1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2011-2014 Matteo Landi 5 * Copyright (C) 2011-2016 Luigi Rizzo 6 * Copyright (C) 2011-2016 Giuseppe Lettieri 7 * Copyright (C) 2011-2016 Vincenzo Maffione 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 33 /* 34 * 35 * This module supports memory mapped access to network devices, 36 * see netmap(4). 37 * 38 * The module uses a large, memory pool allocated by the kernel 39 * and accessible as mmapped memory by multiple userspace threads/processes. 40 * The memory pool contains packet buffers and "netmap rings", 41 * i.e. user-accessible copies of the interface's queues. 42 * 43 * Access to the network card works like this: 44 * 1. a process/thread issues one or more open() on /dev/netmap, to create 45 * select()able file descriptor on which events are reported. 46 * 2. on each descriptor, the process issues an ioctl() to identify 47 * the interface that should report events to the file descriptor. 48 * 3. on each descriptor, the process issues an mmap() request to 49 * map the shared memory region within the process' address space. 50 * The list of interesting queues is indicated by a location in 51 * the shared memory region. 52 * 4. using the functions in the netmap(4) userspace API, a process 53 * can look up the occupation state of a queue, access memory buffers, 54 * and retrieve received packets or enqueue packets to transmit. 55 * 5. using some ioctl()s the process can synchronize the userspace view 56 * of the queue with the actual status in the kernel. This includes both 57 * receiving the notification of new packets, and transmitting new 58 * packets on the output interface. 59 * 6. select() or poll() can be used to wait for events on individual 60 * transmit or receive queues (or all queues for a given interface). 61 * 62 63 SYNCHRONIZATION (USER) 64 65 The netmap rings and data structures may be shared among multiple 66 user threads or even independent processes. 67 Any synchronization among those threads/processes is delegated 68 to the threads themselves. Only one thread at a time can be in 69 a system call on the same netmap ring. The OS does not enforce 70 this and only guarantees against system crashes in case of 71 invalid usage. 72 73 LOCKING (INTERNAL) 74 75 Within the kernel, access to the netmap rings is protected as follows: 76 77 - a spinlock on each ring, to handle producer/consumer races on 78 RX rings attached to the host stack (against multiple host 79 threads writing from the host stack to the same ring), 80 and on 'destination' rings attached to a VALE switch 81 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 82 protecting multiple active senders for the same destination) 83 84 - an atomic variable to guarantee that there is at most one 85 instance of *_*xsync() on the ring at any time. 86 For rings connected to user file 87 descriptors, an atomic_test_and_set() protects this, and the 88 lock on the ring is not actually used. 89 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 90 is also used to prevent multiple executions (the driver might indeed 91 already guarantee this). 92 For NIC TX rings connected to a VALE switch, the lock arbitrates 93 access to the queue (both when allocating buffers and when pushing 94 them out). 95 96 - *xsync() should be protected against initializations of the card. 97 On FreeBSD most devices have the reset routine protected by 98 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 99 the RING protection on rx_reset(), this should be added. 100 101 On linux there is an external lock on the tx path, which probably 102 also arbitrates access to the reset routine. XXX to be revised 103 104 - a per-interface core_lock protecting access from the host stack 105 while interfaces may be detached from netmap mode. 106 XXX there should be no need for this lock if we detach the interfaces 107 only while they are down. 108 109 110 --- VALE SWITCH --- 111 112 NMG_LOCK() serializes all modifications to switches and ports. 113 A switch cannot be deleted until all ports are gone. 114 115 For each switch, an SX lock (RWlock on linux) protects 116 deletion of ports. When configuring or deleting a new port, the 117 lock is acquired in exclusive mode (after holding NMG_LOCK). 118 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 119 The lock is held throughout the entire forwarding cycle, 120 during which the thread may incur in a page fault. 121 Hence it is important that sleepable shared locks are used. 122 123 On the rx ring, the per-port lock is grabbed initially to reserve 124 a number of slot in the ring, then the lock is released, 125 packets are copied from source to destination, and then 126 the lock is acquired again and the receive ring is updated. 127 (A similar thing is done on the tx ring for NIC and host stack 128 ports attached to the switch) 129 130 */ 131 132 133 /* --- internals ---- 134 * 135 * Roadmap to the code that implements the above. 136 * 137 * > 1. a process/thread issues one or more open() on /dev/netmap, to create 138 * > select()able file descriptor on which events are reported. 139 * 140 * Internally, we allocate a netmap_priv_d structure, that will be 141 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d 142 * structure for each open(). 143 * 144 * os-specific: 145 * FreeBSD: see netmap_open() (netmap_freebsd.c) 146 * linux: see linux_netmap_open() (netmap_linux.c) 147 * 148 * > 2. on each descriptor, the process issues an ioctl() to identify 149 * > the interface that should report events to the file descriptor. 150 * 151 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0. 152 * Most important things happen in netmap_get_na() and 153 * netmap_do_regif(), called from there. Additional details can be 154 * found in the comments above those functions. 155 * 156 * In all cases, this action creates/takes-a-reference-to a 157 * netmap_*_adapter describing the port, and allocates a netmap_if 158 * and all necessary netmap rings, filling them with netmap buffers. 159 * 160 * In this phase, the sync callbacks for each ring are set (these are used 161 * in steps 5 and 6 below). The callbacks depend on the type of adapter. 162 * The adapter creation/initialization code puts them in the 163 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they 164 * are copied from there to the netmap_kring's during netmap_do_regif(), by 165 * the nm_krings_create() callback. All the nm_krings_create callbacks 166 * actually call netmap_krings_create() to perform this and the other 167 * common stuff. netmap_krings_create() also takes care of the host rings, 168 * if needed, by setting their sync callbacks appropriately. 169 * 170 * Additional actions depend on the kind of netmap_adapter that has been 171 * registered: 172 * 173 * - netmap_hw_adapter: [netmap.c] 174 * This is a system netdev/ifp with native netmap support. 175 * The ifp is detached from the host stack by redirecting: 176 * - transmissions (from the network stack) to netmap_transmit() 177 * - receive notifications to the nm_notify() callback for 178 * this adapter. The callback is normally netmap_notify(), unless 179 * the ifp is attached to a bridge using bwrap, in which case it 180 * is netmap_bwrap_intr_notify(). 181 * 182 * - netmap_generic_adapter: [netmap_generic.c] 183 * A system netdev/ifp without native netmap support. 184 * 185 * (the decision about native/non native support is taken in 186 * netmap_get_hw_na(), called by netmap_get_na()) 187 * 188 * - netmap_vp_adapter [netmap_vale.c] 189 * Returned by netmap_get_bdg_na(). 190 * This is a persistent or ephemeral VALE port. Ephemeral ports 191 * are created on the fly if they don't already exist, and are 192 * always attached to a bridge. 193 * Persistent VALE ports must must be created separately, and i 194 * then attached like normal NICs. The NIOCREGIF we are examining 195 * will find them only if they had previously been created and 196 * attached (see VALE_CTL below). 197 * 198 * - netmap_pipe_adapter [netmap_pipe.c] 199 * Returned by netmap_get_pipe_na(). 200 * Both pipe ends are created, if they didn't already exist. 201 * 202 * - netmap_monitor_adapter [netmap_monitor.c] 203 * Returned by netmap_get_monitor_na(). 204 * If successful, the nm_sync callbacks of the monitored adapter 205 * will be intercepted by the returned monitor. 206 * 207 * - netmap_bwrap_adapter [netmap_vale.c] 208 * Cannot be obtained in this way, see VALE_CTL below 209 * 210 * 211 * os-specific: 212 * linux: we first go through linux_netmap_ioctl() to 213 * adapt the FreeBSD interface to the linux one. 214 * 215 * 216 * > 3. on each descriptor, the process issues an mmap() request to 217 * > map the shared memory region within the process' address space. 218 * > The list of interesting queues is indicated by a location in 219 * > the shared memory region. 220 * 221 * os-specific: 222 * FreeBSD: netmap_mmap_single (netmap_freebsd.c). 223 * linux: linux_netmap_mmap (netmap_linux.c). 224 * 225 * > 4. using the functions in the netmap(4) userspace API, a process 226 * > can look up the occupation state of a queue, access memory buffers, 227 * > and retrieve received packets or enqueue packets to transmit. 228 * 229 * these actions do not involve the kernel. 230 * 231 * > 5. using some ioctl()s the process can synchronize the userspace view 232 * > of the queue with the actual status in the kernel. This includes both 233 * > receiving the notification of new packets, and transmitting new 234 * > packets on the output interface. 235 * 236 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC 237 * cases. They invoke the nm_sync callbacks on the netmap_kring 238 * structures, as initialized in step 2 and maybe later modified 239 * by a monitor. Monitors, however, will always call the original 240 * callback before doing anything else. 241 * 242 * 243 * > 6. select() or poll() can be used to wait for events on individual 244 * > transmit or receive queues (or all queues for a given interface). 245 * 246 * Implemented in netmap_poll(). This will call the same nm_sync() 247 * callbacks as in step 5 above. 248 * 249 * os-specific: 250 * linux: we first go through linux_netmap_poll() to adapt 251 * the FreeBSD interface to the linux one. 252 * 253 * 254 * ---- VALE_CTL ----- 255 * 256 * VALE switches are controlled by issuing a NIOCREGIF with a non-null 257 * nr_cmd in the nmreq structure. These subcommands are handled by 258 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created 259 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF 260 * subcommands, respectively. 261 * 262 * Any network interface known to the system (including a persistent VALE 263 * port) can be attached to a VALE switch by issuing the 264 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports 265 * look exactly like ephemeral VALE ports (as created in step 2 above). The 266 * attachment of other interfaces, instead, requires the creation of a 267 * netmap_bwrap_adapter. Moreover, the attached interface must be put in 268 * netmap mode. This may require the creation of a netmap_generic_adapter if 269 * we have no native support for the interface, or if generic adapters have 270 * been forced by sysctl. 271 * 272 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(), 273 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach() 274 * callback. In the case of the bwrap, the callback creates the 275 * netmap_bwrap_adapter. The initialization of the bwrap is then 276 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl() 277 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c). 278 * A generic adapter for the wrapped ifp will be created if needed, when 279 * netmap_get_bdg_na() calls netmap_get_hw_na(). 280 * 281 * 282 * ---- DATAPATHS ----- 283 * 284 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =- 285 * 286 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach() 287 * 288 * - tx from netmap userspace: 289 * concurrently: 290 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 291 * kring->nm_sync() == DEVICE_netmap_txsync() 292 * 2) device interrupt handler 293 * na->nm_notify() == netmap_notify() 294 * - rx from netmap userspace: 295 * concurrently: 296 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 297 * kring->nm_sync() == DEVICE_netmap_rxsync() 298 * 2) device interrupt handler 299 * na->nm_notify() == netmap_notify() 300 * - rx from host stack 301 * concurrently: 302 * 1) host stack 303 * netmap_transmit() 304 * na->nm_notify == netmap_notify() 305 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context 306 * kring->nm_sync() == netmap_rxsync_from_host 307 * netmap_rxsync_from_host(na, NULL, NULL) 308 * - tx to host stack 309 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 310 * kring->nm_sync() == netmap_txsync_to_host 311 * netmap_txsync_to_host(na) 312 * nm_os_send_up() 313 * FreeBSD: na->if_input() == ether_input() 314 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX 315 * 316 * 317 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =- 318 * 319 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach() 320 * 321 * - tx from netmap userspace: 322 * concurrently: 323 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 324 * kring->nm_sync() == generic_netmap_txsync() 325 * nm_os_generic_xmit_frame() 326 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX 327 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 328 * gna->save_start_xmit == orig. dev. start_xmit 329 * FreeBSD: na->if_transmit() == orig. dev if_transmit 330 * 2) generic_mbuf_destructor() 331 * na->nm_notify() == netmap_notify() 332 * - rx from netmap userspace: 333 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 334 * kring->nm_sync() == generic_netmap_rxsync() 335 * mbq_safe_dequeue() 336 * 2) device driver 337 * generic_rx_handler() 338 * mbq_safe_enqueue() 339 * na->nm_notify() == netmap_notify() 340 * - rx from host stack 341 * FreeBSD: same as native 342 * Linux: same as native except: 343 * 1) host stack 344 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX 345 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 346 * netmap_transmit() 347 * na->nm_notify() == netmap_notify() 348 * - tx to host stack (same as native): 349 * 350 * 351 * -= VALE =- 352 * 353 * INCOMING: 354 * 355 * - VALE ports: 356 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 357 * kring->nm_sync() == netmap_vp_txsync() 358 * 359 * - system device with native support: 360 * from cable: 361 * interrupt 362 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 363 * kring->nm_sync() == DEVICE_netmap_rxsync() 364 * netmap_vp_txsync() 365 * kring->nm_sync() == DEVICE_netmap_rxsync() 366 * from host stack: 367 * netmap_transmit() 368 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 369 * kring->nm_sync() == netmap_rxsync_from_host() 370 * netmap_vp_txsync() 371 * 372 * - system device with generic support: 373 * from device driver: 374 * generic_rx_handler() 375 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 376 * kring->nm_sync() == generic_netmap_rxsync() 377 * netmap_vp_txsync() 378 * kring->nm_sync() == generic_netmap_rxsync() 379 * from host stack: 380 * netmap_transmit() 381 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 382 * kring->nm_sync() == netmap_rxsync_from_host() 383 * netmap_vp_txsync() 384 * 385 * (all cases) --> nm_bdg_flush() 386 * dest_na->nm_notify() == (see below) 387 * 388 * OUTGOING: 389 * 390 * - VALE ports: 391 * concurrently: 392 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 393 * kring->nm_sync() == netmap_vp_rxsync() 394 * 2) from nm_bdg_flush() 395 * na->nm_notify() == netmap_notify() 396 * 397 * - system device with native support: 398 * to cable: 399 * na->nm_notify() == netmap_bwrap_notify() 400 * netmap_vp_rxsync() 401 * kring->nm_sync() == DEVICE_netmap_txsync() 402 * netmap_vp_rxsync() 403 * to host stack: 404 * netmap_vp_rxsync() 405 * kring->nm_sync() == netmap_txsync_to_host 406 * netmap_vp_rxsync_locked() 407 * 408 * - system device with generic adapter: 409 * to device driver: 410 * na->nm_notify() == netmap_bwrap_notify() 411 * netmap_vp_rxsync() 412 * kring->nm_sync() == generic_netmap_txsync() 413 * netmap_vp_rxsync() 414 * to host stack: 415 * netmap_vp_rxsync() 416 * kring->nm_sync() == netmap_txsync_to_host 417 * netmap_vp_rxsync() 418 * 419 */ 420 421 /* 422 * OS-specific code that is used only within this file. 423 * Other OS-specific code that must be accessed by drivers 424 * is present in netmap_kern.h 425 */ 426 427 #if defined(__FreeBSD__) 428 #include <sys/cdefs.h> /* prerequisite */ 429 #include <sys/types.h> 430 #include <sys/errno.h> 431 #include <sys/param.h> /* defines used in kernel.h */ 432 #include <sys/kernel.h> /* types used in module initialization */ 433 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 434 #include <sys/filio.h> /* FIONBIO */ 435 #include <sys/sockio.h> 436 #include <sys/socketvar.h> /* struct socket */ 437 #include <sys/malloc.h> 438 #include <sys/poll.h> 439 #include <sys/proc.h> 440 #include <sys/rwlock.h> 441 #include <sys/socket.h> /* sockaddrs */ 442 #include <sys/selinfo.h> 443 #include <sys/sysctl.h> 444 #include <sys/jail.h> 445 #include <sys/epoch.h> 446 #include <net/vnet.h> 447 #include <net/if.h> 448 #include <net/if_var.h> 449 #include <net/bpf.h> /* BIOCIMMEDIATE */ 450 #include <machine/bus.h> /* bus_dmamap_* */ 451 #include <sys/endian.h> 452 #include <sys/refcount.h> 453 #include <net/ethernet.h> /* ETHER_BPF_MTAP */ 454 455 456 #elif defined(linux) 457 458 #include "bsd_glue.h" 459 460 #elif defined(__APPLE__) 461 462 #warning OSX support is only partial 463 #include "osx_glue.h" 464 465 #elif defined (_WIN32) 466 467 #include "win_glue.h" 468 469 #else 470 471 #error Unsupported platform 472 473 #endif /* unsupported */ 474 475 /* 476 * common headers 477 */ 478 #include <net/netmap.h> 479 #include <dev/netmap/netmap_kern.h> 480 #include <dev/netmap/netmap_mem2.h> 481 482 483 /* user-controlled variables */ 484 int netmap_verbose; 485 #ifdef CONFIG_NETMAP_DEBUG 486 int netmap_debug; 487 #endif /* CONFIG_NETMAP_DEBUG */ 488 489 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 490 int netmap_no_pendintr = 1; 491 int netmap_txsync_retry = 2; 492 static int netmap_fwd = 0; /* force transparent forwarding */ 493 494 /* 495 * netmap_admode selects the netmap mode to use. 496 * Invalid values are reset to NETMAP_ADMODE_BEST 497 */ 498 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 499 NETMAP_ADMODE_NATIVE, /* either native or none */ 500 NETMAP_ADMODE_GENERIC, /* force generic */ 501 NETMAP_ADMODE_LAST }; 502 static int netmap_admode = NETMAP_ADMODE_BEST; 503 504 /* netmap_generic_mit controls mitigation of RX notifications for 505 * the generic netmap adapter. The value is a time interval in 506 * nanoseconds. */ 507 int netmap_generic_mit = 100*1000; 508 509 /* We use by default netmap-aware qdiscs with generic netmap adapters, 510 * even if there can be a little performance hit with hardware NICs. 511 * However, using the qdisc is the safer approach, for two reasons: 512 * 1) it prevents non-fifo qdiscs to break the TX notification 513 * scheme, which is based on mbuf destructors when txqdisc is 514 * not used. 515 * 2) it makes it possible to transmit over software devices that 516 * change skb->dev, like bridge, veth, ... 