1 /* 2 * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * $FreeBSD$ 28 * $Id: netmap.c 9795 2011-12-02 11:39:08Z luigi $ 29 * 30 * This module supports memory mapped access to network devices, 31 * see netmap(4). 32 * 33 * The module uses a large, memory pool allocated by the kernel 34 * and accessible as mmapped memory by multiple userspace threads/processes. 35 * The memory pool contains packet buffers and "netmap rings", 36 * i.e. user-accessible copies of the interface's queues. 37 * 38 * Access to the network card works like this: 39 * 1. a process/thread issues one or more open() on /dev/netmap, to create 40 * select()able file descriptor on which events are reported. 41 * 2. on each descriptor, the process issues an ioctl() to identify 42 * the interface that should report events to the file descriptor. 43 * 3. on each descriptor, the process issues an mmap() request to 44 * map the shared memory region within the process' address space. 45 * The list of interesting queues is indicated by a location in 46 * the shared memory region. 47 * 4. using the functions in the netmap(4) userspace API, a process 48 * can look up the occupation state of a queue, access memory buffers, 49 * and retrieve received packets or enqueue packets to transmit. 50 * 5. using some ioctl()s the process can synchronize the userspace view 51 * of the queue with the actual status in the kernel. This includes both 52 * receiving the notification of new packets, and transmitting new 53 * packets on the output interface. 54 * 6. select() or poll() can be used to wait for events on individual 55 * transmit or receive queues (or all queues for a given interface). 56 */ 57 58 #include <sys/cdefs.h> /* prerequisite */ 59 __FBSDID("$FreeBSD$"); 60 61 #include <sys/types.h> 62 #include <sys/module.h> 63 #include <sys/errno.h> 64 #include <sys/param.h> /* defines used in kernel.h */ 65 #include <sys/jail.h> 66 #include <sys/kernel.h> /* types used in module initialization */ 67 #include <sys/conf.h> /* cdevsw struct */ 68 #include <sys/uio.h> /* uio struct */ 69 #include <sys/sockio.h> 70 #include <sys/socketvar.h> /* struct socket */ 71 #include <sys/malloc.h> 72 #include <sys/mman.h> /* PROT_EXEC */ 73 #include <sys/poll.h> 74 #include <sys/proc.h> 75 #include <vm/vm.h> /* vtophys */ 76 #include <vm/pmap.h> /* vtophys */ 77 #include <sys/socket.h> /* sockaddrs */ 78 #include <machine/bus.h> 79 #include <sys/selinfo.h> 80 #include <sys/sysctl.h> 81 #include <net/if.h> 82 #include <net/bpf.h> /* BIOCIMMEDIATE */ 83 #include <net/vnet.h> 84 #include <net/netmap.h> 85 #include <dev/netmap/netmap_kern.h> 86 #include <machine/bus.h> /* bus_dmamap_* */ 87 88 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 89 90 /* 91 * lock and unlock for the netmap memory allocator 92 */ 93 #define NMA_LOCK() mtx_lock(&netmap_mem_d->nm_mtx); 94 #define NMA_UNLOCK() mtx_unlock(&netmap_mem_d->nm_mtx); 95 96 /* 97 * Default amount of memory pre-allocated by the module. 98 * We start with a large size and then shrink our demand 99 * according to what is avalable when the module is loaded. 100 * At the moment the block is contiguous, but we can easily 101 * restrict our demand to smaller units (16..64k) 102 */ 103 #define NETMAP_MEMORY_SIZE (64 * 1024 * PAGE_SIZE) 104 static void * netmap_malloc(size_t size, const char *msg); 105 static void netmap_free(void *addr, const char *msg); 106 107 /* 108 * Allocator for a pool of packet buffers. For each buffer we have 109 * one entry in the bitmap to signal the state. Allocation scans 110 * the bitmap, but since this is done only on attach, we are not 111 * too worried about performance 112 * XXX if we need to allocate small blocks, a translation 113 * table is used both for kernel virtual address and physical 114 * addresses. 115 */ 116 struct netmap_buf_pool { 117 u_int total_buffers; /* total buffers. */ 118 u_int free; 119 u_int bufsize; 120 char *base; /* buffer base address */ 121 uint32_t *bitmap; /* one bit per buffer, 1 means free */ 122 }; 123 struct netmap_buf_pool nm_buf_pool; 124 /* XXX move these two vars back into netmap_buf_pool */ 125 u_int netmap_total_buffers; 126 char *netmap_buffer_base; 127 128 /* user-controlled variables */ 129 int netmap_verbose; 130 131 static int no_timestamp; /* don't timestamp on rxsync */ 132 133 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 134 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 135 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 136 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 137 CTLFLAG_RW, &no_timestamp, 0, "no_timestamp"); 138 SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers, 139 CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers"); 140 SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers, 141 CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers"); 142 143 /* 144 * Allocate n buffers from the ring, and fill the slot. 145 * Buffer 0 is the 'junk' buffer. 146 */ 147 static void 148 netmap_new_bufs(struct netmap_buf_pool *p, struct netmap_slot *slot, u_int n) 149 { 150 uint32_t bi = 0; /* index in the bitmap */ 151 uint32_t mask, j, i = 0; /* slot counter */ 152 153 if (n > p->free) { 154 D("only %d out of %d buffers available", i, n); 155 return; 156 } 157 /* termination is guaranteed by p->free */ 158 while (i < n && p->free > 0) { 159 uint32_t cur = p->bitmap[bi]; 160 if (cur == 0) { /* bitmask is fully used */ 161 bi++; 162 continue; 163 } 164 /* locate a slot */ 165 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ; 166 p->bitmap[bi] &= ~mask; /* slot in use */ 167 p->free--; 168 slot[i].buf_idx = bi*32+j; 169 slot[i].len = p->bufsize; 170 slot[i].flags = NS_BUF_CHANGED; 171 i++; 172 } 173 ND("allocated %d buffers, %d available", n, p->free); 174 } 175 176 177 static void 178 netmap_free_buf(struct netmap_buf_pool *p, uint32_t i) 179 { 180 uint32_t pos, mask; 181 if (i >= p->total_buffers) { 182 D("invalid free index %d", i); 183 return; 184 } 185 pos = i / 32; 186 mask = 1 << (i % 32); 187 if (p->bitmap[pos] & mask) { 188 D("slot %d already free", i); 189 return; 190 } 191 p->bitmap[pos] |= mask; 192 p->free++; 193 } 194 195 196 /* Descriptor of the memory objects handled by our memory allocator. */ 197 struct netmap_mem_obj { 198 TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the 199 chain. */ 200 int nmo_used; /* flag set on used memory objects. */ 201 size_t nmo_size; /* size of the memory area reserved for the 202 object. */ 203 void *nmo_data; /* pointer to the memory area. */ 204 }; 205 206 /* Wrap our memory objects to make them ``chainable``. */ 207 TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj); 208 209 210 /* Descriptor of our custom memory allocator. */ 211 struct netmap_mem_d { 212 struct mtx nm_mtx; /* lock used to handle the chain of memory 213 objects. */ 214 struct netmap_mem_obj_h nm_molist; /* list of memory objects */ 215 size_t nm_size; /* total amount of memory used for rings etc. */ 216 size_t nm_totalsize; /* total amount of allocated memory 217 (the difference is used for buffers) */ 218 size_t nm_buf_start; /* offset of packet buffers. 