1 /* 2 * Copyright (C) 2011-2012 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 62 #ifdef __APPLE__ 63 #include "osx_glue.h" 64 #endif /* __APPLE__ */ 65 66 #ifdef __FreeBSD__ 67 #include <sys/cdefs.h> /* prerequisite */ 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/types.h> 71 #include <sys/module.h> 72 #include <sys/errno.h> 73 #include <sys/param.h> /* defines used in kernel.h */ 74 #include <sys/jail.h> 75 #include <sys/kernel.h> /* types used in module initialization */ 76 #include <sys/conf.h> /* cdevsw struct */ 77 #include <sys/uio.h> /* uio struct */ 78 #include <sys/sockio.h> 79 #include <sys/socketvar.h> /* struct socket */ 80 #include <sys/malloc.h> 81 #include <sys/mman.h> /* PROT_EXEC */ 82 #include <sys/poll.h> 83 #include <sys/proc.h> 84 #include <vm/vm.h> /* vtophys */ 85 #include <vm/pmap.h> /* vtophys */ 86 #include <sys/socket.h> /* sockaddrs */ 87 #include <machine/bus.h> 88 #include <sys/selinfo.h> 89 #include <sys/sysctl.h> 90 #include <net/if.h> 91 #include <net/bpf.h> /* BIOCIMMEDIATE */ 92 #include <net/vnet.h> 93 #include <machine/bus.h> /* bus_dmamap_* */ 94 95 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 96 #endif /* __FreeBSD__ */ 97 98 #include <net/netmap.h> 99 #include <dev/netmap/netmap_kern.h> 100 101 /* 102 * lock and unlock for the netmap memory allocator 103 */ 104 #define NMA_LOCK() mtx_lock(&nm_mem->nm_mtx); 105 #define NMA_UNLOCK() mtx_unlock(&nm_mem->nm_mtx); 106 struct netmap_mem_d; 107 static struct netmap_mem_d *nm_mem; /* Our memory allocator. */ 108 109 u_int netmap_total_buffers; 110 char *netmap_buffer_base; /* address of an invalid buffer */ 111 112 /* user-controlled variables */ 113 int netmap_verbose; 114 115 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 116 117 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 118 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 119 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 120 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 121 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 122 u_int netmap_buf_size = 2048; 123 TUNABLE_INT("hw.netmap.buf_size", (u_int *)&netmap_buf_size); 124 SYSCTL_INT(_dev_netmap, OID_AUTO, buf_size, 125 CTLFLAG_RD, &netmap_buf_size, 0, "Size of packet buffers"); 126 int netmap_mitigate = 1; 127 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 128 int netmap_no_pendintr = 1; 129 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 130 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 131 132 int netmap_drop = 0; /* debugging */ 133 int netmap_flags = 0; /* debug flags */ 134 int netmap_copy = 0; /* debugging, copy content */ 135 136 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 137 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 138 SYSCTL_INT(_dev_netmap, OID_AUTO, copy, CTLFLAG_RW, &netmap_copy, 0 , ""); 139 140 #ifdef NM_BRIDGE /* support for netmap bridge */ 141 142 /* 143 * system parameters. 144 * 145 * All switched ports have prefix NM_NAME. 146 * The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap, 147 * so a practical upper bound is 64). 148 * Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet). 149 * The virtual interfaces use per-queue lock instead of core lock. 150 * In the tx loop, we aggregate traffic in batches to make all operations 151 * faster. The batch size is NM_BDG_BATCH 152 */ 153 #define NM_NAME "vale" /* prefix for the interface */ 154 #define NM_BDG_MAXPORTS 16 /* up to 64 ? */ 155 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 156 #define NM_BDG_HASH 1024 /* forwarding table entries */ 157 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 158 #define NM_BRIDGES 4 /* number of bridges */ 159 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 160 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 161 162 #ifdef linux 163 #define ADD_BDG_REF(ifp) (NA(ifp)->if_refcount++) 164 #define DROP_BDG_REF(ifp) (NA(ifp)->if_refcount-- <= 1) 165 #else /* !linux */ 166 #define ADD_BDG_REF(ifp) (ifp)->if_refcount++ 167 #define DROP_BDG_REF(ifp) refcount_release(&(ifp)->if_refcount) 168 #ifdef __FreeBSD__ 169 #include <sys/endian.h> 170 #include <sys/refcount.h> 171 #endif /* __FreeBSD__ */ 172 #define prefetch(x) __builtin_prefetch(x) 173 #endif /* !linux */ 174 175 static void bdg_netmap_attach(struct ifnet *ifp); 176 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 177 /* per-tx-queue entry */ 178 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 179 void *buf; 180 uint64_t dst; /* dst mask */ 181 uint32_t src; /* src index ? */ 182 uint16_t len; /* src len */ 183 }; 184 185 struct nm_hash_ent { 186 uint64_t mac; /* the top 2 bytes are the epoch */ 187 uint64_t ports; 188 }; 189 190 /* 191 * Interfaces for a bridge are all in ports[]. 192 * The array has fixed size, an empty entry does not terminate 193 * the search. 194 */ 195 struct nm_bridge { 196 struct ifnet *bdg_ports[NM_BDG_MAXPORTS]; 197 int n_ports; 198 uint64_t act_ports; 199 int freelist; /* first buffer index */ 200 NM_SELINFO_T si; /* poll/select wait queue */ 201 NM_LOCK_T bdg_lock; /* protect the selinfo ? */ 202 203 /* the forwarding table, MAC+ports */ 204 struct nm_hash_ent ht[NM_BDG_HASH]; 205 206 int namelen; /* 0 means free */ 207 char basename[IFNAMSIZ]; 208 }; 209 210 struct nm_bridge nm_bridges[NM_BRIDGES]; 211 212 #define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock) 213 #define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock) 214 215 /* 216 * NA(ifp)->bdg_port port index 217 */ 218 219 // XXX only for multiples of 64 bytes, non overlapped. 220 static inline void 221 pkt_copy(void *_src, void *_dst, int l) 222 { 223 uint64_t *src = _src; 224 uint64_t *dst = _dst; 225 if (unlikely(l >= 1024)) { 226 bcopy(src, dst, l); 227 return; 228 } 229 for (; likely(l > 0); l-=64) { 230 *dst++ = *src++; 231 *dst++ = *src++; 232 *dst++ = *src++; 233 *dst++ = *src++; 234 *dst++ = *src++; 235 *dst++ = *src++; 236 *dst++ = *src++; 237 *dst++ = *src++; 238 } 239 } 240 241 /* 242 * locate a bridge among the existing ones. 243 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 244 * We assume that this is called with a name of at least NM_NAME chars. 245 */ 246 static struct nm_bridge * 247 nm_find_bridge(const char *name) 248 { 249 int i, l, namelen, e; 250 struct nm_bridge *b = NULL; 251 252 namelen = strlen(NM_NAME); /* base length */ 253 l = strlen(name); /* actual length */ 254 for (i = namelen + 1; i < l; i++) { 255 if (name[i] == ':') { 256 namelen = i; 257 break; 258 } 259 } 260 if (namelen >= IFNAMSIZ) 261 namelen = IFNAMSIZ; 262 ND("--- prefix is '%.*s' ---", namelen, name); 263 264 /* use the first entry for locking */ 265 BDG_LOCK(nm_bridges); // XXX do better 266 for (e = -1, i = 1; i < NM_BRIDGES; i++) { 267 b = nm_bridges + i; 268 if (b->namelen == 0) 269 e = i; /* record empty slot */ 270 else if (strncmp(name, b->basename, namelen) == 0) { 271 ND("found '%.*s' at %d", namelen, name, i); 272 break; 273 } 274 } 275 if (i == NM_BRIDGES) { /* all full */ 276 if (e == -1) { /* no empty slot */ 277 b = NULL; 278 } else { 279 b = nm_bridges + e; 280 strncpy(b->basename, name, namelen); 281 b->namelen = namelen; 282 } 283 } 284 BDG_UNLOCK(nm_bridges); 285 return b; 286 } 287 #endif /* NM_BRIDGE */ 288 289 /*------------- memory allocator -----------------*/ 290 #ifdef NETMAP_MEM2 291 #include "netmap_mem2.c" 292 #else /* !NETMAP_MEM2 */ 293 #include "netmap_mem1.c" 294 #endif /* !NETMAP_MEM2 */ 295 /*------------ end of memory allocator ----------*/ 296 297 /* Structure associated to each thread which registered an interface. */ 298 struct netmap_priv_d { 299 struct netmap_if *np_nifp; /* netmap interface descriptor. */ 300 301 struct ifnet *np_ifp; /* device for which we hold a reference */ 302 int np_ringid; /* from the ioctl */ 303 u_int np_qfirst, np_qlast; /* range of rings to scan */ 304 uint16_t np_txpoll; 305 }; 306 307 308 /* 309 * File descriptor's private data destructor. 