1 /* 2 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 27 /* 28 * $FreeBSD$ 29 * 30 * This module supports memory mapped access to network devices, 31 * see netmap(4). 32 * 33 * The module uses a large, memory pool allocated by the kernel 34 * and accessible as mmapped memory by multiple userspace threads/processes. 35 * The memory pool contains packet buffers and "netmap rings", 36 * i.e. user-accessible copies of the interface's queues. 37 * 38 * Access to the network card works like this: 39 * 1. a process/thread issues one or more open() on /dev/netmap, to create 40 * select()able file descriptor on which events are reported. 41 * 2. on each descriptor, the process issues an ioctl() to identify 42 * the interface that should report events to the file descriptor. 43 * 3. on each descriptor, the process issues an mmap() request to 44 * map the shared memory region within the process' address space. 45 * The list of interesting queues is indicated by a location in 46 * the shared memory region. 47 * 4. using the functions in the netmap(4) userspace API, a process 48 * can look up the occupation state of a queue, access memory buffers, 49 * and retrieve received packets or enqueue packets to transmit. 50 * 5. using some ioctl()s the process can synchronize the userspace view 51 * of the queue with the actual status in the kernel. This includes both 52 * receiving the notification of new packets, and transmitting new 53 * packets on the output interface. 54 * 6. select() or poll() can be used to wait for events on individual 55 * transmit or receive queues (or all queues for a given interface). 56 * 57 58 SYNCHRONIZATION (USER) 59 60 The netmap rings and data structures may be shared among multiple 61 user threads or even independent processes. 62 Any synchronization among those threads/processes is delegated 63 to the threads themselves. Only one thread at a time can be in 64 a system call on the same netmap ring. The OS does not enforce 65 this and only guarantees against system crashes in case of 66 invalid usage. 67 68 LOCKING (INTERNAL) 69 70 Within the kernel, access to the netmap rings is protected as follows: 71 72 - a spinlock on each ring, to handle producer/consumer races on 73 RX rings attached to the host stack (against multiple host 74 threads writing from the host stack to the same ring), 75 and on 'destination' rings attached to a VALE switch 76 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 77 protecting multiple active senders for the same destination) 78 79 - an atomic variable to guarantee that there is at most one 80 instance of *_*xsync() on the ring at any time. 81 For rings connected to user file 82 descriptors, an atomic_test_and_set() protects this, and the 83 lock on the ring is not actually used. 84 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 85 is also used to prevent multiple executions (the driver might indeed 86 already guarantee this). 87 For NIC TX rings connected to a VALE switch, the lock arbitrates 88 access to the queue (both when allocating buffers and when pushing 89 them out). 90 91 - *xsync() should be protected against initializations of the card. 92 On FreeBSD most devices have the reset routine protected by 93 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 94 the RING protection on rx_reset(), this should be added. 95 96 On linux there is an external lock on the tx path, which probably 97 also arbitrates access to the reset routine. XXX to be revised 98 99 - a per-interface core_lock protecting access from the host stack 100 while interfaces may be detached from netmap mode. 101 XXX there should be no need for this lock if we detach the interfaces 102 only while they are down. 103 104 105 --- VALE SWITCH --- 106 107 NMG_LOCK() serializes all modifications to switches and ports. 108 A switch cannot be deleted until all ports are gone. 109 110 For each switch, an SX lock (RWlock on linux) protects 111 deletion of ports. When configuring or deleting a new port, the 112 lock is acquired in exclusive mode (after holding NMG_LOCK). 113 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 114 The lock is held throughout the entire forwarding cycle, 115 during which the thread may incur in a page fault. 116 Hence it is important that sleepable shared locks are used. 117 118 On the rx ring, the per-port lock is grabbed initially to reserve 119 a number of slot in the ring, then the lock is released, 120 packets are copied from source to destination, and then 121 the lock is acquired again and the receive ring is updated. 122 (A similar thing is done on the tx ring for NIC and host stack 123 ports attached to the switch) 124 125 */ 126 127 /* 128 * OS-specific code that is used only within this file. 129 * Other OS-specific code that must be accessed by drivers 130 * is present in netmap_kern.h 131 */ 132 133 #if defined(__FreeBSD__) 134 #include <sys/cdefs.h> /* prerequisite */ 135 #include <sys/types.h> 136 #include <sys/errno.h> 137 #include <sys/param.h> /* defines used in kernel.h */ 138 #include <sys/kernel.h> /* types used in module initialization */ 139 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 140 #include <sys/filio.h> /* FIONBIO */ 141 #include <sys/sockio.h> 142 #include <sys/socketvar.h> /* struct socket */ 143 #include <sys/malloc.h> 144 #include <sys/poll.h> 145 #include <sys/rwlock.h> 146 #include <sys/socket.h> /* sockaddrs */ 147 #include <sys/selinfo.h> 148 #include <sys/sysctl.h> 149 #include <sys/jail.h> 150 #include <net/vnet.h> 151 #include <net/if.h> 152 #include <net/if_var.h> 153 #include <net/bpf.h> /* BIOCIMMEDIATE */ 154 #include <machine/bus.h> /* bus_dmamap_* */ 155 #include <sys/endian.h> 156 #include <sys/refcount.h> 157 158 159 /* reduce conditional code */ 160 // linux API, use for the knlist in FreeBSD 161 #define init_waitqueue_head(x) knlist_init_mtx(&(x)->si_note, NULL) 162 163 void freebsd_selwakeup(struct selinfo *si, int pri); 164 #define OS_selwakeup(a, b) freebsd_selwakeup(a, b) 165 166 #elif defined(linux) 167 168 #include "bsd_glue.h" 169 170 171 172 #elif defined(__APPLE__) 173 174 #warning OSX support is only partial 175 #include "osx_glue.h" 176 177 #else 178 179 #error Unsupported platform 180 181 #endif /* unsupported */ 182 183 /* 184 * common headers 185 */ 186 #include <net/netmap.h> 187 #include <dev/netmap/netmap_kern.h> 188 #include <dev/netmap/netmap_mem2.h> 189 190 191 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 192 193 /* 194 * The following variables are used by the drivers and replicate 195 * fields in the global memory pool. They only refer to buffers 196 * used by physical interfaces. 197 */ 198 u_int netmap_total_buffers; 199 u_int netmap_buf_size; 200 char *netmap_buffer_base; /* also address of an invalid buffer */ 201 202 /* user-controlled variables */ 203 int netmap_verbose; 204 205 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 206 207 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 208 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 209 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 210 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 211 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 212 int netmap_mitigate = 1; 213 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 214 int netmap_no_pendintr = 1; 215 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 216 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 217 int netmap_txsync_retry = 2; 218 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 219 &netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush."); 220 221 int netmap_flags = 0; /* debug flags */ 222 int netmap_fwd = 0; /* force transparent mode */ 223 int netmap_mmap_unreg = 0; /* allow mmap of unregistered fds */ 224 225 /* 226 * netmap_admode selects the netmap mode to use. 227 * Invalid values are reset to NETMAP_ADMODE_BEST 228 */ 229 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 230 NETMAP_ADMODE_NATIVE, /* either native or none */ 231 NETMAP_ADMODE_GENERIC, /* force generic */ 232 NETMAP_ADMODE_LAST }; 233 static int netmap_admode = NETMAP_ADMODE_BEST; 234 235 int netmap_generic_mit = 100*1000; /* Generic mitigation interval in nanoseconds. */ 236 int netmap_generic_ringsize = 1024; /* Generic ringsize. */ 237 int netmap_generic_rings = 1; /* number of queues in generic. */ 238 239 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 240 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , ""); 241 SYSCTL_INT(_dev_netmap, OID_AUTO, mmap_unreg, CTLFLAG_RW, &netmap_mmap_unreg, 0, ""); 242 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0 , ""); 243 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 0 , ""); 244 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, &netmap_generic_ringsize, 0 , ""); 245 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW, &netmap_generic_rings, 0 , ""); 246 247 NMG_LOCK_T netmap_global_lock; 248 249 250 static void 251 nm_kr_get(struct netmap_kring *kr) 252 { 253 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 254 tsleep(kr, 0, "NM_KR_GET", 4); 255 } 256 257 258 /* 259 * mark the ring as stopped, and run through the locks 260 * to make sure other users get to see it. 261 */ 262 void 263 netmap_disable_ring(struct netmap_kring *kr) 264 { 265 kr->nkr_stopped = 1; 266 nm_kr_get(kr); 267 mtx_lock(&kr->q_lock); 268 mtx_unlock(&kr->q_lock); 269 nm_kr_put(kr); 270 } 271 272 273 /* stop or enable all the rings of na */ 274 static void 275 netmap_set_all_rings(struct ifnet *ifp, int stopped) 276 { 277 struct netmap_adapter *na; 278 int i; 279 u_int ntx, nrx; 280 281 if (!