1 /* 2 * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * $FreeBSD$ 28 * $Id: netmap.c 9795 2011-12-02 11:39:08Z luigi $ 29 * 30 * This module supports memory mapped access to network devices, 31 * see netmap(4). 32 * 33 * The module uses a large, memory pool allocated by the kernel 34 * and accessible as mmapped memory by multiple userspace threads/processes. 35 * The memory pool contains packet buffers and "netmap rings", 36 * i.e. user-accessible copies of the interface's queues. 37 * 38 * Access to the network card works like this: 39 * 1. a process/thread issues one or more open() on /dev/netmap, to create 40 * select()able file descriptor on which events are reported. 41 * 2. on each descriptor, the process issues an ioctl() to identify 42 * the interface that should report events to the file descriptor. 43 * 3. on each descriptor, the process issues an mmap() request to 44 * map the shared memory region within the process' address space. 45 * The list of interesting queues is indicated by a location in 46 * the shared memory region. 47 * 4. using the functions in the netmap(4) userspace API, a process 48 * can look up the occupation state of a queue, access memory buffers, 49 * and retrieve received packets or enqueue packets to transmit. 50 * 5. using some ioctl()s the process can synchronize the userspace view 51 * of the queue with the actual status in the kernel. This includes both 52 * receiving the notification of new packets, and transmitting new 53 * packets on the output interface. 54 * 6. select() or poll() can be used to wait for events on individual 55 * transmit or receive queues (or all queues for a given interface). 56 */ 57 58 #include <sys/cdefs.h> /* prerequisite */ 59 __FBSDID("$FreeBSD$"); 60 61 #include <sys/types.h> 62 #include <sys/module.h> 63 #include <sys/errno.h> 64 #include <sys/param.h> /* defines used in kernel.h */ 65 #include <sys/jail.h> 66 #include <sys/kernel.h> /* types used in module initialization */ 67 #include <sys/conf.h> /* cdevsw struct */ 68 #include <sys/uio.h> /* uio struct */ 69 #include <sys/sockio.h> 70 #include <sys/socketvar.h> /* struct socket */ 71 #include <sys/malloc.h> 72 #include <sys/mman.h> /* PROT_EXEC */ 73 #include <sys/poll.h> 74 #include <sys/proc.h> 75 #include <vm/vm.h> /* vtophys */ 76 #include <vm/pmap.h> /* vtophys */ 77 #include <sys/socket.h> /* sockaddrs */ 78 #include <machine/bus.h> 79 #include <sys/selinfo.h> 80 #include <sys/sysctl.h> 81 #include <net/if.h> 82 #include <net/bpf.h> /* BIOCIMMEDIATE */ 83 #include <net/vnet.h> 84 #include <net/netmap.h> 85 #include <dev/netmap/netmap_kern.h> 86 #include <machine/bus.h> /* bus_dmamap_* */ 87 88 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 89 90 /* 91 * lock and unlock for the netmap memory allocator 92 */ 93 #define NMA_LOCK() mtx_lock(&netmap_mem_d->nm_mtx); 94 #define NMA_UNLOCK() mtx_unlock(&netmap_mem_d->nm_mtx); 95 96 /* 97 * Default amount of memory pre-allocated by the module. 98 * We start with a large size and then shrink our demand 99 * according to what is avalable when the module is loaded. 100 * At the moment the block is contiguous, but we can easily 101 * restrict our demand to smaller units (16..64k) 102 */ 103 #define NETMAP_MEMORY_SIZE (64 * 1024 * PAGE_SIZE) 104 static void * netmap_malloc(size_t size, const char *msg); 105 static void netmap_free(void *addr, const char *msg); 106 107 #define netmap_if_malloc(len) netmap_malloc(len, "nifp") 108 #define netmap_if_free(v) netmap_free((v), "nifp") 109 110 #define netmap_ring_malloc(len) netmap_malloc(len, "ring") 111 #define netmap_free_rings(na) \ 112 netmap_free((na)->tx_rings[0].ring, "shadow rings"); 113 114 /* 115 * Allocator for a pool of packet buffers. For each buffer we have 116 * one entry in the bitmap to signal the state. Allocation scans 117 * the bitmap, but since this is done only on attach, we are not 118 * too worried about performance 119 * XXX if we need to allocate small blocks, a translation 120 * table is used both for kernel virtual address and physical 121 * addresses. 122 */ 123 struct netmap_buf_pool { 124 u_int total_buffers; /* total buffers. */ 125 u_int free; 126 u_int bufsize; 127 char *base; /* buffer base address */ 128 uint32_t *bitmap; /* one bit per buffer, 1 means free */ 129 }; 130 struct netmap_buf_pool nm_buf_pool; 131 /* XXX move these two vars back into netmap_buf_pool */ 132 u_int netmap_total_buffers; 133 char *netmap_buffer_base; /* address of an invalid buffer */ 134 135 /* user-controlled variables */ 136 int netmap_verbose; 137 138 static int no_timestamp; /* don't timestamp on rxsync */ 139 140 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 141 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 142 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 143 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 144 CTLFLAG_RW, &no_timestamp, 0, "no_timestamp"); 145 SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers, 146 CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers"); 147 SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers, 148 CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers"); 149 int netmap_mitigate = 1; 150 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 151 int netmap_skip_txsync; 152 SYSCTL_INT(_dev_netmap, OID_AUTO, skip_txsync, CTLFLAG_RW, &netmap_skip_txsync, 0, ""); 153 int netmap_skip_rxsync; 154 SYSCTL_INT(_dev_netmap, OID_AUTO, skip_rxsync, CTLFLAG_RW, &netmap_skip_rxsync, 0, ""); 155 156 /* 157 * Allocate n buffers from the ring, and fill the slot. 158 * Buffer 0 is the 'junk' buffer. 