310 * 311 * Call nm_register(ifp,0) to stop netmap mode on the interface and 312 * revert to normal operation. We expect that np_ifp has not gone. 313 */ 314 static void 315 netmap_dtor_locked(void *data) 316 { 317 struct netmap_priv_d *priv = data; 318 struct ifnet *ifp = priv->np_ifp; 319 struct netmap_adapter *na = NA(ifp); 320 struct netmap_if *nifp = priv->np_nifp; 321 322 na->refcount--; 323 if (na->refcount <= 0) { /* last instance */ 324 u_int i, j, lim; 325 326 D("deleting last netmap instance for %s", ifp->if_xname); 327 /* 328 * there is a race here with *_netmap_task() and 329 * netmap_poll(), which don't run under NETMAP_REG_LOCK. 330 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 331 * (aka NETMAP_DELETING(na)) are a unique marker that the 332 * device is dying. 333 * Before destroying stuff we sleep a bit, and then complete 334 * the job. NIOCREG should realize the condition and 335 * loop until they can continue; the other routines 336 * should check the condition at entry and quit if 337 * they cannot run. 338 */ 339 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 340 tsleep(na, 0, "NIOCUNREG", 4); 341 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 342 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 343 /* Wake up any sleeping threads. netmap_poll will 344 * then return POLLERR 345 */ 346 for (i = 0; i < na->num_tx_rings + 1; i++) 347 selwakeuppri(&na->tx_rings[i].si, PI_NET); 348 for (i = 0; i < na->num_rx_rings + 1; i++) 349 selwakeuppri(&na->rx_rings[i].si, PI_NET); 350 selwakeuppri(&na->tx_si, PI_NET); 351 selwakeuppri(&na->rx_si, PI_NET); 352 /* release all buffers */ 353 NMA_LOCK(); 354 for (i = 0; i < na->num_tx_rings + 1; i++) { 355 struct netmap_ring *ring = na->tx_rings[i].ring; 356 lim = na->tx_rings[i].nkr_num_slots; 357 for (j = 0; j < lim; j++) 358 netmap_free_buf(nifp, ring->slot[j].buf_idx); 359 /* knlist_destroy(&na->tx_rings[i].si.si_note); */ 360 mtx_destroy(&na->tx_rings[i].q_lock); 361 } 362 for (i = 0; i < na->num_rx_rings + 1; i++) { 363 struct netmap_ring *ring = na->rx_rings[i].ring; 364 lim = na->rx_rings[i].nkr_num_slots; 365 for (j = 0; j < lim; j++) 366 netmap_free_buf(nifp, ring->slot[j].buf_idx); 367 /* knlist_destroy(&na->rx_rings[i].si.si_note); */ 368 mtx_destroy(&na->rx_rings[i].q_lock); 369 } 370 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 371 /* knlist_destroy(&na->tx_si.si_note); */ 372 /* knlist_destroy(&na->rx_si.si_note); */ 373 NMA_UNLOCK(); 374 netmap_free_rings(na); 375 wakeup(na); 376 } 377 netmap_if_free(nifp); 378 } 379 380 static void 381 nm_if_rele(struct ifnet *ifp) 382 { 383 #ifndef NM_BRIDGE 384 if_rele(ifp); 385 #else /* NM_BRIDGE */ 386 int i, full; 387 struct nm_bridge *b; 388 389 if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) { 390 if_rele(ifp); 391 return; 392 } 393 if (!DROP_BDG_REF(ifp)) 394 return; 395 b = ifp->if_bridge; 396 BDG_LOCK(nm_bridges); 397 BDG_LOCK(b); 398 ND("want to disconnect %s from the bridge", ifp->if_xname); 399 full = 0; 400 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 401 if (b->bdg_ports[i] == ifp) { 402 b->bdg_ports[i] = NULL; 403 bzero(ifp, sizeof(*ifp)); 404 free(ifp, M_DEVBUF); 405 break; 406 } 407 else if (b->bdg_ports[i] != NULL) 408 full = 1; 409 } 410 BDG_UNLOCK(b); 411 if (full == 0) { 412 ND("freeing bridge %d", b - nm_bridges); 413 b->namelen = 0; 414 } 415 BDG_UNLOCK(nm_bridges); 416 if (i == NM_BDG_MAXPORTS) 417 D("ouch, cannot find ifp to remove"); 418 #endif /* NM_BRIDGE */ 419 } 420 421 static void 422 netmap_dtor(void *data) 423 { 424 struct netmap_priv_d *priv = data; 425 struct ifnet *ifp = priv->np_ifp; 426 struct netmap_adapter *na = NA(ifp); 427 428 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 429 netmap_dtor_locked(data); 430 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 431 432 nm_if_rele(ifp); 433 bzero(priv, sizeof(*priv)); /* XXX for safety */ 434 free(priv, M_DEVBUF); 435 } 436 437 438 /* 439 * mmap(2) support for the "netmap" device. 440 * 441 * Expose all the memory previously allocated by our custom memory 442 * allocator: this way the user has only to issue a single mmap(2), and 443 * can work on all the data structures flawlessly. 444 * 445 * Return 0 on success, -1 otherwise. 446 */ 447 448 #ifdef __FreeBSD__ 449 static int 450 netmap_mmap(__unused struct cdev *dev, 451 #if __FreeBSD_version < 900000 452 vm_offset_t offset, vm_paddr_t *paddr, int nprot 453 #else 454 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 455 __unused vm_memattr_t *memattr 456 #endif 457 ) 458 { 459 if (nprot & PROT_EXEC) 460 return (-1); // XXX -1 or EINVAL ? 461 462 ND("request for offset 0x%x", (uint32_t)offset); 463 *paddr = netmap_ofstophys(offset); 464 465 return (0); 466 } 467 #endif /* __FreeBSD__ */ 468 469 470 /* 471 * Handlers for synchronization of the queues from/to the host. 472 * 473 * netmap_sync_to_host() passes packets up. We are called from a 474 * system call in user process context, and the only contention 475 * can be among multiple user threads erroneously calling 476 * this routine concurrently. In principle we should not even 477 * need to lock. 478 */ 479 static void 480 netmap_sync_to_host(struct netmap_adapter *na) 481 { 482 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 483 struct netmap_ring *ring = kring->ring; 484 struct mbuf *head = NULL, *tail = NULL, *m; 485 u_int k, n, lim = kring->nkr_num_slots - 1; 486 487 k = ring->cur; 488 if (k > lim) { 489 netmap_ring_reinit(kring); 490 return; 491 } 492 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 493 494 /* Take packets from hwcur to cur and pass them up. 495 * In case of no buffers we give up. At the end of the loop, 496 * the queue is drained in all cases. 497 */ 498 for (n = kring->nr_hwcur; n != k;) { 499 struct netmap_slot *slot = &ring->slot[n]; 500 501 n = (n == lim) ? 0 : n + 1; 502 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 503 D("bad pkt at %d len %d", n, slot->len); 504 continue; 505 } 506 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 507 508 if (m == NULL) 509 break; 510 if (tail) 511 tail->m_nextpkt = m; 512 else 513 head = m; 514 tail = m; 515 m->m_nextpkt = NULL; 516 } 517 kring->nr_hwcur = k; 518 kring->nr_hwavail = ring->avail = lim; 519 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 520 521 /* send packets up, outside the lock */ 522 while ((m = head) != NULL) { 523 head = head->m_nextpkt; 524 m->m_nextpkt = NULL; 525 if (netmap_verbose & NM_VERB_HOST) 526 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 527 NM_SEND_UP(na->ifp, m); 528 } 529 } 530 531 /* 532 * rxsync backend for packets coming from the host stack. 533 * They have been put in the queue by netmap_start() so we 534 * need to protect access to the kring using a lock. 535 * 536 * This routine also does the selrecord if called from the poll handler 537 * (we know because td != NULL). 538 * 539 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 540 * as an additional hidden argument. 