(ifp->if_capenable & IFCAP_NETMAP)) 282 return; 283 284 na = NA(ifp); 285 286 ntx = netmap_real_tx_rings(na); 287 nrx = netmap_real_rx_rings(na); 288 289 for (i = 0; i < ntx; i++) { 290 if (stopped) 291 netmap_disable_ring(na->tx_rings + i); 292 else 293 na->tx_rings[i].nkr_stopped = 0; 294 na->nm_notify(na, i, NR_TX, NAF_DISABLE_NOTIFY); 295 } 296 297 for (i = 0; i < nrx; i++) { 298 if (stopped) 299 netmap_disable_ring(na->rx_rings + i); 300 else 301 na->rx_rings[i].nkr_stopped = 0; 302 na->nm_notify(na, i, NR_RX, NAF_DISABLE_NOTIFY); 303 } 304 } 305 306 307 /* 308 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s 309 * to finish and prevents any new one from starting. Call this before turning 310 * netmap mode off, or before removing the harware rings (e.g., on module 311 * onload). As a rule of thumb for linux drivers, this should be placed near 312 * each napi_disable(). 313 */ 314 void 315 netmap_disable_all_rings(struct ifnet *ifp) 316 { 317 netmap_set_all_rings(ifp, 1 /* stopped */); 318 } 319 320 321 /* 322 * Convenience function used in drivers. Re-enables rxsync and txsync on the 323 * adapter's rings In linux drivers, this should be placed near each 324 * napi_enable(). 325 */ 326 void 327 netmap_enable_all_rings(struct ifnet *ifp) 328 { 329 netmap_set_all_rings(ifp, 0 /* enabled */); 330 } 331 332 333 /* 334 * generic bound_checking function 335 */ 336 u_int 337 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 338 { 339 u_int oldv = *v; 340 const char *op = NULL; 341 342 if (dflt < lo) 343 dflt = lo; 344 if (dflt > hi) 345 dflt = hi; 346 if (oldv < lo) { 347 *v = dflt; 348 op = "Bump"; 349 } else if (oldv > hi) { 350 *v = hi; 351 op = "Clamp"; 352 } 353 if (op && msg) 354 printf("%s %s to %d (was %d)\n", op, msg, *v, oldv); 355 return *v; 356 } 357 358 359 /* 360 * packet-dump function, user-supplied or static buffer. 361 * The destination buffer must be at least 30+4*len 362 */ 363 const char * 364 nm_dump_buf(char *p, int len, int lim, char *dst) 365 { 366 static char _dst[8192]; 367 int i, j, i0; 368 static char hex[] ="0123456789abcdef"; 369 char *o; /* output position */ 370 371 #define P_HI(x) hex[((x) & 0xf0)>>4] 372 #define P_LO(x) hex[((x) & 0xf)] 373 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 374 if (!dst) 375 dst = _dst; 376 if (lim <= 0 || lim > len) 377 lim = len; 378 o = dst; 379 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 380 o += strlen(o); 381 /* hexdump routine */ 382 for (i = 0; i < lim; ) { 383 sprintf(o, "%5d: ", i); 384 o += strlen(o); 385 memset(o, ' ', 48); 386 i0 = i; 387 for (j=0; j < 16 && i < lim; i++, j++) { 388 o[j*3] = P_HI(p[i]); 389 o[j*3+1] = P_LO(p[i]); 390 } 391 i = i0; 392 for (j=0; j < 16 && i < lim; i++, j++) 393 o[j + 48] = P_C(p[i]); 394 o[j+48] = '\n'; 395 o += j+49; 396 } 397 *o = '\0'; 398 #undef P_HI 399 #undef P_LO 400 #undef P_C 401 return dst; 402 } 403 404 405 /* 406 * Fetch configuration from the device, to cope with dynamic 407 * reconfigurations after loading the module. 408 */ 409 /* call with NMG_LOCK held */ 410 int 411 netmap_update_config(struct netmap_adapter *na) 412 { 413 struct ifnet *ifp = na->ifp; 414 u_int txr, txd, rxr, rxd; 415 416 txr = txd = rxr = rxd = 0; 417 if (na->nm_config) { 418 na->nm_config(na, &txr, &txd, &rxr, &rxd); 419 } else { 420 /* take whatever we had at init time */ 421 txr = na->num_tx_rings; 422 txd = na->num_tx_desc; 423 rxr = na->num_rx_rings; 424 rxd = na->num_rx_desc; 425 } 426 427 if (na->num_tx_rings == txr && na->num_tx_desc == txd && 428 na->num_rx_rings == rxr && na->num_rx_desc == rxd) 429 return 0; /* nothing changed */ 430 if (netmap_verbose || na->active_fds > 0) { 431 D("stored config %s: txring %d x %d, rxring %d x %d", 432 NM_IFPNAME(ifp), 433 na->num_tx_rings, na->num_tx_desc, 434 na->num_rx_rings, na->num_rx_desc); 435 D("new config %s: txring %d x %d, rxring %d x %d", 436 NM_IFPNAME(ifp), txr, txd, rxr, rxd); 437 } 438 if (na->active_fds == 0) { 439 D("configuration changed (but fine)"); 440 na->num_tx_rings = txr; 441 na->num_tx_desc = txd; 442 na->num_rx_rings = rxr; 443 na->num_rx_desc = rxd; 444 return 0; 445 } 446 D("configuration changed while active, this is bad..."); 447 return 1; 448 } 449 450 static int 451 netmap_txsync_compat(struct netmap_kring *kring, int flags) 452 { 453 struct netmap_adapter *na = kring->na; 454 return na->nm_txsync(na, kring->ring_id, flags); 455 } 456 457 static int 458 netmap_rxsync_compat(struct netmap_kring *kring, int flags) 459 { 460 struct netmap_adapter *na = kring->na; 461 return na->nm_rxsync(na, kring->ring_id, flags); 462 } 463 464 /* kring->nm_sync callback for the host tx ring */ 465 static int 466 netmap_txsync_to_host_compat(struct netmap_kring *kring, int flags) 467 { 468 (void)flags; /* unused */ 469 netmap_txsync_to_host(kring->na); 470 return 0; 471 } 472 473 /* kring->nm_sync callback for the host rx ring */ 474 static int 475 netmap_rxsync_from_host_compat(struct netmap_kring *kring, int flags) 476 { 477 (void)flags; /* unused */ 478 netmap_rxsync_from_host(kring->na, NULL, NULL); 479 return 0; 480 } 481 482 483 484 /* create the krings array and initialize the fields common to all adapters. 485 * The array layout is this: 486 * 487 * +----------+ 488 * na->tx_rings ----->| | \ 489 * | | } na->num_tx_ring 490 * | | / 491 * +----------+ 492 * | | host tx kring 493 * na->rx_rings ----> +----------+ 494 * | | \ 495 * | | } na->num_rx_rings 496 * | | / 497 * +----------+ 498 * | | host rx kring 499 * +----------+ 500 * na->tailroom ----->| | \ 501 * | | } tailroom bytes 502 * | | / 503 * +----------+ 504 * 505 * Note: for compatibility, host krings are created even when not needed. 506 * The tailroom space is currently used by vale ports for allocating leases. 507 */ 508 /* call with NMG_LOCK held */ 509 int 510 netmap_krings_create(struct netmap_adapter *na, u_int tailroom) 511 { 512 u_int i, len, ndesc; 513 struct netmap_kring *kring; 514 u_int ntx, nrx; 515 516 /* account for the (possibly fake) host rings */ 517 ntx = na->num_tx_rings + 1; 518 nrx = na->num_rx_rings + 1; 519 520 len = (ntx + nrx) * sizeof(struct netmap_kring) + tailroom; 521 522 na->tx_rings = malloc((size_t)len, M_DEVBUF, M_NOWAIT | M_ZERO); 523 if (na->tx_rings == NULL) { 524 D("Cannot allocate krings"); 525 return ENOMEM; 526 } 527 na->rx_rings = na->tx_rings + ntx; 528 529 /* 530 * All fields in krings are 0 except the one initialized below. 531 * but better be explicit on important kring fields. 532 */ 533 ndesc = na->num_tx_desc; 534 for (i = 0; i < ntx; i++) { /* Transmit rings */ 535 kring = &na->tx_rings[i]; 536 bzero(kring, sizeof(*kring)); 537 kring->na = na; 538 kring->ring_id = i; 539 kring->nkr_num_slots = ndesc; 540 if (i < na->num_tx_rings) { 541 kring->nm_sync = netmap_txsync_compat; // XXX 542 } else if (i == na->num_tx_rings) { 543 kring->nm_sync = netmap_txsync_to_host_compat; 544 } 545 /* 546 * IMPORTANT: Always keep one slot empty. 547 */ 548 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 549 kring->rtail = kring->nr_hwtail = ndesc - 1; 550 snprintf(kring->name, sizeof(kring->name) - 1, "%s TX%d", NM_IFPNAME(na->ifp), i); 551 ND("ktx %s h %d c %d t %d", 552 kring->name, kring->rhead, kring->rcur, kring->rtail); 553 mtx_init(&kring->q_lock, "nm_txq_lock", NULL, MTX_DEF); 554 init_waitqueue_head(&kring->si); 555 } 556 557 ndesc = na->num_rx_desc; 558 for (i = 0; i < nrx; i++) { /* Receive rings */ 559 kring = &na->rx_rings[i]; 560 bzero(kring, sizeof(*kring)); 561 kring->na = na; 562 kring->ring_id = i; 563 kring->nkr_num_slots = ndesc; 564 if (i < na->num_rx_rings) { 565 kring->nm_sync = netmap_rxsync_compat; // XXX 566 } else if (i == na->num_rx_rings) { 567 kring->nm_sync = netmap_rxsync_from_host_compat; 568 } 569 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 570 kring->rtail = kring->nr_hwtail = 0; 571 snprintf(kring->name, sizeof(kring->name) - 1, "%s RX%d", NM_IFPNAME(na->ifp), i); 572 ND("krx %s h %d c %d t %d", 573 kring->name, kring->rhead, kring->rcur, kring->rtail); 574 mtx_init(&kring->q_lock, "nm_rxq_lock", NULL, MTX_DEF); 575 init_waitqueue_head(&kring->si); 576 } 577 init_waitqueue_head(&na->tx_si); 578 init_waitqueue_head(&na->rx_si); 579 580 na->tailroom = na->rx_rings + nrx; 581 582 return 0; 583 } 584 585 586 /* undo the actions performed by netmap_krings_create */ 587 /* call with NMG_LOCK held */ 588 void 589 netmap_krings_delete(struct netmap_adapter *na) 590 { 591 struct netmap_kring *kring = na->tx_rings; 592 593 /* we rely on the krings layout described above */ 594 for ( ; kring != na->tailroom; kring++) { 595 mtx_destroy(&kring->q_lock); 596 } 597 free(na->tx_rings, M_DEVBUF); 598 na->tx_rings = na->rx_rings = na->tailroom = NULL; 599 } 600 601 602 /* 603 * Destructor for NIC ports. They also have an mbuf queue 604 * on the rings connected to the host so we need to purge 605 * them first. 606 */ 607 /* call with NMG_LOCK held */ 608 static void 609 netmap_hw_krings_delete(struct netmap_adapter *na) 610 { 611 struct mbq *q = &na->rx_rings[na->num_rx_rings].rx_queue; 612 613 ND("destroy sw mbq with len %d", mbq_len(q)); 614 mbq_purge(q); 615 mbq_safe_destroy(q); 616 netmap_krings_delete(na); 617 } 618 619 620 /* create a new netmap_if for a newly registered fd. 621 * If this is the first registration of the adapter, 622 * also create the netmap rings and their in-kernel view, 623 * the netmap krings. 624 */ 625 /* call with NMG_LOCK held */ 626 static struct netmap_if* 627 netmap_if_new(const char *ifname, struct netmap_adapter *na) 628 { 629 struct netmap_if *nifp; 630 631 if (netmap_update_config(na)) { 632 /* configuration mismatch, report and fail */ 633 return NULL; 634 } 635 636 if (na->active_fds) /* already registered */ 637 goto final; 638 639 /* create and init the krings arrays. 