1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi 5 * Copyright (C) 2011-2016 Luigi Rizzo 6 * Copyright (C) 2011-2016 Giuseppe Lettieri 7 * Copyright (C) 2011-2016 Vincenzo Maffione 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 33 /* 34 * $FreeBSD$ 35 * 36 * This module supports memory mapped access to network devices, 37 * see netmap(4). 38 * 39 * The module uses a large, memory pool allocated by the kernel 40 * and accessible as mmapped memory by multiple userspace threads/processes. 41 * The memory pool contains packet buffers and "netmap rings", 42 * i.e. user-accessible copies of the interface's queues. 43 * 44 * Access to the network card works like this: 45 * 1. a process/thread issues one or more open() on /dev/netmap, to create 46 * select()able file descriptor on which events are reported. 47 * 2. on each descriptor, the process issues an ioctl() to identify 48 * the interface that should report events to the file descriptor. 49 * 3. on each descriptor, the process issues an mmap() request to 50 * map the shared memory region within the process' address space. 51 * The list of interesting queues is indicated by a location in 52 * the shared memory region. 53 * 4. using the functions in the netmap(4) userspace API, a process 54 * can look up the occupation state of a queue, access memory buffers, 55 * and retrieve received packets or enqueue packets to transmit. 56 * 5. using some ioctl()s the process can synchronize the userspace view 57 * of the queue with the actual status in the kernel. This includes both 58 * receiving the notification of new packets, and transmitting new 59 * packets on the output interface. 60 * 6. select() or poll() can be used to wait for events on individual 61 * transmit or receive queues (or all queues for a given interface). 62 * 63 64 SYNCHRONIZATION (USER) 65 66 The netmap rings and data structures may be shared among multiple 67 user threads or even independent processes. 68 Any synchronization among those threads/processes is delegated 69 to the threads themselves. Only one thread at a time can be in 70 a system call on the same netmap ring. The OS does not enforce 71 this and only guarantees against system crashes in case of 72 invalid usage. 73 74 LOCKING (INTERNAL) 75 76 Within the kernel, access to the netmap rings is protected as follows: 77 78 - a spinlock on each ring, to handle producer/consumer races on 79 RX rings attached to the host stack (against multiple host 80 threads writing from the host stack to the same ring), 81 and on 'destination' rings attached to a VALE switch 82 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 83 protecting multiple active senders for the same destination) 84 85 - an atomic variable to guarantee that there is at most one 86 instance of *_*xsync() on the ring at any time. 87 For rings connected to user file 88 descriptors, an atomic_test_and_set() protects this, and the 89 lock on the ring is not actually used. 90 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 91 is also used to prevent multiple executions (the driver might indeed 92 already guarantee this). 93 For NIC TX rings connected to a VALE switch, the lock arbitrates 94 access to the queue (both when allocating buffers and when pushing 95 them out). 96 97 - *xsync() should be protected against initializations of the card. 98 On FreeBSD most devices have the reset routine protected by 99 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 100 the RING protection on rx_reset(), this should be added. 101 102 On linux there is an external lock on the tx path, which probably 103 also arbitrates access to the reset routine. XXX to be revised 104 105 - a per-interface core_lock protecting access from the host stack 106 while interfaces may be detached from netmap mode. 107 XXX there should be no need for this lock if we detach the interfaces 108 only while they are down. 109 110 111 --- VALE SWITCH --- 112 113 NMG_LOCK() serializes all modifications to switches and ports. 114 A switch cannot be deleted until all ports are gone. 115 116 For each switch, an SX lock (RWlock on linux) protects 117 deletion of ports. When configuring or deleting a new port, the 118 lock is acquired in exclusive mode (after holding NMG_LOCK). 119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 120 The lock is held throughout the entire forwarding cycle, 121 during which the thread may incur in a page fault. 122 Hence it is important that sleepable shared locks are used. 123 124 On the rx ring, the per-port lock is grabbed initially to reserve 125 a number of slot in the ring, then the lock is released, 126 packets are copied from source to destination, and then 127 the lock is acquired again and the receive ring is updated. 128 (A similar thing is done on the tx ring for NIC and host stack 129 ports attached to the switch) 130 131 */ 132 133 134 /* --- internals ---- 135 * 136 * Roadmap to the code that implements the above. 137 * 138 * > 1. a process/thread issues one or more open() on /dev/netmap, to create 139 * > select()able file descriptor on which events are reported. 140 * 141 * Internally, we allocate a netmap_priv_d structure, that will be 142 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d 143 * structure for each open(). 144 * 145 * os-specific: 146 * FreeBSD: see netmap_open() (netmap_freebsd.c) 147 * linux: see linux_netmap_open() (netmap_linux.c) 148 * 149 * > 2. on each descriptor, the process issues an ioctl() to identify 150 * > the interface that should report events to the file descriptor. 151 * 152 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0. 153 * Most important things happen in netmap_get_na() and 154 * netmap_do_regif(), called from there. Additional details can be 155 * found in the comments above those functions. 156 * 157 * In all cases, this action creates/takes-a-reference-to a 158 * netmap_*_adapter describing the port, and allocates a netmap_if 159 * and all necessary netmap rings, filling them with netmap buffers. 160 * 161 * In this phase, the sync callbacks for each ring are set (these are used 162 * in steps 5 and 6 below). The callbacks depend on the type of adapter. 163 * The adapter creation/initialization code puts them in the 164 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they 165 * are copied from there to the netmap_kring's during netmap_do_regif(), by 166 * the nm_krings_create() callback. All the nm_krings_create callbacks 167 * actually call netmap_krings_create() to perform this and the other 168 * common stuff. netmap_krings_create() also takes care of the host rings, 169 * if needed, by setting their sync callbacks appropriately. 170 * 171 * Additional actions depend on the kind of netmap_adapter that has been 172 * registered: 173 * 174 * - netmap_hw_adapter: [netmap.c] 175 * This is a system netdev/ifp with native netmap support. 176 * The ifp is detached from the host stack by redirecting: 177 * - transmissions (from the network stack) to netmap_transmit() 178 * - receive notifications to the nm_notify() callback for 179 * this adapter. The callback is normally netmap_notify(), unless 180 * the ifp is attached to a bridge using bwrap, in which case it 181 * is netmap_bwrap_intr_notify(). 182 * 183 * - netmap_generic_adapter: [netmap_generic.c] 184 * A system netdev/ifp without native netmap support. 185 * 186 * (the decision about native/non native support is taken in 187 * netmap_get_hw_na(), called by netmap_get_na()) 188 * 189 * - netmap_vp_adapter [netmap_vale.c] 190 * Returned by netmap_get_bdg_na(). 191 * This is a persistent or ephemeral VALE port. Ephemeral ports 192 * are created on the fly if they don't already exist, and are 193 * always attached to a bridge. 194 * Persistent VALE ports must must be created separately, and i 195 * then attached like normal NICs. The NIOCREGIF we are examining 196 * will find them only if they had previously been created and 197 * attached (see VALE_CTL below). 198 * 199 * - netmap_pipe_adapter [netmap_pipe.c] 200 * Returned by netmap_get_pipe_na(). 201 * Both pipe ends are created, if they didn't already exist. 202 * 203 * - netmap_monitor_adapter [netmap_monitor.c] 204 * Returned by netmap_get_monitor_na(). 205 * If successful, the nm_sync callbacks of the monitored adapter 206 * will be intercepted by the returned monitor. 207 * 208 * - netmap_bwrap_adapter [netmap_vale.c] 209 * Cannot be obtained in this way, see VALE_CTL below 210 * 211 * 212 * os-specific: 213 * linux: we first go through linux_netmap_ioctl() to 214 * adapt the FreeBSD interface to the linux one. 215 * 216 * 217 * > 3. on each descriptor, the process issues an mmap() request to 218 * > map the shared memory region within the process' address space. 219 * > The list of interesting queues is indicated by a location in 220 * > the shared memory region. 221 * 222 * os-specific: 223 * FreeBSD: netmap_mmap_single (netmap_freebsd.c). 224 * linux: linux_netmap_mmap (netmap_linux.c). 225 * 226 * > 4. using the functions in the netmap(4) userspace API, a process 227 * > can look up the occupation state of a queue, access memory buffers, 228 * > and retrieve received packets or enqueue packets to transmit. 229 * 230 * these actions do not involve the kernel. 231 * 232 * > 5. using some ioctl()s the process can synchronize the userspace view 233 * > of the queue with the actual status in the kernel. This includes both 234 * > receiving the notification of new packets, and transmitting new 235 * > packets on the output interface. 236 * 237 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC 238 * cases. They invoke the nm_sync callbacks on the netmap_kring 239 * structures, as initialized in step 2 and maybe later modified 240 * by a monitor. Monitors, however, will always call the original 241 * callback before doing anything else. 242 * 243 * 244 * > 6. select() or poll() can be used to wait for events on individual 245 * > transmit or receive queues (or all queues for a given interface). 246 * 247 * Implemented in netmap_poll(). This will call the same nm_sync() 248 * callbacks as in step 5 above. 249 * 250 * os-specific: 251 * linux: we first go through linux_netmap_poll() to adapt 252 * the FreeBSD interface to the linux one. 253 * 254 * 255 * ---- VALE_CTL ----- 256 * 257 * VALE switches are controlled by issuing a NIOCREGIF with a non-null 258 * nr_cmd in the nmreq structure. These subcommands are handled by 259 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created 260 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF 261 * subcommands, respectively. 262 * 263 * Any network interface known to the system (including a persistent VALE 264 * port) can be attached to a VALE switch by issuing the 265 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports 266 * look exactly like ephemeral VALE ports (as created in step 2 above). The 267 * attachment of other interfaces, instead, requires the creation of a 268 * netmap_bwrap_adapter. Moreover, the attached interface must be put in 269 * netmap mode. This may require the creation of a netmap_generic_adapter if 270 * we have no native support for the interface, or if generic adapters have 271 * been forced by sysctl. 272 * 273 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(), 274 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach() 275 * callback. In the case of the bwrap, the callback creates the 276 * netmap_bwrap_adapter. The initialization of the bwrap is then 277 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl() 278 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c). 279 * A generic adapter for the wrapped ifp will be created if needed, when 280 * netmap_get_bdg_na() calls netmap_get_hw_na(). 281 * 282 * 283 * ---- DATAPATHS ----- 284 * 285 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =- 286 * 287 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach() 288 * 289 * - tx from netmap userspace: 290 * concurrently: 291 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 292 * kring->nm_sync() == DEVICE_netmap_txsync() 293 * 2) device interrupt handler 294 * na->nm_notify() == netmap_notify() 295 * - rx from netmap userspace: 296 * concurrently: 297 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 298 * kring->nm_sync() == DEVICE_netmap_rxsync() 299 * 2) device interrupt handler 300 * na->nm_notify() == netmap_notify() 301 * - rx from host stack 302 * concurrently: 303 * 1) host stack 304 * netmap_transmit() 305 * na->nm_notify == netmap_notify() 306 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context 307 * kring->nm_sync() == netmap_rxsync_from_host 308 * netmap_rxsync_from_host(na, NULL, NULL) 309 * - tx to host stack 310 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 311 * kring->nm_sync() == netmap_txsync_to_host 312 * netmap_txsync_to_host(na) 313 * nm_os_send_up() 314 * FreeBSD: na->if_input() == ether_input() 315 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX 316 * 317 * 318 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =- 319 * 320 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach() 321 * 322 * - tx from netmap userspace: 323 * concurrently: 324 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 325 * kring->nm_sync() == generic_netmap_txsync() 326 * nm_os_generic_xmit_frame() 327 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX 328 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 329 * gna->save_start_xmit == orig. dev. start_xmit 330 * FreeBSD: na->if_transmit() == orig. dev if_transmit 331 * 2) generic_mbuf_destructor() 332 * na->nm_notify() == netmap_notify() 333 * - rx from netmap userspace: 334 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 335 * kring->nm_sync() == generic_netmap_rxsync() 336 * mbq_safe_dequeue() 337 * 2) device driver 338 * generic_rx_handler() 339 * mbq_safe_enqueue() 340 * na->nm_notify() == netmap_notify() 341 * - rx from host stack 342 * FreeBSD: same as native 343 * Linux: same as native except: 344 * 1) host stack 345 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX 346 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 347 * netmap_transmit() 348 * na->nm_notify() == netmap_notify() 349 * - tx to host stack (same as native): 350 * 351 * 352 * -= VALE =- 353 * 354 * INCOMING: 355 * 356 * - VALE ports: 357 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 358 * kring->nm_sync() == netmap_vp_txsync() 359 * 360 * - system device with native support: 361 * from cable: 362 * interrupt 363 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 364 * kring->nm_sync() == DEVICE_netmap_rxsync() 365 * netmap_vp_txsync() 366 * kring->nm_sync() == DEVICE_netmap_rxsync() 367 * from host stack: 368 * netmap_transmit() 369 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 370 * kring->nm_sync() == netmap_rxsync_from_host() 371 * netmap_vp_txsync() 372 * 373 * - system device with generic support: 374 * from device driver: 375 * generic_rx_handler() 376 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 377 * kring->nm_sync() == generic_netmap_rxsync() 378 * netmap_vp_txsync() 379 * kring->nm_sync() == generic_netmap_rxsync() 380 * from host stack: 381 * netmap_transmit() 382 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 383 * kring->nm_sync() == netmap_rxsync_from_host() 384 * netmap_vp_txsync() 385 * 386 * (all cases) --> nm_bdg_flush() 387 * dest_na->nm_notify() == (see below) 388 * 389 * OUTGOING: 390 * 391 * - VALE ports: 392 * concurrently: 393 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 394 * kring->nm_sync() == netmap_vp_rxsync() 395 * 2) from nm_bdg_flush() 396 * na->nm_notify() == netmap_notify() 397 * 398 * - system device with native support: 399 * to cable: 400 * na->nm_notify() == netmap_bwrap_notify() 401 * netmap_vp_rxsync() 402 * kring->nm_sync() == DEVICE_netmap_txsync() 403 * netmap_vp_rxsync() 404 * to host stack: 405 * netmap_vp_rxsync() 406 * kring->nm_sync() == netmap_txsync_to_host 407 * netmap_vp_rxsync_locked() 408 * 409 * - system device with generic adapter: 410 * to device driver: 411 * na->nm_notify() == netmap_bwrap_notify() 412 * netmap_vp_rxsync() 413 * kring->nm_sync() == generic_netmap_txsync() 414 * netmap_vp_rxsync() 415 * to host stack: 416 * netmap_vp_rxsync() 417 * kring->nm_sync() == netmap_txsync_to_host 418 * netmap_vp_rxsync() 419 * 420 */ 421 422 /* 423 * OS-specific code that is used only within this file. 424 * Other OS-specific code that must be accessed by drivers 425 * is present in netmap_kern.h 426 */ 427 428 #if defined(__FreeBSD__) 429 #include <sys/cdefs.h> /* prerequisite */ 430 #include <sys/types.h> 431 #include <sys/errno.h> 432 #include <sys/param.h> /* defines used in kernel.h */ 433 #include <sys/kernel.h> /* types used in module initialization */ 434 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 435 #include <sys/filio.h> /* FIONBIO */ 436 #include <sys/sockio.h> 437 #include <sys/socketvar.h> /* struct socket */ 438 #include <sys/malloc.h> 439 #include <sys/poll.h> 440 #include <sys/proc.h> 441 #include <sys/rwlock.h> 442 #include <sys/socket.h> /* sockaddrs */ 443 #include <sys/selinfo.h> 444 #include <sys/sysctl.h> 445 #include <sys/jail.h> 446 #include <sys/epoch.h> 447 #include <net/vnet.h> 448 #include <net/if.h> 449 #include <net/if_var.h> 450 #include <net/bpf.h> /* BIOCIMMEDIATE */ 451 #include <machine/bus.h> /* bus_dmamap_* */ 452 #include <sys/endian.h> 453 #include <sys/refcount.h> 454 #include <net/ethernet.h> /* ETHER_BPF_MTAP */ 455 456 457 #elif defined(linux) 458 459 #include "bsd_glue.h" 460 461 #elif defined(__APPLE__) 462 463 #warning OSX support is only partial 464 #include "osx_glue.h" 465 466 #elif defined (_WIN32) 467 468 #include "win_glue.h" 469 470 #else 471 472 #error Unsupported platform 473 474 #endif /* unsupported */ 475 476 /* 477 * common headers 478 */ 479 #include <net/netmap.h> 480 #include <dev/netmap/netmap_kern.h> 481 #include <dev/netmap/netmap_mem2.h> 482 483 484 /* user-controlled variables */ 485 int netmap_verbose; 486 #ifdef CONFIG_NETMAP_DEBUG 487 int netmap_debug; 488 #endif /* CONFIG_NETMAP_DEBUG */ 489 490 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 491 int netmap_no_pendintr = 1; 492 int netmap_txsync_retry = 2; 493 static int netmap_fwd = 0; /* force transparent forwarding */ 494 495 /* 496 * netmap_admode selects the netmap mode to use. 497 * Invalid values are reset to NETMAP_ADMODE_BEST 498 */ 499 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 500 NETMAP_ADMODE_NATIVE, /* either native or none */ 501 NETMAP_ADMODE_GENERIC, /* force generic */ 502 NETMAP_ADMODE_LAST }; 503 static int netmap_admode = NETMAP_ADMODE_BEST; 504 505 /* netmap_generic_mit controls mitigation of RX notifications for 506 * the generic netmap adapter. The value is a time interval in 507 * nanoseconds. */ 508 int netmap_generic_mit = 100*1000; 509 510 /* We use by default netmap-aware qdiscs with generic netmap adapters, 511 * even if there can be a little performance hit with hardware NICs. 512 * However, using the qdisc is the safer approach, for two reasons: 513 * 1) it prevents non-fifo qdiscs to break the TX notification 514 * scheme, which is based on mbuf destructors when txqdisc is 515 * not used. 516 * 2) it makes it possible to transmit over software devices that 517 * change skb->dev, like bridge, veth, ... 