541 */ 542 static void 543 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 544 { 545 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 546 struct netmap_ring *ring = kring->ring; 547 u_int j, n, lim = kring->nkr_num_slots; 548 u_int k = ring->cur, resvd = ring->reserved; 549 550 (void)pwait; /* disable unused warnings */ 551 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 552 if (k >= lim) { 553 netmap_ring_reinit(kring); 554 return; 555 } 556 /* new packets are already set in nr_hwavail */ 557 /* skip past packets that userspace has released */ 558 j = kring->nr_hwcur; 559 if (resvd > 0) { 560 if (resvd + ring->avail >= lim + 1) { 561 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 562 ring->reserved = resvd = 0; // XXX panic... 563 } 564 k = (k >= resvd) ? k - resvd : k + lim - resvd; 565 } 566 if (j != k) { 567 n = k >= j ? k - j : k + lim - j; 568 kring->nr_hwavail -= n; 569 kring->nr_hwcur = k; 570 } 571 k = ring->avail = kring->nr_hwavail - resvd; 572 if (k == 0 && td) 573 selrecord(td, &kring->si); 574 if (k && (netmap_verbose & NM_VERB_HOST)) 575 D("%d pkts from stack", k); 576 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 577 } 578 579 580 /* 581 * get a refcounted reference to an interface. 582 * Return ENXIO if the interface does not exist, EINVAL if netmap 583 * is not supported by the interface. 584 * If successful, hold a reference. 585 */ 586 static int 587 get_ifp(const char *name, struct ifnet **ifp) 588 { 589 #ifdef NM_BRIDGE 590 struct ifnet *iter = NULL; 591 592 do { 593 struct nm_bridge *b; 594 int i, l, cand = -1; 595 596 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) 597 break; 598 b = nm_find_bridge(name); 599 if (b == NULL) { 600 D("no bridges available for '%s'", name); 601 return (ENXIO); 602 } 603 /* XXX locking */ 604 BDG_LOCK(b); 605 /* lookup in the local list of ports */ 606 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 607 iter = b->bdg_ports[i]; 608 if (iter == NULL) { 609 if (cand == -1) 610 cand = i; /* potential insert point */ 611 continue; 612 } 613 if (!strcmp(iter->if_xname, name)) { 614 ADD_BDG_REF(iter); 615 ND("found existing interface"); 616 BDG_UNLOCK(b); 617 break; 618 } 619 } 620 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 621 break; 622 if (cand == -1) { 623 D("bridge full, cannot create new port"); 624 no_port: 625 BDG_UNLOCK(b); 626 *ifp = NULL; 627 return EINVAL; 628 } 629 ND("create new bridge port %s", name); 630 /* space for forwarding list after the ifnet */ 631 l = sizeof(*iter) + 632 sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ; 633 iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 634 if (!iter) 635 goto no_port; 636 strcpy(iter->if_xname, name); 637 bdg_netmap_attach(iter); 638 b->bdg_ports[cand] = iter; 639 iter->if_bridge = b; 640 ADD_BDG_REF(iter); 641 BDG_UNLOCK(b); 642 ND("attaching virtual bridge %p", b); 643 } while (0); 644 *ifp = iter; 645 if (! *ifp) 646 #endif /* NM_BRIDGE */ 647 *ifp = ifunit_ref(name); 648 if (*ifp == NULL) 649 return (ENXIO); 650 /* can do this if the capability exists and if_pspare[0] 651 * points to the netmap descriptor. 652 */ 653 if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) 654 return 0; /* valid pointer, we hold the refcount */ 655 nm_if_rele(*ifp); 656 return EINVAL; // not NETMAP capable 657 } 658 659 660 /* 661 * Error routine called when txsync/rxsync detects an error. 662 * Can't do much more than resetting cur = hwcur, avail = hwavail. 663 * Return 1 on reinit. 664 * 665 * This routine is only called by the upper half of the kernel. 666 * It only reads hwcur (which is changed only by the upper half, too) 667 * and hwavail (which may be changed by the lower half, but only on 668 * a tx ring and only to increase it, so any error will be recovered 669 * on the next call). For the above, we don't strictly need to call 670 * it under lock. 671 */ 672 int 673 netmap_ring_reinit(struct netmap_kring *kring) 674 { 675 struct netmap_ring *ring = kring->ring; 676 u_int i, lim = kring->nkr_num_slots - 1; 677 int errors = 0; 678 679 D("called for %s", kring->na->ifp->if_xname); 680 if (ring->cur > lim) 681 errors++; 682 for (i = 0; i <= lim; i++) { 683 u_int idx = ring->slot[i].buf_idx; 684 u_int len = ring->slot[i].len; 685 if (idx < 2 || idx >= netmap_total_buffers) { 686 if (!errors++) 687 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 688 ring->slot[i].buf_idx = 0; 689 ring->slot[i].len = 0; 690 } else if (len > NETMAP_BUF_SIZE) { 691 ring->slot[i].len = 0; 692 if (!errors++) 693 D("bad len %d at slot %d idx %d", 694 len, i, idx); 695 } 696 } 697 if (errors) { 698 int pos = kring - kring->na->tx_rings; 699 int n = kring->na->num_tx_rings + 1; 700 701 D("total %d errors", errors); 702 errors++; 703 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 704 kring->na->ifp->if_xname, 705 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 706 ring->cur, kring->nr_hwcur, 707 ring->avail, kring->nr_hwavail); 708 ring->cur = kring->nr_hwcur; 709 ring->avail = kring->nr_hwavail; 710 } 711 return (errors ? 1 : 0); 712 } 713 714 715 /* 716 * Set the ring ID. For devices with a single queue, a request 717 * for all rings is the same as a single ring. 718 */ 719 static int 720 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 721 { 722 struct ifnet *ifp = priv->np_ifp; 723 struct netmap_adapter *na = NA(ifp); 724 u_int i = ringid & NETMAP_RING_MASK; 725 /* initially (np_qfirst == np_qlast) we don't want to lock */ 726 int need_lock = (priv->np_qfirst != priv->np_qlast); 727 int lim = na->num_rx_rings; 728 729 if (na->num_tx_rings > lim) 730 lim = na->num_tx_rings; 731 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 732 D("invalid ring id %d", i); 733 return (EINVAL); 734 } 735 if (need_lock) 736 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 737 priv->np_ringid = ringid; 738 if (ringid & NETMAP_SW_RING) { 739 priv->np_qfirst = NETMAP_SW_RING; 740 priv->np_qlast = 0; 741 } else if (ringid & NETMAP_HW_RING) { 742 priv->np_qfirst = i; 743 priv->np_qlast = i + 1; 744 } else { 745 priv->np_qfirst = 0; 746 priv->np_qlast = NETMAP_HW_RING ; 747 } 748 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 749 if (need_lock) 750 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 751 if (ringid & NETMAP_SW_RING) 752 D("ringid %s set to SW RING", ifp->if_xname); 753 else if (ringid & NETMAP_HW_RING) 754 D("ringid %s set to HW RING %d", ifp->if_xname, 755 priv->np_qfirst); 756 else 757 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 758 return 0; 759 } 760 761 /* 762 * ioctl(2) support for the "netmap" device. 763 * 764 * Following a list of accepted commands: 765 * - NIOCGINFO 766 * - SIOCGIFADDR just for convenience 767 * - NIOCREGIF 768 * - NIOCUNREGIF 769 * - NIOCTXSYNC 770 * - NIOCRXSYNC 771 * 772 * Return 0 on success, errno otherwise. 773 */ 774 static int 775 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 776 int fflag, struct thread *td) 777 { 778 struct netmap_priv_d *priv = NULL; 779 struct ifnet *ifp; 780 struct nmreq *nmr = (struct nmreq *) data; 781 struct netmap_adapter *na; 782 int error; 783 u_int i, lim; 784 struct netmap_if *nifp; 785 786 (void)dev; /* UNUSED */ 787 (void)fflag; /* UNUSED */ 788 #ifdef linux 789 #define devfs_get_cdevpriv(pp) \ 790 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 791 (*pp ? 