517 * 518 * Anyway users looking for the best performance should 519 * use native adapters. 520 */ 521 #ifdef linux 522 int netmap_generic_txqdisc = 1; 523 #endif 524 525 /* Default number of slots and queues for generic adapters. */ 526 int netmap_generic_ringsize = 1024; 527 int netmap_generic_rings = 1; 528 529 /* Non-zero to enable checksum offloading in NIC drivers */ 530 int netmap_generic_hwcsum = 0; 531 532 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */ 533 int ptnet_vnet_hdr = 1; 534 535 /* 536 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated 537 * in some other operating systems 538 */ 539 SYSBEGIN(main_init); 540 541 SYSCTL_DECL(_dev_netmap); 542 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 543 "Netmap args"); 544 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 545 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 546 #ifdef CONFIG_NETMAP_DEBUG 547 SYSCTL_INT(_dev_netmap, OID_AUTO, debug, 548 CTLFLAG_RW, &netmap_debug, 0, "Debug messages"); 549 #endif /* CONFIG_NETMAP_DEBUG */ 550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 551 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 552 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr, 553 0, "Always look for new received packets."); 554 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 555 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush."); 556 557 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0, 558 "Force NR_FORWARD mode"); 559 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0, 560 "Adapter mode. 0 selects the best option available," 561 "1 forces native adapter, 2 forces emulated adapter"); 562 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum, 563 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default)," 564 "1 to enable checksum generation by the NIC"); 565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 566 0, "RX notification interval in nanoseconds"); 567 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, 568 &netmap_generic_ringsize, 0, 569 "Number of per-ring slots for emulated netmap mode"); 570 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW, 571 &netmap_generic_rings, 0, 572 "Number of TX/RX queues for emulated netmap adapters"); 573 #ifdef linux 574 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW, 575 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters"); 576 #endif 577 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr, 578 0, "Allow ptnet devices to use virtio-net headers"); 579 580 SYSEND; 581 582 NMG_LOCK_T netmap_global_lock; 583 584 /* 585 * mark the ring as stopped, and run through the locks 586 * to make sure other users get to see it. 587 * stopped must be either NR_KR_STOPPED (for unbounded stop) 588 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes) 589 */ 590 static void 591 netmap_disable_ring(struct netmap_kring *kr, int stopped) 592 { 593 nm_kr_stop(kr, stopped); 594 // XXX check if nm_kr_stop is sufficient 595 mtx_lock(&kr->q_lock); 596 mtx_unlock(&kr->q_lock); 597 nm_kr_put(kr); 598 } 599 600 /* stop or enable a single ring */ 601 void 602 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped) 603 { 604 if (stopped) 605 netmap_disable_ring(NMR(na, t)[ring_id], stopped); 606 else 607 NMR(na, t)[ring_id]->nkr_stopped = 0; 608 } 609 610 611 /* stop or enable all the rings of na */ 612 void 613 netmap_set_all_rings(struct netmap_adapter *na, int stopped) 614 { 615 int i; 616 enum txrx t; 617 618 if (!nm_netmap_on(na)) 619 return; 620 621 if (netmap_verbose) { 622 nm_prinf("%s: %sable all rings", na->name, 623 (stopped ? "dis" : "en")); 624 } 625 for_rx_tx(t) { 626 for (i = 0; i < netmap_real_rings(na, t); i++) { 627 netmap_set_ring(na, i, t, stopped); 628 } 629 } 630 } 631 632 /* 633 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s 634 * to finish and prevents any new one from starting. Call this before turning 635 * netmap mode off, or before removing the hardware rings (e.g., on module 636 * onload). 637 */ 638 void 639 netmap_disable_all_rings(if_t ifp) 640 { 641 if (NM_NA_VALID(ifp)) { 642 netmap_set_all_rings(NA(ifp), NM_KR_LOCKED); 643 } 644 } 645 646 /* 647 * Convenience function used in drivers. Re-enables rxsync and txsync on the 648 * adapter's rings In linux drivers, this should be placed near each 649 * napi_enable(). 650 */ 651 void 652 netmap_enable_all_rings(if_t ifp) 653 { 654 if (NM_NA_VALID(ifp)) { 655 netmap_set_all_rings(NA(ifp), 0 /* enabled */); 656 } 657 } 658 659 void 660 netmap_make_zombie(if_t ifp) 661 { 662 if (NM_NA_VALID(ifp)) { 663 struct netmap_adapter *na = NA(ifp); 664 netmap_set_all_rings(na, NM_KR_LOCKED); 665 na->na_flags |= NAF_ZOMBIE; 666 netmap_set_all_rings(na, 0); 667 } 668 } 669 670 void 671 netmap_undo_zombie(if_t ifp) 672 { 673 if (NM_NA_VALID(ifp)) { 674 struct netmap_adapter *na = NA(ifp); 675 if (na->na_flags & NAF_ZOMBIE) { 676 netmap_set_all_rings(na, NM_KR_LOCKED); 677 na->na_flags &= ~NAF_ZOMBIE; 678 netmap_set_all_rings(na, 0); 679 } 680 } 681 } 682 683 /* 684 * generic bound_checking function 685 */ 686 u_int 687 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 688 { 689 u_int oldv = *v; 690 const char *op = NULL; 691 692 if (dflt < lo) 693 dflt = lo; 694 if (dflt > hi) 695 dflt = hi; 696 if (oldv < lo) { 697 *v = dflt; 698 op = "Bump"; 699 } else if (oldv > hi) { 700 *v = hi; 701 op = "Clamp"; 702 } 703 if (op && msg) 704 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv); 705 return *v; 706 } 707 708 709 /* 710 * packet-dump function, user-supplied or static buffer. 711 * The destination buffer must be at least 30+4*len 712 */ 713 const char * 714 nm_dump_buf(char *p, int len, int lim, char *dst) 715 { 716 static char _dst[8192]; 717 int i, j, i0; 718 static char hex[] ="0123456789abcdef"; 719 char *o; /* output position */ 720 721 #define P_HI(x) hex[((x) & 0xf0)>>4] 722 #define P_LO(x) hex[((x) & 0xf)] 723 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 724 if (!dst) 725 dst = _dst; 726 if (lim <= 0 || lim > len) 727 lim = len; 728 o = dst; 729 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 730 o += strlen(o); 731 /* hexdump routine */ 732 for (i = 0; i < lim; ) { 733 sprintf(o, "%5d: ", i); 734 o += strlen(o); 735 memset(o, ' ', 48); 736 i0 = i; 737 for (j=0; j < 16 && i < lim; i++, j++) { 738 o[j*3] = P_HI(p[i]); 739 o[j*3+1] = P_LO(p[i]); 740 } 741 i = i0; 742 for (j=0; j < 16 && i < lim; i++, j++) 743 o[j + 48] = P_C(p[i]); 744 o[j+48] = '\n'; 745 o += j+49; 746 } 747 *o = '\0'; 748 #undef P_HI 749 #undef P_LO 750 #undef P_C 751 return dst; 752 } 753 754 755 /* 756 * Fetch configuration from the device, to cope with dynamic 757 * reconfigurations after loading the module. 758 */ 759 /* call with NMG_LOCK held */ 760 int 761 netmap_update_config(struct netmap_adapter *na) 762 { 763 struct nm_config_info info; 764 765 if (na->ifp && !nm_is_bwrap(na)) { 766 strlcpy(na->name, if_name(na->ifp), sizeof(na->name)); 767 } 768 769 bzero(&info, sizeof(info)); 770 if (na->nm_config == NULL || 771 na->nm_config(na, &info)) { 772 /* take whatever we had at init time */ 773 info.num_tx_rings = na->num_tx_rings; 774 info.num_tx_descs = na->num_tx_desc; 775 info.num_rx_rings = na->num_rx_rings; 776 info.num_rx_descs = na->num_rx_desc; 777 info.rx_buf_maxsize = na->rx_buf_maxsize; 778 } 779 780 if (na->num_tx_rings == info.num_tx_rings && 781 na->num_tx_desc == info.num_tx_descs && 782 na->num_rx_rings == info.num_rx_rings && 783 na->num_rx_desc == info.num_rx_descs && 784 na->rx_buf_maxsize == info.rx_buf_maxsize) 785 return 0; /* nothing changed */ 786 if (na->active_fds == 0) { 787 na->num_tx_rings = info.num_tx_rings; 788 na->num_tx_desc = info.num_tx_descs; 789 na->num_rx_rings = info.num_rx_rings; 790 na->num_rx_desc = info.num_rx_descs; 791 na->rx_buf_maxsize = info.rx_buf_maxsize; 792 if (netmap_verbose) 793 nm_prinf("configuration changed for %s: txring %d x %d, " 794 "rxring %d x %d, rxbufsz %d", 795 na->name, na->num_tx_rings, na->num_tx_desc, 796 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize); 797 return 0; 798 } 799 nm_prerr("WARNING: configuration changed for %s while active: " 800 "txring %d x %d, rxring %d x %d, rxbufsz %d", 801 na->name, info.num_tx_rings, info.num_tx_descs, 802 info.num_rx_rings, info.num_rx_descs, 803 info.rx_buf_maxsize); 804 return 1; 805 } 806 807 /* nm_sync callbacks for the host rings */ 808 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags); 809 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags); 810 811 static int 812 netmap_default_bufcfg(struct netmap_kring *kring, uint64_t target) 813 { 814 kring->hwbuf_len = target; 815 kring->buf_align = 0; /* no alignment */ 816 return 0; 817 } 818 819 /* create the krings array and initialize the fields common to all adapters. 820 * The array layout is this: 821 * 822 * +----------+ 823 * na->tx_rings ----->| | \ 824 * | | } na->num_tx_ring 825 * | | / 826 * +----------+ 827 * | | host tx kring 828 * na->rx_rings ----> +----------+ 829 * | | \ 830 * | | } na->num_rx_rings 831 * | | / 832 * +----------+ 833 * | | host rx kring 834 * +----------+ 835 * na->tailroom ----->| | \ 836 * | | } tailroom bytes 837 * | | / 838 * +----------+ 839 * 840 * Note: for compatibility, host krings are created even when not needed. 841 * The tailroom space is currently used by vale ports for allocating leases. 842 */ 843 /* call with NMG_LOCK held */ 844 int 845 netmap_krings_create(struct netmap_adapter *na, u_int tailroom) 846 { 847 u_int i, len, ndesc; 848 struct netmap_kring *kring; 849 u_int n[NR_TXRX]; 850 enum txrx t; 851 int err = 0; 852 853 if (na->tx_rings != NULL) { 854 if (netmap_debug & NM_DEBUG_ON) 855 nm_prerr("warning: krings were already created"); 856 return 0; 857 } 858 859 /* account for the (possibly fake) host rings */ 860 n[NR_TX] = netmap_all_rings(na, NR_TX); 861 n[NR_RX] = netmap_all_rings(na, NR_RX); 862 863 len = (n[NR_TX] + n[NR_RX]) * 864 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *)) 865 + tailroom; 866 867 na->tx_rings = nm_os_malloc((size_t)len); 868 if (na->tx_rings == NULL) { 869 nm_prerr("Cannot allocate krings"); 870 return ENOMEM; 871 } 872 na->rx_rings = na->tx_rings + n[NR_TX]; 873 na->tailroom = na->rx_rings + n[NR_RX]; 874 875 /* link the krings in the krings array */ 876 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom); 877 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) { 878 na->tx_rings[i] = kring; 879 kring++; 880 } 881 882 /* 883 * All fields in krings are 0 except the one initialized below. 884 * but better be explicit on important kring fields. 885 */ 886 for_rx_tx(t) { 887 ndesc = nma_get_ndesc(na, t); 888 for (i = 0; i < n[t]; i++) { 889 kring = NMR(na, t)[i]; 890 bzero(kring, sizeof(*kring)); 891 kring->notify_na = na; 892 kring->ring_id = i; 893 kring->tx = t; 894 kring->nkr_num_slots = ndesc; 895 kring->nr_mode = NKR_NETMAP_OFF; 896 kring->nr_pending_mode = NKR_NETMAP_OFF; 897 if (i < nma_get_nrings(na, t)) { 898 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync); 899 kring->nm_bufcfg = na->nm_bufcfg; 900 if (kring->nm_bufcfg == NULL) 901 kring->nm_bufcfg = netmap_default_bufcfg; 902 } else { 903 if (!(na->na_flags & NAF_HOST_RINGS)) 904 kring->nr_kflags |= NKR_FAKERING; 905 kring->nm_sync = (t == NR_TX ? 906 netmap_txsync_to_host: 907 netmap_rxsync_from_host); 908 kring->nm_bufcfg = netmap_default_bufcfg; 909 } 910 kring->nm_notify = na->nm_notify; 911 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 912 /* 913 * IMPORTANT: Always keep one slot empty. 914 */ 915 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0); 916 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name, 917 nm_txrx2str(t), i); 918 nm_prdis("ktx %s h %d c %d t %d", 919 kring->name, kring->rhead, kring->rcur, kring->rtail); 920 err = nm_os_selinfo_init(&kring->si, kring->name); 921 if (err) { 922 netmap_krings_delete(na); 923 return err; 924 } 925 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF); 926 kring->na = na; /* setting this field marks the mutex as initialized */ 927 } 928 err = nm_os_selinfo_init(&na->si[t], na->name); 929 if (err) { 930 netmap_krings_delete(na); 931 return err; 932 } 933 } 934 935 return 0; 936 } 937 938 939 /* undo the actions performed by netmap_krings_create */ 940 /* call with NMG_LOCK held */ 941 void 942 netmap_krings_delete(struct netmap_adapter *na) 943 { 944 struct netmap_kring **kring = na->tx_rings; 945 enum txrx t; 946 947 if (na->tx_rings == NULL) { 948 if (netmap_debug & NM_DEBUG_ON) 949 nm_prerr("warning: krings were already deleted"); 950 return; 951 } 952 953 for_rx_tx(t) 954 nm_os_selinfo_uninit(&na->si[t]); 955 956 /* we rely on the krings layout described above */ 957 for ( ; kring != na->tailroom; kring++) { 958 if ((*kring)->na != NULL) 959 mtx_destroy(&(*kring)->q_lock); 960 nm_os_selinfo_uninit(&(*kring)->si); 961 } 962 nm_os_free(na->tx_rings); 963 na->tx_rings = na->rx_rings = na->tailroom = NULL; 964 } 965 966 967 /* 968 * Destructor for NIC ports. They also have an mbuf queue 969 * on the rings connected to the host so we need to purge 970 * them first. 971 */ 972 /* call with NMG_LOCK held */ 973 void 974 netmap_hw_krings_delete(struct netmap_adapter *na) 975 { 976 u_int lim = netmap_real_rings(na, NR_RX), i; 977 978 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) { 979 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue; 980 nm_prdis("destroy sw mbq with len %d", mbq_len(q)); 981 mbq_purge(q); 982 mbq_safe_fini(q); 983 } 984 netmap_krings_delete(na); 985 } 986 987 void 988 netmap_mem_restore(struct netmap_adapter *na) 989 { 990 if (na->nm_mem_prev) { 991 netmap_mem_put(na->nm_mem); 992 na->nm_mem = na->nm_mem_prev; 993 na->nm_mem_prev = NULL; 994 } 995 } 996 997 static void 998 netmap_mem_drop(struct netmap_adapter *na) 999 { 1000 netmap_mem_deref(na->nm_mem, na); 1001 1002 if (na->active_fds <= 0) { 1003 /* if the native allocator had been overridden on regif, 1004 * restore it now and drop the temporary one 1005 */ 1006 netmap_mem_restore(na); 1007 } 1008 } 1009 1010 static void 1011 netmap_update_hostrings_mode(struct netmap_adapter *na) 1012 { 1013 enum txrx t; 1014 struct netmap_kring *kring; 1015 int i; 1016 1017 for_rx_tx(t) { 1018 for (i = nma_get_nrings(na, t); 1019 i < netmap_real_rings(na, t); i++) { 1020 kring = NMR(na, t)[i]; 1021 kring->nr_mode = kring->nr_pending_mode; 1022 } 1023 } 1024 } 1025 1026 /* 1027 * Undo everything that was done in netmap_do_regif(). In particular, 1028 * call nm_register(ifp,0) to stop netmap mode on the interface and 1029 * revert to normal operation. 1030 */ 1031 /* call with NMG_LOCK held */ 1032 static void netmap_unset_ringid(struct netmap_priv_d *); 1033 static void netmap_krings_put(struct netmap_priv_d *); 1034 void 1035 netmap_do_unregif(struct netmap_priv_d *priv) 1036 { 1037 struct netmap_adapter *na = priv->np_na; 1038 1039 NMG_LOCK_ASSERT(); 1040 na->active_fds--; 1041 /* unset nr_pending_mode and possibly release exclusive mode */ 1042 netmap_krings_put(priv); 1043 1044 #ifdef WITH_MONITOR 1045 /* XXX check whether we have to do something with monitor 1046 * when rings change nr_mode. */ 1047 if (na->active_fds <= 0) { 1048 /* walk through all the rings and tell any monitor 1049 * that the port is going to exit netmap mode 1050 */ 1051 netmap_monitor_stop(na); 1052 } 1053 #endif 1054 1055 if (na->active_fds <= 0 || nm_kring_pending(priv)) { 1056 netmap_set_all_rings(na, NM_KR_LOCKED); 1057 na->nm_register(na, 0); 1058 netmap_set_all_rings(na, 0); 1059 } 1060 1061 /* delete rings and buffers that are no longer needed */ 1062 netmap_mem_rings_delete(na); 1063 1064 if (na->active_fds <= 0) { /* last instance */ 1065 /* 1066 * (TO CHECK) We enter here 1067 * when the last reference to this file descriptor goes 1068 * away. This means we cannot have any pending poll() 1069 * or interrupt routine operating on the structure. 