640 * Depending on the adapter, this may also create 641 * the netmap rings themselves 642 */ 643 if (na->nm_krings_create(na)) 644 goto cleanup; 645 646 /* create all missing netmap rings */ 647 if (netmap_mem_rings_create(na)) 648 goto cleanup; 649 650 final: 651 652 /* in all cases, create a new netmap if */ 653 nifp = netmap_mem_if_new(ifname, na); 654 if (nifp == NULL) 655 goto cleanup; 656 657 return (nifp); 658 659 cleanup: 660 661 if (na->active_fds == 0) { 662 netmap_mem_rings_delete(na); 663 na->nm_krings_delete(na); 664 } 665 666 return NULL; 667 } 668 669 670 /* grab a reference to the memory allocator, if we don't have one already. The 671 * reference is taken from the netmap_adapter registered with the priv. 672 */ 673 /* call with NMG_LOCK held */ 674 static int 675 netmap_get_memory_locked(struct netmap_priv_d* p) 676 { 677 struct netmap_mem_d *nmd; 678 int error = 0; 679 680 if (p->np_na == NULL) { 681 if (!netmap_mmap_unreg) 682 return ENODEV; 683 /* for compatibility with older versions of the API 684 * we use the global allocator when no interface has been 685 * registered 686 */ 687 nmd = &nm_mem; 688 } else { 689 nmd = p->np_na->nm_mem; 690 } 691 if (p->np_mref == NULL) { 692 error = netmap_mem_finalize(nmd); 693 if (!error) 694 p->np_mref = nmd; 695 } else if (p->np_mref != nmd) { 696 /* a virtual port has been registered, but previous 697 * syscalls already used the global allocator. 698 * We cannot continue 699 */ 700 error = ENODEV; 701 } 702 return error; 703 } 704 705 706 /* call with NMG_LOCK *not* held */ 707 int 708 netmap_get_memory(struct netmap_priv_d* p) 709 { 710 int error; 711 NMG_LOCK(); 712 error = netmap_get_memory_locked(p); 713 NMG_UNLOCK(); 714 return error; 715 } 716 717 718 /* call with NMG_LOCK held */ 719 static int 720 netmap_have_memory_locked(struct netmap_priv_d* p) 721 { 722 return p->np_mref != NULL; 723 } 724 725 726 /* call with NMG_LOCK held */ 727 static void 728 netmap_drop_memory_locked(struct netmap_priv_d* p) 729 { 730 if (p->np_mref) { 731 netmap_mem_deref(p->np_mref); 732 p->np_mref = NULL; 733 } 734 } 735 736 737 /* 738 * File descriptor's private data destructor. 739 * 740 * Call nm_register(ifp,0) to stop netmap mode on the interface and 741 * revert to normal operation. We expect that np_na->ifp has not gone. 742 * The second argument is the nifp to work on. In some cases it is 743 * not attached yet to the netmap_priv_d so we need to pass it as 744 * a separate argument. 745 */ 746 /* call with NMG_LOCK held */ 747 static void 748 netmap_do_unregif(struct netmap_priv_d *priv, struct netmap_if *nifp) 749 { 750 struct netmap_adapter *na = priv->np_na; 751 struct ifnet *ifp = na->ifp; 752 753 NMG_LOCK_ASSERT(); 754 na->active_fds--; 755 if (na->active_fds <= 0) { /* last instance */ 756 757 if (netmap_verbose) 758 D("deleting last instance for %s", NM_IFPNAME(ifp)); 759 /* 760 * (TO CHECK) This function is only called 761 * when the last reference to this file descriptor goes 762 * away. This means we cannot have any pending poll() 763 * or interrupt routine operating on the structure. 764 * XXX The file may be closed in a thread while 765 * another thread is using it. 766 * Linux keeps the file opened until the last reference 767 * by any outstanding ioctl/poll or mmap is gone. 768 * FreeBSD does not track mmap()s (but we do) and 769 * wakes up any sleeping poll(). Need to check what 770 * happens if the close() occurs while a concurrent 771 * syscall is running. 772 */ 773 if (ifp) 774 na->nm_register(na, 0); /* off, clear flags */ 775 /* Wake up any sleeping threads. netmap_poll will 776 * then return POLLERR 777 * XXX The wake up now must happen during *_down(), when 778 * we order all activities to stop. -gl 779 */ 780 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 781 /* knlist_destroy(&na->tx_si.si_note); */ 782 /* knlist_destroy(&na->rx_si.si_note); */ 783 784 /* delete rings and buffers */ 785 netmap_mem_rings_delete(na); 786 na->nm_krings_delete(na); 787 } 788 /* delete the nifp */ 789 netmap_mem_if_delete(na, nifp); 790 } 791 792 /* call with NMG_LOCK held */ 793 static __inline int 794 nm_tx_si_user(struct netmap_priv_d *priv) 795 { 796 return (priv->np_na != NULL && 797 (priv->np_txqlast - priv->np_txqfirst > 1)); 798 } 799 800 /* call with NMG_LOCK held */ 801 static __inline int 802 nm_rx_si_user(struct netmap_priv_d *priv) 803 { 804 return (priv->np_na != NULL && 805 (priv->np_rxqlast - priv->np_rxqfirst > 1)); 806 } 807 808 809 /* 810 * Destructor of the netmap_priv_d, called when the fd has 811 * no active open() and mmap(). Also called in error paths. 812 * 813 * returns 1 if this is the last instance and we can free priv 814 */ 815 /* call with NMG_LOCK held */ 816 int 817 netmap_dtor_locked(struct netmap_priv_d *priv) 818 { 819 struct netmap_adapter *na = priv->np_na; 820 821 #ifdef __FreeBSD__ 822 /* 823 * np_refcount is the number of active mmaps on 824 * this file descriptor 825 */ 826 if (--priv->np_refcount > 0) { 827 return 0; 828 } 829 #endif /* __FreeBSD__ */ 830 if (!na) { 831 return 1; //XXX is it correct? 832 } 833 netmap_do_unregif(priv, priv->np_nifp); 834 priv->np_nifp = NULL; 835 netmap_drop_memory_locked(priv); 836 if (priv->np_na) { 837 if (nm_tx_si_user(priv)) 838 na->tx_si_users--; 839 if (nm_rx_si_user(priv)) 840 na->rx_si_users--; 841 netmap_adapter_put(na); 842 priv->np_na = NULL; 843 } 844 return 1; 845 } 846 847 848 /* call with NMG_LOCK *not* held */ 849 void 850 netmap_dtor(void *data) 851 { 852 struct netmap_priv_d *priv = data; 853 int last_instance; 854 855 NMG_LOCK(); 856 last_instance = netmap_dtor_locked(priv); 857 NMG_UNLOCK(); 858 if (last_instance) { 859 bzero(priv, sizeof(*priv)); /* for safety */ 860 free(priv, M_DEVBUF); 861 } 862 } 863 864 865 866 867 /* 868 * Handlers for synchronization of the queues from/to the host. 869 * Netmap has two operating modes: 870 * - in the default mode, the rings connected to the host stack are 871 * just another ring pair managed by userspace; 872 * - in transparent mode (XXX to be defined) incoming packets 873 * (from the host or the NIC) are marked as NS_FORWARD upon 874 * arrival, and the user application has a chance to reset the 875 * flag for packets that should be dropped. 876 * On the RXSYNC or poll(), packets in RX rings between 877 * kring->nr_kcur and ring->cur with NS_FORWARD still set are moved 878 * to the other side. 879 * The transfer NIC --> host is relatively easy, just encapsulate 880 * into mbufs and we are done. The host --> NIC side is slightly 881 * harder because there might not be room in the tx ring so it 882 * might take a while before releasing the buffer. 883 */ 884 885 886 /* 887 * pass a chain of buffers to the host stack as coming from 'dst' 888 * We do not need to lock because the queue is private. 889 */ 890 static void 891 netmap_send_up(struct ifnet *dst, struct mbq *q) 892 { 893 struct mbuf *m; 894 895 /* send packets up, outside the lock */ 896 while ((m = mbq_dequeue(q)) != NULL) { 897 if (netmap_verbose & NM_VERB_HOST) 898 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 899 NM_SEND_UP(dst, m); 900 } 901 mbq_destroy(q); 902 } 903 904 905 /* 906 * put a copy of the buffers marked NS_FORWARD into an mbuf chain. 907 * Take packets from hwcur to ring->head marked NS_FORWARD (or forced) 908 * and pass them up. Drop remaining packets in the unlikely event 909 * of an mbuf shortage. 910 */ 911 static void 912 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 913 { 914 u_int const lim = kring->nkr_num_slots - 1; 915 u_int const head = kring->ring->head; 916 u_int n; 917 struct netmap_adapter *na = kring->na; 918 919 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 920 struct mbuf *m; 921 struct netmap_slot *slot = &kring->ring->slot[n]; 922 923 if ((slot->flags & NS_FORWARD) == 0 && !force) 924 continue; 925 if (slot->len < 14 || slot->len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) { 926 RD(5, "bad pkt at %d len %d", n, slot->len); 927 continue; 928 } 929 slot->flags &= ~NS_FORWARD; // XXX needed ? 930 /* XXX TODO: adapt to the case of a multisegment packet */ 931 m = m_devget(BDG_NMB(na, slot), slot->len, 0, na->ifp, NULL); 932 933 if (m == NULL) 934 break; 935 mbq_enqueue(q, m); 936 } 937 } 938 939 940 /* 941 * Send to the NIC rings packets marked NS_FORWARD between 942 * kring->nr_hwcur and kring->rhead 943 * Called under kring->rx_queue.lock on the sw rx ring, 944 */ 945 static u_int 946 netmap_sw_to_nic(struct netmap_adapter *na) 947 { 948 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 949 struct netmap_slot *rxslot = kring->ring->slot; 950 u_int i, rxcur = kring->nr_hwcur; 951 u_int const head = kring->rhead; 952 u_int const src_lim = kring->nkr_num_slots - 1; 953 u_int sent = 0; 954 955 /* scan rings to find space, then fill as much as possible */ 956 for (i = 0; i < na->num_tx_rings; i++) { 957 struct netmap_kring *kdst = &na->tx_rings[i]; 958 struct netmap_ring *rdst = kdst->ring; 959 u_int const dst_lim = kdst->nkr_num_slots - 1; 960 961 /* XXX do we trust ring or kring->rcur,rtail ? */ 962 for (; rxcur != head && !nm_ring_empty(rdst); 963 rxcur = nm_next(rxcur, src_lim) ) { 964 struct netmap_slot *src, *dst, tmp; 965 u_int dst_cur = rdst->cur; 966 967 src = &rxslot[rxcur]; 968 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 969 continue; 970 971 sent++; 972 973 dst = &rdst->slot[dst_cur]; 974 975 tmp = *src; 976 977 src->buf_idx = dst->buf_idx; 978 src->flags = NS_BUF_CHANGED; 979 980 dst->buf_idx = tmp.buf_idx; 981 dst->len = tmp.len; 982 dst->flags = NS_BUF_CHANGED; 983 984 rdst->head = rdst->cur = nm_next(dst_cur, dst_lim); 985 } 986 /* if (sent) XXX txsync ? */ 987 } 988 return sent; 989 } 990 991 992 /* 993 * netmap_txsync_to_host() passes packets up. We are called from a 994 * system call in user process context, and the only contention 995 * can be among multiple user threads erroneously calling 996 * this routine concurrently. 997 */ 998 void 999 netmap_txsync_to_host(struct netmap_adapter *na) 1000 { 1001 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 1002 struct netmap_ring *ring = kring->ring; 1003 u_int const lim = kring->nkr_num_slots - 1; 1004 u_int const head = kring->rhead; 1005 struct mbq q; 1006 1007 /* Take packets from hwcur to head and pass them up. 1008 * force head = cur since netmap_grab_packets() stops at head 1009 * In case of no buffers we give up. At the end of the loop, 1010 * the queue is drained in all cases. 