518 * 519 * Anyway users looking for the best performance should 520 * use native adapters. 521 */ 522 #ifdef linux 523 int netmap_generic_txqdisc = 1; 524 #endif 525 526 /* Default number of slots and queues for generic adapters. */ 527 int netmap_generic_ringsize = 1024; 528 int netmap_generic_rings = 1; 529 530 /* Non-zero to enable checksum offloading in NIC drivers */ 531 int netmap_generic_hwcsum = 0; 532 533 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */ 534 int ptnet_vnet_hdr = 1; 535 536 /* 537 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated 538 * in some other operating systems 539 */ 540 SYSBEGIN(main_init); 541 542 SYSCTL_DECL(_dev_netmap); 543 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 544 "Netmap args"); 545 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 546 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 547 #ifdef CONFIG_NETMAP_DEBUG 548 SYSCTL_INT(_dev_netmap, OID_AUTO, debug, 549 CTLFLAG_RW, &netmap_debug, 0, "Debug messages"); 550 #endif /* CONFIG_NETMAP_DEBUG */ 551 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 552 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 553 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr, 554 0, "Always look for new received packets."); 555 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 556 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush."); 557 558 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0, 559 "Force NR_FORWARD mode"); 560 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0, 561 "Adapter mode. 0 selects the best option available," 562 "1 forces native adapter, 2 forces emulated adapter"); 563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum, 564 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default)," 565 "1 to enable checksum generation by the NIC"); 566 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 567 0, "RX notification interval in nanoseconds"); 568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, 569 &netmap_generic_ringsize, 0, 570 "Number of per-ring slots for emulated netmap mode"); 571 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW, 572 &netmap_generic_rings, 0, 573 "Number of TX/RX queues for emulated netmap adapters"); 574 #ifdef linux 575 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW, 576 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters"); 577 #endif 578 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr, 579 0, "Allow ptnet devices to use virtio-net headers"); 580 581 SYSEND; 582 583 NMG_LOCK_T netmap_global_lock; 584 585 /* 586 * mark the ring as stopped, and run through the locks 587 * to make sure other users get to see it. 588 * stopped must be either NR_KR_STOPPED (for unbounded stop) 589 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes) 590 */ 591 static void 592 netmap_disable_ring(struct netmap_kring *kr, int stopped) 593 { 594 nm_kr_stop(kr, stopped); 595 // XXX check if nm_kr_stop is sufficient 596 mtx_lock(&kr->q_lock); 597 mtx_unlock(&kr->q_lock); 598 nm_kr_put(kr); 599 } 600 601 /* stop or enable a single ring */ 602 void 603 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped) 604 { 605 if (stopped) 606 netmap_disable_ring(NMR(na, t)[ring_id], stopped); 607 else 608 NMR(na, t)[ring_id]->nkr_stopped = 0; 609 } 610 611 612 /* stop or enable all the rings of na */ 613 void 614 netmap_set_all_rings(struct netmap_adapter *na, int stopped) 615 { 616 int i; 617 enum txrx t; 618 619 if (!nm_netmap_on(na)) 620 return; 621 622 if (netmap_verbose) { 623 nm_prinf("%s: %sable all rings", na->name, 624 (stopped ? "dis" : "en")); 625 } 626 for_rx_tx(t) { 627 for (i = 0; i < netmap_real_rings(na, t); i++) { 628 netmap_set_ring(na, i, t, stopped); 629 } 630 } 631 } 632 633 /* 634 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s 635 * to finish and prevents any new one from starting. Call this before turning 636 * netmap mode off, or before removing the hardware rings (e.g., on module 637 * onload). 638 */ 639 void 640 netmap_disable_all_rings(struct ifnet *ifp) 641 { 642 if (NM_NA_VALID(ifp)) { 643 netmap_set_all_rings(NA(ifp), NM_KR_LOCKED); 644 } 645 } 646 647 /* 648 * Convenience function used in drivers. Re-enables rxsync and txsync on the 649 * adapter's rings In linux drivers, this should be placed near each 650 * napi_enable(). 651 */ 652 void 653 netmap_enable_all_rings(struct ifnet *ifp) 654 { 655 if (NM_NA_VALID(ifp)) { 656 netmap_set_all_rings(NA(ifp), 0 /* enabled */); 657 } 658 } 659 660 void 661 netmap_make_zombie(struct ifnet *ifp) 662 { 663 if (NM_NA_VALID(ifp)) { 664 struct netmap_adapter *na = NA(ifp); 665 netmap_set_all_rings(na, NM_KR_LOCKED); 666 na->na_flags |= NAF_ZOMBIE; 667 netmap_set_all_rings(na, 0); 668 } 669 } 670 671 void 672 netmap_undo_zombie(struct ifnet *ifp) 673 { 674 if (NM_NA_VALID(ifp)) { 675 struct netmap_adapter *na = NA(ifp); 676 if (na->na_flags & NAF_ZOMBIE) { 677 netmap_set_all_rings(na, NM_KR_LOCKED); 678 na->na_flags &= ~NAF_ZOMBIE; 679 netmap_set_all_rings(na, 0); 680 } 681 } 682 } 683 684 /* 685 * generic bound_checking function 686 */ 687 u_int 688 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 689 { 690 u_int oldv = *v; 691 const char *op = NULL; 692 693 if (dflt < lo) 694 dflt = lo; 695 if (dflt > hi) 696 dflt = hi; 697 if (oldv < lo) { 698 *v = dflt; 699 op = "Bump"; 700 } else if (oldv > hi) { 701 *v = hi; 702 op = "Clamp"; 703 } 704 if (op && msg) 705 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv); 706 return *v; 707 } 708 709 710 /* 711 * packet-dump function, user-supplied or static buffer. 712 * The destination buffer must be at least 30+4*len 713 */ 714 const char * 715 nm_dump_buf(char *p, int len, int lim, char *dst) 716 { 717 static char _dst[8192]; 718 int i, j, i0; 719 static char hex[] ="0123456789abcdef"; 720 char *o; /* output position */ 721 722 #define P_HI(x) hex[((x) & 0xf0)>>4] 723 #define P_LO(x) hex[((x) & 0xf)] 724 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 725 if (!dst) 726 dst = _dst; 727 if (lim <= 0 || lim > len) 728 lim = len; 729 o = dst; 730 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 731 o += strlen(o); 732 /* hexdump routine */ 733 for (i = 0; i < lim; ) { 734 sprintf(o, "%5d: ", i); 735 o += strlen(o); 736 memset(o, ' ', 48); 737 i0 = i; 738 for (j=0; j < 16 && i < lim; i++, j++) { 739 o[j*3] = P_HI(p[i]); 740 o[j*3+1] = P_LO(p[i]); 741 } 742 i = i0; 743 for (j=0; j < 16 && i < lim; i++, j++) 744 o[j + 48] = P_C(p[i]); 745 o[j+48] = '\n'; 746 o += j+49; 747 } 748 *o = '\0'; 749 #undef P_HI 750 #undef P_LO 751 #undef P_C 752 return dst; 753 } 754 755 756 /* 757 * Fetch configuration from the device, to cope with dynamic 758 * reconfigurations after loading the module. 759 */ 760 /* call with NMG_LOCK held */ 761 int 762 netmap_update_config(struct netmap_adapter *na) 763 { 764 struct nm_config_info info; 765 766 bzero(&info, sizeof(info)); 767 if (na->nm_config == NULL || 768 na->nm_config(na, &info)) { 769 /* take whatever we had at init time */ 770 info.num_tx_rings = na->num_tx_rings; 771 info.num_tx_descs = na->num_tx_desc; 772 info.num_rx_rings = na->num_rx_rings; 773 info.num_rx_descs = na->num_rx_desc; 774 info.rx_buf_maxsize = na->rx_buf_maxsize; 775 } 776 777 if (na->num_tx_rings == info.num_tx_rings && 778 na->num_tx_desc == info.num_tx_descs && 779 na->num_rx_rings == info.num_rx_rings && 780 na->num_rx_desc == info.num_rx_descs && 781 na->rx_buf_maxsize == info.rx_buf_maxsize) 782 return 0; /* nothing changed */ 783 if (na->active_fds == 0) { 784 na->num_tx_rings = info.num_tx_rings; 785 na->num_tx_desc = info.num_tx_descs; 786 na->num_rx_rings = info.num_rx_rings; 787 na->num_rx_desc = info.num_rx_descs; 788 na->rx_buf_maxsize = info.rx_buf_maxsize; 789 if (netmap_verbose) 790 nm_prinf("configuration changed for %s: txring %d x %d, " 791 "rxring %d x %d, rxbufsz %d", 792 na->name, na->num_tx_rings, na->num_tx_desc, 793 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize); 794 return 0; 795 } 796 nm_prerr("WARNING: configuration changed for %s while active: " 797 "txring %d x %d, rxring %d x %d, rxbufsz %d", 798 na->name, info.num_tx_rings, info.num_tx_descs, 799 info.num_rx_rings, info.num_rx_descs, 800 info.rx_buf_maxsize); 801 return 1; 802 } 803 804 /* nm_sync callbacks for the host rings */ 805 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags); 806 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags); 807 808 static int 809 netmap_default_bufcfg(struct netmap_kring *kring, uint64_t target) 810 { 811 kring->hwbuf_len = target; 812 kring->buf_align = 0; /* no alignment */ 813 return 0; 814 } 815 816 /* create the krings array and initialize the fields common to all adapters. 817 * The array layout is this: 818 * 819 * +----------+ 820 * na->tx_rings ----->| | \ 821 * | | } na->num_tx_ring 822 * | | / 823 * +----------+ 824 * | | host tx kring 825 * na->rx_rings ----> +----------+ 826 * | | \ 827 * | | } na->num_rx_rings 828 * | | / 829 * +----------+ 830 * | | host rx kring 831 * +----------+ 832 * na->tailroom ----->| | \ 833 * | | } tailroom bytes 834 * | | / 835 * +----------+ 836 * 837 * Note: for compatibility, host krings are created even when not needed. 838 * The tailroom space is currently used by vale ports for allocating leases. 839 */ 840 /* call with NMG_LOCK held */ 841 int 842 netmap_krings_create(struct netmap_adapter *na, u_int tailroom) 843 { 844 u_int i, len, ndesc; 845 struct netmap_kring *kring; 846 u_int n[NR_TXRX]; 847 enum txrx t; 848 int err = 0; 849 850 if (na->tx_rings != NULL) { 851 if (netmap_debug & NM_DEBUG_ON) 852 nm_prerr("warning: krings were already created"); 853 return 0; 854 } 855 856 /* account for the (possibly fake) host rings */ 857 n[NR_TX] = netmap_all_rings(na, NR_TX); 858 n[NR_RX] = netmap_all_rings(na, NR_RX); 859 860 len = (n[NR_TX] + n[NR_RX]) * 861 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *)) 862 + tailroom; 863 864 na->tx_rings = nm_os_malloc((size_t)len); 865 if (na->tx_rings == NULL) { 866 nm_prerr("Cannot allocate krings"); 867 return ENOMEM; 868 } 869 na->rx_rings = na->tx_rings + n[NR_TX]; 870 na->tailroom = na->rx_rings + n[NR_RX]; 871 872 /* link the krings in the krings array */ 873 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom); 874 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) { 875 na->tx_rings[i] = kring; 876 kring++; 877 } 878 879 /* 880 * All fields in krings are 0 except the one initialized below. 881 * but better be explicit on important kring fields. 882 */ 883 for_rx_tx(t) { 884 ndesc = nma_get_ndesc(na, t); 885 for (i = 0; i < n[t]; i++) { 886 kring = NMR(na, t)[i]; 887 bzero(kring, sizeof(*kring)); 888 kring->notify_na = na; 889 kring->ring_id = i; 890 kring->tx = t; 891 kring->nkr_num_slots = ndesc; 892 kring->nr_mode = NKR_NETMAP_OFF; 893 kring->nr_pending_mode = NKR_NETMAP_OFF; 894 if (i < nma_get_nrings(na, t)) { 895 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync); 896 kring->nm_bufcfg = na->nm_bufcfg; 897 if (kring->nm_bufcfg == NULL) 898 kring->nm_bufcfg = netmap_default_bufcfg; 899 } else { 900 if (!(na->na_flags & NAF_HOST_RINGS)) 901 kring->nr_kflags |= NKR_FAKERING; 902 kring->nm_sync = (t == NR_TX ? 903 netmap_txsync_to_host: 904 netmap_rxsync_from_host); 905 kring->nm_bufcfg = netmap_default_bufcfg; 906 } 907 kring->nm_notify = na->nm_notify; 908 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 909 /* 910 * IMPORTANT: Always keep one slot empty. 911 */ 912 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0); 913 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name, 914 nm_txrx2str(t), i); 915 nm_prdis("ktx %s h %d c %d t %d", 916 kring->name, kring->rhead, kring->rcur, kring->rtail); 917 err = nm_os_selinfo_init(&kring->si, kring->name); 918 if (err) { 919 netmap_krings_delete(na); 920 return err; 921 } 922 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF); 923 kring->na = na; /* setting this field marks the mutex as initialized */ 924 } 925 err = nm_os_selinfo_init(&na->si[t], na->name); 926 if (err) { 927 netmap_krings_delete(na); 928 return err; 929 } 930 } 931 932 return 0; 933 } 934 935 936 /* undo the actions performed by netmap_krings_create */ 937 /* call with NMG_LOCK held */ 938 void 939 netmap_krings_delete(struct netmap_adapter *na) 940 { 941 struct netmap_kring **kring = na->tx_rings; 942 enum txrx t; 943 944 if (na->tx_rings == NULL) { 945 if (netmap_debug & NM_DEBUG_ON) 946 nm_prerr("warning: krings were already deleted"); 947 return; 948 } 949 950 for_rx_tx(t) 951 nm_os_selinfo_uninit(&na->si[t]); 952 953 /* we rely on the krings layout described above */ 954 for ( ; kring != na->tailroom; kring++) { 955 if ((*kring)->na != NULL) 956 mtx_destroy(&(*kring)->q_lock); 957 nm_os_selinfo_uninit(&(*kring)->si); 958 } 959 nm_os_free(na->tx_rings); 960 na->tx_rings = na->rx_rings = na->tailroom = NULL; 961 } 962 963 964 /* 965 * Destructor for NIC ports. They also have an mbuf queue 966 * on the rings connected to the host so we need to purge 967 * them first. 968 */ 969 /* call with NMG_LOCK held */ 970 void 971 netmap_hw_krings_delete(struct netmap_adapter *na) 972 { 973 u_int lim = netmap_real_rings(na, NR_RX), i; 974 975 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) { 976 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue; 977 nm_prdis("destroy sw mbq with len %d", mbq_len(q)); 978 mbq_purge(q); 979 mbq_safe_fini(q); 980 } 981 netmap_krings_delete(na); 982 } 983 984 void 985 netmap_mem_restore(struct netmap_adapter *na) 986 { 987 if (na->nm_mem_prev) { 988 netmap_mem_put(na->nm_mem); 989 na->nm_mem = na->nm_mem_prev; 990 na->nm_mem_prev = NULL; 991 } 992 } 993 994 static void 995 netmap_mem_drop(struct netmap_adapter *na) 996 { 997 netmap_mem_deref(na->nm_mem, na); 998 999 if (na->active_fds <= 0) { 1000 /* if the native allocator had been overridden on regif, 1001 * restore it now and drop the temporary one 1002 */ 1003 netmap_mem_restore(na); 1004 } 1005 } 1006 1007 static void 1008 netmap_update_hostrings_mode(struct netmap_adapter *na) 1009 { 1010 enum txrx t; 1011 struct netmap_kring *kring; 1012 int i; 1013 1014 for_rx_tx(t) { 1015 for (i = nma_get_nrings(na, t); 1016 i < netmap_real_rings(na, t); i++) { 1017 kring = NMR(na, t)[i]; 1018 kring->nr_mode = kring->nr_pending_mode; 1019 } 1020 } 1021 } 1022 1023 /* 1024 * Undo everything that was done in netmap_do_regif(). In particular, 1025 * call nm_register(ifp,0) to stop netmap mode on the interface and 1026 * revert to normal operation. 1027 */ 1028 /* call with NMG_LOCK held */ 1029 static void netmap_unset_ringid(struct netmap_priv_d *); 1030 static void netmap_krings_put(struct netmap_priv_d *); 1031 void 1032 netmap_do_unregif(struct netmap_priv_d *priv) 1033 { 1034 struct netmap_adapter *na = priv->np_na; 1035 1036 NMG_LOCK_ASSERT(); 1037 na->active_fds--; 1038 /* unset nr_pending_mode and possibly release exclusive mode */ 1039 netmap_krings_put(priv); 1040 1041 #ifdef WITH_MONITOR 1042 /* XXX check whether we have to do something with monitor 1043 * when rings change nr_mode. */ 1044 if (na->active_fds <= 0) { 1045 /* walk through all the rings and tell any monitor 1046 * that the port is going to exit netmap mode 1047 */ 1048 netmap_monitor_stop(na); 1049 } 1050 #endif 1051 1052 if (na->active_fds <= 0 || nm_kring_pending(priv)) { 1053 netmap_set_all_rings(na, NM_KR_LOCKED); 1054 na->nm_register(na, 0); 1055 netmap_set_all_rings(na, 0); 1056 } 1057 1058 /* delete rings and buffers that are no longer needed */ 1059 netmap_mem_rings_delete(na); 1060 1061 if (na->active_fds <= 0) { /* last instance */ 1062 /* 1063 * (TO CHECK) We enter here 1064 * when the last reference to this file descriptor goes 1065 * away. This means we cannot have any pending poll() 1066 * or interrupt routine operating on the structure. 