1070 * XXX The file may be closed in a thread while 1071 * another thread is using it. 1072 * Linux keeps the file opened until the last reference 1073 * by any outstanding ioctl/poll or mmap is gone. 1074 * FreeBSD does not track mmap()s (but we do) and 1075 * wakes up any sleeping poll(). Need to check what 1076 * happens if the close() occurs while a concurrent 1077 * syscall is running. 1078 */ 1079 if (netmap_debug & NM_DEBUG_ON) 1080 nm_prinf("deleting last instance for %s", na->name); 1081 1082 if (nm_netmap_on(na)) { 1083 nm_prerr("BUG: netmap on while going to delete the krings"); 1084 } 1085 1086 na->nm_krings_delete(na); 1087 1088 /* restore the default number of host tx and rx rings */ 1089 if (na->na_flags & NAF_HOST_RINGS) { 1090 na->num_host_tx_rings = 1; 1091 na->num_host_rx_rings = 1; 1092 } else { 1093 na->num_host_tx_rings = 0; 1094 na->num_host_rx_rings = 0; 1095 } 1096 } 1097 1098 /* possibly decrement counter of tx_si/rx_si users */ 1099 netmap_unset_ringid(priv); 1100 /* delete the nifp */ 1101 netmap_mem_if_delete(na, priv->np_nifp); 1102 /* drop the allocator */ 1103 netmap_mem_drop(na); 1104 /* mark the priv as unregistered */ 1105 priv->np_na = NULL; 1106 priv->np_nifp = NULL; 1107 } 1108 1109 struct netmap_priv_d* 1110 netmap_priv_new(void) 1111 { 1112 struct netmap_priv_d *priv; 1113 1114 priv = nm_os_malloc(sizeof(struct netmap_priv_d)); 1115 if (priv == NULL) 1116 return NULL; 1117 priv->np_refs = 1; 1118 nm_os_get_module(); 1119 return priv; 1120 } 1121 1122 /* 1123 * Destructor of the netmap_priv_d, called when the fd is closed 1124 * Action: undo all the things done by NIOCREGIF, 1125 * On FreeBSD we need to track whether there are active mmap()s, 1126 * and we use np_active_mmaps for that. On linux, the field is always 0. 1127 * Return: 1 if we can free priv, 0 otherwise. 1128 * 1129 */ 1130 /* call with NMG_LOCK held */ 1131 void 1132 netmap_priv_delete(struct netmap_priv_d *priv) 1133 { 1134 struct netmap_adapter *na = priv->np_na; 1135 1136 /* number of active references to this fd */ 1137 if (--priv->np_refs > 0) { 1138 return; 1139 } 1140 nm_os_put_module(); 1141 if (na) { 1142 netmap_do_unregif(priv); 1143 } 1144 netmap_unget_na(na, priv->np_ifp); 1145 bzero(priv, sizeof(*priv)); /* for safety */ 1146 nm_os_free(priv); 1147 } 1148 1149 1150 /* call with NMG_LOCK *not* held */ 1151 void 1152 netmap_dtor(void *data) 1153 { 1154 struct netmap_priv_d *priv = data; 1155 1156 NMG_LOCK(); 1157 netmap_priv_delete(priv); 1158 NMG_UNLOCK(); 1159 } 1160 1161 1162 /* 1163 * Handlers for synchronization of the rings from/to the host stack. 1164 * These are associated to a network interface and are just another 1165 * ring pair managed by userspace. 1166 * 1167 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD 1168 * flags): 1169 * 1170 * - Before releasing buffers on hw RX rings, the application can mark 1171 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they 1172 * will be forwarded to the host stack, similarly to what happened if 1173 * the application moved them to the host TX ring. 1174 * 1175 * - Before releasing buffers on the host RX ring, the application can 1176 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(), 1177 * they will be forwarded to the hw TX rings, saving the application 1178 * from doing the same task in user-space. 1179 * 1180 * Transparent forwarding can be enabled per-ring, by setting the NR_FORWARD 1181 * flag, or globally with the netmap_fwd sysctl. 1182 * 1183 * The transfer NIC --> host is relatively easy, just encapsulate 1184 * into mbufs and we are done. The host --> NIC side is slightly 1185 * harder because there might not be room in the tx ring so it 1186 * might take a while before releasing the buffer. 1187 */ 1188 1189 1190 /* 1191 * Pass a whole queue of mbufs to the host stack as coming from 'dst' 1192 * We do not need to lock because the queue is private. 1193 * After this call the queue is empty. 1194 */ 1195 static void 1196 netmap_send_up(if_t dst, struct mbq *q) 1197 { 1198 struct mbuf *m; 1199 struct mbuf *head = NULL, *prev = NULL; 1200 #ifdef __FreeBSD__ 1201 struct epoch_tracker et; 1202 1203 NET_EPOCH_ENTER(et); 1204 #endif /* __FreeBSD__ */ 1205 /* Send packets up, outside the lock; head/prev machinery 1206 * is only useful for Windows. */ 1207 while ((m = mbq_dequeue(q)) != NULL) { 1208 if (netmap_debug & NM_DEBUG_HOST) 1209 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m)); 1210 prev = nm_os_send_up(dst, m, prev); 1211 if (head == NULL) 1212 head = prev; 1213 } 1214 if (head) 1215 nm_os_send_up(dst, NULL, head); 1216 #ifdef __FreeBSD__ 1217 NET_EPOCH_EXIT(et); 1218 #endif /* __FreeBSD__ */ 1219 mbq_fini(q); 1220 } 1221 1222 1223 /* 1224 * Scan the buffers from hwcur to ring->head, and put a copy of those 1225 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs. 1226 * Drop remaining packets in the unlikely event 1227 * of an mbuf shortage. 1228 */ 1229 static void 1230 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 1231 { 1232 u_int const lim = kring->nkr_num_slots - 1; 1233 u_int const head = kring->rhead; 1234 u_int n; 1235 struct netmap_adapter *na = kring->na; 1236 1237 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 1238 struct mbuf *m; 1239 struct netmap_slot *slot = &kring->ring->slot[n]; 1240 1241 if ((slot->flags & NS_FORWARD) == 0 && !force) 1242 continue; 1243 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) { 1244 nm_prlim(5, "bad pkt at %d len %d", n, slot->len); 1245 continue; 1246 } 1247 slot->flags &= ~NS_FORWARD; // XXX needed ? 1248 /* XXX TODO: adapt to the case of a multisegment packet */ 1249 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL); 1250 1251 if (m == NULL) 1252 break; 1253 mbq_enqueue(q, m); 1254 } 1255 } 1256 1257 static inline int 1258 _nm_may_forward(struct netmap_kring *kring) 1259 { 1260 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) && 1261 kring->na->na_flags & NAF_HOST_RINGS && 1262 kring->tx == NR_RX); 1263 } 1264 1265 static inline int 1266 nm_may_forward_up(struct netmap_kring *kring) 1267 { 1268 return _nm_may_forward(kring) && 1269 kring->ring_id != kring->na->num_rx_rings; 1270 } 1271 1272 static inline int 1273 nm_may_forward_down(struct netmap_kring *kring, int sync_flags) 1274 { 1275 return _nm_may_forward(kring) && 1276 (sync_flags & NAF_CAN_FORWARD_DOWN) && 1277 kring->ring_id == kring->na->num_rx_rings; 1278 } 1279 1280 /* 1281 * Send to the NIC rings packets marked NS_FORWARD between 1282 * kring->nr_hwcur and kring->rhead. 1283 * Called under kring->rx_queue.lock on the sw rx ring. 1284 * 1285 * It can only be called if the user opened all the TX hw rings, 1286 * see NAF_CAN_FORWARD_DOWN flag. 1287 * We can touch the TX netmap rings (slots, head and cur) since 1288 * we are in poll/ioctl system call context, and the application 1289 * is not supposed to touch the ring (using a different thread) 1290 * during the execution of the system call. 1291 */ 1292 static u_int 1293 netmap_sw_to_nic(struct netmap_adapter *na) 1294 { 1295 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings]; 1296 struct netmap_slot *rxslot = kring->ring->slot; 1297 u_int i, rxcur = kring->nr_hwcur; 1298 u_int const head = kring->rhead; 1299 u_int const src_lim = kring->nkr_num_slots - 1; 1300 u_int sent = 0; 1301 1302 /* scan rings to find space, then fill as much as possible */ 1303 for (i = 0; i < na->num_tx_rings; i++) { 1304 struct netmap_kring *kdst = na->tx_rings[i]; 1305 struct netmap_ring *rdst = kdst->ring; 1306 u_int const dst_lim = kdst->nkr_num_slots - 1; 1307 1308 /* XXX do we trust ring or kring->rcur,rtail ? */ 1309 for (; rxcur != head && !nm_ring_empty(rdst); 1310 rxcur = nm_next(rxcur, src_lim) ) { 1311 struct netmap_slot *src, *dst, tmp; 1312 u_int dst_head = rdst->head; 1313 1314 src = &rxslot[rxcur]; 1315 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 1316 continue; 1317 1318 sent++; 1319 1320 dst = &rdst->slot[dst_head]; 1321 1322 tmp = *src; 1323 1324 src->buf_idx = dst->buf_idx; 1325 src->flags = NS_BUF_CHANGED; 1326 1327 dst->buf_idx = tmp.buf_idx; 1328 dst->len = tmp.len; 1329 dst->flags = NS_BUF_CHANGED; 1330 1331 rdst->head = rdst->cur = nm_next(dst_head, dst_lim); 1332 } 1333 /* if (sent) XXX txsync ? it would be just an optimization */ 1334 } 1335 return sent; 1336 } 1337 1338 1339 /* 1340 * netmap_txsync_to_host() passes packets up. We are called from a 1341 * system call in user process context, and the only contention 1342 * can be among multiple user threads erroneously calling 1343 * this routine concurrently. 1344 */ 1345 static int 1346 netmap_txsync_to_host(struct netmap_kring *kring, int flags) 1347 { 1348 struct netmap_adapter *na = kring->na; 1349 u_int const lim = kring->nkr_num_slots - 1; 1350 u_int const head = kring->rhead; 1351 struct mbq q; 1352 1353 /* Take packets from hwcur to head and pass them up. 1354 * Force hwcur = head since netmap_grab_packets() stops at head 1355 */ 1356 mbq_init(&q); 1357 netmap_grab_packets(kring, &q, 1 /* force */); 1358 nm_prdis("have %d pkts in queue", mbq_len(&q)); 1359 kring->nr_hwcur = head; 1360 kring->nr_hwtail = head + lim; 1361 if (kring->nr_hwtail > lim) 1362 kring->nr_hwtail -= lim + 1; 1363 1364 netmap_send_up(na->ifp, &q); 1365 return 0; 1366 } 1367 1368 1369 /* 1370 * rxsync backend for packets coming from the host stack. 1371 * They have been put in kring->rx_queue by netmap_transmit(). 1372 * We protect access to the kring using kring->rx_queue.lock 1373 * 1374 * also moves to the nic hw rings any packet the user has marked 1375 * for transparent-mode forwarding, then sets the NR_FORWARD 1376 * flag in the kring to let the caller push them out 1377 */ 1378 static int 1379 netmap_rxsync_from_host(struct netmap_kring *kring, int flags) 1380 { 1381 struct netmap_adapter *na = kring->na; 1382 struct netmap_ring *ring = kring->ring; 1383 u_int nm_i, n; 1384 u_int const lim = kring->nkr_num_slots - 1; 1385 u_int const head = kring->rhead; 1386 int ret = 0; 1387 struct mbq *q = &kring->rx_queue, fq; 1388 1389 mbq_init(&fq); /* fq holds packets to be freed */ 1390 1391 mbq_lock(q); 1392 1393 /* First part: import newly received packets */ 1394 n = mbq_len(q); 1395 if (n) { /* grab packets from the queue */ 1396 struct mbuf *m; 1397 uint32_t stop_i; 1398 1399 nm_i = kring->nr_hwtail; 1400 stop_i = nm_prev(kring->nr_hwcur, lim); 1401 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 1402 int len = MBUF_LEN(m); 1403 struct netmap_slot *slot = &ring->slot[nm_i]; 1404 1405 m_copydata(m, 0, len, NMB(na, slot)); 1406 nm_prdis("nm %d len %d", nm_i, len); 1407 if (netmap_debug & NM_DEBUG_HOST) 1408 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL)); 1409 1410 slot->len = len; 1411 slot->flags = 0; 1412 nm_i = nm_next(nm_i, lim); 1413 mbq_enqueue(&fq, m); 1414 } 1415 kring->nr_hwtail = nm_i; 1416 } 1417 1418 /* 1419 * Second part: skip past packets that userspace has released. 1420 */ 1421 nm_i = kring->nr_hwcur; 1422 if (nm_i != head) { /* something was released */ 1423 if (nm_may_forward_down(kring, flags)) { 1424 ret = netmap_sw_to_nic(na); 1425 if (ret > 0) { 1426 kring->nr_kflags |= NR_FORWARD; 1427 ret = 0; 1428 } 1429 } 1430 kring->nr_hwcur = head; 1431 } 1432 1433 mbq_unlock(q); 1434 1435 mbq_purge(&fq); 1436 mbq_fini(&fq); 1437 1438 return ret; 1439 } 1440 1441 1442 /* Get a netmap adapter for the port. 1443 * 1444 * If it is possible to satisfy the request, return 0 1445 * with *na containing the netmap adapter found. 1446 * Otherwise return an error code, with *na containing NULL. 1447 * 1448 * When the port is attached to a bridge, we always return 1449 * EBUSY. 1450 * Otherwise, if the port is already bound to a file descriptor, 1451 * then we unconditionally return the existing adapter into *na. 1452 * In all the other cases, we return (into *na) either native, 1453 * generic or NULL, according to the following table: 1454 * 1455 * native_support 1456 * active_fds dev.netmap.admode YES NO 1457 * ------------------------------------------------------- 1458 * >0 * NA(ifp) NA(ifp) 1459 * 1460 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1461 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1462 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1463 * 1464 */ 1465 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */ 1466 int 1467 netmap_get_hw_na(if_t ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na) 1468 { 1469 /* generic support */ 1470 int i = netmap_admode; /* Take a snapshot. */ 1471 struct netmap_adapter *prev_na; 1472 int error = 0; 1473 1474 *na = NULL; /* default */ 1475 1476 /* reset in case of invalid value */ 1477 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1478 i = netmap_admode = NETMAP_ADMODE_BEST; 1479 1480 if (NM_NA_VALID(ifp)) { 1481 prev_na = NA(ifp); 1482 /* If an adapter already exists, return it if 1483 * there are active file descriptors or if 1484 * netmap is not forced to use generic 1485 * adapters. 1486 */ 1487 if (NETMAP_OWNED_BY_ANY(prev_na) 1488 || i != NETMAP_ADMODE_GENERIC 1489 || prev_na->na_flags & NAF_FORCE_NATIVE 1490 #ifdef WITH_PIPES 1491 /* ugly, but we cannot allow an adapter switch 1492 * if some pipe is referring to this one 1493 */ 1494 || prev_na->na_next_pipe > 0 1495 #endif 1496 ) { 1497 *na = prev_na; 1498 goto assign_mem; 1499 } 1500 } 1501 1502 /* If there isn't native support and netmap is not allowed 1503 * to use generic adapters, we cannot satisfy the request. 1504 */ 1505 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE) 1506 return EOPNOTSUPP; 1507 1508 /* Otherwise, create a generic adapter and return it, 1509 * saving the previously used netmap adapter, if any. 1510 * 1511 * Note that here 'prev_na', if not NULL, MUST be a 1512 * native adapter, and CANNOT be a generic one. This is 1513 * true because generic adapters are created on demand, and 1514 * destroyed when not used anymore. Therefore, if the adapter 1515 * currently attached to an interface 'ifp' is generic, it 1516 * must be that 1517 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1518 * Consequently, if NA(ifp) is generic, we will enter one of 1519 * the branches above. This ensures that we never override 1520 * a generic adapter with another generic adapter. 1521 */ 1522 error = generic_netmap_attach(ifp); 1523 if (error) 1524 return error; 1525 1526 *na = NA(ifp); 1527 1528 assign_mem: 1529 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) && 1530 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) { 1531 (*na)->nm_mem_prev = (*na)->nm_mem; 1532 (*na)->nm_mem = netmap_mem_get(nmd); 1533 } 1534 1535 return 0; 1536 } 1537 1538 /* 1539 * MUST BE CALLED UNDER NMG_LOCK() 1540 * 1541 * Get a refcounted reference to a netmap adapter attached 1542 * to the interface specified by req. 1543 * This is always called in the execution of an ioctl(). 1544 * 1545 * Return ENXIO if the interface specified by the request does 1546 * not exist, ENOTSUP if netmap is not supported by the interface, 1547 * EBUSY if the interface is already attached to a bridge, 1548 * EINVAL if parameters are invalid, ENOMEM if needed resources 1549 * could not be allocated. 1550 * If successful, hold a reference to the netmap adapter. 1551 * 1552 * If the interface specified by req is a system one, also keep 1553 * a reference to it and return a valid *ifp. 1554 */ 1555 int 1556 netmap_get_na(struct nmreq_header *hdr, 1557 struct netmap_adapter **na, if_t *ifp, 1558 struct netmap_mem_d *nmd, int create) 1559 { 1560 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; 1561 int error = 0; 1562 struct netmap_adapter *ret = NULL; 1563 int nmd_ref = 0; 1564 1565 *na = NULL; /* default return value */ 1566 *ifp = NULL; 1567 1568 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { 1569 return EINVAL; 1570 } 1571 1572 if (req->nr_mode == NR_REG_PIPE_MASTER || 1573 req->nr_mode == NR_REG_PIPE_SLAVE) { 1574 /* Do not accept deprecated pipe modes. */ 1575 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax"); 1576 return EINVAL; 1577 } 1578 1579 NMG_LOCK_ASSERT(); 1580 1581 /* if the request contain a memid, try to find the 1582 * corresponding memory region 1583 */ 1584 if (nmd == NULL && req->nr_mem_id) { 1585 nmd = netmap_mem_find(req->nr_mem_id); 1586 if (nmd == NULL) 1587 return EINVAL; 1588 /* keep the rereference */ 1589 nmd_ref = 1; 1590 } 1591 1592 /* We cascade through all possible types of netmap adapter. 1593 * All netmap_get_*_na() functions return an error and an na, 1594 * with the following combinations: 1595 * 1596 * error na 1597 * 0 NULL type doesn't match 1598 * !0 NULL type matches, but na creation/lookup failed 1599 * 0 !NULL type matches and na created/found 1600 * !0 !NULL impossible 1601 */ 1602 error = netmap_get_null_na(hdr, na, nmd, create); 1603 if (error || *na != NULL) 1604 goto out; 1605 1606 /* try to see if this is a monitor port */ 1607 error = netmap_get_monitor_na(hdr, na, nmd, create); 1608 if (error || *na != NULL) 1609 goto out; 1610 1611 /* try to see if this is a pipe port */ 1612 error = netmap_get_pipe_na(hdr, na, nmd, create); 1613 if (error || *na != NULL) 1614 goto out; 1615 1616 /* try to see if this is a vale port */ 1617 error = netmap_get_vale_na(hdr, na, nmd, create); 1618 if (error) 1619 goto out; 1620 1621 if (*na != NULL) /* valid match in netmap_get_bdg_na() */ 1622 goto out; 1623 1624 /* 1625 * This must be a hardware na, lookup the name in the system. 1626 * Note that by hardware we actually mean "it shows up in ifconfig". 