1 /* 2 * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * $FreeBSD$ 28 * $Id: netmap.c 9795 2011-12-02 11:39:08Z luigi $ 29 * 30 * This module supports memory mapped access to network devices, 31 * see netmap(4). 32 * 33 * The module uses a large, memory pool allocated by the kernel 34 * and accessible as mmapped memory by multiple userspace threads/processes. 35 * The memory pool contains packet buffers and "netmap rings", 36 * i.e. user-accessible copies of the interface's queues. 37 * 38 * Access to the network card works like this: 39 * 1. a process/thread issues one or more open() on /dev/netmap, to create 40 * select()able file descriptor on which events are reported. 41 * 2. on each descriptor, the process issues an ioctl() to identify 42 * the interface that should report events to the file descriptor. 43 * 3. on each descriptor, the process issues an mmap() request to 44 * map the shared memory region within the process' address space. 45 * The list of interesting queues is indicated by a location in 46 * the shared memory region. 47 * 4. using the functions in the netmap(4) userspace API, a process 48 * can look up the occupation state of a queue, access memory buffers, 49 * and retrieve received packets or enqueue packets to transmit. 50 * 5. using some ioctl()s the process can synchronize the userspace view 51 * of the queue with the actual status in the kernel. This includes both 52 * receiving the notification of new packets, and transmitting new 53 * packets on the output interface. 54 * 6. select() or poll() can be used to wait for events on individual 55 * transmit or receive queues (or all queues for a given interface). 56 */ 57 58 #include <sys/cdefs.h> /* prerequisite */ 59 __FBSDID("$FreeBSD$"); 60 61 #include <sys/types.h> 62 #include <sys/module.h> 63 #include <sys/errno.h> 64 #include <sys/param.h> /* defines used in kernel.h */ 65 #include <sys/jail.h> 66 #include <sys/kernel.h> /* types used in module initialization */ 67 #include <sys/conf.h> /* cdevsw struct */ 68 #include <sys/uio.h> /* uio struct */ 69 #include <sys/sockio.h> 70 #include <sys/socketvar.h> /* struct socket */ 71 #include <sys/malloc.h> 72 #include <sys/mman.h> /* PROT_EXEC */ 73 #include <sys/poll.h> 74 #include <sys/proc.h> 75 #include <vm/vm.h> /* vtophys */ 76 #include <vm/pmap.h> /* vtophys */ 77 #include <sys/socket.h> /* sockaddrs */ 78 #include <machine/bus.h> 79 #include <sys/selinfo.h> 80 #include <sys/sysctl.h> 81 #include <net/if.h> 82 #include <net/bpf.h> /* BIOCIMMEDIATE */ 83 #include <net/vnet.h> 84 #include <net/netmap.h> 85 #include <dev/netmap/netmap_kern.h> 86 #include <machine/bus.h> /* bus_dmamap_* */ 87 88 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 89 90 /* 91 * lock and unlock for the netmap memory allocator 92 */ 93 #define NMA_LOCK() mtx_lock(&netmap_mem_d->nm_mtx); 94 #define NMA_UNLOCK() mtx_unlock(&netmap_mem_d->nm_mtx); 95 96 /* 97 * Default amount of memory pre-allocated by the module. 98 * We start with a large size and then shrink our demand 99 * according to what is avalable when the module is loaded. 100 * At the moment the block is contiguous, but we can easily 101 * restrict our demand to smaller units (16..64k) 102 */ 103 #define NETMAP_MEMORY_SIZE (64 * 1024 * PAGE_SIZE) 104 static void * netmap_malloc(size_t size, const char *msg); 105 static void netmap_free(void *addr, const char *msg); 106 107 #define netmap_if_malloc(len) netmap_malloc(len, "nifp") 108 #define netmap_if_free(v) netmap_free((v), "nifp") 109 110 #define netmap_ring_malloc(len) netmap_malloc(len, "ring") 111 #define netmap_free_rings(na) \ 112 netmap_free((na)->tx_rings[0].ring, "shadow rings"); 113 114 /* 115 * Allocator for a pool of packet buffers. For each buffer we have 116 * one entry in the bitmap to signal the state. Allocation scans 117 * the bitmap, but since this is done only on attach, we are not 118 * too worried about performance 119 * XXX if we need to allocate small blocks, a translation 120 * table is used both for kernel virtual address and physical 121 * addresses. 122 */ 123 struct netmap_buf_pool { 124 u_int total_buffers; /* total buffers. */ 125 u_int free; 126 u_int bufsize; 127 char *base; /* buffer base address */ 128 uint32_t *bitmap; /* one bit per buffer, 1 means free */ 129 }; 130 struct netmap_buf_pool nm_buf_pool; 131 /* XXX move these two vars back into netmap_buf_pool */ 132 u_int netmap_total_buffers; 133 char *netmap_buffer_base; /* address of an invalid buffer */ 134 135 /* user-controlled variables */ 136 int netmap_verbose; 137 138 static int no_timestamp; /* don't timestamp on rxsync */ 139 140 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 141 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 142 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 143 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 144 CTLFLAG_RW, &no_timestamp, 0, "no_timestamp"); 145 SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers, 146 CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers"); 147 SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers, 148 CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers"); 149 150 /* 151 * Allocate n buffers from the ring, and fill the slot. 152 * Buffer 0 is the 'junk' buffer. 153 */ 154 static void 155 netmap_new_bufs(struct netmap_if *nifp __unused, 156 struct netmap_slot *slot, u_int n) 157 { 158 struct netmap_buf_pool *p = &nm_buf_pool; 159 uint32_t bi = 0; /* index in the bitmap */ 160 uint32_t mask, j, i = 0; /* slot counter */ 161 162 if (n > p->free) { 163 D("only %d out of %d buffers available", i, n); 164 return; 165 } 166 /* termination is guaranteed by p->free */ 167 while (i < n && p->free > 0) { 168 uint32_t cur = p->bitmap[bi]; 169 if (cur == 0) { /* bitmask is fully used */ 170 bi++; 171 continue; 172 } 173 /* locate a slot */ 174 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ; 175 p->bitmap[bi] &= ~mask; /* slot in use */ 176 p->free--; 177 slot[i].buf_idx = bi*32+j; 178 slot[i].len = p->bufsize; 179 slot[i].flags = NS_BUF_CHANGED; 180 i++; 181 } 182 ND("allocated %d buffers, %d available", n, p->free); 183 } 184 185 186 static void 187 netmap_free_buf(struct netmap_if *nifp __unused, uint32_t i) 188 { 189 struct netmap_buf_pool *p = &nm_buf_pool; 190 191 uint32_t pos, mask; 192 if (i >= p->total_buffers) { 193 D("invalid free index %d", i); 194 return; 195 } 196 pos = i / 32; 197 mask = 1 << (i % 32); 198 if (p->bitmap[pos] & mask) { 199 D("slot %d already free", i); 200 return; 201 } 202 p->bitmap[pos] |= mask; 203 p->free++; 204 } 205 206 207 /* Descriptor of the memory objects handled by our memory allocator. */ 208 struct netmap_mem_obj { 209 TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the 210 chain. */ 211 int nmo_used; /* flag set on used memory objects. */ 212 size_t nmo_size; /* size of the memory area reserved for the 213 object. */ 214 void *nmo_data; /* pointer to the memory area. */ 215 }; 216 217 /* Wrap our memory objects to make them ``chainable``. */ 218 TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj); 219 220 221 /* Descriptor of our custom memory allocator. */ 222 struct netmap_mem_d { 223 struct mtx nm_mtx; /* lock used to handle the chain of memory 224 objects. */ 225 struct netmap_mem_obj_h nm_molist; /* list of memory objects */ 226 size_t nm_size; /* total amount of memory used for rings etc. */ 227 size_t nm_totalsize; /* total amount of allocated memory 228 (the difference is used for buffers) */ 229 size_t nm_buf_start; /* offset of packet buffers. 230 This is page-aligned. */ 231 size_t nm_buf_len; /* total memory for buffers */ 232 void *nm_buffer; /* pointer to the whole pre-allocated memory 233 area. */ 234 }; 235 236 237 /* Structure associated to each thread which registered an interface. */ 238 struct netmap_priv_d { 239 struct netmap_if *np_nifp; /* netmap interface descriptor. */ 240 241 struct ifnet *np_ifp; /* device for which we hold a reference */ 242 int np_ringid; /* from the ioctl */ 243 u_int np_qfirst, np_qlast; /* range of rings to scan */ 244 uint16_t np_txpoll; 245 }; 246 247 /* Shorthand to compute a netmap interface offset. */ 248 #define netmap_if_offset(v) \ 249 ((char *) (v) - (char *) netmap_mem_d->nm_buffer) 250 /* .. and get a physical address given a memory offset */ 251 #define netmap_ofstophys(o) \ 252 (vtophys(netmap_mem_d->nm_buffer) + (o)) 253 254 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 255 static struct netmap_mem_d *netmap_mem_d; /* Our memory allocator. */ 256 257 258 static d_mmap_t netmap_mmap; 259 static d_ioctl_t netmap_ioctl; 260 static d_poll_t netmap_poll; 261 262 #ifdef NETMAP_KEVENT 263 static d_kqfilter_t netmap_kqfilter; 264 #endif 265 266 static struct cdevsw netmap_cdevsw = { 267 .d_version = D_VERSION, 268 .d_name = "netmap", 269 .d_mmap = netmap_mmap, 270 .d_ioctl = netmap_ioctl, 271 .d_poll = netmap_poll, 272 #ifdef NETMAP_KEVENT 273 .d_kqfilter = netmap_kqfilter, 274 #endif 275 }; 276 277 #ifdef NETMAP_KEVENT 278 static int netmap_kqread(struct knote *, long); 279 static int netmap_kqwrite(struct knote *, long); 280 static void netmap_kqdetach(struct knote *); 281 282 static struct filterops netmap_read_filterops = { 283 .f_isfd = 1, 284 .f_attach = NULL, 285 .f_detach = netmap_kqdetach, 286 .f_event = netmap_kqread, 287 }; 288 289 static struct filterops netmap_write_filterops = { 290 .f_isfd = 1, 291 .f_attach = NULL, 292 .f_detach = netmap_kqdetach, 293 .f_event = netmap_kqwrite, 294 }; 295 296 /* 297 * support for the kevent() system call. 298 * 299 * This is the kevent filter, and is executed each time a new event 300 * is triggered on the device. This function execute some operation 301 * depending on the received filter. 302 * 303 * The implementation should test the filters and should implement 304 * filter operations we are interested on (a full list in /sys/event.h). 305 * 306 * On a match we should: 307 * - set kn->kn_fop 308 * - set kn->kn_hook 309 * - call knlist_add() to deliver the event to the application. 310 * 311 * Return 0 if the event should be delivered to the application. 312 */ 313 static int 314 netmap_kqfilter(struct cdev *dev, struct knote *kn) 315 { 316 /* declare variables needed to read/write */ 317 318 switch(kn->kn_filter) { 319 case EVFILT_READ: 320 if (netmap_verbose) 321 D("%s kqfilter: EVFILT_READ" ifp->if_xname); 322 323 /* read operations */ 324 kn->kn_fop = &netmap_read_filterops; 325 break; 326 327 case EVFILT_WRITE: 328 if (netmap_verbose) 329 D("%s kqfilter: EVFILT_WRITE" ifp->if_xname); 330 331 /* write operations */ 332 kn->kn_fop = &netmap_write_filterops; 333 break; 334 335 default: 336 if (netmap_verbose) 337 D("%s kqfilter: invalid filter" ifp->if_xname); 338 return(EINVAL); 339 } 340 341 kn->kn_hook = 0;// 342 knlist_add(&netmap_sc->tun_rsel.si_note, kn, 0); 343 344 return (0); 345 } 346 #endif /* NETMAP_KEVENT */ 347 348 /* 349 * File descriptor's private data destructor. 350 * 351 * Call nm_register(ifp,0) to stop netmap mode on the interface and 352 * revert to normal operation. We expect that np_ifp has not gone. 353 */ 354 static void 355 netmap_dtor(void *data) 356 { 357 struct netmap_priv_d *priv = data; 358 struct ifnet *ifp = priv->np_ifp; 359 struct netmap_adapter *na = NA(ifp); 360 struct netmap_if *nifp = priv->np_nifp; 361 362 if (0) 363 printf("%s starting for %p ifp %p\n", __FUNCTION__, priv, 364 priv ? priv->np_ifp : NULL); 365 366 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 367 368 na->refcount--; 369 if (na->refcount <= 0) { /* last instance */ 370 u_int i; 371 372 D("deleting last netmap instance for %s", ifp->if_xname); 373 /* 374 * there is a race here with *_netmap_task() and 375 * netmap_poll(), which don't run under NETMAP_CORE_LOCK. 376 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 377 * (aka NETMAP_DELETING(na)) are a unique marker that the 378 * device is dying. 379 * Before destroying stuff we sleep a bit, and then complete 380 * the job. NIOCREG should realize the condition and 381 * loop until they can continue; the other routines 382 * should check the condition at entry and quit if 383 * they cannot run. 384 */ 385 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 386 tsleep(na, 0, "NIOCUNREG", 4); 387 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 388 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 389 /* Wake up any sleeping threads. netmap_poll will 390 * then return POLLERR 391 */ 392 for (i = 0; i < na->num_queues + 2; i++) { 393 selwakeuppri(&na->tx_rings[i].si, PI_NET); 394 selwakeuppri(&na->rx_rings[i].si, PI_NET); 395 } 396 /* release all buffers */ 397 NMA_LOCK(); 398 for (i = 0; i < na->num_queues + 1; i++) { 399 int j, lim; 400 struct netmap_ring *ring; 401 402 ND("tx queue %d", i); 403 ring = na->tx_rings[i].ring; 404 lim = na->tx_rings[i].nkr_num_slots; 405 for (j = 0; j < lim; j++) 406 netmap_free_buf(nifp, ring->slot[j].buf_idx); 407 408 ND("rx queue %d", i); 409 ring = na->rx_rings[i].ring; 410 lim = na->rx_rings[i].nkr_num_slots; 411 for (j = 0; j < lim; j++) 412 netmap_free_buf(nifp, ring->slot[j].buf_idx); 413 } 414 NMA_UNLOCK(); 415 netmap_free_rings(na); 416 wakeup(na); 417 } 418 netmap_if_free(nifp); 419 420 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 421 422 if_rele(ifp); 423 424 bzero(priv, sizeof(*priv)); /* XXX for safety */ 425 free(priv, M_DEVBUF); 426 } 427 428 429 /* 430 * Create and return a new ``netmap_if`` object, and possibly also 431 * rings and packet buffors. 