1067 * XXX The file may be closed in a thread while 1068 * another thread is using it. 1069 * Linux keeps the file opened until the last reference 1070 * by any outstanding ioctl/poll or mmap is gone. 1071 * FreeBSD does not track mmap()s (but we do) and 1072 * wakes up any sleeping poll(). Need to check what 1073 * happens if the close() occurs while a concurrent 1074 * syscall is running. 1075 */ 1076 if (netmap_debug & NM_DEBUG_ON) 1077 nm_prinf("deleting last instance for %s", na->name); 1078 1079 if (nm_netmap_on(na)) { 1080 nm_prerr("BUG: netmap on while going to delete the krings"); 1081 } 1082 1083 na->nm_krings_delete(na); 1084 1085 /* restore the default number of host tx and rx rings */ 1086 if (na->na_flags & NAF_HOST_RINGS) { 1087 na->num_host_tx_rings = 1; 1088 na->num_host_rx_rings = 1; 1089 } else { 1090 na->num_host_tx_rings = 0; 1091 na->num_host_rx_rings = 0; 1092 } 1093 } 1094 1095 /* possibly decrement counter of tx_si/rx_si users */ 1096 netmap_unset_ringid(priv); 1097 /* delete the nifp */ 1098 netmap_mem_if_delete(na, priv->np_nifp); 1099 /* drop the allocator */ 1100 netmap_mem_drop(na); 1101 /* mark the priv as unregistered */ 1102 priv->np_na = NULL; 1103 priv->np_nifp = NULL; 1104 } 1105 1106 struct netmap_priv_d* 1107 netmap_priv_new(void) 1108 { 1109 struct netmap_priv_d *priv; 1110 1111 priv = nm_os_malloc(sizeof(struct netmap_priv_d)); 1112 if (priv == NULL) 1113 return NULL; 1114 priv->np_refs = 1; 1115 nm_os_get_module(); 1116 return priv; 1117 } 1118 1119 /* 1120 * Destructor of the netmap_priv_d, called when the fd is closed 1121 * Action: undo all the things done by NIOCREGIF, 1122 * On FreeBSD we need to track whether there are active mmap()s, 1123 * and we use np_active_mmaps for that. On linux, the field is always 0. 1124 * Return: 1 if we can free priv, 0 otherwise. 1125 * 1126 */ 1127 /* call with NMG_LOCK held */ 1128 void 1129 netmap_priv_delete(struct netmap_priv_d *priv) 1130 { 1131 struct netmap_adapter *na = priv->np_na; 1132 1133 /* number of active references to this fd */ 1134 if (--priv->np_refs > 0) { 1135 return; 1136 } 1137 nm_os_put_module(); 1138 if (na) { 1139 netmap_do_unregif(priv); 1140 } 1141 netmap_unget_na(na, priv->np_ifp); 1142 bzero(priv, sizeof(*priv)); /* for safety */ 1143 nm_os_free(priv); 1144 } 1145 1146 1147 /* call with NMG_LOCK *not* held */ 1148 void 1149 netmap_dtor(void *data) 1150 { 1151 struct netmap_priv_d *priv = data; 1152 1153 NMG_LOCK(); 1154 netmap_priv_delete(priv); 1155 NMG_UNLOCK(); 1156 } 1157 1158 1159 /* 1160 * Handlers for synchronization of the rings from/to the host stack. 1161 * These are associated to a network interface and are just another 1162 * ring pair managed by userspace. 1163 * 1164 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD 1165 * flags): 1166 * 1167 * - Before releasing buffers on hw RX rings, the application can mark 1168 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they 1169 * will be forwarded to the host stack, similarly to what happened if 1170 * the application moved them to the host TX ring. 1171 * 1172 * - Before releasing buffers on the host RX ring, the application can 1173 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(), 1174 * they will be forwarded to the hw TX rings, saving the application 1175 * from doing the same task in user-space. 1176 * 1177 * Transparent forwarding can be enabled per-ring, by setting the NR_FORWARD 1178 * flag, or globally with the netmap_fwd sysctl. 1179 * 1180 * The transfer NIC --> host is relatively easy, just encapsulate 1181 * into mbufs and we are done. The host --> NIC side is slightly 1182 * harder because there might not be room in the tx ring so it 1183 * might take a while before releasing the buffer. 1184 */ 1185 1186 1187 /* 1188 * Pass a whole queue of mbufs to the host stack as coming from 'dst' 1189 * We do not need to lock because the queue is private. 1190 * After this call the queue is empty. 1191 */ 1192 static void 1193 netmap_send_up(struct ifnet *dst, struct mbq *q) 1194 { 1195 struct mbuf *m; 1196 struct mbuf *head = NULL, *prev = NULL; 1197 #ifdef __FreeBSD__ 1198 struct epoch_tracker et; 1199 1200 NET_EPOCH_ENTER(et); 1201 #endif /* __FreeBSD__ */ 1202 /* Send packets up, outside the lock; head/prev machinery 1203 * is only useful for Windows. */ 1204 while ((m = mbq_dequeue(q)) != NULL) { 1205 if (netmap_debug & NM_DEBUG_HOST) 1206 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m)); 1207 prev = nm_os_send_up(dst, m, prev); 1208 if (head == NULL) 1209 head = prev; 1210 } 1211 if (head) 1212 nm_os_send_up(dst, NULL, head); 1213 #ifdef __FreeBSD__ 1214 NET_EPOCH_EXIT(et); 1215 #endif /* __FreeBSD__ */ 1216 mbq_fini(q); 1217 } 1218 1219 1220 /* 1221 * Scan the buffers from hwcur to ring->head, and put a copy of those 1222 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs. 1223 * Drop remaining packets in the unlikely event 1224 * of an mbuf shortage. 1225 */ 1226 static void 1227 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 1228 { 1229 u_int const lim = kring->nkr_num_slots - 1; 1230 u_int const head = kring->rhead; 1231 u_int n; 1232 struct netmap_adapter *na = kring->na; 1233 1234 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 1235 struct mbuf *m; 1236 struct netmap_slot *slot = &kring->ring->slot[n]; 1237 1238 if ((slot->flags & NS_FORWARD) == 0 && !force) 1239 continue; 1240 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) { 1241 nm_prlim(5, "bad pkt at %d len %d", n, slot->len); 1242 continue; 1243 } 1244 slot->flags &= ~NS_FORWARD; // XXX needed ? 1245 /* XXX TODO: adapt to the case of a multisegment packet */ 1246 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL); 1247 1248 if (m == NULL) 1249 break; 1250 mbq_enqueue(q, m); 1251 } 1252 } 1253 1254 static inline int 1255 _nm_may_forward(struct netmap_kring *kring) 1256 { 1257 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) && 1258 kring->na->na_flags & NAF_HOST_RINGS && 1259 kring->tx == NR_RX); 1260 } 1261 1262 static inline int 1263 nm_may_forward_up(struct netmap_kring *kring) 1264 { 1265 return _nm_may_forward(kring) && 1266 kring->ring_id != kring->na->num_rx_rings; 1267 } 1268 1269 static inline int 1270 nm_may_forward_down(struct netmap_kring *kring, int sync_flags) 1271 { 1272 return _nm_may_forward(kring) && 1273 (sync_flags & NAF_CAN_FORWARD_DOWN) && 1274 kring->ring_id == kring->na->num_rx_rings; 1275 } 1276 1277 /* 1278 * Send to the NIC rings packets marked NS_FORWARD between 1279 * kring->nr_hwcur and kring->rhead. 1280 * Called under kring->rx_queue.lock on the sw rx ring. 1281 * 1282 * It can only be called if the user opened all the TX hw rings, 1283 * see NAF_CAN_FORWARD_DOWN flag. 1284 * We can touch the TX netmap rings (slots, head and cur) since 1285 * we are in poll/ioctl system call context, and the application 1286 * is not supposed to touch the ring (using a different thread) 1287 * during the execution of the system call. 1288 */ 1289 static u_int 1290 netmap_sw_to_nic(struct netmap_adapter *na) 1291 { 1292 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings]; 1293 struct netmap_slot *rxslot = kring->ring->slot; 1294 u_int i, rxcur = kring->nr_hwcur; 1295 u_int const head = kring->rhead; 1296 u_int const src_lim = kring->nkr_num_slots - 1; 1297 u_int sent = 0; 1298 1299 /* scan rings to find space, then fill as much as possible */ 1300 for (i = 0; i < na->num_tx_rings; i++) { 1301 struct netmap_kring *kdst = na->tx_rings[i]; 1302 struct netmap_ring *rdst = kdst->ring; 1303 u_int const dst_lim = kdst->nkr_num_slots - 1; 1304 1305 /* XXX do we trust ring or kring->rcur,rtail ? */ 1306 for (; rxcur != head && !nm_ring_empty(rdst); 1307 rxcur = nm_next(rxcur, src_lim) ) { 1308 struct netmap_slot *src, *dst, tmp; 1309 u_int dst_head = rdst->head; 1310 1311 src = &rxslot[rxcur]; 1312 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 1313 continue; 1314 1315 sent++; 1316 1317 dst = &rdst->slot[dst_head]; 1318 1319 tmp = *src; 1320 1321 src->buf_idx = dst->buf_idx; 1322 src->flags = NS_BUF_CHANGED; 1323 1324 dst->buf_idx = tmp.buf_idx; 1325 dst->len = tmp.len; 1326 dst->flags = NS_BUF_CHANGED; 1327 1328 rdst->head = rdst->cur = nm_next(dst_head, dst_lim); 1329 } 1330 /* if (sent) XXX txsync ? it would be just an optimization */ 1331 } 1332 return sent; 1333 } 1334 1335 1336 /* 1337 * netmap_txsync_to_host() passes packets up. We are called from a 1338 * system call in user process context, and the only contention 1339 * can be among multiple user threads erroneously calling 1340 * this routine concurrently. 1341 */ 1342 static int 1343 netmap_txsync_to_host(struct netmap_kring *kring, int flags) 1344 { 1345 struct netmap_adapter *na = kring->na; 1346 u_int const lim = kring->nkr_num_slots - 1; 1347 u_int const head = kring->rhead; 1348 struct mbq q; 1349 1350 /* Take packets from hwcur to head and pass them up. 1351 * Force hwcur = head since netmap_grab_packets() stops at head 1352 */ 1353 mbq_init(&q); 1354 netmap_grab_packets(kring, &q, 1 /* force */); 1355 nm_prdis("have %d pkts in queue", mbq_len(&q)); 1356 kring->nr_hwcur = head; 1357 kring->nr_hwtail = head + lim; 1358 if (kring->nr_hwtail > lim) 1359 kring->nr_hwtail -= lim + 1; 1360 1361 netmap_send_up(na->ifp, &q); 1362 return 0; 1363 } 1364 1365 1366 /* 1367 * rxsync backend for packets coming from the host stack. 1368 * They have been put in kring->rx_queue by netmap_transmit(). 1369 * We protect access to the kring using kring->rx_queue.lock 1370 * 1371 * also moves to the nic hw rings any packet the user has marked 1372 * for transparent-mode forwarding, then sets the NR_FORWARD 1373 * flag in the kring to let the caller push them out 1374 */ 1375 static int 1376 netmap_rxsync_from_host(struct netmap_kring *kring, int flags) 1377 { 1378 struct netmap_adapter *na = kring->na; 1379 struct netmap_ring *ring = kring->ring; 1380 u_int nm_i, n; 1381 u_int const lim = kring->nkr_num_slots - 1; 1382 u_int const head = kring->rhead; 1383 int ret = 0; 1384 struct mbq *q = &kring->rx_queue, fq; 1385 1386 mbq_init(&fq); /* fq holds packets to be freed */ 1387 1388 mbq_lock(q); 1389 1390 /* First part: import newly received packets */ 1391 n = mbq_len(q); 1392 if (n) { /* grab packets from the queue */ 1393 struct mbuf *m; 1394 uint32_t stop_i; 1395 1396 nm_i = kring->nr_hwtail; 1397 stop_i = nm_prev(kring->nr_hwcur, lim); 1398 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 1399 int len = MBUF_LEN(m); 1400 struct netmap_slot *slot = &ring->slot[nm_i]; 1401 1402 m_copydata(m, 0, len, NMB(na, slot)); 1403 nm_prdis("nm %d len %d", nm_i, len); 1404 if (netmap_debug & NM_DEBUG_HOST) 1405 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL)); 1406 1407 slot->len = len; 1408 slot->flags = 0; 1409 nm_i = nm_next(nm_i, lim); 1410 mbq_enqueue(&fq, m); 1411 } 1412 kring->nr_hwtail = nm_i; 1413 } 1414 1415 /* 1416 * Second part: skip past packets that userspace has released. 1417 */ 1418 nm_i = kring->nr_hwcur; 1419 if (nm_i != head) { /* something was released */ 1420 if (nm_may_forward_down(kring, flags)) { 1421 ret = netmap_sw_to_nic(na); 1422 if (ret > 0) { 1423 kring->nr_kflags |= NR_FORWARD; 1424 ret = 0; 1425 } 1426 } 1427 kring->nr_hwcur = head; 1428 } 1429 1430 mbq_unlock(q); 1431 1432 mbq_purge(&fq); 1433 mbq_fini(&fq); 1434 1435 return ret; 1436 } 1437 1438 1439 /* Get a netmap adapter for the port. 1440 * 1441 * If it is possible to satisfy the request, return 0 1442 * with *na containing the netmap adapter found. 1443 * Otherwise return an error code, with *na containing NULL. 1444 * 1445 * When the port is attached to a bridge, we always return 1446 * EBUSY. 1447 * Otherwise, if the port is already bound to a file descriptor, 1448 * then we unconditionally return the existing adapter into *na. 1449 * In all the other cases, we return (into *na) either native, 1450 * generic or NULL, according to the following table: 1451 * 1452 * native_support 1453 * active_fds dev.netmap.admode YES NO 1454 * ------------------------------------------------------- 1455 * >0 * NA(ifp) NA(ifp) 1456 * 1457 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1458 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1459 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1460 * 1461 */ 1462 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */ 1463 int 1464 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na) 1465 { 1466 /* generic support */ 1467 int i = netmap_admode; /* Take a snapshot. */ 1468 struct netmap_adapter *prev_na; 1469 int error = 0; 1470 1471 *na = NULL; /* default */ 1472 1473 /* reset in case of invalid value */ 1474 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1475 i = netmap_admode = NETMAP_ADMODE_BEST; 1476 1477 if (NM_NA_VALID(ifp)) { 1478 prev_na = NA(ifp); 1479 /* If an adapter already exists, return it if 1480 * there are active file descriptors or if 1481 * netmap is not forced to use generic 1482 * adapters. 1483 */ 1484 if (NETMAP_OWNED_BY_ANY(prev_na) 1485 || i != NETMAP_ADMODE_GENERIC 1486 || prev_na->na_flags & NAF_FORCE_NATIVE 1487 #ifdef WITH_PIPES 1488 /* ugly, but we cannot allow an adapter switch 1489 * if some pipe is referring to this one 1490 */ 1491 || prev_na->na_next_pipe > 0 1492 #endif 1493 ) { 1494 *na = prev_na; 1495 goto assign_mem; 1496 } 1497 } 1498 1499 /* If there isn't native support and netmap is not allowed 1500 * to use generic adapters, we cannot satisfy the request. 1501 */ 1502 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE) 1503 return EOPNOTSUPP; 1504 1505 /* Otherwise, create a generic adapter and return it, 1506 * saving the previously used netmap adapter, if any. 1507 * 1508 * Note that here 'prev_na', if not NULL, MUST be a 1509 * native adapter, and CANNOT be a generic one. This is 1510 * true because generic adapters are created on demand, and 1511 * destroyed when not used anymore. Therefore, if the adapter 1512 * currently attached to an interface 'ifp' is generic, it 1513 * must be that 1514 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1515 * Consequently, if NA(ifp) is generic, we will enter one of 1516 * the branches above. This ensures that we never override 1517 * a generic adapter with another generic adapter. 1518 */ 1519 error = generic_netmap_attach(ifp); 1520 if (error) 1521 return error; 1522 1523 *na = NA(ifp); 1524 1525 assign_mem: 1526 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) && 1527 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) { 1528 (*na)->nm_mem_prev = (*na)->nm_mem; 1529 (*na)->nm_mem = netmap_mem_get(nmd); 1530 } 1531 1532 return 0; 1533 } 1534 1535 /* 1536 * MUST BE CALLED UNDER NMG_LOCK() 1537 * 1538 * Get a refcounted reference to a netmap adapter attached 1539 * to the interface specified by req. 1540 * This is always called in the execution of an ioctl(). 1541 * 1542 * Return ENXIO if the interface specified by the request does 1543 * not exist, ENOTSUP if netmap is not supported by the interface, 1544 * EBUSY if the interface is already attached to a bridge, 1545 * EINVAL if parameters are invalid, ENOMEM if needed resources 1546 * could not be allocated. 1547 * If successful, hold a reference to the netmap adapter. 1548 * 1549 * If the interface specified by req is a system one, also keep 1550 * a reference to it and return a valid *ifp. 1551 */ 1552 int 1553 netmap_get_na(struct nmreq_header *hdr, 1554 struct netmap_adapter **na, struct ifnet **ifp, 1555 struct netmap_mem_d *nmd, int create) 1556 { 1557 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; 1558 int error = 0; 1559 struct netmap_adapter *ret = NULL; 1560 int nmd_ref = 0; 1561 1562 *na = NULL; /* default return value */ 1563 *ifp = NULL; 1564 1565 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { 1566 return EINVAL; 1567 } 1568 1569 if (req->nr_mode == NR_REG_PIPE_MASTER || 1570 req->nr_mode == NR_REG_PIPE_SLAVE) { 1571 /* Do not accept deprecated pipe modes. */ 1572 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax"); 1573 return EINVAL; 1574 } 1575 1576 NMG_LOCK_ASSERT(); 1577 1578 /* if the request contain a memid, try to find the 1579 * corresponding memory region 1580 */ 1581 if (nmd == NULL && req->nr_mem_id) { 1582 nmd = netmap_mem_find(req->nr_mem_id); 1583 if (nmd == NULL) 1584 return EINVAL; 1585 /* keep the rereference */ 1586 nmd_ref = 1; 1587 } 1588 1589 /* We cascade through all possible types of netmap adapter. 1590 * All netmap_get_*_na() functions return an error and an na, 1591 * with the following combinations: 1592 * 1593 * error na 1594 * 0 NULL type doesn't match 1595 * !0 NULL type matches, but na creation/lookup failed 1596 * 0 !NULL type matches and na created/found 1597 * !0 !NULL impossible 1598 */ 1599 error = netmap_get_null_na(hdr, na, nmd, create); 1600 if (error || *na != NULL) 1601 goto out; 1602 1603 /* try to see if this is a monitor port */ 1604 error = netmap_get_monitor_na(hdr, na, nmd, create); 1605 if (error || *na != NULL) 1606 goto out; 1607 1608 /* try to see if this is a pipe port */ 1609 error = netmap_get_pipe_na(hdr, na, nmd, create); 1610 if (error || *na != NULL) 1611 goto out; 1612 1613 /* try to see if this is a vale port */ 1614 error = netmap_get_vale_na(hdr, na, nmd, create); 1615 if (error) 1616 goto out; 1617 1618 if (*na != NULL) /* valid match in netmap_get_bdg_na() */ 1619 goto out; 1620 1621 /* 1622 * This must be a hardware na, lookup the name in the system. 1623 * Note that by hardware we actually mean "it shows up in ifconfig". 