1 /* 2 * Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 62 #ifdef __APPLE__ 63 #include "osx_glue.h" 64 #endif /* __APPLE__ */ 65 66 #ifdef __FreeBSD__ 67 #include <sys/cdefs.h> /* prerequisite */ 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/types.h> 71 #include <sys/module.h> 72 #include <sys/errno.h> 73 #include <sys/param.h> /* defines used in kernel.h */ 74 #include <sys/jail.h> 75 #include <sys/kernel.h> /* types used in module initialization */ 76 #include <sys/conf.h> /* cdevsw struct */ 77 #include <sys/uio.h> /* uio struct */ 78 #include <sys/sockio.h> 79 #include <sys/socketvar.h> /* struct socket */ 80 #include <sys/malloc.h> 81 #include <sys/mman.h> /* PROT_EXEC */ 82 #include <sys/poll.h> 83 #include <sys/proc.h> 84 #include <sys/rwlock.h> 85 #include <vm/vm.h> /* vtophys */ 86 #include <vm/pmap.h> /* vtophys */ 87 #include <sys/socket.h> /* sockaddrs */ 88 #include <machine/bus.h> 89 #include <sys/selinfo.h> 90 #include <sys/sysctl.h> 91 #include <net/if.h> 92 #include <net/bpf.h> /* BIOCIMMEDIATE */ 93 #include <net/vnet.h> 94 #include <machine/bus.h> /* bus_dmamap_* */ 95 96 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 97 #endif /* __FreeBSD__ */ 98 99 #include <net/netmap.h> 100 #include <dev/netmap/netmap_kern.h> 101 102 /* XXX the following variables must be deprecated and included in nm_mem */ 103 u_int netmap_total_buffers; 104 u_int netmap_buf_size; 105 char *netmap_buffer_base; /* address of an invalid buffer */ 106 107 /* user-controlled variables */ 108 int netmap_verbose; 109 110 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 111 112 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 113 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 114 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 115 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 116 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 117 int netmap_mitigate = 1; 118 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 119 int netmap_no_pendintr = 1; 120 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 121 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 122 123 int netmap_drop = 0; /* debugging */ 124 int netmap_flags = 0; /* debug flags */ 125 int netmap_fwd = 0; /* force transparent mode */ 126 127 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 128 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 129 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , ""); 130 131 #ifdef NM_BRIDGE /* support for netmap bridge */ 132 133 /* 134 * system parameters. 135 * 136 * All switched ports have prefix NM_NAME. 137 * The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap, 138 * so a practical upper bound is 64). 139 * Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet). 140 * The virtual interfaces use per-queue lock instead of core lock. 141 * In the tx loop, we aggregate traffic in batches to make all operations 142 * faster. The batch size is NM_BDG_BATCH 143 */ 144 #define NM_NAME "vale" /* prefix for the interface */ 145 #define NM_BDG_MAXPORTS 16 /* up to 64 ? */ 146 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 147 #define NM_BDG_HASH 1024 /* forwarding table entries */ 148 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 149 #define NM_BRIDGES 4 /* number of bridges */ 150 151 152 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 153 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 154 155 #ifdef linux 156 157 #define refcount_acquire(_a) atomic_add(1, (atomic_t *)_a) 158 #define refcount_release(_a) atomic_dec_and_test((atomic_t *)_a) 159 160 #else /* !linux */ 161 162 #ifdef __FreeBSD__ 163 #include <sys/endian.h> 164 #include <sys/refcount.h> 165 #endif /* __FreeBSD__ */ 166 167 #define prefetch(x) __builtin_prefetch(x) 168 169 #endif /* !linux */ 170 171 /* 172 * These are used to handle reference counters for bridge ports. 