432 * 433 * Return NULL on failure. 434 */ 435 static void * 436 netmap_if_new(const char *ifname, struct netmap_adapter *na) 437 { 438 struct netmap_if *nifp; 439 struct netmap_ring *ring; 440 char *buff; 441 u_int i, len, ofs; 442 u_int n = na->num_queues + 1; /* shorthand, include stack queue */ 443 444 /* 445 * the descriptor is followed inline by an array of offsets 446 * to the tx and rx rings in the shared memory region. 447 */ 448 len = sizeof(struct netmap_if) + 2 * n * sizeof(ssize_t); 449 nifp = netmap_if_malloc(len); 450 if (nifp == NULL) 451 return (NULL); 452 453 /* initialize base fields */ 454 *(int *)(uintptr_t)&nifp->ni_num_queues = na->num_queues; 455 strncpy(nifp->ni_name, ifname, IFNAMSIZ); 456 457 (na->refcount)++; /* XXX atomic ? we are under lock */ 458 if (na->refcount > 1) 459 goto final; 460 461 /* 462 * If this is the first instance, allocate the shadow rings and 463 * buffers for this card (one for each hw queue, one for the host). 464 * The rings are contiguous, but have variable size. 465 * The entire block is reachable at 466 * na->tx_rings[0].ring 467 */ 468 469 len = n * (2 * sizeof(struct netmap_ring) + 470 (na->num_tx_desc + na->num_rx_desc) * 471 sizeof(struct netmap_slot) ); 472 buff = netmap_ring_malloc(len); 473 if (buff == NULL) { 474 D("failed to allocate %d bytes for %s shadow ring", 475 len, ifname); 476 error: 477 (na->refcount)--; 478 netmap_if_free(nifp); 479 return (NULL); 480 } 481 /* do we have the bufers ? we are in need of num_tx_desc buffers for 482 * each tx ring and num_tx_desc buffers for each rx ring. */ 483 len = n * (na->num_tx_desc + na->num_rx_desc); 484 NMA_LOCK(); 485 if (nm_buf_pool.free < len) { 486 NMA_UNLOCK(); 487 netmap_free(buff, "not enough bufs"); 488 goto error; 489 } 490 /* 491 * in the kring, store the pointers to the shared rings 492 * and initialize the rings. We are under NMA_LOCK(). 493 */ 494 ofs = 0; 495 for (i = 0; i < n; i++) { 496 struct netmap_kring *kring; 497 int numdesc; 498 499 /* Transmit rings */ 500 kring = &na->tx_rings[i]; 501 numdesc = na->num_tx_desc; 502 bzero(kring, sizeof(*kring)); 503 kring->na = na; 504 505 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 506 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 507 nm_buf_pool.base - (char *)ring; 508 ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs); 509 *(int *)(int *)(uintptr_t)&ring->num_slots = 510 kring->nkr_num_slots = numdesc; 511 512 /* 513 * IMPORTANT: 514 * Always keep one slot empty, so we can detect new 515 * transmissions comparing cur and nr_hwcur (they are 516 * the same only if there are no new transmissions). 517 */ 518 ring->avail = kring->nr_hwavail = numdesc - 1; 519 ring->cur = kring->nr_hwcur = 0; 520 netmap_new_bufs(nifp, ring->slot, numdesc); 521 522 ofs += sizeof(struct netmap_ring) + 523 numdesc * sizeof(struct netmap_slot); 524 525 /* Receive rings */ 526 kring = &na->rx_rings[i]; 527 numdesc = na->num_rx_desc; 528 bzero(kring, sizeof(*kring)); 529 kring->na = na; 530 531 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 532 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 533 nm_buf_pool.base - (char *)ring; 534 ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs); 535 *(int *)(int *)(uintptr_t)&ring->num_slots = 536 kring->nkr_num_slots = numdesc; 537 ring->cur = kring->nr_hwcur = 0; 538 ring->avail = kring->nr_hwavail = 0; /* empty */ 539 netmap_new_bufs(nifp, ring->slot, numdesc); 540 ofs += sizeof(struct netmap_ring) + 541 numdesc * sizeof(struct netmap_slot); 542 } 543 NMA_UNLOCK(); 544 for (i = 0; i < n+1; i++) { 545 // XXX initialize the selrecord structs. 546 } 547 final: 548 /* 549 * fill the slots for the rx and tx queues. They contain the offset 550 * between the ring and nifp, so the information is usable in 551 * userspace to reach the ring from the nifp. 552 */ 553 for (i = 0; i < n; i++) { 554 char *base = (char *)nifp; 555 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = 556 (char *)na->tx_rings[i].ring - base; 557 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n] = 558 (char *)na->rx_rings[i].ring - base; 559 } 560 return (nifp); 561 } 562 563 564 /* 565 * mmap(2) support for the "netmap" device. 566 * 567 * Expose all the memory previously allocated by our custom memory 568 * allocator: this way the user has only to issue a single mmap(2), and 569 * can work on all the data structures flawlessly. 570 * 571 * Return 0 on success, -1 otherwise. 572 */ 573 static int 574 #if __FreeBSD_version < 900000 575 netmap_mmap(__unused struct cdev *dev, vm_offset_t offset, vm_paddr_t *paddr, 576 int nprot) 577 #else 578 netmap_mmap(__unused struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr, 579 int nprot, __unused vm_memattr_t *memattr) 580 #endif 581 { 582 if (nprot & PROT_EXEC) 583 return (-1); // XXX -1 or EINVAL ? 584 585 ND("request for offset 0x%x", (uint32_t)offset); 586 *paddr = netmap_ofstophys(offset); 587 588 return (0); 589 } 590 591 592 /* 593 * Handlers for synchronization of the queues from/to the host. 594 * 595 * netmap_sync_to_host() passes packets up. We are called from a 596 * system call in user process context, and the only contention 597 * can be among multiple user threads erroneously calling 598 * this routine concurrently. In principle we should not even 599 * need to lock. 600 */ 601 static void 602 netmap_sync_to_host(struct netmap_adapter *na) 603 { 604 struct netmap_kring *kring = &na->tx_rings[na->num_queues]; 605 struct netmap_ring *ring = kring->ring; 606 struct mbuf *head = NULL, *tail = NULL, *m; 607 u_int k, n, lim = kring->nkr_num_slots - 1; 608 609 k = ring->cur; 610 if (k > lim) { 611 netmap_ring_reinit(kring); 612 return; 613 } 614 // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 615 616 /* Take packets from hwcur to cur and pass them up. 617 * In case of no buffers we give up. At the end of the loop, 618 * the queue is drained in all cases. 