kring->nkr_num_slots - 1; 1798 int errors = 0; 1799 1800 // XXX KASSERT nm_kr_tryget 1801 nm_prlim(10, "called for %s", kring->name); 1802 // XXX probably wrong to trust userspace 1803 kring->rhead = ring->head; 1804 kring->rcur = ring->cur; 1805 kring->rtail = ring->tail; 1806 1807 if (ring->cur > lim) 1808 errors++; 1809 if (ring->head > lim) 1810 errors++; 1811 if (ring->tail > lim) 1812 errors++; 1813 for (i = 0; i <= lim; i++) { 1814 u_int idx = ring->slot[i].buf_idx; 1815 u_int len = ring->slot[i].len; 1816 if (idx < 2 || idx >= kring->na->na_lut.objtotal) { 1817 nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1818 ring->slot[i].buf_idx = 0; 1819 ring->slot[i].len = 0; 1820 } else if (len > NETMAP_BUF_SIZE(kring->na)) { 1821 ring->slot[i].len = 0; 1822 nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len); 1823 } 1824 } 1825 if (errors) { 1826 nm_prlim(10, "total %d errors", errors); 1827 nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d", 1828 kring->name, 1829 ring->cur, kring->nr_hwcur, 1830 ring->tail, kring->nr_hwtail); 1831 ring->head = kring->rhead = kring->nr_hwcur; 1832 ring->cur = kring->rcur = kring->nr_hwcur; 1833 ring->tail = kring->rtail = kring->nr_hwtail; 1834 } 1835 return (errors ? 1 : 0); 1836 } 1837 1838 /* interpret the ringid and flags fields of an nmreq, by translating them 1839 * into a pair of intervals of ring indices: 1840 * 1841 * [priv->np_txqfirst, priv->np_txqlast) and 1842 * [priv->np_rxqfirst, priv->np_rxqlast) 1843 * 1844 */ 1845 int 1846 netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr) 1847 { 1848 struct netmap_adapter *na = priv->np_na; 1849 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body; 1850 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY }; 1851 enum txrx t; 1852 u_int j; 1853 u_int nr_flags = reg->nr_flags, nr_mode = reg->nr_mode, 1854 nr_ringid = reg->nr_ringid; 1855 1856 for_rx_tx(t) { 1857 if (nr_flags & excluded_direction[t]) { 1858 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1859 continue; 1860 } 1861 switch (nr_mode) { 1862 case NR_REG_ALL_NIC: 1863 case NR_REG_NULL: 1864 priv->np_qfirst[t] = 0; 1865 priv->np_qlast[t] = nma_get_nrings(na, t); 1866 nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t), 1867 priv->np_qfirst[t], priv->np_qlast[t]); 1868 break; 1869 case NR_REG_SW: 1870 case NR_REG_NIC_SW: 1871 if (!(na->na_flags & NAF_HOST_RINGS)) { 1872 nm_prerr("host rings not supported"); 1873 return EINVAL; 1874 } 1875 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ? 1876 nma_get_nrings(na, t) : 0); 1877 priv->np_qlast[t] = netmap_all_rings(na, t); 1878 nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW", 1879 nm_txrx2str(t), 1880 priv->np_qfirst[t], priv->np_qlast[t]); 1881 break; 1882 case NR_REG_ONE_NIC: 1883 if (nr_ringid >= na->num_tx_rings && 1884 nr_ringid >= na->num_rx_rings) { 1885 nm_prerr("invalid ring id %d", nr_ringid); 1886 return EINVAL; 1887 } 1888 /* if not enough rings, use the first one */ 1889 j = nr_ringid; 1890 if (j >= nma_get_nrings(na, t)) 1891 j = 0; 1892 priv->np_qfirst[t] = j; 1893 priv->np_qlast[t] = j + 1; 1894 nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t), 1895 priv->np_qfirst[t], priv->np_qlast[t]); 1896 break; 1897 case NR_REG_ONE_SW: 1898 if (!(na->na_flags & NAF_HOST_RINGS)) { 1899 nm_prerr("host rings not supported"); 1900 return EINVAL; 1901 } 1902 if (nr_ringid >= na->num_host_tx_rings && 1903 nr_ringid >= na->num_host_rx_rings) { 1904 nm_prerr("invalid ring id %d", nr_ringid); 1905 return EINVAL; 1906 } 1907 /* if not enough rings, use the first one */ 1908 j = nr_ringid; 1909 if (j >= nma_get_host_nrings(na, t)) 1910 j = 0; 1911 priv->np_qfirst[t] = nma_get_nrings(na, t) + j; 1912 priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1; 1913 nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t), 1914 priv->np_qfirst[t], priv->np_qlast[t]); 1915 break; 1916 default: 1917 nm_prerr("invalid regif type %d", nr_mode); 1918 return EINVAL; 1919 } 1920 } 1921 priv->np_flags = nr_flags; 1922 1923 /* Allow transparent forwarding mode in the host --> nic 1924 * direction only if all the TX hw rings have been opened. */ 1925 if (priv->np_qfirst[NR_TX] == 0 && 1926 priv->np_qlast[NR_TX] >= na->num_tx_rings) { 1927 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN; 1928 } 1929 1930 if (netmap_verbose) { 1931 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d", 1932 na->name, 1933 priv->np_qfirst[NR_TX], 1934 priv->np_qlast[NR_TX], 1935 priv->np_qfirst[NR_RX], 1936 priv->np_qlast[NR_RX], 1937 nr_ringid); 1938 } 1939 return 0; 1940 } 1941 1942 1943 /* 1944 * Set the ring ID. For devices with a single queue, a request 1945 * for all rings is the same as a single ring. 1946 */ 1947 static int 1948 netmap_set_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr) 1949 { 1950 struct netmap_adapter *na = priv->np_na; 1951 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body; 1952 int error; 1953 enum txrx t; 1954 1955 error = netmap_interp_ringid(priv, hdr); 1956 if (error) { 1957 return error; 1958 } 1959 1960 priv->np_txpoll = (reg->nr_flags & NR_NO_TX_POLL) ? 0 : 1; 1961 1962 /* optimization: count the users registered for more than 1963 * one ring, which are the ones sleeping on the global queue. 1964 * The default netmap_notify() callback will then 1965 * avoid signaling the global queue if nobody is using it 1966 */ 1967 for_rx_tx(t) { 1968 if (nm_si_user(priv, t)) 1969 na->si_users[t]++; 1970 } 1971 return 0; 1972 } 1973 1974 static void 1975 netmap_unset_ringid(struct netmap_priv_d *priv) 1976 { 1977 struct netmap_adapter *na = priv->np_na; 1978 enum txrx t; 1979 1980 for_rx_tx(t) { 1981 if (nm_si_user(priv, t)) 1982 na->si_users[t]--; 1983 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1984 } 1985 priv->np_flags = 0; 1986 priv->np_txpoll = 0; 1987 priv->np_kloop_state = 0; 1988 } 1989 1990 #define within_sel(p_, t_, i_) \ 1991 ((i_) < (p_)->np_qlast[(t_)]) 1992 #define nonempty_sel(p_, t_) \ 1993 (within_sel((p_), (t_), (p_)->np_qfirst[(t_)])) 1994 #define foreach_selected_ring(p_, t_, i_, kring_) \ 1995 for ((t_) = nonempty_sel((p_), NR_RX) ? NR_RX : NR_TX, \ 1996 (i_) = (p_)->np_qfirst[(t_)]; \ 1997 (t_ == NR_RX || \ 1998 (t == NR_TX && within_sel((p_), (t_), (i_)))) && \ 1999 ((kring_) = NMR((p_)->np_na, (t_))[(i_)]); \ 2000 (i_) = within_sel((p_), (t_), (i_) + 1) ? (i_) + 1 : \ 2001 (++(t_) < NR_TXRX ? (p_)->np_qfirst[(t_)] : (i_))) 2002 2003 2004 /* Set the nr_pending_mode for the requested rings. 2005 * If requested, also try to get exclusive access to the rings, provided 2006 * the rings we want to bind are not exclusively owned by a previous bind. 2007 */ 2008 static int 2009 netmap_krings_get(struct netmap_priv_d *priv) 2010 { 2011 struct netmap_adapter *na = priv->np_na; 2012 u_int i; 2013 struct netmap_kring *kring; 2014 int excl = (priv->np_flags & NR_EXCLUSIVE); 2015 enum txrx t; 2016 2017 if (netmap_debug & NM_DEBUG_ON) 2018 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)", 2019 na->name, 2020 priv->np_qfirst[NR_TX], 2021 priv->np_qlast[NR_TX], 2022 priv->np_qfirst[NR_RX], 2023 priv->np_qlast[NR_RX]); 2024 2025 /* first round: check that all the requested rings 2026 * are neither alread exclusively owned, nor we 2027 * want exclusive ownership when they are already in use 2028 */ 2029 foreach_selected_ring(priv, t, i, kring) { 2030 if ((kring->nr_kflags & NKR_EXCLUSIVE) || 2031 (kring->users && excl)) 2032 { 2033 nm_prdis("ring %s busy", kring->name); 2034 return EBUSY; 2035 } 2036 } 2037 2038 /* second round: increment usage count (possibly marking them 2039 * as exclusive) and set the nr_pending_mode 2040 */ 2041 foreach_selected_ring(priv, t, i, kring) { 2042 kring->users++; 2043 if (excl) 2044 kring->nr_kflags |= NKR_EXCLUSIVE; 2045 kring->nr_pending_mode = NKR_NETMAP_ON; 2046 } 2047 2048 return 0; 2049 2050 } 2051 2052 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode 2053 * if was asked on regif, and unset the nr_pending_mode if we are the 2054 * last users of the involved rings. */ 2055 static void 2056 netmap_krings_put(struct netmap_priv_d *priv) 2057 { 2058 u_int i; 2059 struct netmap_kring *kring; 2060 int excl = (priv->np_flags & NR_EXCLUSIVE); 2061 enum txrx t; 2062 2063 nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)", 2064 na->name, 2065 priv->np_qfirst[NR_TX], 2066 priv->np_qlast[NR_TX], 2067 priv->np_qfirst[NR_RX], 2068 priv->np_qlast[MR_RX]); 2069 2070 foreach_selected_ring(priv, t, i, kring) { 2071 if (excl) 2072 kring->nr_kflags &= ~NKR_EXCLUSIVE; 2073 kring->users--; 2074 if (kring->users == 0) 2075 kring->nr_pending_mode = NKR_NETMAP_OFF; 2076 } 2077 } 2078 2079 static int 2080 nm_priv_rx_enabled(struct netmap_priv_d *priv) 2081 { 2082 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]); 2083 } 2084 2085 /* Validate the CSB entries for both directions (atok and ktoa). 