1011 */ 1012 mbq_init(&q); 1013 ring->cur = head; 1014 netmap_grab_packets(kring, &q, 1 /* force */); 1015 ND("have %d pkts in queue", mbq_len(&q)); 1016 kring->nr_hwcur = head; 1017 kring->nr_hwtail = head + lim; 1018 if (kring->nr_hwtail > lim) 1019 kring->nr_hwtail -= lim + 1; 1020 nm_txsync_finalize(kring); 1021 1022 netmap_send_up(na->ifp, &q); 1023 } 1024 1025 1026 /* 1027 * rxsync backend for packets coming from the host stack. 1028 * They have been put in kring->rx_queue by netmap_transmit(). 1029 * We protect access to the kring using kring->rx_queue.lock 1030 * 1031 * returns the number of packets delivered to tx queues in 1032 * transparent mode, or a negative value if error 1033 */ 1034 int 1035 netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 1036 { 1037 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1038 struct netmap_ring *ring = kring->ring; 1039 u_int nm_i, n; 1040 u_int const lim = kring->nkr_num_slots - 1; 1041 u_int const head = kring->rhead; 1042 int ret = 0; 1043 struct mbq *q = &kring->rx_queue; 1044 1045 (void)pwait; /* disable unused warnings */ 1046 (void)td; 1047 1048 mbq_lock(q); 1049 1050 /* First part: import newly received packets */ 1051 n = mbq_len(q); 1052 if (n) { /* grab packets from the queue */ 1053 struct mbuf *m; 1054 uint32_t stop_i; 1055 1056 nm_i = kring->nr_hwtail; 1057 stop_i = nm_prev(nm_i, lim); 1058 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 1059 int len = MBUF_LEN(m); 1060 struct netmap_slot *slot = &ring->slot[nm_i]; 1061 1062 m_copydata(m, 0, len, BDG_NMB(na, slot)); 1063 ND("nm %d len %d", nm_i, len); 1064 if (netmap_verbose) 1065 D("%s", nm_dump_buf(BDG_NMB(na, slot),len, 128, NULL)); 1066 1067 slot->len = len; 1068 slot->flags = kring->nkr_slot_flags; 1069 nm_i = nm_next(nm_i, lim); 1070 } 1071 kring->nr_hwtail = nm_i; 1072 } 1073 1074 /* 1075 * Second part: skip past packets that userspace has released. 1076 */ 1077 nm_i = kring->nr_hwcur; 1078 if (nm_i != head) { /* something was released */ 1079 if (netmap_fwd || kring->ring->flags & NR_FORWARD) 1080 ret = netmap_sw_to_nic(na); 1081 kring->nr_hwcur = head; 1082 } 1083 1084 nm_rxsync_finalize(kring); 1085 1086 mbq_unlock(q); 1087 return ret; 1088 } 1089 1090 1091 /* Get a netmap adapter for the port. 1092 * 1093 * If it is possible to satisfy the request, return 0 1094 * with *na containing the netmap adapter found. 1095 * Otherwise return an error code, with *na containing NULL. 1096 * 1097 * When the port is attached to a bridge, we always return 1098 * EBUSY. 1099 * Otherwise, if the port is already bound to a file descriptor, 1100 * then we unconditionally return the existing adapter into *na. 1101 * In all the other cases, we return (into *na) either native, 1102 * generic or NULL, according to the following table: 1103 * 1104 * native_support 1105 * active_fds dev.netmap.admode YES NO 1106 * ------------------------------------------------------- 1107 * >0 * NA(ifp) NA(ifp) 1108 * 1109 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1110 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1111 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1112 * 1113 */ 1114 1115 int 1116 netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na) 1117 { 1118 /* generic support */ 1119 int i = netmap_admode; /* Take a snapshot. */ 1120 int error = 0; 1121 struct netmap_adapter *prev_na; 1122 struct netmap_generic_adapter *gna; 1123 1124 *na = NULL; /* default */ 1125 1126 /* reset in case of invalid value */ 1127 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1128 i = netmap_admode = NETMAP_ADMODE_BEST; 1129 1130 if (NETMAP_CAPABLE(ifp)) { 1131 /* If an adapter already exists, but is 1132 * attached to a vale port, we report that the 1133 * port is busy. 1134 */ 1135 if (NETMAP_OWNED_BY_KERN(NA(ifp))) 1136 return EBUSY; 1137 1138 /* If an adapter already exists, return it if 1139 * there are active file descriptors or if 1140 * netmap is not forced to use generic 1141 * adapters. 1142 */ 1143 if (NA(ifp)->active_fds > 0 || 1144 i != NETMAP_ADMODE_GENERIC) { 1145 *na = NA(ifp); 1146 return 0; 1147 } 1148 } 1149 1150 /* If there isn't native support and netmap is not allowed 1151 * to use generic adapters, we cannot satisfy the request. 1152 */ 1153 if (!NETMAP_CAPABLE(ifp) && i == NETMAP_ADMODE_NATIVE) 1154 return EOPNOTSUPP; 1155 1156 /* Otherwise, create a generic adapter and return it, 1157 * saving the previously used netmap adapter, if any. 1158 * 1159 * Note that here 'prev_na', if not NULL, MUST be a 1160 * native adapter, and CANNOT be a generic one. This is 1161 * true because generic adapters are created on demand, and 1162 * destroyed when not used anymore. Therefore, if the adapter 1163 * currently attached to an interface 'ifp' is generic, it 1164 * must be that 1165 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1166 * Consequently, if NA(ifp) is generic, we will enter one of 1167 * the branches above. This ensures that we never override 1168 * a generic adapter with another generic adapter. 1169 */ 1170 prev_na = NA(ifp); 1171 error = generic_netmap_attach(ifp); 1172 if (error) 1173 return error; 1174 1175 *na = NA(ifp); 1176 gna = (struct netmap_generic_adapter*)NA(ifp); 1177 gna->prev = prev_na; /* save old na */ 1178 if (prev_na != NULL) { 1179 ifunit_ref(ifp->if_xname); 1180 // XXX add a refcount ? 1181 netmap_adapter_get(prev_na); 1182 } 1183 ND("Created generic NA %p (prev %p)", gna, gna->prev); 1184 1185 return 0; 1186 } 1187 1188 1189 /* 1190 * MUST BE CALLED UNDER NMG_LOCK() 1191 * 1192 * Get a refcounted reference to a netmap adapter attached 1193 * to the interface specified by nmr. 1194 * This is always called in the execution of an ioctl(). 1195 * 1196 * Return ENXIO if the interface specified by the request does 1197 * not exist, ENOTSUP if netmap is not supported by the interface, 1198 * EBUSY if the interface is already attached to a bridge, 1199 * EINVAL if parameters are invalid, ENOMEM if needed resources 1200 * could not be allocated. 1201 * If successful, hold a reference to the netmap adapter. 1202 * 1203 * No reference is kept on the real interface, which may then 1204 * disappear at any time. 1205 */ 1206 int 1207 netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create) 1208 { 1209 struct ifnet *ifp = NULL; 1210 int error = 0; 1211 struct netmap_adapter *ret = NULL; 1212 1213 *na = NULL; /* default return value */ 1214 1215 /* first try to see if this is a bridge port. */ 1216 NMG_LOCK_ASSERT(); 1217 1218 error = netmap_get_pipe_na(nmr, na, create); 1219 if (error || *na != NULL) 1220 return error; 1221 1222 error = netmap_get_bdg_na(nmr, na, create); 1223 if (error) 1224 return error; 1225 1226 if (*na != NULL) /* valid match in netmap_get_bdg_na() */ 1227 goto pipes; 1228 1229 /* 1230 * This must be a hardware na, lookup the name in the system. 1231 * Note that by hardware we actually mean "it shows up in ifconfig". 1232 * This may still be a tap, a veth/epair, or even a 1233 * persistent VALE port. 1234 */ 1235 ifp = ifunit_ref(nmr->nr_name); 1236 if (ifp == NULL) { 1237 return ENXIO; 1238 } 1239 1240 error = netmap_get_hw_na(ifp, &ret); 1241 if (error) 1242 goto out; 1243 1244 /* Users cannot use the NIC attached to a bridge directly */ 1245 if (NETMAP_OWNED_BY_KERN(ret)) { 1246 error = EBUSY; 1247 goto out; 1248 } 1249 *na = ret; 1250 netmap_adapter_get(ret); 1251 1252 pipes: 1253 /* 1254 * If we are opening a pipe whose parent was not in netmap mode, 1255 * we have to allocate the pipe array now. 1256 * XXX get rid of this clumsiness (2014-03-15) 1257 */ 1258 error = netmap_pipe_alloc(*na, nmr); 1259 1260 out: 1261 if (error && ret != NULL) 1262 netmap_adapter_put(ret); 1263 1264 if (ifp) 1265 if_rele(ifp); /* allow live unloading of drivers modules */ 1266 1267 return error; 1268 } 1269 1270 1271 /* 1272 * validate parameters on entry for *_txsync() 1273 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1274 * in case of error. 1275 * 1276 * rhead, rcur and rtail=hwtail are stored from previous round. 1277 * hwcur is the next packet to send to the ring. 1278 * 1279 * We want 1280 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1281 * 1282 * hwcur, rhead, rtail and hwtail are reliable 1283 */ 1284 u_int 1285 nm_txsync_prologue(struct netmap_kring *kring) 1286 { 1287 struct netmap_ring *ring = kring->ring; 1288 u_int head = ring->head; /* read only once */ 1289 u_int cur = ring->cur; /* read only once */ 1290 u_int n = kring->nkr_num_slots; 1291 1292 ND(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1293 kring->name, 1294 kring->nr_hwcur, kring->nr_hwtail, 1295 ring->head, ring->cur, ring->tail); 1296 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1297 if (kring->nr_hwcur >= n || kring->rhead >= n || 1298 kring->rtail >= n || kring->nr_hwtail >= n) 1299 goto error; 1300 #endif /* kernel sanity checks */ 1301 /* 1302 * user sanity checks. We only use 'cur', 1303 * A, B, ... are possible positions for cur: 1304 * 1305 * 0 A cur B tail C n-1 1306 * 0 D tail E cur F n-1 1307 * 1308 * B, F, D are valid. A, C, E are wrong 1309 */ 1310 if (kring->rtail >= kring->rhead) { 1311 /* want rhead <= head <= rtail */ 1312 if (head < kring->rhead || head > kring->rtail) 1313 goto error; 1314 /* and also head <= cur <= rtail */ 1315 if (cur < head || cur > kring->rtail) 1316 goto error; 1317 } else { /* here rtail < rhead */ 1318 /* we need head outside rtail .. rhead */ 1319 if (head > kring->rtail && head < kring->rhead) 1320 goto error; 1321 1322 /* two cases now: head <= rtail or head >= rhead */ 1323 if (head <= kring->rtail) { 1324 /* want head <= cur <= rtail */ 1325 if (cur < head || cur > kring->rtail) 1326 goto error; 1327 } else { /* head >= rhead */ 1328 /* cur must be outside rtail..head */ 1329 if (cur > kring->rtail && cur < head) 1330 goto error; 1331 } 1332 } 1333 if (ring->tail != kring->rtail) { 1334 RD(5, "tail overwritten was %d need %d", 1335 ring->tail, kring->rtail); 1336 ring->tail = kring->rtail; 1337 } 1338 kring->rhead = head; 1339 kring->rcur = cur; 1340 return head; 1341 1342 error: 1343 RD(5, "%s kring error: hwcur %d rcur %d hwtail %d cur %d tail %d", 1344 kring->name, 1345 kring->nr_hwcur, 1346 kring->rcur, kring->nr_hwtail, 1347 cur, ring->tail); 1348 return n; 1349 } 1350 1351 1352 /* 1353 * validate parameters on entry for *_rxsync() 1354 * Returns ring->head if ok, kring->nkr_num_slots on error. 