159 */ 160 static void 161 netmap_new_bufs(struct netmap_if *nifp __unused, 162 struct netmap_slot *slot, u_int n) 163 { 164 struct netmap_buf_pool *p = &nm_buf_pool; 165 uint32_t bi = 0; /* index in the bitmap */ 166 uint32_t mask, j, i = 0; /* slot counter */ 167 168 if (n > p->free) { 169 D("only %d out of %d buffers available", i, n); 170 return; 171 } 172 /* termination is guaranteed by p->free */ 173 while (i < n && p->free > 0) { 174 uint32_t cur = p->bitmap[bi]; 175 if (cur == 0) { /* bitmask is fully used */ 176 bi++; 177 continue; 178 } 179 /* locate a slot */ 180 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ; 181 p->bitmap[bi] &= ~mask; /* slot in use */ 182 p->free--; 183 slot[i].buf_idx = bi*32+j; 184 slot[i].len = p->bufsize; 185 slot[i].flags = NS_BUF_CHANGED; 186 i++; 187 } 188 ND("allocated %d buffers, %d available", n, p->free); 189 } 190 191 192 static void 193 netmap_free_buf(struct netmap_if *nifp __unused, uint32_t i) 194 { 195 struct netmap_buf_pool *p = &nm_buf_pool; 196 197 uint32_t pos, mask; 198 if (i >= p->total_buffers) { 199 D("invalid free index %d", i); 200 return; 201 } 202 pos = i / 32; 203 mask = 1 << (i % 32); 204 if (p->bitmap[pos] & mask) { 205 D("slot %d already free", i); 206 return; 207 } 208 p->bitmap[pos] |= mask; 209 p->free++; 210 } 211 212 213 /* Descriptor of the memory objects handled by our memory allocator. */ 214 struct netmap_mem_obj { 215 TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the 216 chain. */ 217 int nmo_used; /* flag set on used memory objects. */ 218 size_t nmo_size; /* size of the memory area reserved for the 219 object. */ 220 void *nmo_data; /* pointer to the memory area. */ 221 }; 222 223 /* Wrap our memory objects to make them ``chainable``. */ 224 TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj); 225 226 227 /* Descriptor of our custom memory allocator. */ 228 struct netmap_mem_d { 229 struct mtx nm_mtx; /* lock used to handle the chain of memory 230 objects. */ 231 struct netmap_mem_obj_h nm_molist; /* list of memory objects */ 232 size_t nm_size; /* total amount of memory used for rings etc. */ 233 size_t nm_totalsize; /* total amount of allocated memory 234 (the difference is used for buffers) */ 235 size_t nm_buf_start; /* offset of packet buffers. 236 This is page-aligned. */ 237 size_t nm_buf_len; /* total memory for buffers */ 238 void *nm_buffer; /* pointer to the whole pre-allocated memory 239 area. */ 240 }; 241 242 243 /* Structure associated to each thread which registered an interface. */ 244 struct netmap_priv_d { 245 struct netmap_if *np_nifp; /* netmap interface descriptor. */ 246 247 struct ifnet *np_ifp; /* device for which we hold a reference */ 248 int np_ringid; /* from the ioctl */ 249 u_int np_qfirst, np_qlast; /* range of rings to scan */ 250 uint16_t np_txpoll; 251 }; 252 253 /* Shorthand to compute a netmap interface offset. */ 254 #define netmap_if_offset(v) \ 255 ((char *) (v) - (char *) netmap_mem_d->nm_buffer) 256 /* .. and get a physical address given a memory offset */ 257 #define netmap_ofstophys(o) \ 258 (vtophys(netmap_mem_d->nm_buffer) + (o)) 259 260 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 261 static struct netmap_mem_d *netmap_mem_d; /* Our memory allocator. */ 262 263 264 static d_mmap_t netmap_mmap; 265 static d_ioctl_t netmap_ioctl; 266 static d_poll_t netmap_poll; 267 268 #ifdef NETMAP_KEVENT 269 static d_kqfilter_t netmap_kqfilter; 270 #endif 271 272 static struct cdevsw netmap_cdevsw = { 273 .d_version = D_VERSION, 274 .d_name = "netmap", 275 .d_mmap = netmap_mmap, 276 .d_ioctl = netmap_ioctl, 277 .d_poll = netmap_poll, 278 #ifdef NETMAP_KEVENT 279 .d_kqfilter = netmap_kqfilter, 280 #endif 281 }; 282 283 #ifdef NETMAP_KEVENT 284 static int netmap_kqread(struct knote *, long); 285 static int netmap_kqwrite(struct knote *, long); 286 static void netmap_kqdetach(struct knote *); 287 288 static struct filterops netmap_read_filterops = { 289 .f_isfd = 1, 290 .f_attach = NULL, 291 .f_detach = netmap_kqdetach, 292 .f_event = netmap_kqread, 293 }; 294 295 static struct filterops netmap_write_filterops = { 296 .f_isfd = 1, 297 .f_attach = NULL, 298 .f_detach = netmap_kqdetach, 299 .f_event = netmap_kqwrite, 300 }; 301 302 /* 303 * support for the kevent() system call. 304 * 305 * This is the kevent filter, and is executed each time a new event 306 * is triggered on the device. This function execute some operation 307 * depending on the received filter. 308 * 309 * The implementation should test the filters and should implement 310 * filter operations we are interested on (a full list in /sys/event.h). 311 * 312 * On a match we should: 313 * - set kn->kn_fop 314 * - set kn->kn_hook 315 * - call knlist_add() to deliver the event to the application. 316 * 317 * Return 0 if the event should be delivered to the application. 318 */ 319 static int 320 netmap_kqfilter(struct cdev *dev, struct knote *kn) 321 { 322 /* declare variables needed to read/write */ 323 324 switch(kn->kn_filter) { 325 case EVFILT_READ: 326 if (netmap_verbose) 327 D("%s kqfilter: EVFILT_READ" ifp->if_xname); 328 329 /* read operations */ 330 kn->kn_fop = &netmap_read_filterops; 331 break; 332 333 case EVFILT_WRITE: 334 if (netmap_verbose) 335 D("%s kqfilter: EVFILT_WRITE" ifp->if_xname); 336 337 /* write operations */ 338 kn->kn_fop = &netmap_write_filterops; 339 break; 340 341 default: 342 if (netmap_verbose) 343 D("%s kqfilter: invalid filter" ifp->if_xname); 344 return(EINVAL); 345 } 346 347 kn->kn_hook = 0;// 348 knlist_add(&netmap_sc->tun_rsel.si_note, kn, 0); 349 350 return (0); 351 } 352 #endif /* NETMAP_KEVENT */ 353 354 /* 355 * File descriptor's private data destructor. 356 * 357 * Call nm_register(ifp,0) to stop netmap mode on the interface and 358 * revert to normal operation. We expect that np_ifp has not gone. 359 */ 360 static void 361 netmap_dtor(void *data) 362 { 363 struct netmap_priv_d *priv = data; 364 struct ifnet *ifp = priv->np_ifp; 365 struct netmap_adapter *na = NA(ifp); 366 struct netmap_if *nifp = priv->np_nifp; 367 368 if (0) 369 printf("%s starting for %p ifp %p\n", __FUNCTION__, priv, 370 priv ? priv->np_ifp : NULL); 371 372 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 373 374 na->refcount--; 375 if (na->refcount <= 0) { /* last instance */ 376 u_int i; 377 378 D("deleting last netmap instance for %s", ifp->if_xname); 379 /* 380 * there is a race here with *_netmap_task() and 381 * netmap_poll(), which don't run under NETMAP_CORE_LOCK. 382 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 383 * (aka NETMAP_DELETING(na)) are a unique marker that the 384 * device is dying. 