219 This is page-aligned. */ 220 size_t nm_buf_len; /* total memory for buffers */ 221 void *nm_buffer; /* pointer to the whole pre-allocated memory 222 area. */ 223 }; 224 225 226 /* Structure associated to each thread which registered an interface. */ 227 struct netmap_priv_d { 228 struct netmap_if *np_nifp; /* netmap interface descriptor. */ 229 230 struct ifnet *np_ifp; /* device for which we hold a reference */ 231 int np_ringid; /* from the ioctl */ 232 u_int np_qfirst, np_qlast; /* range of rings to scan */ 233 uint16_t np_txpoll; 234 }; 235 236 237 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 238 static struct netmap_mem_d *netmap_mem_d; /* Our memory allocator. */ 239 240 241 static d_mmap_t netmap_mmap; 242 static d_ioctl_t netmap_ioctl; 243 static d_poll_t netmap_poll; 244 245 #ifdef NETMAP_KEVENT 246 static d_kqfilter_t netmap_kqfilter; 247 #endif 248 249 static struct cdevsw netmap_cdevsw = { 250 .d_version = D_VERSION, 251 .d_name = "netmap", 252 .d_mmap = netmap_mmap, 253 .d_ioctl = netmap_ioctl, 254 .d_poll = netmap_poll, 255 #ifdef NETMAP_KEVENT 256 .d_kqfilter = netmap_kqfilter, 257 #endif 258 }; 259 260 #ifdef NETMAP_KEVENT 261 static int netmap_kqread(struct knote *, long); 262 static int netmap_kqwrite(struct knote *, long); 263 static void netmap_kqdetach(struct knote *); 264 265 static struct filterops netmap_read_filterops = { 266 .f_isfd = 1, 267 .f_attach = NULL, 268 .f_detach = netmap_kqdetach, 269 .f_event = netmap_kqread, 270 }; 271 272 static struct filterops netmap_write_filterops = { 273 .f_isfd = 1, 274 .f_attach = NULL, 275 .f_detach = netmap_kqdetach, 276 .f_event = netmap_kqwrite, 277 }; 278 279 /* 280 * support for the kevent() system call. 281 * 282 * This is the kevent filter, and is executed each time a new event 283 * is triggered on the device. This function execute some operation 284 * depending on the received filter. 285 * 286 * The implementation should test the filters and should implement 287 * filter operations we are interested on (a full list in /sys/event.h). 288 * 289 * On a match we should: 290 * - set kn->kn_fop 291 * - set kn->kn_hook 292 * - call knlist_add() to deliver the event to the application. 293 * 294 * Return 0 if the event should be delivered to the application. 295 */ 296 static int 297 netmap_kqfilter(struct cdev *dev, struct knote *kn) 298 { 299 /* declare variables needed to read/write */ 300 301 switch(kn->kn_filter) { 302 case EVFILT_READ: 303 if (netmap_verbose) 304 D("%s kqfilter: EVFILT_READ" ifp->if_xname); 305 306 /* read operations */ 307 kn->kn_fop = &netmap_read_filterops; 308 break; 309 310 case EVFILT_WRITE: 311 if (netmap_verbose) 312 D("%s kqfilter: EVFILT_WRITE" ifp->if_xname); 313 314 /* write operations */ 315 kn->kn_fop = &netmap_write_filterops; 316 break; 317 318 default: 319 if (netmap_verbose) 320 D("%s kqfilter: invalid filter" ifp->if_xname); 321 return(EINVAL); 322 } 323 324 kn->kn_hook = 0;// 325 knlist_add(&netmap_sc->tun_rsel.si_note, kn, 0); 326 327 return (0); 328 } 329 #endif /* NETMAP_KEVENT */ 330 331 /* 332 * File descriptor's private data destructor. 333 * 334 * Call nm_register(ifp,0) to stop netmap mode on the interface and 335 * revert to normal operation. We expect that np_ifp has not gone. 336 */ 337 static void 338 netmap_dtor(void *data) 339 { 340 struct netmap_priv_d *priv = data; 341 struct ifnet *ifp = priv->np_ifp; 342 struct netmap_adapter *na = NA(ifp); 343 struct netmap_if *nifp = priv->np_nifp; 344 345 if (0) 346 printf("%s starting for %p ifp %p\n", __FUNCTION__, priv, 347 priv ? priv->np_ifp : NULL); 348 349 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 350 351 na->refcount--; 352 if (na->refcount <= 0) { /* last instance */ 353 u_int i; 354 355 D("deleting last netmap instance for %s", ifp->if_xname); 356 /* 357 * there is a race here with *_netmap_task() and 358 * netmap_poll(), which don't run under NETMAP_CORE_LOCK. 359 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 360 * (aka NETMAP_DELETING(na)) are a unique marker that the 361 * device is dying. 362 * Before destroying stuff we sleep a bit, and then complete 363 * the job. NIOCREG should realize the condition and 364 * loop until they can continue; the other routines 365 * should check the condition at entry and quit if 366 * they cannot run. 367 */ 368 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 369 tsleep(na, 0, "NIOCUNREG", 4); 370 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 371 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 372 /* Wake up any sleeping threads. netmap_poll will 373 * then return POLLERR 374 */ 375 for (i = 0; i < na->num_queues + 2; i++) { 376 selwakeuppri(&na->tx_rings[i].si, PI_NET); 377 selwakeuppri(&na->rx_rings[i].si, PI_NET); 378 } 379 /* release all buffers */ 380 NMA_LOCK(); 381 for (i = 0; i < na->num_queues + 1; i++) { 382 int j, lim; 383 struct netmap_ring *ring; 384 385 ND("tx queue %d", i); 386 ring = na->tx_rings[i].ring; 387 lim = na->tx_rings[i].nkr_num_slots; 388 for (j = 0; j < lim; j++) 389 netmap_free_buf(&nm_buf_pool, 390 ring->slot[j].buf_idx); 391 392 ND("rx queue %d", i); 393 ring = na->rx_rings[i].ring; 394 lim = na->rx_rings[i].nkr_num_slots; 395 for (j = 0; j < lim; j++) 396 netmap_free_buf(&nm_buf_pool, 397 ring->slot[j].buf_idx); 398 } 399 NMA_UNLOCK(); 400 netmap_free(na->tx_rings[0].ring, "shadow rings"); 401 wakeup(na); 402 } 403 netmap_free(nifp, "nifp"); 404 405 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 406 407 if_rele(ifp); 408 409 bzero(priv, sizeof(*priv)); /* XXX for safety */ 410 free(priv, M_DEVBUF); 411 } 412 413 414 415 /* 416 * Create and return a new ``netmap_if`` object, and possibly also 417 * rings and packet buffors. 418 * 419 * Return NULL on failure. 