1355 * 1356 * For a valid configuration, 1357 * hwcur <= head <= cur <= tail <= hwtail 1358 * 1359 * We only consider head and cur. 1360 * hwcur and hwtail are reliable. 1361 * 1362 */ 1363 u_int 1364 nm_rxsync_prologue(struct netmap_kring *kring) 1365 { 1366 struct netmap_ring *ring = kring->ring; 1367 uint32_t const n = kring->nkr_num_slots; 1368 uint32_t head, cur; 1369 1370 ND("%s kc %d kt %d h %d c %d t %d", 1371 kring->name, 1372 kring->nr_hwcur, kring->nr_hwtail, 1373 ring->head, ring->cur, ring->tail); 1374 /* 1375 * Before storing the new values, we should check they do not 1376 * move backwards. However: 1377 * - head is not an issue because the previous value is hwcur; 1378 * - cur could in principle go back, however it does not matter 1379 * because we are processing a brand new rxsync() 1380 */ 1381 cur = kring->rcur = ring->cur; /* read only once */ 1382 head = kring->rhead = ring->head; /* read only once */ 1383 #if 1 /* kernel sanity checks */ 1384 if (kring->nr_hwcur >= n || kring->nr_hwtail >= n) 1385 goto error; 1386 #endif /* kernel sanity checks */ 1387 /* user sanity checks */ 1388 if (kring->nr_hwtail >= kring->nr_hwcur) { 1389 /* want hwcur <= rhead <= hwtail */ 1390 if (head < kring->nr_hwcur || head > kring->nr_hwtail) 1391 goto error; 1392 /* and also rhead <= rcur <= hwtail */ 1393 if (cur < head || cur > kring->nr_hwtail) 1394 goto error; 1395 } else { 1396 /* we need rhead outside hwtail..hwcur */ 1397 if (head < kring->nr_hwcur && head > kring->nr_hwtail) 1398 goto error; 1399 /* two cases now: head <= hwtail or head >= hwcur */ 1400 if (head <= kring->nr_hwtail) { 1401 /* want head <= cur <= hwtail */ 1402 if (cur < head || cur > kring->nr_hwtail) 1403 goto error; 1404 } else { 1405 /* cur must be outside hwtail..head */ 1406 if (cur < head && cur > kring->nr_hwtail) 1407 goto error; 1408 } 1409 } 1410 if (ring->tail != kring->rtail) { 1411 RD(5, "%s tail overwritten was %d need %d", 1412 kring->name, 1413 ring->tail, kring->rtail); 1414 ring->tail = kring->rtail; 1415 } 1416 return head; 1417 1418 error: 1419 RD(5, "kring error: hwcur %d rcur %d hwtail %d head %d cur %d tail %d", 1420 kring->nr_hwcur, 1421 kring->rcur, kring->nr_hwtail, 1422 kring->rhead, kring->rcur, ring->tail); 1423 return n; 1424 } 1425 1426 1427 /* 1428 * Error routine called when txsync/rxsync detects an error. 1429 * Can't do much more than resetting head =cur = hwcur, tail = hwtail 1430 * Return 1 on reinit. 1431 * 1432 * This routine is only called by the upper half of the kernel. 1433 * It only reads hwcur (which is changed only by the upper half, too) 1434 * and hwtail (which may be changed by the lower half, but only on 1435 * a tx ring and only to increase it, so any error will be recovered 1436 * on the next call). For the above, we don't strictly need to call 1437 * it under lock. 1438 */ 1439 int 1440 netmap_ring_reinit(struct netmap_kring *kring) 1441 { 1442 struct netmap_ring *ring = kring->ring; 1443 u_int i, lim = kring->nkr_num_slots - 1; 1444 int errors = 0; 1445 1446 // XXX KASSERT nm_kr_tryget 1447 RD(10, "called for %s", NM_IFPNAME(kring->na->ifp)); 1448 // XXX probably wrong to trust userspace 1449 kring->rhead = ring->head; 1450 kring->rcur = ring->cur; 1451 kring->rtail = ring->tail; 1452 1453 if (ring->cur > lim) 1454 errors++; 1455 if (ring->head > lim) 1456 errors++; 1457 if (ring->tail > lim) 1458 errors++; 1459 for (i = 0; i <= lim; i++) { 1460 u_int idx = ring->slot[i].buf_idx; 1461 u_int len = ring->slot[i].len; 1462 if (idx < 2 || idx >= netmap_total_buffers) { 1463 RD(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1464 ring->slot[i].buf_idx = 0; 1465 ring->slot[i].len = 0; 1466 } else if (len > NETMAP_BDG_BUF_SIZE(kring->na->nm_mem)) { 1467 ring->slot[i].len = 0; 1468 RD(5, "bad len at slot %d idx %d len %d", i, idx, len); 1469 } 1470 } 1471 if (errors) { 1472 RD(10, "total %d errors", errors); 1473 RD(10, "%s reinit, cur %d -> %d tail %d -> %d", 1474 kring->name, 1475 ring->cur, kring->nr_hwcur, 1476 ring->tail, kring->nr_hwtail); 1477 ring->head = kring->rhead = kring->nr_hwcur; 1478 ring->cur = kring->rcur = kring->nr_hwcur; 1479 ring->tail = kring->rtail = kring->nr_hwtail; 1480 } 1481 return (errors ? 1 : 0); 1482 } 1483 1484 1485 /* 1486 * Set the ring ID. For devices with a single queue, a request 1487 * for all rings is the same as a single ring. 1488 */ 1489 static int 1490 netmap_set_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags) 1491 { 1492 struct netmap_adapter *na = priv->np_na; 1493 u_int j, i = ringid & NETMAP_RING_MASK; 1494 u_int reg = flags & NR_REG_MASK; 1495 1496 if (reg == NR_REG_DEFAULT) { 1497 /* convert from old ringid to flags */ 1498 if (ringid & NETMAP_SW_RING) { 1499 reg = NR_REG_SW; 1500 } else if (ringid & NETMAP_HW_RING) { 1501 reg = NR_REG_ONE_NIC; 1502 } else { 1503 reg = NR_REG_ALL_NIC; 1504 } 1505 D("deprecated API, old ringid 0x%x -> ringid %x reg %d", ringid, i, reg); 1506 } 1507 switch (reg) { 1508 case NR_REG_ALL_NIC: 1509 case NR_REG_PIPE_MASTER: 1510 case NR_REG_PIPE_SLAVE: 1511 priv->np_txqfirst = 0; 1512 priv->np_txqlast = na->num_tx_rings; 1513 priv->np_rxqfirst = 0; 1514 priv->np_rxqlast = na->num_rx_rings; 1515 ND("%s %d %d", "ALL/PIPE", 1516 priv->np_rxqfirst, priv->np_rxqlast); 1517 break; 1518 case NR_REG_SW: 1519 case NR_REG_NIC_SW: 1520 if (!(na->na_flags & NAF_HOST_RINGS)) { 1521 D("host rings not supported"); 1522 return EINVAL; 1523 } 1524 priv->np_txqfirst = (reg == NR_REG_SW ? 1525 na->num_tx_rings : 0); 1526 priv->np_txqlast = na->num_tx_rings + 1; 1527 priv->np_rxqfirst = (reg == NR_REG_SW ? 1528 na->num_rx_rings : 0); 1529 priv->np_rxqlast = na->num_rx_rings + 1; 1530 ND("%s %d %d", reg == NR_REG_SW ? "SW" : "NIC+SW", 1531 priv->np_rxqfirst, priv->np_rxqlast); 1532 break; 1533 case NR_REG_ONE_NIC: 1534 if (i >= na->num_tx_rings && i >= na->num_rx_rings) { 1535 D("invalid ring id %d", i); 1536 return EINVAL; 1537 } 1538 /* if not enough rings, use the first one */ 1539 j = i; 1540 if (j >= na->num_tx_rings) 1541 j = 0; 1542 priv->np_txqfirst = j; 1543 priv->np_txqlast = j + 1; 1544 j = i; 1545 if (j >= na->num_rx_rings) 1546 j = 0; 1547 priv->np_rxqfirst = j; 1548 priv->np_rxqlast = j + 1; 1549 break; 1550 default: 1551 D("invalid regif type %d", reg); 1552 return EINVAL; 1553 } 1554 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 1555 priv->np_flags = (flags & ~NR_REG_MASK) | reg; 1556 if (nm_tx_si_user(priv)) 1557 na->tx_si_users++; 1558 if (nm_rx_si_user(priv)) 1559 na->rx_si_users++; 1560 if (netmap_verbose) { 1561 D("%s: tx [%d,%d) rx [%d,%d) id %d", 1562 NM_IFPNAME(na->ifp), 1563 priv->np_txqfirst, 1564 priv->np_txqlast, 1565 priv->np_rxqfirst, 1566 priv->np_rxqlast, 1567 i); 1568 } 1569 return 0; 1570 } 1571 1572 /* 1573 * possibly move the interface to netmap-mode. 1574 * If success it returns a pointer to netmap_if, otherwise NULL. 1575 * This must be called with NMG_LOCK held. 1576 */ 1577 struct netmap_if * 1578 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1579 uint16_t ringid, uint32_t flags, int *err) 1580 { 1581 struct ifnet *ifp = na->ifp; 1582 struct netmap_if *nifp = NULL; 1583 int error, need_mem = 0; 1584 1585 NMG_LOCK_ASSERT(); 1586 /* ring configuration may have changed, fetch from the card */ 1587 netmap_update_config(na); 1588 priv->np_na = na; /* store the reference */ 1589 error = netmap_set_ringid(priv, ringid, flags); 1590 if (error) 1591 goto out; 1592 /* ensure allocators are ready */ 1593 need_mem = !netmap_have_memory_locked(priv); 1594 if (need_mem) { 1595 error = netmap_get_memory_locked(priv); 1596 ND("get_memory returned %d", error); 1597 if (error) 1598 goto out; 1599 } 1600 nifp = netmap_if_new(NM_IFPNAME(ifp), na); 1601 1602 /* Allocate a netmap_if and, if necessary, all the netmap_ring's */ 1603 if (nifp == NULL) { /* allocation failed */ 1604 error = ENOMEM; 1605 goto out; 1606 } 1607 na->active_fds++; 1608 if (ifp->if_capenable & IFCAP_NETMAP) { 1609 /* was already set */ 1610 } else { 1611 /* Otherwise set the card in netmap mode 1612 * and make it use the shared buffers. 1613 */ 1614 /* cache the allocator info in the na */ 1615 na->na_lut = na->nm_mem->pools[NETMAP_BUF_POOL].lut; 1616 ND("%p->na_lut == %p", na, na->na_lut); 1617 na->na_lut_objtotal = na->nm_mem->pools[NETMAP_BUF_POOL].objtotal; 1618 error = na->nm_register(na, 1); /* mode on */ 1619 if (error) { 1620 netmap_do_unregif(priv, nifp); 1621 nifp = NULL; 1622 } 1623 } 1624 out: 1625 *err = error; 1626 if (error) { 1627 priv->np_na = NULL; 1628 /* we should drop the allocator, but only 1629 * if we were the ones who grabbed it 1630 */ 1631 if (need_mem) 1632 netmap_drop_memory_locked(priv); 1633 } 1634 if (nifp != NULL) { 1635 /* 1636 * advertise that the interface is ready bt setting ni_nifp. 1637 * The barrier is needed because readers (poll and *SYNC) 1638 * check for priv->np_nifp != NULL without locking 1639 */ 1640 wmb(); /* make sure previous writes are visible to all CPUs */ 1641 priv->np_nifp = nifp; 1642 } 1643 return nifp; 1644 } 1645 1646 1647 1648 /* 1649 * ioctl(2) support for the "netmap" device. 1650 * 1651 * Following a list of accepted commands: 1652 * - NIOCGINFO 1653 * - SIOCGIFADDR just for convenience 1654 * - NIOCREGIF 1655 * - NIOCTXSYNC 1656 * - NIOCRXSYNC 1657 * 1658 * Return 0 on success, errno otherwise. 