1624 * This may still be a tap, a veth/epair, or even a 1625 * persistent VALE port. 1626 */ 1627 *ifp = ifunit_ref(hdr->nr_name); 1628 if (*ifp == NULL) { 1629 error = ENXIO; 1630 goto out; 1631 } 1632 1633 error = netmap_get_hw_na(*ifp, nmd, &ret); 1634 if (error) 1635 goto out; 1636 1637 *na = ret; 1638 netmap_adapter_get(ret); 1639 1640 /* 1641 * if the adapter supports the host rings and it is not already open, 1642 * try to set the number of host rings as requested by the user 1643 */ 1644 if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) { 1645 if (req->nr_host_tx_rings) 1646 (*na)->num_host_tx_rings = req->nr_host_tx_rings; 1647 if (req->nr_host_rx_rings) 1648 (*na)->num_host_rx_rings = req->nr_host_rx_rings; 1649 } 1650 nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings, 1651 (*na)->num_host_rx_rings); 1652 1653 out: 1654 if (error) { 1655 if (ret) 1656 netmap_adapter_put(ret); 1657 if (*ifp) { 1658 if_rele(*ifp); 1659 *ifp = NULL; 1660 } 1661 } 1662 if (nmd_ref) 1663 netmap_mem_put(nmd); 1664 1665 return error; 1666 } 1667 1668 /* undo netmap_get_na() */ 1669 void 1670 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp) 1671 { 1672 if (ifp) 1673 if_rele(ifp); 1674 if (na) 1675 netmap_adapter_put(na); 1676 } 1677 1678 1679 #define NM_FAIL_ON(t) do { \ 1680 if (unlikely(t)) { \ 1681 nm_prlim(5, "%s: fail '" #t "' " \ 1682 "h %d c %d t %d " \ 1683 "rh %d rc %d rt %d " \ 1684 "hc %d ht %d", \ 1685 kring->name, \ 1686 head, cur, ring->tail, \ 1687 kring->rhead, kring->rcur, kring->rtail, \ 1688 kring->nr_hwcur, kring->nr_hwtail); \ 1689 return kring->nkr_num_slots; \ 1690 } \ 1691 } while (0) 1692 1693 /* 1694 * validate parameters on entry for *_txsync() 1695 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1696 * in case of error. 1697 * 1698 * rhead, rcur and rtail=hwtail are stored from previous round. 1699 * hwcur is the next packet to send to the ring. 1700 * 1701 * We want 1702 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1703 * 1704 * hwcur, rhead, rtail and hwtail are reliable 1705 */ 1706 u_int 1707 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1708 { 1709 u_int head = ring->head; /* read only once */ 1710 u_int cur = ring->cur; /* read only once */ 1711 u_int n = kring->nkr_num_slots; 1712 1713 nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1714 kring->name, 1715 kring->nr_hwcur, kring->nr_hwtail, 1716 ring->head, ring->cur, ring->tail); 1717 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1718 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n || 1719 kring->rtail >= n || kring->nr_hwtail >= n); 1720 #endif /* kernel sanity checks */ 1721 /* 1722 * user sanity checks. We only use head, 1723 * A, B, ... are possible positions for head: 1724 * 1725 * 0 A rhead B rtail C n-1 1726 * 0 D rtail E rhead F n-1 1727 * 1728 * B, F, D are valid. A, C, E are wrong 1729 */ 1730 if (kring->rtail >= kring->rhead) { 1731 /* want rhead <= head <= rtail */ 1732 NM_FAIL_ON(head < kring->rhead || head > kring->rtail); 1733 /* and also head <= cur <= rtail */ 1734 NM_FAIL_ON(cur < head || cur > kring->rtail); 1735 } else { /* here rtail < rhead */ 1736 /* we need head outside rtail .. rhead */ 1737 NM_FAIL_ON(head > kring->rtail && head < kring->rhead); 1738 1739 /* two cases now: head <= rtail or head >= rhead */ 1740 if (head <= kring->rtail) { 1741 /* want head <= cur <= rtail */ 1742 NM_FAIL_ON(cur < head || cur > kring->rtail); 1743 } else { /* head >= rhead */ 1744 /* cur must be outside rtail..head */ 1745 NM_FAIL_ON(cur > kring->rtail && cur < head); 1746 } 1747 } 1748 if (ring->tail != kring->rtail) { 1749 nm_prlim(5, "%s tail overwritten was %d need %d", kring->name, 1750 ring->tail, kring->rtail); 1751 ring->tail = kring->rtail; 1752 } 1753 kring->rhead = head; 1754 kring->rcur = cur; 1755 return head; 1756 } 1757 1758 1759 /* 1760 * validate parameters on entry for *_rxsync() 1761 * Returns ring->head if ok, kring->nkr_num_slots on error. 1762 * 1763 * For a valid configuration, 1764 * hwcur <= head <= cur <= tail <= hwtail 1765 * 1766 * We only consider head and cur. 1767 * hwcur and hwtail are reliable. 1768 * 1769 */ 1770 u_int 1771 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1772 { 1773 uint32_t const n = kring->nkr_num_slots; 1774 uint32_t head, cur; 1775 1776 nm_prdis(5,"%s kc %d kt %d h %d c %d t %d", 1777 kring->name, 1778 kring->nr_hwcur, kring->nr_hwtail, 1779 ring->head, ring->cur, ring->tail); 1780 /* 1781 * Before storing the new values, we should check they do not 1782 * move backwards. However: 1783 * - head is not an issue because the previous value is hwcur; 1784 * - cur could in principle go back, however it does not matter 1785 * because we are processing a brand new rxsync() 1786 */ 1787 cur = kring->rcur = ring->cur; /* read only once */ 1788 head = kring->rhead = ring->head; /* read only once */ 1789 #if 1 /* kernel sanity checks */ 1790 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n); 1791 #endif /* kernel sanity checks */ 1792 /* user sanity checks */ 1793 if (kring->nr_hwtail >= kring->nr_hwcur) { 1794 /* want hwcur <= rhead <= hwtail */ 1795 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail); 1796 /* and also rhead <= rcur <= hwtail */ 1797 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1798 } else { 1799 /* we need rhead outside hwtail..hwcur */ 1800 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail); 1801 /* two cases now: head <= hwtail or head >= hwcur */ 1802 if (head <= kring->nr_hwtail) { 1803 /* want head <= cur <= hwtail */ 1804 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1805 } else { 1806 /* cur must be outside hwtail..head */ 1807 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail); 1808 } 1809 } 1810 if (ring->tail != kring->rtail) { 1811 nm_prlim(5, "%s tail overwritten was %d need %d", 1812 kring->name, 1813 ring->tail, kring->rtail); 1814 ring->tail = kring->rtail; 1815 } 1816 return head; 1817 } 1818 1819 1820 /* 1821 * Error routine called when txsync/rxsync detects an error. 1822 * Can't do much more than resetting head = cur = hwcur, tail = hwtail 1823 * Return 1 on reinit. 1824 * 1825 * This routine is only called by the upper half of the kernel. 1826 * It only reads hwcur (which is changed only by the upper half, too) 1827 * and hwtail (which may be changed by the lower half, but only on 1828 * a tx ring and only to increase it, so any error will be recovered 1829 * on the next call). For the above, we don't strictly need to call 1830 * it under lock. 1831 */ 1832 int 1833 netmap_ring_reinit(struct netmap_kring *kring) 1834 { 1835 struct netmap_ring *ring = kring->ring; 1836 u_int i, lim = kring->nkr_num_slots - 1; 1837 int errors = 0; 1838 1839 // XXX KASSERT nm_kr_tryget 1840 nm_prlim(10, "called for %s", kring->name); 1841 // XXX probably wrong to trust userspace 1842 kring->rhead = ring->head; 1843 kring->rcur = ring->cur; 1844 kring->rtail = ring->tail; 1845 1846 if (ring->cur > lim) 1847 errors++; 1848 if (ring->head > lim) 1849 errors++; 1850 if (ring->tail > lim) 1851 errors++; 1852 for (i = 0; i <= lim; i++) { 1853 u_int idx = ring->slot[i].buf_idx; 1854 u_int len = ring->slot[i].len; 1855 if (idx < 2 || idx >= kring->na->na_lut.objtotal) { 1856 nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1857 ring->slot[i].buf_idx = 0; 1858 ring->slot[i].len = 0; 1859 } else if (len > NETMAP_BUF_SIZE(kring->na)) { 1860 ring->slot[i].len = 0; 1861 nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len); 1862 } 1863 } 1864 if (errors) { 1865 nm_prlim(10, "total %d errors", errors); 1866 nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d", 1867 kring->name, 1868 ring->cur, kring->nr_hwcur, 1869 ring->tail, kring->nr_hwtail); 1870 ring->head = kring->rhead = kring->nr_hwcur; 1871 ring->cur = kring->rcur = kring->nr_hwcur; 1872 ring->tail = kring->rtail = kring->nr_hwtail; 1873 } 1874 return (errors ? 1 : 0); 1875 } 1876 1877 /* interpret the ringid and flags fields of an nmreq, by translating them 1878 * into a pair of intervals of ring indices: 1879 * 1880 * [priv->np_txqfirst, priv->np_txqlast) and 1881 * [priv->np_rxqfirst, priv->np_rxqlast) 1882 * 1883 */ 1884 int 1885 netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr) 1886 { 1887 struct netmap_adapter *na = priv->np_na; 1888 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body; 1889 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY }; 1890 enum txrx t; 1891 u_int j; 1892 u_int nr_flags = reg->nr_flags, nr_mode = reg->nr_mode, 1893 nr_ringid = reg->nr_ringid; 1894 1895 for_rx_tx(t) { 1896 if (nr_flags & excluded_direction[t]) { 1897 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1898 continue; 1899 } 1900 switch (nr_mode) { 1901 case NR_REG_ALL_NIC: 1902 case NR_REG_NULL: 1903 priv->np_qfirst[t] = 0; 1904 priv->np_qlast[t] = nma_get_nrings(na, t); 1905 nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t), 1906 priv->np_qfirst[t], priv->np_qlast[t]); 1907 break; 1908 case NR_REG_SW: 1909 case NR_REG_NIC_SW: 1910 if (!(na->na_flags & NAF_HOST_RINGS)) { 1911 nm_prerr("host rings not supported"); 1912 return EINVAL; 1913 } 1914 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ? 1915 nma_get_nrings(na, t) : 0); 1916 priv->np_qlast[t] = netmap_all_rings(na, t); 1917 nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW", 1918 nm_txrx2str(t), 1919 priv->np_qfirst[t], priv->np_qlast[t]); 1920 break; 1921 case NR_REG_ONE_NIC: 1922 if (nr_ringid >= na->num_tx_rings && 1923 nr_ringid >= na->num_rx_rings) { 1924 nm_prerr("invalid ring id %d", nr_ringid); 1925 return EINVAL; 1926 } 1927 /* if not enough rings, use the first one */ 1928 j = nr_ringid; 1929 if (j >= nma_get_nrings(na, t)) 1930 j = 0; 1931 priv->np_qfirst[t] = j; 1932 priv->np_qlast[t] = j + 1; 1933 nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t), 1934 priv->np_qfirst[t], priv->np_qlast[t]); 1935 break; 1936 case NR_REG_ONE_SW: 1937 if (!(na->na_flags & NAF_HOST_RINGS)) { 1938 nm_prerr("host rings not supported"); 1939 return EINVAL; 1940 } 1941 if (nr_ringid >= na->num_host_tx_rings && 1942 nr_ringid >= na->num_host_rx_rings) { 1943 nm_prerr("invalid ring id %d", nr_ringid); 1944 return EINVAL; 1945 } 1946 /* if not enough rings, use the first one */ 1947 j = nr_ringid; 1948 if (j >= nma_get_host_nrings(na, t)) 1949 j = 0; 1950 priv->np_qfirst[t] = nma_get_nrings(na, t) + j; 1951 priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1; 1952 nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t), 1953 priv->np_qfirst[t], priv->np_qlast[t]); 1954 break; 1955 default: 1956 nm_prerr("invalid regif type %d", nr_mode); 1957 return EINVAL; 1958 } 1959 } 1960 priv->np_flags = nr_flags; 1961 1962 /* Allow transparent forwarding mode in the host --> nic 1963 * direction only if all the TX hw rings have been opened. */ 1964 if (priv->np_qfirst[NR_TX] == 0 && 1965 priv->np_qlast[NR_TX] >= na->num_tx_rings) { 1966 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN; 1967 } 1968 1969 if (netmap_verbose) { 1970 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d", 1971 na->name, 1972 priv->np_qfirst[NR_TX], 1973 priv->np_qlast[NR_TX], 1974 priv->np_qfirst[NR_RX], 1975 priv->np_qlast[NR_RX], 1976 nr_ringid); 1977 } 1978 return 0; 1979 } 1980 1981 1982 /* 1983 * Set the ring ID. For devices with a single queue, a request 1984 * for all rings is the same as a single ring. 1985 */ 1986 static int 1987 netmap_set_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr) 1988 { 1989 struct netmap_adapter *na = priv->np_na; 1990 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body; 1991 int error; 1992 enum txrx t; 1993 1994 error = netmap_interp_ringid(priv, hdr); 1995 if (error) { 1996 return error; 1997 } 1998 1999 priv->np_txpoll = (reg->nr_flags & NR_NO_TX_POLL) ? 0 : 1; 2000 2001 /* optimization: count the users registered for more than 2002 * one ring, which are the ones sleeping on the global queue. 2003 * The default netmap_notify() callback will then 2004 * avoid signaling the global queue if nobody is using it 2005 */ 2006 for_rx_tx(t) { 2007 if (nm_si_user(priv, t)) 2008 na->si_users[t]++; 2009 } 2010 return 0; 2011 } 2012 2013 static void 2014 netmap_unset_ringid(struct netmap_priv_d *priv) 2015 { 2016 struct netmap_adapter *na = priv->np_na; 2017 enum txrx t; 2018 2019 for_rx_tx(t) { 2020 if (nm_si_user(priv, t)) 2021 na->si_users[t]--; 2022 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 2023 } 2024 priv->np_flags = 0; 2025 priv->np_txpoll = 0; 2026 priv->np_kloop_state = 0; 2027 } 2028 2029 #define within_sel(p_, t_, i_) \ 2030 ((i_) < (p_)->np_qlast[(t_)]) 2031 #define nonempty_sel(p_, t_) \ 2032 (within_sel((p_), (t_), (p_)->np_qfirst[(t_)])) 2033 #define foreach_selected_ring(p_, t_, i_, kring_) \ 2034 for ((t_) = nonempty_sel((p_), NR_RX) ? NR_RX : NR_TX, \ 2035 (i_) = (p_)->np_qfirst[(t_)]; \ 2036 (t_ == NR_RX || \ 2037 (t == NR_TX && within_sel((p_), (t_), (i_)))) && \ 2038 ((kring_) = NMR((p_)->np_na, (t_))[(i_)]); \ 2039 (i_) = within_sel((p_), (t_), (i_) + 1) ? (i_) + 1 : \ 2040 (++(t_) < NR_TXRX ? (p_)->np_qfirst[(t_)] : (i_))) 2041 2042 2043 /* Set the nr_pending_mode for the requested rings. 2044 * If requested, also try to get exclusive access to the rings, provided 2045 * the rings we want to bind are not exclusively owned by a previous bind. 2046 */ 2047 static int 2048 netmap_krings_get(struct netmap_priv_d *priv) 2049 { 2050 struct netmap_adapter *na = priv->np_na; 2051 u_int i; 2052 struct netmap_kring *kring; 2053 int excl = (priv->np_flags & NR_EXCLUSIVE); 2054 enum txrx t; 2055 2056 if (netmap_debug & NM_DEBUG_ON) 2057 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)", 2058 na->name, 2059 priv->np_qfirst[NR_TX], 2060 priv->np_qlast[NR_TX], 2061 priv->np_qfirst[NR_RX], 2062 priv->np_qlast[NR_RX]); 2063 2064 /* first round: check that all the requested rings 2065 * are neither already exclusively owned, nor we 2066 * want exclusive ownership when they are already in use 2067 */ 2068 foreach_selected_ring(priv, t, i, kring) { 2069 if ((kring->nr_kflags & NKR_EXCLUSIVE) || 2070 (kring->users && excl)) 2071 { 2072 nm_prdis("ring %s busy", kring->name); 2073 return EBUSY; 2074 } 2075 } 2076 2077 /* second round: increment usage count (possibly marking them 2078 * as exclusive) and set the nr_pending_mode 2079 */ 2080 foreach_selected_ring(priv, t, i, kring) { 2081 kring->users++; 2082 if (excl) 2083 kring->nr_kflags |= NKR_EXCLUSIVE; 2084 kring->nr_pending_mode = NKR_NETMAP_ON; 2085 } 2086 2087 return 0; 2088 2089 } 2090 2091 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode 2092 * if was asked on regif, and unset the nr_pending_mode if we are the 2093 * last users of the involved rings. */ 2094 static void 2095 netmap_krings_put(struct netmap_priv_d *priv) 2096 { 2097 u_int i; 2098 struct netmap_kring *kring; 2099 int excl = (priv->np_flags & NR_EXCLUSIVE); 2100 enum txrx t; 2101 2102 nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)", 2103 na->name, 2104 priv->np_qfirst[NR_TX], 2105 priv->np_qlast[NR_TX], 2106 priv->np_qfirst[NR_RX], 2107 priv->np_qlast[MR_RX]); 2108 2109 foreach_selected_ring(priv, t, i, kring) { 2110 if (excl) 2111 kring->nr_kflags &= ~NKR_EXCLUSIVE; 2112 kring->users--; 2113 if (kring->users == 0) 2114 kring->nr_pending_mode = NKR_NETMAP_OFF; 2115 } 2116 } 2117 2118 static int 2119 nm_priv_rx_enabled(struct netmap_priv_d *priv) 2120 { 2121 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]); 2122 } 2123 2124 /* Validate the CSB entries for both directions (atok and ktoa). 2125 * To be called under NMG_LOCK(). */ 2126 static int 2127 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo) 2128 { 2129 struct nm_csb_atok *csb_atok_base = 2130 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok; 2131 struct nm_csb_ktoa *csb_ktoa_base = 2132 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa; 2133 enum txrx t; 2134 int num_rings[NR_TXRX], tot_rings; 2135 size_t entry_size[2]; 2136 void *csb_start[2]; 2137 int i; 2138 2139 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) { 2140 nm_prerr("Cannot update CSB while kloop is running"); 2141 return EBUSY; 2142 } 2143 2144 tot_rings = 0; 2145 for_rx_tx(t) { 2146 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t]; 2147 tot_rings += num_rings[t]; 2148 } 2149 if (tot_rings <= 0) 2150 return 0; 2151 2152 if (!(priv->np_flags & NR_EXCLUSIVE)) { 2153 nm_prerr("CSB mode requires NR_EXCLUSIVE"); 2154 return EINVAL; 2155 } 2156 2157 entry_size[0] = sizeof(*csb_atok_base); 2158 entry_size[1] = sizeof(*csb_ktoa_base); 2159 csb_start[0] = (void *)csb_atok_base; 2160 csb_start[1] = (void *)csb_ktoa_base; 2161 2162 for (i = 0; i < 2; i++) { 2163 /* On Linux we could use access_ok() to simplify 2164 * the validation. However, the advantage of 2165 * this approach is that it works also on 2166 * FreeBSD. */ 2167 size_t csb_size = tot_rings * entry_size[i]; 2168 void *tmp; 2169 int err; 2170 2171 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) { 2172 nm_prerr("Unaligned CSB address"); 2173 return EINVAL; 2174 } 2175 2176 tmp = nm_os_malloc(csb_size); 2177 if (!tmp) 2178 return ENOMEM; 2179 if (i == 0) { 2180 /* Application --> kernel direction. */ 2181 err = copyin(csb_start[i], tmp, csb_size); 2182 } else { 2183 /* Kernel --> application direction. */ 2184 memset(tmp, 0, csb_size); 2185 err = copyout(tmp, csb_start[i], csb_size); 2186 } 2187 nm_os_free(tmp); 2188 if (err) { 2189 nm_prerr("Invalid CSB address"); 2190 return err; 2191 } 2192 } 2193 2194 priv->np_csb_atok_base = csb_atok_base; 2195 priv->np_csb_ktoa_base = csb_ktoa_base; 2196 2197 /* Initialize the CSB. */ 2198 for_rx_tx(t) { 2199 for (i = 0; i < num_rings[t]; i++) { 2200 struct netmap_kring *kring = 2201 NMR(priv->np_na, t)[i + priv->np_qfirst[t]]; 2202 struct nm_csb_atok *csb_atok = csb_atok_base + i; 2203 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i; 2204 2205 if (t == NR_RX) { 2206 csb_atok += num_rings[NR_TX]; 2207 csb_ktoa += num_rings[NR_TX]; 2208 } 2209 2210 CSB_WRITE(csb_atok, head, kring->rhead); 2211 CSB_WRITE(csb_atok, cur, kring->rcur); 2212 CSB_WRITE(csb_atok, appl_need_kick, 1); 2213 CSB_WRITE(csb_atok, sync_flags, 1); 2214 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur); 2215 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail); 2216 CSB_WRITE(csb_ktoa, kern_need_kick, 1); 2217 2218 nm_prinf("csb_init for kring %s: head %u, cur %u, " 2219 "hwcur %u, hwtail %u", kring->name, 2220 kring->rhead, kring->rcur, kring->nr_hwcur, 2221 kring->nr_hwtail); 2222 } 2223 } 2224 2225 return 0; 2226 } 2227 2228 /* Ensure that the netmap adapter can support the given MTU. 2229 * @return EINVAL if the na cannot be set to mtu, 0 otherwise. 