173 */ 174 #define ADD_BDG_REF(ifp) refcount_acquire(&NA(ifp)->na_bdg_refcount) 175 #define DROP_BDG_REF(ifp) refcount_release(&NA(ifp)->na_bdg_refcount) 176 177 static void bdg_netmap_attach(struct ifnet *ifp); 178 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 179 /* per-tx-queue entry */ 180 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 181 void *buf; 182 uint64_t dst; /* dst mask */ 183 uint32_t src; /* src index ? */ 184 uint16_t len; /* src len */ 185 }; 186 187 struct nm_hash_ent { 188 uint64_t mac; /* the top 2 bytes are the epoch */ 189 uint64_t ports; 190 }; 191 192 /* 193 * Interfaces for a bridge are all in bdg_ports[]. 194 * The array has fixed size, an empty entry does not terminate 195 * the search. But lookups only occur on attach/detach so we 196 * don't mind if they are slow. 197 * 198 * The bridge is non blocking on the transmit ports. 199 * 200 * bdg_lock protects accesses to the bdg_ports array. 201 */ 202 struct nm_bridge { 203 struct ifnet *bdg_ports[NM_BDG_MAXPORTS]; 204 int n_ports; 205 uint64_t act_ports; 206 int freelist; /* first buffer index */ 207 NM_SELINFO_T si; /* poll/select wait queue */ 208 NM_LOCK_T bdg_lock; /* protect the selinfo ? */ 209 210 /* the forwarding table, MAC+ports */ 211 struct nm_hash_ent ht[NM_BDG_HASH]; 212 213 int namelen; /* 0 means free */ 214 char basename[IFNAMSIZ]; 215 }; 216 217 struct nm_bridge nm_bridges[NM_BRIDGES]; 218 219 #define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock) 220 #define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock) 221 222 /* 223 * NA(ifp)->bdg_port port index 224 */ 225 226 // XXX only for multiples of 64 bytes, non overlapped. 227 static inline void 228 pkt_copy(void *_src, void *_dst, int l) 229 { 230 uint64_t *src = _src; 231 uint64_t *dst = _dst; 232 if (unlikely(l >= 1024)) { 233 bcopy(src, dst, l); 234 return; 235 } 236 for (; likely(l > 0); l-=64) { 237 *dst++ = *src++; 238 *dst++ = *src++; 239 *dst++ = *src++; 240 *dst++ = *src++; 241 *dst++ = *src++; 242 *dst++ = *src++; 243 *dst++ = *src++; 244 *dst++ = *src++; 245 } 246 } 247 248 /* 249 * locate a bridge among the existing ones. 250 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 251 * We assume that this is called with a name of at least NM_NAME chars. 252 */ 253 static struct nm_bridge * 254 nm_find_bridge(const char *name) 255 { 256 int i, l, namelen, e; 257 struct nm_bridge *b = NULL; 258 259 namelen = strlen(NM_NAME); /* base length */ 260 l = strlen(name); /* actual length */ 261 for (i = namelen + 1; i < l; i++) { 262 if (name[i] == ':') { 263 namelen = i; 264 break; 265 } 266 } 267 if (namelen >= IFNAMSIZ) 268 namelen = IFNAMSIZ; 269 ND("--- prefix is '%.*s' ---", namelen, name); 270 271 /* use the first entry for locking */ 272 BDG_LOCK(nm_bridges); // XXX do better 273 for (e = -1, i = 1; i < NM_BRIDGES; i++) { 274 b = nm_bridges + i; 275 if (b->namelen == 0) 276 e = i; /* record empty slot */ 277 else if (strncmp(name, b->basename, namelen) == 0) { 278 ND("found '%.*s' at %d", namelen, name, i); 279 break; 280 } 281 } 282 if (i == NM_BRIDGES) { /* all full */ 283 if (e == -1) { /* no empty slot */ 284 b = NULL; 285 } else { 286 b = nm_bridges + e; 287 strncpy(b->basename, name, namelen); 288 b->namelen = namelen; 289 } 290 } 291 BDG_UNLOCK(nm_bridges); 292 return b; 293 } 294 #endif /* NM_BRIDGE */ 295 296 297 /* 298 * Fetch configuration from the device, to cope with dynamic 299 * reconfigurations after loading the module. 300 */ 301 static int 302 netmap_update_config(struct netmap_adapter *na) 303 { 304 struct ifnet *ifp = na->ifp; 305 u_int txr, txd, rxr, rxd; 306 307 txr = txd = rxr = rxd = 0; 308 if (na->nm_config) { 309 na->nm_config(ifp, &txr, &txd, &rxr, &rxd); 310 } else { 311 /* take whatever we had at init time */ 312 txr = na->num_tx_rings; 313 txd = na->num_tx_desc; 314 rxr = na->num_rx_rings; 315 rxd = na->num_rx_desc; 316 } 317 318 if (na->num_tx_rings == txr && na->num_tx_desc == txd && 319 na->num_rx_rings == rxr && na->num_rx_desc == rxd) 320 return 0; /* nothing changed */ 321 if (netmap_verbose || na->refcount > 0) { 322 D("stored config %s: txring %d x %d, rxring %d x %d", 323 ifp->if_xname, 324 na->num_tx_rings, na->num_tx_desc, 