0 : ENOENT); }) 792 793 /* devfs_set_cdevpriv cannot fail on linux */ 794 #define devfs_set_cdevpriv(p, fn) \ 795 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 796 797 798 #define devfs_clear_cdevpriv() do { \ 799 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 800 } while (0) 801 #endif /* linux */ 802 803 CURVNET_SET(TD_TO_VNET(td)); 804 805 error = devfs_get_cdevpriv((void **)&priv); 806 if (error != ENOENT && error != 0) { 807 CURVNET_RESTORE(); 808 return (error); 809 } 810 811 error = 0; /* Could be ENOENT */ 812 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 813 switch (cmd) { 814 case NIOCGINFO: /* return capabilities etc */ 815 /* memsize is always valid */ 816 nmr->nr_memsize = nm_mem->nm_totalsize; 817 nmr->nr_offset = 0; 818 nmr->nr_rx_rings = nmr->nr_tx_rings = 0; 819 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 820 if (nmr->nr_version != NETMAP_API) { 821 D("API mismatch got %d have %d", 822 nmr->nr_version, NETMAP_API); 823 nmr->nr_version = NETMAP_API; 824 error = EINVAL; 825 break; 826 } 827 if (nmr->nr_name[0] == '\0') /* just get memory info */ 828 break; 829 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 830 if (error) 831 break; 832 na = NA(ifp); /* retrieve netmap_adapter */ 833 nmr->nr_rx_rings = na->num_rx_rings; 834 nmr->nr_tx_rings = na->num_tx_rings; 835 nmr->nr_rx_slots = na->num_rx_desc; 836 nmr->nr_tx_slots = na->num_tx_desc; 837 nm_if_rele(ifp); /* return the refcount */ 838 break; 839 840 case NIOCREGIF: 841 if (nmr->nr_version != NETMAP_API) { 842 nmr->nr_version = NETMAP_API; 843 error = EINVAL; 844 break; 845 } 846 if (priv != NULL) { /* thread already registered */ 847 error = netmap_set_ringid(priv, nmr->nr_ringid); 848 break; 849 } 850 /* find the interface and a reference */ 851 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 852 if (error) 853 break; 854 na = NA(ifp); /* retrieve netmap adapter */ 855 /* 856 * Allocate the private per-thread structure. 857 * XXX perhaps we can use a blocking malloc ? 858 */ 859 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 860 M_NOWAIT | M_ZERO); 861 if (priv == NULL) { 862 error = ENOMEM; 863 nm_if_rele(ifp); /* return the refcount */ 864 break; 865 } 866 867 for (i = 10; i > 0; i--) { 868 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 869 if (!NETMAP_DELETING(na)) 870 break; 871 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 872 tsleep(na, 0, "NIOCREGIF", hz/10); 873 } 874 if (i == 0) { 875 D("too many NIOCREGIF attempts, give up"); 876 error = EINVAL; 877 free(priv, M_DEVBUF); 878 nm_if_rele(ifp); /* return the refcount */ 879 break; 880 } 881 882 priv->np_ifp = ifp; /* store the reference */ 883 error = netmap_set_ringid(priv, nmr->nr_ringid); 884 if (error) 885 goto error; 886 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); 887 if (nifp == NULL) { /* allocation failed */ 888 error = ENOMEM; 889 } else if (ifp->if_capenable & IFCAP_NETMAP) { 890 /* was already set */ 891 } else { 892 /* Otherwise set the card in netmap mode 893 * and make it use the shared buffers. 894 */ 895 for (i = 0 ; i < na->num_tx_rings + 1; i++) 896 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF); 897 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 898 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF); 899 } 900 error = na->nm_register(ifp, 1); /* mode on */ 901 if (error) 902 netmap_dtor_locked(priv); 903 } 904 905 if (error) { /* reg. failed, release priv and ref */ 906 error: 907 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 908 nm_if_rele(ifp); /* return the refcount */ 909 bzero(priv, sizeof(*priv)); 910 free(priv, M_DEVBUF); 911 break; 912 } 913 914 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 915 error = devfs_set_cdevpriv(priv, netmap_dtor); 916 917 if (error != 0) { 918 /* could not assign the private storage for the 919 * thread, call the destructor explicitly. 920 */ 921 netmap_dtor(priv); 922 break; 923 } 924 925 /* return the offset of the netmap_if object */ 926 nmr->nr_rx_rings = na->num_rx_rings; 927 nmr->nr_tx_rings = na->num_tx_rings; 928 nmr->nr_rx_slots = na->num_rx_desc; 929 nmr->nr_tx_slots = na->num_tx_desc; 930 nmr->nr_memsize = nm_mem->nm_totalsize; 931 nmr->nr_offset = netmap_if_offset(nifp); 932 break; 933 934 case NIOCUNREGIF: 935 if (priv == NULL) { 936 error = ENXIO; 937 break; 938 } 939 940 /* the interface is unregistered inside the 941 destructor of the private data. */ 942 devfs_clear_cdevpriv(); 943 break; 944 945 case NIOCTXSYNC: 946 case NIOCRXSYNC: 947 if (priv == NULL) { 948 error = ENXIO; 949 break; 950 } 951 ifp = priv->np_ifp; /* we have a reference */ 952 na = NA(ifp); /* retrieve netmap adapter */ 953 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 954 if (cmd == NIOCTXSYNC) 955 netmap_sync_to_host(na); 956 else 957 netmap_sync_from_host(na, NULL, NULL); 958 break; 959 } 960 /* find the last ring to scan */ 961 lim = priv->np_qlast; 962 if (lim == NETMAP_HW_RING) 963 lim = (cmd == NIOCTXSYNC) ? 964 na->num_tx_rings : na->num_rx_rings; 965 966 for (i = priv->np_qfirst; i < lim; i++) { 967 if (cmd == NIOCTXSYNC) { 968 struct netmap_kring *kring = &na->tx_rings[i]; 969 if (netmap_verbose & NM_VERB_TXSYNC) 970 D("pre txsync ring %d cur %d hwcur %d", 971 i, kring->ring->cur, 972 kring->nr_hwcur); 973 na->nm_txsync(ifp, i, 1 /* do lock */); 974 if (netmap_verbose & NM_VERB_TXSYNC) 975 D("post txsync ring %d cur %d hwcur %d", 976 i, kring->ring->cur, 977 kring->nr_hwcur); 978 } else { 979 na->nm_rxsync(ifp, i, 1 /* do lock */); 980 microtime(&na->rx_rings[i].ring->ts); 981 } 982 } 983 984 break; 985 986 #ifdef __FreeBSD__ 987 case BIOCIMMEDIATE: 988 case BIOCGHDRCMPLT: 989 case BIOCSHDRCMPLT: 990 case BIOCSSEESENT: 991 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 992 break; 993 994 default: /* allow device-specific ioctls */ 995 { 996 struct socket so; 997 bzero(&so, sizeof(so)); 998 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 999 if (error) 1000 break; 1001 so.so_vnet = ifp->if_vnet; 1002 // so->so_proto not null. 1003 error = ifioctl(&so, cmd, data, td); 1004 nm_if_rele(ifp); 1005 break; 1006 } 1007 1008 #else /* linux */ 1009 default: 1010 error = EOPNOTSUPP; 1011 #endif /* linux */ 1012 } 1013 1014 CURVNET_RESTORE(); 1015 return (error); 1016 } 1017 1018 1019 /* 1020 * select(2) and poll(2) handlers for the "netmap" device. 1021 * 1022 * Can be called for one or more queues. 1023 * Return true the event mask corresponding to ready events. 1024 * If there are no ready events, do a selrecord on either individual 1025 * selfd or on the global one. 1026 * Device-dependent parts (locking and sync of tx/rx rings) 1027 * are done through callbacks. 1028 * 1029 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1030 * The first one is remapped to pwait as selrecord() uses the name as an 1031 * hidden argument. 1032 */ 1033 static int 1034 netmap_poll(struct cdev *dev, int events, struct thread *td) 1035 { 1036 struct netmap_priv_d *priv = NULL; 1037 struct netmap_adapter *na; 1038 struct ifnet *ifp; 1039 struct netmap_kring *kring; 1040 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1041 u_int lim_tx, lim_rx; 1042 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1043 void *pwait = dev; /* linux compatibility */ 1044 1045 (void)pwait; 1046 1047 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1048 return POLLERR; 1049 1050 ifp = priv->np_ifp; 1051 // XXX check for deleting() ? 1052 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1053 return POLLERR; 1054 1055 if (netmap_verbose & 0x8000) 1056 D("device %s events 0x%x", ifp->if_xname, events); 1057 want_tx = events & (POLLOUT | POLLWRNORM); 1058 want_rx = events & (POLLIN | POLLRDNORM); 1059 1060 na = NA(ifp); /* retrieve netmap adapter */ 1061 1062 lim_tx = na->num_tx_rings; 1063 lim_rx = na->num_rx_rings; 1064 /* how many queues we are scanning */ 1065 if (priv->np_qfirst == NETMAP_SW_RING) { 1066 if (priv->np_txpoll || want_tx) { 1067 /* push any packets up, then we are always ready */ 1068 kring = &na->tx_rings[lim_tx]; 1069 netmap_sync_to_host(na); 1070 revents |= want_tx; 1071 } 1072 if (want_rx) { 1073 kring = &na->rx_rings[lim_rx]; 1074 if (kring->ring->avail == 0) 1075 netmap_sync_from_host(na, td, dev); 1076 if (kring->ring->avail > 0) { 1077 revents |= want_rx; 1078 } 1079 } 1080 return (revents); 1081 } 1082 1083 /* 1084 * check_all is set if the card has more than one queue and 1085 * the client is polling all of them. If true, we sleep on 1086 * the "global" selfd, otherwise we sleep on individual selfd 1087 * (we can only sleep on one of them per direction). 