385 * Before destroying stuff we sleep a bit, and then complete 386 * the job. NIOCREG should realize the condition and 387 * loop until they can continue; the other routines 388 * should check the condition at entry and quit if 389 * they cannot run. 390 */ 391 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 392 tsleep(na, 0, "NIOCUNREG", 4); 393 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 394 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 395 /* Wake up any sleeping threads. netmap_poll will 396 * then return POLLERR 397 */ 398 for (i = 0; i < na->num_queues + 2; i++) { 399 selwakeuppri(&na->tx_rings[i].si, PI_NET); 400 selwakeuppri(&na->rx_rings[i].si, PI_NET); 401 } 402 /* release all buffers */ 403 NMA_LOCK(); 404 for (i = 0; i < na->num_queues + 1; i++) { 405 int j, lim; 406 struct netmap_ring *ring; 407 408 ND("tx queue %d", i); 409 ring = na->tx_rings[i].ring; 410 lim = na->tx_rings[i].nkr_num_slots; 411 for (j = 0; j < lim; j++) 412 netmap_free_buf(nifp, ring->slot[j].buf_idx); 413 414 ND("rx queue %d", i); 415 ring = na->rx_rings[i].ring; 416 lim = na->rx_rings[i].nkr_num_slots; 417 for (j = 0; j < lim; j++) 418 netmap_free_buf(nifp, ring->slot[j].buf_idx); 419 } 420 NMA_UNLOCK(); 421 netmap_free_rings(na); 422 wakeup(na); 423 } 424 netmap_if_free(nifp); 425 426 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 427 428 if_rele(ifp); 429 430 bzero(priv, sizeof(*priv)); /* XXX for safety */ 431 free(priv, M_DEVBUF); 432 } 433 434 435 /* 436 * Create and return a new ``netmap_if`` object, and possibly also 437 * rings and packet buffors. 438 * 439 * Return NULL on failure. 440 */ 441 static void * 442 netmap_if_new(const char *ifname, struct netmap_adapter *na) 443 { 444 struct netmap_if *nifp; 445 struct netmap_ring *ring; 446 char *buff; 447 u_int i, len, ofs; 448 u_int n = na->num_queues + 1; /* shorthand, include stack queue */ 449 450 /* 451 * the descriptor is followed inline by an array of offsets 452 * to the tx and rx rings in the shared memory region. 453 */ 454 len = sizeof(struct netmap_if) + 2 * n * sizeof(ssize_t); 455 nifp = netmap_if_malloc(len); 456 if (nifp == NULL) 457 return (NULL); 458 459 /* initialize base fields */ 460 *(int *)(uintptr_t)&nifp->ni_num_queues = na->num_queues; 461 strncpy(nifp->ni_name, ifname, IFNAMSIZ); 462 463 (na->refcount)++; /* XXX atomic ? we are under lock */ 464 if (na->refcount > 1) 465 goto final; 466 467 /* 468 * If this is the first instance, allocate the shadow rings and 469 * buffers for this card (one for each hw queue, one for the host). 470 * The rings are contiguous, but have variable size. 471 * The entire block is reachable at 472 * na->tx_rings[0].ring 473 */ 474 475 len = n * (2 * sizeof(struct netmap_ring) + 476 (na->num_tx_desc + na->num_rx_desc) * 477 sizeof(struct netmap_slot) ); 478 buff = netmap_ring_malloc(len); 479 if (buff == NULL) { 480 D("failed to allocate %d bytes for %s shadow ring", 481 len, ifname); 482 error: 483 (na->refcount)--; 484 netmap_if_free(nifp); 485 return (NULL); 486 } 487 /* do we have the bufers ? we are in need of num_tx_desc buffers for 488 * each tx ring and num_tx_desc buffers for each rx ring. */ 489 len = n * (na->num_tx_desc + na->num_rx_desc); 490 NMA_LOCK(); 491 if (nm_buf_pool.free < len) { 492 NMA_UNLOCK(); 493 netmap_free(buff, "not enough bufs"); 494 goto error; 495 } 496 /* 497 * in the kring, store the pointers to the shared rings 498 * and initialize the rings. We are under NMA_LOCK(). 499 */ 500 ofs = 0; 501 for (i = 0; i < n; i++) { 502 struct netmap_kring *kring; 503 int numdesc; 504 505 /* Transmit rings */ 506 kring = &na->tx_rings[i]; 507 numdesc = na->num_tx_desc; 508 bzero(kring, sizeof(*kring)); 509 kring->na = na; 510 511 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 512 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 513 nm_buf_pool.base - (char *)ring; 514 ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs); 515 *(int *)(int *)(uintptr_t)&ring->num_slots = 516 kring->nkr_num_slots = numdesc; 517 518 /* 519 * IMPORTANT: 520 * Always keep one slot empty, so we can detect new 521 * transmissions comparing cur and nr_hwcur (they are 522 * the same only if there are no new transmissions). 523 */ 524 ring->avail = kring->nr_hwavail = numdesc - 1; 525 ring->cur = kring->nr_hwcur = 0; 526 netmap_new_bufs(nifp, ring->slot, numdesc); 527 528 ofs += sizeof(struct netmap_ring) + 529 numdesc * sizeof(struct netmap_slot); 530 531 /* Receive rings */ 532 kring = &na->rx_rings[i]; 533 numdesc = na->num_rx_desc; 534 bzero(kring, sizeof(*kring)); 535 kring->na = na; 536 537 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 538 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 539 nm_buf_pool.base - (char *)ring; 540 ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs); 541 *(int *)(int *)(uintptr_t)&ring->num_slots = 542 kring->nkr_num_slots = numdesc; 543 ring->cur = kring->nr_hwcur = 0; 544 ring->avail = kring->nr_hwavail = 0; /* empty */ 545 netmap_new_bufs(nifp, ring->slot, numdesc); 546 ofs += sizeof(struct netmap_ring) + 547 numdesc * sizeof(struct netmap_slot); 548 } 549 NMA_UNLOCK(); 550 for (i = 0; i < n+1; i++) { 551 // XXX initialize the selrecord structs. 552 } 553 final: 554 /* 555 * fill the slots for the rx and tx queues. They contain the offset 556 * between the ring and nifp, so the information is usable in 557 * userspace to reach the ring from the nifp. 558 */ 559 for (i = 0; i < n; i++) { 560 char *base = (char *)nifp; 561 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = 562 (char *)na->tx_rings[i].ring - base; 563 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n] = 564 (char *)na->rx_rings[i].ring - base; 565 } 566 return (nifp); 567 } 568 569 570 /* 571 * mmap(2) support for the "netmap" device. 572 * 573 * Expose all the memory previously allocated by our custom memory 574 * allocator: this way the user has only to issue a single mmap(2), and 575 * can work on all the data structures flawlessly. 576 * 577 * Return 0 on success, -1 otherwise. 578 */ 579 static int 580 #if __FreeBSD_version < 900000 581 netmap_mmap(__unused struct cdev *dev, vm_offset_t offset, vm_paddr_t *paddr, 582 int nprot) 583 #else 584 netmap_mmap(__unused struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr, 585 int nprot, __unused vm_memattr_t *memattr) 586 #endif 587 { 588 if (nprot & PROT_EXEC) 589 return (-1); // XXX -1 or EINVAL ? 590 591 ND("request for offset 0x%x", (uint32_t)offset); 592 *paddr = netmap_ofstophys(offset); 593 594 return (0); 595 } 596 597 598 /* 599 * Handlers for synchronization of the queues from/to the host. 600 * 601 * netmap_sync_to_host() passes packets up. We are called from a 602 * system call in user process context, and the only contention 603 * can be among multiple user threads erroneously calling 604 * this routine concurrently. In principle we should not even 605 * need to lock. 606 */ 607 static void 608 netmap_sync_to_host(struct netmap_adapter *na) 609 { 610 struct netmap_kring *kring = &na->tx_rings[na->num_queues]; 611 struct netmap_ring *ring = kring->ring; 612 struct mbuf *head = NULL, *tail = NULL, *m; 613 u_int k, n, lim = kring->nkr_num_slots - 1; 614 615 k = ring->cur; 616 if (k > lim) { 617 netmap_ring_reinit(kring); 618 return; 619 } 620 // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 621 622 /* Take packets from hwcur to cur and pass them up. 623 * In case of no buffers we give up. At the end of the loop, 624 * the queue is drained in all cases. 