619 */ 620 for (n = kring->nr_hwcur; n != k;) { 621 struct netmap_slot *slot = &ring->slot[n]; 622 623 n = (n == lim) ? 0 : n + 1; 624 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 625 D("bad pkt at %d len %d", n, slot->len); 626 continue; 627 } 628 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 629 630 if (m == NULL) 631 break; 632 if (tail) 633 tail->m_nextpkt = m; 634 else 635 head = m; 636 tail = m; 637 m->m_nextpkt = NULL; 638 } 639 kring->nr_hwcur = k; 640 kring->nr_hwavail = ring->avail = lim; 641 // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 642 643 /* send packets up, outside the lock */ 644 while ((m = head) != NULL) { 645 head = head->m_nextpkt; 646 m->m_nextpkt = NULL; 647 m->m_pkthdr.rcvif = na->ifp; 648 if (netmap_verbose & NM_VERB_HOST) 649 D("sending up pkt %p size %d", m, m->m_pkthdr.len); 650 (na->ifp->if_input)(na->ifp, m); 651 } 652 } 653 654 /* 655 * rxsync backend for packets coming from the host stack. 656 * They have been put in the queue by netmap_start() so we 657 * need to protect access to the kring using a lock. 658 * 659 * This routine also does the selrecord if called from the poll handler 660 * (we know because td != NULL). 661 */ 662 static void 663 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) 664 { 665 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 666 struct netmap_ring *ring = kring->ring; 667 int error = 1, delta; 668 u_int k = ring->cur, lim = kring->nkr_num_slots; 669 670 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 671 if (k >= lim) /* bad value */ 672 goto done; 673 delta = k - kring->nr_hwcur; 674 if (delta < 0) 675 delta += lim; 676 kring->nr_hwavail -= delta; 677 if (kring->nr_hwavail < 0) /* error */ 678 goto done; 679 kring->nr_hwcur = k; 680 error = 0; 681 k = ring->avail = kring->nr_hwavail; 682 if (k == 0 && td) 683 selrecord(td, &kring->si); 684 if (k && (netmap_verbose & NM_VERB_HOST)) 685 D("%d pkts from stack", k); 686 done: 687 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 688 if (error) 689 netmap_ring_reinit(kring); 690 } 691 692 693 /* 694 * get a refcounted reference to an interface. 695 * Return ENXIO if the interface does not exist, EINVAL if netmap 696 * is not supported by the interface. 697 * If successful, hold a reference. 698 */ 699 static int 700 get_ifp(const char *name, struct ifnet **ifp) 701 { 702 *ifp = ifunit_ref(name); 703 if (*ifp == NULL) 704 return (ENXIO); 705 /* can do this if the capability exists and if_pspare[0] 706 * points to the netmap descriptor. 707 */ 708 if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) 709 return 0; /* valid pointer, we hold the refcount */ 710 if_rele(*ifp); 711 return EINVAL; // not NETMAP capable 712 } 713 714 715 /* 716 * Error routine called when txsync/rxsync detects an error. 717 * Can't do much more than resetting cur = hwcur, avail = hwavail. 718 * Return 1 on reinit. 719 * 720 * This routine is only called by the upper half of the kernel. 721 * It only reads hwcur (which is changed only by the upper half, too) 722 * and hwavail (which may be changed by the lower half, but only on 723 * a tx ring and only to increase it, so any error will be recovered 724 * on the next call). For the above, we don't strictly need to call 725 * it under lock. 726 */ 727 int 728 netmap_ring_reinit(struct netmap_kring *kring) 729 { 730 struct netmap_ring *ring = kring->ring; 731 u_int i, lim = kring->nkr_num_slots - 1; 732 int errors = 0; 733 734 D("called for %s", kring->na->ifp->if_xname); 735 if (ring->cur > lim) 736 errors++; 737 for (i = 0; i <= lim; i++) { 738 u_int idx = ring->slot[i].buf_idx; 739 u_int len = ring->slot[i].len; 740 if (idx < 2 || idx >= netmap_total_buffers) { 741 if (!errors++) 742 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 743 ring->slot[i].buf_idx = 0; 744 ring->slot[i].len = 0; 745 } else if (len > NETMAP_BUF_SIZE) { 746 ring->slot[i].len = 0; 747 if (!errors++) 748 D("bad len %d at slot %d idx %d", 749 len, i, idx); 750 } 751 } 752 if (errors) { 753 int pos = kring - kring->na->tx_rings; 754 int n = kring->na->num_queues + 2; 755 756 D("total %d errors", errors); 757 errors++; 758 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 759 kring->na->ifp->if_xname, 760 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 761 ring->cur, kring->nr_hwcur, 762 ring->avail, kring->nr_hwavail); 763 ring->cur = kring->nr_hwcur; 764 ring->avail = kring->nr_hwavail; 765 } 766 return (errors ? 1 : 0); 767 } 768 769 770 /* 771 * Set the ring ID. For devices with a single queue, a request 772 * for all rings is the same as a single ring. 773 */ 774 static int 775 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 776 { 777 struct ifnet *ifp = priv->np_ifp; 778 struct netmap_adapter *na = NA(ifp); 779 void *adapter = na->ifp->if_softc; /* shorthand */ 780 u_int i = ringid & NETMAP_RING_MASK; 781 /* first time we don't lock */ 782 int need_lock = (priv->np_qfirst != priv->np_qlast); 783 784 if ( (ringid & NETMAP_HW_RING) && i >= na->num_queues) { 785 D("invalid ring id %d", i); 786 return (EINVAL); 787 } 788 if (need_lock) 789 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 790 priv->np_ringid = ringid; 791 if (ringid & NETMAP_SW_RING) { 792 priv->np_qfirst = na->num_queues; 793 priv->np_qlast = na->num_queues + 1; 794 } else if (ringid & NETMAP_HW_RING) { 795 priv->np_qfirst = i; 796 priv->np_qlast = i + 1; 797 } else { 798 priv->np_qfirst = 0; 799 priv->np_qlast = na->num_queues; 800 } 801 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 802 if (need_lock) 803 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 804 if (ringid & NETMAP_SW_RING) 805 D("ringid %s set to SW RING", ifp->if_xname); 806 else if (ringid & NETMAP_HW_RING) 807 D("ringid %s set to HW RING %d", ifp->if_xname, 808 priv->np_qfirst); 809 else 810 D("ringid %s set to all %d HW RINGS", ifp->if_xname, 811 priv->np_qlast); 812 return 0; 813 } 814 815 /* 816 * ioctl(2) support for the "netmap" device. 817 * 818 * Following a list of accepted commands: 819 * - NIOCGINFO 820 * - SIOCGIFADDR just for convenience 821 * - NIOCREGIF 822 * - NIOCUNREGIF 823 * - NIOCTXSYNC 824 * - NIOCRXSYNC 825 * 826 * Return 0 on success, errno otherwise. 