325 na->num_rx_rings, na->num_rx_desc); 326 D("new config %s: txring %d x %d, rxring %d x %d", 327 ifp->if_xname, txr, txd, rxr, rxd); 328 } 329 if (na->refcount == 0) { 330 D("configuration changed (but fine)"); 331 na->num_tx_rings = txr; 332 na->num_tx_desc = txd; 333 na->num_rx_rings = rxr; 334 na->num_rx_desc = rxd; 335 return 0; 336 } 337 D("configuration changed while active, this is bad..."); 338 return 1; 339 } 340 341 /*------------- memory allocator -----------------*/ 342 #include "netmap_mem2.c" 343 /*------------ end of memory allocator ----------*/ 344 345 346 /* Structure associated to each thread which registered an interface. 347 * 348 * The first 4 fields of this structure are written by NIOCREGIF and 349 * read by poll() and NIOC?XSYNC. 350 * There is low contention among writers (actually, a correct user program 351 * should have no contention among writers) and among writers and readers, 352 * so we use a single global lock to protect the structure initialization. 353 * Since initialization involves the allocation of memory, we reuse the memory 354 * allocator lock. 355 * Read access to the structure is lock free. Readers must check that 356 * np_nifp is not NULL before using the other fields. 357 * If np_nifp is NULL initialization has not been performed, so they should 358 * return an error to userlevel. 359 * 360 * The ref_done field is used to regulate access to the refcount in the 361 * memory allocator. The refcount must be incremented at most once for 362 * each open("/dev/netmap"). The increment is performed by the first 363 * function that calls netmap_get_memory() (currently called by 364 * mmap(), NIOCGINFO and NIOCREGIF). 365 * If the refcount is incremented, it is then decremented when the 366 * private structure is destroyed. 367 */ 368 struct netmap_priv_d { 369 struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */ 370 371 struct ifnet *np_ifp; /* device for which we hold a reference */ 372 int np_ringid; /* from the ioctl */ 373 u_int np_qfirst, np_qlast; /* range of rings to scan */ 374 uint16_t np_txpoll; 375 376 unsigned long ref_done; /* use with NMA_LOCK held */ 377 }; 378 379 380 static int 381 netmap_get_memory(struct netmap_priv_d* p) 382 { 383 int error = 0; 384 NMA_LOCK(); 385 if (!p->ref_done) { 386 error = netmap_memory_finalize(); 387 if (!error) 388 p->ref_done = 1; 389 } 390 NMA_UNLOCK(); 391 return error; 392 } 393 394 /* 395 * File descriptor's private data destructor. 396 * 397 * Call nm_register(ifp,0) to stop netmap mode on the interface and 398 * revert to normal operation. We expect that np_ifp has not gone. 399 */ 400 /* call with NMA_LOCK held */ 401 static void 402 netmap_dtor_locked(void *data) 403 { 404 struct netmap_priv_d *priv = data; 405 struct ifnet *ifp = priv->np_ifp; 406 struct netmap_adapter *na = NA(ifp); 407 struct netmap_if *nifp = priv->np_nifp; 408 409 na->refcount--; 410 if (na->refcount <= 0) { /* last instance */ 411 u_int i, j, lim; 412 413 if (netmap_verbose) 414 D("deleting last instance for %s", ifp->if_xname); 415 /* 416 * there is a race here with *_netmap_task() and 417 * netmap_poll(), which don't run under NETMAP_REG_LOCK. 418 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 419 * (aka NETMAP_DELETING(na)) are a unique marker that the 420 * device is dying. 421 * Before destroying stuff we sleep a bit, and then complete 422 * the job. NIOCREG should realize the condition and 423 * loop until they can continue; the other routines 424 * should check the condition at entry and quit if 425 * they cannot run. 426 */ 427 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 428 tsleep(na, 0, "NIOCUNREG", 4); 429 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 430 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 431 /* Wake up any sleeping threads. netmap_poll will 432 * then return POLLERR 433 */ 434 for (i = 0; i < na->num_tx_rings + 1; i++) 435 selwakeuppri(&na->tx_rings[i].si, PI_NET); 436 for (i = 0; i < na->num_rx_rings + 1; i++) 437 selwakeuppri(&na->rx_rings[i].si, PI_NET); 