1659 */ 1660 int 1661 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 1662 int fflag, struct thread *td) 1663 { 1664 struct netmap_priv_d *priv = NULL; 1665 struct ifnet *ifp = NULL; 1666 struct nmreq *nmr = (struct nmreq *) data; 1667 struct netmap_adapter *na = NULL; 1668 int error; 1669 u_int i, qfirst, qlast; 1670 struct netmap_if *nifp; 1671 struct netmap_kring *krings; 1672 1673 (void)dev; /* UNUSED */ 1674 (void)fflag; /* UNUSED */ 1675 1676 if (cmd == NIOCGINFO || cmd == NIOCREGIF) { 1677 /* truncate name */ 1678 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; 1679 if (nmr->nr_version != NETMAP_API) { 1680 D("API mismatch for %s got %d need %d", 1681 nmr->nr_name, 1682 nmr->nr_version, NETMAP_API); 1683 nmr->nr_version = NETMAP_API; 1684 } 1685 if (nmr->nr_version < NETMAP_MIN_API || 1686 nmr->nr_version > NETMAP_MAX_API) { 1687 return EINVAL; 1688 } 1689 } 1690 CURVNET_SET(TD_TO_VNET(td)); 1691 1692 error = devfs_get_cdevpriv((void **)&priv); 1693 if (error) { 1694 CURVNET_RESTORE(); 1695 /* XXX ENOENT should be impossible, since the priv 1696 * is now created in the open */ 1697 return (error == ENOENT ? ENXIO : error); 1698 } 1699 1700 switch (cmd) { 1701 case NIOCGINFO: /* return capabilities etc */ 1702 if (nmr->nr_cmd == NETMAP_BDG_LIST) { 1703 error = netmap_bdg_ctl(nmr, NULL); 1704 break; 1705 } 1706 1707 NMG_LOCK(); 1708 do { 1709 /* memsize is always valid */ 1710 struct netmap_mem_d *nmd = &nm_mem; 1711 u_int memflags; 1712 1713 if (nmr->nr_name[0] != '\0') { 1714 /* get a refcount */ 1715 error = netmap_get_na(nmr, &na, 1 /* create */); 1716 if (error) 1717 break; 1718 nmd = na->nm_mem; /* get memory allocator */ 1719 } 1720 1721 error = netmap_mem_get_info(nmd, &nmr->nr_memsize, &memflags, 1722 &nmr->nr_arg2); 1723 if (error) 1724 break; 1725 if (na == NULL) /* only memory info */ 1726 break; 1727 nmr->nr_offset = 0; 1728 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 1729 netmap_update_config(na); 1730 nmr->nr_rx_rings = na->num_rx_rings; 1731 nmr->nr_tx_rings = na->num_tx_rings; 1732 nmr->nr_rx_slots = na->num_rx_desc; 1733 nmr->nr_tx_slots = na->num_tx_desc; 1734 netmap_adapter_put(na); 1735 } while (0); 1736 NMG_UNLOCK(); 1737 break; 1738 1739 case NIOCREGIF: 1740 /* possibly attach/detach NIC and VALE switch */ 1741 i = nmr->nr_cmd; 1742 if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH 1743 || i == NETMAP_BDG_VNET_HDR) { 1744 error = netmap_bdg_ctl(nmr, NULL); 1745 break; 1746 } else if (i != 0) { 1747 D("nr_cmd must be 0 not %d", i); 1748 error = EINVAL; 1749 break; 1750 } 1751 1752 /* protect access to priv from concurrent NIOCREGIF */ 1753 NMG_LOCK(); 1754 do { 1755 u_int memflags; 1756 1757 if (priv->np_na != NULL) { /* thread already registered */ 1758 error = EBUSY; 1759 break; 1760 } 1761 /* find the interface and a reference */ 1762 error = netmap_get_na(nmr, &na, 1 /* create */); /* keep reference */ 1763 if (error) 1764 break; 1765 ifp = na->ifp; 1766 if (NETMAP_OWNED_BY_KERN(na)) { 1767 netmap_adapter_put(na); 1768 error = EBUSY; 1769 break; 1770 } 1771 nifp = netmap_do_regif(priv, na, nmr->nr_ringid, nmr->nr_flags, &error); 1772 if (!nifp) { /* reg. failed, release priv and ref */ 1773 netmap_adapter_put(na); 1774 priv->np_nifp = NULL; 1775 break; 1776 } 1777 priv->np_td = td; // XXX kqueue, debugging only 1778 1779 /* return the offset of the netmap_if object */ 1780 nmr->nr_rx_rings = na->num_rx_rings; 1781 nmr->nr_tx_rings = na->num_tx_rings; 1782 nmr->nr_rx_slots = na->num_rx_desc; 1783 nmr->nr_tx_slots = na->num_tx_desc; 1784 error = netmap_mem_get_info(na->nm_mem, &nmr->nr_memsize, &memflags, 1785 &nmr->nr_arg2); 1786 if (error) { 1787 netmap_adapter_put(na); 1788 break; 1789 } 1790 if (memflags & NETMAP_MEM_PRIVATE) { 1791 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 1792 } 1793 priv->np_txsi = (priv->np_txqlast - priv->np_txqfirst > 1) ? 1794 &na->tx_si : &na->tx_rings[priv->np_txqfirst].si; 1795 priv->np_rxsi = (priv->np_rxqlast - priv->np_rxqfirst > 1) ? 1796 &na->rx_si : &na->rx_rings[priv->np_rxqfirst].si; 1797 1798 if (nmr->nr_arg3) { 1799 D("requested %d extra buffers", nmr->nr_arg3); 1800 nmr->nr_arg3 = netmap_extra_alloc(na, 1801 &nifp->ni_bufs_head, nmr->nr_arg3); 1802 D("got %d extra buffers", nmr->nr_arg3); 1803 } 1804 nmr->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 1805 } while (0); 1806 NMG_UNLOCK(); 1807 break; 1808 1809 case NIOCTXSYNC: 1810 case NIOCRXSYNC: 1811 nifp = priv->np_nifp; 1812 1813 if (nifp == NULL) { 1814 error = ENXIO; 1815 break; 1816 } 1817 rmb(); /* make sure following reads are not from cache */ 1818 1819 na = priv->np_na; /* we have a reference */ 1820 1821 if (na == NULL) { 1822 D("Internal error: nifp != NULL && na == NULL"); 1823 error = ENXIO; 1824 break; 1825 } 1826 1827 ifp = na->ifp; 1828 if (ifp == NULL) { 1829 RD(1, "the ifp is gone"); 1830 error = ENXIO; 1831 break; 1832 } 1833 1834 if (cmd == NIOCTXSYNC) { 1835 krings = na->tx_rings; 1836 qfirst = priv->np_txqfirst; 1837 qlast = priv->np_txqlast; 1838 } else { 1839 krings = na->rx_rings; 1840 qfirst = priv->np_rxqfirst; 1841 qlast = priv->np_rxqlast; 1842 } 1843 1844 for (i = qfirst; i < qlast; i++) { 1845 struct netmap_kring *kring = krings + i; 1846 if (nm_kr_tryget(kring)) { 1847 error = EBUSY; 1848 goto out; 1849 } 1850 if (cmd == NIOCTXSYNC) { 1851 if (netmap_verbose & NM_VERB_TXSYNC) 1852 D("pre txsync ring %d cur %d hwcur %d", 1853 i, kring->ring->cur, 1854 kring->nr_hwcur); 1855 if (nm_txsync_prologue(kring) >= kring->nkr_num_slots) { 1856 netmap_ring_reinit(kring); 1857 } else { 1858 kring->nm_sync(kring, NAF_FORCE_RECLAIM); 1859 } 1860 if (netmap_verbose & NM_VERB_TXSYNC) 1861 D("post txsync ring %d cur %d hwcur %d", 1862 i, kring->ring->cur, 1863 kring->nr_hwcur); 1864 } else { 1865 kring->nm_sync(kring, NAF_FORCE_READ); 1866 microtime(&na->rx_rings[i].ring->ts); 1867 } 1868 nm_kr_put(kring); 1869 } 1870 1871 break; 1872 1873 #ifdef __FreeBSD__ 1874 case FIONBIO: 1875 case FIOASYNC: 1876 ND("FIONBIO/FIOASYNC are no-ops"); 1877 break; 1878 1879 case BIOCIMMEDIATE: 1880 case BIOCGHDRCMPLT: 1881 case BIOCSHDRCMPLT: 1882 case BIOCSSEESENT: 1883 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1884 break; 1885 1886 default: /* allow device-specific ioctls */ 1887 { 1888 struct socket so; 1889 1890 bzero(&so, sizeof(so)); 1891 NMG_LOCK(); 1892 error = netmap_get_na(nmr, &na, 0 /* don't create */); /* keep reference */ 1893 if (error) { 1894 netmap_adapter_put(na); 1895 NMG_UNLOCK(); 1896 break; 1897 } 1898 ifp = na->ifp; 1899 so.so_vnet = ifp->if_vnet; 1900 // so->so_proto not null. 1901 error = ifioctl(&so, cmd, data, td); 1902 netmap_adapter_put(na); 1903 NMG_UNLOCK(); 1904 break; 1905 } 1906 1907 #else /* linux */ 1908 default: 1909 error = EOPNOTSUPP; 1910 #endif /* linux */ 1911 } 1912 out: 1913 1914 CURVNET_RESTORE(); 1915 return (error); 1916 } 1917 1918 1919 /* 1920 * select(2) and poll(2) handlers for the "netmap" device. 1921 * 1922 * Can be called for one or more queues. 1923 * Return true the event mask corresponding to ready events. 1924 * If there are no ready events, do a selrecord on either individual 1925 * selinfo or on the global one. 1926 * Device-dependent parts (locking and sync of tx/rx rings) 1927 * are done through callbacks. 1928 * 1929 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1930 * The first one is remapped to pwait as selrecord() uses the name as an 1931 * hidden argument. 1932 */ 1933 int 1934 netmap_poll(struct cdev *dev, int events, struct thread *td) 1935 { 1936 struct netmap_priv_d *priv = NULL; 1937 struct netmap_adapter *na; 1938 struct ifnet *ifp; 1939 struct netmap_kring *kring; 1940 u_int i, check_all_tx, check_all_rx, want_tx, want_rx, revents = 0; 1941 struct mbq q; /* packets from hw queues to host stack */ 1942 void *pwait = dev; /* linux compatibility */ 1943 int is_kevent = 0; 1944 1945 /* 1946 * In order to avoid nested locks, we need to "double check" 1947 * txsync and rxsync if we decide to do a selrecord(). 1948 * retry_tx (and retry_rx, later) prevent looping forever. 1949 */ 1950 int retry_tx = 1, retry_rx = 1; 1951 1952 (void)pwait; 1953 mbq_init(&q); 1954 1955 /* 1956 * XXX kevent has curthread->tp_fop == NULL, 1957 * so devfs_get_cdevpriv() fails. We circumvent this by passing 1958 * priv as the first argument, which is also useful to avoid 1959 * the selrecord() which are not necessary in that case. 1960 */ 1961 if (devfs_get_cdevpriv((void **)&priv) != 0) { 1962 is_kevent = 1; 1963 if (netmap_verbose) 1964 D("called from kevent"); 1965 priv = (struct netmap_priv_d *)dev; 1966 } 1967 if (priv == NULL) 1968 return POLLERR; 1969 1970 if (priv->np_nifp == NULL) { 1971 D("No if registered"); 1972 return POLLERR; 1973 } 1974 rmb(); /* make sure following reads are not from cache */ 1975 1976 na = priv->np_na; 1977 ifp = na->ifp; 1978 // check for deleted 1979 if (ifp == NULL) { 1980 RD(1, "the ifp is gone"); 1981 return POLLERR; 1982 } 1983 1984 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1985 return POLLERR; 1986 1987 if (netmap_verbose & 0x8000) 1988 D("device %s events 0x%x", NM_IFPNAME(ifp), events); 1989 want_tx = events & (POLLOUT | POLLWRNORM); 1990 want_rx = events & (POLLIN | POLLRDNORM); 1991 1992 1993 /* 1994 * check_all_{tx|rx} are set if the card has more than one queue AND 1995 * the file descriptor is bound to all of them. If so, we sleep on 1996 * the "global" selinfo, otherwise we sleep on individual selinfo 1997 * (FreeBSD only allows two selinfo's per file descriptor). 1998 * The interrupt routine in the driver wake one or the other 1999 * (or both) depending on which clients are active. 2000 * 2001 * rxsync() is only called if we run out of buffers on a POLLIN. 