827 */ 828 static int 829 netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, 830 __unused int fflag, struct thread *td) 831 { 832 struct netmap_priv_d *priv = NULL; 833 struct ifnet *ifp; 834 struct nmreq *nmr = (struct nmreq *) data; 835 struct netmap_adapter *na; 836 void *adapter; 837 int error; 838 u_int i; 839 struct netmap_if *nifp; 840 841 CURVNET_SET(TD_TO_VNET(td)); 842 843 error = devfs_get_cdevpriv((void **)&priv); 844 if (error != ENOENT && error != 0) { 845 CURVNET_RESTORE(); 846 return (error); 847 } 848 849 error = 0; /* Could be ENOENT */ 850 switch (cmd) { 851 case NIOCGINFO: /* return capabilities etc */ 852 /* memsize is always valid */ 853 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 854 nmr->nr_offset = 0; 855 nmr->nr_numrings = 0; 856 nmr->nr_numslots = 0; 857 if (nmr->nr_name[0] == '\0') /* just get memory info */ 858 break; 859 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 860 if (error) 861 break; 862 na = NA(ifp); /* retrieve netmap_adapter */ 863 nmr->nr_numrings = na->num_queues; 864 nmr->nr_numslots = na->num_tx_desc; 865 if_rele(ifp); /* return the refcount */ 866 break; 867 868 case NIOCREGIF: 869 if (priv != NULL) { /* thread already registered */ 870 error = netmap_set_ringid(priv, nmr->nr_ringid); 871 break; 872 } 873 /* find the interface and a reference */ 874 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 875 if (error) 876 break; 877 na = NA(ifp); /* retrieve netmap adapter */ 878 adapter = na->ifp->if_softc; /* shorthand */ 879 /* 880 * Allocate the private per-thread structure. 881 * XXX perhaps we can use a blocking malloc ? 882 */ 883 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 884 M_NOWAIT | M_ZERO); 885 if (priv == NULL) { 886 error = ENOMEM; 887 if_rele(ifp); /* return the refcount */ 888 break; 889 } 890 891 892 for (i = 10; i > 0; i--) { 893 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 894 if (!NETMAP_DELETING(na)) 895 break; 896 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 897 tsleep(na, 0, "NIOCREGIF", hz/10); 898 } 899 if (i == 0) { 900 D("too many NIOCREGIF attempts, give up"); 901 error = EINVAL; 902 free(priv, M_DEVBUF); 903 if_rele(ifp); /* return the refcount */ 904 break; 905 } 906 907 priv->np_ifp = ifp; /* store the reference */ 908 error = netmap_set_ringid(priv, nmr->nr_ringid); 909 if (error) 910 goto error; 911 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); 912 if (nifp == NULL) { /* allocation failed */ 913 error = ENOMEM; 914 } else if (ifp->if_capenable & IFCAP_NETMAP) { 915 /* was already set */ 916 } else { 917 /* Otherwise set the card in netmap mode 918 * and make it use the shared buffers. 919 */ 920 error = na->nm_register(ifp, 1); /* mode on */ 921 if (error) { 922 /* 923 * do something similar to netmap_dtor(). 924 */ 925 netmap_free_rings(na); 926 // XXX tx_rings is inline, must not be freed. 927 // free(na->tx_rings, M_DEVBUF); // XXX wrong ? 928 na->tx_rings = na->rx_rings = NULL; 929 na->refcount--; 930 netmap_if_free(nifp); 931 nifp = NULL; 932 } 933 } 934 935 if (error) { /* reg. failed, release priv and ref */ 936 error: 937 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 938 free(priv, M_DEVBUF); 939 if_rele(ifp); /* return the refcount */ 940 break; 941 } 942 943 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 944 error = devfs_set_cdevpriv(priv, netmap_dtor); 945 946 if (error != 0) { 947 /* could not assign the private storage for the 948 * thread, call the destructor explicitly. 949 */ 950 netmap_dtor(priv); 951 break; 952 } 953 954 /* return the offset of the netmap_if object */ 955 nmr->nr_numrings = na->num_queues; 956 nmr->nr_numslots = na->num_tx_desc; 957 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 958 nmr->nr_offset = netmap_if_offset(nifp); 959 break; 960 961 case NIOCUNREGIF: 962 if (priv == NULL) { 963 error = ENXIO; 964 break; 965 } 966 967 /* the interface is unregistered inside the 968 destructor of the private data. */ 969 devfs_clear_cdevpriv(); 970 break; 971 972 case NIOCTXSYNC: 973 case NIOCRXSYNC: 974 if (priv == NULL) { 975 error = ENXIO; 976 break; 977 } 978 ifp = priv->np_ifp; /* we have a reference */ 979 na = NA(ifp); /* retrieve netmap adapter */ 980 adapter = ifp->if_softc; /* shorthand */ 981 982 if (priv->np_qfirst == na->num_queues) { 983 /* queues to/from host */ 984 if (cmd == NIOCTXSYNC) 985 netmap_sync_to_host(na); 986 else 987 netmap_sync_from_host(na, NULL); 988 break; 989 } 990 991 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 992 if (cmd == NIOCTXSYNC) { 993 struct netmap_kring *kring = &na->tx_rings[i]; 994 if (netmap_verbose & NM_VERB_TXSYNC) 995 D("sync tx ring %d cur %d hwcur %d", 996 i, kring->ring->cur, 997 kring->nr_hwcur); 998 na->nm_txsync(adapter, i, 1 /* do lock */); 999 if (netmap_verbose & NM_VERB_TXSYNC) 1000 D("after sync tx ring %d cur %d hwcur %d", 1001 i, kring->ring->cur, 1002 kring->nr_hwcur); 1003 } else { 1004 na->nm_rxsync(adapter, i, 1 /* do lock */); 1005 microtime(&na->rx_rings[i].ring->ts); 1006 } 1007 } 1008 1009 break; 1010 1011 case BIOCIMMEDIATE: 1012 case BIOCGHDRCMPLT: 1013 case BIOCSHDRCMPLT: 1014 case BIOCSSEESENT: 1015 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1016 break; 1017 1018 default: 1019 { 1020 /* 1021 * allow device calls 1022 */ 1023 struct socket so; 1024 bzero(&so, sizeof(so)); 1025 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1026 if (error) 1027 break; 1028 so.so_vnet = ifp->if_vnet; 1029 // so->so_proto not null. 1030 error = ifioctl(&so, cmd, data, td); 1031 if_rele(ifp); 1032 } 1033 } 1034 1035 CURVNET_RESTORE(); 1036 return (error); 1037 } 1038 1039 1040 /* 1041 * select(2) and poll(2) handlers for the "netmap" device. 1042 * 1043 * Can be called for one or more queues. 1044 * Return true the event mask corresponding to ready events. 1045 * If there are no ready events, do a selrecord on either individual 1046 * selfd or on the global one. 1047 * Device-dependent parts (locking and sync of tx/rx rings) 1048 * are done through callbacks. 1049 */ 1050 static int 1051 netmap_poll(__unused struct cdev *dev, int events, struct thread *td) 1052 { 1053 struct netmap_priv_d *priv = NULL; 1054 struct netmap_adapter *na; 1055 struct ifnet *ifp; 1056 struct netmap_kring *kring; 1057 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1058 void *adapter; 1059 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1060 1061 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1062 return POLLERR; 1063 1064 ifp = priv->np_ifp; 1065 // XXX check for deleting() ? 