438 selwakeuppri(&na->tx_si, PI_NET); 439 selwakeuppri(&na->rx_si, PI_NET); 440 /* release all buffers */ 441 for (i = 0; i < na->num_tx_rings + 1; i++) { 442 struct netmap_ring *ring = na->tx_rings[i].ring; 443 lim = na->tx_rings[i].nkr_num_slots; 444 for (j = 0; j < lim; j++) 445 netmap_free_buf(nifp, ring->slot[j].buf_idx); 446 /* knlist_destroy(&na->tx_rings[i].si.si_note); */ 447 mtx_destroy(&na->tx_rings[i].q_lock); 448 } 449 for (i = 0; i < na->num_rx_rings + 1; i++) { 450 struct netmap_ring *ring = na->rx_rings[i].ring; 451 lim = na->rx_rings[i].nkr_num_slots; 452 for (j = 0; j < lim; j++) 453 netmap_free_buf(nifp, ring->slot[j].buf_idx); 454 /* knlist_destroy(&na->rx_rings[i].si.si_note); */ 455 mtx_destroy(&na->rx_rings[i].q_lock); 456 } 457 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 458 /* knlist_destroy(&na->tx_si.si_note); */ 459 /* knlist_destroy(&na->rx_si.si_note); */ 460 netmap_free_rings(na); 461 wakeup(na); 462 } 463 netmap_if_free(nifp); 464 } 465 466 static void 467 nm_if_rele(struct ifnet *ifp) 468 { 469 #ifndef NM_BRIDGE 470 if_rele(ifp); 471 #else /* NM_BRIDGE */ 472 int i, full; 473 struct nm_bridge *b; 474 475 if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) { 476 if_rele(ifp); 477 return; 478 } 479 if (!DROP_BDG_REF(ifp)) 480 return; 481 b = ifp->if_bridge; 482 BDG_LOCK(nm_bridges); 483 BDG_LOCK(b); 484 ND("want to disconnect %s from the bridge", ifp->if_xname); 485 full = 0; 486 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 487 if (b->bdg_ports[i] == ifp) { 488 b->bdg_ports[i] = NULL; 489 bzero(ifp, sizeof(*ifp)); 490 free(ifp, M_DEVBUF); 491 break; 492 } 493 else if (b->bdg_ports[i] != NULL) 494 full = 1; 495 } 496 BDG_UNLOCK(b); 497 if (full == 0) { 498 ND("freeing bridge %d", b - nm_bridges); 499 b->namelen = 0; 500 } 501 BDG_UNLOCK(nm_bridges); 502 if (i == NM_BDG_MAXPORTS) 503 D("ouch, cannot find ifp to remove"); 504 #endif /* NM_BRIDGE */ 505 } 506 507 static void 508 netmap_dtor(void *data) 509 { 510 struct netmap_priv_d *priv = data; 511 struct ifnet *ifp = priv->np_ifp; 512 513 NMA_LOCK(); 514 if (ifp) { 515 struct netmap_adapter *na = NA(ifp); 516 517 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 518 netmap_dtor_locked(data); 519 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 520 521 nm_if_rele(ifp); /* might also destroy *na */ 522 } 523 if (priv->ref_done) { 524 netmap_memory_deref(); 525 } 526 NMA_UNLOCK(); 527 bzero(priv, sizeof(*priv)); /* XXX for safety */ 528 free(priv, M_DEVBUF); 529 } 530 531 #ifdef __FreeBSD__ 532 #include <vm/vm.h> 533 #include <vm/vm_param.h> 534 #include <vm/vm_object.h> 535 #include <vm/vm_page.h> 536 #include <vm/vm_pager.h> 537 #include <vm/uma.h> 538 539 static struct cdev_pager_ops saved_cdev_pager_ops; 540 541 static int 542 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 543 vm_ooffset_t foff, struct ucred *cred, u_short *color) 544 { 545 if (netmap_verbose) 546 D("first mmap for %p", handle); 547 return saved_cdev_pager_ops.cdev_pg_ctor(handle, 548 size, prot, foff, cred, color); 549 } 550 551 static void 552 netmap_dev_pager_dtor(void *handle) 553 { 554 saved_cdev_pager_ops.cdev_pg_dtor(handle); 555 ND("ready to release memory for %p", handle); 556 } 557 558 559 static struct cdev_pager_ops netmap_cdev_pager_ops = { 560 .cdev_pg_ctor = netmap_dev_pager_ctor, 561 .cdev_pg_dtor = netmap_dev_pager_dtor, 562 .cdev_pg_fault = NULL, 563 }; 564 565 static int 566 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 567 vm_size_t objsize, vm_object_t *objp, int prot) 568 { 569 vm_object_t obj; 570 571 ND("cdev %p foff %jd size %jd objp %p prot %d", cdev, 572 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 573 obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, 574 curthread->td_ucred); 575 ND("returns obj %p", obj); 576 if (obj == NULL) 577 return EINVAL; 578 if (saved_cdev_pager_ops.cdev_pg_fault == NULL) { 579 ND("initialize cdev_pager_ops"); 580 saved_cdev_pager_ops = *(obj->un_pager.devp.ops); 581 netmap_cdev_pager_ops.cdev_pg_fault = 582 saved_cdev_pager_ops.cdev_pg_fault; 583 }; 584 obj->un_pager.devp.ops = &netmap_cdev_pager_ops; 585 *objp = obj; 586 return 0; 587 } 588 #endif /* __FreeBSD__ */ 589 590 591 /* 592 * mmap(2) support for the "netmap" device. 