1627 * This may still be a tap, a veth/epair, or even a 1628 * persistent VALE port. 1629 */ 1630 *ifp = ifunit_ref(hdr->nr_name); 1631 if (*ifp == NULL) { 1632 error = ENXIO; 1633 goto out; 1634 } 1635 1636 error = netmap_get_hw_na(*ifp, nmd, &ret); 1637 if (error) 1638 goto out; 1639 1640 *na = ret; 1641 netmap_adapter_get(ret); 1642 1643 /* 1644 * if the adapter supports the host rings and it is not already open, 1645 * try to set the number of host rings as requested by the user 1646 */ 1647 if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) { 1648 if (req->nr_host_tx_rings) 1649 (*na)->num_host_tx_rings = req->nr_host_tx_rings; 1650 if (req->nr_host_rx_rings) 1651 (*na)->num_host_rx_rings = req->nr_host_rx_rings; 1652 } 1653 nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings, 1654 (*na)->num_host_rx_rings); 1655 1656 out: 1657 if (error) { 1658 if (ret) 1659 netmap_adapter_put(ret); 1660 if (*ifp) { 1661 if_rele(*ifp); 1662 *ifp = NULL; 1663 } 1664 } 1665 if (nmd_ref) 1666 netmap_mem_put(nmd); 1667 1668 return error; 1669 } 1670 1671 /* undo netmap_get_na() */ 1672 void 1673 netmap_unget_na(struct netmap_adapter *na, if_t ifp) 1674 { 1675 if (ifp) 1676 if_rele(ifp); 1677 if (na) 1678 netmap_adapter_put(na); 1679 } 1680 1681 1682 #define NM_FAIL_ON(t) do { \ 1683 if (unlikely(t)) { \ 1684 nm_prlim(5, "%s: fail '" #t "' " \ 1685 "h %d c %d t %d " \ 1686 "rh %d rc %d rt %d " \ 1687 "hc %d ht %d", \ 1688 kring->name, \ 1689 head, cur, ring->tail, \ 1690 kring->rhead, kring->rcur, kring->rtail, \ 1691 kring->nr_hwcur, kring->nr_hwtail); \ 1692 return kring->nkr_num_slots; \ 1693 } \ 1694 } while (0) 1695 1696 /* 1697 * validate parameters on entry for *_txsync() 1698 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1699 * in case of error. 1700 * 1701 * rhead, rcur and rtail=hwtail are stored from previous round. 1702 * hwcur is the next packet to send to the ring. 1703 * 1704 * We want 1705 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1706 * 1707 * hwcur, rhead, rtail and hwtail are reliable 1708 */ 1709 u_int 1710 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1711 { 1712 u_int head = NM_ACCESS_ONCE(ring->head); 1713 u_int cur = NM_ACCESS_ONCE(ring->cur); 1714 u_int n = kring->nkr_num_slots; 1715 1716 nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1717 kring->name, 1718 kring->nr_hwcur, kring->nr_hwtail, 1719 ring->head, ring->cur, ring->tail); 1720 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1721 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n || 1722 kring->rtail >= n || kring->nr_hwtail >= n); 1723 #endif /* kernel sanity checks */ 1724 /* 1725 * user sanity checks. We only use head, 1726 * A, B, ... are possible positions for head: 1727 * 1728 * 0 A rhead B rtail C n-1 1729 * 0 D rtail E rhead F n-1 1730 * 1731 * B, F, D are valid. A, C, E are wrong 1732 */ 1733 if (kring->rtail >= kring->rhead) { 1734 /* want rhead <= head <= rtail */ 1735 NM_FAIL_ON(head < kring->rhead || head > kring->rtail); 1736 /* and also head <= cur <= rtail */ 1737 NM_FAIL_ON(cur < head || cur > kring->rtail); 1738 } else { /* here rtail < rhead */ 1739 /* we need head outside rtail .. rhead */ 1740 NM_FAIL_ON(head > kring->rtail && head < kring->rhead); 1741 1742 /* two cases now: head <= rtail or head >= rhead */ 1743 if (head <= kring->rtail) { 1744 /* want head <= cur <= rtail */ 1745 NM_FAIL_ON(cur < head || cur > kring->rtail); 1746 } else { /* head >= rhead */ 1747 /* cur must be outside rtail..head */ 1748 NM_FAIL_ON(cur > kring->rtail && cur < head); 1749 } 1750 } 1751 if (ring->tail != kring->rtail) { 1752 nm_prlim(5, "%s tail overwritten was %d need %d", kring->name, 1753 ring->tail, kring->rtail); 1754 ring->tail = kring->rtail; 1755 } 1756 kring->rhead = head; 1757 kring->rcur = cur; 1758 return head; 1759 } 1760 1761 1762 /* 1763 * validate parameters on entry for *_rxsync() 1764 * Returns ring->head if ok, kring->nkr_num_slots on error. 1765 * 1766 * For a valid configuration, 1767 * hwcur <= head <= cur <= tail <= hwtail 1768 * 1769 * We only consider head and cur. 1770 * hwcur and hwtail are reliable. 1771 * 1772 */ 1773 u_int 1774 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1775 { 1776 uint32_t const n = kring->nkr_num_slots; 1777 uint32_t head, cur; 1778 1779 nm_prdis(5,"%s kc %d kt %d h %d c %d t %d", 1780 kring->name, 1781 kring->nr_hwcur, kring->nr_hwtail, 1782 ring->head, ring->cur, ring->tail); 1783 /* 1784 * Before storing the new values, we should check they do not 1785 * move backwards. However: 1786 * - head is not an issue because the previous value is hwcur; 1787 * - cur could in principle go back, however it does not matter 1788 * because we are processing a brand new rxsync() 1789 */ 1790 cur = kring->rcur = NM_ACCESS_ONCE(ring->cur); 1791 head = kring->rhead = NM_ACCESS_ONCE(ring->head); 1792 #if 1 /* kernel sanity checks */ 1793 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n); 1794 #endif /* kernel sanity checks */ 1795 /* user sanity checks */ 1796 if (kring->nr_hwtail >= kring->nr_hwcur) { 1797 /* want hwcur <= rhead <= hwtail */ 1798 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail); 1799 /* and also rhead <= rcur <= hwtail */ 1800 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1801 } else { 1802 /* we need rhead outside hwtail..hwcur */ 1803 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail); 1804 /* two cases now: head <= hwtail or head >= hwcur */ 1805 if (head <= kring->nr_hwtail) { 1806 /* want head <= cur <= hwtail */ 1807 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1808 } else { 1809 /* cur must be outside hwtail..head */ 1810 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail); 1811 } 1812 } 1813 if (ring->tail != kring->rtail) { 1814 nm_prlim(5, "%s tail overwritten was %d need %d", 1815 kring->name, 1816 ring->tail, kring->rtail); 1817 ring->tail = kring->rtail; 1818 } 1819 return head; 1820 } 1821 1822 1823 /* 1824 * Error routine called when txsync/rxsync detects an error. 1825 * Can't do much more than resetting head = cur = hwcur, tail = hwtail 1826 * Return 1 on reinit. 1827 * 1828 * This routine is only called by the upper half of the kernel. 1829 * It only reads hwcur (which is changed only by the upper half, too) 1830 * and hwtail (which may be changed by the lower half, but only on 1831 * a tx ring and only to increase it, so any error will be recovered 1832 * on the next call). For the above, we don't strictly need to call 1833 * it under lock. 1834 */ 1835 int 1836 netmap_ring_reinit(struct netmap_kring *kring) 1837 { 1838 struct netmap_ring *ring = kring->ring; 1839 u_int i, lim = kring->nkr_num_slots - 1; 1840 int errors = 0; 1841 1842 // XXX KASSERT nm_kr_tryget 1843 nm_prlim(10, "called for %s", kring->name); 1844 // XXX probably wrong to trust userspace 1845 kring->rhead = ring->head; 1846 kring->rcur = ring->cur; 1847 kring->rtail = ring->tail; 1848 1849 if (ring->cur > lim) 1850 errors++; 1851 if (ring->head > lim) 1852 errors++; 1853 if (ring->tail > lim) 1854 errors++; 1855 for (i = 0; i <= lim; i++) { 1856 u_int idx = ring->slot[i].buf_idx; 1857 u_int len = ring->slot[i].len; 1858 if (idx < 2 || idx >= kring->na->na_lut.objtotal) { 1859 nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1860 ring->slot[i].buf_idx = 0; 1861 ring->slot[i].len = 0; 1862 } else if (len > NETMAP_BUF_SIZE(kring->na)) { 1863 ring->slot[i].len = 0; 1864 nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len); 1865 } 1866 } 1867 if (errors) { 1868 nm_prlim(10, "total %d errors", errors); 1869 nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d", 1870 kring->name, 1871 ring->cur, kring->nr_hwcur, 1872 ring->tail, kring->nr_hwtail); 1873 ring->head = kring->rhead = kring->nr_hwcur; 1874 ring->cur = kring->rcur = kring->nr_hwcur; 1875 ring->tail = kring->rtail = kring->nr_hwtail; 1876 } 1877 return (errors ? 1 : 0); 1878 } 1879 1880 /* interpret the ringid and flags fields of an nmreq, by translating them 1881 * into a pair of intervals of ring indices: 1882 * 1883 * [priv->np_txqfirst, priv->np_txqlast) and 1884 * [priv->np_rxqfirst, priv->np_rxqlast) 1885 * 1886 */ 1887 int 1888 netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr) 1889 { 1890 struct netmap_adapter *na = priv->np_na; 1891 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body; 1892 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY }; 1893 enum txrx t; 1894 u_int j; 1895 u_int nr_flags = reg->nr_flags, nr_mode = reg->nr_mode, 1896 nr_ringid = reg->nr_ringid; 1897 1898 for_rx_tx(t) { 1899 if (nr_flags & excluded_direction[t]) { 1900 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1901 continue; 1902 } 1903 switch (nr_mode) { 1904 case NR_REG_ALL_NIC: 1905 case NR_REG_NULL: 1906 priv->np_qfirst[t] = 0; 1907 priv->np_qlast[t] = nma_get_nrings(na, t); 1908 nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t), 1909 priv->np_qfirst[t], priv->np_qlast[t]); 1910 break; 1911 case NR_REG_SW: 1912 case NR_REG_NIC_SW: 1913 if (!(na->na_flags & NAF_HOST_RINGS)) { 1914 nm_prerr("host rings not supported"); 1915 return EINVAL; 1916 } 1917 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ? 1918 nma_get_nrings(na, t) : 0); 1919 priv->np_qlast[t] = netmap_all_rings(na, t); 1920 nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW", 1921 nm_txrx2str(t), 1922 priv->np_qfirst[t], priv->np_qlast[t]); 1923 break; 1924 case NR_REG_ONE_NIC: 1925 if (nr_ringid >= na->num_tx_rings && 1926 nr_ringid >= na->num_rx_rings) { 1927 nm_prerr("invalid ring id %d", nr_ringid); 1928 return EINVAL; 1929 } 1930 /* if not enough rings, use the first one */ 1931 j = nr_ringid; 1932 if (j >= nma_get_nrings(na, t)) 1933 j = 0; 1934 priv->np_qfirst[t] = j; 1935 priv->np_qlast[t] = j + 1; 1936 nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t), 1937 priv->np_qfirst[t], priv->np_qlast[t]); 1938 break; 1939 case NR_REG_ONE_SW: 1940 if (!(na->na_flags & NAF_HOST_RINGS)) { 1941 nm_prerr("host rings not supported"); 1942 return EINVAL; 1943 } 1944 if (nr_ringid >= na->num_host_tx_rings && 1945 nr_ringid >= na->num_host_rx_rings) { 1946 nm_prerr("invalid ring id %d", nr_ringid); 1947 return EINVAL; 1948 } 1949 /* if not enough rings, use the first one */ 1950 j = nr_ringid; 1951 if (j >= nma_get_host_nrings(na, t)) 1952 j = 0; 1953 priv->np_qfirst[t] = nma_get_nrings(na, t) + j; 1954 priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1; 1955 nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t), 1956 priv->np_qfirst[t], priv->np_qlast[t]); 1957 break; 1958 default: 1959 nm_prerr("invalid regif type %d", nr_mode); 1960 return EINVAL; 1961 } 1962 } 1963 priv->np_flags = nr_flags; 1964 1965 /* Allow transparent forwarding mode in the host --> nic 1966 * direction only if all the TX hw rings have been opened. */ 1967 if (priv->np_qfirst[NR_TX] == 0 && 1968 priv->np_qlast[NR_TX] >= na->num_tx_rings) { 1969 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN; 1970 } 1971 1972 if (netmap_verbose) { 1973 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d", 1974 na->name, 1975 priv->np_qfirst[NR_TX], 1976 priv->np_qlast[NR_TX], 1977 priv->np_qfirst[NR_RX], 1978 priv->np_qlast[NR_RX], 1979 nr_ringid); 1980 } 1981 return 0; 1982 } 1983 1984 1985 /* 1986 * Set the ring ID. For devices with a single queue, a request 1987 * for all rings is the same as a single ring. 1988 */ 1989 static int 1990 netmap_set_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr) 1991 { 1992 struct netmap_adapter *na = priv->np_na; 1993 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body; 1994 int error; 1995 enum txrx t; 1996 1997 error = netmap_interp_ringid(priv, hdr); 1998 if (error) { 1999 return error; 2000 } 2001 2002 priv->np_txpoll = (reg->nr_flags & NR_NO_TX_POLL) ? 0 : 1; 2003 2004 /* optimization: count the users registered for more than 2005 * one ring, which are the ones sleeping on the global queue. 2006 * The default netmap_notify() callback will then 2007 * avoid signaling the global queue if nobody is using it 2008 */ 2009 for_rx_tx(t) { 2010 if (nm_si_user(priv, t)) 2011 na->si_users[t]++; 2012 } 2013 return 0; 2014 } 2015 2016 static void 2017 netmap_unset_ringid(struct netmap_priv_d *priv) 2018 { 2019 struct netmap_adapter *na = priv->np_na; 2020 enum txrx t; 2021 2022 for_rx_tx(t) { 2023 if (nm_si_user(priv, t)) 2024 na->si_users[t]--; 2025 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 2026 } 2027 priv->np_flags = 0; 2028 priv->np_txpoll = 0; 2029 priv->np_kloop_state = 0; 2030 } 2031 2032 #define within_sel(p_, t_, i_) \ 2033 ((i_) < (p_)->np_qlast[(t_)]) 2034 #define nonempty_sel(p_, t_) \ 2035 (within_sel((p_), (t_), (p_)->np_qfirst[(t_)])) 2036 #define foreach_selected_ring(p_, t_, i_, kring_) \ 2037 for ((t_) = nonempty_sel((p_), NR_RX) ? NR_RX : NR_TX, \ 2038 (i_) = (p_)->np_qfirst[(t_)]; \ 2039 (t_ == NR_RX || \ 2040 (t == NR_TX && within_sel((p_), (t_), (i_)))) && \ 2041 ((kring_) = NMR((p_)->np_na, (t_))[(i_)]); \ 2042 (i_) = within_sel((p_), (t_), (i_) + 1) ? (i_) + 1 : \ 2043 (++(t_) < NR_TXRX ? (p_)->np_qfirst[(t_)] : (i_))) 2044 2045 2046 /* Set the nr_pending_mode for the requested rings. 2047 * If requested, also try to get exclusive access to the rings, provided 2048 * the rings we want to bind are not exclusively owned by a previous bind. 2049 */ 2050 static int 2051 netmap_krings_get(struct netmap_priv_d *priv) 2052 { 2053 struct netmap_adapter *na = priv->np_na; 2054 u_int i; 2055 struct netmap_kring *kring; 2056 int excl = (priv->np_flags & NR_EXCLUSIVE); 2057 enum txrx t; 2058 2059 if (netmap_debug & NM_DEBUG_ON) 2060 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)", 2061 na->name, 2062 priv->np_qfirst[NR_TX], 2063 priv->np_qlast[NR_TX], 2064 priv->np_qfirst[NR_RX], 2065 priv->np_qlast[NR_RX]); 2066 2067 /* first round: check that all the requested rings 2068 * are neither already exclusively owned, nor we 2069 * want exclusive ownership when they are already in use 2070 */ 2071 foreach_selected_ring(priv, t, i, kring) { 2072 if ((kring->nr_kflags & NKR_EXCLUSIVE) || 2073 (kring->users && excl)) 2074 { 2075 nm_prdis("ring %s busy", kring->name); 2076 return EBUSY; 2077 } 2078 } 2079 2080 /* second round: increment usage count (possibly marking them 2081 * as exclusive) and set the nr_pending_mode 2082 */ 2083 foreach_selected_ring(priv, t, i, kring) { 2084 kring->users++; 2085 if (excl) 2086 kring->nr_kflags |= NKR_EXCLUSIVE; 2087 kring->nr_pending_mode = NKR_NETMAP_ON; 2088 } 2089 2090 return 0; 2091 2092 } 2093 2094 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode 2095 * if was asked on regif, and unset the nr_pending_mode if we are the 2096 * last users of the involved rings. */ 2097 static void 2098 netmap_krings_put(struct netmap_priv_d *priv) 2099 { 2100 u_int i; 2101 struct netmap_kring *kring; 2102 int excl = (priv->np_flags & NR_EXCLUSIVE); 2103 enum txrx t; 2104 2105 nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)", 2106 na->name, 2107 priv->np_qfirst[NR_TX], 2108 priv->np_qlast[NR_TX], 2109 priv->np_qfirst[NR_RX], 2110 priv->np_qlast[MR_RX]); 2111 2112 foreach_selected_ring(priv, t, i, kring) { 2113 if (excl) 2114 kring->nr_kflags &= ~NKR_EXCLUSIVE; 2115 kring->users--; 2116 if (kring->users == 0) 2117 kring->nr_pending_mode = NKR_NETMAP_OFF; 2118 } 2119 } 2120 2121 static int 2122 nm_priv_rx_enabled(struct netmap_priv_d *priv) 2123 { 2124 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]); 2125 } 2126 2127 /* Validate the CSB entries for both directions (atok and ktoa). 2128 * To be called under NMG_LOCK(). */ 2129 static int 2130 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo) 2131 { 2132 struct nm_csb_atok *csb_atok_base = 2133 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok; 2134 struct nm_csb_ktoa *csb_ktoa_base = 2135 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa; 2136 enum txrx t; 2137 int num_rings[NR_TXRX], tot_rings; 2138 size_t entry_size[2]; 2139 void *csb_start[2]; 2140 int i; 2141 2142 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) { 2143 nm_prerr("Cannot update CSB while kloop is running"); 2144 return EBUSY; 2145 } 2146 2147 tot_rings = 0; 2148 for_rx_tx(t) { 2149 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t]; 2150 tot_rings += num_rings[t]; 2151 } 2152 if (tot_rings <= 0) 2153 return 0; 2154 2155 if (!(priv->np_flags & NR_EXCLUSIVE)) { 2156 nm_prerr("CSB mode requires NR_EXCLUSIVE"); 2157 return EINVAL; 2158 } 2159 2160 entry_size[0] = sizeof(*csb_atok_base); 2161 entry_size[1] = sizeof(*csb_ktoa_base); 2162 csb_start[0] = (void *)csb_atok_base; 2163 csb_start[1] = (void *)csb_ktoa_base; 2164 2165 for (i = 0; i < 2; i++) { 2166 /* On Linux we could use access_ok() to simplify 2167 * the validation. However, the advantage of 2168 * this approach is that it works also on 2169 * FreeBSD. */ 2170 size_t csb_size = tot_rings * entry_size[i]; 2171 void *tmp; 2172 int err; 2173 2174 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) { 2175 nm_prerr("Unaligned CSB address"); 2176 return EINVAL; 2177 } 2178 2179 tmp = nm_os_malloc(csb_size); 2180 if (!tmp) 2181 return ENOMEM; 2182 if (i == 0) { 2183 /* Application --> kernel direction. */ 2184 err = copyin(csb_start[i], tmp, csb_size); 2185 } else { 2186 /* Kernel --> application direction. */ 2187 memset(tmp, 0, csb_size); 2188 err = copyout(tmp, csb_start[i], csb_size); 2189 } 2190 nm_os_free(tmp); 2191 if (err) { 2192 nm_prerr("Invalid CSB address"); 2193 return err; 2194 } 2195 } 2196 2197 priv->np_csb_atok_base = csb_atok_base; 2198 priv->np_csb_ktoa_base = csb_ktoa_base; 2199 2200 /* Initialize the CSB. */ 2201 for_rx_tx(t) { 2202 for (i = 0; i < num_rings[t]; i++) { 2203 struct netmap_kring *kring = 2204 NMR(priv->np_na, t)[i + priv->np_qfirst[t]]; 2205 struct nm_csb_atok *csb_atok = csb_atok_base + i; 2206 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i; 2207 2208 if (t == NR_RX) { 2209 csb_atok += num_rings[NR_TX]; 2210 csb_ktoa += num_rings[NR_TX]; 2211 } 2212 2213 CSB_WRITE(csb_atok, head, kring->rhead); 2214 CSB_WRITE(csb_atok, cur, kring->rcur); 2215 CSB_WRITE(csb_atok, appl_need_kick, 1); 2216 CSB_WRITE(csb_atok, sync_flags, 1); 2217 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur); 2218 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail); 2219 CSB_WRITE(csb_ktoa, kern_need_kick, 1); 2220 2221 nm_prinf("csb_init for kring %s: head %u, cur %u, " 2222 "hwcur %u, hwtail %u", kring->name, 2223 kring->rhead, kring->rcur, kring->nr_hwcur, 2224 kring->nr_hwtail); 2225 } 2226 } 2227 2228 return 0; 2229 } 2230 2231 /* Ensure that the netmap adapter can support the given MTU. 2232 * @return EINVAL if the na cannot be set to mtu, 0 otherwise. 