1066 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1067 return POLLERR; 1068 1069 if (netmap_verbose & 0x8000) 1070 D("device %s events 0x%x", ifp->if_xname, events); 1071 want_tx = events & (POLLOUT | POLLWRNORM); 1072 want_rx = events & (POLLIN | POLLRDNORM); 1073 1074 adapter = ifp->if_softc; 1075 na = NA(ifp); /* retrieve netmap adapter */ 1076 1077 /* how many queues we are scanning */ 1078 i = priv->np_qfirst; 1079 if (i == na->num_queues) { /* from/to host */ 1080 if (priv->np_txpoll || want_tx) { 1081 /* push any packets up, then we are always ready */ 1082 kring = &na->tx_rings[i]; 1083 netmap_sync_to_host(na); 1084 revents |= want_tx; 1085 } 1086 if (want_rx) { 1087 kring = &na->rx_rings[i]; 1088 if (kring->ring->avail == 0) 1089 netmap_sync_from_host(na, td); 1090 if (kring->ring->avail > 0) { 1091 revents |= want_rx; 1092 } 1093 } 1094 return (revents); 1095 } 1096 1097 /* 1098 * check_all is set if the card has more than one queue and 1099 * the client is polling all of them. If true, we sleep on 1100 * the "global" selfd, otherwise we sleep on individual selfd 1101 * (we can only sleep on one of them per direction). 1102 * The interrupt routine in the driver should always wake on 1103 * the individual selfd, and also on the global one if the card 1104 * has more than one ring. 1105 * 1106 * If the card has only one lock, we just use that. 1107 * If the card has separate ring locks, we just use those 1108 * unless we are doing check_all, in which case the whole 1109 * loop is wrapped by the global lock. 1110 * We acquire locks only when necessary: if poll is called 1111 * when buffers are available, we can just return without locks. 1112 * 1113 * rxsync() is only called if we run out of buffers on a POLLIN. 1114 * txsync() is called if we run out of buffers on POLLOUT, or 1115 * there are pending packets to send. The latter can be disabled 1116 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1117 */ 1118 check_all = (i + 1 != priv->np_qlast); 1119 1120 /* 1121 * core_lock indicates what to do with the core lock. 1122 * The core lock is used when either the card has no individual 1123 * locks, or it has individual locks but we are cheking all 1124 * rings so we need the core lock to avoid missing wakeup events. 1125 * 1126 * It has three possible states: 1127 * NO_CL we don't need to use the core lock, e.g. 1128 * because we are protected by individual locks. 1129 * NEED_CL we need the core lock. In this case, when we 1130 * call the lock routine, move to LOCKED_CL 1131 * to remember to release the lock once done. 1132 * LOCKED_CL core lock is set, so we need to release it. 1133 */ 1134 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1135 /* 1136 * We start with a lock free round which is good if we have 1137 * data available. If this fails, then lock and call the sync 1138 * routines. 1139 */ 1140 for (i = priv->np_qfirst; want_rx && i < priv->np_qlast; i++) { 1141 kring = &na->rx_rings[i]; 1142 if (kring->ring->avail > 0) { 1143 revents |= want_rx; 1144 want_rx = 0; /* also breaks the loop */ 1145 } 1146 } 1147 for (i = priv->np_qfirst; want_tx && i < priv->np_qlast; i++) { 1148 kring = &na->tx_rings[i]; 1149 if (kring->ring->avail > 0) { 1150 revents |= want_tx; 1151 want_tx = 0; /* also breaks the loop */ 1152 } 1153 } 1154 1155 /* 1156 * If we to push packets out (priv->np_txpoll) or want_tx is 1157 * still set, we do need to run the txsync calls (on all rings, 1158 * to avoid that the tx rings stall). 1159 */ 1160 if (priv->np_txpoll || want_tx) { 1161 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1162 kring = &na->tx_rings[i]; 1163 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1164 continue; 1165 if (core_lock == NEED_CL) { 1166 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1167 core_lock = LOCKED_CL; 1168 } 1169 if (na->separate_locks) 1170 na->nm_lock(adapter, NETMAP_TX_LOCK, i); 1171 if (netmap_verbose & NM_VERB_TXSYNC) 1172 D("send %d on %s %d", 1173 kring->ring->cur, 1174 ifp->if_xname, i); 1175 if (na->nm_txsync(adapter, i, 0 /* no lock */)) 1176 revents |= POLLERR; 1177 1178 if (want_tx) { 1179 if (kring->ring->avail > 0) { 1180 /* stop at the first ring. We don't risk 1181 * starvation. 1182 */ 1183 revents |= want_tx; 1184 want_tx = 0; 1185 } else if (!check_all) 1186 selrecord(td, &kring->si); 1187 } 1188 if (na->separate_locks) 1189 na->nm_lock(adapter, NETMAP_TX_UNLOCK, i); 1190 } 1191 } 1192 1193 /* 1194 * now if want_rx is still set we need to lock and rxsync. 1195 * Do it on all rings because otherwise we starve. 1196 */ 1197 if (want_rx) { 1198 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1199 kring = &na->rx_rings[i]; 1200 if (core_lock == NEED_CL) { 1201 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1202 core_lock = LOCKED_CL; 1203 } 1204 if (na->separate_locks) 1205 na->nm_lock(adapter, NETMAP_RX_LOCK, i); 1206 1207 if (na->nm_rxsync(adapter, i, 0 /* no lock */)) 1208 revents |= POLLERR; 1209 if (no_timestamp == 0 || 1210 kring->ring->flags & NR_TIMESTAMP) 1211 microtime(&kring->ring->ts); 1212 1213 if (kring->ring->avail > 0) 1214 revents |= want_rx; 1215 else if (!check_all) 1216 selrecord(td, &kring->si); 1217 if (na->separate_locks) 1218 na->nm_lock(adapter, NETMAP_RX_UNLOCK, i); 1219 } 1220 } 1221 if (check_all && revents == 0) { 1222 i = na->num_queues + 1; /* the global queue */ 1223 if (want_tx) 1224 selrecord(td, &na->tx_rings[i].si); 1225 if (want_rx) 1226 selrecord(td, &na->rx_rings[i].si); 1227 } 1228 if (core_lock == LOCKED_CL) 1229 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 1230 1231 return (revents); 1232 } 1233 1234 /*------- driver support routines ------*/ 1235 1236 /* 1237 * Initialize a ``netmap_adapter`` object created by driver on attach. 1238 * We allocate a block of memory with room for a struct netmap_adapter 1239 * plus two sets of N+2 struct netmap_kring (where N is the number 1240 * of hardware rings): 1241 * krings 0..N-1 are for the hardware queues. 1242 * kring N is for the host stack queue 1243 * kring N+1 is only used for the selinfo for all queues. 1244 * Return 0 on success, ENOMEM otherwise. 