2086 * To be called under NMG_LOCK(). */ 2087 static int 2088 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo) 2089 { 2090 struct nm_csb_atok *csb_atok_base = 2091 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok; 2092 struct nm_csb_ktoa *csb_ktoa_base = 2093 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa; 2094 enum txrx t; 2095 int num_rings[NR_TXRX], tot_rings; 2096 size_t entry_size[2]; 2097 void *csb_start[2]; 2098 int i; 2099 2100 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) { 2101 nm_prerr("Cannot update CSB while kloop is running"); 2102 return EBUSY; 2103 } 2104 2105 tot_rings = 0; 2106 for_rx_tx(t) { 2107 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t]; 2108 tot_rings += num_rings[t]; 2109 } 2110 if (tot_rings <= 0) 2111 return 0; 2112 2113 if (!(priv->np_flags & NR_EXCLUSIVE)) { 2114 nm_prerr("CSB mode requires NR_EXCLUSIVE"); 2115 return EINVAL; 2116 } 2117 2118 entry_size[0] = sizeof(*csb_atok_base); 2119 entry_size[1] = sizeof(*csb_ktoa_base); 2120 csb_start[0] = (void *)csb_atok_base; 2121 csb_start[1] = (void *)csb_ktoa_base; 2122 2123 for (i = 0; i < 2; i++) { 2124 /* On Linux we could use access_ok() to simplify 2125 * the validation. However, the advantage of 2126 * this approach is that it works also on 2127 * FreeBSD. */ 2128 size_t csb_size = tot_rings * entry_size[i]; 2129 void *tmp; 2130 int err; 2131 2132 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) { 2133 nm_prerr("Unaligned CSB address"); 2134 return EINVAL; 2135 } 2136 2137 tmp = nm_os_malloc(csb_size); 2138 if (!tmp) 2139 return ENOMEM; 2140 if (i == 0) { 2141 /* Application --> kernel direction. */ 2142 err = copyin(csb_start[i], tmp, csb_size); 2143 } else { 2144 /* Kernel --> application direction. */ 2145 memset(tmp, 0, csb_size); 2146 err = copyout(tmp, csb_start[i], csb_size); 2147 } 2148 nm_os_free(tmp); 2149 if (err) { 2150 nm_prerr("Invalid CSB address"); 2151 return err; 2152 } 2153 } 2154 2155 priv->np_csb_atok_base = csb_atok_base; 2156 priv->np_csb_ktoa_base = csb_ktoa_base; 2157 2158 /* Initialize the CSB. */ 2159 for_rx_tx(t) { 2160 for (i = 0; i < num_rings[t]; i++) { 2161 struct netmap_kring *kring = 2162 NMR(priv->np_na, t)[i + priv->np_qfirst[t]]; 2163 struct nm_csb_atok *csb_atok = csb_atok_base + i; 2164 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i; 2165 2166 if (t == NR_RX) { 2167 csb_atok += num_rings[NR_TX]; 2168 csb_ktoa += num_rings[NR_TX]; 2169 } 2170 2171 CSB_WRITE(csb_atok, head, kring->rhead); 2172 CSB_WRITE(csb_atok, cur, kring->rcur); 2173 CSB_WRITE(csb_atok, appl_need_kick, 1); 2174 CSB_WRITE(csb_atok, sync_flags, 1); 2175 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur); 2176 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail); 2177 CSB_WRITE(csb_ktoa, kern_need_kick, 1); 2178 2179 nm_prinf("csb_init for kring %s: head %u, cur %u, " 2180 "hwcur %u, hwtail %u", kring->name, 2181 kring->rhead, kring->rcur, kring->nr_hwcur, 2182 kring->nr_hwtail); 2183 } 2184 } 2185 2186 return 0; 2187 } 2188 2189 /* Ensure that the netmap adapter can support the given MTU. 2190 * @return EINVAL if the na cannot be set to mtu, 0 otherwise. 2191 */ 2192 int 2193 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) { 2194 unsigned nbs = NETMAP_BUF_SIZE(na); 2195 2196 if (mtu <= na->rx_buf_maxsize) { 2197 /* The MTU fits a single NIC slot. We only 2198 * Need to check that netmap buffers are 2199 * large enough to hold an MTU. NS_MOREFRAG 2200 * cannot be used in this case. */ 2201 if (nbs < mtu) { 2202 nm_prerr("error: netmap buf size (%u) " 2203 "< device MTU (%u)", nbs, mtu); 2204 return EINVAL; 2205 } 2206 } else { 2207 /* More NIC slots may be needed to receive 2208 * or transmit a single packet. Check that 2209 * the adapter supports NS_MOREFRAG and that 2210 * netmap buffers are large enough to hold 2211 * the maximum per-slot size. */ 2212 if (!(na->na_flags & NAF_MOREFRAG)) { 2213 nm_prerr("error: large MTU (%d) needed " 2214 "but %s does not support " 2215 "NS_MOREFRAG", mtu, 2216 na->ifp->if_xname); 2217 return EINVAL; 2218 } else if (nbs < na->rx_buf_maxsize) { 2219 nm_prerr("error: using NS_MOREFRAG on " 2220 "%s requires netmap buf size " 2221 ">= %u", na->ifp->if_xname, 2222 na->rx_buf_maxsize); 2223 return EINVAL; 2224 } else { 2225 nm_prinf("info: netmap application on " 2226 "%s needs to support " 2227 "NS_MOREFRAG " 2228 "(MTU=%u,netmap_buf_size=%u)", 2229 na->ifp->if_xname, mtu, nbs); 2230 } 2231 } 2232 return 0; 2233 } 2234 2235 2236 /* 2237 * possibly move the interface to netmap-mode. 2238 * If success it returns a pointer to netmap_if, otherwise NULL. 2239 * This must be called with NMG_LOCK held. 2240 * 2241 * The following na callbacks are called in the process: 2242 * 2243 * na->nm_config() [by netmap_update_config] 2244 * (get current number and size of rings) 2245 * 2246 * We have a generic one for linux (netmap_linux_config). 2247 * The bwrap has to override this, since it has to forward 2248 * the request to the wrapped adapter (netmap_bwrap_config). 2249 * 2250 * 2251 * na->nm_krings_create() 2252 * (create and init the krings array) 2253 * 2254 * One of the following: 2255 * 2256 * * netmap_hw_krings_create, (hw ports) 2257 * creates the standard layout for the krings 2258 * and adds the mbq (used for the host rings). 2259 * 2260 * * netmap_vp_krings_create (VALE ports) 2261 * add leases and scratchpads 2262 * 2263 * * netmap_pipe_krings_create (pipes) 2264 * create the krings and rings of both ends and 2265 * cross-link them 2266 * 2267 * * netmap_monitor_krings_create (monitors) 2268 * avoid allocating the mbq 2269 * 2270 * * netmap_bwrap_krings_create (bwraps) 2271 * create both the brap krings array, 2272 * the krings array of the wrapped adapter, and 2273 * (if needed) the fake array for the host adapter 2274 * 2275 * na->nm_register(, 1) 2276 * (put the adapter in netmap mode) 2277 * 2278 * This may be one of the following: 2279 * 2280 * * netmap_hw_reg (hw ports) 2281 * checks that the ifp is still there, then calls 2282 * the hardware specific callback; 2283 * 2284 * * netmap_vp_reg (VALE ports) 2285 * If the port is connected to a bridge, 2286 * set the NAF_NETMAP_ON flag under the 2287 * bridge write lock. 2288 * 2289 * * netmap_pipe_reg (pipes) 2290 * inform the other pipe end that it is no 2291 * longer responsible for the lifetime of this 2292 * pipe end 2293 * 2294 * * netmap_monitor_reg (monitors) 2295 * intercept the sync callbacks of the monitored 2296 * rings 2297 * 2298 * * netmap_bwrap_reg (bwraps) 2299 * cross-link the bwrap and hwna rings, 2300 * forward the request to the hwna, override 2301 * the hwna notify callback (to get the frames 2302 * coming from outside go through the bridge). 2303 * 2304 * 2305 */ 2306 int 2307 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 2308 struct nmreq_header *hdr) 2309 { 2310 struct netmap_if *nifp = NULL; 2311 int error; 2312 2313 NMG_LOCK_ASSERT(); 2314 priv->np_na = na; /* store the reference */ 2315 error = netmap_mem_finalize(na->nm_mem, na); 2316 if (error) 2317 goto err; 2318 2319 if (na->active_fds == 0) { 2320 2321 /* cache the allocator info in the na */ 2322 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut); 2323 if (error) 2324 goto err_drop_mem; 2325 nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal, 2326 na->na_lut.objsize); 2327 2328 /* ring configuration may have changed, fetch from the card */ 2329 netmap_update_config(na); 2330 } 2331 2332 /* compute the range of tx and rx rings to monitor */ 2333 error = netmap_set_ringid(priv, hdr); 2334 if (error) 2335 goto err_put_lut; 2336 2337 if (na->active_fds == 0) { 2338 /* 2339 * If this is the first registration of the adapter, 2340 * perform sanity checks and create the in-kernel view 2341 * of the netmap rings (the netmap krings). 2342 */ 2343 if (na->ifp && nm_priv_rx_enabled(priv)) { 2344 /* This netmap adapter is attached to an ifnet. */ 2345 unsigned mtu = nm_os_ifnet_mtu(na->ifp); 2346 2347 nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d", 2348 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na)); 2349 2350 if (na->rx_buf_maxsize == 0) { 2351 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name); 2352 error = EIO; 2353 goto err_drop_mem; 2354 } 2355 2356 error = netmap_buf_size_validate(na, mtu); 2357 if (error) 2358 goto err_drop_mem; 2359 } 2360 2361 /* 2362 * Depending on the adapter, this may also create 2363 * the netmap rings themselves 2364 */ 2365 error = na->nm_krings_create(na); 2366 if (error) 2367 goto err_put_lut; 2368 2369 } 2370 2371 /* now the krings must exist and we can check whether some 2372 * previous bind has exclusive ownership on them, and set 2373 * nr_pending_mode 2374 */ 2375 error = netmap_krings_get(priv); 2376 if (error) 2377 goto err_del_krings; 2378 2379 /* create all needed missing netmap rings */ 2380 error = netmap_mem_rings_create(na); 2381 if (error) 2382 goto err_rel_excl; 2383 2384 /* in all cases, create a new netmap if */ 2385 nifp = netmap_mem_if_new(na, priv); 2386 if (nifp == NULL) { 2387 error = ENOMEM; 2388 goto err_rel_excl; 2389 } 2390 2391 if (nm_kring_pending(priv)) { 2392 /* Some kring is switching mode, tell the adapter to 2393 * react on this. */ 2394 error = na->nm_register(na, 1); 2395 if (error) 2396 goto err_del_if; 2397 } 2398 2399 /* Commit the reference. */ 2400 na->active_fds++; 2401 2402 /* 2403 * advertise that the interface is ready by setting np_nifp. 2404 * The barrier is needed because readers (poll, *SYNC and mmap) 2405 * check for priv->np_nifp != NULL without locking 2406 */ 2407 mb(); /* make sure previous writes are visible to all CPUs */ 2408 priv->np_nifp = nifp; 2409 2410 return 0; 2411 2412 err_del_if: 2413 netmap_mem_if_delete(na, nifp); 2414 err_rel_excl: 2415 netmap_krings_put(priv); 2416 netmap_mem_rings_delete(na); 2417 err_del_krings: 2418 if (na->active_fds == 0) 2419 na->nm_krings_delete(na); 2420 err_put_lut: 2421 if (na->active_fds == 0) 2422 memset(&na->na_lut, 0, sizeof(na->na_lut)); 2423 err_drop_mem: 2424 netmap_mem_drop(na); 2425 err: 2426 priv->np_na = NULL; 2427 return error; 2428 } 2429 2430 2431 /* 2432 * update kring and ring at the end of rxsync/txsync. 