625 */ 626 for (n = kring->nr_hwcur; n != k;) { 627 struct netmap_slot *slot = &ring->slot[n]; 628 629 n = (n == lim) ? 0 : n + 1; 630 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 631 D("bad pkt at %d len %d", n, slot->len); 632 continue; 633 } 634 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 635 636 if (m == NULL) 637 break; 638 if (tail) 639 tail->m_nextpkt = m; 640 else 641 head = m; 642 tail = m; 643 m->m_nextpkt = NULL; 644 } 645 kring->nr_hwcur = k; 646 kring->nr_hwavail = ring->avail = lim; 647 // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 648 649 /* send packets up, outside the lock */ 650 while ((m = head) != NULL) { 651 head = head->m_nextpkt; 652 m->m_nextpkt = NULL; 653 m->m_pkthdr.rcvif = na->ifp; 654 if (netmap_verbose & NM_VERB_HOST) 655 D("sending up pkt %p size %d", m, m->m_pkthdr.len); 656 (na->ifp->if_input)(na->ifp, m); 657 } 658 } 659 660 /* 661 * rxsync backend for packets coming from the host stack. 662 * They have been put in the queue by netmap_start() so we 663 * need to protect access to the kring using a lock. 664 * 665 * This routine also does the selrecord if called from the poll handler 666 * (we know because td != NULL). 667 */ 668 static void 669 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) 670 { 671 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 672 struct netmap_ring *ring = kring->ring; 673 int error = 1, delta; 674 u_int k = ring->cur, lim = kring->nkr_num_slots; 675 676 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 677 if (k >= lim) /* bad value */ 678 goto done; 679 delta = k - kring->nr_hwcur; 680 if (delta < 0) 681 delta += lim; 682 kring->nr_hwavail -= delta; 683 if (kring->nr_hwavail < 0) /* error */ 684 goto done; 685 kring->nr_hwcur = k; 686 error = 0; 687 k = ring->avail = kring->nr_hwavail; 688 if (k == 0 && td) 689 selrecord(td, &kring->si); 690 if (k && (netmap_verbose & NM_VERB_HOST)) 691 D("%d pkts from stack", k); 692 done: 693 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 694 if (error) 695 netmap_ring_reinit(kring); 696 } 697 698 699 /* 700 * get a refcounted reference to an interface. 701 * Return ENXIO if the interface does not exist, EINVAL if netmap 702 * is not supported by the interface. 703 * If successful, hold a reference. 704 */ 705 static int 706 get_ifp(const char *name, struct ifnet **ifp) 707 { 708 *ifp = ifunit_ref(name); 709 if (*ifp == NULL) 710 return (ENXIO); 711 /* can do this if the capability exists and if_pspare[0] 712 * points to the netmap descriptor. 713 */ 714 if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) 715 return 0; /* valid pointer, we hold the refcount */ 716 if_rele(*ifp); 717 return EINVAL; // not NETMAP capable 718 } 719 720 721 /* 722 * Error routine called when txsync/rxsync detects an error. 723 * Can't do much more than resetting cur = hwcur, avail = hwavail. 724 * Return 1 on reinit. 725 * 726 * This routine is only called by the upper half of the kernel. 727 * It only reads hwcur (which is changed only by the upper half, too) 728 * and hwavail (which may be changed by the lower half, but only on 729 * a tx ring and only to increase it, so any error will be recovered 730 * on the next call). For the above, we don't strictly need to call 731 * it under lock. 732 */ 733 int 734 netmap_ring_reinit(struct netmap_kring *kring) 735 { 736 struct netmap_ring *ring = kring->ring; 737 u_int i, lim = kring->nkr_num_slots - 1; 738 int errors = 0; 739 740 D("called for %s", kring->na->ifp->if_xname); 741 if (ring->cur > lim) 742 errors++; 743 for (i = 0; i <= lim; i++) { 744 u_int idx = ring->slot[i].buf_idx; 745 u_int len = ring->slot[i].len; 746 if (idx < 2 || idx >= netmap_total_buffers) { 747 if (!errors++) 748 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 749 ring->slot[i].buf_idx = 0; 750 ring->slot[i].len = 0; 751 } else if (len > NETMAP_BUF_SIZE) { 752 ring->slot[i].len = 0; 753 if (!errors++) 754 D("bad len %d at slot %d idx %d", 755 len, i, idx); 756 } 757 } 758 if (errors) { 759 int pos = kring - kring->na->tx_rings; 760 int n = kring->na->num_queues + 2; 761 762 D("total %d errors", errors); 763 errors++; 764 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 765 kring->na->ifp->if_xname, 766 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 767 ring->cur, kring->nr_hwcur, 768 ring->avail, kring->nr_hwavail); 769 ring->cur = kring->nr_hwcur; 770 ring->avail = kring->nr_hwavail; 771 } 772 return (errors ? 1 : 0); 773 } 774 775 776 /* 777 * Set the ring ID. For devices with a single queue, a request 778 * for all rings is the same as a single ring. 779 */ 780 static int 781 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 782 { 783 struct ifnet *ifp = priv->np_ifp; 784 struct netmap_adapter *na = NA(ifp); 785 void *adapter = na->ifp->if_softc; /* shorthand */ 786 u_int i = ringid & NETMAP_RING_MASK; 787 /* first time we don't lock */ 788 int need_lock = (priv->np_qfirst != priv->np_qlast); 789 790 if ( (ringid & NETMAP_HW_RING) && i >= na->num_queues) { 791 D("invalid ring id %d", i); 792 return (EINVAL); 793 } 794 if (need_lock) 795 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 796 priv->np_ringid = ringid; 797 if (ringid & NETMAP_SW_RING) { 798 priv->np_qfirst = na->num_queues; 799 priv->np_qlast = na->num_queues + 1; 800 } else if (ringid & NETMAP_HW_RING) { 801 priv->np_qfirst = i; 802 priv->np_qlast = i + 1; 803 } else { 804 priv->np_qfirst = 0; 805 priv->np_qlast = na->num_queues; 806 } 807 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 808 if (need_lock) 809 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 810 if (ringid & NETMAP_SW_RING) 811 D("ringid %s set to SW RING", ifp->if_xname); 812 else if (ringid & NETMAP_HW_RING) 813 D("ringid %s set to HW RING %d", ifp->if_xname, 814 priv->np_qfirst); 815 else 816 D("ringid %s set to all %d HW RINGS", ifp->if_xname, 817 priv->np_qlast); 818 return 0; 819 } 820 821 /* 822 * ioctl(2) support for the "netmap" device. 