420 */ 421 static void * 422 netmap_if_new(const char *ifname, struct netmap_adapter *na) 423 { 424 struct netmap_if *nifp; 425 struct netmap_ring *ring; 426 char *buff; 427 u_int i, len, ofs; 428 u_int n = na->num_queues + 1; /* shorthand, include stack queue */ 429 430 /* 431 * the descriptor is followed inline by an array of offsets 432 * to the tx and rx rings in the shared memory region. 433 */ 434 len = sizeof(struct netmap_if) + 2 * n * sizeof(ssize_t); 435 nifp = netmap_malloc(len, "nifp"); 436 if (nifp == NULL) 437 return (NULL); 438 439 /* initialize base fields */ 440 *(int *)(uintptr_t)&nifp->ni_num_queues = na->num_queues; 441 strncpy(nifp->ni_name, ifname, IFNAMSIZ); 442 443 (na->refcount)++; /* XXX atomic ? we are under lock */ 444 if (na->refcount > 1) 445 goto final; 446 447 /* 448 * If this is the first instance, allocate the shadow rings and 449 * buffers for this card (one for each hw queue, one for the host). 450 * The rings are contiguous, but have variable size. 451 * The entire block is reachable at 452 * na->tx_rings[0].ring 453 */ 454 455 len = n * (2 * sizeof(struct netmap_ring) + 456 (na->num_tx_desc + na->num_rx_desc) * 457 sizeof(struct netmap_slot) ); 458 buff = netmap_malloc(len, "shadow rings"); 459 if (buff == NULL) { 460 D("failed to allocate %d bytes for %s shadow ring", 461 len, ifname); 462 error: 463 (na->refcount)--; 464 netmap_free(nifp, "nifp, rings failed"); 465 return (NULL); 466 } 467 /* do we have the bufers ? we are in need of num_tx_desc buffers for 468 * each tx ring and num_tx_desc buffers for each rx ring. */ 469 len = n * (na->num_tx_desc + na->num_rx_desc); 470 NMA_LOCK(); 471 if (nm_buf_pool.free < len) { 472 NMA_UNLOCK(); 473 netmap_free(buff, "not enough bufs"); 474 goto error; 475 } 476 /* 477 * in the kring, store the pointers to the shared rings 478 * and initialize the rings. We are under NMA_LOCK(). 479 */ 480 ofs = 0; 481 for (i = 0; i < n; i++) { 482 struct netmap_kring *kring; 483 int numdesc; 484 485 /* Transmit rings */ 486 kring = &na->tx_rings[i]; 487 numdesc = na->num_tx_desc; 488 bzero(kring, sizeof(*kring)); 489 kring->na = na; 490 491 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 492 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 493 nm_buf_pool.base - (char *)ring; 494 ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs); 495 *(int *)(int *)(uintptr_t)&ring->num_slots = 496 kring->nkr_num_slots = numdesc; 497 498 /* 499 * IMPORTANT: 500 * Always keep one slot empty, so we can detect new 501 * transmissions comparing cur and nr_hwcur (they are 502 * the same only if there are no new transmissions). 503 */ 504 ring->avail = kring->nr_hwavail = numdesc - 1; 505 ring->cur = kring->nr_hwcur = 0; 506 netmap_new_bufs(&nm_buf_pool, ring->slot, numdesc); 507 508 ofs += sizeof(struct netmap_ring) + 509 numdesc * sizeof(struct netmap_slot); 510 511 /* Receive rings */ 512 kring = &na->rx_rings[i]; 513 numdesc = na->num_rx_desc; 514 bzero(kring, sizeof(*kring)); 515 kring->na = na; 516 517 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 518 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 519 nm_buf_pool.base - (char *)ring; 520 ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs); 521 *(int *)(int *)(uintptr_t)&ring->num_slots = 522 kring->nkr_num_slots = numdesc; 523 ring->cur = kring->nr_hwcur = 0; 524 ring->avail = kring->nr_hwavail = 0; /* empty */ 525 netmap_new_bufs(&nm_buf_pool, ring->slot, numdesc); 526 ofs += sizeof(struct netmap_ring) + 527 numdesc * sizeof(struct netmap_slot); 528 } 529 NMA_UNLOCK(); 530 for (i = 0; i < n+1; i++) { 531 // XXX initialize the selrecord structs. 532 } 533 final: 534 /* 535 * fill the slots for the rx and tx queues. They contain the offset 536 * between the ring and nifp, so the information is usable in 537 * userspace to reach the ring from the nifp. 538 */ 539 for (i = 0; i < n; i++) { 540 char *base = (char *)nifp; 541 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = 542 (char *)na->tx_rings[i].ring - base; 543 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n] = 544 (char *)na->rx_rings[i].ring - base; 545 } 546 return (nifp); 547 } 548 549 550 /* 551 * mmap(2) support for the "netmap" device. 552 * 553 * Expose all the memory previously allocated by our custom memory 554 * allocator: this way the user has only to issue a single mmap(2), and 555 * can work on all the data structures flawlessly. 556 * 557 * Return 0 on success, -1 otherwise. 558 */ 559 static int 560 #if __FreeBSD_version < 900000 561 netmap_mmap(__unused struct cdev *dev, vm_offset_t offset, vm_paddr_t *paddr, 562 int nprot) 563 #else 564 netmap_mmap(__unused struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr, 565 int nprot, __unused vm_memattr_t *memattr) 566 #endif 567 { 568 if (nprot & PROT_EXEC) 569 return (-1); // XXX -1 or EINVAL ? 570 ND("request for offset 0x%x", (uint32_t)offset); 571 *paddr = vtophys(netmap_mem_d->nm_buffer) + offset; 572 573 return (0); 574 } 575 576 577 /* 578 * Handlers for synchronization of the queues from/to the host. 579 * 580 * netmap_sync_to_host() passes packets up. We are called from a 581 * system call in user process context, and the only contention 582 * can be among multiple user threads erroneously calling 583 * this routine concurrently. In principle we should not even 584 * need to lock. 585 */ 586 static void 587 netmap_sync_to_host(struct netmap_adapter *na) 588 { 589 struct netmap_kring *kring = &na->tx_rings[na->num_queues]; 590 struct netmap_ring *ring = kring->ring; 591 struct mbuf *head = NULL, *tail = NULL, *m; 592 u_int k, n, lim = kring->nkr_num_slots - 1; 593 594 k = ring->cur; 595 if (k > lim) { 596 netmap_ring_reinit(kring); 597 return; 598 } 599 // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 600 601 /* Take packets from hwcur to cur and pass them up. 602 * In case of no buffers we give up. At the end of the loop, 603 * the queue is drained in all cases. 604 */ 605 for (n = kring->nr_hwcur; n != k;) { 606 struct netmap_slot *slot = &ring->slot[n]; 607 608 n = (n == lim) ? 