2230 */ 2231 int 2232 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) { 2233 unsigned nbs = NETMAP_BUF_SIZE(na); 2234 2235 if (mtu <= na->rx_buf_maxsize) { 2236 /* The MTU fits a single NIC slot. We only 2237 * Need to check that netmap buffers are 2238 * large enough to hold an MTU. NS_MOREFRAG 2239 * cannot be used in this case. */ 2240 if (nbs < mtu) { 2241 nm_prerr("error: netmap buf size (%u) " 2242 "< device MTU (%u)", nbs, mtu); 2243 return EINVAL; 2244 } 2245 } else { 2246 /* More NIC slots may be needed to receive 2247 * or transmit a single packet. Check that 2248 * the adapter supports NS_MOREFRAG and that 2249 * netmap buffers are large enough to hold 2250 * the maximum per-slot size. */ 2251 if (!(na->na_flags & NAF_MOREFRAG)) { 2252 nm_prerr("error: large MTU (%d) needed " 2253 "but %s does not support " 2254 "NS_MOREFRAG", mtu, 2255 na->ifp->if_xname); 2256 return EINVAL; 2257 } else if (nbs < na->rx_buf_maxsize) { 2258 nm_prerr("error: using NS_MOREFRAG on " 2259 "%s requires netmap buf size " 2260 ">= %u", na->ifp->if_xname, 2261 na->rx_buf_maxsize); 2262 return EINVAL; 2263 } else { 2264 nm_prinf("info: netmap application on " 2265 "%s needs to support " 2266 "NS_MOREFRAG " 2267 "(MTU=%u,netmap_buf_size=%u)", 2268 na->ifp->if_xname, mtu, nbs); 2269 } 2270 } 2271 return 0; 2272 } 2273 2274 /* Handle the offset option, if present in the hdr. 2275 * Returns 0 on success, or an error. 2276 */ 2277 static int 2278 netmap_offsets_init(struct netmap_priv_d *priv, struct nmreq_header *hdr) 2279 { 2280 struct nmreq_opt_offsets *opt; 2281 struct netmap_adapter *na = priv->np_na; 2282 struct netmap_kring *kring; 2283 uint64_t mask = 0, bits = 0, maxbits = sizeof(uint64_t) * 8, 2284 max_offset = 0, initial_offset = 0, min_gap = 0; 2285 u_int i; 2286 enum txrx t; 2287 int error = 0; 2288 2289 opt = (struct nmreq_opt_offsets *) 2290 nmreq_getoption(hdr, NETMAP_REQ_OPT_OFFSETS); 2291 if (opt == NULL) 2292 return 0; 2293 2294 if (!(na->na_flags & NAF_OFFSETS)) { 2295 if (netmap_verbose) 2296 nm_prerr("%s does not support offsets", 2297 na->name); 2298 error = EOPNOTSUPP; 2299 goto out; 2300 } 2301 2302 /* check sanity of the opt values */ 2303 max_offset = opt->nro_max_offset; 2304 min_gap = opt->nro_min_gap; 2305 initial_offset = opt->nro_initial_offset; 2306 bits = opt->nro_offset_bits; 2307 2308 if (bits > maxbits) { 2309 if (netmap_verbose) 2310 nm_prerr("bits: %llu too large (max %llu)", 2311 (unsigned long long)bits, 2312 (unsigned long long)maxbits); 2313 error = EINVAL; 2314 goto out; 2315 } 2316 /* we take bits == 0 as a request to use the entire field */ 2317 if (bits == 0 || bits == maxbits) { 2318 /* shifting a type by sizeof(type) is undefined */ 2319 bits = maxbits; 2320 mask = 0xffffffffffffffff; 2321 } else { 2322 mask = (1ULL << bits) - 1; 2323 } 2324 if (max_offset > NETMAP_BUF_SIZE(na)) { 2325 if (netmap_verbose) 2326 nm_prerr("max offset %llu > buf size %u", 2327 (unsigned long long)max_offset, NETMAP_BUF_SIZE(na)); 2328 error = EINVAL; 2329 goto out; 2330 } 2331 if ((max_offset & mask) != max_offset) { 2332 if (netmap_verbose) 2333 nm_prerr("max offset %llu to large for %llu bits", 2334 (unsigned long long)max_offset, 2335 (unsigned long long)bits); 2336 error = EINVAL; 2337 goto out; 2338 } 2339 if (initial_offset > max_offset) { 2340 if (netmap_verbose) 2341 nm_prerr("initial offset %llu > max offset %llu", 2342 (unsigned long long)initial_offset, 2343 (unsigned long long)max_offset); 2344 error = EINVAL; 2345 goto out; 2346 } 2347 2348 /* initialize the kring and ring fields. */ 2349 foreach_selected_ring(priv, t, i, kring) { 2350 struct netmap_kring *kring = NMR(na, t)[i]; 2351 struct netmap_ring *ring = kring->ring; 2352 u_int j; 2353 2354 /* it the ring is already in use we check that the 2355 * new request is compatible with the existing one 2356 */ 2357 if (kring->offset_mask) { 2358 if ((kring->offset_mask & mask) != mask || 2359 kring->offset_max < max_offset) { 2360 if (netmap_verbose) 2361 nm_prinf("%s: cannot increase" 2362 "offset mask and/or max" 2363 "(current: mask=%llx,max=%llu", 2364 kring->name, 2365 (unsigned long long)kring->offset_mask, 2366 (unsigned long long)kring->offset_max); 2367 error = EBUSY; 2368 goto out; 2369 } 2370 mask = kring->offset_mask; 2371 max_offset = kring->offset_max; 2372 } else { 2373 kring->offset_mask = mask; 2374 *(uint64_t *)(uintptr_t)&ring->offset_mask = mask; 2375 kring->offset_max = max_offset; 2376 kring->offset_gap = min_gap; 2377 } 2378 2379 /* if there is an initial offset, put it into 2380 * all the slots 2381 * 2382 * Note: we cannot change the offsets if the 2383 * ring is already in use. 2384 */ 2385 if (!initial_offset || kring->users > 1) 2386 continue; 2387 2388 for (j = 0; j < kring->nkr_num_slots; j++) { 2389 struct netmap_slot *slot = ring->slot + j; 2390 2391 nm_write_offset(kring, slot, initial_offset); 2392 } 2393 } 2394 2395 out: 2396 opt->nro_opt.nro_status = error; 2397 if (!error) { 2398 opt->nro_max_offset = max_offset; 2399 } 2400 return error; 2401 2402 } 2403 2404 2405 /* set the hardware buffer length in each one of the newly opened rings 2406 * (hwbuf_len field in the kring struct). The purpose it to select 2407 * the maximum supported input buffer lenght that will not cause writes 2408 * outside of the available space, even when offsets are in use. 2409 */ 2410 static int 2411 netmap_compute_buf_len(struct netmap_priv_d *priv) 2412 { 2413 enum txrx t; 2414 u_int i; 2415 struct netmap_kring *kring; 2416 int error = 0; 2417 unsigned mtu = 0; 2418 struct netmap_adapter *na = priv->np_na; 2419 uint64_t target; 2420 2421 foreach_selected_ring(priv, t, i, kring) { 2422 /* rings that are already active have their hwbuf_len 2423 * already set and we cannot change it. 2424 */ 2425 if (kring->users > 1) 2426 continue; 2427 2428 /* For netmap buffers which are not shared among several ring 2429 * slots (the normal case), the available space is the buf size 2430 * minus the max offset declared by the user at open time. If 2431 * the user plans to have several slots pointing to different 2432 * offsets into the same large buffer, she must also declare a 2433 * "minimum gap" between two such consecutive offsets. In this 2434 * case the user-declared 'offset_gap' is taken as the 2435 * available space and offset_max is ignored. 2436 */ 2437 2438 /* start with the normal case (unshared buffers) */ 2439 target = NETMAP_BUF_SIZE(kring->na) - 2440 kring->offset_max; 2441 /* if offset_gap is zero, the user does not intend to use 2442 * shared buffers. In this case the minimum gap between 2443 * two consective offsets into the same buffer can be 2444 * assumed to be equal to the buffer size. In this way 2445 * offset_gap always contains the available space ignoring 2446 * offset_max. This may be used by drivers of NICs that 2447 * are guaranteed to never write more than MTU bytes, even 2448 * if the input buffer is larger: if the MTU is less 2449 * than the target they can set hwbuf_len to offset_gap. 2450 */ 2451 if (!kring->offset_gap) 2452 kring->offset_gap = 2453 NETMAP_BUF_SIZE(kring->na); 2454 2455 if (kring->offset_gap < target) 2456 target = kring->offset_gap; 2457 error = kring->nm_bufcfg(kring, target); 2458 if (error) 2459 goto out; 2460 2461 *(uint64_t *)(uintptr_t)&kring->ring->buf_align = kring->buf_align; 2462 2463 if (mtu && t == NR_RX && kring->hwbuf_len < mtu) { 2464 if (!(na->na_flags & NAF_MOREFRAG)) { 2465 nm_prerr("error: large MTU (%d) needed " 2466 "but %s does not support " 2467 "NS_MOREFRAG", mtu, 2468 na->name); 2469 error = EINVAL; 2470 goto out; 2471 } else { 2472 nm_prinf("info: netmap application on " 2473 "%s needs to support " 2474 "NS_MOREFRAG " 2475 "(MTU=%u,buf_size=%llu)", 2476 kring->name, mtu, 2477 (unsigned long long)kring->hwbuf_len); 2478 } 2479 } 2480 } 2481 out: 2482 return error; 2483 } 2484 2485 /* 2486 * possibly move the interface to netmap-mode. 2487 * If success it returns a pointer to netmap_if, otherwise NULL. 2488 * This must be called with NMG_LOCK held. 2489 * 2490 * The following na callbacks are called in the process: 2491 * 2492 * na->nm_config() [by netmap_update_config] 2493 * (get current number and size of rings) 2494 * 2495 * We have a generic one for linux (netmap_linux_config). 2496 * The bwrap has to override this, since it has to forward 2497 * the request to the wrapped adapter (netmap_bwrap_config). 2498 * 2499 * 2500 * na->nm_krings_create() 2501 * (create and init the krings array) 2502 * 2503 * One of the following: 2504 * 2505 * * netmap_hw_krings_create, (hw ports) 2506 * creates the standard layout for the krings 2507 * and adds the mbq (used for the host rings). 2508 * 2509 * * netmap_vp_krings_create (VALE ports) 2510 * add leases and scratchpads 2511 * 2512 * * netmap_pipe_krings_create (pipes) 2513 * create the krings and rings of both ends and 2514 * cross-link them 2515 * 2516 * * netmap_monitor_krings_create (monitors) 2517 * avoid allocating the mbq 2518 * 2519 * * netmap_bwrap_krings_create (bwraps) 2520 * create both the brap krings array, 2521 * the krings array of the wrapped adapter, and 2522 * (if needed) the fake array for the host adapter 2523 * 2524 * na->nm_register(, 1) 2525 * (put the adapter in netmap mode) 2526 * 2527 * This may be one of the following: 2528 * 2529 * * netmap_hw_reg (hw ports) 2530 * checks that the ifp is still there, then calls 2531 * the hardware specific callback; 2532 * 2533 * * netmap_vp_reg (VALE ports) 2534 * If the port is connected to a bridge, 2535 * set the NAF_NETMAP_ON flag under the 2536 * bridge write lock. 2537 * 2538 * * netmap_pipe_reg (pipes) 2539 * inform the other pipe end that it is no 2540 * longer responsible for the lifetime of this 2541 * pipe end 2542 * 2543 * * netmap_monitor_reg (monitors) 2544 * intercept the sync callbacks of the monitored 2545 * rings 2546 * 2547 * * netmap_bwrap_reg (bwraps) 2548 * cross-link the bwrap and hwna rings, 2549 * forward the request to the hwna, override 2550 * the hwna notify callback (to get the frames 2551 * coming from outside go through the bridge). 2552 * 2553 * 2554 */ 2555 int 2556 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 2557 struct nmreq_header *hdr) 2558 { 2559 struct netmap_if *nifp = NULL; 2560 int error; 2561 2562 NMG_LOCK_ASSERT(); 2563 priv->np_na = na; /* store the reference */ 2564 error = netmap_mem_finalize(na->nm_mem, na); 2565 if (error) 2566 goto err; 2567 2568 if (na->active_fds == 0) { 2569 2570 /* cache the allocator info in the na */ 2571 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut); 2572 if (error) 2573 goto err_drop_mem; 2574 nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal, 2575 na->na_lut.objsize); 2576 2577 /* ring configuration may have changed, fetch from the card */ 2578 netmap_update_config(na); 2579 } 2580 2581 /* compute the range of tx and rx rings to monitor */ 2582 error = netmap_set_ringid(priv, hdr); 2583 if (error) 2584 goto err_put_lut; 2585 2586 if (na->active_fds == 0) { 2587 /* 2588 * If this is the first registration of the adapter, 2589 * perform sanity checks and create the in-kernel view 2590 * of the netmap rings (the netmap krings). 2591 */ 2592 if (na->ifp && nm_priv_rx_enabled(priv)) { 2593 /* This netmap adapter is attached to an ifnet. */ 2594 unsigned mtu = nm_os_ifnet_mtu(na->ifp); 2595 2596 nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d", 2597 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na)); 2598 2599 if (na->rx_buf_maxsize == 0) { 2600 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name); 2601 error = EIO; 2602 goto err_drop_mem; 2603 } 2604 2605 error = netmap_buf_size_validate(na, mtu); 2606 if (error) 2607 goto err_drop_mem; 2608 } 2609 2610 /* 2611 * Depending on the adapter, this may also create 2612 * the netmap rings themselves 2613 */ 2614 error = na->nm_krings_create(na); 2615 if (error) 2616 goto err_put_lut; 2617 2618 } 2619 2620 /* now the krings must exist and we can check whether some 2621 * previous bind has exclusive ownership on them, and set 2622 * nr_pending_mode 2623 */ 2624 error = netmap_krings_get(priv); 2625 if (error) 2626 goto err_del_krings; 2627 2628 /* create all needed missing netmap rings */ 2629 error = netmap_mem_rings_create(na); 2630 if (error) 2631 goto err_rel_excl; 2632 2633 /* initialize offsets if requested */ 2634 error = netmap_offsets_init(priv, hdr); 2635 if (error) 2636 goto err_rel_excl; 2637 2638 /* compute and validate the buf lengths */ 2639 error = netmap_compute_buf_len(priv); 2640 if (error) 2641 goto err_rel_excl; 2642 2643 /* in all cases, create a new netmap if */ 2644 nifp = netmap_mem_if_new(na, priv); 2645 if (nifp == NULL) { 2646 error = ENOMEM; 2647 goto err_rel_excl; 2648 } 2649 2650 if (nm_kring_pending(priv)) { 2651 /* Some kring is switching mode, tell the adapter to 2652 * react on this. */ 2653 netmap_set_all_rings(na, NM_KR_LOCKED); 2654 error = na->nm_register(na, 1); 2655 netmap_set_all_rings(na, 0); 2656 if (error) 2657 goto err_del_if; 2658 } 2659 2660 /* Commit the reference. */ 2661 na->active_fds++; 2662 2663 /* 2664 * advertise that the interface is ready by setting np_nifp. 2665 * The barrier is needed because readers (poll, *SYNC and mmap) 2666 * check for priv->np_nifp != NULL without locking 2667 */ 2668 mb(); /* make sure previous writes are visible to all CPUs */ 2669 priv->np_nifp = nifp; 2670 2671 return 0; 2672 2673 err_del_if: 2674 netmap_mem_if_delete(na, nifp); 2675 err_rel_excl: 2676 netmap_krings_put(priv); 2677 netmap_mem_rings_delete(na); 2678 err_del_krings: 2679 if (na->active_fds == 0) 2680 na->nm_krings_delete(na); 2681 err_put_lut: 2682 if (na->active_fds == 0) 2683 memset(&na->na_lut, 0, sizeof(na->na_lut)); 2684 err_drop_mem: 2685 netmap_mem_drop(na); 2686 err: 2687 priv->np_na = NULL; 2688 return error; 2689 } 2690 2691 2692 /* 2693 * update kring and ring at the end of rxsync/txsync. 2694 */ 2695 static inline void 2696 nm_sync_finalize(struct netmap_kring *kring) 2697 { 2698 /* 2699 * Update ring tail to what the kernel knows 2700 * After txsync: head/rhead/hwcur might be behind cur/rcur 2701 * if no carrier. 2702 */ 2703 kring->ring->tail = kring->rtail = kring->nr_hwtail; 2704 2705 nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 2706 kring->name, kring->nr_hwcur, kring->nr_hwtail, 2707 kring->rhead, kring->rcur, kring->rtail); 2708 } 2709 2710 /* set ring timestamp */ 2711 static inline void 2712 ring_timestamp_set(struct netmap_ring *ring) 2713 { 2714 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) { 2715 microtime(&ring->ts); 2716 } 2717 } 2718 2719 static int nmreq_copyin(struct nmreq_header *, int); 2720 static int nmreq_copyout(struct nmreq_header *, int); 2721 static int nmreq_checkoptions(struct nmreq_header *); 2722 2723 /* 2724 * ioctl(2) support for the "netmap" device. 2725 * 2726 * Following a list of accepted commands: 2727 * - NIOCCTRL device control API 2728 * - NIOCTXSYNC sync TX rings 2729 * - NIOCRXSYNC sync RX rings 2730 * - SIOCGIFADDR just for convenience 2731 * - NIOCGINFO deprecated (legacy API) 2732 * - NIOCREGIF deprecated (legacy API) 2733 * 2734 * Return 0 on success, errno otherwise. 