593 * 594 * Expose all the memory previously allocated by our custom memory 595 * allocator: this way the user has only to issue a single mmap(2), and 596 * can work on all the data structures flawlessly. 597 * 598 * Return 0 on success, -1 otherwise. 599 */ 600 601 #ifdef __FreeBSD__ 602 static int 603 netmap_mmap(__unused struct cdev *dev, 604 #if __FreeBSD_version < 900000 605 vm_offset_t offset, vm_paddr_t *paddr, int nprot 606 #else 607 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 608 __unused vm_memattr_t *memattr 609 #endif 610 ) 611 { 612 int error = 0; 613 struct netmap_priv_d *priv; 614 615 if (nprot & PROT_EXEC) 616 return (-1); // XXX -1 or EINVAL ? 617 618 error = devfs_get_cdevpriv((void **)&priv); 619 if (error == EBADF) { /* called on fault, memory is initialized */ 620 ND(5, "handling fault at ofs 0x%x", offset); 621 error = 0; 622 } else if (error == 0) /* make sure memory is set */ 623 error = netmap_get_memory(priv); 624 if (error) 625 return (error); 626 627 ND("request for offset 0x%x", (uint32_t)offset); 628 *paddr = netmap_ofstophys(offset); 629 630 return (*paddr ? 0 : ENOMEM); 631 } 632 633 static int 634 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 635 { 636 if (netmap_verbose) 637 D("dev %p fflag 0x%x devtype %d td %p", 638 dev, fflag, devtype, td); 639 return 0; 640 } 641 642 static int 643 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 644 { 645 struct netmap_priv_d *priv; 646 int error; 647 648 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 649 M_NOWAIT | M_ZERO); 650 if (priv == NULL) 651 return ENOMEM; 652 653 error = devfs_set_cdevpriv(priv, netmap_dtor); 654 if (error) 655 return error; 656 657 return 0; 658 } 659 #endif /* __FreeBSD__ */ 660 661 662 /* 663 * Handlers for synchronization of the queues from/to the host. 664 * Netmap has two operating modes: 665 * - in the default mode, the rings connected to the host stack are 666 * just another ring pair managed by userspace; 667 * - in transparent mode (XXX to be defined) incoming packets 668 * (from the host or the NIC) are marked as NS_FORWARD upon 669 * arrival, and the user application has a chance to reset the 670 * flag for packets that should be dropped. 671 * On the RXSYNC or poll(), packets in RX rings between 672 * kring->nr_kcur and ring->cur with NS_FORWARD still set are moved 673 * to the other side. 674 * The transfer NIC --> host is relatively easy, just encapsulate 675 * into mbufs and we are done. The host --> NIC side is slightly 676 * harder because there might not be room in the tx ring so it 677 * might take a while before releasing the buffer. 678 */ 679 680 /* 681 * pass a chain of buffers to the host stack as coming from 'dst' 682 */ 683 static void 684 netmap_send_up(struct ifnet *dst, struct mbuf *head) 685 { 686 struct mbuf *m; 687 688 /* send packets up, outside the lock */ 689 while ((m = head) != NULL) { 690 head = head->m_nextpkt; 691 m->m_nextpkt = NULL; 692 if (netmap_verbose & NM_VERB_HOST) 693 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 694 NM_SEND_UP(dst, m); 695 } 696 } 697 698 struct mbq { 699 struct mbuf *head; 700 struct mbuf *tail; 701 int count; 702 }; 703 704 /* 705 * put a copy of the buffers marked NS_FORWARD into an mbuf chain. 706 * Run from hwcur to cur - reserved 707 */ 708 static void 709 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 710 { 711 /* Take packets from hwcur to cur-reserved and pass them up. 712 * In case of no buffers we give up. At the end of the loop, 713 * the queue is drained in all cases. 714 * XXX handle reserved 715 */ 716 int k = kring->ring->cur - kring->ring->reserved; 717 u_int n, lim = kring->nkr_num_slots - 1; 718 struct mbuf *m, *tail = q->tail; 719 720 if (k < 0) 721 k = k + kring->nkr_num_slots; 722 for (n = kring->nr_hwcur; n != k;) { 723 struct netmap_slot *slot = &kring->ring->slot[n]; 724 725 n = (n == lim) ? 