1088 * The interrupt routine in the driver should always wake on 1089 * the individual selfd, and also on the global one if the card 1090 * has more than one ring. 1091 * 1092 * If the card has only one lock, we just use that. 1093 * If the card has separate ring locks, we just use those 1094 * unless we are doing check_all, in which case the whole 1095 * loop is wrapped by the global lock. 1096 * We acquire locks only when necessary: if poll is called 1097 * when buffers are available, we can just return without locks. 1098 * 1099 * rxsync() is only called if we run out of buffers on a POLLIN. 1100 * txsync() is called if we run out of buffers on POLLOUT, or 1101 * there are pending packets to send. The latter can be disabled 1102 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1103 */ 1104 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1105 1106 /* 1107 * core_lock indicates what to do with the core lock. 1108 * The core lock is used when either the card has no individual 1109 * locks, or it has individual locks but we are cheking all 1110 * rings so we need the core lock to avoid missing wakeup events. 1111 * 1112 * It has three possible states: 1113 * NO_CL we don't need to use the core lock, e.g. 1114 * because we are protected by individual locks. 1115 * NEED_CL we need the core lock. In this case, when we 1116 * call the lock routine, move to LOCKED_CL 1117 * to remember to release the lock once done. 1118 * LOCKED_CL core lock is set, so we need to release it. 1119 */ 1120 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1121 #ifdef NM_BRIDGE 1122 /* the bridge uses separate locks */ 1123 if (na->nm_register == bdg_netmap_reg) { 1124 ND("not using core lock for %s", ifp->if_xname); 1125 core_lock = NO_CL; 1126 } 1127 #endif /* NM_BRIDGE */ 1128 if (priv->np_qlast != NETMAP_HW_RING) { 1129 lim_tx = lim_rx = priv->np_qlast; 1130 } 1131 1132 /* 1133 * We start with a lock free round which is good if we have 1134 * data available. If this fails, then lock and call the sync 1135 * routines. 1136 */ 1137 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1138 kring = &na->rx_rings[i]; 1139 if (kring->ring->avail > 0) { 1140 revents |= want_rx; 1141 want_rx = 0; /* also breaks the loop */ 1142 } 1143 } 1144 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1145 kring = &na->tx_rings[i]; 1146 if (kring->ring->avail > 0) { 1147 revents |= want_tx; 1148 want_tx = 0; /* also breaks the loop */ 1149 } 1150 } 1151 1152 /* 1153 * If we to push packets out (priv->np_txpoll) or want_tx is 1154 * still set, we do need to run the txsync calls (on all rings, 1155 * to avoid that the tx rings stall). 1156 */ 1157 if (priv->np_txpoll || want_tx) { 1158 for (i = priv->np_qfirst; i < lim_tx; i++) { 1159 kring = &na->tx_rings[i]; 1160 /* 1161 * Skip the current ring if want_tx == 0 1162 * (we have already done a successful sync on 1163 * a previous ring) AND kring->cur == kring->hwcur 1164 * (there are no pending transmissions for this ring). 1165 */ 1166 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1167 continue; 1168 if (core_lock == NEED_CL) { 1169 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1170 core_lock = LOCKED_CL; 1171 } 1172 if (na->separate_locks) 1173 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 1174 if (netmap_verbose & NM_VERB_TXSYNC) 1175 D("send %d on %s %d", 1176 kring->ring->cur, 1177 ifp->if_xname, i); 1178 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 1179 revents |= POLLERR; 1180 1181 /* Check avail/call selrecord only if called with POLLOUT */ 1182 if (want_tx) { 1183 if (kring->ring->avail > 0) { 1184 /* stop at the first ring. We don't risk 1185 * starvation. 1186 */ 1187 revents |= want_tx; 1188 want_tx = 0; 1189 } else if (!check_all) 1190 selrecord(td, &kring->si); 1191 } 1192 if (na->separate_locks) 1193 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 1194 } 1195 } 1196 1197 /* 1198 * now if want_rx is still set we need to lock and rxsync. 1199 * Do it on all rings because otherwise we starve. 1200 */ 1201 if (want_rx) { 1202 for (i = priv->np_qfirst; i < lim_rx; i++) { 1203 kring = &na->rx_rings[i]; 1204 if (core_lock == NEED_CL) { 1205 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1206 core_lock = LOCKED_CL; 1207 } 1208 if (na->separate_locks) 1209 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 1210 1211 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 1212 revents |= POLLERR; 1213 if (netmap_no_timestamp == 0 || 1214 kring->ring->flags & NR_TIMESTAMP) { 1215 microtime(&kring->ring->ts); 1216 } 1217 1218 if (kring->ring->avail > 0) 1219 revents |= want_rx; 1220 else if (!check_all) 1221 selrecord(td, &kring->si); 1222 if (na->separate_locks) 1223 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 1224 } 1225 } 1226 if (check_all && revents == 0) { /* signal on the global queue */ 1227 if (want_tx) 1228 selrecord(td, &na->tx_si); 1229 if (want_rx) 1230 selrecord(td, &na->rx_si); 1231 } 1232 if (core_lock == LOCKED_CL) 1233 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1234 1235 return (revents); 1236 } 1237 1238 /*------- driver support routines ------*/ 1239 1240 /* 1241 * default lock wrapper. 1242 */ 1243 static void 1244 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 1245 { 1246 struct netmap_adapter *na = NA(dev); 1247 1248 switch (what) { 1249 #ifdef linux /* some system do not need lock on register */ 1250 case NETMAP_REG_LOCK: 1251 case NETMAP_REG_UNLOCK: 1252 break; 1253 #endif /* linux */ 1254 1255 case NETMAP_CORE_LOCK: 1256 mtx_lock(&na->core_lock); 1257 break; 1258 1259 case NETMAP_CORE_UNLOCK: 1260 mtx_unlock(&na->core_lock); 1261 break; 1262 1263 case NETMAP_TX_LOCK: 1264 mtx_lock(&na->tx_rings[queueid].q_lock); 1265 break; 1266 1267 case NETMAP_TX_UNLOCK: 1268 mtx_unlock(&na->tx_rings[queueid].q_lock); 1269 break; 1270 1271 case NETMAP_RX_LOCK: 1272 mtx_lock(&na->rx_rings[queueid].q_lock); 1273 break; 1274 1275 case NETMAP_RX_UNLOCK: 1276 mtx_unlock(&na->rx_rings[queueid].q_lock); 1277 break; 1278 } 1279 } 1280 1281 1282 /* 1283 * Initialize a ``netmap_adapter`` object created by driver on attach. 1284 * We allocate a block of memory with room for a struct netmap_adapter 1285 * plus two sets of N+2 struct netmap_kring (where N is the number 1286 * of hardware rings): 1287 * krings 0..N-1 are for the hardware queues. 1288 * kring N is for the host stack queue 1289 * kring N+1 is only used for the selinfo for all queues. 1290 * Return 0 on success, ENOMEM otherwise. 1291 * 1292 * By default the receive and transmit adapter ring counts are both initialized 1293 * to num_queues. na->num_tx_rings can be set for cards with different tx/rx 1294 * setups. 1295 */ 1296 int 1297 netmap_attach(struct netmap_adapter *na, int num_queues) 1298 { 1299 int n, size; 1300 void *buf; 1301 struct ifnet *ifp = na->ifp; 1302 1303 if (ifp == NULL) { 1304 D("ifp not set, giving up"); 1305 return EINVAL; 1306 } 1307 /* clear other fields ? */ 1308 na->refcount = 0; 1309 if (na->num_tx_rings == 0) 1310 na->num_tx_rings = num_queues; 1311 na->num_rx_rings = num_queues; 1312 /* on each direction we have N+1 resources 1313 * 0..n-1 are the hardware rings 1314 * n is the ring attached to the stack. 