2433 */ 2434 static inline void 2435 nm_sync_finalize(struct netmap_kring *kring) 2436 { 2437 /* 2438 * Update ring tail to what the kernel knows 2439 * After txsync: head/rhead/hwcur might be behind cur/rcur 2440 * if no carrier. 2441 */ 2442 kring->ring->tail = kring->rtail = kring->nr_hwtail; 2443 2444 nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 2445 kring->name, kring->nr_hwcur, kring->nr_hwtail, 2446 kring->rhead, kring->rcur, kring->rtail); 2447 } 2448 2449 /* set ring timestamp */ 2450 static inline void 2451 ring_timestamp_set(struct netmap_ring *ring) 2452 { 2453 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) { 2454 microtime(&ring->ts); 2455 } 2456 } 2457 2458 static int nmreq_copyin(struct nmreq_header *, int); 2459 static int nmreq_copyout(struct nmreq_header *, int); 2460 static int nmreq_checkoptions(struct nmreq_header *); 2461 2462 /* 2463 * ioctl(2) support for the "netmap" device. 2464 * 2465 * Following a list of accepted commands: 2466 * - NIOCCTRL device control API 2467 * - NIOCTXSYNC sync TX rings 2468 * - NIOCRXSYNC sync RX rings 2469 * - SIOCGIFADDR just for convenience 2470 * - NIOCGINFO deprecated (legacy API) 2471 * - NIOCREGIF deprecated (legacy API) 2472 * 2473 * Return 0 on success, errno otherwise. 2474 */ 2475 int 2476 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 2477 struct thread *td, int nr_body_is_user) 2478 { 2479 struct mbq q; /* packets from RX hw queues to host stack */ 2480 struct netmap_adapter *na = NULL; 2481 struct netmap_mem_d *nmd = NULL; 2482 struct ifnet *ifp = NULL; 2483 int error = 0; 2484 u_int i, qfirst, qlast; 2485 struct netmap_kring **krings; 2486 int sync_flags; 2487 enum txrx t; 2488 2489 switch (cmd) { 2490 case NIOCCTRL: { 2491 struct nmreq_header *hdr = (struct nmreq_header *)data; 2492 2493 if (hdr->nr_version < NETMAP_MIN_API || 2494 hdr->nr_version > NETMAP_MAX_API) { 2495 nm_prerr("API mismatch: got %d need %d", 2496 hdr->nr_version, NETMAP_API); 2497 return EINVAL; 2498 } 2499 2500 /* Make a kernel-space copy of the user-space nr_body. 2501 * For convenince, the nr_body pointer and the pointers 2502 * in the options list will be replaced with their 2503 * kernel-space counterparts. The original pointers are 2504 * saved internally and later restored by nmreq_copyout 2505 */ 2506 error = nmreq_copyin(hdr, nr_body_is_user); 2507 if (error) { 2508 return error; 2509 } 2510 2511 /* Sanitize hdr->nr_name. */ 2512 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0'; 2513 2514 switch (hdr->nr_reqtype) { 2515 case NETMAP_REQ_REGISTER: { 2516 struct nmreq_register *req = 2517 (struct nmreq_register *)(uintptr_t)hdr->nr_body; 2518 struct netmap_if *nifp; 2519 2520 /* Protect access to priv from concurrent requests. */ 2521 NMG_LOCK(); 2522 do { 2523 struct nmreq_option *opt; 2524 u_int memflags; 2525 2526 if (priv->np_nifp != NULL) { /* thread already registered */ 2527 error = EBUSY; 2528 break; 2529 } 2530 2531 #ifdef WITH_EXTMEM 2532 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM); 2533 if (opt != NULL) { 2534 struct nmreq_opt_extmem *e = 2535 (struct nmreq_opt_extmem *)opt; 2536 2537 nmd = netmap_mem_ext_create(e->nro_usrptr, 2538 &e->nro_info, &error); 2539 opt->nro_status = error; 2540 if (nmd == NULL) 2541 break; 2542 } 2543 #endif /* WITH_EXTMEM */ 2544 2545 if (nmd == NULL && req->nr_mem_id) { 2546 /* find the allocator and get a reference */ 2547 nmd = netmap_mem_find(req->nr_mem_id); 2548 if (nmd == NULL) { 2549 if (netmap_verbose) { 2550 nm_prerr("%s: failed to find mem_id %u", 2551 hdr->nr_name, req->nr_mem_id); 2552 } 2553 error = EINVAL; 2554 break; 2555 } 2556 } 2557 /* find the interface and a reference */ 2558 error = netmap_get_na(hdr, &na, &ifp, nmd, 2559 1 /* create */); /* keep reference */ 2560 if (error) 2561 break; 2562 if (NETMAP_OWNED_BY_KERN(na)) { 2563 error = EBUSY; 2564 break; 2565 } 2566 2567 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) { 2568 nm_prerr("virt_hdr_len=%d, but application does " 2569 "not accept it", na->virt_hdr_len); 2570 error = EIO; 2571 break; 2572 } 2573 2574 error = netmap_do_regif(priv, na, hdr); 2575 if (error) { /* reg. failed, release priv and ref */ 2576 break; 2577 } 2578 2579 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 2580 if (opt != NULL) { 2581 struct nmreq_opt_csb *csbo = 2582 (struct nmreq_opt_csb *)opt; 2583 error = netmap_csb_validate(priv, csbo); 2584 opt->nro_status = error; 2585 if (error) { 2586 netmap_do_unregif(priv); 2587 break; 2588 } 2589 } 2590 2591 nifp = priv->np_nifp; 2592 2593 /* return the offset of the netmap_if object */ 2594 req->nr_rx_rings = na->num_rx_rings; 2595 req->nr_tx_rings = na->num_tx_rings; 2596 req->nr_rx_slots = na->num_rx_desc; 2597 req->nr_tx_slots = na->num_tx_desc; 2598 req->nr_host_tx_rings = na->num_host_tx_rings; 2599 req->nr_host_rx_rings = na->num_host_rx_rings; 2600 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags, 2601 &req->nr_mem_id); 2602 if (error) { 2603 netmap_do_unregif(priv); 2604 break; 2605 } 2606 if (memflags & NETMAP_MEM_PRIVATE) { 2607 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 2608 } 2609 for_rx_tx(t) { 2610 priv->np_si[t] = nm_si_user(priv, t) ? 2611 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si; 2612 } 2613 2614 if (req->nr_extra_bufs) { 2615 if (netmap_verbose) 2616 nm_prinf("requested %d extra buffers", 2617 req->nr_extra_bufs); 2618 req->nr_extra_bufs = netmap_extra_alloc(na, 2619 &nifp->ni_bufs_head, req->nr_extra_bufs); 2620 if (netmap_verbose) 2621 nm_prinf("got %d extra buffers", req->nr_extra_bufs); 2622 } 2623 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 2624 2625 error = nmreq_checkoptions(hdr); 2626 if (error) { 2627 netmap_do_unregif(priv); 2628 break; 2629 } 2630 2631 /* store ifp reference so that priv destructor may release it */ 2632 priv->np_ifp = ifp; 2633 } while (0); 2634 if (error) { 2635 netmap_unget_na(na, ifp); 2636 } 2637 /* release the reference from netmap_mem_find() or 2638 * netmap_mem_ext_create() 2639 */ 2640 if (nmd) 2641 netmap_mem_put(nmd); 2642 NMG_UNLOCK(); 2643 break; 2644 } 2645 2646 case NETMAP_REQ_PORT_INFO_GET: { 2647 struct nmreq_port_info_get *req = 2648 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body; 2649 2650 NMG_LOCK(); 2651 do { 2652 u_int memflags; 2653 2654 if (hdr->nr_name[0] != '\0') { 2655 /* Build a nmreq_register out of the nmreq_port_info_get, 2656 * so that we can call netmap_get_na(). */ 2657 struct nmreq_register regreq; 2658 bzero(®req, sizeof(regreq)); 2659 regreq.nr_mode = NR_REG_ALL_NIC; 2660 regreq.nr_tx_slots = req->nr_tx_slots; 2661 regreq.nr_rx_slots = req->nr_rx_slots; 2662 regreq.nr_tx_rings = req->nr_tx_rings; 2663 regreq.nr_rx_rings = req->nr_rx_rings; 2664 regreq.nr_host_tx_rings = req->nr_host_tx_rings; 2665 regreq.nr_host_rx_rings = req->nr_host_rx_rings; 2666 regreq.nr_mem_id = req->nr_mem_id; 2667 2668 /* get a refcount */ 2669 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2670 hdr->nr_body = (uintptr_t)®req; 2671 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2672 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */ 2673 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2674 if (error) { 2675 na = NULL; 2676 ifp = NULL; 2677 break; 2678 } 2679 nmd = na->nm_mem; /* get memory allocator */ 2680 } else { 2681 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1); 2682 if (nmd == NULL) { 2683 if (netmap_verbose) 2684 nm_prerr("%s: failed to find mem_id %u", 2685 hdr->nr_name, 2686 req->nr_mem_id ? req->nr_mem_id : 1); 2687 error = EINVAL; 2688 break; 2689 } 2690 } 2691 2692 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags, 2693 &req->nr_mem_id); 2694 if (error) 2695 break; 2696 if (na == NULL) /* only memory info */ 2697 break; 2698 netmap_update_config(na); 2699 req->nr_rx_rings = na->num_rx_rings; 2700 req->nr_tx_rings = na->num_tx_rings; 2701 req->nr_rx_slots = na->num_rx_desc; 2702 req->nr_tx_slots = na->num_tx_desc; 2703 req->nr_host_tx_rings = na->num_host_tx_rings; 2704 req->nr_host_rx_rings = na->num_host_rx_rings; 2705 } while (0); 2706 netmap_unget_na(na, ifp); 2707 NMG_UNLOCK(); 2708 break; 2709 } 2710 #ifdef WITH_VALE 2711 case NETMAP_REQ_VALE_ATTACH: { 2712 error = netmap_vale_attach(hdr, NULL /* userspace request */); 2713 break; 2714 } 2715 2716 case NETMAP_REQ_VALE_DETACH: { 2717 error = netmap_vale_detach(hdr, NULL /* userspace request */); 2718 break; 2719 } 2720 2721 case NETMAP_REQ_VALE_LIST: { 2722 error = netmap_vale_list(hdr); 2723 break; 2724 } 2725 2726 case NETMAP_REQ_PORT_HDR_SET: { 2727 struct nmreq_port_hdr *req = 2728 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2729 /* Build a nmreq_register