2735 */ 2736 int 2737 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 2738 struct thread *td, int nr_body_is_user) 2739 { 2740 struct mbq q; /* packets from RX hw queues to host stack */ 2741 struct netmap_adapter *na = NULL; 2742 struct netmap_mem_d *nmd = NULL; 2743 struct ifnet *ifp = NULL; 2744 int error = 0; 2745 u_int i, qfirst, qlast; 2746 struct netmap_kring **krings; 2747 int sync_flags; 2748 enum txrx t; 2749 2750 switch (cmd) { 2751 case NIOCCTRL: { 2752 struct nmreq_header *hdr = (struct nmreq_header *)data; 2753 2754 if (hdr->nr_version < NETMAP_MIN_API || 2755 hdr->nr_version > NETMAP_MAX_API) { 2756 nm_prerr("API mismatch: got %d need %d", 2757 hdr->nr_version, NETMAP_API); 2758 return EINVAL; 2759 } 2760 2761 /* Make a kernel-space copy of the user-space nr_body. 2762 * For convenience, the nr_body pointer and the pointers 2763 * in the options list will be replaced with their 2764 * kernel-space counterparts. The original pointers are 2765 * saved internally and later restored by nmreq_copyout 2766 */ 2767 error = nmreq_copyin(hdr, nr_body_is_user); 2768 if (error) { 2769 return error; 2770 } 2771 2772 /* Sanitize hdr->nr_name. */ 2773 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0'; 2774 2775 switch (hdr->nr_reqtype) { 2776 case NETMAP_REQ_REGISTER: { 2777 struct nmreq_register *req = 2778 (struct nmreq_register *)(uintptr_t)hdr->nr_body; 2779 struct netmap_if *nifp; 2780 2781 /* Protect access to priv from concurrent requests. */ 2782 NMG_LOCK(); 2783 do { 2784 struct nmreq_option *opt; 2785 u_int memflags; 2786 2787 if (priv->np_nifp != NULL) { /* thread already registered */ 2788 error = EBUSY; 2789 break; 2790 } 2791 2792 #ifdef WITH_EXTMEM 2793 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM); 2794 if (opt != NULL) { 2795 struct nmreq_opt_extmem *e = 2796 (struct nmreq_opt_extmem *)opt; 2797 2798 nmd = netmap_mem_ext_create(e->nro_usrptr, 2799 &e->nro_info, &error); 2800 opt->nro_status = error; 2801 if (nmd == NULL) 2802 break; 2803 } 2804 #endif /* WITH_EXTMEM */ 2805 2806 if (nmd == NULL && req->nr_mem_id) { 2807 /* find the allocator and get a reference */ 2808 nmd = netmap_mem_find(req->nr_mem_id); 2809 if (nmd == NULL) { 2810 if (netmap_verbose) { 2811 nm_prerr("%s: failed to find mem_id %u", 2812 hdr->nr_name, req->nr_mem_id); 2813 } 2814 error = EINVAL; 2815 break; 2816 } 2817 } 2818 /* find the interface and a reference */ 2819 error = netmap_get_na(hdr, &na, &ifp, nmd, 2820 1 /* create */); /* keep reference */ 2821 if (error) 2822 break; 2823 if (NETMAP_OWNED_BY_KERN(na)) { 2824 error = EBUSY; 2825 break; 2826 } 2827 2828 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) { 2829 nm_prerr("virt_hdr_len=%d, but application does " 2830 "not accept it", na->virt_hdr_len); 2831 error = EIO; 2832 break; 2833 } 2834 2835 error = netmap_do_regif(priv, na, hdr); 2836 if (error) { /* reg. failed, release priv and ref */ 2837 break; 2838 } 2839 2840 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 2841 if (opt != NULL) { 2842 struct nmreq_opt_csb *csbo = 2843 (struct nmreq_opt_csb *)opt; 2844 error = netmap_csb_validate(priv, csbo); 2845 opt->nro_status = error; 2846 if (error) { 2847 netmap_do_unregif(priv); 2848 break; 2849 } 2850 } 2851 2852 nifp = priv->np_nifp; 2853 2854 /* return the offset of the netmap_if object */ 2855 req->nr_rx_rings = na->num_rx_rings; 2856 req->nr_tx_rings = na->num_tx_rings; 2857 req->nr_rx_slots = na->num_rx_desc; 2858 req->nr_tx_slots = na->num_tx_desc; 2859 req->nr_host_tx_rings = na->num_host_tx_rings; 2860 req->nr_host_rx_rings = na->num_host_rx_rings; 2861 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags, 2862 &req->nr_mem_id); 2863 if (error) { 2864 netmap_do_unregif(priv); 2865 break; 2866 } 2867 if (memflags & NETMAP_MEM_PRIVATE) { 2868 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 2869 } 2870 for_rx_tx(t) { 2871 priv->np_si[t] = nm_si_user(priv, t) ? 2872 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si; 2873 } 2874 2875 if (req->nr_extra_bufs) { 2876 if (netmap_verbose) 2877 nm_prinf("requested %d extra buffers", 2878 req->nr_extra_bufs); 2879 req->nr_extra_bufs = netmap_extra_alloc(na, 2880 &nifp->ni_bufs_head, req->nr_extra_bufs); 2881 if (netmap_verbose) 2882 nm_prinf("got %d extra buffers", req->nr_extra_bufs); 2883 } else { 2884 nifp->ni_bufs_head = 0; 2885 } 2886 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 2887 2888 error = nmreq_checkoptions(hdr); 2889 if (error) { 2890 netmap_do_unregif(priv); 2891 break; 2892 } 2893 2894 /* store ifp reference so that priv destructor may release it */ 2895 priv->np_ifp = ifp; 2896 } while (0); 2897 if (error) { 2898 netmap_unget_na(na, ifp); 2899 } 2900 /* release the reference from netmap_mem_find() or 2901 * netmap_mem_ext_create() 2902 */ 2903 if (nmd) 2904 netmap_mem_put(nmd); 2905 NMG_UNLOCK(); 2906 break; 2907 } 2908 2909 case NETMAP_REQ_PORT_INFO_GET: { 2910 struct nmreq_port_info_get *req = 2911 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body; 2912 int nmd_ref = 0; 2913 2914 NMG_LOCK(); 2915 do { 2916 u_int memflags; 2917 2918 if (hdr->nr_name[0] != '\0') { 2919 /* Build a nmreq_register out of the nmreq_port_info_get, 2920 * so that we can call netmap_get_na(). */ 2921 struct nmreq_register regreq; 2922 bzero(®req, sizeof(regreq)); 2923 regreq.nr_mode = NR_REG_ALL_NIC; 2924 regreq.nr_tx_slots = req->nr_tx_slots; 2925 regreq.nr_rx_slots = req->nr_rx_slots; 2926 regreq.nr_tx_rings = req->nr_tx_rings; 2927 regreq.nr_rx_rings = req->nr_rx_rings; 2928 regreq.nr_host_tx_rings = req->nr_host_tx_rings; 2929 regreq.nr_host_rx_rings = req->nr_host_rx_rings; 2930 regreq.nr_mem_id = req->nr_mem_id; 2931 2932 /* get a refcount */ 2933 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2934 hdr->nr_body = (uintptr_t)®req; 2935 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2936 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */ 2937 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2938 if (error) { 2939 na = NULL; 2940 ifp = NULL; 2941 break; 2942 } 2943 nmd = na->nm_mem; /* get memory allocator */ 2944 } else { 2945 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1); 2946 if (nmd == NULL) { 2947 if (netmap_verbose) 2948 nm_prerr("%s: failed to find mem_id %u", 2949 hdr->nr_name, 2950 req->nr_mem_id ? req->nr_mem_id : 1); 2951 error = EINVAL; 2952 break; 2953 } 2954 nmd_ref = 1; 2955 } 2956 2957 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags, 2958 &req->nr_mem_id); 2959 if (error) 2960 break; 2961 if (na == NULL) /* only memory info */ 2962 break; 2963 netmap_update_config(na); 2964 req->nr_rx_rings = na->num_rx_rings; 2965 req->nr_tx_rings = na->num_tx_rings; 2966 req->nr_rx_slots = na->num_rx_desc; 2967 req->nr_tx_slots = na->num_tx_desc; 2968 req->nr_host_tx_rings = na->num_host_tx_rings; 2969 req->nr_host_rx_rings = na->num_host_rx_rings; 2970 } while (0); 2971 netmap_unget_na(na, ifp); 2972 if (nmd_ref) 2973 netmap_mem_put(nmd); 2974 NMG_UNLOCK(); 2975 break; 2976 } 2977 #ifdef WITH_VALE 2978 case NETMAP_REQ_VALE_ATTACH: { 2979 error = netmap_bdg_attach(hdr, NULL /* userspace request */); 2980 break; 2981 } 2982 2983 case NETMAP_REQ_VALE_DETACH: { 2984 error = netmap_bdg_detach(hdr, NULL /* userspace request */); 2985 break; 2986 } 2987 2988 case NETMAP_REQ_PORT_HDR_SET: { 2989 struct nmreq_port_hdr *req = 2990 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2991 /* Build a nmreq_register out of the nmreq_port_hdr, 2992 * so that we can call netmap_get_bdg_na(). */ 2993 struct nmreq_register regreq; 2994 bzero(®req, sizeof(regreq)); 2995 regreq.nr_mode = NR_REG_ALL_NIC; 2996 2997 /* For now we only support virtio-net headers, and only for 2998 * VALE ports, but this may change in future. Valid lengths 2999 * for the virtio-net header are 0 (no header), 10 and 12. */ 3000 if (req->nr_hdr_len != 0 && 3001 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) && 3002 req->nr_hdr_len != 12) { 3003 if (netmap_verbose) 3004 nm_prerr("invalid hdr_len %u", req->nr_hdr_len); 3005 error = EINVAL; 3006 break; 3007 } 3008 NMG_LOCK(); 3009 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 3010 hdr->nr_body = (uintptr_t)®req; 3011 error = netmap_get_vale_na(hdr, &na, NULL, 0); 3012 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET; 3013 hdr->nr_body = (uintptr_t)req; 3014 if (na && !error) { 3015 struct netmap_vp_adapter *vpna = 3016 (struct netmap_vp_adapter *)na; 3017 na->virt_hdr_len = req->nr_hdr_len; 3018 if (na->virt_hdr_len) { 3019 vpna->mfs = NETMAP_BUF_SIZE(na); 3020 } 3021 if (netmap_verbose) 3022 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na); 3023 netmap_adapter_put(na); 3024 } else if (!na) { 3025 error = ENXIO; 3026 } 3027 NMG_UNLOCK(); 3028 break; 3029 } 3030 3031 case NETMAP_REQ_PORT_HDR_GET: { 3032 /* Get vnet-header length for this netmap port */ 3033 struct nmreq_port_hdr *req = 3034 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 3035 /* Build a nmreq_register out of the nmreq_port_hdr, 3036 * so that we can call netmap_get_bdg_na(). */ 3037 struct nmreq_register regreq; 3038 struct ifnet *ifp; 3039 3040 bzero(®req, sizeof(regreq)); 3041 regreq.nr_mode = NR_REG_ALL_NIC; 3042 NMG_LOCK(); 3043 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 3044 hdr->nr_body = (uintptr_t)®req; 3045 error = netmap_get_na(hdr, &na, &ifp, NULL, 0); 3046 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET; 3047 hdr->nr_body = (uintptr_t)req; 3048 if (na && !error) { 3049 req->nr_hdr_len = na->virt_hdr_len; 3050 } 3051 netmap_unget_na(na, ifp); 3052 NMG_UNLOCK(); 3053 break; 3054 } 3055 3056 case NETMAP_REQ_VALE_LIST: { 3057 error = netmap_vale_list(hdr); 3058 break; 3059 } 3060 3061 case NETMAP_REQ_VALE_NEWIF: { 3062 error = nm_vi_create(hdr); 3063 break; 3064 } 3065 3066 case NETMAP_REQ_VALE_DELIF: { 3067 error = nm_vi_destroy(hdr->nr_name); 3068 break; 3069 } 3070 #endif /* WITH_VALE */ 3071 3072 case NETMAP_REQ_VALE_POLLING_ENABLE: 3073 case NETMAP_REQ_VALE_POLLING_DISABLE: { 3074 error = nm_bdg_polling(hdr); 3075 break; 3076 } 3077 case NETMAP_REQ_POOLS_INFO_GET: { 3078 /* Get information from the memory allocator used for 3079 * hdr->nr_name. */ 3080 struct nmreq_pools_info *req = 3081 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body; 3082 NMG_LOCK(); 3083 do { 3084 /* Build a nmreq_register out of the nmreq_pools_info, 3085 * so that we can call netmap_get_na(). */ 3086 struct nmreq_register regreq; 3087 bzero(®req, sizeof(regreq)); 3088 regreq.nr_mem_id = req->nr_mem_id; 3089 regreq.nr_mode = NR_REG_ALL_NIC; 3090 3091 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 3092 hdr->nr_body = (uintptr_t)®req; 3093 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 3094 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */ 3095 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 3096 if (error) { 3097 na = NULL; 3098 ifp = NULL; 3099 break; 3100 } 3101 nmd = na->nm_mem; /* grab the memory allocator */ 3102 if (nmd == NULL) { 3103 error = EINVAL; 3104 break; 3105 } 3106 3107 /* Finalize the memory allocator, get the pools 3108 * information and release the allocator. */ 3109 error = netmap_mem_finalize(nmd, na); 3110 if (error) { 3111 break; 3112 } 3113 error = netmap_mem_pools_info_get(req, nmd); 3114 netmap_mem_drop(na); 3115 } while (0); 3116 netmap_unget_na(na, ifp); 3117 NMG_UNLOCK(); 3118 break; 3119 } 3120 3121 case NETMAP_REQ_CSB_ENABLE: { 3122 struct nmreq_option *opt; 3123 3124 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 3125 if (opt == NULL) { 3126 error = EINVAL; 3127 } else { 3128 struct nmreq_opt_csb *csbo = 3129 (struct nmreq_opt_csb *)opt; 3130 NMG_LOCK(); 3131 error = netmap_csb_validate(priv, csbo); 3132 NMG_UNLOCK(); 3133 opt->nro_status = error; 3134 } 3135 break; 3136 } 3137 3138 case NETMAP_REQ_SYNC_KLOOP_START: { 3139 error = netmap_sync_kloop(priv, hdr); 3140 break; 3141 } 3142 3143 case NETMAP_REQ_SYNC_KLOOP_STOP: { 3144 error = netmap_sync_kloop_stop(priv); 3145 break; 3146 } 3147 3148 default: { 3149 error = EINVAL; 3150 break; 3151 } 3152 } 3153 /* Write back request body to userspace and reset the 3154 * user-space pointer. */ 3155 error = nmreq_copyout(hdr, error); 3156 break; 3157 } 3158 3159 case NIOCTXSYNC: 3160 case NIOCRXSYNC: { 3161 if (unlikely(priv->np_nifp == NULL)) { 3162 error = ENXIO; 3163 break; 3164 } 3165 mb(); /* make sure following reads are not from cache */ 3166 3167 if (unlikely(priv->np_csb_atok_base)) { 3168 nm_prerr("Invalid sync in CSB mode"); 3169 error = EBUSY; 3170 break; 3171 } 3172 3173 na = priv->np_na; /* we have a reference */ 3174 3175 mbq_init(&q); 3176 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX); 3177 krings = NMR(na, t); 3178 qfirst = priv->np_qfirst[t]; 3179 qlast = priv->np_qlast[t]; 3180 sync_flags = priv->np_sync_flags; 3181 3182 for (i = qfirst; i < qlast; i++) { 3183 struct netmap_kring *kring = krings[i]; 3184 struct netmap_ring *ring = kring->ring; 3185 3186 if (unlikely(nm_kr_tryget(kring, 1, &error))) { 3187 error = (error ? EIO : 0); 3188 continue; 3189 } 3190 3191 if (cmd == NIOCTXSYNC) { 3192 if (netmap_debug & NM_DEBUG_TXSYNC) 3193 nm_prinf("pre txsync ring %d cur %d hwcur %d", 3194 i, ring->cur, 3195 kring->nr_hwcur); 3196 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3197 netmap_ring_reinit(kring); 3198 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) { 3199 nm_sync_finalize(kring); 3200 } 3201 if (netmap_debug & NM_DEBUG_TXSYNC) 3202 nm_prinf("post txsync ring %d cur %d hwcur %d", 3203 i, ring->cur, 3204 kring->nr_hwcur); 3205 } else { 3206 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3207 netmap_ring_reinit(kring); 3208 } 3209 if (nm_may_forward_up(kring)) { 3210 /* transparent forwarding, see netmap_poll() */ 3211 netmap_grab_packets(kring, &q, netmap_fwd); 3212 } 3213 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) { 3214 nm_sync_finalize(kring); 3215 } 3216 ring_timestamp_set(ring); 3217 } 3218 nm_kr_put(kring); 3219 } 3220 3221 if (mbq_peek(&q)) { 3222 netmap_send_up(na->ifp, &q); 3223 } 3224 3225 break; 3226 } 3227 3228 default: { 3229 return netmap_ioctl_legacy(priv, cmd, data, td); 3230 break; 3231 } 3232 } 3233 3234 return (error); 3235 } 3236 3237 size_t 3238 nmreq_size_by_type(uint16_t nr_reqtype) 3239 { 3240 switch (nr_reqtype) { 3241 case NETMAP_REQ_REGISTER: 3242 return sizeof(struct nmreq_register); 3243 case NETMAP_REQ_PORT_INFO_GET: 3244 return sizeof(struct nmreq_port_info_get); 3245 case NETMAP_REQ_VALE_ATTACH: 3246 return sizeof(struct nmreq_vale_attach); 3247 case NETMAP_REQ_VALE_DETACH: 3248 return sizeof(struct nmreq_vale_detach); 3249 case NETMAP_REQ_VALE_LIST: 3250 return sizeof(struct nmreq_vale_list); 3251 case NETMAP_REQ_PORT_HDR_SET: 3252 case NETMAP_REQ_PORT_HDR_GET: 3253 return sizeof(struct nmreq_port_hdr); 3254 case NETMAP_REQ_VALE_NEWIF: 3255 return sizeof(struct nmreq_vale_newif); 3256 case NETMAP_REQ_VALE_DELIF: 3257 case NETMAP_REQ_SYNC_KLOOP_STOP: 3258 case NETMAP_REQ_CSB_ENABLE: 3259 return 0; 3260 case NETMAP_REQ_VALE_POLLING_ENABLE: 3261 case NETMAP_REQ_VALE_POLLING_DISABLE: 3262 return sizeof(struct nmreq_vale_polling); 3263 case NETMAP_REQ_POOLS_INFO_GET: 3264 return sizeof(struct nmreq_pools_info); 3265 case NETMAP_REQ_SYNC_KLOOP_START: 3266 return sizeof(struct nmreq_sync_kloop_start); 3267 } 3268 return 0; 3269 } 3270 3271 static size_t 3272 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size) 3273 { 3274 size_t rv = sizeof(struct nmreq_option); 3275 #ifdef NETMAP_REQ_OPT_DEBUG 3276 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG) 3277 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG); 3278 #endif /* NETMAP_REQ_OPT_DEBUG */ 3279 switch (nro_reqtype) { 3280 #ifdef WITH_EXTMEM 3281 case NETMAP_REQ_OPT_EXTMEM: 3282 rv = sizeof(struct nmreq_opt_extmem); 3283 break; 3284 #endif /* WITH_EXTMEM */ 3285 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS: 3286 if (nro_size >= rv) 3287 rv = nro_size; 3288 break; 3289 case NETMAP_REQ_OPT_CSB: 3290 rv = sizeof(struct nmreq_opt_csb); 3291 break; 3292 case NETMAP_REQ_OPT_SYNC_KLOOP_MODE: 3293 rv = sizeof(struct nmreq_opt_sync_kloop_mode); 3294 break; 3295 case NETMAP_REQ_OPT_OFFSETS: 3296 rv = sizeof(struct nmreq_opt_offsets); 3297 break; 3298 } 3299 /* subtract the common header */ 3300 return rv - sizeof(struct nmreq_option); 3301 } 3302 3303 /* 3304 * nmreq_copyin: create an in-kernel version of the request. 3305 * 3306 * We build the following data structure: 3307 * 3308 * hdr -> +-------+ buf 3309 * | | +---------------+ 3310 * +-------+ |usr body ptr | 3311 * |options|-. +---------------+ 3312 * +-------+ | |usr options ptr| 3313 * |body |--------->+---------------+ 3314 * +-------+ | | | 3315 * | | copy of body | 3316 * | | | 3317 * | +---------------+ 3318 * | | NULL | 3319 * | +---------------+ 3320 * | .---| |\ 3321 * | | +---------------+ | 3322 * | .------| | | 3323 * | | | +---------------+ \ option table 3324 * | | | | ... | / indexed by option 3325 * | | | +---------------+ | type 3326 * | | | | | | 3327 * | | | +---------------+/ 3328 * | | | |usr next ptr 1 | 3329 * `-|----->+---------------+ 3330 * | | | copy of opt 1 | 3331 * | | | | 3332 * | | .-| nro_next | 3333 * | | | +---------------+ 3334 * | | | |usr next ptr 2 | 3335 * | `-`>+---------------+ 3336 * | | copy of opt 2 | 3337 * | | | 3338 * | .-| nro_next | 3339 * | | +---------------+ 3340 * | | | | 3341 * ~ ~ ~ ... ~ 3342 * | .-| | 3343 * `----->+---------------+ 3344 * | |usr next ptr n | 3345 * `>+---------------+ 3346 * | copy of opt n | 3347 * | | 3348 * | nro_next(NULL)| 3349 * +---------------+ 3350 * 3351 * The options and body fields of the hdr structure are overwritten 3352 * with in-kernel valid pointers inside the buf. The original user 3353 * pointers are saved in the buf and restored on copyout. 3354 * The list of options is copied and the pointers adjusted. The 3355 * original pointers are saved before the option they belonged. 3356 * 3357 * The option table has an entry for every available option. Entries 3358 * for options that have not been passed contain NULL. 3359 * 3360 */ 3361 3362 int 3363 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user) 3364 { 3365 size_t rqsz, optsz, bufsz; 3366 int error = 0; 3367 char *ker = NULL, *p; 3368 struct nmreq_option **next, *src, **opt_tab; 3369 struct nmreq_option buf; 3370 uint64_t *ptrs; 3371 3372 if (hdr->nr_reserved) { 3373 if (netmap_verbose) 3374 nm_prerr("nr_reserved must be zero"); 3375 return EINVAL; 3376 } 3377 3378 if (!nr_body_is_user) 3379 return 0; 3380 3381 hdr->nr_reserved = nr_body_is_user; 3382 3383 /* compute the total size of the buffer */ 3384 rqsz = nmreq_size_by_type(hdr->nr_reqtype); 3385 if (rqsz > NETMAP_REQ_MAXSIZE) { 3386 error = EMSGSIZE; 3387 goto out_err; 3388 } 3389 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) || 3390 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) { 3391 /* Request body expected, but not found; or 3392 * request body found but unexpected. */ 3393 if (netmap_verbose) 3394 nm_prerr("nr_body expected but not found, or vice versa"); 3395 error = EINVAL; 3396 goto out_err; 3397 } 3398 3399 bufsz = 2 * sizeof(void *) + rqsz + 3400 NETMAP_REQ_OPT_MAX * sizeof(opt_tab); 3401 /* compute the size of the buf below the option table. 