0 : n + 1; 609 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 610 D("bad pkt at %d len %d", n, slot->len); 611 continue; 612 } 613 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 614 615 if (m == NULL) 616 break; 617 if (tail) 618 tail->m_nextpkt = m; 619 else 620 head = m; 621 tail = m; 622 m->m_nextpkt = NULL; 623 } 624 kring->nr_hwcur = k; 625 kring->nr_hwavail = ring->avail = lim; 626 // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 627 628 /* send packets up, outside the lock */ 629 while ((m = head) != NULL) { 630 head = head->m_nextpkt; 631 m->m_nextpkt = NULL; 632 m->m_pkthdr.rcvif = na->ifp; 633 if (netmap_verbose & NM_VERB_HOST) 634 D("sending up pkt %p size %d", m, m->m_pkthdr.len); 635 (na->ifp->if_input)(na->ifp, m); 636 } 637 } 638 639 /* 640 * rxsync backend for packets coming from the host stack. 641 * They have been put in the queue by netmap_start() so we 642 * need to protect access to the kring using a lock. 643 * 644 * This routine also does the selrecord if called from the poll handler 645 * (we know because td != NULL). 646 */ 647 static void 648 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) 649 { 650 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 651 struct netmap_ring *ring = kring->ring; 652 int error = 1, delta; 653 u_int k = ring->cur, lim = kring->nkr_num_slots; 654 655 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 656 if (k >= lim) /* bad value */ 657 goto done; 658 delta = k - kring->nr_hwcur; 659 if (delta < 0) 660 delta += lim; 661 kring->nr_hwavail -= delta; 662 if (kring->nr_hwavail < 0) /* error */ 663 goto done; 664 kring->nr_hwcur = k; 665 error = 0; 666 k = ring->avail = kring->nr_hwavail; 667 if (k == 0 && td) 668 selrecord(td, &kring->si); 669 if (k && (netmap_verbose & NM_VERB_HOST)) 670 D("%d pkts from stack", k); 671 done: 672 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 673 if (error) 674 netmap_ring_reinit(kring); 675 } 676 677 678 /* 679 * get a refcounted reference to an interface. 680 * Return ENXIO if the interface does not exist, EINVAL if netmap 681 * is not supported by the interface. 682 * If successful, hold a reference. 683 */ 684 static int 685 get_ifp(const char *name, struct ifnet **ifp) 686 { 687 *ifp = ifunit_ref(name); 688 if (*ifp == NULL) 689 return (ENXIO); 690 /* can do this if the capability exists and if_pspare[0] 691 * points to the netmap descriptor. 692 */ 693 if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) 694 return 0; /* valid pointer, we hold the refcount */ 695 if_rele(*ifp); 696 return EINVAL; // not NETMAP capable 697 } 698 699 700 /* 701 * Error routine called when txsync/rxsync detects an error. 702 * Can't do much more than resetting cur = hwcur, avail = hwavail. 703 * Return 1 on reinit. 704 * 705 * This routine is only called by the upper half of the kernel. 706 * It only reads hwcur (which is changed only by the upper half, too) 707 * and hwavail (which may be changed by the lower half, but only on 708 * a tx ring and only to increase it, so any error will be recovered 709 * on the next call). For the above, we don't strictly need to call 710 * it under lock. 711 */ 712 int 713 netmap_ring_reinit(struct netmap_kring *kring) 714 { 715 struct netmap_ring *ring = kring->ring; 716 u_int i, lim = kring->nkr_num_slots - 1; 717 int errors = 0; 718 719 D("called for %s", kring->na->ifp->if_xname); 720 if (ring->cur > lim) 721 errors++; 722 for (i = 0; i <= lim; i++) { 723 u_int idx = ring->slot[i].buf_idx; 724 u_int len = ring->slot[i].len; 725 if (idx < 2 || idx >= netmap_total_buffers) { 726 if (!errors++) 727 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 728 ring->slot[i].buf_idx = 0; 729 ring->slot[i].len = 0; 730 } else if (len > NETMAP_BUF_SIZE) { 731 ring->slot[i].len = 0; 732 if (!errors++) 733 D("bad len %d at slot %d idx %d", 734 len, i, idx); 735 } 736 } 737 if (errors) { 738 int pos = kring - kring->na->tx_rings; 739 int n = kring->na->num_queues + 2; 740 741 D("total %d errors", errors); 742 errors++; 743 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 744 kring->na->ifp->if_xname, 745 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 746 ring->cur, kring->nr_hwcur, 747 ring->avail, kring->nr_hwavail); 748 ring->cur = kring->nr_hwcur; 749 ring->avail = kring->nr_hwavail; 750 } 751 return (errors ? 1 : 0); 752 } 753 754 755 /* 756 * Set the ring ID. For devices with a single queue, a request 757 * for all rings is the same as a single ring. 758 */ 759 static int 760 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 761 { 762 struct ifnet *ifp = priv->np_ifp; 763 struct netmap_adapter *na = NA(ifp); 764 void *adapter = na->ifp->if_softc; /* shorthand */ 765 u_int i = ringid & NETMAP_RING_MASK; 766 /* first time we don't lock */ 767 int need_lock = (priv->np_qfirst != priv->np_qlast); 768 769 if ( (ringid & NETMAP_HW_RING) && i >= na->num_queues) { 770 D("invalid ring id %d", i); 771 return (EINVAL); 772 } 773 if (need_lock) 774 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 775 priv->np_ringid = ringid; 776 if (ringid & NETMAP_SW_RING) { 777 priv->np_qfirst = na->num_queues; 778 priv->np_qlast = na->num_queues + 1; 779 } else if (ringid & NETMAP_HW_RING) { 780 priv->np_qfirst = i; 781 priv->np_qlast = i + 1; 782 } else { 783 priv->np_qfirst = 0; 784 priv->np_qlast = na->num_queues; 785 } 786 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 787 if (need_lock) 788 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 789 if (ringid & NETMAP_SW_RING) 790 D("ringid %s set to SW RING", ifp->if_xname); 791 else if (ringid & NETMAP_HW_RING) 792 D("ringid %s set to HW RING %d", ifp->if_xname, 793 priv->np_qfirst); 794 else 795 D("ringid %s set to all %d HW RINGS", ifp->if_xname, 796 priv->np_qlast); 797 return 0; 798 } 799 800 /* 801 * ioctl(2) support for the "netmap" device. 802 * 803 * Following a list of accepted commands: 804 * - NIOCGINFO 805 * - SIOCGIFADDR just for convenience 806 * - NIOCREGIF 807 * - NIOCUNREGIF 808 * - NIOCTXSYNC 809 * - NIOCRXSYNC 810 * 811 * Return 0 on success, errno otherwise. 