out of the nmreq_port_hdr, 2730 * so that we can call netmap_get_bdg_na(). */ 2731 struct nmreq_register regreq; 2732 bzero(®req, sizeof(regreq)); 2733 regreq.nr_mode = NR_REG_ALL_NIC; 2734 2735 /* For now we only support virtio-net headers, and only for 2736 * VALE ports, but this may change in future. Valid lengths 2737 * for the virtio-net header are 0 (no header), 10 and 12. */ 2738 if (req->nr_hdr_len != 0 && 2739 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) && 2740 req->nr_hdr_len != 12) { 2741 if (netmap_verbose) 2742 nm_prerr("invalid hdr_len %u", req->nr_hdr_len); 2743 error = EINVAL; 2744 break; 2745 } 2746 NMG_LOCK(); 2747 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2748 hdr->nr_body = (uintptr_t)®req; 2749 error = netmap_get_vale_na(hdr, &na, NULL, 0); 2750 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET; 2751 hdr->nr_body = (uintptr_t)req; 2752 if (na && !error) { 2753 struct netmap_vp_adapter *vpna = 2754 (struct netmap_vp_adapter *)na; 2755 na->virt_hdr_len = req->nr_hdr_len; 2756 if (na->virt_hdr_len) { 2757 vpna->mfs = NETMAP_BUF_SIZE(na); 2758 } 2759 if (netmap_verbose) 2760 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na); 2761 netmap_adapter_put(na); 2762 } else if (!na) { 2763 error = ENXIO; 2764 } 2765 NMG_UNLOCK(); 2766 break; 2767 } 2768 2769 case NETMAP_REQ_PORT_HDR_GET: { 2770 /* Get vnet-header length for this netmap port */ 2771 struct nmreq_port_hdr *req = 2772 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2773 /* Build a nmreq_register out of the nmreq_port_hdr, 2774 * so that we can call netmap_get_bdg_na(). */ 2775 struct nmreq_register regreq; 2776 struct ifnet *ifp; 2777 2778 bzero(®req, sizeof(regreq)); 2779 regreq.nr_mode = NR_REG_ALL_NIC; 2780 NMG_LOCK(); 2781 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2782 hdr->nr_body = (uintptr_t)®req; 2783 error = netmap_get_na(hdr, &na, &ifp, NULL, 0); 2784 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET; 2785 hdr->nr_body = (uintptr_t)req; 2786 if (na && !error) { 2787 req->nr_hdr_len = na->virt_hdr_len; 2788 } 2789 netmap_unget_na(na, ifp); 2790 NMG_UNLOCK(); 2791 break; 2792 } 2793 2794 case NETMAP_REQ_VALE_NEWIF: { 2795 error = nm_vi_create(hdr); 2796 break; 2797 } 2798 2799 case NETMAP_REQ_VALE_DELIF: { 2800 error = nm_vi_destroy(hdr->nr_name); 2801 break; 2802 } 2803 2804 case NETMAP_REQ_VALE_POLLING_ENABLE: 2805 case NETMAP_REQ_VALE_POLLING_DISABLE: { 2806 error = nm_bdg_polling(hdr); 2807 break; 2808 } 2809 #endif /* WITH_VALE */ 2810 case NETMAP_REQ_POOLS_INFO_GET: { 2811 /* Get information from the memory allocator used for 2812 * hdr->nr_name. */ 2813 struct nmreq_pools_info *req = 2814 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body; 2815 NMG_LOCK(); 2816 do { 2817 /* Build a nmreq_register out of the nmreq_pools_info, 2818 * so that we can call netmap_get_na(). */ 2819 struct nmreq_register regreq; 2820 bzero(®req, sizeof(regreq)); 2821 regreq.nr_mem_id = req->nr_mem_id; 2822 regreq.nr_mode = NR_REG_ALL_NIC; 2823 2824 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2825 hdr->nr_body = (uintptr_t)®req; 2826 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2827 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */ 2828 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2829 if (error) { 2830 na = NULL; 2831 ifp = NULL; 2832 break; 2833 } 2834 nmd = na->nm_mem; /* grab the memory allocator */ 2835 if (nmd == NULL) { 2836 error = EINVAL; 2837 break; 2838 } 2839 2840 /* Finalize the memory allocator, get the pools 2841 * information and release the allocator. */ 2842 error = netmap_mem_finalize(nmd, na); 2843 if (error) { 2844 break; 2845 } 2846 error = netmap_mem_pools_info_get(req, nmd); 2847 netmap_mem_drop(na); 2848 } while (0); 2849 netmap_unget_na(na, ifp); 2850 NMG_UNLOCK(); 2851 break; 2852 } 2853 2854 case NETMAP_REQ_CSB_ENABLE: { 2855 struct nmreq_option *opt; 2856 2857 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 2858 if (opt == NULL) { 2859 error = EINVAL; 2860 } else { 2861 struct nmreq_opt_csb *csbo = 2862 (struct nmreq_opt_csb *)opt; 2863 NMG_LOCK(); 2864 error = netmap_csb_validate(priv, csbo); 2865 NMG_UNLOCK(); 2866 opt->nro_status = error; 2867 } 2868 break; 2869 } 2870 2871 case NETMAP_REQ_SYNC_KLOOP_START: { 2872 error = netmap_sync_kloop(priv, hdr); 2873 break; 2874 } 2875 2876 case NETMAP_REQ_SYNC_KLOOP_STOP: { 2877 error = netmap_sync_kloop_stop(priv); 2878 break; 2879 } 2880 2881 default: { 2882 error = EINVAL; 2883 break; 2884 } 2885 } 2886 /* Write back request body to userspace and reset the 2887 * user-space pointer. */ 2888 error = nmreq_copyout(hdr, error); 2889 break; 2890 } 2891 2892 case NIOCTXSYNC: 2893 case NIOCRXSYNC: { 2894 if (unlikely(priv->np_nifp == NULL)) { 2895 error = ENXIO; 2896 break; 2897 } 2898 mb(); /* make sure following reads are not from cache */ 2899 2900 if (unlikely(priv->np_csb_atok_base)) { 2901 nm_prerr("Invalid sync in CSB mode"); 2902 error = EBUSY; 2903 break; 2904 } 2905 2906 na = priv->np_na; /* we have a reference */ 2907 2908 mbq_init(&q); 2909 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX); 2910 krings = NMR(na, t); 2911 qfirst = priv->np_qfirst[t]; 2912 qlast = priv->np_qlast[t]; 2913 sync_flags = priv->np_sync_flags; 2914 2915 for (i = qfirst; i < qlast; i++) { 2916 struct netmap_kring *kring = krings[i]; 2917 struct netmap_ring *ring = kring->ring; 2918 2919 if (unlikely(nm_kr_tryget(kring, 1, &error))) { 2920 error = (error ? EIO : 0); 2921 continue; 2922 } 2923 2924 if (cmd == NIOCTXSYNC) { 2925 if (netmap_debug & NM_DEBUG_TXSYNC) 2926 nm_prinf("pre txsync ring %d cur %d hwcur %d", 2927 i, ring->cur, 2928 kring->nr_hwcur); 2929 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2930 netmap_ring_reinit(kring); 2931 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) { 2932 nm_sync_finalize(kring); 2933 } 2934 if (netmap_debug & NM_DEBUG_TXSYNC) 2935 nm_prinf("post txsync ring %d cur %d hwcur %d", 2936 i, ring->cur, 2937 kring->nr_hwcur); 2938 } else { 2939 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2940 netmap_ring_reinit(kring); 2941 } 2942 if (nm_may_forward_up(kring)) { 2943 /* transparent forwarding, see netmap_poll() */ 2944 netmap_grab_packets(kring, &q, netmap_fwd); 2945 } 2946 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) { 2947 nm_sync_finalize(kring); 2948 } 2949 ring_timestamp_set(ring); 2950 } 2951 nm_kr_put(kring); 2952 } 2953 2954 if (mbq_peek(&q)) { 2955 netmap_send_up(na->ifp, &q); 2956 } 2957 2958 break; 2959 } 2960 2961 default: { 2962 return netmap_ioctl_legacy(priv, cmd, data, td); 2963 break; 2964 } 2965 } 2966 2967 return (error); 2968 } 2969 2970 size_t 2971 nmreq_size_by_type(uint16_t nr_reqtype) 2972 { 2973 switch (nr_reqtype) { 2974 case NETMAP_REQ_REGISTER: 2975 return sizeof(struct nmreq_register); 2976 case NETMAP_REQ_PORT_INFO_GET: 2977 return sizeof(struct nmreq_port_info_get); 2978 case NETMAP_REQ_VALE_ATTACH: 2979 return sizeof(struct nmreq_vale_attach); 2980 case NETMAP_REQ_VALE_DETACH: 2981 return sizeof(struct nmreq_vale_detach); 2982 case NETMAP_REQ_VALE_LIST: 2983 return sizeof(struct nmreq_vale_list); 2984 case NETMAP_REQ_PORT_HDR_SET: 2985 case NETMAP_REQ_PORT_HDR_GET: 2986 return sizeof(struct nmreq_port_hdr); 2987 case NETMAP_REQ_VALE_NEWIF: 2988 return sizeof(struct nmreq_vale_newif); 2989 case NETMAP_REQ_VALE_DELIF: 2990 case NETMAP_REQ_SYNC_KLOOP_STOP: 2991 case NETMAP_REQ_CSB_ENABLE: 2992 return 0; 2993 case NETMAP_REQ_VALE_POLLING_ENABLE: 2994 case NETMAP_REQ_VALE_POLLING_DISABLE: 2995 return sizeof(struct nmreq_vale_polling); 2996 case NETMAP_REQ_POOLS_INFO_GET: 2997 return sizeof(struct nmreq_pools_info); 2998 case NETMAP_REQ_SYNC_KLOOP_START: 2999 return sizeof(struct nmreq_sync_kloop_start); 3000 } 3001 return 0; 3002 } 3003 3004 static size_t 3005 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size) 3006 { 3007 size_t rv = sizeof(struct nmreq_option); 3008 #ifdef NETMAP_REQ_OPT_DEBUG 3009 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG) 3010 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG); 3011 #endif /* NETMAP_REQ_OPT_DEBUG */ 3012 switch (nro_reqtype) { 3013 #ifdef WITH_EXTMEM 3014 case NETMAP_REQ_OPT_EXTMEM: 3015 rv = sizeof(struct nmreq_opt_extmem); 3016 break; 3017 #endif /* WITH_EXTMEM */ 3018 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS: 3019 if (nro_size >= rv) 3020 rv = nro_size; 3021 break; 3022 case NETMAP_REQ_OPT_CSB: 3023 rv = sizeof(struct nmreq_opt_csb); 3024 break; 3025 case NETMAP_REQ_OPT_SYNC_KLOOP_MODE: 3026 rv = sizeof(struct nmreq_opt_sync_kloop_mode); 3027 break; 3028 } 3029 /* subtract the common header */ 3030 return rv - sizeof(struct nmreq_option); 3031 } 3032 3033 /* 3034 * nmreq_copyin: create an in-kernel version of the request. 3035 * 3036 * We build the following data structure: 3037 * 3038 * hdr -> +-------+ buf 3039 * | | +---------------+ 3040 * +-------+ |usr body ptr | 3041 * |options|-. +---------------+ 3042 * +-------+ | |usr options ptr| 3043 * |body |--------->+---------------+ 3044 * +-------+ | | | 3045 * | | copy of body | 3046 * | | | 3047 * | +---------------+ 3048 * | | NULL | 3049 * | +---------------+ 3050 * | .---| |\ 3051 * | | +---------------+ | 3052 * | .