823 * 824 * Following a list of accepted commands: 825 * - NIOCGINFO 826 * - SIOCGIFADDR just for convenience 827 * - NIOCREGIF 828 * - NIOCUNREGIF 829 * - NIOCTXSYNC 830 * - NIOCRXSYNC 831 * 832 * Return 0 on success, errno otherwise. 833 */ 834 static int 835 netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, 836 __unused int fflag, struct thread *td) 837 { 838 struct netmap_priv_d *priv = NULL; 839 struct ifnet *ifp; 840 struct nmreq *nmr = (struct nmreq *) data; 841 struct netmap_adapter *na; 842 void *adapter; 843 int error; 844 u_int i; 845 struct netmap_if *nifp; 846 847 CURVNET_SET(TD_TO_VNET(td)); 848 849 error = devfs_get_cdevpriv((void **)&priv); 850 if (error != ENOENT && error != 0) { 851 CURVNET_RESTORE(); 852 return (error); 853 } 854 855 error = 0; /* Could be ENOENT */ 856 switch (cmd) { 857 case NIOCGINFO: /* return capabilities etc */ 858 /* memsize is always valid */ 859 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 860 nmr->nr_offset = 0; 861 nmr->nr_numrings = 0; 862 nmr->nr_numslots = 0; 863 if (nmr->nr_name[0] == '\0') /* just get memory info */ 864 break; 865 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 866 if (error) 867 break; 868 na = NA(ifp); /* retrieve netmap_adapter */ 869 nmr->nr_numrings = na->num_queues; 870 nmr->nr_numslots = na->num_tx_desc; 871 if_rele(ifp); /* return the refcount */ 872 break; 873 874 case NIOCREGIF: 875 if (priv != NULL) { /* thread already registered */ 876 error = netmap_set_ringid(priv, nmr->nr_ringid); 877 break; 878 } 879 /* find the interface and a reference */ 880 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 881 if (error) 882 break; 883 na = NA(ifp); /* retrieve netmap adapter */ 884 adapter = na->ifp->if_softc; /* shorthand */ 885 /* 886 * Allocate the private per-thread structure. 887 * XXX perhaps we can use a blocking malloc ? 888 */ 889 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 890 M_NOWAIT | M_ZERO); 891 if (priv == NULL) { 892 error = ENOMEM; 893 if_rele(ifp); /* return the refcount */ 894 break; 895 } 896 897 898 for (i = 10; i > 0; i--) { 899 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 900 if (!NETMAP_DELETING(na)) 901 break; 902 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 903 tsleep(na, 0, "NIOCREGIF", hz/10); 904 } 905 if (i == 0) { 906 D("too many NIOCREGIF attempts, give up"); 907 error = EINVAL; 908 free(priv, M_DEVBUF); 909 if_rele(ifp); /* return the refcount */ 910 break; 911 } 912 913 priv->np_ifp = ifp; /* store the reference */ 914 error = netmap_set_ringid(priv, nmr->nr_ringid); 915 if (error) 916 goto error; 917 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); 918 if (nifp == NULL) { /* allocation failed */ 919 error = ENOMEM; 920 } else if (ifp->if_capenable & IFCAP_NETMAP) { 921 /* was already set */ 922 } else { 923 /* Otherwise set the card in netmap mode 924 * and make it use the shared buffers. 925 */ 926 error = na->nm_register(ifp, 1); /* mode on */ 927 if (error) { 928 /* 929 * do something similar to netmap_dtor(). 930 */ 931 netmap_free_rings(na); 932 // XXX tx_rings is inline, must not be freed. 933 // free(na->tx_rings, M_DEVBUF); // XXX wrong ? 934 na->tx_rings = na->rx_rings = NULL; 935 na->refcount--; 936 netmap_if_free(nifp); 937 nifp = NULL; 938 } 939 } 940 941 if (error) { /* reg. failed, release priv and ref */ 942 error: 943 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 944 free(priv, M_DEVBUF); 945 if_rele(ifp); /* return the refcount */ 946 break; 947 } 948 949 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 950 error = devfs_set_cdevpriv(priv, netmap_dtor); 951 952 if (error != 0) { 953 /* could not assign the private storage for the 954 * thread, call the destructor explicitly. 955 */ 956 netmap_dtor(priv); 957 break; 958 } 959 960 /* return the offset of the netmap_if object */ 961 nmr->nr_numrings = na->num_queues; 962 nmr->nr_numslots = na->num_tx_desc; 963 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 964 nmr->nr_offset = netmap_if_offset(nifp); 965 break; 966 967 case NIOCUNREGIF: 968 if (priv == NULL) { 969 error = ENXIO; 970 break; 971 } 972 973 /* the interface is unregistered inside the 974 destructor of the private data. */ 975 devfs_clear_cdevpriv(); 976 break; 977 978 case NIOCTXSYNC: 979 case NIOCRXSYNC: 980 if (priv == NULL) { 981 error = ENXIO; 982 break; 983 } 984 ifp = priv->np_ifp; /* we have a reference */ 985 na = NA(ifp); /* retrieve netmap adapter */ 986 adapter = ifp->if_softc; /* shorthand */ 987 988 if (priv->np_qfirst == na->num_queues) { 989 /* queues to/from host */ 990 if (cmd == NIOCTXSYNC) 991 netmap_sync_to_host(na); 992 else 993 netmap_sync_from_host(na, NULL); 994 break; 995 } 996 997 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 998 if (cmd == NIOCTXSYNC) { 999 struct netmap_kring *kring = &na->tx_rings[i]; 1000 if (netmap_verbose & NM_VERB_TXSYNC) 1001 D("sync tx ring %d cur %d hwcur %d", 1002 i, kring->ring->cur, 1003 kring->nr_hwcur); 1004 na->nm_txsync(adapter, i, 1 /* do lock */); 1005 if (netmap_verbose & NM_VERB_TXSYNC) 1006 D("after sync tx ring %d cur %d hwcur %d", 1007 i, kring->ring->cur, 1008 kring->nr_hwcur); 1009 } else { 1010 na->nm_rxsync(adapter, i, 1 /* do lock */); 1011 microtime(&na->rx_rings[i].ring->ts); 1012 } 1013 } 1014 1015 break; 1016 1017 case BIOCIMMEDIATE: 1018 case BIOCGHDRCMPLT: 1019 case BIOCSHDRCMPLT: 1020 case BIOCSSEESENT: 1021 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1022 break; 1023 1024 default: 1025 { 1026 /* 1027 * allow device calls 1028 */ 1029 struct socket so; 1030 bzero(&so, sizeof(so)); 1031 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1032 if (error) 1033 break; 1034 so.so_vnet = ifp->if_vnet; 1035 // so->so_proto not null. 1036 error = ifioctl(&so, cmd, data, td); 1037 if_rele(ifp); 1038 } 1039 } 1040 1041 CURVNET_RESTORE(); 1042 return (error); 1043 } 1044 1045 1046 /* 1047 * select(2) and poll(2) handlers for the "netmap" device. 1048 * 1049 * Can be called for one or more queues. 1050 * Return true the event mask corresponding to ready events. 1051 * If there are no ready events, do a selrecord on either individual 1052 * selfd or on the global one. 1053 * Device-dependent parts (locking and sync of tx/rx rings) 1054 * are done through callbacks. 1055 */ 1056 static int 1057 netmap_poll(__unused struct cdev *dev, int events, struct thread *td) 1058 { 1059 struct netmap_priv_d *priv = NULL; 1060 struct netmap_adapter *na; 1061 struct ifnet *ifp; 1062 struct netmap_kring *kring; 1063 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1064 void *adapter; 1065 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1066 1067 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1068 return POLLERR; 1069 1070 ifp = priv->np_ifp; 1071 // XXX check for deleting() ? 