812 */ 813 static int 814 netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, 815 __unused int fflag, struct thread *td) 816 { 817 struct netmap_priv_d *priv = NULL; 818 struct ifnet *ifp; 819 struct nmreq *nmr = (struct nmreq *) data; 820 struct netmap_adapter *na; 821 void *adapter; 822 int error; 823 u_int i; 824 struct netmap_if *nifp; 825 826 CURVNET_SET(TD_TO_VNET(td)); 827 828 error = devfs_get_cdevpriv((void **)&priv); 829 if (error != ENOENT && error != 0) { 830 CURVNET_RESTORE(); 831 return (error); 832 } 833 834 error = 0; /* Could be ENOENT */ 835 switch (cmd) { 836 case NIOCGINFO: /* return capabilities etc */ 837 /* memsize is always valid */ 838 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 839 nmr->nr_offset = 0; 840 nmr->nr_numrings = 0; 841 nmr->nr_numslots = 0; 842 if (nmr->nr_name[0] == '\0') /* just get memory info */ 843 break; 844 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 845 if (error) 846 break; 847 na = NA(ifp); /* retrieve netmap_adapter */ 848 nmr->nr_numrings = na->num_queues; 849 nmr->nr_numslots = na->num_tx_desc; 850 if_rele(ifp); /* return the refcount */ 851 break; 852 853 case NIOCREGIF: 854 if (priv != NULL) { /* thread already registered */ 855 error = netmap_set_ringid(priv, nmr->nr_ringid); 856 break; 857 } 858 /* find the interface and a reference */ 859 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 860 if (error) 861 break; 862 na = NA(ifp); /* retrieve netmap adapter */ 863 adapter = na->ifp->if_softc; /* shorthand */ 864 /* 865 * Allocate the private per-thread structure. 866 * XXX perhaps we can use a blocking malloc ? 867 */ 868 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 869 M_NOWAIT | M_ZERO); 870 if (priv == NULL) { 871 error = ENOMEM; 872 if_rele(ifp); /* return the refcount */ 873 break; 874 } 875 876 877 for (i = 10; i > 0; i--) { 878 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 879 if (!NETMAP_DELETING(na)) 880 break; 881 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 882 tsleep(na, 0, "NIOCREGIF", hz/10); 883 } 884 if (i == 0) { 885 D("too many NIOCREGIF attempts, give up"); 886 error = EINVAL; 887 free(priv, M_DEVBUF); 888 if_rele(ifp); /* return the refcount */ 889 break; 890 } 891 892 priv->np_ifp = ifp; /* store the reference */ 893 error = netmap_set_ringid(priv, nmr->nr_ringid); 894 if (error) 895 goto error; 896 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); 897 if (nifp == NULL) { /* allocation failed */ 898 error = ENOMEM; 899 } else if (ifp->if_capenable & IFCAP_NETMAP) { 900 /* was already set */ 901 } else { 902 /* Otherwise set the card in netmap mode 903 * and make it use the shared buffers. 904 */ 905 error = na->nm_register(ifp, 1); /* mode on */ 906 if (error) { 907 /* 908 * do something similar to netmap_dtor(). 909 */ 910 netmap_free(na->tx_rings[0].ring, "rings, reg.failed"); 911 free(na->tx_rings, M_DEVBUF); 912 na->tx_rings = na->rx_rings = NULL; 913 na->refcount--; 914 netmap_free(nifp, "nifp, rings failed"); 915 nifp = NULL; 916 } 917 } 918 919 if (error) { /* reg. failed, release priv and ref */ 920 error: 921 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 922 free(priv, M_DEVBUF); 923 if_rele(ifp); /* return the refcount */ 924 break; 925 } 926 927 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 928 error = devfs_set_cdevpriv(priv, netmap_dtor); 929 930 if (error != 0) { 931 /* could not assign the private storage for the 932 * thread, call the destructor explicitly. 933 */ 934 netmap_dtor(priv); 935 break; 936 } 937 938 /* return the offset of the netmap_if object */ 939 nmr->nr_numrings = na->num_queues; 940 nmr->nr_numslots = na->num_tx_desc; 941 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 942 nmr->nr_offset = 943 ((char *) nifp - (char *) netmap_mem_d->nm_buffer); 944 break; 945 946 case NIOCUNREGIF: 947 if (priv == NULL) { 948 error = ENXIO; 949 break; 950 } 951 952 /* the interface is unregistered inside the 953 destructor of the private data. */ 954 devfs_clear_cdevpriv(); 955 break; 956 957 case NIOCTXSYNC: 958 case NIOCRXSYNC: 959 if (priv == NULL) { 960 error = ENXIO; 961 break; 962 } 963 ifp = priv->np_ifp; /* we have a reference */ 964 na = NA(ifp); /* retrieve netmap adapter */ 965 adapter = ifp->if_softc; /* shorthand */ 966 967 if (priv->np_qfirst == na->num_queues) { 968 /* queues to/from host */ 969 if (cmd == NIOCTXSYNC) 970 netmap_sync_to_host(na); 971 else 972 netmap_sync_from_host(na, NULL); 973 break; 974 } 975 976 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 977 if (cmd == NIOCTXSYNC) { 978 struct netmap_kring *kring = &na->tx_rings[i]; 979 if (netmap_verbose & NM_VERB_TXSYNC) 980 D("sync tx ring %d cur %d hwcur %d", 981 i, kring->ring->cur, 982 kring->nr_hwcur); 983 na->nm_txsync(adapter, i, 1 /* do lock */); 984 if (netmap_verbose & NM_VERB_TXSYNC) 985 D("after sync tx ring %d cur %d hwcur %d", 986 i, kring->ring->cur, 987 kring->nr_hwcur); 988 } else { 989 na->nm_rxsync(adapter, i, 1 /* do lock */); 990 microtime(&na->rx_rings[i].ring->ts); 991 } 992 } 993 994 break; 995 996 case BIOCIMMEDIATE: 997 case BIOCGHDRCMPLT: 998 case BIOCSHDRCMPLT: 999 case BIOCSSEESENT: 1000 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1001 break; 1002 1003 default: 1004 { 1005 /* 1006 * allow device calls 1007 */ 1008 struct socket so; 1009 bzero(&so, sizeof(so)); 1010 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1011 if (error) 1012 break; 1013 so.so_vnet = ifp->if_vnet; 1014 // so->so_proto not null. 1015 error = ifioctl(&so, cmd, data, td); 1016 if_rele(ifp); 1017 } 1018 } 1019 1020 CURVNET_RESTORE(); 1021 return (error); 1022 } 1023 1024 1025 /* 1026 * select(2) and poll(2) handlers for the "netmap" device. 1027 * 1028 * Can be called for one or more queues. 1029 * Return true the event mask corresponding to ready events. 1030 * If there are no ready events, do a selrecord on either individual 1031 * selfd or on the global one. 1032 * Device-dependent parts (locking and sync of tx/rx rings) 1033 * are done through callbacks. 1034 */ 1035 static int 1036 netmap_poll(__unused struct cdev *dev, int events, struct thread *td) 1037 { 1038 struct netmap_priv_d *priv = NULL; 1039 struct netmap_adapter *na; 1040 struct ifnet *ifp; 1041 struct netmap_kring *kring; 1042 u_int i, check_all, want_tx, want_rx, revents = 0; 1043 void *adapter; 1044 1045 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1046 return POLLERR; 1047 1048 ifp = priv->np_ifp; 1049 // XXX check for deleting() ? 1050 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1051 return POLLERR; 1052 1053 if (netmap_verbose & 0x8000) 1054 D("device %s events 0x%x", ifp->if_xname, events); 1055 want_tx = events & (POLLOUT | POLLWRNORM); 1056 want_rx = events & (POLLIN | POLLRDNORM); 1057 1058 adapter = ifp->if_softc; 1059 na = NA(ifp); /* retrieve netmap adapter */ 1060 1061 /* how many queues we are scanning */ 1062 i = priv->np_qfirst; 1063 if (i == na->num_queues) { /* from/to host */ 1064 if (priv->np_txpoll || want_tx) { 1065 /* push any packets up, then we are always ready */ 1066 kring = &na->tx_rings[i]; 1067 netmap_sync_to_host(na); 1068 revents |= want_tx; 1069 } 1070 if (want_rx) { 1071 kring = &na->rx_rings[i]; 1072 if (kring->ring->avail == 0) 1073 netmap_sync_from_host(na, td); 1074 if (kring->ring->avail > 0) { 1075 revents |= want_rx; 1076 } 1077 } 1078 return (revents); 1079 } 1080 1081 /* 1082 * check_all is set if the card has more than one queue and 1083 * the client is polling all of them. If true, we sleep on 1084 * the "global" selfd, otherwise we sleep on individual selfd 1085 * (we can only sleep on one of them per direction). 