------| | | 3053 * | | | +---------------+ \ option table 3054 * | | | | ... | / indexed by option 3055 * | | | +---------------+ | type 3056 * | | | | | | 3057 * | | | +---------------+/ 3058 * | | | |usr next ptr 1 | 3059 * `-|----->+---------------+ 3060 * | | | copy of opt 1 | 3061 * | | | | 3062 * | | .-| nro_next | 3063 * | | | +---------------+ 3064 * | | | |usr next ptr 2 | 3065 * | `-`>+---------------+ 3066 * | | copy of opt 2 | 3067 * | | | 3068 * | .-| nro_next | 3069 * | | +---------------+ 3070 * | | | | 3071 * ~ ~ ~ ... ~ 3072 * | .-| | 3073 * `----->+---------------+ 3074 * | |usr next ptr n | 3075 * `>+---------------+ 3076 * | copy of opt n | 3077 * | | 3078 * | nro_next(NULL)| 3079 * +---------------+ 3080 * 3081 * The options and body fields of the hdr structure are overwritten 3082 * with in-kernel valid pointers inside the buf. The original user 3083 * pointers are saved in the buf and restored on copyout. 3084 * The list of options is copied and the pointers adjusted. The 3085 * original pointers are saved before the option they belonged. 3086 * 3087 * The option table has an entry for every availabe option. Entries 3088 * for options that have not been passed contain NULL. 3089 * 3090 */ 3091 3092 int 3093 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user) 3094 { 3095 size_t rqsz, optsz, bufsz; 3096 int error = 0; 3097 char *ker = NULL, *p; 3098 struct nmreq_option **next, *src, **opt_tab; 3099 struct nmreq_option buf; 3100 uint64_t *ptrs; 3101 3102 if (hdr->nr_reserved) { 3103 if (netmap_verbose) 3104 nm_prerr("nr_reserved must be zero"); 3105 return EINVAL; 3106 } 3107 3108 if (!nr_body_is_user) 3109 return 0; 3110 3111 hdr->nr_reserved = nr_body_is_user; 3112 3113 /* compute the total size of the buffer */ 3114 rqsz = nmreq_size_by_type(hdr->nr_reqtype); 3115 if (rqsz > NETMAP_REQ_MAXSIZE) { 3116 error = EMSGSIZE; 3117 goto out_err; 3118 } 3119 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) || 3120 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) { 3121 /* Request body expected, but not found; or 3122 * request body found but unexpected. */ 3123 if (netmap_verbose) 3124 nm_prerr("nr_body expected but not found, or vice versa"); 3125 error = EINVAL; 3126 goto out_err; 3127 } 3128 3129 bufsz = 2 * sizeof(void *) + rqsz + 3130 NETMAP_REQ_OPT_MAX * sizeof(opt_tab); 3131 /* compute the size of the buf below the option table. 3132 * It must contain a copy of every received option structure. 3133 * For every option we also need to store a copy of the user 3134 * list pointer. 3135 */ 3136 optsz = 0; 3137 for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src; 3138 src = (struct nmreq_option *)(uintptr_t)buf.nro_next) 3139 { 3140 error = copyin(src, &buf, sizeof(*src)); 3141 if (error) 3142 goto out_err; 3143 optsz += sizeof(*src); 3144 optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size); 3145 if (rqsz + optsz > NETMAP_REQ_MAXSIZE) { 3146 error = EMSGSIZE; 3147 goto out_err; 3148 } 3149 bufsz += sizeof(void *); 3150 } 3151 bufsz += optsz; 3152 3153 ker = nm_os_malloc(bufsz); 3154 if (ker == NULL) { 3155 error = ENOMEM; 3156 goto out_err; 3157 } 3158 p = ker; /* write pointer into the buffer */ 3159 3160 /* make a copy of the user pointers */ 3161 ptrs = (uint64_t*)p; 3162 *ptrs++ = hdr->nr_body; 3163 *ptrs++ = hdr->nr_options; 3164 p = (char *)ptrs; 3165 3166 /* copy the body */ 3167 error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz); 3168 if (error) 3169 goto out_restore; 3170 /* overwrite the user pointer with the in-kernel one */ 3171 hdr->nr_body = (uintptr_t)p; 3172 p += rqsz; 3173 /* start of the options table */ 3174 opt_tab = (struct nmreq_option **)p; 3175 p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX; 3176 3177 /* copy the options */ 3178 next = (struct nmreq_option **)&hdr->nr_options; 3179 src = *next; 3180 while (src) { 3181 struct nmreq_option *opt; 3182 3183 /* copy the option header */ 3184 ptrs = (uint64_t *)p; 3185 opt = (struct nmreq_option *)(ptrs + 1); 3186 error = copyin(src, opt, sizeof(*src)); 3187 if (error) 3188 goto out_restore; 3189 /* make a copy of the user next pointer */ 3190 *ptrs = opt->nro_next; 3191 /* overwrite the user pointer with the in-kernel one */ 3192 *next = opt; 3193 3194 /* initialize the option as not supported. 3195 * Recognized options will update this field. 3196 */ 3197 opt->nro_status = EOPNOTSUPP; 3198 3199 /* check for invalid types */ 3200 if (opt->nro_reqtype < 1) { 3201 if (netmap_verbose) 3202 nm_prinf("invalid option type: %u", opt->nro_reqtype); 3203 opt->nro_status = EINVAL; 3204 error = EINVAL; 3205 goto next; 3206 } 3207 3208 if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) { 3209 /* opt->nro_status is already EOPNOTSUPP */ 3210 error = EOPNOTSUPP; 3211 goto next; 3212 } 3213 3214 /* if the type is valid, index the option in the table 3215 * unless it is a duplicate. 3216 */ 3217 if (opt_tab[opt->nro_reqtype] != NULL) { 3218 if (netmap_verbose) 3219 nm_prinf("duplicate option: %u", opt->nro_reqtype); 3220 opt->nro_status = EINVAL; 3221 opt_tab[opt->nro_reqtype]->nro_status = EINVAL; 3222 error = EINVAL; 3223 goto next; 3224 } 3225 opt_tab[opt->nro_reqtype] = opt; 3226 3227 p = (char *)(opt + 1); 3228 3229 /* copy the option body */ 3230 optsz = nmreq_opt_size_by_type(opt->nro_reqtype, 3231 opt->nro_size); 3232 if (optsz) { 3233 /* the option body follows the option header */ 3234 error = copyin(src + 1, p, optsz); 3235 if (error) 3236 goto out_restore; 3237 p += optsz; 3238 } 3239 3240 next: 3241 /* move to next option */ 3242 next = (struct nmreq_option **)&opt->nro_next; 3243 src = *next; 3244 } 3245 if (error) 3246 nmreq_copyout(hdr, error); 3247 return error; 3248 3249 out_restore: 3250 ptrs = (uint64_t *)ker; 3251 hdr->nr_body = *ptrs++; 3252 hdr->nr_options = *ptrs++; 3253 hdr->nr_reserved = 0; 3254 nm_os_free(ker); 3255 out_err: 3256 return error; 3257 } 3258 3259 static int 3260 nmreq_copyout(struct nmreq_header *hdr, int rerror) 3261 { 3262 struct nmreq_option *src, *dst; 3263 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart; 3264 uint64_t *ptrs; 3265 size_t bodysz; 3266 int error; 3267 3268 if (!hdr->nr_reserved) 3269 return rerror; 3270 3271 /* restore the user pointers in the header */ 3272 ptrs = (uint64_t *)ker - 2; 3273 bufstart = ptrs; 3274 hdr->nr_body = *ptrs++; 3275 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3276 hdr->nr_options = *ptrs; 3277 3278 if (!rerror) { 3279 /* copy the body */ 3280 bodysz = nmreq_size_by_type(hdr->nr_reqtype); 3281 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz); 3282 if (error) { 3283 rerror = error; 3284 goto out; 3285 } 3286 } 3287 3288 /* copy the options */ 3289 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3290 while (src) { 3291 size_t optsz; 3292 uint64_t next; 3293 3294 /* restore the user pointer */ 3295 next = src->nro_next; 3296 ptrs = (uint64_t *)src - 1; 3297 src->nro_next = *ptrs; 3298 3299 /* always copy the option header */ 3300 error = copyout(src, dst, sizeof(*src)); 3301 if (error) { 3302 rerror = error; 3303 goto out; 3304 } 3305 3306 /* copy the option body only if there was no error */ 3307 if (!rerror && !src->nro_status) { 3308 optsz = nmreq_opt_size_by_type(src->nro_reqtype, 3309 src->nro_size); 3310 if (optsz) { 3311 error = copyout(src + 1, dst + 1, optsz); 3312 if (error) { 3313 rerror = error; 3314 goto out; 3315 } 3316 } 3317 } 3318 src = (struct nmreq_option *)(uintptr_t)next; 3319 dst = (struct nmreq_option *)(uintptr_t)*ptrs; 3320 } 3321 3322 3323 out: 3324 hdr->nr_reserved = 0; 3325 nm_os_free(bufstart); 3326 return rerror; 3327 } 3328 3329 struct nmreq_option * 3330 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype) 3331 { 3332 struct nmreq_option **opt_tab; 3333 3334 if (!hdr->nr_options) 3335 return NULL; 3336 3337 opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) - 3338 (NETMAP_REQ_OPT_MAX + 1); 3339 return opt_tab[reqtype]; 3340 } 3341 3342 static int 3343 nmreq_checkoptions(struct nmreq_header *hdr) 3344 { 3345 struct nmreq_option *opt; 3346 /* return error if there is still any option 3347 * marked as not supported 3348 */ 3349 3350 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt; 3351 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3352 if (opt->nro_status == EOPNOTSUPP) 3353 return EOPNOTSUPP; 3354 3355 return 0; 3356 } 3357 3358 /* 3359 * select(2) and poll(2) handlers for the "netmap" device. 3360 * 3361 * Can be called for one or more queues. 3362 * Return true the event mask corresponding to ready events. 3363 * If there are no ready events (and 'sr' is not NULL), do a 3364 * selrecord on either individual selinfo or on the global one. 3365 * Device-dependent parts (locking and sync of tx/rx rings) 3366 * are done through callbacks. 3367 * 3368 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 3369 * The first one is remapped to pwait as selrecord() uses the name as an 3370 * hidden argument. 3371 */ 3372 int 3373 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr) 3374 { 3375 struct netmap_adapter *na; 3376 struct netmap_kring *kring; 3377 struct netmap_ring *ring; 3378 u_int i, want[NR_TXRX], revents = 0; 3379 NM_SELINFO_T *si[NR_TXRX]; 3380 #define want_tx want[NR_TX] 3381 #define want_rx want[NR_RX] 3382 struct mbq q; /* packets from RX hw queues to host stack */ 3383 3384 /* 3385 * In order to avoid nested locks, we need to "double check" 3386 * txsync and rxsync if we decide to do a selrecord(). 