0 : n + 1; 726 if ((slot->flags & NS_FORWARD) == 0 && !force) 727 continue; 728 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 729 D("bad pkt at %d len %d", n, slot->len); 730 continue; 731 } 732 slot->flags &= ~NS_FORWARD; // XXX needed ? 733 m = m_devget(NMB(slot), slot->len, 0, kring->na->ifp, NULL); 734 735 if (m == NULL) 736 break; 737 if (tail) 738 tail->m_nextpkt = m; 739 else 740 q->head = m; 741 tail = m; 742 q->count++; 743 m->m_nextpkt = NULL; 744 } 745 q->tail = tail; 746 } 747 748 /* 749 * called under main lock to send packets from the host to the NIC 750 * The host ring has packets from nr_hwcur to (cur - reserved) 751 * to be sent down. We scan the tx rings, which have just been 752 * flushed so nr_hwcur == cur. Pushing packets down means 753 * increment cur and decrement avail. 754 * XXX to be verified 755 */ 756 static void 757 netmap_sw_to_nic(struct netmap_adapter *na) 758 { 759 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 760 struct netmap_kring *k1 = &na->tx_rings[0]; 761 int i, howmany, src_lim, dst_lim; 762 763 howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */ 764 765 src_lim = kring->nkr_num_slots; 766 for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) { 767 ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail); 768 dst_lim = k1->nkr_num_slots; 769 while (howmany > 0 && k1->ring->avail > 0) { 770 struct netmap_slot *src, *dst, tmp; 771 src = &kring->ring->slot[kring->nr_hwcur]; 772 dst = &k1->ring->slot[k1->ring->cur]; 773 tmp = *src; 774 src->buf_idx = dst->buf_idx; 775 src->flags = NS_BUF_CHANGED; 776 777 dst->buf_idx = tmp.buf_idx; 778 dst->len = tmp.len; 779 dst->flags = NS_BUF_CHANGED; 780 ND("out len %d buf %d from %d to %d", 781 dst->len, dst->buf_idx, 782 kring->nr_hwcur, k1->ring->cur); 783 784 if (++kring->nr_hwcur >= src_lim) 785 kring->nr_hwcur = 0; 786 howmany--; 787 kring->nr_hwavail--; 788 if (++k1->ring->cur >= dst_lim) 789 k1->ring->cur = 0; 790 k1->ring->avail--; 791 } 792 kring->ring->cur = kring->nr_hwcur; // XXX 793 k1++; 794 } 795 } 796 797 /* 798 * netmap_sync_to_host() passes packets up. We are called from a 799 * system call in user process context, and the only contention 800 * can be among multiple user threads erroneously calling 801 * this routine concurrently. 802 */ 803 static void 804 netmap_sync_to_host(struct netmap_adapter *na) 805 { 806 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 807 struct netmap_ring *ring = kring->ring; 808 u_int k, lim = kring->nkr_num_slots - 1; 809 struct mbq q = { NULL, NULL }; 810 811 k = ring->cur; 812 if (k > lim) { 813 netmap_ring_reinit(kring); 814 return; 815 } 816 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 817 818 /* Take packets from hwcur to cur and pass them up. 819 * In case of no buffers we give up. At the end of the loop, 820 * the queue is drained in all cases. 821 */ 822 netmap_grab_packets(kring, &q, 1); 823 kring->nr_hwcur = k; 824 kring->nr_hwavail = ring->avail = lim; 825 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 826 827 netmap_send_up(na->ifp, q.head); 828 } 829 830 /* 831 * rxsync backend for packets coming from the host stack. 832 * They have been put in the queue by netmap_start() so we 833 * need to protect access to the kring using a lock. 834 * 835 * This routine also does the selrecord if called from the poll handler 836 * (we know because td != NULL). 837 * 838 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 839 * as an additional hidden argument. 840 */ 841 static void 842 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 843 { 844 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 845 struct netmap_ring *ring = kring->ring; 846 u_int j, n, lim = kring->nkr_num_slots; 847 u_int k = ring->cur, resvd = ring->reserved; 848 849 (void)pwait; /* disable unused warnings */ 850 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 851 if (k >= lim) { 852 netmap_ring_reinit(kring); 853 return; 854 } 855 /* new packets are already set in nr_hwavail */ 856 /* skip past packets that userspace has released */ 857 j = kring->nr_hwcur; 858 if (resvd > 0) { 859 if (resvd + ring->avail >= lim + 1) { 860 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 861 ring->reserved = resvd = 0; // XXX panic... 