2002 * txsync() is called if we run out of buffers on POLLOUT, or 2003 * there are pending packets to send. The latter can be disabled 2004 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 2005 */ 2006 check_all_tx = nm_tx_si_user(priv); 2007 check_all_rx = nm_rx_si_user(priv); 2008 2009 /* 2010 * We start with a lock free round which is cheap if we have 2011 * slots available. If this fails, then lock and call the sync 2012 * routines. 2013 */ 2014 for (i = priv->np_rxqfirst; want_rx && i < priv->np_rxqlast; i++) { 2015 kring = &na->rx_rings[i]; 2016 /* XXX compare ring->cur and kring->tail */ 2017 if (!nm_ring_empty(kring->ring)) { 2018 revents |= want_rx; 2019 want_rx = 0; /* also breaks the loop */ 2020 } 2021 } 2022 for (i = priv->np_txqfirst; want_tx && i < priv->np_txqlast; i++) { 2023 kring = &na->tx_rings[i]; 2024 /* XXX compare ring->cur and kring->tail */ 2025 if (!nm_ring_empty(kring->ring)) { 2026 revents |= want_tx; 2027 want_tx = 0; /* also breaks the loop */ 2028 } 2029 } 2030 2031 /* 2032 * If we want to push packets out (priv->np_txpoll) or 2033 * want_tx is still set, we must issue txsync calls 2034 * (on all rings, to avoid that the tx rings stall). 2035 * XXX should also check cur != hwcur on the tx rings. 2036 * Fortunately, normal tx mode has np_txpoll set. 2037 */ 2038 if (priv->np_txpoll || want_tx) { 2039 /* 2040 * The first round checks if anyone is ready, if not 2041 * do a selrecord and another round to handle races. 2042 * want_tx goes to 0 if any space is found, and is 2043 * used to skip rings with no pending transmissions. 2044 */ 2045 flush_tx: 2046 for (i = priv->np_txqfirst; i < priv->np_txqlast; i++) { 2047 int found = 0; 2048 2049 kring = &na->tx_rings[i]; 2050 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 2051 continue; 2052 /* only one thread does txsync */ 2053 if (nm_kr_tryget(kring)) { 2054 /* either busy or stopped 2055 * XXX if the ring is stopped, sleeping would 2056 * be better. In current code, however, we only 2057 * stop the rings for brief intervals (2014-03-14) 2058 */ 2059 2060 if (netmap_verbose) 2061 RD(2, "%p lost race on txring %d, ok", 2062 priv, i); 2063 continue; 2064 } 2065 if (nm_txsync_prologue(kring) >= kring->nkr_num_slots) { 2066 netmap_ring_reinit(kring); 2067 revents |= POLLERR; 2068 } else { 2069 if (kring->nm_sync(kring, 0)) 2070 revents |= POLLERR; 2071 } 2072 2073 /* 2074 * If we found new slots, notify potential 2075 * listeners on the same ring. 2076 * Since we just did a txsync, look at the copies 2077 * of cur,tail in the kring. 2078 */ 2079 found = kring->rcur != kring->rtail; 2080 nm_kr_put(kring); 2081 if (found) { /* notify other listeners */ 2082 revents |= want_tx; 2083 want_tx = 0; 2084 na->nm_notify(na, i, NR_TX, 0); 2085 } 2086 } 2087 if (want_tx && retry_tx && !is_kevent) { 2088 selrecord(td, check_all_tx ? 2089 &na->tx_si : &na->tx_rings[priv->np_txqfirst].si); 2090 retry_tx = 0; 2091 goto flush_tx; 2092 } 2093 } 2094 2095 /* 2096 * If want_rx is still set scan receive rings. 2097 * Do it on all rings because otherwise we starve. 2098 */ 2099 if (want_rx) { 2100 int send_down = 0; /* transparent mode */ 2101 /* two rounds here for race avoidance */ 2102 do_retry_rx: 2103 for (i = priv->np_rxqfirst; i < priv->np_rxqlast; i++) { 2104 int found = 0; 2105 2106 kring = &na->rx_rings[i]; 2107 2108 if (nm_kr_tryget(kring)) { 2109 if (netmap_verbose) 2110 RD(2, "%p lost race on rxring %d, ok", 2111 priv, i); 2112 continue; 2113 } 2114 2115 /* 2116 * transparent mode support: collect packets 2117 * from the rxring(s). 2118 */ 2119 if (netmap_fwd ||kring->ring->flags & NR_FORWARD) { 2120 ND(10, "forwarding some buffers up %d to %d", 2121 kring->nr_hwcur, kring->ring->cur); 2122 netmap_grab_packets(kring, &q, netmap_fwd); 2123 } 2124 2125 if (kring->nm_sync(kring, 0)) 2126 revents |= POLLERR; 2127 if (netmap_no_timestamp == 0 || 2128 kring->ring->flags & NR_TIMESTAMP) { 2129 microtime(&kring->ring->ts); 2130 } 2131 /* after an rxsync we can use kring->rcur, rtail */ 2132 found = kring->rcur != kring->rtail; 2133 nm_kr_put(kring); 2134 if (found) { 2135 revents |= want_rx; 2136 retry_rx = 0; 2137 na->nm_notify(na, i, NR_RX, 0); 2138 } 2139 } 2140 2141 /* transparent mode XXX only during first pass ? */ 2142 if (na->na_flags & NAF_HOST_RINGS) { 2143 kring = &na->rx_rings[na->num_rx_rings]; 2144 if (netmap_fwd || kring->ring->flags & NR_FORWARD) { 2145 send_down = netmap_rxsync_from_host(na, td, dev); 2146 if (send_down && (netmap_no_timestamp == 0 || 2147 kring->ring->flags & NR_TIMESTAMP)) { 2148 microtime(&kring->ring->ts); 2149 } 2150 } 2151 } 2152 2153 if (retry_rx && !is_kevent) 2154 selrecord(td, check_all_rx ? 2155 &na->rx_si : &na->rx_rings[priv->np_rxqfirst].si); 2156 if (send_down > 0 || retry_rx) { 2157 retry_rx = 0; 2158 if (send_down) 2159 goto flush_tx; /* and retry_rx */ 2160 else 2161 goto do_retry_rx; 2162 } 2163 } 2164 2165 /* 2166 * Transparent mode: marked bufs on rx rings between 2167 * kring->nr_hwcur and ring->head 2168 * are passed to the other endpoint. 2169 * 2170 * In this mode we also scan the sw rxring, which in 2171 * turn passes packets up. 2172 * 2173 * XXX Transparent mode at the moment requires to bind all 2174 * rings to a single file descriptor. 2175 */ 2176 2177 if (q.head) 2178 netmap_send_up(na->ifp, &q); 2179 2180 return (revents); 2181 } 2182 2183 2184 /*-------------------- driver support routines -------------------*/ 2185 2186 static int netmap_hw_krings_create(struct netmap_adapter *); 2187 2188 /* default notify callback */ 2189 static int 2190 netmap_notify(struct netmap_adapter *na, u_int n_ring, 2191 enum txrx tx, int flags) 2192 { 2193 struct netmap_kring *kring; 2194 2195 if (tx == NR_TX) { 2196 kring = na->tx_rings + n_ring; 2197 OS_selwakeup(&kring->si, PI_NET); 2198 /* optimization: avoid a wake up on the global 2199 * queue if nobody has registered for more 2200 * than one ring 2201 */ 2202 if (na->tx_si_users > 0) 2203 OS_selwakeup(&na->tx_si, PI_NET); 2204 } else { 2205 kring = na->rx_rings + n_ring; 2206 OS_selwakeup(&kring->si, PI_NET); 2207 /* optimization: same as above */ 2208 if (na->rx_si_users > 0) 2209 OS_selwakeup(&na->rx_si, PI_NET); 2210 } 2211 return 0; 2212 } 2213 2214 2215 /* called by all routines that create netmap_adapters. 2216 * Attach na to the ifp (if any) and provide defaults 2217 * for optional callbacks. Defaults assume that we 2218 * are creating an hardware netmap_adapter. 2219 */ 2220 int 2221 netmap_attach_common(struct netmap_adapter *na) 2222 { 2223 struct ifnet *ifp = na->ifp; 2224 2225 if (na->num_tx_rings == 0 || na->num_rx_rings == 0) { 2226 D("%s: invalid rings tx %d rx %d", 2227 ifp->if_xname, na->num_tx_rings, na->num_rx_rings); 2228 return EINVAL; 2229 } 2230 WNA(ifp) = na; 2231 2232 /* the following is only needed for na that use the host port. 2233 * XXX do we have something similar for linux ? 2234 */ 2235 #ifdef __FreeBSD__ 2236 na->if_input = ifp->if_input; /* for netmap_send_up */ 2237 #endif /* __FreeBSD__ */ 2238 2239 NETMAP_SET_CAPABLE(ifp); 2240 if (na->nm_krings_create == NULL) { 2241 /* we assume that we have been called by a driver, 2242 * since other port types all provide their own 2243 * nm_krings_create 2244 */ 2245 na->nm_krings_create = netmap_hw_krings_create; 2246 na->nm_krings_delete = netmap_hw_krings_delete; 2247 } 2248 if (na->nm_notify == NULL) 2249 na->nm_notify = netmap_notify; 2250 na->active_fds = 0; 2251 2252 if (na->nm_mem == NULL) 2253 na->nm_mem = &nm_mem; 2254 return 0; 2255 } 2256 2257 2258 /* standard cleanup, called by all destructors */ 2259 void 2260 netmap_detach_common(struct netmap_adapter *na) 2261 { 2262 if (na->ifp != NULL) 2263 WNA(na->ifp) = NULL; /* XXX do we need this? */ 2264 2265 if (na->tx_rings) { /* XXX should not happen */ 2266 D("freeing leftover tx_rings"); 2267 na->nm_krings_delete(na); 2268 } 2269 netmap_pipe_dealloc(na); 2270 if (na->na_flags & NAF_MEM_OWNER) 2271 netmap_mem_private_delete(na->nm_mem); 2272 bzero(na, sizeof(*na)); 2273 free(na, M_DEVBUF); 2274 } 2275 2276 2277 /* 2278 * Initialize a ``netmap_adapter`` object created by driver on attach. 2279 * We allocate a block of memory with room for a struct netmap_adapter 2280 * plus two sets of N+2 struct netmap_kring (where N is the number 2281 * of hardware rings): 2282 * krings 0..N-1 are for the hardware queues. 2283 * kring N is for the host stack queue 2284 * kring N+1 is only used for the selinfo for all queues. // XXX still true ? 2285 * Return 0 on success, ENOMEM otherwise. 2286 */ 2287 int 2288 netmap_attach(struct netmap_adapter *arg) 2289 { 2290 struct netmap_hw_adapter *hwna = NULL; 2291 // XXX when is arg == NULL ? 