3402 * It must contain a copy of every received option structure. 3403 * For every option we also need to store a copy of the user 3404 * list pointer. 3405 */ 3406 optsz = 0; 3407 for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src; 3408 src = (struct nmreq_option *)(uintptr_t)buf.nro_next) 3409 { 3410 error = copyin(src, &buf, sizeof(*src)); 3411 if (error) 3412 goto out_err; 3413 optsz += sizeof(*src); 3414 optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size); 3415 if (rqsz + optsz > NETMAP_REQ_MAXSIZE) { 3416 error = EMSGSIZE; 3417 goto out_err; 3418 } 3419 bufsz += sizeof(void *); 3420 } 3421 bufsz += optsz; 3422 3423 ker = nm_os_malloc(bufsz); 3424 if (ker == NULL) { 3425 error = ENOMEM; 3426 goto out_err; 3427 } 3428 p = ker; /* write pointer into the buffer */ 3429 3430 /* make a copy of the user pointers */ 3431 ptrs = (uint64_t*)p; 3432 *ptrs++ = hdr->nr_body; 3433 *ptrs++ = hdr->nr_options; 3434 p = (char *)ptrs; 3435 3436 /* copy the body */ 3437 error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz); 3438 if (error) 3439 goto out_restore; 3440 /* overwrite the user pointer with the in-kernel one */ 3441 hdr->nr_body = (uintptr_t)p; 3442 p += rqsz; 3443 /* start of the options table */ 3444 opt_tab = (struct nmreq_option **)p; 3445 p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX; 3446 3447 /* copy the options */ 3448 next = (struct nmreq_option **)&hdr->nr_options; 3449 src = *next; 3450 while (src) { 3451 struct nmreq_option *opt; 3452 3453 /* copy the option header */ 3454 ptrs = (uint64_t *)p; 3455 opt = (struct nmreq_option *)(ptrs + 1); 3456 error = copyin(src, opt, sizeof(*src)); 3457 if (error) 3458 goto out_restore; 3459 /* make a copy of the user next pointer */ 3460 *ptrs = opt->nro_next; 3461 /* overwrite the user pointer with the in-kernel one */ 3462 *next = opt; 3463 3464 /* initialize the option as not supported. 3465 * Recognized options will update this field. 3466 */ 3467 opt->nro_status = EOPNOTSUPP; 3468 3469 /* check for invalid types */ 3470 if (opt->nro_reqtype < 1) { 3471 if (netmap_verbose) 3472 nm_prinf("invalid option type: %u", opt->nro_reqtype); 3473 opt->nro_status = EINVAL; 3474 error = EINVAL; 3475 goto next; 3476 } 3477 3478 if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) { 3479 /* opt->nro_status is already EOPNOTSUPP */ 3480 error = EOPNOTSUPP; 3481 goto next; 3482 } 3483 3484 /* if the type is valid, index the option in the table 3485 * unless it is a duplicate. 3486 */ 3487 if (opt_tab[opt->nro_reqtype] != NULL) { 3488 if (netmap_verbose) 3489 nm_prinf("duplicate option: %u", opt->nro_reqtype); 3490 opt->nro_status = EINVAL; 3491 opt_tab[opt->nro_reqtype]->nro_status = EINVAL; 3492 error = EINVAL; 3493 goto next; 3494 } 3495 opt_tab[opt->nro_reqtype] = opt; 3496 3497 p = (char *)(opt + 1); 3498 3499 /* copy the option body */ 3500 optsz = nmreq_opt_size_by_type(opt->nro_reqtype, 3501 opt->nro_size); 3502 if (optsz) { 3503 /* the option body follows the option header */ 3504 error = copyin(src + 1, p, optsz); 3505 if (error) 3506 goto out_restore; 3507 p += optsz; 3508 } 3509 3510 next: 3511 /* move to next option */ 3512 next = (struct nmreq_option **)&opt->nro_next; 3513 src = *next; 3514 } 3515 if (error) 3516 nmreq_copyout(hdr, error); 3517 return error; 3518 3519 out_restore: 3520 ptrs = (uint64_t *)ker; 3521 hdr->nr_body = *ptrs++; 3522 hdr->nr_options = *ptrs++; 3523 hdr->nr_reserved = 0; 3524 nm_os_free(ker); 3525 out_err: 3526 return error; 3527 } 3528 3529 static int 3530 nmreq_copyout(struct nmreq_header *hdr, int rerror) 3531 { 3532 struct nmreq_option *src, *dst; 3533 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart; 3534 uint64_t *ptrs; 3535 size_t bodysz; 3536 int error; 3537 3538 if (!hdr->nr_reserved) 3539 return rerror; 3540 3541 /* restore the user pointers in the header */ 3542 ptrs = (uint64_t *)ker - 2; 3543 bufstart = ptrs; 3544 hdr->nr_body = *ptrs++; 3545 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3546 hdr->nr_options = *ptrs; 3547 3548 if (!rerror) { 3549 /* copy the body */ 3550 bodysz = nmreq_size_by_type(hdr->nr_reqtype); 3551 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz); 3552 if (error) { 3553 rerror = error; 3554 goto out; 3555 } 3556 } 3557 3558 /* copy the options */ 3559 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3560 while (src) { 3561 size_t optsz; 3562 uint64_t next; 3563 3564 /* restore the user pointer */ 3565 next = src->nro_next; 3566 ptrs = (uint64_t *)src - 1; 3567 src->nro_next = *ptrs; 3568 3569 /* always copy the option header */ 3570 error = copyout(src, dst, sizeof(*src)); 3571 if (error) { 3572 rerror = error; 3573 goto out; 3574 } 3575 3576 /* copy the option body only if there was no error */ 3577 if (!rerror && !src->nro_status) { 3578 optsz = nmreq_opt_size_by_type(src->nro_reqtype, 3579 src->nro_size); 3580 if (optsz) { 3581 error = copyout(src + 1, dst + 1, optsz); 3582 if (error) { 3583 rerror = error; 3584 goto out; 3585 } 3586 } 3587 } 3588 src = (struct nmreq_option *)(uintptr_t)next; 3589 dst = (struct nmreq_option *)(uintptr_t)*ptrs; 3590 } 3591 3592 3593 out: 3594 hdr->nr_reserved = 0; 3595 nm_os_free(bufstart); 3596 return rerror; 3597 } 3598 3599 struct nmreq_option * 3600 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype) 3601 { 3602 struct nmreq_option **opt_tab; 3603 3604 if (!hdr->nr_options) 3605 return NULL; 3606 3607 opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) - 3608 (NETMAP_REQ_OPT_MAX + 1); 3609 return opt_tab[reqtype]; 3610 } 3611 3612 static int 3613 nmreq_checkoptions(struct nmreq_header *hdr) 3614 { 3615 struct nmreq_option *opt; 3616 /* return error if there is still any option 3617 * marked as not supported 3618 */ 3619 3620 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt; 3621 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3622 if (opt->nro_status == EOPNOTSUPP) 3623 return EOPNOTSUPP; 3624 3625 return 0; 3626 } 3627 3628 /* 3629 * select(2) and poll(2) handlers for the "netmap" device. 3630 * 3631 * Can be called for one or more queues. 3632 * Return true the event mask corresponding to ready events. 3633 * If there are no ready events (and 'sr' is not NULL), do a 3634 * selrecord on either individual selinfo or on the global one. 3635 * Device-dependent parts (locking and sync of tx/rx rings) 3636 * are done through callbacks. 3637 * 3638 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 3639 * The first one is remapped to pwait as selrecord() uses the name as an 3640 * hidden argument. 3641 */ 3642 int 3643 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr) 3644 { 3645 struct netmap_adapter *na; 3646 struct netmap_kring *kring; 3647 struct netmap_ring *ring; 3648 u_int i, want[NR_TXRX], revents = 0; 3649 NM_SELINFO_T *si[NR_TXRX]; 3650 #define want_tx want[NR_TX] 3651 #define want_rx want[NR_RX] 3652 struct mbq q; /* packets from RX hw queues to host stack */ 3653 3654 /* 3655 * In order to avoid nested locks, we need to "double check" 3656 * txsync and rxsync if we decide to do a selrecord(). 3657 * retry_tx (and retry_rx, later) prevent looping forever. 3658 */ 3659 int retry_tx = 1, retry_rx = 1; 3660 3661 /* Transparent mode: send_down is 1 if we have found some 3662 * packets to forward (host RX ring --> NIC) during the rx 3663 * scan and we have not sent them down to the NIC yet. 3664 * Transparent mode requires to bind all rings to a single 3665 * file descriptor. 3666 */ 3667 int send_down = 0; 3668 int sync_flags = priv->np_sync_flags; 3669 3670 mbq_init(&q); 3671 3672 if (unlikely(priv->np_nifp == NULL)) { 3673 return POLLERR; 3674 } 3675 mb(); /* make sure following reads are not from cache */ 3676 3677 na = priv->np_na; 3678 3679 if (unlikely(!nm_netmap_on(na))) 3680 return POLLERR; 3681 3682 if (unlikely(priv->np_csb_atok_base)) { 3683 nm_prerr("Invalid poll in CSB mode"); 3684 return POLLERR; 3685 } 3686 3687 if (netmap_debug & NM_DEBUG_ON) 3688 nm_prinf("device %s events 0x%x", na->name, events); 3689 want_tx = events & (POLLOUT | POLLWRNORM); 3690 want_rx = events & (POLLIN | POLLRDNORM); 3691 3692 /* 3693 * If the card has more than one queue AND the file descriptor is 3694 * bound to all of them, we sleep on the "global" selinfo, otherwise 3695 * we sleep on individual selinfo (FreeBSD only allows two selinfo's 3696 * per file descriptor). 3697 * The interrupt routine in the driver wake one or the other 3698 * (or both) depending on which clients are active. 3699 * 3700 * rxsync() is only called if we run out of buffers on a POLLIN. 3701 * txsync() is called if we run out of buffers on POLLOUT, or 3702 * there are pending packets to send. The latter can be disabled 3703 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 3704 */ 3705 si[NR_RX] = priv->np_si[NR_RX]; 3706 si[NR_TX] = priv->np_si[NR_TX]; 3707 3708 #ifdef __FreeBSD__ 3709 /* 3710 * We start with a lock free round which is cheap if we have 3711 * slots available. If this fails, then lock and call the sync 3712 * routines. We can't do this on Linux, as the contract says 3713 * that we must call nm_os_selrecord() unconditionally. 3714 */ 3715 if (want_tx) { 3716 const enum txrx t = NR_TX; 3717 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3718 kring = NMR(na, t)[i]; 3719 if (kring->ring->cur != kring->ring->tail) { 3720 /* Some unseen TX space is available, so what 3721 * we don't need to run txsync. */ 3722 revents |= want[t]; 3723 want[t] = 0; 3724 break; 3725 } 3726 } 3727 } 3728 if (want_rx) { 3729 const enum txrx t = NR_RX; 3730 int rxsync_needed = 0; 3731 3732 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3733 kring = NMR(na, t)[i]; 3734 if (kring->ring->cur == kring->ring->tail 3735 || kring->rhead != kring->ring->head) { 3736 /* There are no unseen packets on this ring, 3737 * or there are some buffers to be returned 3738 * to the netmap port. We therefore go ahead 3739 * and run rxsync. */ 3740 rxsync_needed = 1; 3741 break; 3742 } 3743 } 3744 if (!rxsync_needed) { 3745 revents |= want_rx; 3746 want_rx = 0; 3747 } 3748 } 3749 #endif 3750 3751 #ifdef linux 3752 /* The selrecord must be unconditional on linux. */ 3753 nm_os_selrecord(sr, si[NR_RX]); 3754 nm_os_selrecord(sr, si[NR_TX]); 3755 #endif /* linux */ 3756 3757 /* 3758 * If we want to push packets out (priv->np_txpoll) or 3759 * want_tx is still set, we must issue txsync calls 3760 * (on all rings, to avoid that the tx rings stall). 3761 * Fortunately, normal tx mode has np_txpoll set. 3762 */ 3763 if (priv->np_txpoll || want_tx) { 3764 /* 3765 * The first round checks if anyone is ready, if not 3766 * do a selrecord and another round to handle races. 3767 * want_tx goes to 0 if any space is found, and is 3768 * used to skip rings with no pending transmissions. 3769 */ 3770 flush_tx: 3771 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) { 3772 int found = 0; 3773 3774 kring = na->tx_rings[i]; 3775 ring = kring->ring; 3776 3777 /* 3778 * Don't try to txsync this TX ring if we already found some 3779 * space in some of the TX rings (want_tx == 0) and there are no 3780 * TX slots in this ring that need to be flushed to the NIC 3781 * (head == hwcur). 3782 */ 3783 if (!send_down && !want_tx && ring->head == kring->nr_hwcur) 3784 continue; 3785 3786 if (nm_kr_tryget(kring, 1, &revents)) 3787 continue; 3788 3789 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3790 netmap_ring_reinit(kring); 3791 revents |= POLLERR; 3792 } else { 3793 if (kring->nm_sync(kring, sync_flags)) 3794 revents |= POLLERR; 3795 else 3796 nm_sync_finalize(kring); 3797 } 3798 3799 /* 3800 * If we found new slots, notify potential 3801 * listeners on the same ring. 3802 * Since we just did a txsync, look at the copies 3803 * of cur,tail in the kring. 3804 */ 3805 found = kring->rcur != kring->rtail; 3806 nm_kr_put(kring); 3807 if (found) { /* notify other listeners */ 3808 revents |= want_tx; 3809 want_tx = 0; 3810 #ifndef linux 3811 kring->nm_notify(kring, 0); 3812 #endif /* linux */ 3813 } 3814 } 3815 /* if there were any packet to forward we must have handled them by now */ 3816 send_down = 0; 3817 if (want_tx && retry_tx && sr) { 3818 #ifndef linux 3819 nm_os_selrecord(sr, si[NR_TX]); 3820 #endif /* !linux */ 3821 retry_tx = 0; 3822 goto flush_tx; 3823 } 3824 } 3825 3826 /* 3827 * If want_rx is still set scan receive rings. 3828 * Do it on all rings because otherwise we starve. 3829 */ 3830 if (want_rx) { 3831 /* two rounds here for race avoidance */ 3832 do_retry_rx: 3833 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) { 3834 int found = 0; 3835 3836 kring = na->rx_rings[i]; 3837 ring = kring->ring; 3838 3839 if (unlikely(nm_kr_tryget(kring, 1, &revents))) 3840 continue; 3841 3842 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3843 netmap_ring_reinit(kring); 3844 revents |= POLLERR; 3845 } 3846 /* now we can use kring->rcur, rtail */ 3847 3848 /* 3849 * transparent mode support: collect packets from 3850 * hw rxring(s) that have been released by the user 3851 */ 3852 if (nm_may_forward_up(kring)) { 3853 netmap_grab_packets(kring, &q, netmap_fwd); 3854 } 3855 3856 /* Clear the NR_FORWARD flag anyway, it may be set by 3857 * the nm_sync() below only on for the host RX ring (see 3858 * netmap_rxsync_from_host()). */ 3859 kring->nr_kflags &= ~NR_FORWARD; 3860 if (kring->nm_sync(kring, sync_flags)) 3861 revents |= POLLERR; 3862 else 3863 nm_sync_finalize(kring); 3864 send_down |= (kring->nr_kflags & NR_FORWARD); 3865 ring_timestamp_set(ring); 3866 found = kring->rcur != kring->rtail; 3867 nm_kr_put(kring); 3868 if (found) { 3869 revents |= want_rx; 3870 retry_rx = 0; 3871 #ifndef linux 3872 kring->nm_notify(kring, 0); 3873 #endif /* linux */ 3874 } 3875 } 3876 3877 #ifndef linux 3878 if (retry_rx && sr) { 3879 nm_os_selrecord(sr, si[NR_RX]); 3880 } 3881 #endif /* !linux */ 3882 if (send_down || retry_rx) { 3883 retry_rx = 0; 3884 if (send_down) 3885 goto flush_tx; /* and retry_rx */ 3886 else 3887 goto do_retry_rx; 3888 } 3889 } 3890 3891 /* 3892 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and 3893 * ring->head) marked with NS_FORWARD on hw rx rings are passed up 3894 * to the host stack. 3895 */ 3896 3897 if (mbq_peek(&q)) { 3898 netmap_send_up(na->ifp, &q); 3899 } 3900 3901 return (revents); 3902 #undef want_tx 3903 #undef want_rx 3904 } 3905 3906 int 3907 nma_intr_enable(struct netmap_adapter *na, int onoff) 3908 { 3909 bool changed = false; 3910 enum txrx t; 3911 int i; 3912 3913 for_rx_tx(t) { 3914 for (i = 0; i < nma_get_nrings(na, t); i++) { 3915 struct netmap_kring *kring = NMR(na, t)[i]; 3916 int on = !(kring->nr_kflags & NKR_NOINTR); 3917 3918 if (!!onoff != !!on) { 3919 changed = true; 3920 } 3921 if (onoff) { 3922 kring->nr_kflags &= ~NKR_NOINTR; 3923 } else { 3924 kring->nr_kflags |= NKR_NOINTR; 3925 } 3926 } 3927 } 3928 3929 if (!changed) { 3930 return 0; /* nothing to do */ 3931 } 3932 3933 if (!na->nm_intr) { 3934 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable", 3935 na->name); 3936 return -1; 3937 } 3938 3939 na->nm_intr(na, onoff); 3940 3941 return 0; 3942 } 3943 3944 3945 /*-------------------- driver support routines -------------------*/ 3946 3947 /* default notify callback */ 3948 static int 3949 netmap_notify(struct netmap_kring *kring, int flags) 3950 { 3951 struct netmap_adapter *na = kring->notify_na; 3952 enum txrx t = kring->tx; 3953 3954 nm_os_selwakeup(&kring->si); 3955 /* optimization: avoid a wake up on the global 3956 * queue if nobody has registered for more 3957 * than one ring 3958 */ 3959 if (na->si_users[t] > 0) 3960 nm_os_selwakeup(&na->si[t]); 3961 3962 return NM_IRQ_COMPLETED; 3963 } 3964 3965 /* called by all routines that create netmap_adapters. 3966 * provide some defaults and get a reference to the 3967 * memory allocator 3968 */ 3969 int 3970 netmap_attach_common(struct netmap_adapter *na) 3971 { 3972 if (!na->rx_buf_maxsize) { 3973 /* Set a conservative default (larger is safer). */ 3974 na->rx_buf_maxsize = PAGE_SIZE; 3975 } 3976 3977 #ifdef __FreeBSD__ 3978 if (na->na_flags & NAF_HOST_RINGS && na->ifp) { 3979 na->if_input = na->ifp->if_input; /* for netmap_send_up */ 3980 } 3981 na->pdev = na; /* make sure netmap_mem_map() is called */ 3982 #endif /* __FreeBSD__ */ 3983 if (na->na_flags & NAF_HOST_RINGS) { 3984 if (na->num_host_rx_rings == 0) 3985 na->num_host_rx_rings = 1; 3986 if (na->num_host_tx_rings == 0) 3987 na->num_host_tx_rings = 1; 3988 } 3989 if (na->nm_krings_create == NULL) { 3990 /* we assume that we have been called by a driver, 3991 * since other port types all provide their own 3992 * nm_krings_create 3993 */ 3994 na->nm_krings_create = netmap_hw_krings_create; 3995 na->nm_krings_delete = netmap_hw_krings_delete; 3996 } 3997 if (na->nm_notify == NULL) 3998 na->nm_notify = netmap_notify; 3999 na->active_fds = 0; 4000 4001 if (na->nm_mem == NULL) { 4002 /* use iommu or global allocator */ 4003 na->nm_mem = netmap_mem_get_iommu(na); 4004 } 4005 if (na->nm_bdg_attach == NULL) 4006 /* no special nm_bdg_attach callback. On VALE 4007 * attach, we need to interpose a bwrap 4008 */ 4009 na->nm_bdg_attach = netmap_default_bdg_attach; 4010 4011 return 0; 4012 } 4013 4014 /* Wrapper for the register callback provided netmap-enabled 4015 * hardware drivers. 