1315 */ 1316 n = na->num_rx_rings + na->num_tx_rings + 2; 1317 size = sizeof(*na) + n * sizeof(struct netmap_kring); 1318 1319 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1320 if (buf) { 1321 WNA(ifp) = buf; 1322 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1323 na->rx_rings = na->tx_rings + na->num_tx_rings + 1; 1324 bcopy(na, buf, sizeof(*na)); 1325 ifp->if_capabilities |= IFCAP_NETMAP; 1326 1327 na = buf; 1328 /* Core lock initialized here. Others are initialized after 1329 * netmap_if_new. 1330 */ 1331 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, 1332 MTX_DEF); 1333 if (na->nm_lock == NULL) { 1334 ND("using default locks for %s", ifp->if_xname); 1335 na->nm_lock = netmap_lock_wrapper; 1336 } 1337 } 1338 #ifdef linux 1339 if (ifp->netdev_ops) { 1340 D("netdev_ops %p", ifp->netdev_ops); 1341 /* prepare a clone of the netdev ops */ 1342 na->nm_ndo = *ifp->netdev_ops; 1343 } 1344 na->nm_ndo.ndo_start_xmit = linux_netmap_start; 1345 #endif 1346 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1347 1348 return (buf ? 0 : ENOMEM); 1349 } 1350 1351 1352 /* 1353 * Free the allocated memory linked to the given ``netmap_adapter`` 1354 * object. 1355 */ 1356 void 1357 netmap_detach(struct ifnet *ifp) 1358 { 1359 struct netmap_adapter *na = NA(ifp); 1360 1361 if (!na) 1362 return; 1363 1364 mtx_destroy(&na->core_lock); 1365 1366 bzero(na, sizeof(*na)); 1367 WNA(ifp) = NULL; 1368 free(na, M_DEVBUF); 1369 } 1370 1371 1372 /* 1373 * Intercept packets from the network stack and pass them 1374 * to netmap as incoming packets on the 'software' ring. 1375 * We are not locked when called. 1376 */ 1377 int 1378 netmap_start(struct ifnet *ifp, struct mbuf *m) 1379 { 1380 struct netmap_adapter *na = NA(ifp); 1381 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1382 u_int i, len = MBUF_LEN(m); 1383 u_int error = EBUSY, lim = kring->nkr_num_slots - 1; 1384 struct netmap_slot *slot; 1385 1386 if (netmap_verbose & NM_VERB_HOST) 1387 D("%s packet %d len %d from the stack", ifp->if_xname, 1388 kring->nr_hwcur + kring->nr_hwavail, len); 1389 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1390 if (kring->nr_hwavail >= lim) { 1391 if (netmap_verbose) 1392 D("stack ring %s full\n", ifp->if_xname); 1393 goto done; /* no space */ 1394 } 1395 if (len > NETMAP_BUF_SIZE) { 1396 D("drop packet size %d > %d", len, NETMAP_BUF_SIZE); 1397 goto done; /* too long for us */ 1398 } 1399 1400 /* compute the insert position */ 1401 i = kring->nr_hwcur + kring->nr_hwavail; 1402 if (i > lim) 1403 i -= lim + 1; 1404 slot = &kring->ring->slot[i]; 1405 m_copydata(m, 0, len, NMB(slot)); 1406 slot->len = len; 1407 kring->nr_hwavail++; 1408 if (netmap_verbose & NM_VERB_HOST) 1409 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 1410 selwakeuppri(&kring->si, PI_NET); 1411 error = 0; 1412 done: 1413 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1414 1415 /* release the mbuf in either cases of success or failure. As an 1416 * alternative, put the mbuf in a free list and free the list 1417 * only when really necessary. 1418 */ 1419 m_freem(m); 1420 1421 return (error); 1422 } 1423 1424 1425 /* 1426 * netmap_reset() is called by the driver routines when reinitializing 1427 * a ring. The driver is in charge of locking to protect the kring. 1428 * If netmap mode is not set just return NULL. 1429 */ 1430 struct netmap_slot * 1431 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1432 u_int new_cur) 1433 { 1434 struct netmap_kring *kring; 1435 int new_hwofs, lim; 1436 1437 if (na == NULL) 1438 return NULL; /* no netmap support here */ 1439 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1440 return NULL; /* nothing to reinitialize */ 1441 1442 if (tx == NR_TX) { 1443 kring = na->tx_rings + n; 1444 new_hwofs = kring->nr_hwcur - new_cur; 1445 } else { 1446 kring = na->rx_rings + n; 1447 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1448 } 1449 lim = kring->nkr_num_slots - 1; 1450 if (new_hwofs > lim) 1451 new_hwofs -= lim + 1; 1452 1453 /* Alwayws set the new offset value and realign the ring. */ 1454 kring->nkr_hwofs = new_hwofs; 1455 if (tx == NR_TX) 1456 kring->nr_hwavail = kring->nkr_num_slots - 1; 1457 D("new hwofs %d on %s %s[%d]", 1458 kring->nkr_hwofs, na->ifp->if_xname, 1459 tx == NR_TX ? "TX" : "RX", n); 1460 1461 #if 0 // def linux 1462 /* XXX check that the mappings are correct */ 1463 /* need ring_nr, adapter->pdev, direction */ 1464 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 1465 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1466 D("error mapping rx netmap buffer %d", i); 1467 // XXX fix error handling 1468 } 1469 1470 #endif /* linux */ 1471 /* 1472 * Wakeup on the individual and global lock 1473 * We do the wakeup here, but the ring is not yet reconfigured. 1474 * However, we are under lock so there are no races. 1475 */ 1476 selwakeuppri(&kring->si, PI_NET); 1477 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 1478 return kring->ring->slot; 1479 } 1480 1481 1482 /* 1483 * Default functions to handle rx/tx interrupts 1484 * we have 4 cases: 1485 * 1 ring, single lock: 1486 * lock(core); wake(i=0); unlock(core) 1487 * N rings, single lock: 1488 * lock(core); wake(i); wake(N+1) unlock(core) 1489 * 1 ring, separate locks: (i=0) 1490 * lock(i); wake(i); unlock(i) 1491 * N rings, separate locks: 1492 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 1493 * work_done is non-null on the RX path. 1494 */ 1495 int 1496 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 1497 { 1498 struct netmap_adapter *na; 1499 struct netmap_kring *r; 1500 NM_SELINFO_T *main_wq; 1501 1502 if (!(ifp->if_capenable & IFCAP_NETMAP)) 1503 return 0; 1504 na = NA(ifp); 1505 if (work_done) { /* RX path */ 1506 r = na->rx_rings + q; 1507 r->nr_kflags |= NKR_PENDINTR; 1508 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 1509 } else { /* tx path */ 1510 r = na->tx_rings + q; 1511 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 1512 work_done = &q; /* dummy */ 1513 } 1514 if (na->separate_locks) { 1515 mtx_lock(&r->q_lock); 1516 selwakeuppri(&r->si, PI_NET); 1517 mtx_unlock(&r->q_lock); 1518 if (main_wq) { 1519 mtx_lock(&na->core_lock); 1520 selwakeuppri(main_wq, PI_NET); 1521 mtx_unlock(&na->core_lock); 1522 } 1523 } else { 1524 mtx_lock(&na->core_lock); 1525 selwakeuppri(&r->si, PI_NET); 1526 if (main_wq) 1527 selwakeuppri(main_wq, PI_NET); 1528 mtx_unlock(&na->core_lock); 1529 } 1530 *work_done = 1; /* do not fire napi again */ 1531 return 1; 1532 } 1533 1534 1535 #ifdef linux /* linux-specific routines */ 1536 1537 /* 1538 * Remap linux arguments into the FreeBSD call. 1539 * - pwait is the poll table, passed as 'dev'; 1540 * If pwait == NULL someone else already woke up before. We can report 1541 * events but they are filtered upstream. 1542 * If pwait != NULL, then pwait->key contains the list of events. 1543 * - events is computed from pwait as above. 1544 * - file is passed as 'td'; 1545 */ 1546 static u_int 1547 linux_netmap_poll(struct file * file, struct poll_table_struct *pwait) 1548 { 1549 #if LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0) 1550 int events = pwait ? pwait->key : POLLIN | POLLOUT; 1551 #else /* in 3.4.0 field 'key' was renamed to '_key' */ 1552 int events = pwait ? pwait->_key : POLLIN | POLLOUT; 1553 #endif 1554 return netmap_poll((void *)pwait, events, (void *)file); 1555 } 1556 1557 static int 1558 linux_netmap_mmap(struct file *f, struct vm_area_struct *vma) 1559 { 1560 int lut_skip, i, j; 1561 int user_skip = 0; 1562 struct lut_entry *l_entry; 1563 const struct netmap_obj_pool *p[] = { 1564 nm_mem->nm_if_pool, 1565 nm_mem->nm_ring_pool, 1566 nm_mem->nm_buf_pool }; 1567 /* 1568 * vma->vm_start: start of mapping user address space 1569 * vma->vm_end: end of the mapping user address space 1570 */ 1571 1572 (void)f; /* UNUSED */ 1573 // XXX security checks 1574 1575 for (i = 0; i < 3; i++) { /* loop through obj_pools */ 1576 /* 1577 * In each pool memory is allocated in clusters 1578 * of size _clustsize , each containing clustentries 1579 * entries. For each object k we already store the 1580 * vtophys malling in lut[k] so we use that, scanning 1581 * the lut[] array in steps of clustentries, 1582 * and we map each cluster (not individual pages, 1583 * it would be overkill). 