2292 struct ifnet *ifp = arg ? arg->ifp : NULL; 2293 2294 if (arg == NULL || ifp == NULL) 2295 goto fail; 2296 hwna = malloc(sizeof(*hwna), M_DEVBUF, M_NOWAIT | M_ZERO); 2297 if (hwna == NULL) 2298 goto fail; 2299 hwna->up = *arg; 2300 hwna->up.na_flags |= NAF_HOST_RINGS; 2301 if (netmap_attach_common(&hwna->up)) { 2302 free(hwna, M_DEVBUF); 2303 goto fail; 2304 } 2305 netmap_adapter_get(&hwna->up); 2306 2307 #ifdef linux 2308 if (ifp->netdev_ops) { 2309 /* prepare a clone of the netdev ops */ 2310 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28) 2311 hwna->nm_ndo.ndo_start_xmit = ifp->netdev_ops; 2312 #else 2313 hwna->nm_ndo = *ifp->netdev_ops; 2314 #endif 2315 } 2316 hwna->nm_ndo.ndo_start_xmit = linux_netmap_start_xmit; 2317 #endif /* linux */ 2318 2319 D("success for %s tx %d/%d rx %d/%d queues/slots", 2320 NM_IFPNAME(ifp), 2321 hwna->up.num_tx_rings, hwna->up.num_tx_desc, 2322 hwna->up.num_rx_rings, hwna->up.num_rx_desc 2323 ); 2324 return 0; 2325 2326 fail: 2327 D("fail, arg %p ifp %p na %p", arg, ifp, hwna); 2328 if (ifp) 2329 netmap_detach(ifp); 2330 return (hwna ? EINVAL : ENOMEM); 2331 } 2332 2333 2334 void 2335 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 2336 { 2337 if (!na) { 2338 return; 2339 } 2340 2341 refcount_acquire(&na->na_refcount); 2342 } 2343 2344 2345 /* returns 1 iff the netmap_adapter is destroyed */ 2346 int 2347 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 2348 { 2349 if (!na) 2350 return 1; 2351 2352 if (!refcount_release(&na->na_refcount)) 2353 return 0; 2354 2355 if (na->nm_dtor) 2356 na->nm_dtor(na); 2357 2358 netmap_detach_common(na); 2359 2360 return 1; 2361 } 2362 2363 /* nm_krings_create callback for all hardware native adapters */ 2364 int 2365 netmap_hw_krings_create(struct netmap_adapter *na) 2366 { 2367 int ret = netmap_krings_create(na, 0); 2368 if (ret == 0) { 2369 /* initialize the mbq for the sw rx ring */ 2370 mbq_safe_init(&na->rx_rings[na->num_rx_rings].rx_queue); 2371 ND("initialized sw rx queue %d", na->num_rx_rings); 2372 } 2373 return ret; 2374 } 2375 2376 2377 2378 /* 2379 * Called on module unload by the netmap-enabled drivers 2380 */ 2381 void 2382 netmap_detach(struct ifnet *ifp) 2383 { 2384 struct netmap_adapter *na = NA(ifp); 2385 2386 if (!na) 2387 return; 2388 2389 NMG_LOCK(); 2390 netmap_disable_all_rings(ifp); 2391 if (!netmap_adapter_put(na)) { 2392 /* someone is still using the adapter, 2393 * tell them that the interface is gone 2394 */ 2395 na->ifp = NULL; 2396 /* give them a chance to notice */ 2397 netmap_enable_all_rings(ifp); 2398 } 2399 NMG_UNLOCK(); 2400 } 2401 2402 2403 /* 2404 * Intercept packets from the network stack and pass them 2405 * to netmap as incoming packets on the 'software' ring. 2406 * 2407 * We only store packets in a bounded mbq and then copy them 2408 * in the relevant rxsync routine. 2409 * 2410 * We rely on the OS to make sure that the ifp and na do not go 2411 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 2412 * In nm_register() or whenever there is a reinitialization, 2413 * we make sure to make the mode change visible here. 2414 */ 2415 int 2416 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 2417 { 2418 struct netmap_adapter *na = NA(ifp); 2419 struct netmap_kring *kring; 2420 u_int len = MBUF_LEN(m); 2421 u_int error = ENOBUFS; 2422 struct mbq *q; 2423 int space; 2424 2425 // XXX [Linux] we do not need this lock 2426 // if we follow the down/configure/up protocol -gl 2427 // mtx_lock(&na->core_lock); 2428 2429 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) { 2430 D("%s not in netmap mode anymore", NM_IFPNAME(ifp)); 2431 error = ENXIO; 2432 goto done; 2433 } 2434 2435 kring = &na->rx_rings[na->num_rx_rings]; 2436 q = &kring->rx_queue; 2437 2438 // XXX reconsider long packets if we handle fragments 2439 if (len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) { /* too long for us */ 2440 D("%s from_host, drop packet size %d > %d", NM_IFPNAME(ifp), 2441 len, NETMAP_BDG_BUF_SIZE(na->nm_mem)); 2442 goto done; 2443 } 2444 2445 /* protect against rxsync_from_host(), netmap_sw_to_nic() 2446 * and maybe other instances of netmap_transmit (the latter 2447 * not possible on Linux). 2448 * Also avoid overflowing the queue. 2449 */ 2450 mbq_lock(q); 2451 2452 space = kring->nr_hwtail - kring->nr_hwcur; 2453 if (space < 0) 2454 space += kring->nkr_num_slots; 2455 if (space + mbq_len(q) >= kring->nkr_num_slots - 1) { // XXX 2456 RD(10, "%s full hwcur %d hwtail %d qlen %d len %d m %p", 2457 NM_IFPNAME(ifp), kring->nr_hwcur, kring->nr_hwtail, mbq_len(q), 2458 len, m); 2459 } else { 2460 mbq_enqueue(q, m); 2461 ND(10, "%s %d bufs in queue len %d m %p", 2462 NM_IFPNAME(ifp), mbq_len(q), len, m); 2463 /* notify outside the lock */ 2464 m = NULL; 2465 error = 0; 2466 } 2467 mbq_unlock(q); 2468 2469 done: 2470 if (m) 2471 m_freem(m); 2472 /* unconditionally wake up listeners */ 2473 na->nm_notify(na, na->num_rx_rings, NR_RX, 0); 2474 /* this is normally netmap_notify(), but for nics 2475 * connected to a bridge it is netmap_bwrap_intr_notify(), 2476 * that possibly forwards the frames through the switch 2477 */ 2478 2479 return (error); 2480 } 2481 2482 2483 /* 2484 * netmap_reset() is called by the driver routines when reinitializing 2485 * a ring. The driver is in charge of locking to protect the kring. 2486 * If native netmap mode is not set just return NULL. 2487 */ 2488 struct netmap_slot * 2489 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 2490 u_int new_cur) 2491 { 2492 struct netmap_kring *kring; 2493 int new_hwofs, lim; 2494 2495 if (na == NULL) { 2496 D("NULL na, should not happen"); 2497 return NULL; /* no netmap support here */ 2498 } 2499 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) { 2500 ND("interface not in netmap mode"); 2501 return NULL; /* nothing to reinitialize */ 2502 } 2503 2504 /* XXX note- in the new scheme, we are not guaranteed to be 2505 * under lock (e.g. when called on a device reset). 2506 * In this case, we should set a flag and do not trust too 2507 * much the values. In practice: TODO 2508 * - set a RESET flag somewhere in the kring 2509 * - do the processing in a conservative way 2510 * - let the *sync() fixup at the end. 2511 */ 2512 if (tx == NR_TX) { 2513 if (n >= na->num_tx_rings) 2514 return NULL; 2515 kring = na->tx_rings + n; 2516 // XXX check whether we should use hwcur or rcur 2517 new_hwofs = kring->nr_hwcur - new_cur; 2518 } else { 2519 if (n >= na->num_rx_rings) 2520 return NULL; 2521 kring = na->rx_rings + n; 2522 new_hwofs = kring->nr_hwtail - new_cur; 2523 } 2524 lim = kring->nkr_num_slots - 1; 2525 if (new_hwofs > lim) 2526 new_hwofs -= lim + 1; 2527 2528 /* Always set the new offset value and realign the ring. */ 2529 if (netmap_verbose) 2530 D("%s %s%d hwofs %d -> %d, hwtail %d -> %d", 2531 NM_IFPNAME(na->ifp), 2532 tx == NR_TX ? "TX" : "RX", n, 2533 kring->nkr_hwofs, new_hwofs, 2534 kring->nr_hwtail, 2535 tx == NR_TX ? lim : kring->nr_hwtail); 2536 kring->nkr_hwofs = new_hwofs; 2537 if (tx == NR_TX) { 2538 kring->nr_hwtail = kring->nr_hwcur + lim; 2539 if (kring->nr_hwtail > lim) 2540 kring->nr_hwtail -= lim + 1; 2541 } 2542 2543 #if 0 // def linux 2544 /* XXX check that the mappings are correct */ 2545 /* need ring_nr, adapter->pdev, direction */ 2546 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 2547 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 2548 D("error mapping rx netmap buffer %d", i); 2549 // XXX fix error handling 2550 } 2551 2552 #endif /* linux */ 2553 /* 2554 * Wakeup on the individual and global selwait 2555 * We do the wakeup here, but the ring is not yet reconfigured. 2556 * However, we are under lock so there are no races. 2557 */ 2558 na->nm_notify(na, n, tx, 0); 2559 return kring->ring->slot; 2560 } 2561 2562 2563 /* 2564 * Dispatch rx/tx interrupts to the netmap rings. 2565 * 2566 * "work_done" is non-null on the RX path, NULL for the TX path. 2567 * We rely on the OS to make sure that there is only one active 2568 * instance per queue, and that there is appropriate locking. 2569 * 2570 * The 'notify' routine depends on what the ring is attached to. 2571 * - for a netmap file descriptor, do a selwakeup on the individual 2572 * waitqueue, plus one on the global one if needed 2573 * - for a switch, call the proper forwarding routine 2574 * - XXX more ? 2575 */ 2576 void 2577 netmap_common_irq(struct ifnet *ifp, u_int q, u_int *work_done) 2578 { 2579 struct netmap_adapter *na = NA(ifp); 2580 struct netmap_kring *kring; 2581 2582 q &= NETMAP_RING_MASK; 2583 2584 if (netmap_verbose) { 2585 RD(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 2586 } 2587 2588 if (work_done) { /* RX path */ 2589 if (q >= na->num_rx_rings) 2590 return; // not a physical queue 2591 kring = na->rx_rings + q; 2592 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 2593 na->nm_notify(na, q, NR_RX, 0); 2594 *work_done = 1; /* do not fire napi again */ 2595 } else { /* TX path */ 2596 if (q >= na->num_tx_rings) 2597 return; // not a physical queue 2598 kring = na->tx_rings + q; 2599 na->nm_notify(na, q, NR_TX, 0); 2600 } 2601 } 2602 2603 2604 /* 2605 * Default functions to handle rx/tx interrupts from a physical device. 2606 * "work_done" is non-null on the RX path, NULL for the TX path. 2607 * 2608 * If the card is not in netmap mode, simply return 0, 2609 * so that the caller proceeds with regular processing. 2610 * Otherwise call netmap_common_irq() and return 1. 2611 * 2612 * If the card is connected to a netmap file descriptor, 2613 * do a selwakeup on the individual queue, plus one on the global one 2614 * if needed (multiqueue card _and_ there are multiqueue listeners), 2615 * and return 1. 2616 * 2617 * Finally, if called on rx from an interface connected to a switch, 2618 * calls the proper forwarding routine, and return 1. 2619 */ 2620 int 2621 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 2622 { 2623 // XXX could we check NAF_NATIVE_ON ? 2624 if (!(ifp->if_capenable & IFCAP_NETMAP)) 2625 return 0; 2626 2627 if (NA(ifp)->na_flags & NAF_SKIP_INTR) { 2628 ND("use regular interrupt"); 2629 return 0; 2630 } 2631 2632 netmap_common_irq(ifp, q, work_done); 2633 return 1; 2634 } 2635 2636 2637 /* 2638 * Module loader and unloader 2639 * 2640 * netmap_init() creates the /dev/netmap device and initializes 2641 * all global variables. Returns 0 on success, errno on failure 2642 * (but there is no chance) 2643 * 2644 * netmap_fini() destroys everything. 2645 */ 2646 2647 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 2648 extern struct cdevsw netmap_cdevsw; 2649 2650 2651 void 2652 netmap_fini(void) 2653 { 2654 // XXX destroy_bridges() ? 2655 if (netmap_dev) 2656 destroy_dev(netmap_dev); 2657 netmap_mem_fini(); 2658 NMG_LOCK_DESTROY(); 2659 printf("netmap: unloaded module.\n"); 2660 } 2661 2662 2663 int 2664 netmap_init(void) 2665 { 2666 int error; 2667 2668 NMG_LOCK_INIT(); 2669 2670 error = netmap_mem_init(); 2671 if (error != 0) 2672 goto fail; 2673 /* XXX could use make_dev_credv() to get error number */ 2674 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 2675 "netmap"); 2676 if (!netmap_dev) 2677 goto fail; 2678 2679 netmap_init_bridges(); 2680 printf("netmap: loaded module\n"); 2681 return (0); 2682 fail: 2683 netmap_fini(); 2684 return (EINVAL); /* may be incorrect */ 2685 } 2686