862 } 863 k = (k >= resvd) ? k - resvd : k + lim - resvd; 864 } 865 if (j != k) { 866 n = k >= j ? k - j : k + lim - j; 867 kring->nr_hwavail -= n; 868 kring->nr_hwcur = k; 869 } 870 k = ring->avail = kring->nr_hwavail - resvd; 871 if (k == 0 && td) 872 selrecord(td, &kring->si); 873 if (k && (netmap_verbose & NM_VERB_HOST)) 874 D("%d pkts from stack", k); 875 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 876 } 877 878 879 /* 880 * get a refcounted reference to an interface. 881 * Return ENXIO if the interface does not exist, EINVAL if netmap 882 * is not supported by the interface. 883 * If successful, hold a reference. 884 */ 885 static int 886 get_ifp(const char *name, struct ifnet **ifp) 887 { 888 #ifdef NM_BRIDGE 889 struct ifnet *iter = NULL; 890 891 do { 892 struct nm_bridge *b; 893 int i, l, cand = -1; 894 895 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) 896 break; 897 b = nm_find_bridge(name); 898 if (b == NULL) { 899 D("no bridges available for '%s'", name); 900 return (ENXIO); 901 } 902 /* XXX locking */ 903 BDG_LOCK(b); 904 /* lookup in the local list of ports */ 905 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 906 iter = b->bdg_ports[i]; 907 if (iter == NULL) { 908 if (cand == -1) 909 cand = i; /* potential insert point */ 910 continue; 911 } 912 if (!strcmp(iter->if_xname, name)) { 913 ADD_BDG_REF(iter); 914 ND("found existing interface"); 915 BDG_UNLOCK(b); 916 break; 917 } 918 } 919 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 920 break; 921 if (cand == -1) { 922 D("bridge full, cannot create new port"); 923 no_port: 924 BDG_UNLOCK(b); 925 *ifp = NULL; 926 return EINVAL; 927 } 928 ND("create new bridge port %s", name); 929 /* space for forwarding list after the ifnet */ 930 l = sizeof(*iter) + 931 sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ; 932 iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 933 if (!iter) 934 goto no_port; 935 strcpy(iter->if_xname, name); 936 bdg_netmap_attach(iter); 937 b->bdg_ports[cand] = iter; 938 iter->if_bridge = b; 939 ADD_BDG_REF(iter); 940 BDG_UNLOCK(b); 941 ND("attaching virtual bridge %p", b); 942 } while (0); 943 *ifp = iter; 944 if (! *ifp) 945 #endif /* NM_BRIDGE */ 946 *ifp = ifunit_ref(name); 947 if (*ifp == NULL) 948 return (ENXIO); 949 /* can do this if the capability exists and if_pspare[0] 950 * points to the netmap descriptor. 951 */ 952 if (NETMAP_CAPABLE(*ifp)) 953 return 0; /* valid pointer, we hold the refcount */ 954 nm_if_rele(*ifp); 955 return EINVAL; // not NETMAP capable 956 } 957 958 959 /* 960 * Error routine called when txsync/rxsync detects an error. 961 * Can't do much more than resetting cur = hwcur, avail = hwavail. 962 * Return 1 on reinit. 963 * 964 * This routine is only called by the upper half of the kernel. 965 * It only reads hwcur (which is changed only by the upper half, too) 966 * and hwavail (which may be changed by the lower half, but only on 967 * a tx ring and only to increase it, so any error will be recovered 968 * on the next call). For the above, we don't strictly need to call 969 * it under lock. 970 */ 971 int 972 netmap_ring_reinit(struct netmap_kring *kring) 973 { 974 struct netmap_ring *ring = kring->ring; 975 u_int i, lim = kring->nkr_num_slots - 1; 976 int errors = 0; 977 978 RD(10, "called for %s", kring->na->ifp->if_xname); 979 if (ring->cur > lim) 980 errors++; 981 for (i = 0; i <= lim; i++) { 982 u_int idx = ring->slot[i].buf_idx; 983 u_int len = ring->slot[i].len; 984 if (idx < 2 || idx >= netmap_total_buffers) { 985 if (!errors++) 986 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 987 ring->slot[i].buf_idx = 0; 988 ring->slot[i].len = 0; 989 } else if (len > NETMAP_BUF_SIZE) { 990 ring->slot[i].len = 0; 991 if (!errors++) 992 D("bad len %d at slot %d idx %d", 993 len, i, idx); 994 } 995 } 996 if (errors) { 997 int pos = kring - kring->na->tx_rings; 998 int n = kring->na->num_tx_rings + 1; 999 1000 RD(10, "total %d errors", errors); 1001 errors++; 1002 RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 1003 kring->na->ifp->if_xname, 1004 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 1005 ring->cur, kring->nr_hwcur, 1006 ring->avail, kring->nr_hwavail); 1007 ring->cur = kring->nr_hwcur; 1008 ring->avail = kring->nr_hwavail; 1009 } 1010 return (errors ? 