2233 */ 2234 int 2235 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) { 2236 unsigned nbs = NETMAP_BUF_SIZE(na); 2237 2238 if (mtu <= na->rx_buf_maxsize) { 2239 /* The MTU fits a single NIC slot. We only 2240 * Need to check that netmap buffers are 2241 * large enough to hold an MTU. NS_MOREFRAG 2242 * cannot be used in this case. */ 2243 if (nbs < mtu) { 2244 nm_prerr("error: netmap buf size (%u) " 2245 "< device MTU (%u)", nbs, mtu); 2246 return EINVAL; 2247 } 2248 } else { 2249 /* More NIC slots may be needed to receive 2250 * or transmit a single packet. Check that 2251 * the adapter supports NS_MOREFRAG and that 2252 * netmap buffers are large enough to hold 2253 * the maximum per-slot size. */ 2254 if (!(na->na_flags & NAF_MOREFRAG)) { 2255 nm_prerr("error: large MTU (%d) needed " 2256 "but %s does not support " 2257 "NS_MOREFRAG", mtu, 2258 if_name(na->ifp)); 2259 return EINVAL; 2260 } else if (nbs < na->rx_buf_maxsize) { 2261 nm_prerr("error: using NS_MOREFRAG on " 2262 "%s requires netmap buf size " 2263 ">= %u", if_name(na->ifp), 2264 na->rx_buf_maxsize); 2265 return EINVAL; 2266 } else { 2267 nm_prinf("info: netmap application on " 2268 "%s needs to support " 2269 "NS_MOREFRAG " 2270 "(MTU=%u,netmap_buf_size=%u)", 2271 if_name(na->ifp), mtu, nbs); 2272 } 2273 } 2274 return 0; 2275 } 2276 2277 /* Handle the offset option, if present in the hdr. 2278 * Returns 0 on success, or an error. 2279 */ 2280 static int 2281 netmap_offsets_init(struct netmap_priv_d *priv, struct nmreq_header *hdr) 2282 { 2283 struct nmreq_opt_offsets *opt; 2284 struct netmap_adapter *na = priv->np_na; 2285 struct netmap_kring *kring; 2286 uint64_t mask = 0, bits = 0, maxbits = sizeof(uint64_t) * 8, 2287 max_offset = 0, initial_offset = 0, min_gap = 0; 2288 u_int i; 2289 enum txrx t; 2290 int error = 0; 2291 2292 opt = (struct nmreq_opt_offsets *) 2293 nmreq_getoption(hdr, NETMAP_REQ_OPT_OFFSETS); 2294 if (opt == NULL) 2295 return 0; 2296 2297 if (!(na->na_flags & NAF_OFFSETS)) { 2298 if (netmap_verbose) 2299 nm_prerr("%s does not support offsets", 2300 na->name); 2301 error = EOPNOTSUPP; 2302 goto out; 2303 } 2304 2305 /* check sanity of the opt values */ 2306 max_offset = opt->nro_max_offset; 2307 min_gap = opt->nro_min_gap; 2308 initial_offset = opt->nro_initial_offset; 2309 bits = opt->nro_offset_bits; 2310 2311 if (bits > maxbits) { 2312 if (netmap_verbose) 2313 nm_prerr("bits: %llu too large (max %llu)", 2314 (unsigned long long)bits, 2315 (unsigned long long)maxbits); 2316 error = EINVAL; 2317 goto out; 2318 } 2319 /* we take bits == 0 as a request to use the entire field */ 2320 if (bits == 0 || bits == maxbits) { 2321 /* shifting a type by sizeof(type) is undefined */ 2322 bits = maxbits; 2323 mask = 0xffffffffffffffff; 2324 } else { 2325 mask = (1ULL << bits) - 1; 2326 } 2327 if (max_offset > NETMAP_BUF_SIZE(na)) { 2328 if (netmap_verbose) 2329 nm_prerr("max offset %llu > buf size %u", 2330 (unsigned long long)max_offset, NETMAP_BUF_SIZE(na)); 2331 error = EINVAL; 2332 goto out; 2333 } 2334 if ((max_offset & mask) != max_offset) { 2335 if (netmap_verbose) 2336 nm_prerr("max offset %llu to large for %llu bits", 2337 (unsigned long long)max_offset, 2338 (unsigned long long)bits); 2339 error = EINVAL; 2340 goto out; 2341 } 2342 if (initial_offset > max_offset) { 2343 if (netmap_verbose) 2344 nm_prerr("initial offset %llu > max offset %llu", 2345 (unsigned long long)initial_offset, 2346 (unsigned long long)max_offset); 2347 error = EINVAL; 2348 goto out; 2349 } 2350 2351 /* initialize the kring and ring fields. */ 2352 foreach_selected_ring(priv, t, i, kring) { 2353 struct netmap_kring *kring = NMR(na, t)[i]; 2354 struct netmap_ring *ring = kring->ring; 2355 u_int j; 2356 2357 /* it the ring is already in use we check that the 2358 * new request is compatible with the existing one 2359 */ 2360 if (kring->offset_mask) { 2361 if ((kring->offset_mask & mask) != mask || 2362 kring->offset_max < max_offset) { 2363 if (netmap_verbose) 2364 nm_prinf("%s: cannot increase" 2365 "offset mask and/or max" 2366 "(current: mask=%llx,max=%llu", 2367 kring->name, 2368 (unsigned long long)kring->offset_mask, 2369 (unsigned long long)kring->offset_max); 2370 error = EBUSY; 2371 goto out; 2372 } 2373 mask = kring->offset_mask; 2374 max_offset = kring->offset_max; 2375 } else { 2376 kring->offset_mask = mask; 2377 *(uint64_t *)(uintptr_t)&ring->offset_mask = mask; 2378 kring->offset_max = max_offset; 2379 kring->offset_gap = min_gap; 2380 } 2381 2382 /* if there is an initial offset, put it into 2383 * all the slots 2384 * 2385 * Note: we cannot change the offsets if the 2386 * ring is already in use. 2387 */ 2388 if (!initial_offset || kring->users > 1) 2389 continue; 2390 2391 for (j = 0; j < kring->nkr_num_slots; j++) { 2392 struct netmap_slot *slot = ring->slot + j; 2393 2394 nm_write_offset(kring, slot, initial_offset); 2395 } 2396 } 2397 2398 out: 2399 opt->nro_opt.nro_status = error; 2400 if (!error) { 2401 opt->nro_max_offset = max_offset; 2402 } 2403 return error; 2404 2405 } 2406 2407 2408 /* set the hardware buffer length in each one of the newly opened rings 2409 * (hwbuf_len field in the kring struct). The purpose it to select 2410 * the maximum supported input buffer lenght that will not cause writes 2411 * outside of the available space, even when offsets are in use. 2412 */ 2413 static int 2414 netmap_compute_buf_len(struct netmap_priv_d *priv) 2415 { 2416 enum txrx t; 2417 u_int i; 2418 struct netmap_kring *kring; 2419 int error = 0; 2420 unsigned mtu = 0; 2421 struct netmap_adapter *na = priv->np_na; 2422 uint64_t target; 2423 2424 foreach_selected_ring(priv, t, i, kring) { 2425 /* rings that are already active have their hwbuf_len 2426 * already set and we cannot change it. 2427 */ 2428 if (kring->users > 1) 2429 continue; 2430 2431 /* For netmap buffers which are not shared among several ring 2432 * slots (the normal case), the available space is the buf size 2433 * minus the max offset declared by the user at open time. If 2434 * the user plans to have several slots pointing to different 2435 * offsets into the same large buffer, she must also declare a 2436 * "minimum gap" between two such consecutive offsets. In this 2437 * case the user-declared 'offset_gap' is taken as the 2438 * available space and offset_max is ignored. 2439 */ 2440 2441 /* start with the normal case (unshared buffers) */ 2442 target = NETMAP_BUF_SIZE(kring->na) - 2443 kring->offset_max; 2444 /* if offset_gap is zero, the user does not intend to use 2445 * shared buffers. In this case the minimum gap between 2446 * two consective offsets into the same buffer can be 2447 * assumed to be equal to the buffer size. In this way 2448 * offset_gap always contains the available space ignoring 2449 * offset_max. This may be used by drivers of NICs that 2450 * are guaranteed to never write more than MTU bytes, even 2451 * if the input buffer is larger: if the MTU is less 2452 * than the target they can set hwbuf_len to offset_gap. 2453 */ 2454 if (!kring->offset_gap) 2455 kring->offset_gap = 2456 NETMAP_BUF_SIZE(kring->na); 2457 2458 if (kring->offset_gap < target) 2459 target = kring->offset_gap; 2460 error = kring->nm_bufcfg(kring, target); 2461 if (error) 2462 goto out; 2463 2464 *(uint64_t *)(uintptr_t)&kring->ring->buf_align = kring->buf_align; 2465 2466 if (mtu && t == NR_RX && kring->hwbuf_len < mtu) { 2467 if (!(na->na_flags & NAF_MOREFRAG)) { 2468 nm_prerr("error: large MTU (%d) needed " 2469 "but %s does not support " 2470 "NS_MOREFRAG", mtu, 2471 na->name); 2472 error = EINVAL; 2473 goto out; 2474 } else { 2475 nm_prinf("info: netmap application on " 2476 "%s needs to support " 2477 "NS_MOREFRAG " 2478 "(MTU=%u,buf_size=%llu)", 2479 kring->name, mtu, 2480 (unsigned long long)kring->hwbuf_len); 2481 } 2482 } 2483 } 2484 out: 2485 return error; 2486 } 2487 2488 /* 2489 * possibly move the interface to netmap-mode. 2490 * If success it returns a pointer to netmap_if, otherwise NULL. 2491 * This must be called with NMG_LOCK held. 2492 * 2493 * The following na callbacks are called in the process: 2494 * 2495 * na->nm_config() [by netmap_update_config] 2496 * (get current number and size of rings) 2497 * 2498 * We have a generic one for linux (netmap_linux_config). 2499 * The bwrap has to override this, since it has to forward 2500 * the request to the wrapped adapter (netmap_bwrap_config). 2501 * 2502 * 2503 * na->nm_krings_create() 2504 * (create and init the krings array) 2505 * 2506 * One of the following: 2507 * 2508 * * netmap_hw_krings_create, (hw ports) 2509 * creates the standard layout for the krings 2510 * and adds the mbq (used for the host rings). 2511 * 2512 * * netmap_vp_krings_create (VALE ports) 2513 * add leases and scratchpads 2514 * 2515 * * netmap_pipe_krings_create (pipes) 2516 * create the krings and rings of both ends and 2517 * cross-link them 2518 * 2519 * * netmap_monitor_krings_create (monitors) 2520 * avoid allocating the mbq 2521 * 2522 * * netmap_bwrap_krings_create (bwraps) 2523 * create both the brap krings array, 2524 * the krings array of the wrapped adapter, and 2525 * (if needed) the fake array for the host adapter 2526 * 2527 * na->nm_register(, 1) 2528 * (put the adapter in netmap mode) 2529 * 2530 * This may be one of the following: 2531 * 2532 * * netmap_hw_reg (hw ports) 2533 * checks that the ifp is still there, then calls 2534 * the hardware specific callback; 2535 * 2536 * * netmap_vp_reg (VALE ports) 2537 * If the port is connected to a bridge, 2538 * set the NAF_NETMAP_ON flag under the 2539 * bridge write lock. 2540 * 2541 * * netmap_pipe_reg (pipes) 2542 * inform the other pipe end that it is no 2543 * longer responsible for the lifetime of this 2544 * pipe end 2545 * 2546 * * netmap_monitor_reg (monitors) 2547 * intercept the sync callbacks of the monitored 2548 * rings 2549 * 2550 * * netmap_bwrap_reg (bwraps) 2551 * cross-link the bwrap and hwna rings, 2552 * forward the request to the hwna, override 2553 * the hwna notify callback (to get the frames 2554 * coming from outside go through the bridge). 2555 * 2556 * 2557 */ 2558 int 2559 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 2560 struct nmreq_header *hdr) 2561 { 2562 struct netmap_if *nifp = NULL; 2563 int error; 2564 2565 NMG_LOCK_ASSERT(); 2566 priv->np_na = na; /* store the reference */ 2567 error = netmap_mem_finalize(na->nm_mem, na); 2568 if (error) 2569 goto err; 2570 2571 if (na->active_fds == 0) { 2572 2573 /* cache the allocator info in the na */ 2574 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut); 2575 if (error) 2576 goto err_drop_mem; 2577 nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal, 2578 na->na_lut.objsize); 2579 2580 /* ring configuration may have changed, fetch from the card */ 2581 netmap_update_config(na); 2582 } 2583 2584 /* compute the range of tx and rx rings to monitor */ 2585 error = netmap_set_ringid(priv, hdr); 2586 if (error) 2587 goto err_put_lut; 2588 2589 if (na->active_fds == 0) { 2590 /* 2591 * If this is the first registration of the adapter, 2592 * perform sanity checks and create the in-kernel view 2593 * of the netmap rings (the netmap krings). 2594 */ 2595 if (na->ifp && nm_priv_rx_enabled(priv)) { 2596 /* This netmap adapter is attached to an ifnet. */ 2597 unsigned mtu = nm_os_ifnet_mtu(na->ifp); 2598 2599 nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d", 2600 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na)); 2601 2602 if (na->rx_buf_maxsize == 0) { 2603 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name); 2604 error = EIO; 2605 goto err_drop_mem; 2606 } 2607 2608 error = netmap_buf_size_validate(na, mtu); 2609 if (error) 2610 goto err_drop_mem; 2611 } 2612 2613 /* 2614 * Depending on the adapter, this may also create 2615 * the netmap rings themselves 2616 */ 2617 error = na->nm_krings_create(na); 2618 if (error) 2619 goto err_put_lut; 2620 2621 } 2622 2623 /* now the krings must exist and we can check whether some 2624 * previous bind has exclusive ownership on them, and set 2625 * nr_pending_mode 2626 */ 2627 error = netmap_krings_get(priv); 2628 if (error) 2629 goto err_del_krings; 2630 2631 /* create all needed missing netmap rings */ 2632 error = netmap_mem_rings_create(na); 2633 if (error) 2634 goto err_rel_excl; 2635 2636 /* initialize offsets if requested */ 2637 error = netmap_offsets_init(priv, hdr); 2638 if (error) 2639 goto err_rel_excl; 2640 2641 /* compute and validate the buf lengths */ 2642 error = netmap_compute_buf_len(priv); 2643 if (error) 2644 goto err_rel_excl; 2645 2646 /* in all cases, create a new netmap if */ 2647 nifp = netmap_mem_if_new(na, priv); 2648 if (nifp == NULL) { 2649 error = ENOMEM; 2650 goto err_rel_excl; 2651 } 2652 2653 if (nm_kring_pending(priv)) { 2654 /* Some kring is switching mode, tell the adapter to 2655 * react on this. */ 2656 netmap_set_all_rings(na, NM_KR_LOCKED); 2657 error = na->nm_register(na, 1); 2658 netmap_set_all_rings(na, 0); 2659 if (error) 2660 goto err_del_if; 2661 } 2662 2663 /* Commit the reference. */ 2664 na->active_fds++; 2665 2666 /* 2667 * advertise that the interface is ready by setting np_nifp. 2668 * The barrier is needed because readers (poll, *SYNC and mmap) 2669 * check for priv->np_nifp != NULL without locking 2670 */ 2671 mb(); /* make sure previous writes are visible to all CPUs */ 2672 priv->np_nifp = nifp; 2673 2674 return 0; 2675 2676 err_del_if: 2677 netmap_mem_if_delete(na, nifp); 2678 err_rel_excl: 2679 netmap_krings_put(priv); 2680 netmap_mem_rings_delete(na); 2681 err_del_krings: 2682 if (na->active_fds == 0) 2683 na->nm_krings_delete(na); 2684 err_put_lut: 2685 if (na->active_fds == 0) 2686 memset(&na->na_lut, 0, sizeof(na->na_lut)); 2687 err_drop_mem: 2688 netmap_mem_drop(na); 2689 err: 2690 priv->np_na = NULL; 2691 return error; 2692 } 2693 2694 2695 /* 2696 * update kring and ring at the end of rxsync/txsync. 2697 */ 2698 static inline void 2699 nm_sync_finalize(struct netmap_kring *kring) 2700 { 2701 /* 2702 * Update ring tail to what the kernel knows 2703 * After txsync: head/rhead/hwcur might be behind cur/rcur 2704 * if no carrier. 2705 */ 2706 kring->ring->tail = kring->rtail = kring->nr_hwtail; 2707 2708 nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 2709 kring->name, kring->nr_hwcur, kring->nr_hwtail, 2710 kring->rhead, kring->rcur, kring->rtail); 2711 } 2712 2713 /* set ring timestamp */ 2714 static inline void 2715 ring_timestamp_set(struct netmap_ring *ring) 2716 { 2717 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) { 2718 microtime(&ring->ts); 2719 } 2720 } 2721 2722 static int nmreq_copyin(struct nmreq_header *, int); 2723 static int nmreq_copyout(struct nmreq_header *, int); 2724 static int nmreq_checkoptions(struct nmreq_header *); 2725 2726 /* 2727 * ioctl(2) support for the "netmap" device. 2728 * 2729 * Following a list of accepted commands: 2730 * - NIOCCTRL device control API 2731 * - NIOCTXSYNC sync TX rings 2732 * - NIOCRXSYNC sync RX rings 2733 * - SIOCGIFADDR just for convenience 2734 * - NIOCGINFO deprecated (legacy API) 2735 * - NIOCREGIF deprecated (legacy API) 2736 * 2737 * Return 0 on success, errno otherwise. 