1245 */ 1246 int 1247 netmap_attach(struct netmap_adapter *na, int num_queues) 1248 { 1249 int n = num_queues + 2; 1250 int size = sizeof(*na) + 2 * n * sizeof(struct netmap_kring); 1251 void *buf; 1252 struct ifnet *ifp = na->ifp; 1253 1254 if (ifp == NULL) { 1255 D("ifp not set, giving up"); 1256 return EINVAL; 1257 } 1258 na->refcount = 0; 1259 na->num_queues = num_queues; 1260 1261 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1262 if (buf) { 1263 WNA(ifp) = buf; 1264 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1265 na->rx_rings = na->tx_rings + n; 1266 bcopy(na, buf, sizeof(*na)); 1267 ifp->if_capabilities |= IFCAP_NETMAP; 1268 } 1269 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1270 1271 return (buf ? 0 : ENOMEM); 1272 } 1273 1274 1275 /* 1276 * Free the allocated memory linked to the given ``netmap_adapter`` 1277 * object. 1278 */ 1279 void 1280 netmap_detach(struct ifnet *ifp) 1281 { 1282 u_int i; 1283 struct netmap_adapter *na = NA(ifp); 1284 1285 if (!na) 1286 return; 1287 1288 for (i = 0; i < na->num_queues + 2; i++) { 1289 knlist_destroy(&na->tx_rings[i].si.si_note); 1290 knlist_destroy(&na->rx_rings[i].si.si_note); 1291 } 1292 bzero(na, sizeof(*na)); 1293 WNA(ifp) = NULL; 1294 free(na, M_DEVBUF); 1295 } 1296 1297 1298 /* 1299 * Intercept packets from the network stack and pass them 1300 * to netmap as incoming packets on the 'software' ring. 1301 * We are not locked when called. 1302 */ 1303 int 1304 netmap_start(struct ifnet *ifp, struct mbuf *m) 1305 { 1306 struct netmap_adapter *na = NA(ifp); 1307 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 1308 u_int i, len = m->m_pkthdr.len; 1309 int error = EBUSY, lim = kring->nkr_num_slots - 1; 1310 struct netmap_slot *slot; 1311 1312 if (netmap_verbose & NM_VERB_HOST) 1313 D("%s packet %d len %d from the stack", ifp->if_xname, 1314 kring->nr_hwcur + kring->nr_hwavail, len); 1315 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 1316 if (kring->nr_hwavail >= lim) { 1317 D("stack ring %s full\n", ifp->if_xname); 1318 goto done; /* no space */ 1319 } 1320 if (len > na->buff_size) { 1321 D("drop packet size %d > %d", len, na->buff_size); 1322 goto done; /* too long for us */ 1323 } 1324 1325 /* compute the insert position */ 1326 i = kring->nr_hwcur + kring->nr_hwavail; 1327 if (i > lim) 1328 i -= lim + 1; 1329 slot = &kring->ring->slot[i]; 1330 m_copydata(m, 0, len, NMB(slot)); 1331 slot->len = len; 1332 kring->nr_hwavail++; 1333 if (netmap_verbose & NM_VERB_HOST) 1334 D("wake up host ring %s %d", na->ifp->if_xname, na->num_queues); 1335 selwakeuppri(&kring->si, PI_NET); 1336 error = 0; 1337 done: 1338 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 1339 1340 /* release the mbuf in either cases of success or failure. As an 1341 * alternative, put the mbuf in a free list and free the list 1342 * only when really necessary. 1343 */ 1344 m_freem(m); 1345 1346 return (error); 1347 } 1348 1349 1350 /* 1351 * netmap_reset() is called by the driver routines when reinitializing 1352 * a ring. The driver is in charge of locking to protect the kring. 1353 * If netmap mode is not set just return NULL. 1354 */ 1355 struct netmap_slot * 1356 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1357 u_int new_cur) 1358 { 1359 struct netmap_kring *kring; 1360 struct netmap_ring *ring; 1361 int new_hwofs, lim; 1362 1363 if (na == NULL) 1364 return NULL; /* no netmap support here */ 1365 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1366 return NULL; /* nothing to reinitialize */ 1367 kring = tx == NR_TX ? na->tx_rings + n : na->rx_rings + n; 1368 ring = kring->ring; 1369 lim = kring->nkr_num_slots - 1; 1370 1371 if (tx == NR_TX) 1372 new_hwofs = kring->nr_hwcur - new_cur; 1373 else 1374 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1375 if (new_hwofs > lim) 1376 new_hwofs -= lim + 1; 1377 1378 /* Alwayws set the new offset value and realign the ring. */ 1379 kring->nkr_hwofs = new_hwofs; 1380 if (tx == NR_TX) 1381 kring->nr_hwavail = kring->nkr_num_slots - 1; 1382 D("new hwofs %d on %s %s[%d]", 1383 kring->nkr_hwofs, na->ifp->if_xname, 1384 tx == NR_TX ? "TX" : "RX", n); 1385 1386 /* 1387 * We do the wakeup here, but the ring is not yet reconfigured. 1388 * However, we are under lock so there are no races. 1389 */ 1390 selwakeuppri(&kring->si, PI_NET); 1391 selwakeuppri(&kring[na->num_queues + 1 - n].si, PI_NET); 1392 return kring->ring->slot; 1393 } 1394 1395 1396 /*------ netmap memory allocator -------*/ 1397 /* 1398 * Request for a chunk of memory. 1399 * 1400 * Memory objects are arranged into a list, hence we need to walk this 1401 * list until we find an object with the needed amount of data free. 1402 * This sounds like a completely inefficient implementation, but given 1403 * the fact that data allocation is done once, we can handle it 1404 * flawlessly. 1405 * 1406 * Return NULL on failure. 1407 */ 1408 static void * 1409 netmap_malloc(size_t size, __unused const char *msg) 1410 { 1411 struct netmap_mem_obj *mem_obj, *new_mem_obj; 1412 void *ret = NULL; 1413 1414 NMA_LOCK(); 1415 TAILQ_FOREACH(mem_obj, &netmap_mem_d->nm_molist, nmo_next) { 1416 if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size) 1417 continue; 1418 1419 new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1420 M_WAITOK | M_ZERO); 1421 TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next); 1422 1423 new_mem_obj->nmo_used = 1; 1424 new_mem_obj->nmo_size = size; 1425 new_mem_obj->nmo_data = mem_obj->nmo_data; 1426 memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size); 1427 1428 mem_obj->nmo_size -= size; 1429 mem_obj->nmo_data = (char *) mem_obj->nmo_data + size; 1430 if (mem_obj->nmo_size == 0) { 1431 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, 1432 nmo_next); 1433 free(mem_obj, M_NETMAP); 1434 } 1435 1436 ret = new_mem_obj->nmo_data; 1437 1438 break; 1439 } 1440 NMA_UNLOCK(); 1441 ND("%s: %d bytes at %p", msg, size, ret); 1442 1443 return (ret); 1444 } 1445 1446 /* 1447 * Return the memory to the allocator. 1448 * 1449 * While freeing a memory object, we try to merge adjacent chunks in 1450 * order to reduce memory fragmentation. 