1072 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1073 return POLLERR; 1074 1075 if (netmap_verbose & 0x8000) 1076 D("device %s events 0x%x", ifp->if_xname, events); 1077 want_tx = events & (POLLOUT | POLLWRNORM); 1078 want_rx = events & (POLLIN | POLLRDNORM); 1079 1080 adapter = ifp->if_softc; 1081 na = NA(ifp); /* retrieve netmap adapter */ 1082 1083 /* how many queues we are scanning */ 1084 i = priv->np_qfirst; 1085 if (i == na->num_queues) { /* from/to host */ 1086 if (priv->np_txpoll || want_tx) { 1087 /* push any packets up, then we are always ready */ 1088 kring = &na->tx_rings[i]; 1089 netmap_sync_to_host(na); 1090 revents |= want_tx; 1091 } 1092 if (want_rx) { 1093 kring = &na->rx_rings[i]; 1094 if (kring->ring->avail == 0) 1095 netmap_sync_from_host(na, td); 1096 if (kring->ring->avail > 0) { 1097 revents |= want_rx; 1098 } 1099 } 1100 return (revents); 1101 } 1102 1103 /* 1104 * check_all is set if the card has more than one queue and 1105 * the client is polling all of them. If true, we sleep on 1106 * the "global" selfd, otherwise we sleep on individual selfd 1107 * (we can only sleep on one of them per direction). 1108 * The interrupt routine in the driver should always wake on 1109 * the individual selfd, and also on the global one if the card 1110 * has more than one ring. 1111 * 1112 * If the card has only one lock, we just use that. 1113 * If the card has separate ring locks, we just use those 1114 * unless we are doing check_all, in which case the whole 1115 * loop is wrapped by the global lock. 1116 * We acquire locks only when necessary: if poll is called 1117 * when buffers are available, we can just return without locks. 1118 * 1119 * rxsync() is only called if we run out of buffers on a POLLIN. 1120 * txsync() is called if we run out of buffers on POLLOUT, or 1121 * there are pending packets to send. The latter can be disabled 1122 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1123 */ 1124 check_all = (i + 1 != priv->np_qlast); 1125 1126 /* 1127 * core_lock indicates what to do with the core lock. 1128 * The core lock is used when either the card has no individual 1129 * locks, or it has individual locks but we are cheking all 1130 * rings so we need the core lock to avoid missing wakeup events. 1131 * 1132 * It has three possible states: 1133 * NO_CL we don't need to use the core lock, e.g. 1134 * because we are protected by individual locks. 1135 * NEED_CL we need the core lock. In this case, when we 1136 * call the lock routine, move to LOCKED_CL 1137 * to remember to release the lock once done. 1138 * LOCKED_CL core lock is set, so we need to release it. 1139 */ 1140 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1141 /* 1142 * We start with a lock free round which is good if we have 1143 * data available. If this fails, then lock and call the sync 1144 * routines. 1145 */ 1146 for (i = priv->np_qfirst; want_rx && i < priv->np_qlast; i++) { 1147 kring = &na->rx_rings[i]; 1148 if (kring->ring->avail > 0) { 1149 revents |= want_rx; 1150 want_rx = 0; /* also breaks the loop */ 1151 } 1152 } 1153 for (i = priv->np_qfirst; want_tx && i < priv->np_qlast; i++) { 1154 kring = &na->tx_rings[i]; 1155 if (kring->ring->avail > 0) { 1156 revents |= want_tx; 1157 want_tx = 0; /* also breaks the loop */ 1158 } 1159 } 1160 1161 /* 1162 * If we to push packets out (priv->np_txpoll) or want_tx is 1163 * still set, we do need to run the txsync calls (on all rings, 1164 * to avoid that the tx rings stall). 1165 */ 1166 if (priv->np_txpoll || want_tx) { 1167 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1168 kring = &na->tx_rings[i]; 1169 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1170 continue; 1171 if (core_lock == NEED_CL) { 1172 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1173 core_lock = LOCKED_CL; 1174 } 1175 if (na->separate_locks) 1176 na->nm_lock(adapter, NETMAP_TX_LOCK, i); 1177 if (netmap_verbose & NM_VERB_TXSYNC) 1178 D("send %d on %s %d", 1179 kring->ring->cur, 1180 ifp->if_xname, i); 1181 if (na->nm_txsync(adapter, i, 0 /* no lock */)) 1182 revents |= POLLERR; 1183 1184 if (want_tx) { 1185 if (kring->ring->avail > 0) { 1186 /* stop at the first ring. We don't risk 1187 * starvation. 1188 */ 1189 revents |= want_tx; 1190 want_tx = 0; 1191 } else if (!check_all) 1192 selrecord(td, &kring->si); 1193 } 1194 if (na->separate_locks) 1195 na->nm_lock(adapter, NETMAP_TX_UNLOCK, i); 1196 } 1197 } 1198 1199 /* 1200 * now if want_rx is still set we need to lock and rxsync. 1201 * Do it on all rings because otherwise we starve. 1202 */ 1203 if (want_rx) { 1204 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1205 kring = &na->rx_rings[i]; 1206 if (core_lock == NEED_CL) { 1207 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1208 core_lock = LOCKED_CL; 1209 } 1210 if (na->separate_locks) 1211 na->nm_lock(adapter, NETMAP_RX_LOCK, i); 1212 1213 if (na->nm_rxsync(adapter, i, 0 /* no lock */)) 1214 revents |= POLLERR; 1215 if (no_timestamp == 0 || 1216 kring->ring->flags & NR_TIMESTAMP) 1217 microtime(&kring->ring->ts); 1218 1219 if (kring->ring->avail > 0) 1220 revents |= want_rx; 1221 else if (!check_all) 1222 selrecord(td, &kring->si); 1223 if (na->separate_locks) 1224 na->nm_lock(adapter, NETMAP_RX_UNLOCK, i); 1225 } 1226 } 1227 if (check_all && revents == 0) { 1228 i = na->num_queues + 1; /* the global queue */ 1229 if (want_tx) 1230 selrecord(td, &na->tx_rings[i].si); 1231 if (want_rx) 1232 selrecord(td, &na->rx_rings[i].si); 1233 } 1234 if (core_lock == LOCKED_CL) 1235 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 1236 1237 return (revents); 1238 } 1239 1240 /*------- driver support routines ------*/ 1241 1242 /* 1243 * Initialize a ``netmap_adapter`` object created by driver on attach. 1244 * We allocate a block of memory with room for a struct netmap_adapter 1245 * plus two sets of N+2 struct netmap_kring (where N is the number 1246 * of hardware rings): 1247 * krings 0..N-1 are for the hardware queues. 1248 * kring N is for the host stack queue 1249 * kring N+1 is only used for the selinfo for all queues. 1250 * Return 0 on success, ENOMEM otherwise. 