1086 * The interrupt routine in the driver should always wake on 1087 * the individual selfd, and also on the global one if the card 1088 * has more than one ring. 1089 * 1090 * If the card has only one lock, we just use that. 1091 * If the card has separate ring locks, we just use those 1092 * unless we are doing check_all, in which case the whole 1093 * loop is wrapped by the global lock. 1094 * We acquire locks only when necessary: if poll is called 1095 * when buffers are available, we can just return without locks. 1096 * 1097 * rxsync() is only called if we run out of buffers on a POLLIN. 1098 * txsync() is called if we run out of buffers on POLLOUT, or 1099 * there are pending packets to send. The latter can be disabled 1100 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1101 */ 1102 check_all = (i + 1 != priv->np_qlast); 1103 1104 /* 1105 * core_lock indicates what to do with the core lock. 1106 * The core lock is used when either the card has no individual 1107 * locks, or it has individual locks but we are cheking all 1108 * rings so we need the core lock to avoid missing wakeup events. 1109 * 1110 * It has three possible states: 1111 * NO_CL we don't need to use the core lock, e.g. 1112 * because we are protected by individual locks. 1113 * NEED_CL we need the core lock. In this case, when we 1114 * call the lock routine, move to LOCKED_CL 1115 * to remember to release the lock once done. 1116 * LOCKED_CL core lock is set, so we need to release it. 1117 */ 1118 enum {NO_CL, NEED_CL, LOCKED_CL }; 1119 int core_lock = (check_all || !na->separate_locks) ? 1120 NEED_CL:NO_CL; 1121 /* 1122 * We start with a lock free round which is good if we have 1123 * data available. If this fails, then lock and call the sync 1124 * routines. 1125 */ 1126 for (i = priv->np_qfirst; want_rx && i < priv->np_qlast; i++) { 1127 kring = &na->rx_rings[i]; 1128 if (kring->ring->avail > 0) { 1129 revents |= want_rx; 1130 want_rx = 0; /* also breaks the loop */ 1131 } 1132 } 1133 for (i = priv->np_qfirst; want_tx && i < priv->np_qlast; i++) { 1134 kring = &na->tx_rings[i]; 1135 if (kring->ring->avail > 0) { 1136 revents |= want_tx; 1137 want_tx = 0; /* also breaks the loop */ 1138 } 1139 } 1140 1141 /* 1142 * If we to push packets out (priv->np_txpoll) or want_tx is 1143 * still set, we do need to run the txsync calls (on all rings, 1144 * to avoid that the tx rings stall). 1145 */ 1146 if (priv->np_txpoll || want_tx) { 1147 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1148 kring = &na->tx_rings[i]; 1149 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1150 continue; 1151 if (core_lock == NEED_CL) { 1152 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1153 core_lock = LOCKED_CL; 1154 } 1155 if (na->separate_locks) 1156 na->nm_lock(adapter, NETMAP_TX_LOCK, i); 1157 if (netmap_verbose & NM_VERB_TXSYNC) 1158 D("send %d on %s %d", 1159 kring->ring->cur, 1160 ifp->if_xname, i); 1161 if (na->nm_txsync(adapter, i, 0 /* no lock */)) 1162 revents |= POLLERR; 1163 1164 if (want_tx) { 1165 if (kring->ring->avail > 0) { 1166 /* stop at the first ring. We don't risk 1167 * starvation. 1168 */ 1169 revents |= want_tx; 1170 want_tx = 0; 1171 } else if (!check_all) 1172 selrecord(td, &kring->si); 1173 } 1174 if (na->separate_locks) 1175 na->nm_lock(adapter, NETMAP_TX_UNLOCK, i); 1176 } 1177 } 1178 1179 /* 1180 * now if want_rx is still set we need to lock and rxsync. 1181 * Do it on all rings because otherwise we starve. 1182 */ 1183 if (want_rx) { 1184 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1185 kring = &na->rx_rings[i]; 1186 if (core_lock == NEED_CL) { 1187 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1188 core_lock = LOCKED_CL; 1189 } 1190 if (na->separate_locks) 1191 na->nm_lock(adapter, NETMAP_RX_LOCK, i); 1192 1193 if (na->nm_rxsync(adapter, i, 0 /* no lock */)) 1194 revents |= POLLERR; 1195 if (no_timestamp == 0 || 1196 kring->ring->flags & NR_TIMESTAMP) 1197 microtime(&kring->ring->ts); 1198 1199 if (kring->ring->avail > 0) 1200 revents |= want_rx; 1201 else if (!check_all) 1202 selrecord(td, &kring->si); 1203 if (na->separate_locks) 1204 na->nm_lock(adapter, NETMAP_RX_UNLOCK, i); 1205 } 1206 } 1207 if (check_all && revents == 0) { 1208 i = na->num_queues + 1; /* the global queue */ 1209 if (want_tx) 1210 selrecord(td, &na->tx_rings[i].si); 1211 if (want_rx) 1212 selrecord(td, &na->rx_rings[i].si); 1213 } 1214 if (core_lock == LOCKED_CL) 1215 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 1216 1217 return (revents); 1218 } 1219 1220 /*------- driver support routines ------*/ 1221 1222 /* 1223 * Initialize a ``netmap_adapter`` object created by driver on attach. 1224 * We allocate a block of memory with room for a struct netmap_adapter 1225 * plus two sets of N+2 struct netmap_kring (where N is the number 1226 * of hardware rings): 1227 * krings 0..N-1 are for the hardware queues. 1228 * kring N is for the host stack queue 1229 * kring N+1 is only used for the selinfo for all queues. 1230 * Return 0 on success, ENOMEM otherwise. 1231 */ 1232 int 1233 netmap_attach(struct netmap_adapter *na, int num_queues) 1234 { 1235 int n = num_queues + 2; 1236 int size = sizeof(*na) + 2 * n * sizeof(struct netmap_kring); 1237 void *buf; 1238 struct ifnet *ifp = na->ifp; 1239 1240 if (ifp == NULL) { 1241 D("ifp not set, giving up"); 1242 return EINVAL; 1243 } 1244 na->refcount = 0; 1245 na->num_queues = num_queues; 1246 1247 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1248 if (buf) { 1249 ifp->if_pspare[0] = buf; 1250 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1251 na->rx_rings = na->tx_rings + n; 1252 bcopy(na, buf, sizeof(*na)); 1253 ifp->if_capabilities |= IFCAP_NETMAP; 1254 } 1255 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1256 1257 return (buf ? 0 : ENOMEM); 1258 } 1259 1260 1261 /* 1262 * Free the allocated memory linked to the given ``netmap_adapter`` 1263 * object. 