1451 */ 1452 static void 1453 netmap_free(void *addr, const char *msg) 1454 { 1455 size_t size; 1456 struct netmap_mem_obj *cur, *prev, *next; 1457 1458 if (addr == NULL) { 1459 D("NULL addr for %s", msg); 1460 return; 1461 } 1462 1463 NMA_LOCK(); 1464 TAILQ_FOREACH(cur, &netmap_mem_d->nm_molist, nmo_next) { 1465 if (cur->nmo_data == addr && cur->nmo_used) 1466 break; 1467 } 1468 if (cur == NULL) { 1469 NMA_UNLOCK(); 1470 D("invalid addr %s %p", msg, addr); 1471 return; 1472 } 1473 1474 size = cur->nmo_size; 1475 cur->nmo_used = 0; 1476 1477 /* merge current chunk of memory with the previous one, 1478 if present. */ 1479 prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next); 1480 if (prev && prev->nmo_used == 0) { 1481 TAILQ_REMOVE(&netmap_mem_d->nm_molist, cur, nmo_next); 1482 prev->nmo_size += cur->nmo_size; 1483 free(cur, M_NETMAP); 1484 cur = prev; 1485 } 1486 1487 /* merge with the next one */ 1488 next = TAILQ_NEXT(cur, nmo_next); 1489 if (next && next->nmo_used == 0) { 1490 TAILQ_REMOVE(&netmap_mem_d->nm_molist, next, nmo_next); 1491 cur->nmo_size += next->nmo_size; 1492 free(next, M_NETMAP); 1493 } 1494 NMA_UNLOCK(); 1495 ND("freed %s %d bytes at %p", msg, size, addr); 1496 } 1497 1498 1499 /* 1500 * Initialize the memory allocator. 1501 * 1502 * Create the descriptor for the memory , allocate the pool of memory 1503 * and initialize the list of memory objects with a single chunk 1504 * containing the whole pre-allocated memory marked as free. 1505 * 1506 * Start with a large size, then halve as needed if we fail to 1507 * allocate the block. While halving, always add one extra page 1508 * because buffers 0 and 1 are used for special purposes. 1509 * Return 0 on success, errno otherwise. 1510 */ 1511 static int 1512 netmap_memory_init(void) 1513 { 1514 struct netmap_mem_obj *mem_obj; 1515 void *buf = NULL; 1516 int i, n, sz = NETMAP_MEMORY_SIZE; 1517 int extra_sz = 0; // space for rings and two spare buffers 1518 1519 for (; sz >= 1<<20; sz >>=1) { 1520 extra_sz = sz/200; 1521 extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1522 buf = contigmalloc(sz + extra_sz, 1523 M_NETMAP, 1524 M_WAITOK | M_ZERO, 1525 0, /* low address */ 1526 -1UL, /* high address */ 1527 PAGE_SIZE, /* alignment */ 1528 0 /* boundary */ 1529 ); 1530 if (buf) 1531 break; 1532 } 1533 if (buf == NULL) 1534 return (ENOMEM); 1535 sz += extra_sz; 1536 netmap_mem_d = malloc(sizeof(struct netmap_mem_d), M_NETMAP, 1537 M_WAITOK | M_ZERO); 1538 mtx_init(&netmap_mem_d->nm_mtx, "netmap memory allocator lock", NULL, 1539 MTX_DEF); 1540 TAILQ_INIT(&netmap_mem_d->nm_molist); 1541 netmap_mem_d->nm_buffer = buf; 1542 netmap_mem_d->nm_totalsize = sz; 1543 1544 /* 1545 * A buffer takes 2k, a slot takes 8 bytes + ring overhead, 1546 * so the ratio is 200:1. In other words, we can use 1/200 of 1547 * the memory for the rings, and the rest for the buffers, 1548 * and be sure we never run out. 1549 */ 1550 netmap_mem_d->nm_size = sz/200; 1551 netmap_mem_d->nm_buf_start = 1552 (netmap_mem_d->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1553 netmap_mem_d->nm_buf_len = sz - netmap_mem_d->nm_buf_start; 1554 1555 nm_buf_pool.base = netmap_mem_d->nm_buffer; 1556 nm_buf_pool.base += netmap_mem_d->nm_buf_start; 1557 netmap_buffer_base = nm_buf_pool.base; 1558 D("netmap_buffer_base %p (offset %d)", 1559 netmap_buffer_base, (int)netmap_mem_d->nm_buf_start); 1560 /* number of buffers, they all start as free */ 1561 1562 netmap_total_buffers = nm_buf_pool.total_buffers = 1563 netmap_mem_d->nm_buf_len / NETMAP_BUF_SIZE; 1564 nm_buf_pool.bufsize = NETMAP_BUF_SIZE; 1565 1566 D("Have %d MB, use %dKB for rings, %d buffers at %p", 1567 (sz >> 20), (int)(netmap_mem_d->nm_size >> 10), 1568 nm_buf_pool.total_buffers, nm_buf_pool.base); 1569 1570 /* allocate and initialize the bitmap. Entry 0 is considered 1571 * always busy (used as default when there are no buffers left). 1572 */ 1573 n = (nm_buf_pool.total_buffers + 31) / 32; 1574 nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, 1575 M_WAITOK | M_ZERO); 1576 nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */ 1577 for (i = 1; i < n; i++) 1578 nm_buf_pool.bitmap[i] = ~0; 1579 nm_buf_pool.free = nm_buf_pool.total_buffers - 2; 1580 1581 mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1582 M_WAITOK | M_ZERO); 1583 TAILQ_INSERT_HEAD(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1584 mem_obj->nmo_used = 0; 1585 mem_obj->nmo_size = netmap_mem_d->nm_size; 1586 mem_obj->nmo_data = netmap_mem_d->nm_buffer; 1587 1588 return (0); 1589 } 1590 1591 1592 /* 1593 * Finalize the memory allocator. 1594 * 1595 * Free all the memory objects contained inside the list, and deallocate 1596 * the pool of memory; finally free the memory allocator descriptor. 1597 */ 1598 static void 1599 netmap_memory_fini(void) 1600 { 1601 struct netmap_mem_obj *mem_obj; 1602 1603 while (!TAILQ_EMPTY(&netmap_mem_d->nm_molist)) { 1604 mem_obj = TAILQ_FIRST(&netmap_mem_d->nm_molist); 1605 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1606 if (mem_obj->nmo_used == 1) { 1607 printf("netmap: leaked %d bytes at %p\n", 1608 (int)mem_obj->nmo_size, 1609 mem_obj->nmo_data); 1610 } 1611 free(mem_obj, M_NETMAP); 1612 } 1613 contigfree(netmap_mem_d->nm_buffer, netmap_mem_d->nm_totalsize, M_NETMAP); 1614 // XXX mutex_destroy(nm_mtx); 1615 free(netmap_mem_d, M_NETMAP); 1616 } 1617 1618 1619 /* 1620 * Module loader. 1621 * 1622 * Create the /dev/netmap device and initialize all global 1623 * variables. 1624 * 1625 * Return 0 on success, errno on failure. 1626 */ 1627 static int 1628 netmap_init(void) 1629 { 1630 int error; 1631 1632 1633 error = netmap_memory_init(); 1634 if (error != 0) { 1635 printf("netmap: unable to initialize the memory allocator."); 1636 return (error); 1637 } 1638 printf("netmap: loaded module with %d Mbytes\n", 1639 (int)(netmap_mem_d->nm_totalsize >> 20)); 1640 1641 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 1642 "netmap"); 1643 1644 return (0); 1645 } 1646 1647 1648 /* 1649 * Module unloader. 1650 * 1651 * Free all the memory, and destroy the ``/dev/netmap`` device. 1652 */ 1653 static void 1654 netmap_fini(void) 1655 { 1656 destroy_dev(netmap_dev); 1657 1658 netmap_memory_fini(); 1659 1660 printf("netmap: unloaded module.\n"); 1661 } 1662 1663 1664 /* 1665 * Kernel entry point. 1666 * 1667 * Initialize/finalize the module and return. 1668 * 1669 * Return 0 on success, errno on failure. 1670 */ 1671 static int 1672 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1673 { 1674 int error = 0; 1675 1676 switch (event) { 1677 case MOD_LOAD: 1678 error = netmap_init(); 1679 break; 1680 1681 case MOD_UNLOAD: 1682 netmap_fini(); 1683 break; 1684 1685 default: 1686 error = EOPNOTSUPP; 1687 break; 1688 } 1689 1690 return (error); 1691 } 1692 1693 1694 DEV_MODULE(netmap, netmap_loader, NULL); 1695