1251 */ 1252 int 1253 netmap_attach(struct netmap_adapter *na, int num_queues) 1254 { 1255 int n = num_queues + 2; 1256 int size = sizeof(*na) + 2 * n * sizeof(struct netmap_kring); 1257 void *buf; 1258 struct ifnet *ifp = na->ifp; 1259 1260 if (ifp == NULL) { 1261 D("ifp not set, giving up"); 1262 return EINVAL; 1263 } 1264 na->refcount = 0; 1265 na->num_queues = num_queues; 1266 1267 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1268 if (buf) { 1269 WNA(ifp) = buf; 1270 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1271 na->rx_rings = na->tx_rings + n; 1272 bcopy(na, buf, sizeof(*na)); 1273 ifp->if_capabilities |= IFCAP_NETMAP; 1274 } 1275 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1276 1277 return (buf ? 0 : ENOMEM); 1278 } 1279 1280 1281 /* 1282 * Free the allocated memory linked to the given ``netmap_adapter`` 1283 * object. 1284 */ 1285 void 1286 netmap_detach(struct ifnet *ifp) 1287 { 1288 u_int i; 1289 struct netmap_adapter *na = NA(ifp); 1290 1291 if (!na) 1292 return; 1293 1294 for (i = 0; i < na->num_queues + 2; i++) { 1295 knlist_destroy(&na->tx_rings[i].si.si_note); 1296 knlist_destroy(&na->rx_rings[i].si.si_note); 1297 } 1298 bzero(na, sizeof(*na)); 1299 WNA(ifp) = NULL; 1300 free(na, M_DEVBUF); 1301 } 1302 1303 1304 /* 1305 * Intercept packets from the network stack and pass them 1306 * to netmap as incoming packets on the 'software' ring. 1307 * We are not locked when called. 1308 */ 1309 int 1310 netmap_start(struct ifnet *ifp, struct mbuf *m) 1311 { 1312 struct netmap_adapter *na = NA(ifp); 1313 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 1314 u_int i, len = m->m_pkthdr.len; 1315 int error = EBUSY, lim = kring->nkr_num_slots - 1; 1316 struct netmap_slot *slot; 1317 1318 if (netmap_verbose & NM_VERB_HOST) 1319 D("%s packet %d len %d from the stack", ifp->if_xname, 1320 kring->nr_hwcur + kring->nr_hwavail, len); 1321 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 1322 if (kring->nr_hwavail >= lim) { 1323 D("stack ring %s full\n", ifp->if_xname); 1324 goto done; /* no space */ 1325 } 1326 if (len > na->buff_size) { 1327 D("drop packet size %d > %d", len, na->buff_size); 1328 goto done; /* too long for us */ 1329 } 1330 1331 /* compute the insert position */ 1332 i = kring->nr_hwcur + kring->nr_hwavail; 1333 if (i > lim) 1334 i -= lim + 1; 1335 slot = &kring->ring->slot[i]; 1336 m_copydata(m, 0, len, NMB(slot)); 1337 slot->len = len; 1338 kring->nr_hwavail++; 1339 if (netmap_verbose & NM_VERB_HOST) 1340 D("wake up host ring %s %d", na->ifp->if_xname, na->num_queues); 1341 selwakeuppri(&kring->si, PI_NET); 1342 error = 0; 1343 done: 1344 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 1345 1346 /* release the mbuf in either cases of success or failure. As an 1347 * alternative, put the mbuf in a free list and free the list 1348 * only when really necessary. 1349 */ 1350 m_freem(m); 1351 1352 return (error); 1353 } 1354 1355 1356 /* 1357 * netmap_reset() is called by the driver routines when reinitializing 1358 * a ring. The driver is in charge of locking to protect the kring. 1359 * If netmap mode is not set just return NULL. 1360 */ 1361 struct netmap_slot * 1362 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1363 u_int new_cur) 1364 { 1365 struct netmap_kring *kring; 1366 struct netmap_ring *ring; 1367 int new_hwofs, lim; 1368 1369 if (na == NULL) 1370 return NULL; /* no netmap support here */ 1371 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1372 return NULL; /* nothing to reinitialize */ 1373 kring = tx == NR_TX ? na->tx_rings + n : na->rx_rings + n; 1374 ring = kring->ring; 1375 lim = kring->nkr_num_slots - 1; 1376 1377 if (tx == NR_TX) 1378 new_hwofs = kring->nr_hwcur - new_cur; 1379 else 1380 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1381 if (new_hwofs > lim) 1382 new_hwofs -= lim + 1; 1383 1384 /* Alwayws set the new offset value and realign the ring. */ 1385 kring->nkr_hwofs = new_hwofs; 1386 if (tx == NR_TX) 1387 kring->nr_hwavail = kring->nkr_num_slots - 1; 1388 D("new hwofs %d on %s %s[%d]", 1389 kring->nkr_hwofs, na->ifp->if_xname, 1390 tx == NR_TX ? "TX" : "RX", n); 1391 1392 /* 1393 * We do the wakeup here, but the ring is not yet reconfigured. 1394 * However, we are under lock so there are no races. 1395 */ 1396 selwakeuppri(&kring->si, PI_NET); 1397 selwakeuppri(&kring[na->num_queues + 1 - n].si, PI_NET); 1398 return kring->ring->slot; 1399 } 1400 1401 1402 /*------ netmap memory allocator -------*/ 1403 /* 1404 * Request for a chunk of memory. 1405 * 1406 * Memory objects are arranged into a list, hence we need to walk this 1407 * list until we find an object with the needed amount of data free. 1408 * This sounds like a completely inefficient implementation, but given 1409 * the fact that data allocation is done once, we can handle it 1410 * flawlessly. 1411 * 1412 * Return NULL on failure. 1413 */ 1414 static void * 1415 netmap_malloc(size_t size, __unused const char *msg) 1416 { 1417 struct netmap_mem_obj *mem_obj, *new_mem_obj; 1418 void *ret = NULL; 1419 1420 NMA_LOCK(); 1421 TAILQ_FOREACH(mem_obj, &netmap_mem_d->nm_molist, nmo_next) { 1422 if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size) 1423 continue; 1424 1425 new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1426 M_WAITOK | M_ZERO); 1427 TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next); 1428 1429 new_mem_obj->nmo_used = 1; 1430 new_mem_obj->nmo_size = size; 1431 new_mem_obj->nmo_data = mem_obj->nmo_data; 1432 memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size); 1433 1434 mem_obj->nmo_size -= size; 1435 mem_obj->nmo_data = (char *) mem_obj->nmo_data + size; 1436 if (mem_obj->nmo_size == 0) { 1437 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, 1438 nmo_next); 1439 free(mem_obj, M_NETMAP); 1440 } 1441 1442 ret = new_mem_obj->nmo_data; 1443 1444 break; 1445 } 1446 NMA_UNLOCK(); 1447 ND("%s: %d bytes at %p", msg, size, ret); 1448 1449 return (ret); 1450 } 1451 1452 /* 1453 * Return the memory to the allocator. 1454 * 1455 * While freeing a memory object, we try to merge adjacent chunks in 1456 * order to reduce memory fragmentation. 