2738 */ 2739 int 2740 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 2741 struct thread *td, int nr_body_is_user) 2742 { 2743 struct mbq q; /* packets from RX hw queues to host stack */ 2744 struct netmap_adapter *na = NULL; 2745 struct netmap_mem_d *nmd = NULL; 2746 if_t ifp = NULL; 2747 int error = 0; 2748 u_int i, qfirst, qlast; 2749 struct netmap_kring **krings; 2750 int sync_flags; 2751 enum txrx t; 2752 2753 switch (cmd) { 2754 case NIOCCTRL: { 2755 struct nmreq_header *hdr = (struct nmreq_header *)data; 2756 2757 if (hdr->nr_version < NETMAP_MIN_API || 2758 hdr->nr_version > NETMAP_MAX_API) { 2759 nm_prerr("API mismatch: got %d need %d", 2760 hdr->nr_version, NETMAP_API); 2761 return EINVAL; 2762 } 2763 2764 /* Make a kernel-space copy of the user-space nr_body. 2765 * For convenience, the nr_body pointer and the pointers 2766 * in the options list will be replaced with their 2767 * kernel-space counterparts. The original pointers are 2768 * saved internally and later restored by nmreq_copyout 2769 */ 2770 error = nmreq_copyin(hdr, nr_body_is_user); 2771 if (error) { 2772 return error; 2773 } 2774 2775 /* Sanitize hdr->nr_name. */ 2776 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0'; 2777 2778 switch (hdr->nr_reqtype) { 2779 case NETMAP_REQ_REGISTER: { 2780 struct nmreq_register *req = 2781 (struct nmreq_register *)(uintptr_t)hdr->nr_body; 2782 struct netmap_if *nifp; 2783 2784 /* Protect access to priv from concurrent requests. */ 2785 NMG_LOCK(); 2786 do { 2787 struct nmreq_option *opt; 2788 u_int memflags; 2789 2790 if (priv->np_nifp != NULL) { /* thread already registered */ 2791 error = EBUSY; 2792 break; 2793 } 2794 2795 #ifdef WITH_EXTMEM 2796 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM); 2797 if (opt != NULL) { 2798 struct nmreq_opt_extmem *e = 2799 (struct nmreq_opt_extmem *)opt; 2800 2801 nmd = netmap_mem_ext_create(e->nro_usrptr, 2802 &e->nro_info, &error); 2803 opt->nro_status = error; 2804 if (nmd == NULL) 2805 break; 2806 } 2807 #endif /* WITH_EXTMEM */ 2808 2809 if (nmd == NULL && req->nr_mem_id) { 2810 /* find the allocator and get a reference */ 2811 nmd = netmap_mem_find(req->nr_mem_id); 2812 if (nmd == NULL) { 2813 if (netmap_verbose) { 2814 nm_prerr("%s: failed to find mem_id %u", 2815 hdr->nr_name, req->nr_mem_id); 2816 } 2817 error = EINVAL; 2818 break; 2819 } 2820 } 2821 /* find the interface and a reference */ 2822 error = netmap_get_na(hdr, &na, &ifp, nmd, 2823 1 /* create */); /* keep reference */ 2824 if (error) 2825 break; 2826 if (NETMAP_OWNED_BY_KERN(na)) { 2827 error = EBUSY; 2828 break; 2829 } 2830 2831 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) { 2832 nm_prerr("virt_hdr_len=%d, but application does " 2833 "not accept it", na->virt_hdr_len); 2834 error = EIO; 2835 break; 2836 } 2837 2838 error = netmap_do_regif(priv, na, hdr); 2839 if (error) { /* reg. failed, release priv and ref */ 2840 break; 2841 } 2842 2843 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 2844 if (opt != NULL) { 2845 struct nmreq_opt_csb *csbo = 2846 (struct nmreq_opt_csb *)opt; 2847 error = netmap_csb_validate(priv, csbo); 2848 opt->nro_status = error; 2849 if (error) { 2850 netmap_do_unregif(priv); 2851 break; 2852 } 2853 } 2854 2855 nifp = priv->np_nifp; 2856 2857 /* return the offset of the netmap_if object */ 2858 req->nr_rx_rings = na->num_rx_rings; 2859 req->nr_tx_rings = na->num_tx_rings; 2860 req->nr_rx_slots = na->num_rx_desc; 2861 req->nr_tx_slots = na->num_tx_desc; 2862 req->nr_host_tx_rings = na->num_host_tx_rings; 2863 req->nr_host_rx_rings = na->num_host_rx_rings; 2864 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags, 2865 &req->nr_mem_id); 2866 if (error) { 2867 netmap_do_unregif(priv); 2868 break; 2869 } 2870 if (memflags & NETMAP_MEM_PRIVATE) { 2871 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 2872 } 2873 for_rx_tx(t) { 2874 priv->np_si[t] = nm_si_user(priv, t) ? 2875 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si; 2876 } 2877 2878 if (req->nr_extra_bufs) { 2879 if (netmap_verbose) 2880 nm_prinf("requested %d extra buffers", 2881 req->nr_extra_bufs); 2882 req->nr_extra_bufs = netmap_extra_alloc(na, 2883 &nifp->ni_bufs_head, req->nr_extra_bufs); 2884 if (netmap_verbose) 2885 nm_prinf("got %d extra buffers", req->nr_extra_bufs); 2886 } else { 2887 nifp->ni_bufs_head = 0; 2888 } 2889 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 2890 2891 error = nmreq_checkoptions(hdr); 2892 if (error) { 2893 netmap_do_unregif(priv); 2894 break; 2895 } 2896 2897 /* store ifp reference so that priv destructor may release it */ 2898 priv->np_ifp = ifp; 2899 } while (0); 2900 if (error) { 2901 netmap_unget_na(na, ifp); 2902 } 2903 /* release the reference from netmap_mem_find() or 2904 * netmap_mem_ext_create() 2905 */ 2906 if (nmd) 2907 netmap_mem_put(nmd); 2908 NMG_UNLOCK(); 2909 break; 2910 } 2911 2912 case NETMAP_REQ_PORT_INFO_GET: { 2913 struct nmreq_port_info_get *req = 2914 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body; 2915 int nmd_ref = 0; 2916 2917 NMG_LOCK(); 2918 do { 2919 u_int memflags; 2920 2921 if (hdr->nr_name[0] != '\0') { 2922 /* Build a nmreq_register out of the nmreq_port_info_get, 2923 * so that we can call netmap_get_na(). */ 2924 struct nmreq_register regreq; 2925 bzero(®req, sizeof(regreq)); 2926 regreq.nr_mode = NR_REG_ALL_NIC; 2927 regreq.nr_tx_slots = req->nr_tx_slots; 2928 regreq.nr_rx_slots = req->nr_rx_slots; 2929 regreq.nr_tx_rings = req->nr_tx_rings; 2930 regreq.nr_rx_rings = req->nr_rx_rings; 2931 regreq.nr_host_tx_rings = req->nr_host_tx_rings; 2932 regreq.nr_host_rx_rings = req->nr_host_rx_rings; 2933 regreq.nr_mem_id = req->nr_mem_id; 2934 2935 /* get a refcount */ 2936 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2937 hdr->nr_body = (uintptr_t)®req; 2938 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2939 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */ 2940 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2941 if (error) { 2942 na = NULL; 2943 ifp = NULL; 2944 break; 2945 } 2946 nmd = na->nm_mem; /* get memory allocator */ 2947 } else { 2948 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1); 2949 if (nmd == NULL) { 2950 if (netmap_verbose) 2951 nm_prerr("%s: failed to find mem_id %u", 2952 hdr->nr_name, 2953 req->nr_mem_id ? req->nr_mem_id : 1); 2954 error = EINVAL; 2955 break; 2956 } 2957 nmd_ref = 1; 2958 } 2959 2960 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags, 2961 &req->nr_mem_id); 2962 if (error) 2963 break; 2964 if (na == NULL) /* only memory info */ 2965 break; 2966 netmap_update_config(na); 2967 req->nr_rx_rings = na->num_rx_rings; 2968 req->nr_tx_rings = na->num_tx_rings; 2969 req->nr_rx_slots = na->num_rx_desc; 2970 req->nr_tx_slots = na->num_tx_desc; 2971 req->nr_host_tx_rings = na->num_host_tx_rings; 2972 req->nr_host_rx_rings = na->num_host_rx_rings; 2973 } while (0); 2974 netmap_unget_na(na, ifp); 2975 if (nmd_ref) 2976 netmap_mem_put(nmd); 2977 NMG_UNLOCK(); 2978 break; 2979 } 2980 #ifdef WITH_VALE 2981 case NETMAP_REQ_VALE_ATTACH: { 2982 error = netmap_bdg_attach(hdr, NULL /* userspace request */); 2983 break; 2984 } 2985 2986 case NETMAP_REQ_VALE_DETACH: { 2987 error = netmap_bdg_detach(hdr, NULL /* userspace request */); 2988 break; 2989 } 2990 2991 case NETMAP_REQ_PORT_HDR_SET: { 2992 struct nmreq_port_hdr *req = 2993 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2994 /* Build a nmreq_register out of the nmreq_port_hdr, 2995 * so that we can call netmap_get_bdg_na(). */ 2996 struct nmreq_register regreq; 2997 bzero(®req, sizeof(regreq)); 2998 regreq.nr_mode = NR_REG_ALL_NIC; 2999 3000 /* For now we only support virtio-net headers, and only for 3001 * VALE ports, but this may change in future. Valid lengths 3002 * for the virtio-net header are 0 (no header), 10 and 12. */ 3003 if (req->nr_hdr_len != 0 && 3004 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) && 3005 req->nr_hdr_len != 12) { 3006 if (netmap_verbose) 3007 nm_prerr("invalid hdr_len %u", req->nr_hdr_len); 3008 error = EINVAL; 3009 break; 3010 } 3011 NMG_LOCK(); 3012 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 3013 hdr->nr_body = (uintptr_t)®req; 3014 error = netmap_get_vale_na(hdr, &na, NULL, 0); 3015 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET; 3016 hdr->nr_body = (uintptr_t)req; 3017 if (na && !error) { 3018 struct netmap_vp_adapter *vpna = 3019 (struct netmap_vp_adapter *)na; 3020 na->virt_hdr_len = req->nr_hdr_len; 3021 if (na->virt_hdr_len) { 3022 vpna->mfs = NETMAP_BUF_SIZE(na); 3023 } 3024 if (netmap_verbose) 3025 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na); 3026 netmap_adapter_put(na); 3027 } else if (!na) { 3028 error = ENXIO; 3029 } 3030 NMG_UNLOCK(); 3031 break; 3032 } 3033 3034 case NETMAP_REQ_PORT_HDR_GET: { 3035 /* Get vnet-header length for this netmap port */ 3036 struct nmreq_port_hdr *req = 3037 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 3038 /* Build a nmreq_register out of the nmreq_port_hdr, 3039 * so that we can call netmap_get_bdg_na(). */ 3040 struct nmreq_register regreq; 3041 if_t ifp; 3042 3043 bzero(®req, sizeof(regreq)); 3044 regreq.nr_mode = NR_REG_ALL_NIC; 3045 NMG_LOCK(); 3046 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 3047 hdr->nr_body = (uintptr_t)®req; 3048 error = netmap_get_na(hdr, &na, &ifp, NULL, 0); 3049 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET; 3050 hdr->nr_body = (uintptr_t)req; 3051 if (na && !error) { 3052 req->nr_hdr_len = na->virt_hdr_len; 3053 } 3054 netmap_unget_na(na, ifp); 3055 NMG_UNLOCK(); 3056 break; 3057 } 3058 3059 case NETMAP_REQ_VALE_LIST: { 3060 error = netmap_vale_list(hdr); 3061 break; 3062 } 3063 3064 case NETMAP_REQ_VALE_NEWIF: { 3065 error = nm_vi_create(hdr); 3066 break; 3067 } 3068 3069 case NETMAP_REQ_VALE_DELIF: { 3070 error = nm_vi_destroy(hdr->nr_name); 3071 break; 3072 } 3073 #endif /* WITH_VALE */ 3074 3075 case NETMAP_REQ_VALE_POLLING_ENABLE: 3076 case NETMAP_REQ_VALE_POLLING_DISABLE: { 3077 error = nm_bdg_polling(hdr); 3078 break; 3079 } 3080 case NETMAP_REQ_POOLS_INFO_GET: { 3081 /* Get information from the memory allocator used for 3082 * hdr->nr_name. */ 3083 struct nmreq_pools_info *req = 3084 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body; 3085 NMG_LOCK(); 3086 do { 3087 /* Build a nmreq_register out of the nmreq_pools_info, 3088 * so that we can call netmap_get_na(). */ 3089 struct nmreq_register regreq; 3090 bzero(®req, sizeof(regreq)); 3091 regreq.nr_mem_id = req->nr_mem_id; 3092 regreq.nr_mode = NR_REG_ALL_NIC; 3093 3094 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 3095 hdr->nr_body = (uintptr_t)®req; 3096 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 3097 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */ 3098 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 3099 if (error) { 3100 na = NULL; 3101 ifp = NULL; 3102 break; 3103 } 3104 nmd = na->nm_mem; /* grab the memory allocator */ 3105 if (nmd == NULL) { 3106 error = EINVAL; 3107 break; 3108 } 3109 3110 /* Finalize the memory allocator, get the pools 3111 * information and release the allocator. */ 3112 error = netmap_mem_finalize(nmd, na); 3113 if (error) { 3114 break; 3115 } 3116 error = netmap_mem_pools_info_get(req, nmd); 3117 netmap_mem_drop(na); 3118 } while (0); 3119 netmap_unget_na(na, ifp); 3120 NMG_UNLOCK(); 3121 break; 3122 } 3123 3124 case NETMAP_REQ_CSB_ENABLE: { 3125 struct nmreq_option *opt; 3126 3127 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 3128 if (opt == NULL) { 3129 error = EINVAL; 3130 } else { 3131 struct nmreq_opt_csb *csbo = 3132 (struct nmreq_opt_csb *)opt; 3133 NMG_LOCK(); 3134 error = netmap_csb_validate(priv, csbo); 3135 NMG_UNLOCK(); 3136 opt->nro_status = error; 3137 } 3138 break; 3139 } 3140 3141 case NETMAP_REQ_SYNC_KLOOP_START: { 3142 error = netmap_sync_kloop(priv, hdr); 3143 break; 3144 } 3145 3146 case NETMAP_REQ_SYNC_KLOOP_STOP: { 3147 error = netmap_sync_kloop_stop(priv); 3148 break; 3149 } 3150 3151 default: { 3152 error = EINVAL; 3153 break; 3154 } 3155 } 3156 /* Write back request body to userspace and reset the 3157 * user-space pointer. */ 3158 error = nmreq_copyout(hdr, error); 3159 break; 3160 } 3161 3162 case NIOCTXSYNC: 3163 case NIOCRXSYNC: { 3164 if (unlikely(priv->np_nifp == NULL)) { 3165 error = ENXIO; 3166 break; 3167 } 3168 mb(); /* make sure following reads are not from cache */ 3169 3170 if (unlikely(priv->np_csb_atok_base)) { 3171 nm_prerr("Invalid sync in CSB mode"); 3172 error = EBUSY; 3173 break; 3174 } 3175 3176 na = priv->np_na; /* we have a reference */ 3177 3178 mbq_init(&q); 3179 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX); 3180 krings = NMR(na, t); 3181 qfirst = priv->np_qfirst[t]; 3182 qlast = priv->np_qlast[t]; 3183 sync_flags = priv->np_sync_flags; 3184 3185 for (i = qfirst; i < qlast; i++) { 3186 struct netmap_kring *kring = krings[i]; 3187 struct netmap_ring *ring = kring->ring; 3188 3189 if (unlikely(nm_kr_tryget(kring, 1, &error))) { 3190 error = (error ? EIO : 0); 3191 continue; 3192 } 3193 3194 if (cmd == NIOCTXSYNC) { 3195 if (netmap_debug & NM_DEBUG_TXSYNC) 3196 nm_prinf("pre txsync ring %d cur %d hwcur %d", 3197 i, ring->cur, 3198 kring->nr_hwcur); 3199 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3200 netmap_ring_reinit(kring); 3201 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) { 3202 nm_sync_finalize(kring); 3203 } 3204 if (netmap_debug & NM_DEBUG_TXSYNC) 3205 nm_prinf("post txsync ring %d cur %d hwcur %d", 3206 i, ring->cur, 3207 kring->nr_hwcur); 3208 } else { 3209 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3210 netmap_ring_reinit(kring); 3211 } 3212 if (nm_may_forward_up(kring)) { 3213 /* transparent forwarding, see netmap_poll() */ 3214 netmap_grab_packets(kring, &q, netmap_fwd); 3215 } 3216 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) { 3217 nm_sync_finalize(kring); 3218 } 3219 ring_timestamp_set(ring); 3220 } 3221 nm_kr_put(kring); 3222 } 3223 3224 if (mbq_peek(&q)) { 3225 netmap_send_up(na->ifp, &q); 3226 } 3227 3228 break; 3229 } 3230 3231 default: { 3232 return netmap_ioctl_legacy(priv, cmd, data, td); 3233 break; 3234 } 3235 } 3236 3237 return (error); 3238 } 3239 3240 size_t 3241 nmreq_size_by_type(uint16_t nr_reqtype) 3242 { 3243 switch (nr_reqtype) { 3244 case NETMAP_REQ_REGISTER: 3245 return sizeof(struct nmreq_register); 3246 case NETMAP_REQ_PORT_INFO_GET: 3247 return sizeof(struct nmreq_port_info_get); 3248 case NETMAP_REQ_VALE_ATTACH: 3249 return sizeof(struct nmreq_vale_attach); 3250 case NETMAP_REQ_VALE_DETACH: 3251 return sizeof(struct nmreq_vale_detach); 3252 case NETMAP_REQ_VALE_LIST: 3253 return sizeof(struct nmreq_vale_list); 3254 case NETMAP_REQ_PORT_HDR_SET: 3255 case NETMAP_REQ_PORT_HDR_GET: 3256 return sizeof(struct nmreq_port_hdr); 3257 case NETMAP_REQ_VALE_NEWIF: 3258 return sizeof(struct nmreq_vale_newif); 3259 case NETMAP_REQ_VALE_DELIF: 3260 case NETMAP_REQ_SYNC_KLOOP_STOP: 3261 case NETMAP_REQ_CSB_ENABLE: 3262 return 0; 3263 case NETMAP_REQ_VALE_POLLING_ENABLE: 3264 case NETMAP_REQ_VALE_POLLING_DISABLE: 3265 return sizeof(struct nmreq_vale_polling); 3266 case NETMAP_REQ_POOLS_INFO_GET: 3267 return sizeof(struct nmreq_pools_info); 3268 case NETMAP_REQ_SYNC_KLOOP_START: 3269 return sizeof(struct nmreq_sync_kloop_start); 3270 } 3271 return 0; 3272 } 3273 3274 static size_t 3275 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size) 3276 { 3277 size_t rv = sizeof(struct nmreq_option); 3278 #ifdef NETMAP_REQ_OPT_DEBUG 3279 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG) 3280 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG); 3281 #endif /* NETMAP_REQ_OPT_DEBUG */ 3282 switch (nro_reqtype) { 3283 #ifdef WITH_EXTMEM 3284 case NETMAP_REQ_OPT_EXTMEM: 3285 rv = sizeof(struct nmreq_opt_extmem); 3286 break; 3287 #endif /* WITH_EXTMEM */ 3288 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS: 3289 if (nro_size >= rv) 3290 rv = nro_size; 3291 break; 3292 case NETMAP_REQ_OPT_CSB: 3293 rv = sizeof(struct nmreq_opt_csb); 3294 break; 3295 case NETMAP_REQ_OPT_SYNC_KLOOP_MODE: 3296 rv = sizeof(struct nmreq_opt_sync_kloop_mode); 3297 break; 3298 case NETMAP_REQ_OPT_OFFSETS: 3299 rv = sizeof(struct nmreq_opt_offsets); 3300 break; 3301 } 3302 /* subtract the common header */ 3303 return rv - sizeof(struct nmreq_option); 3304 } 3305 3306 /* 3307 * nmreq_copyin: create an in-kernel version of the request. 3308 * 3309 * We build the following data structure: 3310 * 3311 * hdr -> +-------+ buf 3312 * | | +---------------+ 3313 * +-------+ |usr body ptr | 3314 * |options|-. +---------------+ 3315 * +-------+ | |usr options ptr| 3316 * |body |--------->+---------------+ 3317 * +-------+ | | | 3318 * | | copy of body | 3319 * | | | 3320 * | +---------------+ 3321 * | | NULL | 3322 * | +---------------+ 3323 * | .---| |\ 3324 * | | +---------------+ | 3325 * | .------| | | 3326 * | | | +---------------+ \ option table 3327 * | | | | ... | / indexed by option 3328 * | | | +---------------+ | type 3329 * | | | | | | 3330 * | | | +---------------+/ 3331 * | | | |usr next ptr 1 | 3332 * `-|----->+---------------+ 3333 * | | | copy of opt 1 | 3334 * | | | | 3335 * | | .-| nro_next | 3336 * | | | +---------------+ 3337 * | | | |usr next ptr 2 | 3338 * | `-`>+---------------+ 3339 * | | copy of opt 2 | 3340 * | | | 3341 * | .-| nro_next | 3342 * | | +---------------+ 3343 * | | | | 3344 * ~ ~ ~ ... ~ 3345 * | .-| | 3346 * `----->+---------------+ 3347 * | |usr next ptr n | 3348 * `>+---------------+ 3349 * | copy of opt n | 3350 * | | 3351 * | nro_next(NULL)| 3352 * +---------------+ 3353 * 3354 * The options and body fields of the hdr structure are overwritten 3355 * with in-kernel valid pointers inside the buf. The original user 3356 * pointers are saved in the buf and restored on copyout. 3357 * The list of options is copied and the pointers adjusted. The 3358 * original pointers are saved before the option they belonged. 