1264 */ 1265 void 1266 netmap_detach(struct ifnet *ifp) 1267 { 1268 u_int i; 1269 struct netmap_adapter *na = NA(ifp); 1270 1271 if (!na) 1272 return; 1273 1274 for (i = 0; i < na->num_queues + 2; i++) { 1275 knlist_destroy(&na->tx_rings[i].si.si_note); 1276 knlist_destroy(&na->rx_rings[i].si.si_note); 1277 } 1278 bzero(na, sizeof(*na)); 1279 ifp->if_pspare[0] = NULL; 1280 free(na, M_DEVBUF); 1281 } 1282 1283 1284 /* 1285 * Intercept packets from the network stack and pass them 1286 * to netmap as incoming packets on the 'software' ring. 1287 * We are not locked when called. 1288 */ 1289 int 1290 netmap_start(struct ifnet *ifp, struct mbuf *m) 1291 { 1292 struct netmap_adapter *na = NA(ifp); 1293 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 1294 u_int i, len = m->m_pkthdr.len; 1295 int error = EBUSY, lim = kring->nkr_num_slots - 1; 1296 struct netmap_slot *slot; 1297 1298 if (netmap_verbose & NM_VERB_HOST) 1299 D("%s packet %d len %d from the stack", ifp->if_xname, 1300 kring->nr_hwcur + kring->nr_hwavail, len); 1301 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 1302 if (kring->nr_hwavail >= lim) { 1303 D("stack ring %s full\n", ifp->if_xname); 1304 goto done; /* no space */ 1305 } 1306 if (len > na->buff_size) { 1307 D("drop packet size %d > %d", len, na->buff_size); 1308 goto done; /* too long for us */ 1309 } 1310 1311 /* compute the insert position */ 1312 i = kring->nr_hwcur + kring->nr_hwavail; 1313 if (i > lim) 1314 i -= lim + 1; 1315 slot = &kring->ring->slot[i]; 1316 m_copydata(m, 0, len, NMB(slot)); 1317 slot->len = len; 1318 kring->nr_hwavail++; 1319 if (netmap_verbose & NM_VERB_HOST) 1320 D("wake up host ring %s %d", na->ifp->if_xname, na->num_queues); 1321 selwakeuppri(&kring->si, PI_NET); 1322 error = 0; 1323 done: 1324 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 1325 1326 /* release the mbuf in either cases of success or failure. As an 1327 * alternative, put the mbuf in a free list and free the list 1328 * only when really necessary. 1329 */ 1330 m_freem(m); 1331 1332 return (error); 1333 } 1334 1335 1336 /* 1337 * netmap_reset() is called by the driver routines when reinitializing 1338 * a ring. The driver is in charge of locking to protect the kring. 1339 * If netmap mode is not set just return NULL. 1340 */ 1341 struct netmap_slot * 1342 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1343 u_int new_cur) 1344 { 1345 struct netmap_kring *kring; 1346 struct netmap_ring *ring; 1347 int new_hwofs, lim; 1348 1349 if (na == NULL) 1350 return NULL; /* no netmap support here */ 1351 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1352 return NULL; /* nothing to reinitialize */ 1353 kring = tx == NR_TX ? na->tx_rings + n : na->rx_rings + n; 1354 ring = kring->ring; 1355 lim = kring->nkr_num_slots - 1; 1356 1357 if (tx == NR_TX) 1358 new_hwofs = kring->nr_hwcur - new_cur; 1359 else 1360 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1361 if (new_hwofs > lim) 1362 new_hwofs -= lim + 1; 1363 1364 /* Alwayws set the new offset value and realign the ring. */ 1365 kring->nkr_hwofs = new_hwofs; 1366 if (tx == NR_TX) 1367 kring->nr_hwavail = kring->nkr_num_slots - 1; 1368 D("new hwofs %d on %s %s[%d]", 1369 kring->nkr_hwofs, na->ifp->if_xname, 1370 tx == NR_TX ? "TX" : "RX", n); 1371 1372 /* 1373 * We do the wakeup here, but the ring is not yet reconfigured. 1374 * However, we are under lock so there are no races. 1375 */ 1376 selwakeuppri(&kring->si, PI_NET); 1377 selwakeuppri(&kring[na->num_queues + 1 - n].si, PI_NET); 1378 return kring->ring->slot; 1379 } 1380 1381 static void 1382 ns_dmamap_cb(__unused void *arg, __unused bus_dma_segment_t * segs, 1383 __unused int nseg, __unused int error) 1384 { 1385 } 1386 1387 /* unload a bus_dmamap and create a new one. Used when the 1388 * buffer in the slot is changed. 1389 * XXX buflen is probably not needed, buffers have constant size. 1390 */ 1391 void 1392 netmap_reload_map(bus_dma_tag_t tag, bus_dmamap_t map, 1393 void *buf, bus_size_t buflen) 1394 { 1395 bus_addr_t paddr; 1396 bus_dmamap_unload(tag, map); 1397 bus_dmamap_load(tag, map, buf, buflen, ns_dmamap_cb, &paddr, 1398 BUS_DMA_NOWAIT); 1399 } 1400 1401 void 1402 netmap_load_map(bus_dma_tag_t tag, bus_dmamap_t map, 1403 void *buf, bus_size_t buflen) 1404 { 1405 bus_addr_t paddr; 1406 bus_dmamap_load(tag, map, buf, buflen, ns_dmamap_cb, &paddr, 1407 BUS_DMA_NOWAIT); 1408 } 1409 1410 /*------ netmap memory allocator -------*/ 1411 /* 1412 * Request for a chunk of memory. 1413 * 1414 * Memory objects are arranged into a list, hence we need to walk this 1415 * list until we find an object with the needed amount of data free. 1416 * This sounds like a completely inefficient implementation, but given 1417 * the fact that data allocation is done once, we can handle it 1418 * flawlessly. 1419 * 1420 * Return NULL on failure. 1421 */ 1422 static void * 1423 netmap_malloc(size_t size, __unused const char *msg) 1424 { 1425 struct netmap_mem_obj *mem_obj, *new_mem_obj; 1426 void *ret = NULL; 1427 1428 NMA_LOCK(); 1429 TAILQ_FOREACH(mem_obj, &netmap_mem_d->nm_molist, nmo_next) { 1430 if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size) 1431 continue; 1432 1433 new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1434 M_WAITOK | M_ZERO); 1435 TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next); 1436 1437 new_mem_obj->nmo_used = 1; 1438 new_mem_obj->nmo_size = size; 1439 new_mem_obj->nmo_data = mem_obj->nmo_data; 1440 memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size); 1441 1442 mem_obj->nmo_size -= size; 1443 mem_obj->nmo_data = (char *) mem_obj->nmo_data + size; 1444 if (mem_obj->nmo_size == 0) { 1445 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, 1446 nmo_next); 1447 free(mem_obj, M_NETMAP); 1448 } 1449 1450 ret = new_mem_obj->nmo_data; 1451 1452 break; 1453 } 1454 NMA_UNLOCK(); 1455 ND("%s: %d bytes at %p", msg, size, ret); 1456 1457 return (ret); 1458 } 1459 1460 /* 1461 * Return the memory to the allocator. 1462 * 1463 * While freeing a memory object, we try to merge adjacent chunks in 1464 * order to reduce memory fragmentation. 