3387 * retry_tx (and retry_rx, later) prevent looping forever. 3388 */ 3389 int retry_tx = 1, retry_rx = 1; 3390 3391 /* Transparent mode: send_down is 1 if we have found some 3392 * packets to forward (host RX ring --> NIC) during the rx 3393 * scan and we have not sent them down to the NIC yet. 3394 * Transparent mode requires to bind all rings to a single 3395 * file descriptor. 3396 */ 3397 int send_down = 0; 3398 int sync_flags = priv->np_sync_flags; 3399 3400 mbq_init(&q); 3401 3402 if (unlikely(priv->np_nifp == NULL)) { 3403 return POLLERR; 3404 } 3405 mb(); /* make sure following reads are not from cache */ 3406 3407 na = priv->np_na; 3408 3409 if (unlikely(!nm_netmap_on(na))) 3410 return POLLERR; 3411 3412 if (unlikely(priv->np_csb_atok_base)) { 3413 nm_prerr("Invalid poll in CSB mode"); 3414 return POLLERR; 3415 } 3416 3417 if (netmap_debug & NM_DEBUG_ON) 3418 nm_prinf("device %s events 0x%x", na->name, events); 3419 want_tx = events & (POLLOUT | POLLWRNORM); 3420 want_rx = events & (POLLIN | POLLRDNORM); 3421 3422 /* 3423 * If the card has more than one queue AND the file descriptor is 3424 * bound to all of them, we sleep on the "global" selinfo, otherwise 3425 * we sleep on individual selinfo (FreeBSD only allows two selinfo's 3426 * per file descriptor). 3427 * The interrupt routine in the driver wake one or the other 3428 * (or both) depending on which clients are active. 3429 * 3430 * rxsync() is only called if we run out of buffers on a POLLIN. 3431 * txsync() is called if we run out of buffers on POLLOUT, or 3432 * there are pending packets to send. The latter can be disabled 3433 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 3434 */ 3435 si[NR_RX] = priv->np_si[NR_RX]; 3436 si[NR_TX] = priv->np_si[NR_TX]; 3437 3438 #ifdef __FreeBSD__ 3439 /* 3440 * We start with a lock free round which is cheap if we have 3441 * slots available. If this fails, then lock and call the sync 3442 * routines. We can't do this on Linux, as the contract says 3443 * that we must call nm_os_selrecord() unconditionally. 3444 */ 3445 if (want_tx) { 3446 const enum txrx t = NR_TX; 3447 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3448 kring = NMR(na, t)[i]; 3449 if (kring->ring->cur != kring->ring->tail) { 3450 /* Some unseen TX space is available, so what 3451 * we don't need to run txsync. */ 3452 revents |= want[t]; 3453 want[t] = 0; 3454 break; 3455 } 3456 } 3457 } 3458 if (want_rx) { 3459 const enum txrx t = NR_RX; 3460 int rxsync_needed = 0; 3461 3462 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3463 kring = NMR(na, t)[i]; 3464 if (kring->ring->cur == kring->ring->tail 3465 || kring->rhead != kring->ring->head) { 3466 /* There are no unseen packets on this ring, 3467 * or there are some buffers to be returned 3468 * to the netmap port. We therefore go ahead 3469 * and run rxsync. */ 3470 rxsync_needed = 1; 3471 break; 3472 } 3473 } 3474 if (!rxsync_needed) { 3475 revents |= want_rx; 3476 want_rx = 0; 3477 } 3478 } 3479 #endif 3480 3481 #ifdef linux 3482 /* The selrecord must be unconditional on linux. */ 3483 nm_os_selrecord(sr, si[NR_RX]); 3484 nm_os_selrecord(sr, si[NR_TX]); 3485 #endif /* linux */ 3486 3487 /* 3488 * If we want to push packets out (priv->np_txpoll) or 3489 * want_tx is still set, we must issue txsync calls 3490 * (on all rings, to avoid that the tx rings stall). 3491 * Fortunately, normal tx mode has np_txpoll set. 3492 */ 3493 if (priv->np_txpoll || want_tx) { 3494 /* 3495 * The first round checks if anyone is ready, if not 3496 * do a selrecord and another round to handle races. 3497 * want_tx goes to 0 if any space is found, and is 3498 * used to skip rings with no pending transmissions. 3499 */ 3500 flush_tx: 3501 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) { 3502 int found = 0; 3503 3504 kring = na->tx_rings[i]; 3505 ring = kring->ring; 3506 3507 /* 3508 * Don't try to txsync this TX ring if we already found some 3509 * space in some of the TX rings (want_tx == 0) and there are no 3510 * TX slots in this ring that need to be flushed to the NIC 3511 * (head == hwcur). 3512 */ 3513 if (!send_down && !want_tx && ring->head == kring->nr_hwcur) 3514 continue; 3515 3516 if (nm_kr_tryget(kring, 1, &revents)) 3517 continue; 3518 3519 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3520 netmap_ring_reinit(kring); 3521 revents |= POLLERR; 3522 } else { 3523 if (kring->nm_sync(kring, sync_flags)) 3524 revents |= POLLERR; 3525 else 3526 nm_sync_finalize(kring); 3527 } 3528 3529 /* 3530 * If we found new slots, notify potential 3531 * listeners on the same ring. 3532 * Since we just did a txsync, look at the copies 3533 * of cur,tail in the kring. 3534 */ 3535 found = kring->rcur != kring->rtail; 3536 nm_kr_put(kring); 3537 if (found) { /* notify other listeners */ 3538 revents |= want_tx; 3539 want_tx = 0; 3540 #ifndef linux 3541 kring->nm_notify(kring, 0); 3542 #endif /* linux */ 3543 } 3544 } 3545 /* if there were any packet to forward we must have handled them by now */ 3546 send_down = 0; 3547 if (want_tx && retry_tx && sr) { 3548 #ifndef linux 3549 nm_os_selrecord(sr, si[NR_TX]); 3550 #endif /* !linux */ 3551 retry_tx = 0; 3552 goto flush_tx; 3553 } 3554 } 3555 3556 /* 3557 * If want_rx is still set scan receive rings. 3558 * Do it on all rings because otherwise we starve. 3559 */ 3560 if (want_rx) { 3561 /* two rounds here for race avoidance */ 3562 do_retry_rx: 3563 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) { 3564 int found = 0; 3565 3566 kring = na->rx_rings[i]; 3567 ring = kring->ring; 3568 3569 if (unlikely(nm_kr_tryget(kring, 1, &revents))) 3570 continue; 3571 3572 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3573 netmap_ring_reinit(kring); 3574 revents |= POLLERR; 3575 } 3576 /* now we can use kring->rcur, rtail */ 3577 3578 /* 3579 * transparent mode support: collect packets from 3580 * hw rxring(s) that have been released by the user 3581 */ 3582 if (nm_may_forward_up(kring)) { 3583 netmap_grab_packets(kring, &q, netmap_fwd); 3584 } 3585 3586 /* Clear the NR_FORWARD flag anyway, it may be set by 3587 * the nm_sync() below only on for the host RX ring (see 3588 * netmap_rxsync_from_host()). */ 3589 kring->nr_kflags &= ~NR_FORWARD; 3590 if (kring->nm_sync(kring, sync_flags)) 3591 revents |= POLLERR; 3592 else 3593 nm_sync_finalize(kring); 3594 send_down |= (kring->nr_kflags & NR_FORWARD); 3595 ring_timestamp_set(ring); 3596 found = kring->rcur != kring->rtail; 3597 nm_kr_put(kring); 3598 if (found) { 3599 revents |= want_rx; 3600 retry_rx = 0; 3601 #ifndef linux 3602 kring->nm_notify(kring, 0); 3603 #endif /* linux */ 3604 } 3605 } 3606 3607 #ifndef linux 3608 if (retry_rx && sr) { 3609 nm_os_selrecord(sr, si[NR_RX]); 3610 } 3611 #endif /* !linux */ 3612 if (send_down || retry_rx) { 3613 retry_rx = 0; 3614 if (send_down) 3615 goto flush_tx; /* and retry_rx */ 3616 else 3617 goto do_retry_rx; 3618 } 3619 } 3620 3621 /* 3622 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and 3623 * ring->head) marked with NS_FORWARD on hw rx rings are passed up 3624 * to the host stack. 3625 */ 3626 3627 if (mbq_peek(&q)) { 3628 netmap_send_up(na->ifp, &q); 3629 } 3630 3631 return (revents); 3632 #undef want_tx 3633 #undef want_rx 3634 } 3635 3636 int 3637 nma_intr_enable(struct netmap_adapter *na, int onoff) 3638 { 3639 bool changed = false; 3640 enum txrx t; 3641 int i; 3642 3643 for_rx_tx(t) { 3644 for (i = 0; i < nma_get_nrings(na, t); i++) { 3645 struct netmap_kring *kring = NMR(na, t)[i]; 3646 int on = !(kring->nr_kflags & NKR_NOINTR); 3647 3648 if (!!onoff != !!on) { 3649 changed = true; 3650 } 3651 if (onoff) { 3652 kring->nr_kflags &= ~NKR_NOINTR; 3653 } else { 3654 kring->nr_kflags |= NKR_NOINTR; 3655 } 3656 } 3657 } 3658 3659 if (!changed) { 3660 return 0; /* nothing to do */ 3661 } 3662 3663 if (!na->nm_intr) { 3664 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable", 3665 na->name); 3666 return -1; 3667 } 3668 3669 na->nm_intr(na, onoff); 3670 3671 return 0; 3672 } 3673 3674 3675 /*-------------------- driver support routines -------------------*/ 3676 3677 /* default notify callback */ 3678 static int 3679 netmap_notify(struct netmap_kring *kring, int flags) 3680 { 3681 struct netmap_adapter *na = kring->notify_na; 3682 enum txrx t = kring->tx; 3683 3684 nm_os_selwakeup(&kring->si); 3685 /* optimization: avoid a wake up on the global 3686 * queue if nobody has registered for more 3687 * than one ring 3688 */ 3689 if (na->si_users[t] > 0) 3690 nm_os_selwakeup(&na->si[t]); 3691 3692 return NM_IRQ_COMPLETED; 3693 } 3694 3695 /* called by all routines that create netmap_adapters. 