1584 */ 1585 for (lut_skip = 0, j = 0; j < p[i]->_numclusters; j++) { 1586 l_entry = &p[i]->lut[lut_skip]; 1587 if (remap_pfn_range(vma, vma->vm_start + user_skip, 1588 l_entry->paddr >> PAGE_SHIFT, p[i]->_clustsize, 1589 vma->vm_page_prot)) 1590 return -EAGAIN; // XXX check return value 1591 lut_skip += p[i]->clustentries; 1592 user_skip += p[i]->_clustsize; 1593 } 1594 } 1595 1596 return 0; 1597 } 1598 1599 static netdev_tx_t 1600 linux_netmap_start(struct sk_buff *skb, struct net_device *dev) 1601 { 1602 netmap_start(dev, skb); 1603 return (NETDEV_TX_OK); 1604 } 1605 1606 1607 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38 1608 #define LIN_IOCTL_NAME .ioctl 1609 int 1610 linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */) 1611 #else 1612 #define LIN_IOCTL_NAME .unlocked_ioctl 1613 long 1614 linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */) 1615 #endif 1616 { 1617 int ret; 1618 struct nmreq nmr; 1619 bzero(&nmr, sizeof(nmr)); 1620 1621 if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0) 1622 return -EFAULT; 1623 ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file); 1624 if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0) 1625 return -EFAULT; 1626 return -ret; 1627 } 1628 1629 1630 static int 1631 netmap_release(struct inode *inode, struct file *file) 1632 { 1633 (void)inode; /* UNUSED */ 1634 if (file->private_data) 1635 netmap_dtor(file->private_data); 1636 return (0); 1637 } 1638 1639 1640 static struct file_operations netmap_fops = { 1641 .mmap = linux_netmap_mmap, 1642 LIN_IOCTL_NAME = linux_netmap_ioctl, 1643 .poll = linux_netmap_poll, 1644 .release = netmap_release, 1645 }; 1646 1647 static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */ 1648 MISC_DYNAMIC_MINOR, 1649 "netmap", 1650 &netmap_fops, 1651 }; 1652 1653 static int netmap_init(void); 1654 static void netmap_fini(void); 1655 1656 /* Errors have negative values on linux */ 1657 static int linux_netmap_init(void) 1658 { 1659 return -netmap_init(); 1660 } 1661 1662 module_init(linux_netmap_init); 1663 module_exit(netmap_fini); 1664 /* export certain symbols to other modules */ 1665 EXPORT_SYMBOL(netmap_attach); // driver attach routines 1666 EXPORT_SYMBOL(netmap_detach); // driver detach routines 1667 EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error 1668 EXPORT_SYMBOL(netmap_buffer_lut); 1669 EXPORT_SYMBOL(netmap_total_buffers); // index check 1670 EXPORT_SYMBOL(netmap_buffer_base); 1671 EXPORT_SYMBOL(netmap_reset); // ring init routines 1672 EXPORT_SYMBOL(netmap_buf_size); 1673 EXPORT_SYMBOL(netmap_rx_irq); // default irq handler 1674 EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away 1675 1676 1677 MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/"); 1678 MODULE_DESCRIPTION("The netmap packet I/O framework"); 1679 MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */ 1680 1681 #else /* __FreeBSD__ */ 1682 1683 static struct cdevsw netmap_cdevsw = { 1684 .d_version = D_VERSION, 1685 .d_name = "netmap", 1686 .d_mmap = netmap_mmap, 1687 .d_ioctl = netmap_ioctl, 1688 .d_poll = netmap_poll, 1689 }; 1690 #endif /* __FreeBSD__ */ 1691 1692 #ifdef NM_BRIDGE 1693 /* 1694 *---- support for virtual bridge ----- 1695 */ 1696 1697 /* ----- FreeBSD if_bridge hash function ------- */ 1698 1699 /* 1700 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1701 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1702 * 1703 * http://www.burtleburtle.net/bob/hash/spooky.html 1704 */ 1705 #define mix(a, b, c) \ 1706 do { \ 1707 a -= b; a -= c; a ^= (c >> 13); \ 1708 b -= c; b -= a; b ^= (a << 8); \ 1709 c -= a; c -= b; c ^= (b >> 13); \ 1710 a -= b; a -= c; a ^= (c >> 12); \ 1711 b -= c; b -= a; b ^= (a << 16); \ 1712 c -= a; c -= b; c ^= (b >> 5); \ 1713 a -= b; a -= c; a ^= (c >> 3); \ 1714 b -= c; b -= a; b ^= (a << 10); \ 1715 c -= a; c -= b; c ^= (b >> 15); \ 1716 } while (/*CONSTCOND*/0) 1717 1718 static __inline uint32_t 1719 nm_bridge_rthash(const uint8_t *addr) 1720 { 1721 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 1722 1723 b += addr[5] << 8; 1724 b += addr[4]; 1725 a += addr[3] << 24; 1726 a += addr[2] << 16; 1727 a += addr[1] << 8; 1728 a += addr[0]; 1729 1730 mix(a, b, c); 1731 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 1732 return (c & BRIDGE_RTHASH_MASK); 1733 } 1734 1735 #undef mix 1736 1737 1738 static int 1739 bdg_netmap_reg(struct ifnet *ifp, int onoff) 1740 { 1741 int i, err = 0; 1742 struct nm_bridge *b = ifp->if_bridge; 1743 1744 BDG_LOCK(b); 1745 if (onoff) { 1746 /* the interface must be already in the list. 1747 * only need to mark the port as active 1748 */ 1749 ND("should attach %s to the bridge", ifp->if_xname); 1750 for (i=0; i < NM_BDG_MAXPORTS; i++) 1751 if (b->bdg_ports[i] == ifp) 1752 break; 1753 if (i == NM_BDG_MAXPORTS) { 1754 D("no more ports available"); 1755 err = EINVAL; 1756 goto done; 1757 } 1758 ND("setting %s in netmap mode", ifp->if_xname); 1759 ifp->if_capenable |= IFCAP_NETMAP; 1760 NA(ifp)->bdg_port = i; 1761 b->act_ports |= (1<<i); 1762 b->bdg_ports[i] = ifp; 1763 } else { 1764 /* should be in the list, too -- remove from the mask */ 1765 ND("removing %s from netmap mode", ifp->if_xname); 1766 ifp->if_capenable &= ~IFCAP_NETMAP; 1767 i = NA(ifp)->bdg_port; 1768 b->act_ports &= ~(1<<i); 1769 } 1770 done: 1771 BDG_UNLOCK(b); 1772 return err; 1773 } 1774 1775 1776 static int 1777 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp) 1778 { 1779 int i, ifn; 1780 uint64_t all_dst, dst; 1781 uint32_t sh, dh; 1782 uint64_t mysrc = 1 << NA(ifp)->bdg_port; 1783 uint64_t smac, dmac; 1784 struct netmap_slot *slot; 1785 struct nm_bridge *b = ifp->if_bridge; 1786 1787 ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports); 1788 /* only consider valid destinations */ 1789 all_dst = (b->act_ports & ~mysrc); 1790 /* first pass: hash and find destinations */ 1791 for (i = 0; likely(i < n); i++) { 1792 uint8_t *buf = ft[i].buf; 1793 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 1794 smac = le64toh(*(uint64_t *)(buf + 4)); 1795 smac >>= 16; 1796 if (unlikely(netmap_verbose)) { 1797 uint8_t *s = buf+6, *d = buf; 1798 D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x", 1799 i, 1800 ft[i].len, 1801 s[0], s[1], s[2], s[3], s[4], s[5], 1802 d[0], d[1], d[2], d[3], d[4], d[5]); 1803 } 1804 /* 1805 * The hash is somewhat expensive, there might be some 1806 * worthwhile optimizations here. 1807 */ 1808 if ((buf[6] & 1) == 0) { /* valid src */ 1809 uint8_t *s = buf+6; 1810 sh = nm_bridge_rthash(buf+6); // XXX hash of source 1811 /* update source port forwarding entry */ 1812 b->ht[sh].mac = smac; /* XXX expire ? */ 1813 b->ht[sh].ports = mysrc; 1814 if (netmap_verbose) 1815 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 1816 s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port); 1817 } 1818 dst = 0; 1819 if ( (buf[0] & 1) == 0) { /* unicast */ 1820 uint8_t *d = buf; 1821 dh = nm_bridge_rthash(buf); // XXX hash of dst 1822 if (b->ht[dh].mac == dmac) { /* found dst */ 1823 dst = b->ht[dh].ports; 1824 if (netmap_verbose) 1825 D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x", 1826 d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16)); 1827 } 1828 } 1829 