3359 * 3360 * The option table has an entry for every available option. Entries 3361 * for options that have not been passed contain NULL. 3362 * 3363 */ 3364 3365 int 3366 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user) 3367 { 3368 size_t rqsz, optsz, bufsz; 3369 int error = 0; 3370 char *ker = NULL, *p; 3371 struct nmreq_option **next, *src, **opt_tab, *opt; 3372 uint64_t *ptrs; 3373 3374 if (hdr->nr_reserved) { 3375 if (netmap_verbose) 3376 nm_prerr("nr_reserved must be zero"); 3377 return EINVAL; 3378 } 3379 3380 if (!nr_body_is_user) 3381 return 0; 3382 3383 hdr->nr_reserved = nr_body_is_user; 3384 3385 /* compute the total size of the buffer */ 3386 rqsz = nmreq_size_by_type(hdr->nr_reqtype); 3387 if (rqsz > NETMAP_REQ_MAXSIZE) { 3388 error = EMSGSIZE; 3389 goto out_err; 3390 } 3391 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) || 3392 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) { 3393 /* Request body expected, but not found; or 3394 * request body found but unexpected. */ 3395 if (netmap_verbose) 3396 nm_prerr("nr_body expected but not found, or vice versa"); 3397 error = EINVAL; 3398 goto out_err; 3399 } 3400 3401 /* 3402 * The buffer size must be large enough to store the request body, 3403 * all the possible options and the additional user pointers 3404 * (2+NETMAP_REQ_OPT_MAX). Note that the maximum size of body plus 3405 * options can not exceed NETMAP_REQ_MAXSIZE; 3406 */ 3407 bufsz = (2 + NETMAP_REQ_OPT_MAX) * sizeof(void *) + NETMAP_REQ_MAXSIZE + 3408 NETMAP_REQ_OPT_MAX * sizeof(opt_tab); 3409 3410 ker = nm_os_malloc(bufsz); 3411 if (ker == NULL) { 3412 error = ENOMEM; 3413 goto out_err; 3414 } 3415 p = ker; /* write pointer into the buffer */ 3416 3417 /* make a copy of the user pointers */ 3418 ptrs = (uint64_t*)p; 3419 *ptrs++ = hdr->nr_body; 3420 *ptrs++ = hdr->nr_options; 3421 p = (char *)ptrs; 3422 /* overwrite the user pointer with the in-kernel one */ 3423 hdr->nr_body = (uintptr_t)p; 3424 /* prepare the options-list pointers and temporarily terminate 3425 * the in-kernel list, in case we have to jump to out_restore 3426 */ 3427 next = (struct nmreq_option **)&hdr->nr_options; 3428 src = *next; 3429 hdr->nr_options = 0; 3430 3431 /* copy the body */ 3432 error = copyin(*(void **)ker, p, rqsz); 3433 if (error) 3434 goto out_restore; 3435 p += rqsz; 3436 /* start of the options table */ 3437 opt_tab = (struct nmreq_option **)p; 3438 p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX; 3439 3440 /* copy the options */ 3441 while (src) { 3442 struct nmreq_option *nsrc; 3443 3444 if (p - ker + sizeof(uint64_t*) + sizeof(*src) > bufsz) { 3445 error = EMSGSIZE; 3446 /* there might be a loop in the list: don't try to 3447 * copyout the options 3448 */ 3449 hdr->nr_options = 0; 3450 goto out_restore; 3451 } 3452 /* copy the option header */ 3453 ptrs = (uint64_t *)p; 3454 opt = (struct nmreq_option *)(ptrs + 1); 3455 error = copyin(src, opt, sizeof(*src)); 3456 if (error) 3457 goto out_restore; 3458 rqsz += sizeof(*src); 3459 p = (char *)(opt + 1); 3460 3461 /* make a copy of the user next pointer */ 3462 *ptrs = opt->nro_next; 3463 /* append the option to the in-kernel list */ 3464 *next = opt; 3465 /* temporarily teminate the in-kernel list, in case we have to 3466 * jump to out_restore 3467 */ 3468 nsrc = (struct nmreq_option *)opt->nro_next; 3469 opt->nro_next = 0; 3470 3471 opt->nro_status = 0; 3472 3473 /* check for invalid types */ 3474 if (opt->nro_reqtype < 1) { 3475 if (netmap_verbose) 3476 nm_prinf("invalid option type: %u", opt->nro_reqtype); 3477 opt->nro_status = EINVAL; 3478 error = EINVAL; 3479 goto out_restore; 3480 } 3481 3482 if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) { 3483 /* opt->nro_status will be set to EOPNOTSUPP */ 3484 goto next; 3485 } 3486 3487 /* if the type is valid, index the option in the table 3488 * unless it is a duplicate. 3489 */ 3490 if (opt_tab[opt->nro_reqtype] != NULL) { 3491 if (netmap_verbose) 3492 nm_prinf("duplicate option: %u", opt->nro_reqtype); 3493 opt->nro_status = EINVAL; 3494 opt_tab[opt->nro_reqtype]->nro_status = EINVAL; 3495 error = EINVAL; 3496 goto out_restore; 3497 } 3498 opt_tab[opt->nro_reqtype] = opt; 3499 3500 /* copy the option body */ 3501 optsz = nmreq_opt_size_by_type(opt->nro_reqtype, 3502 opt->nro_size); 3503 /* check optsz and nro_size to avoid for possible integer overflows of rqsz */ 3504 if ((optsz > NETMAP_REQ_MAXSIZE) || (opt->nro_size > NETMAP_REQ_MAXSIZE) 3505 || (rqsz + optsz > NETMAP_REQ_MAXSIZE) 3506 || (optsz > 0 && rqsz + optsz <= rqsz)) { 3507 error = EMSGSIZE; 3508 goto out_restore; 3509 } 3510 rqsz += optsz; 3511 if (optsz) { 3512 /* the option body follows the option header */ 3513 error = copyin(src + 1, p, optsz); 3514 if (error) 3515 goto out_restore; 3516 p += optsz; 3517 } 3518 3519 next: 3520 /* move to next option */ 3521 next = (struct nmreq_option **)&opt->nro_next; 3522 src = nsrc; 3523 } 3524 3525 /* initialize all the options as not supported. Recognized options 3526 * will update their field. 3527 */ 3528 for (src = (struct nmreq_option *)hdr->nr_options; src; 3529 src = (struct nmreq_option *)src->nro_next) { 3530 src->nro_status = EOPNOTSUPP; 3531 } 3532 return 0; 3533 3534 out_restore: 3535 nmreq_copyout(hdr, error); 3536 out_err: 3537 return error; 3538 } 3539 3540 static int 3541 nmreq_copyout(struct nmreq_header *hdr, int rerror) 3542 { 3543 struct nmreq_option *src, *dst; 3544 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart; 3545 uint64_t *ptrs; 3546 size_t bodysz; 3547 int error; 3548 3549 if (!hdr->nr_reserved) 3550 return rerror; 3551 3552 /* restore the user pointers in the header */ 3553 ptrs = (uint64_t *)ker - 2; 3554 bufstart = ptrs; 3555 hdr->nr_body = *ptrs++; 3556 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3557 hdr->nr_options = *ptrs; 3558 3559 if (!rerror) { 3560 /* copy the body */ 3561 bodysz = nmreq_size_by_type(hdr->nr_reqtype); 3562 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz); 3563 if (error) { 3564 rerror = error; 3565 goto out; 3566 } 3567 } 3568 3569 /* copy the options */ 3570 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3571 while (src) { 3572 size_t optsz; 3573 uint64_t next; 3574 3575 /* restore the user pointer */ 3576 next = src->nro_next; 3577 ptrs = (uint64_t *)src - 1; 3578 src->nro_next = *ptrs; 3579 3580 /* always copy the option header */ 3581 error = copyout(src, dst, sizeof(*src)); 3582 if (error) { 3583 rerror = error; 3584 goto out; 3585 } 3586 3587 /* copy the option body only if there was no error */ 3588 if (!rerror && !src->nro_status) { 3589 optsz = nmreq_opt_size_by_type(src->nro_reqtype, 3590 src->nro_size); 3591 if (optsz) { 3592 error = copyout(src + 1, dst + 1, optsz); 3593 if (error) { 3594 rerror = error; 3595 goto out; 3596 } 3597 } 3598 } 3599 src = (struct nmreq_option *)(uintptr_t)next; 3600 dst = (struct nmreq_option *)(uintptr_t)*ptrs; 3601 } 3602 3603 3604 out: 3605 hdr->nr_reserved = 0; 3606 nm_os_free(bufstart); 3607 return rerror; 3608 } 3609 3610 struct nmreq_option * 3611 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype) 3612 { 3613 struct nmreq_option **opt_tab; 3614 3615 if (!hdr->nr_options) 3616 return NULL; 3617 3618 opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) - 3619 (NETMAP_REQ_OPT_MAX + 1); 3620 return opt_tab[reqtype]; 3621 } 3622 3623 static int 3624 nmreq_checkoptions(struct nmreq_header *hdr) 3625 { 3626 struct nmreq_option *opt; 3627 /* return error if there is still any option 3628 * marked as not supported 3629 */ 3630 3631 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt; 3632 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3633 if (opt->nro_status == EOPNOTSUPP) 3634 return EOPNOTSUPP; 3635 3636 return 0; 3637 } 3638 3639 /* 3640 * select(2) and poll(2) handlers for the "netmap" device. 3641 * 3642 * Can be called for one or more queues. 3643 * Return true the event mask corresponding to ready events. 3644 * If there are no ready events (and 'sr' is not NULL), do a 3645 * selrecord on either individual selinfo or on the global one. 3646 * Device-dependent parts (locking and sync of tx/rx rings) 3647 * are done through callbacks. 3648 * 3649 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 3650 * The first one is remapped to pwait as selrecord() uses the name as an 3651 * hidden argument. 3652 */ 3653 int 3654 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr) 3655 { 3656 struct netmap_adapter *na; 3657 struct netmap_kring *kring; 3658 struct netmap_ring *ring; 3659 u_int i, want[NR_TXRX], revents = 0; 3660 NM_SELINFO_T *si[NR_TXRX]; 3661 #define want_tx want[NR_TX] 3662 #define want_rx want[NR_RX] 3663 struct mbq q; /* packets from RX hw queues to host stack */ 3664 3665 /* 3666 * In order to avoid nested locks, we need to "double check" 3667 * txsync and rxsync if we decide to do a selrecord(). 3668 * retry_tx (and retry_rx, later) prevent looping forever. 3669 */ 3670 int retry_tx = 1, retry_rx = 1; 3671 3672 /* Transparent mode: send_down is 1 if we have found some 3673 * packets to forward (host RX ring --> NIC) during the rx 3674 * scan and we have not sent them down to the NIC yet. 3675 * Transparent mode requires to bind all rings to a single 3676 * file descriptor. 3677 */ 3678 int send_down = 0; 3679 int sync_flags = priv->np_sync_flags; 3680 3681 mbq_init(&q); 3682 3683 if (unlikely(priv->np_nifp == NULL)) { 3684 return POLLERR; 3685 } 3686 mb(); /* make sure following reads are not from cache */ 3687 3688 na = priv->np_na; 3689 3690 if (unlikely(!nm_netmap_on(na))) 3691 return POLLERR; 3692 3693 if (unlikely(priv->np_csb_atok_base)) { 3694 nm_prerr("Invalid poll in CSB mode"); 3695 return POLLERR; 3696 } 3697 3698 if (netmap_debug & NM_DEBUG_ON) 3699 nm_prinf("device %s events 0x%x", na->name, events); 3700 want_tx = events & (POLLOUT | POLLWRNORM); 3701 want_rx = events & (POLLIN | POLLRDNORM); 3702 3703 /* 3704 * If the card has more than one queue AND the file descriptor is 3705 * bound to all of them, we sleep on the "global" selinfo, otherwise 3706 * we sleep on individual selinfo (FreeBSD only allows two selinfo's 3707 * per file descriptor). 3708 * The interrupt routine in the driver wake one or the other 3709 * (or both) depending on which clients are active. 3710 * 3711 * rxsync() is only called if we run out of buffers on a POLLIN. 3712 * txsync() is called if we run out of buffers on POLLOUT, or 3713 * there are pending packets to send. The latter can be disabled 3714 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 3715 */ 3716 si[NR_RX] = priv->np_si[NR_RX]; 3717 si[NR_TX] = priv->np_si[NR_TX]; 3718 3719 #ifdef __FreeBSD__ 3720 /* 3721 * We start with a lock free round which is cheap if we have 3722 * slots available. If this fails, then lock and call the sync 3723 * routines. We can't do this on Linux, as the contract says 3724 * that we must call nm_os_selrecord() unconditionally. 3725 */ 3726 if (want_tx) { 3727 const enum txrx t = NR_TX; 3728 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3729 kring = NMR(na, t)[i]; 3730 if (kring->ring->cur != kring->ring->tail) { 3731 /* Some unseen TX space is available, so what 3732 * we don't need to run txsync. */ 3733 revents |= want[t]; 3734 want[t] = 0; 3735 break; 3736 } 3737 } 3738 } 3739 if (want_rx) { 3740 const enum txrx t = NR_RX; 3741 int rxsync_needed = 0; 3742 3743 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3744 kring = NMR(na, t)[i]; 3745 if (kring->ring->cur == kring->ring->tail 3746 || kring->rhead != kring->ring->head) { 3747 /* There are no unseen packets on this ring, 3748 * or there are some buffers to be returned 3749 * to the netmap port. We therefore go ahead 3750 * and run rxsync. */ 3751 rxsync_needed = 1; 3752 break; 3753 } 3754 } 3755 if (!rxsync_needed) { 3756 revents |= want_rx; 3757 want_rx = 0; 3758 } 3759 } 3760 #endif 3761 3762 #ifdef linux 3763 /* The selrecord must be unconditional on linux. */ 3764 nm_os_selrecord(sr, si[NR_RX]); 3765 nm_os_selrecord(sr, si[NR_TX]); 3766 #endif /* linux */ 3767 3768 /* 3769 * If we want to push packets out (priv->np_txpoll) or 3770 * want_tx is still set, we must issue txsync calls 3771 * (on all rings, to avoid that the tx rings stall). 3772 * Fortunately, normal tx mode has np_txpoll set. 3773 */ 3774 if (priv->np_txpoll || want_tx) { 3775 /* 3776 * The first round checks if anyone is ready, if not 3777 * do a selrecord and another round to handle races. 3778 * want_tx goes to 0 if any space is found, and is 3779 * used to skip rings with no pending transmissions. 3780 */ 3781 flush_tx: 3782 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) { 3783 int found = 0; 3784 3785 kring = na->tx_rings[i]; 3786 ring = kring->ring; 3787 3788 /* 3789 * Don't try to txsync this TX ring if we already found some 3790 * space in some of the TX rings (want_tx == 0) and there are no 3791 * TX slots in this ring that need to be flushed to the NIC 3792 * (head == hwcur). 3793 */ 3794 if (!send_down && !want_tx && ring->head == kring->nr_hwcur) 3795 continue; 3796 3797 if (nm_kr_tryget(kring, 1, &revents)) 3798 continue; 3799 3800 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3801 netmap_ring_reinit(kring); 3802 revents |= POLLERR; 3803 } else { 3804 if (kring->nm_sync(kring, sync_flags)) 3805 revents |= POLLERR; 3806 else 3807 nm_sync_finalize(kring); 3808 } 3809 3810 /* 3811 * If we found new slots, notify potential 3812 * listeners on the same ring. 3813 * Since we just did a txsync, look at the copies 3814 * of cur,tail in the kring. 3815 */ 3816 found = kring->rcur != kring->rtail; 3817 nm_kr_put(kring); 3818 if (found) { /* notify other listeners */ 3819 revents |= want_tx; 3820 want_tx = 0; 3821 #ifndef linux 3822 kring->nm_notify(kring, 0); 3823 #endif /* linux */ 3824 } 3825 } 3826 /* if there were any packet to forward we must have handled them by now */ 3827 send_down = 0; 3828 if (want_tx && retry_tx && sr) { 3829 #ifndef linux 3830 nm_os_selrecord(sr, si[NR_TX]); 3831 #endif /* !linux */ 3832 retry_tx = 0; 3833 goto flush_tx; 3834 } 3835 } 3836 3837 /* 3838 * If want_rx is still set scan receive rings. 3839 * Do it on all rings because otherwise we starve. 3840 */ 3841 if (want_rx) { 3842 /* two rounds here for race avoidance */ 3843 do_retry_rx: 3844 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) { 3845 int found = 0; 3846 3847 kring = na->rx_rings[i]; 3848 ring = kring->ring; 3849 3850 if (unlikely(nm_kr_tryget(kring, 1, &revents))) 3851 continue; 3852 3853 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3854 netmap_ring_reinit(kring); 3855 revents |= POLLERR; 3856 } 3857 /* now we can use kring->rcur, rtail */ 3858 3859 /* 3860 * transparent mode support: collect packets from 3861 * hw rxring(s) that have been released by the user 3862 */ 3863 if (nm_may_forward_up(kring)) { 3864 netmap_grab_packets(kring, &q, netmap_fwd); 3865 } 3866 3867 /* Clear the NR_FORWARD flag anyway, it may be set by 3868 * the nm_sync() below only on for the host RX ring (see 3869 * netmap_rxsync_from_host()). */ 3870 kring->nr_kflags &= ~NR_FORWARD; 3871 if (kring->nm_sync(kring, sync_flags)) 3872 revents |= POLLERR; 3873 else 3874 nm_sync_finalize(kring); 3875 send_down |= (kring->nr_kflags & NR_FORWARD); 3876 ring_timestamp_set(ring); 3877 found = kring->rcur != kring->rtail; 3878 nm_kr_put(kring); 3879 if (found) { 3880 revents |= want_rx; 3881 retry_rx = 0; 3882 #ifndef linux 3883 kring->nm_notify(kring, 0); 3884 #endif /* linux */ 3885 } 3886 } 3887 3888 #ifndef linux 3889 if (retry_rx && sr) { 3890 nm_os_selrecord(sr, si[NR_RX]); 3891 } 3892 #endif /* !linux */ 3893 if (send_down || retry_rx) { 3894 retry_rx = 0; 3895 if (send_down) 3896 goto flush_tx; /* and retry_rx */ 3897 else 3898 goto do_retry_rx; 3899 } 3900 } 3901 3902 /* 3903 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and 3904 * ring->head) marked with NS_FORWARD on hw rx rings are passed up 3905 * to the host stack. 3906 */ 3907 3908 if (mbq_peek(&q)) { 3909 netmap_send_up(na->ifp, &q); 3910 } 3911 3912 return (revents); 3913 #undef want_tx 3914 #undef want_rx 3915 } 3916 3917 int 3918 nma_intr_enable(struct netmap_adapter *na, int onoff) 3919 { 3920 bool changed = false; 3921 enum txrx t; 3922 int i; 3923 3924 for_rx_tx(t) { 3925 for (i = 0; i < nma_get_nrings(na, t); i++) { 3926 struct netmap_kring *kring = NMR(na, t)[i]; 3927 int on = !(kring->nr_kflags & NKR_NOINTR); 3928 3929 if (!!onoff != !!on) { 3930 changed = true; 3931 } 3932 if (onoff) { 3933 kring->nr_kflags &= ~NKR_NOINTR; 3934 } else { 3935 kring->nr_kflags |= NKR_NOINTR; 3936 } 3937 } 3938 } 3939 3940 if (!changed) { 3941 return 0; /* nothing to do */ 3942 } 3943 3944 if (!na->nm_intr) { 3945 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable", 3946 na->name); 3947 return -1; 3948 } 3949 3950 na->nm_intr(na, onoff); 3951 3952 return 0; 3953 } 3954 3955 3956 /*-------------------- driver support routines -------------------*/ 3957 3958 /* default notify callback */ 3959 static int 3960 netmap_notify(struct netmap_kring *kring, int flags) 3961 { 3962 struct netmap_adapter *na = kring->notify_na; 3963 enum txrx t = kring->tx; 3964 3965 nm_os_selwakeup(&kring->si); 3966 /* optimization: avoid a wake up on the global 3967 * queue if nobody has registered for more 3968 * than one ring 3969 */ 3970 if (na->si_users[t] > 0) 3971 nm_os_selwakeup(&na->si[t]); 3972 3973 return NM_IRQ_COMPLETED; 3974 } 3975 3976 /* called by all routines that create netmap_adapters. 3977 * provide some defaults and get a reference to the 3978 * memory allocator 3979 */ 3980 int 3981 netmap_attach_common(struct netmap_adapter *na) 3982 { 3983 if (!na->rx_buf_maxsize) { 3984 /* Set a conservative default (larger is safer). */ 3985 na->rx_buf_maxsize = PAGE_SIZE; 3986 } 3987 3988 #ifdef __FreeBSD__ 3989 if (na->na_flags & NAF_HOST_RINGS && na->ifp) { 3990 na->if_input = if_getinputfn(na->ifp); /* for netmap_send_up */ 3991 } 3992 na->pdev = na; /* make sure netmap_mem_map() is called */ 3993 #endif /* __FreeBSD__ */ 3994 if (na->na_flags & NAF_HOST_RINGS) { 3995 if (na->num_host_rx_rings == 0) 3996 na->num_host_rx_rings = 1; 3997 if (na->num_host_tx_rings == 0) 3998 na->num_host_tx_rings = 1; 3999 } 4000 if (na->nm_krings_create == NULL) { 4001 /* we assume that we have been called by a driver, 4002 * since other port types all provide their own 4003 * nm_krings_create 4004 */ 4005 na->nm_krings_create = netmap_hw_krings_create; 4006 na->nm_krings_delete = netmap_hw_krings_delete; 4007 } 4008 if (na->nm_notify == NULL) 4009 na->nm_notify = netmap_notify; 4010 na->active_fds = 0; 4011 4012 if (na->nm_mem == NULL) { 4013 /* select an allocator based on IOMMU and NUMA affinity */ 4014 na->nm_mem = netmap_mem_get_allocator(na); 4015 } 4016 if (na->nm_bdg_attach == NULL) 4017 /* no special nm_bdg_attach callback. On VALE 4018 * attach, we need to interpose a bwrap 4019 */ 4020 na->nm_bdg_attach = netmap_default_bdg_attach; 4021 4022 return 0; 4023 } 4024 4025 /* Wrapper for the register callback provided netmap-enabled 4026 * hardware drivers. 