3696 * provide some defaults and get a reference to the 3697 * memory allocator 3698 */ 3699 int 3700 netmap_attach_common(struct netmap_adapter *na) 3701 { 3702 if (!na->rx_buf_maxsize) { 3703 /* Set a conservative default (larger is safer). */ 3704 na->rx_buf_maxsize = PAGE_SIZE; 3705 } 3706 3707 #ifdef __FreeBSD__ 3708 if (na->na_flags & NAF_HOST_RINGS && na->ifp) { 3709 na->if_input = na->ifp->if_input; /* for netmap_send_up */ 3710 } 3711 na->pdev = na; /* make sure netmap_mem_map() is called */ 3712 #endif /* __FreeBSD__ */ 3713 if (na->na_flags & NAF_HOST_RINGS) { 3714 if (na->num_host_rx_rings == 0) 3715 na->num_host_rx_rings = 1; 3716 if (na->num_host_tx_rings == 0) 3717 na->num_host_tx_rings = 1; 3718 } 3719 if (na->nm_krings_create == NULL) { 3720 /* we assume that we have been called by a driver, 3721 * since other port types all provide their own 3722 * nm_krings_create 3723 */ 3724 na->nm_krings_create = netmap_hw_krings_create; 3725 na->nm_krings_delete = netmap_hw_krings_delete; 3726 } 3727 if (na->nm_notify == NULL) 3728 na->nm_notify = netmap_notify; 3729 na->active_fds = 0; 3730 3731 if (na->nm_mem == NULL) { 3732 /* use the global allocator */ 3733 na->nm_mem = netmap_mem_get(&nm_mem); 3734 } 3735 #ifdef WITH_VALE 3736 if (na->nm_bdg_attach == NULL) 3737 /* no special nm_bdg_attach callback. On VALE 3738 * attach, we need to interpose a bwrap 3739 */ 3740 na->nm_bdg_attach = netmap_default_bdg_attach; 3741 #endif 3742 3743 return 0; 3744 } 3745 3746 /* Wrapper for the register callback provided netmap-enabled 3747 * hardware drivers. 3748 * nm_iszombie(na) means that the driver module has been 3749 * unloaded, so we cannot call into it. 3750 * nm_os_ifnet_lock() must guarantee mutual exclusion with 3751 * module unloading. 3752 */ 3753 static int 3754 netmap_hw_reg(struct netmap_adapter *na, int onoff) 3755 { 3756 struct netmap_hw_adapter *hwna = 3757 (struct netmap_hw_adapter*)na; 3758 int error = 0; 3759 3760 nm_os_ifnet_lock(); 3761 3762 if (nm_iszombie(na)) { 3763 if (onoff) { 3764 error = ENXIO; 3765 } else if (na != NULL) { 3766 na->na_flags &= ~NAF_NETMAP_ON; 3767 } 3768 goto out; 3769 } 3770 3771 error = hwna->nm_hw_register(na, onoff); 3772 3773 out: 3774 nm_os_ifnet_unlock(); 3775 3776 return error; 3777 } 3778 3779 static void 3780 netmap_hw_dtor(struct netmap_adapter *na) 3781 { 3782 if (na->ifp == NULL) 3783 return; 3784 3785 NM_DETACH_NA(na->ifp); 3786 } 3787 3788 3789 /* 3790 * Allocate a netmap_adapter object, and initialize it from the 3791 * 'arg' passed by the driver on attach. 3792 * We allocate a block of memory of 'size' bytes, which has room 3793 * for struct netmap_adapter plus additional room private to 3794 * the caller. 3795 * Return 0 on success, ENOMEM otherwise. 3796 */ 3797 int 3798 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg) 3799 { 3800 struct netmap_hw_adapter *hwna = NULL; 3801 struct ifnet *ifp = NULL; 3802 3803 if (size < sizeof(struct netmap_hw_adapter)) { 3804 if (netmap_debug & NM_DEBUG_ON) 3805 nm_prerr("Invalid netmap adapter size %d", (int)size); 3806 return EINVAL; 3807 } 3808 3809 if (arg == NULL || arg->ifp == NULL) { 3810 if (netmap_debug & NM_DEBUG_ON) 3811 nm_prerr("either arg or arg->ifp is NULL"); 3812 return EINVAL; 3813 } 3814 3815 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) { 3816 if (netmap_debug & NM_DEBUG_ON) 3817 nm_prerr("%s: invalid rings tx %d rx %d", 3818 arg->name, arg->num_tx_rings, arg->num_rx_rings); 3819 return EINVAL; 3820 } 3821 3822 ifp = arg->ifp; 3823 if (NM_NA_CLASH(ifp)) { 3824 /* If NA(ifp) is not null but there is no valid netmap 3825 * adapter it means that someone else is using the same 3826 * pointer (e.g. ax25_ptr on linux). This happens for 3827 * instance when also PF_RING is in use. */ 3828 nm_prerr("Error: netmap adapter hook is busy"); 3829 return EBUSY; 3830 } 3831 3832 hwna = nm_os_malloc(size); 3833 if (hwna == NULL) 3834 goto fail; 3835 hwna->up = *arg; 3836 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE; 3837 strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name)); 3838 if (override_reg) { 3839 hwna->nm_hw_register = hwna->up.nm_register; 3840 hwna->up.nm_register = netmap_hw_reg; 3841 } 3842 if (netmap_attach_common(&hwna->up)) { 3843 nm_os_free(hwna); 3844 goto fail; 3845 } 3846 netmap_adapter_get(&hwna->up); 3847 3848 NM_ATTACH_NA(ifp, &hwna->up); 3849 3850 nm_os_onattach(ifp); 3851 3852 if (arg->nm_dtor == NULL) { 3853 hwna->up.nm_dtor = netmap_hw_dtor; 3854 } 3855 3856 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n", 3857 hwna->up.num_tx_rings, hwna->up.num_tx_desc, 3858 hwna->up.num_rx_rings, hwna->up.num_rx_desc); 3859 return 0; 3860 3861 fail: 3862 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna); 3863 return (hwna ? EINVAL : ENOMEM); 3864 } 3865 3866 3867 int 3868 netmap_attach(struct netmap_adapter *arg) 3869 { 3870 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter), 3871 1 /* override nm_reg */); 3872 } 3873 3874 3875 void 3876 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 3877 { 3878 if (!na) { 3879 return; 3880 } 3881 3882 refcount_acquire(&na->na_refcount); 3883 } 3884 3885 3886 /* returns 1 iff the netmap_adapter is destroyed */ 3887 int 3888 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 3889 { 3890 if (!na) 3891 return 1; 3892 3893 if (!refcount_release(&na->na_refcount)) 3894 return 0; 3895 3896 if (na->nm_dtor) 3897 na->nm_dtor(na); 3898 3899 if (na->tx_rings) { /* XXX should not happen */ 3900 if (netmap_debug & NM_DEBUG_ON) 3901 nm_prerr("freeing leftover tx_rings"); 3902 na->nm_krings_delete(na); 3903 } 3904 netmap_pipe_dealloc(na); 3905 if (na->nm_mem) 3906 netmap_mem_put(na->nm_mem); 3907 bzero(na, sizeof(*na)); 3908 nm_os_free(na); 3909 3910 return 1; 3911 } 3912 3913 /* nm_krings_create callback for all hardware native adapters */ 3914 int 3915 netmap_hw_krings_create(struct netmap_adapter *na) 3916 { 3917 int ret = netmap_krings_create(na, 0); 3918 if (ret == 0) { 3919 /* initialize the mbq for the sw rx ring */ 3920 u_int lim = netmap_real_rings(na, NR_RX), i; 3921 for (i = na->num_rx_rings; i < lim; i++) { 3922 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue); 3923 } 3924 nm_prdis("initialized sw rx queue %d", na->num_rx_rings); 3925 } 3926 return ret; 3927 } 3928 3929 3930 3931 /* 3932 * Called on module unload by the netmap-enabled drivers 3933 */ 3934 void 3935 netmap_detach(struct ifnet *ifp) 3936 { 3937 struct netmap_adapter *na = NA(ifp); 3938 3939 if (!na) 3940 return; 3941 3942 NMG_LOCK(); 3943 netmap_set_all_rings(na, NM_KR_LOCKED); 3944 /* 3945 * if the netmap adapter is not native, somebody 3946 * changed it, so we can not release it here. 3947 * The NAF_ZOMBIE flag will notify the new owner that 3948 * the driver is gone. 3949 */ 3950 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) { 3951 na->na_flags |= NAF_ZOMBIE; 3952 } 3953 /* give active users a chance to notice that NAF_ZOMBIE has been 3954 * turned on, so that they can stop and return an error to userspace. 3955 * Note that this becomes a NOP if there are no active users and, 3956 * therefore, the put() above has deleted the na, since now NA(ifp) is 3957 * NULL. 3958 */ 3959 netmap_enable_all_rings(ifp); 3960 NMG_UNLOCK(); 3961 } 3962 3963 3964 /* 3965 * Intercept packets from the network stack and pass them 3966 * to netmap as incoming packets on the 'software' ring. 3967 * 3968 * We only store packets in a bounded mbq and then copy them 3969 * in the relevant rxsync routine. 3970 * 3971 * We rely on the OS to make sure that the ifp and na do not go 3972 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 3973 * In nm_register() or whenever there is a reinitialization, 3974 * we make sure to make the mode change visible here. 3975 */ 3976 int 3977 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 3978 { 3979 struct netmap_adapter *na = NA(ifp); 3980 struct netmap_kring *kring, *tx_kring; 3981 u_int len = MBUF_LEN(m); 3982 u_int error = ENOBUFS; 3983 unsigned int txr; 3984 struct mbq *q; 3985 int busy; 3986 u_int i; 3987 3988 i = MBUF_TXQ(m); 3989 if (i >= na->num_host_rx_rings) { 3990 i = i % na->num_host_rx_rings; 3991 } 3992 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i]; 3993 3994 // XXX [Linux] we do not need this lock 3995 // if we follow the down/configure/up protocol -gl 3996 // mtx_lock(&na->core_lock); 3997 3998 if (!nm_netmap_on(na)) { 3999 nm_prerr("%s not in netmap mode anymore", na->name); 4000 error = ENXIO; 4001 goto done; 4002 } 4003 4004 txr = MBUF_TXQ(m); 4005 if (txr >= na->num_tx_rings) { 4006 txr %= na->num_tx_rings; 4007 } 4008 tx_kring = NMR(na, NR_TX)[txr]; 4009 4010 if (tx_kring->nr_mode == NKR_NETMAP_OFF) { 4011 return MBUF_TRANSMIT(na, ifp, m); 4012 } 4013 4014 q = &kring->rx_queue; 4015 4016 // XXX reconsider long packets if we handle fragments 4017 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */ 4018 nm_prerr("%s from_host, drop packet size %d > %d", na->name, 4019 len, NETMAP_BUF_SIZE(na)); 4020 goto done; 4021 } 4022 4023 if (!netmap_generic_hwcsum) { 4024 if (nm_os_mbuf_has_csum_offld(m)) { 4025 nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name); 4026 goto done; 4027 } 4028 } 4029 4030 if (nm_os_mbuf_has_seg_offld(m)) { 4031 nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name); 4032 goto done; 4033 } 4034 4035 #ifdef __FreeBSD__ 4036 ETHER_BPF_MTAP(ifp, m); 4037 #endif /* __FreeBSD__ */ 4038 4039 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic() 4040 * and maybe other instances of netmap_transmit (the latter 4041 * not possible on Linux). 