4016 * nm_iszombie(na) means that the driver module has been 4017 * unloaded, so we cannot call into it. 4018 * nm_os_ifnet_lock() must guarantee mutual exclusion with 4019 * module unloading. 4020 */ 4021 static int 4022 netmap_hw_reg(struct netmap_adapter *na, int onoff) 4023 { 4024 struct netmap_hw_adapter *hwna = 4025 (struct netmap_hw_adapter*)na; 4026 int error = 0; 4027 4028 nm_os_ifnet_lock(); 4029 4030 if (nm_iszombie(na)) { 4031 if (onoff) { 4032 error = ENXIO; 4033 } else if (na != NULL) { 4034 na->na_flags &= ~NAF_NETMAP_ON; 4035 } 4036 goto out; 4037 } 4038 4039 error = hwna->nm_hw_register(na, onoff); 4040 4041 out: 4042 nm_os_ifnet_unlock(); 4043 4044 return error; 4045 } 4046 4047 static void 4048 netmap_hw_dtor(struct netmap_adapter *na) 4049 { 4050 if (na->ifp == NULL) 4051 return; 4052 4053 NM_DETACH_NA(na->ifp); 4054 } 4055 4056 4057 /* 4058 * Allocate a netmap_adapter object, and initialize it from the 4059 * 'arg' passed by the driver on attach. 4060 * We allocate a block of memory of 'size' bytes, which has room 4061 * for struct netmap_adapter plus additional room private to 4062 * the caller. 4063 * Return 0 on success, ENOMEM otherwise. 4064 */ 4065 int 4066 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg) 4067 { 4068 struct netmap_hw_adapter *hwna = NULL; 4069 struct ifnet *ifp = NULL; 4070 4071 if (size < sizeof(struct netmap_hw_adapter)) { 4072 if (netmap_debug & NM_DEBUG_ON) 4073 nm_prerr("Invalid netmap adapter size %d", (int)size); 4074 return EINVAL; 4075 } 4076 4077 if (arg == NULL || arg->ifp == NULL) { 4078 if (netmap_debug & NM_DEBUG_ON) 4079 nm_prerr("either arg or arg->ifp is NULL"); 4080 return EINVAL; 4081 } 4082 4083 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) { 4084 if (netmap_debug & NM_DEBUG_ON) 4085 nm_prerr("%s: invalid rings tx %d rx %d", 4086 arg->name, arg->num_tx_rings, arg->num_rx_rings); 4087 return EINVAL; 4088 } 4089 4090 ifp = arg->ifp; 4091 if (NM_NA_CLASH(ifp)) { 4092 /* If NA(ifp) is not null but there is no valid netmap 4093 * adapter it means that someone else is using the same 4094 * pointer (e.g. ax25_ptr on linux). This happens for 4095 * instance when also PF_RING is in use. */ 4096 nm_prerr("Error: netmap adapter hook is busy"); 4097 return EBUSY; 4098 } 4099 4100 hwna = nm_os_malloc(size); 4101 if (hwna == NULL) 4102 goto fail; 4103 hwna->up = *arg; 4104 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE; 4105 strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name)); 4106 if (override_reg) { 4107 hwna->nm_hw_register = hwna->up.nm_register; 4108 hwna->up.nm_register = netmap_hw_reg; 4109 } 4110 if (netmap_attach_common(&hwna->up)) { 4111 nm_os_free(hwna); 4112 goto fail; 4113 } 4114 netmap_adapter_get(&hwna->up); 4115 4116 NM_ATTACH_NA(ifp, &hwna->up); 4117 4118 nm_os_onattach(ifp); 4119 4120 if (arg->nm_dtor == NULL) { 4121 hwna->up.nm_dtor = netmap_hw_dtor; 4122 } 4123 4124 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n", 4125 hwna->up.num_tx_rings, hwna->up.num_tx_desc, 4126 hwna->up.num_rx_rings, hwna->up.num_rx_desc); 4127 return 0; 4128 4129 fail: 4130 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna); 4131 return (hwna ? EINVAL : ENOMEM); 4132 } 4133 4134 4135 int 4136 netmap_attach(struct netmap_adapter *arg) 4137 { 4138 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter), 4139 1 /* override nm_reg */); 4140 } 4141 4142 4143 void 4144 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 4145 { 4146 if (!na) { 4147 return; 4148 } 4149 4150 refcount_acquire(&na->na_refcount); 4151 } 4152 4153 4154 /* returns 1 iff the netmap_adapter is destroyed */ 4155 int 4156 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 4157 { 4158 if (!na) 4159 return 1; 4160 4161 if (!refcount_release(&na->na_refcount)) 4162 return 0; 4163 4164 if (na->nm_dtor) 4165 na->nm_dtor(na); 4166 4167 if (na->tx_rings) { /* XXX should not happen */ 4168 if (netmap_debug & NM_DEBUG_ON) 4169 nm_prerr("freeing leftover tx_rings"); 4170 na->nm_krings_delete(na); 4171 } 4172 netmap_pipe_dealloc(na); 4173 if (na->nm_mem) 4174 netmap_mem_put(na->nm_mem); 4175 bzero(na, sizeof(*na)); 4176 nm_os_free(na); 4177 4178 return 1; 4179 } 4180 4181 /* nm_krings_create callback for all hardware native adapters */ 4182 int 4183 netmap_hw_krings_create(struct netmap_adapter *na) 4184 { 4185 int ret = netmap_krings_create(na, 0); 4186 if (ret == 0) { 4187 /* initialize the mbq for the sw rx ring */ 4188 u_int lim = netmap_real_rings(na, NR_RX), i; 4189 for (i = na->num_rx_rings; i < lim; i++) { 4190 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue); 4191 } 4192 nm_prdis("initialized sw rx queue %d", na->num_rx_rings); 4193 } 4194 return ret; 4195 } 4196 4197 4198 4199 /* 4200 * Called on module unload by the netmap-enabled drivers 4201 */ 4202 void 4203 netmap_detach(struct ifnet *ifp) 4204 { 4205 struct netmap_adapter *na; 4206 4207 NMG_LOCK(); 4208 4209 if (!NM_NA_VALID(ifp)) { 4210 NMG_UNLOCK(); 4211 return; 4212 } 4213 4214 na = NA(ifp); 4215 netmap_set_all_rings(na, NM_KR_LOCKED); 4216 /* 4217 * if the netmap adapter is not native, somebody 4218 * changed it, so we can not release it here. 4219 * The NAF_ZOMBIE flag will notify the new owner that 4220 * the driver is gone. 4221 */ 4222 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) { 4223 na->na_flags |= NAF_ZOMBIE; 4224 } 4225 /* give active users a chance to notice that NAF_ZOMBIE has been 4226 * turned on, so that they can stop and return an error to userspace. 4227 * Note that this becomes a NOP if there are no active users and, 4228 * therefore, the put() above has deleted the na, since now NA(ifp) is 4229 * NULL. 4230 */ 4231 netmap_enable_all_rings(ifp); 4232 NMG_UNLOCK(); 4233 } 4234 4235 4236 /* 4237 * Intercept packets from the network stack and pass them 4238 * to netmap as incoming packets on the 'software' ring. 4239 * 4240 * We only store packets in a bounded mbq and then copy them 4241 * in the relevant rxsync routine. 4242 * 4243 * We rely on the OS to make sure that the ifp and na do not go 4244 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 4245 * In nm_register() or whenever there is a reinitialization, 4246 * we make sure to make the mode change visible here. 4247 */ 4248 int 4249 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 4250 { 4251 struct netmap_adapter *na = NA(ifp); 4252 struct netmap_kring *kring, *tx_kring; 4253 u_int len = MBUF_LEN(m); 4254 u_int error = ENOBUFS; 4255 unsigned int txr; 4256 struct mbq *q; 4257 int busy; 4258 u_int i; 4259 4260 i = MBUF_TXQ(m); 4261 if (i >= na->num_host_rx_rings) { 4262 i = i % na->num_host_rx_rings; 4263 } 4264 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i]; 4265 4266 // XXX [Linux] we do not need this lock 4267 // if we follow the down/configure/up protocol -gl 4268 // mtx_lock(&na->core_lock); 4269 4270 if (!nm_netmap_on(na)) { 4271 nm_prerr("%s not in netmap mode anymore", na->name); 4272 error = ENXIO; 4273 goto done; 4274 } 4275 4276 txr = MBUF_TXQ(m); 4277 if (txr >= na->num_tx_rings) { 4278 txr %= na->num_tx_rings; 4279 } 4280 tx_kring = NMR(na, NR_TX)[txr]; 4281 4282 if (tx_kring->nr_mode == NKR_NETMAP_OFF) { 4283 return MBUF_TRANSMIT(na, ifp, m); 4284 } 4285 4286 q = &kring->rx_queue; 4287 4288 // XXX reconsider long packets if we handle fragments 4289 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */ 4290 nm_prerr("%s from_host, drop packet size %d > %d", na->name, 4291 len, NETMAP_BUF_SIZE(na)); 4292 goto done; 4293 } 4294 4295 if (!netmap_generic_hwcsum) { 4296 if (nm_os_mbuf_has_csum_offld(m)) { 4297 nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name); 4298 goto done; 4299 } 4300 } 4301 4302 if (nm_os_mbuf_has_seg_offld(m)) { 4303 nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name); 4304 goto done; 4305 } 4306 4307 #ifdef __FreeBSD__ 4308 ETHER_BPF_MTAP(ifp, m); 4309 #endif /* __FreeBSD__ */ 4310 4311 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic() 4312 * and maybe other instances of netmap_transmit (the latter 4313 * not possible on Linux). 4314 * We enqueue the mbuf only if we are sure there is going to be 4315 * enough room in the host RX ring, otherwise we drop it. 4316 */ 4317 mbq_lock(q); 4318 4319 busy = kring->nr_hwtail - kring->nr_hwcur; 4320 if (busy < 0) 4321 busy += kring->nkr_num_slots; 4322 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) { 4323 nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name, 4324 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q)); 4325 } else { 4326 mbq_enqueue(q, m); 4327 nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q)); 4328 /* notify outside the lock */ 4329 m = NULL; 4330 error = 0; 4331 } 4332 mbq_unlock(q); 4333 4334 done: 4335 if (m) 4336 m_freem(m); 4337 /* unconditionally wake up listeners */ 4338 kring->nm_notify(kring, 0); 4339 /* this is normally netmap_notify(), but for nics 4340 * connected to a bridge it is netmap_bwrap_intr_notify(), 4341 * that possibly forwards the frames through the switch 4342 */ 4343 4344 return (error); 4345 } 4346 4347 4348 /* 4349 * Reset function to be called by the driver routines when reinitializing 4350 * a hardware ring. The driver is in charge of locking to protect the kring 4351 * while this operation is being performed. This is normally achieved by 4352 * calling netmap_disable_all_rings() before triggering a reset. 4353 * If the kring is not in netmap mode, return NULL to inform the caller 4354 * that this is the case. 4355 * If the kring is in netmap mode, set hwofs so that the netmap indices 4356 * seen by userspace (head/cut/tail) do not change, although the internal 4357 * NIC indices have been reset to 0. 4358 * In any case, adjust kring->nr_mode. 4359 */ 4360 struct netmap_slot * 4361 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 4362 u_int new_cur) 4363 { 4364 struct netmap_kring *kring; 4365 u_int new_hwtail, new_hwofs; 4366 4367 if (!nm_native_on(na)) { 4368 nm_prdis("interface not in native netmap mode"); 4369 return NULL; /* nothing to reinitialize */ 4370 } 4371 4372 if (tx == NR_TX) { 4373 if (n >= na->num_tx_rings) 4374 return NULL; 4375 kring = na->tx_rings[n]; 4376 /* 4377 * Set hwofs to rhead, so that slots[rhead] is mapped to 4378 * the NIC internal slot 0, and thus the netmap buffer 4379 * at rhead is the next to be transmitted. Transmissions 4380 * that were pending before the reset are considered as 4381 * sent, so that we can have hwcur = rhead. All the slots 4382 * are now owned by the user, so we can also reinit hwtail. 4383 */ 4384 new_hwofs = kring->rhead; 4385 new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1); 4386 } else { 4387 if (n >= na->num_rx_rings) 4388 return NULL; 4389 kring = na->rx_rings[n]; 4390 /* 4391 * Set hwofs to hwtail, so that slots[hwtail] is mapped to 4392 * the NIC internal slot 0, and thus the netmap buffer 4393 * at hwtail is the next to be given to the NIC. 4394 * Unread slots (the ones in [rhead,hwtail[) are owned by 4395 * the user, and thus the caller cannot give them 4396 * to the NIC right now. 4397 */ 4398 new_hwofs = kring->nr_hwtail; 4399 new_hwtail = kring->nr_hwtail; 4400 } 4401 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 4402 kring->nr_mode = NKR_NETMAP_OFF; 4403 return NULL; 4404 } 4405 if (netmap_verbose) { 4406 nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name, 4407 kring->nr_hwcur, kring->rhead, 4408 kring->nr_hwtail, new_hwtail, 4409 kring->nkr_hwofs, new_hwofs); 4410 } 4411 kring->nr_hwcur = kring->rhead; 4412 kring->nr_hwtail = new_hwtail; 4413 kring->nkr_hwofs = new_hwofs; 4414 4415 /* 4416 * Wakeup on the individual and global selwait 4417 * We do the wakeup here, but the ring is not yet reconfigured. 4418 * However, we are under lock so there are no races. 4419 */ 4420 kring->nr_mode = NKR_NETMAP_ON; 4421 kring->nm_notify(kring, 0); 4422 return kring->ring->slot; 4423 } 4424 4425 4426 /* 4427 * Dispatch rx/tx interrupts to the netmap rings. 4428 * 4429 * "work_done" is non-null on the RX path, NULL for the TX path. 4430 * We rely on the OS to make sure that there is only one active 4431 * instance per queue, and that there is appropriate locking. 4432 * 4433 * The 'notify' routine depends on what the ring is attached to. 4434 * - for a netmap file descriptor, do a selwakeup on the individual 4435 * waitqueue, plus one on the global one if needed 4436 * (see netmap_notify) 4437 * - for a nic connected to a switch, call the proper forwarding routine 4438 * (see netmap_bwrap_intr_notify) 4439 */ 4440 int 4441 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 4442 { 4443 struct netmap_kring *kring; 4444 enum txrx t = (work_done ? NR_RX : NR_TX); 4445 4446 q &= NETMAP_RING_MASK; 4447 4448 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) { 4449 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 4450 } 4451 4452 if (q >= nma_get_nrings(na, t)) 4453 return NM_IRQ_PASS; // not a physical queue 4454 4455 kring = NMR(na, t)[q]; 4456 4457 if (kring->nr_mode == NKR_NETMAP_OFF) { 4458 return NM_IRQ_PASS; 4459 } 4460 4461 if (t == NR_RX) { 4462 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 4463 *work_done = 1; /* do not fire napi again */ 4464 } 4465 4466 return kring->nm_notify(kring, 0); 4467 } 4468 4469 4470 /* 4471 * Default functions to handle rx/tx interrupts from a physical device. 4472 * "work_done" is non-null on the RX path, NULL for the TX path. 4473 * 4474 * If the card is not in netmap mode, simply return NM_IRQ_PASS, 4475 * so that the caller proceeds with regular processing. 4476 * Otherwise call netmap_common_irq(). 4477 * 4478 * If the card is connected to a netmap file descriptor, 4479 * do a selwakeup on the individual queue, plus one on the global one 4480 * if needed (multiqueue card _and_ there are multiqueue listeners), 4481 * and return NR_IRQ_COMPLETED. 4482 * 4483 * Finally, if called on rx from an interface connected to a switch, 4484 * calls the proper forwarding routine. 4485 */ 4486 int 4487 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 4488 { 4489 struct netmap_adapter *na = NA(ifp); 4490 4491 /* 4492 * XXX emulated netmap mode sets NAF_SKIP_INTR so 4493 * we still use the regular driver even though the previous 4494 * check fails. It is unclear whether we should use 4495 * nm_native_on() here. 4496 */ 4497 if (!nm_netmap_on(na)) 4498 return NM_IRQ_PASS; 4499 4500 if (na->na_flags & NAF_SKIP_INTR) { 4501 nm_prdis("use regular interrupt"); 4502 return NM_IRQ_PASS; 4503 } 4504 4505 return netmap_common_irq(na, q, work_done); 4506 } 4507 4508 /* set/clear native flags and if_transmit/netdev_ops */ 4509 void 4510 nm_set_native_flags(struct netmap_adapter *na) 4511 { 4512 struct ifnet *ifp = na->ifp; 4513 4514 /* We do the setup for intercepting packets only if we are the 4515 * first user of this adapter. */ 4516 if (na->active_fds > 0) { 4517 return; 4518 } 4519 4520 na->na_flags |= NAF_NETMAP_ON; 4521 nm_os_onenter(ifp); 4522 netmap_update_hostrings_mode(na); 4523 } 4524 4525 void 4526 nm_clear_native_flags(struct netmap_adapter *na) 4527 { 4528 struct ifnet *ifp = na->ifp; 4529 4530 /* We undo the setup for intercepting packets only if we are the 4531 * last user of this adapter. */ 4532 if (na->active_fds > 0) { 4533 return; 4534 } 4535 4536 netmap_update_hostrings_mode(na); 4537 nm_os_onexit(ifp); 4538 4539 na->na_flags &= ~NAF_NETMAP_ON; 4540 } 4541 4542 void 4543 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff) 4544 { 4545 enum txrx t; 4546 4547 for_rx_tx(t) { 4548 int i; 4549 4550 for (i = 0; i < netmap_real_rings(na, t); i++) { 4551 struct netmap_kring *kring = NMR(na, t)[i]; 4552 4553 if (onoff && nm_kring_pending_on(kring)) 4554 kring->nr_mode = NKR_NETMAP_ON; 4555 else if (!onoff && nm_kring_pending_off(kring)) 4556 kring->nr_mode = NKR_NETMAP_OFF; 4557 } 4558 } 4559 } 4560 4561 /* 4562 * Module loader and unloader 4563 * 4564 * netmap_init() creates the /dev/netmap device and initializes 4565 * all global variables. Returns 0 on success, errno on failure 4566 * (but there is no chance) 4567 * 4568 * netmap_fini() destroys everything. 4569 */ 4570 4571 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 4572 extern struct cdevsw netmap_cdevsw; 4573 4574 4575 void 4576 netmap_fini(void) 4577 { 4578 if (netmap_dev) 4579 destroy_dev(netmap_dev); 4580 /* we assume that there are no longer netmap users */ 4581 nm_os_ifnet_fini(); 4582 netmap_uninit_bridges(); 4583 netmap_mem_fini(); 4584 NMG_LOCK_DESTROY(); 4585 nm_prinf("netmap: unloaded module."); 4586 } 4587 4588 4589 int 4590 netmap_init(void) 4591 { 4592 int error; 4593 4594 NMG_LOCK_INIT(); 4595 4596 error = netmap_mem_init(); 4597 if (error != 0) 4598 goto fail; 4599 /* 4600 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls 4601 * when the module is compiled in. 4602 * XXX could use make_dev_credv() to get error number 4603 */ 4604 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD, 4605 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, 4606 "netmap"); 4607 if (!netmap_dev) 4608 goto fail; 4609 4610 error = netmap_init_bridges(); 4611 if (error) 4612 goto fail; 4613 4614 #ifdef __FreeBSD__ 4615 nm_os_vi_init_index(); 4616 #endif 4617 4618 error = nm_os_ifnet_init(); 4619 if (error) 4620 goto fail; 4621 4622 #if !defined(__FreeBSD__) || defined(KLD_MODULE) 4623 nm_prinf("netmap: loaded module"); 4624 #endif 4625 return (0); 4626 fail: 4627 netmap_fini(); 4628 return (EINVAL); /* may be incorrect */ 4629 } 4630