4027 * nm_iszombie(na) means that the driver module has been 4028 * unloaded, so we cannot call into it. 4029 * nm_os_ifnet_lock() must guarantee mutual exclusion with 4030 * module unloading. 4031 */ 4032 static int 4033 netmap_hw_reg(struct netmap_adapter *na, int onoff) 4034 { 4035 struct netmap_hw_adapter *hwna = 4036 (struct netmap_hw_adapter*)na; 4037 int error = 0; 4038 4039 nm_os_ifnet_lock(); 4040 4041 if (nm_iszombie(na)) { 4042 if (onoff) { 4043 error = ENXIO; 4044 } else if (na != NULL) { 4045 na->na_flags &= ~NAF_NETMAP_ON; 4046 } 4047 goto out; 4048 } 4049 4050 error = hwna->nm_hw_register(na, onoff); 4051 4052 out: 4053 nm_os_ifnet_unlock(); 4054 4055 return error; 4056 } 4057 4058 static void 4059 netmap_hw_dtor(struct netmap_adapter *na) 4060 { 4061 if (na->ifp == NULL) 4062 return; 4063 4064 NM_DETACH_NA(na->ifp); 4065 } 4066 4067 4068 /* 4069 * Allocate a netmap_adapter object, and initialize it from the 4070 * 'arg' passed by the driver on attach. 4071 * We allocate a block of memory of 'size' bytes, which has room 4072 * for struct netmap_adapter plus additional room private to 4073 * the caller. 4074 * Return 0 on success, ENOMEM otherwise. 4075 */ 4076 int 4077 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg) 4078 { 4079 struct netmap_hw_adapter *hwna = NULL; 4080 if_t ifp = NULL; 4081 4082 if (size < sizeof(struct netmap_hw_adapter)) { 4083 if (netmap_debug & NM_DEBUG_ON) 4084 nm_prerr("Invalid netmap adapter size %d", (int)size); 4085 return EINVAL; 4086 } 4087 4088 if (arg == NULL || arg->ifp == NULL) { 4089 if (netmap_debug & NM_DEBUG_ON) 4090 nm_prerr("either arg or arg->ifp is NULL"); 4091 return EINVAL; 4092 } 4093 4094 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) { 4095 if (netmap_debug & NM_DEBUG_ON) 4096 nm_prerr("%s: invalid rings tx %d rx %d", 4097 arg->name, arg->num_tx_rings, arg->num_rx_rings); 4098 return EINVAL; 4099 } 4100 4101 ifp = arg->ifp; 4102 if (NM_NA_CLASH(ifp)) { 4103 /* If NA(ifp) is not null but there is no valid netmap 4104 * adapter it means that someone else is using the same 4105 * pointer (e.g. ax25_ptr on linux). This happens for 4106 * instance when also PF_RING is in use. */ 4107 nm_prerr("Error: netmap adapter hook is busy"); 4108 return EBUSY; 4109 } 4110 4111 hwna = nm_os_malloc(size); 4112 if (hwna == NULL) 4113 goto fail; 4114 hwna->up = *arg; 4115 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE; 4116 strlcpy(hwna->up.name, if_name(ifp), sizeof(hwna->up.name)); 4117 if (override_reg) { 4118 hwna->nm_hw_register = hwna->up.nm_register; 4119 hwna->up.nm_register = netmap_hw_reg; 4120 } 4121 if (netmap_attach_common(&hwna->up)) { 4122 nm_os_free(hwna); 4123 goto fail; 4124 } 4125 netmap_adapter_get(&hwna->up); 4126 4127 NM_ATTACH_NA(ifp, &hwna->up); 4128 4129 nm_os_onattach(ifp); 4130 4131 if (arg->nm_dtor == NULL) { 4132 hwna->up.nm_dtor = netmap_hw_dtor; 4133 } 4134 4135 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n", 4136 hwna->up.num_tx_rings, hwna->up.num_tx_desc, 4137 hwna->up.num_rx_rings, hwna->up.num_rx_desc); 4138 return 0; 4139 4140 fail: 4141 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna); 4142 return (hwna ? EINVAL : ENOMEM); 4143 } 4144 4145 4146 int 4147 netmap_attach(struct netmap_adapter *arg) 4148 { 4149 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter), 4150 1 /* override nm_reg */); 4151 } 4152 4153 4154 void 4155 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 4156 { 4157 if (!na) { 4158 return; 4159 } 4160 4161 refcount_acquire(&na->na_refcount); 4162 } 4163 4164 4165 /* returns 1 iff the netmap_adapter is destroyed */ 4166 int 4167 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 4168 { 4169 if (!na) 4170 return 1; 4171 4172 if (!refcount_release(&na->na_refcount)) 4173 return 0; 4174 4175 if (na->nm_dtor) 4176 na->nm_dtor(na); 4177 4178 if (na->tx_rings) { /* XXX should not happen */ 4179 if (netmap_debug & NM_DEBUG_ON) 4180 nm_prerr("freeing leftover tx_rings"); 4181 na->nm_krings_delete(na); 4182 } 4183 netmap_pipe_dealloc(na); 4184 if (na->nm_mem) 4185 netmap_mem_put(na->nm_mem); 4186 bzero(na, sizeof(*na)); 4187 nm_os_free(na); 4188 4189 return 1; 4190 } 4191 4192 /* nm_krings_create callback for all hardware native adapters */ 4193 int 4194 netmap_hw_krings_create(struct netmap_adapter *na) 4195 { 4196 int ret = netmap_krings_create(na, 0); 4197 if (ret == 0) { 4198 /* initialize the mbq for the sw rx ring */ 4199 u_int lim = netmap_real_rings(na, NR_RX), i; 4200 for (i = na->num_rx_rings; i < lim; i++) { 4201 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue); 4202 } 4203 nm_prdis("initialized sw rx queue %d", na->num_rx_rings); 4204 } 4205 return ret; 4206 } 4207 4208 4209 4210 /* 4211 * Called on module unload by the netmap-enabled drivers 4212 */ 4213 void 4214 netmap_detach(if_t ifp) 4215 { 4216 struct netmap_adapter *na; 4217 4218 NMG_LOCK(); 4219 4220 if (!NM_NA_VALID(ifp)) { 4221 NMG_UNLOCK(); 4222 return; 4223 } 4224 4225 na = NA(ifp); 4226 netmap_set_all_rings(na, NM_KR_LOCKED); 4227 /* 4228 * if the netmap adapter is not native, somebody 4229 * changed it, so we can not release it here. 4230 * The NAF_ZOMBIE flag will notify the new owner that 4231 * the driver is gone. 4232 */ 4233 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) { 4234 na->na_flags |= NAF_ZOMBIE; 4235 } 4236 /* give active users a chance to notice that NAF_ZOMBIE has been 4237 * turned on, so that they can stop and return an error to userspace. 4238 * Note that this becomes a NOP if there are no active users and, 4239 * therefore, the put() above has deleted the na, since now NA(ifp) is 4240 * NULL. 4241 */ 4242 netmap_enable_all_rings(ifp); 4243 NMG_UNLOCK(); 4244 } 4245 4246 4247 /* 4248 * Intercept packets from the network stack and pass them 4249 * to netmap as incoming packets on the 'software' ring. 4250 * 4251 * We only store packets in a bounded mbq and then copy them 4252 * in the relevant rxsync routine. 4253 * 4254 * We rely on the OS to make sure that the ifp and na do not go 4255 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 4256 * In nm_register() or whenever there is a reinitialization, 4257 * we make sure to make the mode change visible here. 4258 */ 4259 int 4260 netmap_transmit(if_t ifp, struct mbuf *m) 4261 { 4262 struct netmap_adapter *na = NA(ifp); 4263 struct netmap_kring *kring, *tx_kring; 4264 u_int len = MBUF_LEN(m); 4265 u_int error = ENOBUFS; 4266 unsigned int txr; 4267 struct mbq *q; 4268 int busy; 4269 u_int i; 4270 4271 i = MBUF_TXQ(m); 4272 if (i >= na->num_host_rx_rings) { 4273 i = i % na->num_host_rx_rings; 4274 } 4275 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i]; 4276 4277 // XXX [Linux] we do not need this lock 4278 // if we follow the down/configure/up protocol -gl 4279 // mtx_lock(&na->core_lock); 4280 4281 if (!nm_netmap_on(na)) { 4282 nm_prerr("%s not in netmap mode anymore", na->name); 4283 error = ENXIO; 4284 goto done; 4285 } 4286 4287 txr = MBUF_TXQ(m); 4288 if (txr >= na->num_tx_rings) { 4289 txr %= na->num_tx_rings; 4290 } 4291 tx_kring = NMR(na, NR_TX)[txr]; 4292 4293 if (tx_kring->nr_mode == NKR_NETMAP_OFF) { 4294 return MBUF_TRANSMIT(na, ifp, m); 4295 } 4296 4297 q = &kring->rx_queue; 4298 4299 // XXX reconsider long packets if we handle fragments 4300 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */ 4301 nm_prerr("%s from_host, drop packet size %d > %d", na->name, 4302 len, NETMAP_BUF_SIZE(na)); 4303 goto done; 4304 } 4305 4306 if (!netmap_generic_hwcsum) { 4307 if (nm_os_mbuf_has_csum_offld(m)) { 4308 nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name); 4309 goto done; 4310 } 4311 } 4312 4313 if (nm_os_mbuf_has_seg_offld(m)) { 4314 nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name); 4315 goto done; 4316 } 4317 4318 #ifdef __FreeBSD__ 4319 ETHER_BPF_MTAP(ifp, m); 4320 #endif /* __FreeBSD__ */ 4321 4322 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic() 4323 * and maybe other instances of netmap_transmit (the latter 4324 * not possible on Linux). 4325 * We enqueue the mbuf only if we are sure there is going to be 4326 * enough room in the host RX ring, otherwise we drop it. 4327 */ 4328 mbq_lock(q); 4329 4330 busy = kring->nr_hwtail - kring->nr_hwcur; 4331 if (busy < 0) 4332 busy += kring->nkr_num_slots; 4333 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) { 4334 nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name, 4335 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q)); 4336 } else { 4337 mbq_enqueue(q, m); 4338 nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q)); 4339 /* notify outside the lock */ 4340 m = NULL; 4341 error = 0; 4342 } 4343 mbq_unlock(q); 4344 4345 done: 4346 if (m) { 4347 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4348 m_freem(m); 4349 } 4350 /* unconditionally wake up listeners */ 4351 kring->nm_notify(kring, 0); 4352 /* this is normally netmap_notify(), but for nics 4353 * connected to a bridge it is netmap_bwrap_intr_notify(), 4354 * that possibly forwards the frames through the switch 4355 */ 4356 4357 return (error); 4358 } 4359 4360 4361 /* 4362 * Reset function to be called by the driver routines when reinitializing 4363 * a hardware ring. The driver is in charge of locking to protect the kring 4364 * while this operation is being performed. This is normally achieved by 4365 * calling netmap_disable_all_rings() before triggering a reset. 4366 * If the kring is not in netmap mode, return NULL to inform the caller 4367 * that this is the case. 4368 * If the kring is in netmap mode, set hwofs so that the netmap indices 4369 * seen by userspace (head/cut/tail) do not change, although the internal 4370 * NIC indices have been reset to 0. 4371 * In any case, adjust kring->nr_mode. 4372 */ 4373 struct netmap_slot * 4374 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 4375 u_int new_cur) 4376 { 4377 struct netmap_kring *kring; 4378 u_int new_hwtail, new_hwofs; 4379 4380 if (!nm_native_on(na)) { 4381 nm_prdis("interface not in native netmap mode"); 4382 return NULL; /* nothing to reinitialize */ 4383 } 4384 4385 if (tx == NR_TX) { 4386 if (n >= na->num_tx_rings) 4387 return NULL; 4388 kring = na->tx_rings[n]; 4389 /* 4390 * Set hwofs to rhead, so that slots[rhead] is mapped to 4391 * the NIC internal slot 0, and thus the netmap buffer 4392 * at rhead is the next to be transmitted. Transmissions 4393 * that were pending before the reset are considered as 4394 * sent, so that we can have hwcur = rhead. All the slots 4395 * are now owned by the user, so we can also reinit hwtail. 4396 */ 4397 new_hwofs = kring->rhead; 4398 new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1); 4399 } else { 4400 if (n >= na->num_rx_rings) 4401 return NULL; 4402 kring = na->rx_rings[n]; 4403 /* 4404 * Set hwofs to hwtail, so that slots[hwtail] is mapped to 4405 * the NIC internal slot 0, and thus the netmap buffer 4406 * at hwtail is the next to be given to the NIC. 4407 * Unread slots (the ones in [rhead,hwtail[) are owned by 4408 * the user, and thus the caller cannot give them 4409 * to the NIC right now. 4410 */ 4411 new_hwofs = kring->nr_hwtail; 4412 new_hwtail = kring->nr_hwtail; 4413 } 4414 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 4415 kring->nr_mode = NKR_NETMAP_OFF; 4416 return NULL; 4417 } 4418 if (netmap_verbose) { 4419 nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name, 4420 kring->nr_hwcur, kring->rhead, 4421 kring->nr_hwtail, new_hwtail, 4422 kring->nkr_hwofs, new_hwofs); 4423 } 4424 kring->nr_hwcur = kring->rhead; 4425 kring->nr_hwtail = new_hwtail; 4426 kring->nkr_hwofs = new_hwofs; 4427 4428 /* 4429 * Wakeup on the individual and global selwait 4430 * We do the wakeup here, but the ring is not yet reconfigured. 4431 * However, we are under lock so there are no races. 4432 */ 4433 kring->nr_mode = NKR_NETMAP_ON; 4434 kring->nm_notify(kring, 0); 4435 return kring->ring->slot; 4436 } 4437 4438 4439 /* 4440 * Dispatch rx/tx interrupts to the netmap rings. 4441 * 4442 * "work_done" is non-null on the RX path, NULL for the TX path. 4443 * We rely on the OS to make sure that there is only one active 4444 * instance per queue, and that there is appropriate locking. 4445 * 4446 * The 'notify' routine depends on what the ring is attached to. 4447 * - for a netmap file descriptor, do a selwakeup on the individual 4448 * waitqueue, plus one on the global one if needed 4449 * (see netmap_notify) 4450 * - for a nic connected to a switch, call the proper forwarding routine 4451 * (see netmap_bwrap_intr_notify) 4452 */ 4453 int 4454 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 4455 { 4456 struct netmap_kring *kring; 4457 enum txrx t = (work_done ? NR_RX : NR_TX); 4458 4459 q &= NETMAP_RING_MASK; 4460 4461 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) { 4462 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 4463 } 4464 4465 if (q >= nma_get_nrings(na, t)) 4466 return NM_IRQ_PASS; // not a physical queue 4467 4468 kring = NMR(na, t)[q]; 4469 4470 if (kring->nr_mode == NKR_NETMAP_OFF) { 4471 return NM_IRQ_PASS; 4472 } 4473 4474 if (t == NR_RX) { 4475 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 4476 *work_done = 1; /* do not fire napi again */ 4477 } 4478 4479 return kring->nm_notify(kring, 0); 4480 } 4481 4482 4483 /* 4484 * Default functions to handle rx/tx interrupts from a physical device. 4485 * "work_done" is non-null on the RX path, NULL for the TX path. 4486 * 4487 * If the card is not in netmap mode, simply return NM_IRQ_PASS, 4488 * so that the caller proceeds with regular processing. 4489 * Otherwise call netmap_common_irq(). 4490 * 4491 * If the card is connected to a netmap file descriptor, 4492 * do a selwakeup on the individual queue, plus one on the global one 4493 * if needed (multiqueue card _and_ there are multiqueue listeners), 4494 * and return NR_IRQ_COMPLETED. 4495 * 4496 * Finally, if called on rx from an interface connected to a switch, 4497 * calls the proper forwarding routine. 4498 */ 4499 int 4500 netmap_rx_irq(if_t ifp, u_int q, u_int *work_done) 4501 { 4502 struct netmap_adapter *na = NA(ifp); 4503 4504 /* 4505 * XXX emulated netmap mode sets NAF_SKIP_INTR so 4506 * we still use the regular driver even though the previous 4507 * check fails. It is unclear whether we should use 4508 * nm_native_on() here. 4509 */ 4510 if (!nm_netmap_on(na)) 4511 return NM_IRQ_PASS; 4512 4513 if (na->na_flags & NAF_SKIP_INTR) { 4514 nm_prdis("use regular interrupt"); 4515 return NM_IRQ_PASS; 4516 } 4517 4518 return netmap_common_irq(na, q, work_done); 4519 } 4520 4521 /* set/clear native flags and if_transmit/netdev_ops */ 4522 void 4523 nm_set_native_flags(struct netmap_adapter *na) 4524 { 4525 if_t ifp = na->ifp; 4526 4527 /* We do the setup for intercepting packets only if we are the 4528 * first user of this adapter. */ 4529 if (na->active_fds > 0) { 4530 return; 4531 } 4532 4533 na->na_flags |= NAF_NETMAP_ON; 4534 nm_os_onenter(ifp); 4535 netmap_update_hostrings_mode(na); 4536 } 4537 4538 void 4539 nm_clear_native_flags(struct netmap_adapter *na) 4540 { 4541 if_t ifp = na->ifp; 4542 4543 /* We undo the setup for intercepting packets only if we are the 4544 * last user of this adapter. */ 4545 if (na->active_fds > 0) { 4546 return; 4547 } 4548 4549 netmap_update_hostrings_mode(na); 4550 nm_os_onexit(ifp); 4551 4552 na->na_flags &= ~NAF_NETMAP_ON; 4553 } 4554 4555 void 4556 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff) 4557 { 4558 enum txrx t; 4559 4560 for_rx_tx(t) { 4561 int i; 4562 4563 for (i = 0; i < netmap_real_rings(na, t); i++) { 4564 struct netmap_kring *kring = NMR(na, t)[i]; 4565 4566 if (onoff && nm_kring_pending_on(kring)) 4567 kring->nr_mode = NKR_NETMAP_ON; 4568 else if (!onoff && nm_kring_pending_off(kring)) 4569 kring->nr_mode = NKR_NETMAP_OFF; 4570 } 4571 } 4572 } 4573 4574 /* 4575 * Module loader and unloader 4576 * 4577 * netmap_init() creates the /dev/netmap device and initializes 4578 * all global variables. Returns 0 on success, errno on failure 4579 * (but there is no chance) 4580 * 4581 * netmap_fini() destroys everything. 4582 */ 4583 4584 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 4585 extern struct cdevsw netmap_cdevsw; 4586 4587 4588 void 4589 netmap_fini(void) 4590 { 4591 if (netmap_dev) 4592 destroy_dev(netmap_dev); 4593 /* we assume that there are no longer netmap users */ 4594 nm_os_ifnet_fini(); 4595 netmap_uninit_bridges(); 4596 netmap_mem_fini(); 4597 NMG_LOCK_DESTROY(); 4598 nm_prinf("netmap: unloaded module."); 4599 } 4600 4601 4602 int 4603 netmap_init(void) 4604 { 4605 int error; 4606 4607 NMG_LOCK_INIT(); 4608 4609 error = netmap_mem_init(); 4610 if (error != 0) 4611 goto fail; 4612 /* 4613 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls 4614 * when the module is compiled in. 4615 * XXX could use make_dev_credv() to get error number 4616 */ 4617 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD, 4618 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, 4619 "netmap"); 4620 if (!netmap_dev) 4621 goto fail; 4622 4623 error = netmap_init_bridges(); 4624 if (error) 4625 goto fail; 4626 4627 #ifdef __FreeBSD__ 4628 nm_os_vi_init_index(); 4629 #endif 4630 4631 error = nm_os_ifnet_init(); 4632 if (error) 4633 goto fail; 4634 4635 #if !defined(__FreeBSD__) || defined(KLD_MODULE) 4636 nm_prinf("netmap: loaded module"); 4637 #endif 4638 return (0); 4639 fail: 4640 netmap_fini(); 4641 return (EINVAL); /* may be incorrect */ 4642 } 4643