1457 */ 1458 static void 1459 netmap_free(void *addr, const char *msg) 1460 { 1461 size_t size; 1462 struct netmap_mem_obj *cur, *prev, *next; 1463 1464 if (addr == NULL) { 1465 D("NULL addr for %s", msg); 1466 return; 1467 } 1468 1469 NMA_LOCK(); 1470 TAILQ_FOREACH(cur, &netmap_mem_d->nm_molist, nmo_next) { 1471 if (cur->nmo_data == addr && cur->nmo_used) 1472 break; 1473 } 1474 if (cur == NULL) { 1475 NMA_UNLOCK(); 1476 D("invalid addr %s %p", msg, addr); 1477 return; 1478 } 1479 1480 size = cur->nmo_size; 1481 cur->nmo_used = 0; 1482 1483 /* merge current chunk of memory with the previous one, 1484 if present. */ 1485 prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next); 1486 if (prev && prev->nmo_used == 0) { 1487 TAILQ_REMOVE(&netmap_mem_d->nm_molist, cur, nmo_next); 1488 prev->nmo_size += cur->nmo_size; 1489 free(cur, M_NETMAP); 1490 cur = prev; 1491 } 1492 1493 /* merge with the next one */ 1494 next = TAILQ_NEXT(cur, nmo_next); 1495 if (next && next->nmo_used == 0) { 1496 TAILQ_REMOVE(&netmap_mem_d->nm_molist, next, nmo_next); 1497 cur->nmo_size += next->nmo_size; 1498 free(next, M_NETMAP); 1499 } 1500 NMA_UNLOCK(); 1501 ND("freed %s %d bytes at %p", msg, size, addr); 1502 } 1503 1504 1505 /* 1506 * Initialize the memory allocator. 1507 * 1508 * Create the descriptor for the memory , allocate the pool of memory 1509 * and initialize the list of memory objects with a single chunk 1510 * containing the whole pre-allocated memory marked as free. 1511 * 1512 * Start with a large size, then halve as needed if we fail to 1513 * allocate the block. While halving, always add one extra page 1514 * because buffers 0 and 1 are used for special purposes. 1515 * Return 0 on success, errno otherwise. 1516 */ 1517 static int 1518 netmap_memory_init(void) 1519 { 1520 struct netmap_mem_obj *mem_obj; 1521 void *buf = NULL; 1522 int i, n, sz = NETMAP_MEMORY_SIZE; 1523 int extra_sz = 0; // space for rings and two spare buffers 1524 1525 for (; sz >= 1<<20; sz >>=1) { 1526 extra_sz = sz/200; 1527 extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1528 buf = contigmalloc(sz + extra_sz, 1529 M_NETMAP, 1530 M_WAITOK | M_ZERO, 1531 0, /* low address */ 1532 -1UL, /* high address */ 1533 PAGE_SIZE, /* alignment */ 1534 0 /* boundary */ 1535 ); 1536 if (buf) 1537 break; 1538 } 1539 if (buf == NULL) 1540 return (ENOMEM); 1541 sz += extra_sz; 1542 netmap_mem_d = malloc(sizeof(struct netmap_mem_d), M_NETMAP, 1543 M_WAITOK | M_ZERO); 1544 mtx_init(&netmap_mem_d->nm_mtx, "netmap memory allocator lock", NULL, 1545 MTX_DEF); 1546 TAILQ_INIT(&netmap_mem_d->nm_molist); 1547 netmap_mem_d->nm_buffer = buf; 1548 netmap_mem_d->nm_totalsize = sz; 1549 1550 /* 1551 * A buffer takes 2k, a slot takes 8 bytes + ring overhead, 1552 * so the ratio is 200:1. In other words, we can use 1/200 of 1553 * the memory for the rings, and the rest for the buffers, 1554 * and be sure we never run out. 1555 */ 1556 netmap_mem_d->nm_size = sz/200; 1557 netmap_mem_d->nm_buf_start = 1558 (netmap_mem_d->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1559 netmap_mem_d->nm_buf_len = sz - netmap_mem_d->nm_buf_start; 1560 1561 nm_buf_pool.base = netmap_mem_d->nm_buffer; 1562 nm_buf_pool.base += netmap_mem_d->nm_buf_start; 1563 netmap_buffer_base = nm_buf_pool.base; 1564 D("netmap_buffer_base %p (offset %d)", 1565 netmap_buffer_base, (int)netmap_mem_d->nm_buf_start); 1566 /* number of buffers, they all start as free */ 1567 1568 netmap_total_buffers = nm_buf_pool.total_buffers = 1569 netmap_mem_d->nm_buf_len / NETMAP_BUF_SIZE; 1570 nm_buf_pool.bufsize = NETMAP_BUF_SIZE; 1571 1572 D("Have %d MB, use %dKB for rings, %d buffers at %p", 1573 (sz >> 20), (int)(netmap_mem_d->nm_size >> 10), 1574 nm_buf_pool.total_buffers, nm_buf_pool.base); 1575 1576 /* allocate and initialize the bitmap. Entry 0 is considered 1577 * always busy (used as default when there are no buffers left). 1578 */ 1579 n = (nm_buf_pool.total_buffers + 31) / 32; 1580 nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, 1581 M_WAITOK | M_ZERO); 1582 nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */ 1583 for (i = 1; i < n; i++) 1584 nm_buf_pool.bitmap[i] = ~0; 1585 nm_buf_pool.free = nm_buf_pool.total_buffers - 2; 1586 1587 mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1588 M_WAITOK | M_ZERO); 1589 TAILQ_INSERT_HEAD(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1590 mem_obj->nmo_used = 0; 1591 mem_obj->nmo_size = netmap_mem_d->nm_size; 1592 mem_obj->nmo_data = netmap_mem_d->nm_buffer; 1593 1594 return (0); 1595 } 1596 1597 1598 /* 1599 * Finalize the memory allocator. 1600 * 1601 * Free all the memory objects contained inside the list, and deallocate 1602 * the pool of memory; finally free the memory allocator descriptor. 1603 */ 1604 static void 1605 netmap_memory_fini(void) 1606 { 1607 struct netmap_mem_obj *mem_obj; 1608 1609 while (!TAILQ_EMPTY(&netmap_mem_d->nm_molist)) { 1610 mem_obj = TAILQ_FIRST(&netmap_mem_d->nm_molist); 1611 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1612 if (mem_obj->nmo_used == 1) { 1613 printf("netmap: leaked %d bytes at %p\n", 1614 (int)mem_obj->nmo_size, 1615 mem_obj->nmo_data); 1616 } 1617 free(mem_obj, M_NETMAP); 1618 } 1619 contigfree(netmap_mem_d->nm_buffer, netmap_mem_d->nm_totalsize, M_NETMAP); 1620 // XXX mutex_destroy(nm_mtx); 1621 free(netmap_mem_d, M_NETMAP); 1622 } 1623 1624 1625 /* 1626 * Module loader. 1627 * 1628 * Create the /dev/netmap device and initialize all global 1629 * variables. 1630 * 1631 * Return 0 on success, errno on failure. 1632 */ 1633 static int 1634 netmap_init(void) 1635 { 1636 int error; 1637 1638 1639 error = netmap_memory_init(); 1640 if (error != 0) { 1641 printf("netmap: unable to initialize the memory allocator."); 1642 return (error); 1643 } 1644 printf("netmap: loaded module with %d Mbytes\n", 1645 (int)(netmap_mem_d->nm_totalsize >> 20)); 1646 1647 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 1648 "netmap"); 1649 1650 return (0); 1651 } 1652 1653 1654 /* 1655 * Module unloader. 1656 * 1657 * Free all the memory, and destroy the ``/dev/netmap`` device. 1658 */ 1659 static void 1660 netmap_fini(void) 1661 { 1662 destroy_dev(netmap_dev); 1663 1664 netmap_memory_fini(); 1665 1666 printf("netmap: unloaded module.\n"); 1667 } 1668 1669 1670 /* 1671 * Kernel entry point. 1672 * 1673 * Initialize/finalize the module and return. 1674 * 1675 * Return 0 on success, errno on failure. 1676 */ 1677 static int 1678 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1679 { 1680 int error = 0; 1681 1682 switch (event) { 1683 case MOD_LOAD: 1684 error = netmap_init(); 1685 break; 1686 1687 case MOD_UNLOAD: 1688 netmap_fini(); 1689 break; 1690 1691 default: 1692 error = EOPNOTSUPP; 1693 break; 1694 } 1695 1696 return (error); 1697 } 1698 1699 1700 DEV_MODULE(netmap, netmap_loader, NULL); 1701