1465 */ 1466 static void 1467 netmap_free(void *addr, const char *msg) 1468 { 1469 size_t size; 1470 struct netmap_mem_obj *cur, *prev, *next; 1471 1472 if (addr == NULL) { 1473 D("NULL addr for %s", msg); 1474 return; 1475 } 1476 1477 NMA_LOCK(); 1478 TAILQ_FOREACH(cur, &netmap_mem_d->nm_molist, nmo_next) { 1479 if (cur->nmo_data == addr && cur->nmo_used) 1480 break; 1481 } 1482 if (cur == NULL) { 1483 NMA_UNLOCK(); 1484 D("invalid addr %s %p", msg, addr); 1485 return; 1486 } 1487 1488 size = cur->nmo_size; 1489 cur->nmo_used = 0; 1490 1491 /* merge current chunk of memory with the previous one, 1492 if present. */ 1493 prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next); 1494 if (prev && prev->nmo_used == 0) { 1495 TAILQ_REMOVE(&netmap_mem_d->nm_molist, cur, nmo_next); 1496 prev->nmo_size += cur->nmo_size; 1497 free(cur, M_NETMAP); 1498 cur = prev; 1499 } 1500 1501 /* merge with the next one */ 1502 next = TAILQ_NEXT(cur, nmo_next); 1503 if (next && next->nmo_used == 0) { 1504 TAILQ_REMOVE(&netmap_mem_d->nm_molist, next, nmo_next); 1505 cur->nmo_size += next->nmo_size; 1506 free(next, M_NETMAP); 1507 } 1508 NMA_UNLOCK(); 1509 ND("freed %s %d bytes at %p", msg, size, addr); 1510 } 1511 1512 1513 /* 1514 * Initialize the memory allocator. 1515 * 1516 * Create the descriptor for the memory , allocate the pool of memory 1517 * and initialize the list of memory objects with a single chunk 1518 * containing the whole pre-allocated memory marked as free. 1519 * 1520 * Start with a large size, then halve as needed if we fail to 1521 * allocate the block. While halving, always add one extra page 1522 * because buffers 0 and 1 are used for special purposes. 1523 * Return 0 on success, errno otherwise. 1524 */ 1525 static int 1526 netmap_memory_init(void) 1527 { 1528 struct netmap_mem_obj *mem_obj; 1529 void *buf = NULL; 1530 int i, n, sz = NETMAP_MEMORY_SIZE; 1531 int extra_sz = 0; // space for rings and two spare buffers 1532 1533 for (; !buf && sz >= 1<<20; sz >>=1) { 1534 extra_sz = sz/200; 1535 extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1536 buf = contigmalloc(sz + extra_sz, 1537 M_NETMAP, 1538 M_WAITOK | M_ZERO, 1539 0, /* low address */ 1540 -1UL, /* high address */ 1541 PAGE_SIZE, /* alignment */ 1542 0 /* boundary */ 1543 ); 1544 } 1545 if (buf == NULL) 1546 return (ENOMEM); 1547 sz += extra_sz; 1548 netmap_mem_d = malloc(sizeof(struct netmap_mem_d), M_NETMAP, 1549 M_WAITOK | M_ZERO); 1550 mtx_init(&netmap_mem_d->nm_mtx, "netmap memory allocator lock", NULL, 1551 MTX_DEF); 1552 TAILQ_INIT(&netmap_mem_d->nm_molist); 1553 netmap_mem_d->nm_buffer = buf; 1554 netmap_mem_d->nm_totalsize = sz; 1555 1556 /* 1557 * A buffer takes 2k, a slot takes 8 bytes + ring overhead, 1558 * so the ratio is 200:1. In other words, we can use 1/200 of 1559 * the memory for the rings, and the rest for the buffers, 1560 * and be sure we never run out. 1561 */ 1562 netmap_mem_d->nm_size = sz/200; 1563 netmap_mem_d->nm_buf_start = 1564 (netmap_mem_d->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1565 netmap_mem_d->nm_buf_len = sz - netmap_mem_d->nm_buf_start; 1566 1567 nm_buf_pool.base = netmap_mem_d->nm_buffer; 1568 nm_buf_pool.base += netmap_mem_d->nm_buf_start; 1569 netmap_buffer_base = nm_buf_pool.base; 1570 D("netmap_buffer_base %p (offset %d)", 1571 netmap_buffer_base, (int)netmap_mem_d->nm_buf_start); 1572 /* number of buffers, they all start as free */ 1573 1574 netmap_total_buffers = nm_buf_pool.total_buffers = 1575 netmap_mem_d->nm_buf_len / NETMAP_BUF_SIZE; 1576 nm_buf_pool.bufsize = NETMAP_BUF_SIZE; 1577 1578 D("Have %d MB, use %dKB for rings, %d buffers at %p", 1579 (sz >> 20), (int)(netmap_mem_d->nm_size >> 10), 1580 nm_buf_pool.total_buffers, nm_buf_pool.base); 1581 1582 /* allocate and initialize the bitmap. Entry 0 is considered 1583 * always busy (used as default when there are no buffers left). 1584 */ 1585 n = (nm_buf_pool.total_buffers + 31) / 32; 1586 nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, 1587 M_WAITOK | M_ZERO); 1588 nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */ 1589 for (i = 1; i < n; i++) 1590 nm_buf_pool.bitmap[i] = ~0; 1591 nm_buf_pool.free = nm_buf_pool.total_buffers - 2; 1592 1593 mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1594 M_WAITOK | M_ZERO); 1595 TAILQ_INSERT_HEAD(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1596 mem_obj->nmo_used = 0; 1597 mem_obj->nmo_size = netmap_mem_d->nm_size; 1598 mem_obj->nmo_data = netmap_mem_d->nm_buffer; 1599 1600 return (0); 1601 } 1602 1603 1604 /* 1605 * Finalize the memory allocator. 1606 * 1607 * Free all the memory objects contained inside the list, and deallocate 1608 * the pool of memory; finally free the memory allocator descriptor. 1609 */ 1610 static void 1611 netmap_memory_fini(void) 1612 { 1613 struct netmap_mem_obj *mem_obj; 1614 1615 while (!TAILQ_EMPTY(&netmap_mem_d->nm_molist)) { 1616 mem_obj = TAILQ_FIRST(&netmap_mem_d->nm_molist); 1617 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1618 if (mem_obj->nmo_used == 1) { 1619 printf("netmap: leaked %d bytes at %p\n", 1620 (int)mem_obj->nmo_size, 1621 mem_obj->nmo_data); 1622 } 1623 free(mem_obj, M_NETMAP); 1624 } 1625 contigfree(netmap_mem_d->nm_buffer, netmap_mem_d->nm_totalsize, M_NETMAP); 1626 // XXX mutex_destroy(nm_mtx); 1627 free(netmap_mem_d, M_NETMAP); 1628 } 1629 1630 1631 /* 1632 * Module loader. 1633 * 1634 * Create the /dev/netmap device and initialize all global 1635 * variables. 1636 * 1637 * Return 0 on success, errno on failure. 1638 */ 1639 static int 1640 netmap_init(void) 1641 { 1642 int error; 1643 1644 1645 error = netmap_memory_init(); 1646 if (error != 0) { 1647 printf("netmap: unable to initialize the memory allocator."); 1648 return (error); 1649 } 1650 printf("netmap: loaded module with %d Mbytes\n", 1651 (int)(netmap_mem_d->nm_totalsize >> 20)); 1652 1653 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 1654 "netmap"); 1655 1656 return (0); 1657 } 1658 1659 1660 /* 1661 * Module unloader. 1662 * 1663 * Free all the memory, and destroy the ``/dev/netmap`` device. 1664 */ 1665 static void 1666 netmap_fini(void) 1667 { 1668 destroy_dev(netmap_dev); 1669 1670 netmap_memory_fini(); 1671 1672 printf("netmap: unloaded module.\n"); 1673 } 1674 1675 1676 /* 1677 * Kernel entry point. 1678 * 1679 * Initialize/finalize the module and return. 1680 * 1681 * Return 0 on success, errno on failure. 1682 */ 1683 static int 1684 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1685 { 1686 int error = 0; 1687 1688 switch (event) { 1689 case MOD_LOAD: 1690 error = netmap_init(); 1691 break; 1692 1693 case MOD_UNLOAD: 1694 netmap_fini(); 1695 break; 1696 1697 default: 1698 error = EOPNOTSUPP; 1699 break; 1700 } 1701 1702 return (error); 1703 } 1704 1705 1706 DEV_MODULE(netmap, netmap_loader, NULL); 1707