if (dst == 0) 1830 dst = all_dst; 1831 dst &= all_dst; /* only consider valid ports */ 1832 if (unlikely(netmap_verbose)) 1833 D("pkt goes to ports 0x%x", (uint32_t)dst); 1834 ft[i].dst = dst; 1835 } 1836 1837 /* second pass, scan interfaces and forward */ 1838 all_dst = (b->act_ports & ~mysrc); 1839 for (ifn = 0; all_dst; ifn++) { 1840 struct ifnet *dst_ifp = b->bdg_ports[ifn]; 1841 struct netmap_adapter *na; 1842 struct netmap_kring *kring; 1843 struct netmap_ring *ring; 1844 int j, lim, sent, locked; 1845 1846 if (!dst_ifp) 1847 continue; 1848 ND("scan port %d %s", ifn, dst_ifp->if_xname); 1849 dst = 1 << ifn; 1850 if ((dst & all_dst) == 0) /* skip if not set */ 1851 continue; 1852 all_dst &= ~dst; /* clear current node */ 1853 na = NA(dst_ifp); 1854 1855 ring = NULL; 1856 kring = NULL; 1857 lim = sent = locked = 0; 1858 /* inside, scan slots */ 1859 for (i = 0; likely(i < n); i++) { 1860 if ((ft[i].dst & dst) == 0) 1861 continue; /* not here */ 1862 if (!locked) { 1863 kring = &na->rx_rings[0]; 1864 ring = kring->ring; 1865 lim = kring->nkr_num_slots - 1; 1866 na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0); 1867 locked = 1; 1868 } 1869 if (unlikely(kring->nr_hwavail >= lim)) { 1870 if (netmap_verbose) 1871 D("rx ring full on %s", ifp->if_xname); 1872 break; 1873 } 1874 j = kring->nr_hwcur + kring->nr_hwavail; 1875 if (j > lim) 1876 j -= kring->nkr_num_slots; 1877 slot = &ring->slot[j]; 1878 ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j); 1879 pkt_copy(ft[i].buf, NMB(slot), ft[i].len); 1880 slot->len = ft[i].len; 1881 kring->nr_hwavail++; 1882 sent++; 1883 } 1884 if (locked) { 1885 ND("sent %d on %s", sent, dst_ifp->if_xname); 1886 if (sent) 1887 selwakeuppri(&kring->si, PI_NET); 1888 na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0); 1889 } 1890 } 1891 return 0; 1892 } 1893 1894 /* 1895 * main dispatch routine 1896 */ 1897 static int 1898 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 1899 { 1900 struct netmap_adapter *na = NA(ifp); 1901 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 1902 struct netmap_ring *ring = kring->ring; 1903 int i, j, k, lim = kring->nkr_num_slots - 1; 1904 struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1); 1905 int ft_i; /* position in the forwarding table */ 1906 1907 k = ring->cur; 1908 if (k > lim) 1909 return netmap_ring_reinit(kring); 1910 if (do_lock) 1911 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 1912 1913 if (netmap_bridge <= 0) { /* testing only */ 1914 j = k; // used all 1915 goto done; 1916 } 1917 if (netmap_bridge > NM_BDG_BATCH) 1918 netmap_bridge = NM_BDG_BATCH; 1919 1920 ft_i = 0; /* start from 0 */ 1921 for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) { 1922 struct netmap_slot *slot = &ring->slot[j]; 1923 int len = ft[ft_i].len = slot->len; 1924 char *buf = ft[ft_i].buf = NMB(slot); 1925 1926 prefetch(buf); 1927 if (unlikely(len < 14)) 1928 continue; 1929 if (unlikely(++ft_i == netmap_bridge)) 1930 ft_i = nm_bdg_flush(ft, ft_i, ifp); 1931 } 1932 if (ft_i) 1933 ft_i = nm_bdg_flush(ft, ft_i, ifp); 1934 /* count how many packets we sent */ 1935 i = k - j; 1936 if (i < 0) 1937 i += kring->nkr_num_slots; 1938 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 1939 if (j != k) 1940 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 1941 1942 done: 1943 kring->nr_hwcur = j; 1944 ring->avail = kring->nr_hwavail; 1945 if (do_lock) 1946 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 1947 1948 if (netmap_verbose) 1949 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 1950 return 0; 1951 } 1952 1953 static int 1954 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 1955 { 1956 struct netmap_adapter *na = NA(ifp); 1957 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 1958 struct netmap_ring *ring = kring->ring; 1959 u_int j, n, lim = kring->nkr_num_slots - 1; 1960 u_int k = ring->cur, resvd = ring->reserved; 1961 1962 ND("%s ring %d lock %d avail %d", 1963 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 1964 1965 if (k > lim) 1966 return netmap_ring_reinit(kring); 1967 if (do_lock) 1968 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 1969 1970 /* skip past packets that userspace has released */ 1971 j = kring->nr_hwcur; /* netmap ring index */ 1972 if (resvd > 0) { 1973 if (resvd + ring->avail >= lim + 1) { 1974 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 1975 ring->reserved = resvd = 0; // XXX panic... 1976 } 1977 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 1978 } 1979 1980 if (j != k) { /* userspace has released some packets. */ 1981 n = k - j; 1982 if (n < 0) 1983 n += kring->nkr_num_slots; 1984 ND("userspace releases %d packets", n); 1985 for (n = 0; likely(j != k); n++) { 1986 struct netmap_slot *slot = &ring->slot[j]; 1987 void *addr = NMB(slot); 1988 1989 if (addr == netmap_buffer_base) { /* bad buf */ 1990 if (do_lock) 1991 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 1992 return netmap_ring_reinit(kring); 1993 } 1994 /* decrease refcount for buffer */ 1995 1996 slot->flags &= ~NS_BUF_CHANGED; 1997 j = unlikely(j == lim) ? 0 : j + 1; 1998 } 1999 kring->nr_hwavail -= n; 2000 kring->nr_hwcur = k; 2001 } 2002 /* tell userspace that there are new packets */ 2003 ring->avail = kring->nr_hwavail - resvd; 2004 2005 if (do_lock) 2006 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2007 return 0; 2008 } 2009 2010 static void 2011 bdg_netmap_attach(struct ifnet *ifp) 2012 { 2013 struct netmap_adapter na; 2014 2015 ND("attaching virtual bridge"); 2016 bzero(&na, sizeof(na)); 2017 2018 na.ifp = ifp; 2019 na.separate_locks = 1; 2020 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 2021 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 2022 na.nm_txsync = bdg_netmap_txsync; 2023 na.nm_rxsync = bdg_netmap_rxsync; 2024 na.nm_register = bdg_netmap_reg; 2025 netmap_attach(&na, 1); 2026 } 2027 2028 #endif /* NM_BRIDGE */ 2029 2030 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 2031 2032 2033 /* 2034 * Module loader. 2035 * 2036 * Create the /dev/netmap device and initialize all global 2037 * variables. 2038 * 2039 * Return 0 on success, errno on failure. 2040 */ 2041 static int 2042 netmap_init(void) 2043 { 2044 int error; 2045 2046 error = netmap_memory_init(); 2047 if (error != 0) { 2048 printf("netmap: unable to initialize the memory allocator.\n"); 2049 return (error); 2050 } 2051 printf("netmap: loaded module with %d Mbytes\n", 2052 (int)(nm_mem->nm_totalsize >> 20)); 2053 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 2054 "netmap"); 2055 2056 #ifdef NM_BRIDGE 2057 { 2058 int i; 2059 for (i = 0; i < NM_BRIDGES; i++) 2060 mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF); 2061 } 2062 #endif 2063 return (error); 2064 } 2065 2066 2067 /* 2068 * Module unloader. 2069 * 2070 * Free all the memory, and destroy the ``/dev/netmap`` device. 2071 */ 2072 static void 2073 netmap_fini(void) 2074 { 2075 destroy_dev(netmap_dev); 2076 netmap_memory_fini(); 2077 printf("netmap: unloaded module.\n"); 2078 } 2079 2080 2081 #ifdef __FreeBSD__ 2082 /* 2083 * Kernel entry point. 2084 * 2085 * Initialize/finalize the module and return. 2086 * 2087 * Return 0 on success, errno on failure. 2088 */ 2089 static int 2090 netmap_loader(__unused struct module *module, int event, __unused void *arg) 2091 { 2092 int error = 0; 2093 2094 switch (event) { 2095 case MOD_LOAD: 2096 error = netmap_init(); 2097 break; 2098 2099 case MOD_UNLOAD: 2100 netmap_fini(); 2101 break; 2102 2103 default: 2104 error = EOPNOTSUPP; 2105 break; 2106 } 2107 2108 return (error); 2109 } 2110 2111 2112 DEV_MODULE(netmap, netmap_loader, NULL); 2113 #endif /* __FreeBSD__ */ 2114