4042 * We enqueue the mbuf only if we are sure there is going to be 4043 * enough room in the host RX ring, otherwise we drop it. 4044 */ 4045 mbq_lock(q); 4046 4047 busy = kring->nr_hwtail - kring->nr_hwcur; 4048 if (busy < 0) 4049 busy += kring->nkr_num_slots; 4050 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) { 4051 nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name, 4052 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q)); 4053 } else { 4054 mbq_enqueue(q, m); 4055 nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q)); 4056 /* notify outside the lock */ 4057 m = NULL; 4058 error = 0; 4059 } 4060 mbq_unlock(q); 4061 4062 done: 4063 if (m) 4064 m_freem(m); 4065 /* unconditionally wake up listeners */ 4066 kring->nm_notify(kring, 0); 4067 /* this is normally netmap_notify(), but for nics 4068 * connected to a bridge it is netmap_bwrap_intr_notify(), 4069 * that possibly forwards the frames through the switch 4070 */ 4071 4072 return (error); 4073 } 4074 4075 4076 /* 4077 * Reset function to be called by the driver routines when reinitializing 4078 * a hardware ring. The driver is in charge of locking to protect the kring 4079 * while this operation is being performed. This is normally achieved by 4080 * calling netmap_disable_all_rings() before triggering a reset. 4081 * If the kring is not in netmap mode, return NULL to inform the caller 4082 * that this is the case. 4083 * If the kring is in netmap mode, set hwofs so that the netmap indices 4084 * seen by userspace (head/cut/tail) do not change, although the internal 4085 * NIC indices have been reset to 0. 4086 * In any case, adjust kring->nr_mode. 4087 */ 4088 struct netmap_slot * 4089 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 4090 u_int new_cur) 4091 { 4092 struct netmap_kring *kring; 4093 u_int new_hwtail, new_hwofs; 4094 4095 if (!nm_native_on(na)) { 4096 nm_prdis("interface not in native netmap mode"); 4097 return NULL; /* nothing to reinitialize */ 4098 } 4099 4100 if (tx == NR_TX) { 4101 if (n >= na->num_tx_rings) 4102 return NULL; 4103 kring = na->tx_rings[n]; 4104 /* 4105 * Set hwofs to rhead, so that slots[rhead] is mapped to 4106 * the NIC internal slot 0, and thus the netmap buffer 4107 * at rhead is the next to be transmitted. Transmissions 4108 * that were pending before the reset are considered as 4109 * sent, so that we can have hwcur = rhead. All the slots 4110 * are now owned by the user, so we can also reinit hwtail. 4111 */ 4112 new_hwofs = kring->rhead; 4113 new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1); 4114 } else { 4115 if (n >= na->num_rx_rings) 4116 return NULL; 4117 kring = na->rx_rings[n]; 4118 /* 4119 * Set hwofs to hwtail, so that slots[hwtail] is mapped to 4120 * the NIC internal slot 0, and thus the netmap buffer 4121 * at hwtail is the next to be given to the NIC. 4122 * Unread slots (the ones in [rhead,hwtail[) are owned by 4123 * the user, and thus the caller cannot give them 4124 * to the NIC right now. 4125 */ 4126 new_hwofs = kring->nr_hwtail; 4127 new_hwtail = kring->nr_hwtail; 4128 } 4129 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 4130 kring->nr_mode = NKR_NETMAP_OFF; 4131 return NULL; 4132 } 4133 if (netmap_verbose) { 4134 nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name, 4135 kring->nr_hwcur, kring->rhead, 4136 kring->nr_hwtail, new_hwtail, 4137 kring->nkr_hwofs, new_hwofs); 4138 } 4139 kring->nr_hwcur = kring->rhead; 4140 kring->nr_hwtail = new_hwtail; 4141 kring->nkr_hwofs = new_hwofs; 4142 4143 /* 4144 * Wakeup on the individual and global selwait 4145 * We do the wakeup here, but the ring is not yet reconfigured. 4146 * However, we are under lock so there are no races. 4147 */ 4148 kring->nr_mode = NKR_NETMAP_ON; 4149 kring->nm_notify(kring, 0); 4150 return kring->ring->slot; 4151 } 4152 4153 4154 /* 4155 * Dispatch rx/tx interrupts to the netmap rings. 4156 * 4157 * "work_done" is non-null on the RX path, NULL for the TX path. 4158 * We rely on the OS to make sure that there is only one active 4159 * instance per queue, and that there is appropriate locking. 4160 * 4161 * The 'notify' routine depends on what the ring is attached to. 4162 * - for a netmap file descriptor, do a selwakeup on the individual 4163 * waitqueue, plus one on the global one if needed 4164 * (see netmap_notify) 4165 * - for a nic connected to a switch, call the proper forwarding routine 4166 * (see netmap_bwrap_intr_notify) 4167 */ 4168 int 4169 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 4170 { 4171 struct netmap_kring *kring; 4172 enum txrx t = (work_done ? NR_RX : NR_TX); 4173 4174 q &= NETMAP_RING_MASK; 4175 4176 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) { 4177 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 4178 } 4179 4180 if (q >= nma_get_nrings(na, t)) 4181 return NM_IRQ_PASS; // not a physical queue 4182 4183 kring = NMR(na, t)[q]; 4184 4185 if (kring->nr_mode == NKR_NETMAP_OFF) { 4186 return NM_IRQ_PASS; 4187 } 4188 4189 if (t == NR_RX) { 4190 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 4191 *work_done = 1; /* do not fire napi again */ 4192 } 4193 4194 return kring->nm_notify(kring, 0); 4195 } 4196 4197 4198 /* 4199 * Default functions to handle rx/tx interrupts from a physical device. 4200 * "work_done" is non-null on the RX path, NULL for the TX path. 4201 * 4202 * If the card is not in netmap mode, simply return NM_IRQ_PASS, 4203 * so that the caller proceeds with regular processing. 4204 * Otherwise call netmap_common_irq(). 4205 * 4206 * If the card is connected to a netmap file descriptor, 4207 * do a selwakeup on the individual queue, plus one on the global one 4208 * if needed (multiqueue card _and_ there are multiqueue listeners), 4209 * and return NR_IRQ_COMPLETED. 4210 * 4211 * Finally, if called on rx from an interface connected to a switch, 4212 * calls the proper forwarding routine. 4213 */ 4214 int 4215 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 4216 { 4217 struct netmap_adapter *na = NA(ifp); 4218 4219 /* 4220 * XXX emulated netmap mode sets NAF_SKIP_INTR so 4221 * we still use the regular driver even though the previous 4222 * check fails. It is unclear whether we should use 4223 * nm_native_on() here. 4224 */ 4225 if (!nm_netmap_on(na)) 4226 return NM_IRQ_PASS; 4227 4228 if (na->na_flags & NAF_SKIP_INTR) { 4229 nm_prdis("use regular interrupt"); 4230 return NM_IRQ_PASS; 4231 } 4232 4233 return netmap_common_irq(na, q, work_done); 4234 } 4235 4236 /* set/clear native flags and if_transmit/netdev_ops */ 4237 void 4238 nm_set_native_flags(struct netmap_adapter *na) 4239 { 4240 struct ifnet *ifp = na->ifp; 4241 4242 /* We do the setup for intercepting packets only if we are the 4243 * first user of this adapter. */ 4244 if (na->active_fds > 0) { 4245 return; 4246 } 4247 4248 na->na_flags |= NAF_NETMAP_ON; 4249 nm_os_onenter(ifp); 4250 nm_update_hostrings_mode(na); 4251 } 4252 4253 void 4254 nm_clear_native_flags(struct netmap_adapter *na) 4255 { 4256 struct ifnet *ifp = na->ifp; 4257 4258 /* We undo the setup for intercepting packets only if we are the 4259 * last user of this adapter. */ 4260 if (na->active_fds > 0) { 4261 return; 4262 } 4263 4264 nm_update_hostrings_mode(na); 4265 nm_os_onexit(ifp); 4266 4267 na->na_flags &= ~NAF_NETMAP_ON; 4268 } 4269 4270 void 4271 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff) 4272 { 4273 enum txrx t; 4274 4275 for_rx_tx(t) { 4276 int i; 4277 4278 for (i = 0; i < netmap_real_rings(na, t); i++) { 4279 struct netmap_kring *kring = NMR(na, t)[i]; 4280 4281 if (onoff && nm_kring_pending_on(kring)) 4282 kring->nr_mode = NKR_NETMAP_ON; 4283 else if (!onoff && nm_kring_pending_off(kring)) 4284 kring->nr_mode = NKR_NETMAP_OFF; 4285 } 4286 } 4287 } 4288 4289 /* 4290 * Module loader and unloader 4291 * 4292 * netmap_init() creates the /dev/netmap device and initializes 4293 * all global variables. Returns 0 on success, errno on failure 4294 * (but there is no chance) 4295 * 4296 * netmap_fini() destroys everything. 4297 */ 4298 4299 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 4300 extern struct cdevsw netmap_cdevsw; 4301 4302 4303 void 4304 netmap_fini(void) 4305 { 4306 if (netmap_dev) 4307 destroy_dev(netmap_dev); 4308 /* we assume that there are no longer netmap users */ 4309 nm_os_ifnet_fini(); 4310 netmap_uninit_bridges(); 4311 netmap_mem_fini(); 4312 NMG_LOCK_DESTROY(); 4313 nm_prinf("netmap: unloaded module."); 4314 } 4315 4316 4317 int 4318 netmap_init(void) 4319 { 4320 int error; 4321 4322 NMG_LOCK_INIT(); 4323 4324 error = netmap_mem_init(); 4325 if (error != 0) 4326 goto fail; 4327 /* 4328 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls 4329 * when the module is compiled in. 4330 * XXX could use make_dev_credv() to get error number 4331 */ 4332 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD, 4333 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, 4334 "netmap"); 4335 if (!netmap_dev) 4336 goto fail; 4337 4338 error = netmap_init_bridges(); 4339 if (error) 4340 goto fail; 4341 4342 #ifdef __FreeBSD__ 4343 nm_os_vi_init_index(); 4344 #endif 4345 4346 error = nm_os_ifnet_init(); 4347 if (error) 4348 goto fail; 4349 4350 nm_prinf("netmap: loaded module"); 4351 return (0); 4352 fail: 4353 netmap_fini(); 4354 return (EINVAL); /* may be incorrect */ 4355 } 4356