1 : 0); 1011 } 1012 1013 1014 /* 1015 * Set the ring ID. For devices with a single queue, a request 1016 * for all rings is the same as a single ring. 1017 */ 1018 static int 1019 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 1020 { 1021 struct ifnet *ifp = priv->np_ifp; 1022 struct netmap_adapter *na = NA(ifp); 1023 u_int i = ringid & NETMAP_RING_MASK; 1024 /* initially (np_qfirst == np_qlast) we don't want to lock */ 1025 int need_lock = (priv->np_qfirst != priv->np_qlast); 1026 int lim = na->num_rx_rings; 1027 1028 if (na->num_tx_rings > lim) 1029 lim = na->num_tx_rings; 1030 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 1031 D("invalid ring id %d", i); 1032 return (EINVAL); 1033 } 1034 if (need_lock) 1035 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1036 priv->np_ringid = ringid; 1037 if (ringid & NETMAP_SW_RING) { 1038 priv->np_qfirst = NETMAP_SW_RING; 1039 priv->np_qlast = 0; 1040 } else if (ringid & NETMAP_HW_RING) { 1041 priv->np_qfirst = i; 1042 priv->np_qlast = i + 1; 1043 } else { 1044 priv->np_qfirst = 0; 1045 priv->np_qlast = NETMAP_HW_RING ; 1046 } 1047 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 1048 if (need_lock) 1049 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1050 if (netmap_verbose) { 1051 if (ringid & NETMAP_SW_RING) 1052 D("ringid %s set to SW RING", ifp->if_xname); 1053 else if (ringid & NETMAP_HW_RING) 1054 D("ringid %s set to HW RING %d", ifp->if_xname, 1055 priv->np_qfirst); 1056 else 1057 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 1058 } 1059 return 0; 1060 } 1061 1062 /* 1063 * ioctl(2) support for the "netmap" device. 1064 * 1065 * Following a list of accepted commands: 1066 * - NIOCGINFO 1067 * - SIOCGIFADDR just for convenience 1068 * - NIOCREGIF 1069 * - NIOCUNREGIF 1070 * - NIOCTXSYNC 1071 * - NIOCRXSYNC 1072 * 1073 * Return 0 on success, errno otherwise. 1074 */ 1075 static int 1076 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 1077 int fflag, struct thread *td) 1078 { 1079 struct netmap_priv_d *priv = NULL; 1080 struct ifnet *ifp; 1081 struct nmreq *nmr = (struct nmreq *) data; 1082 struct netmap_adapter *na; 1083 int error; 1084 u_int i, lim; 1085 struct netmap_if *nifp; 1086 1087 (void)dev; /* UNUSED */ 1088 (void)fflag; /* UNUSED */ 1089 #ifdef linux 1090 #define devfs_get_cdevpriv(pp) \ 1091 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 1092 (*pp ? 0 : ENOENT); }) 1093 1094 /* devfs_set_cdevpriv cannot fail on linux */ 1095 #define devfs_set_cdevpriv(p, fn) \ 1096 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 1097 1098 1099 #define devfs_clear_cdevpriv() do { \ 1100 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 1101 } while (0) 1102 #endif /* linux */ 1103 1104 CURVNET_SET(TD_TO_VNET(td)); 1105 1106 error = devfs_get_cdevpriv((void **)&priv); 1107 if (error) { 1108 CURVNET_RESTORE(); 1109 /* XXX ENOENT should be impossible, since the priv 1110 * is now created in the open */ 1111 return (error == ENOENT ? ENXIO : error); 1112 } 1113 1114 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 1115 switch (cmd) { 1116 case NIOCGINFO: /* return capabilities etc */ 1117 if (nmr->nr_version != NETMAP_API) { 1118 D("API mismatch got %d have %d", 1119 nmr->nr_version, NETMAP_API); 1120 nmr->nr_version = NETMAP_API; 1121 error = EINVAL; 1122 break; 1123 } 1124 /* update configuration */ 1125 error = netmap_get_memory(priv); 1126 ND("get_memory returned %d", error); 1127 if (error) 1128 break; 1129 /* memsize is always valid */ 1130 nmr->nr_memsize = nm_mem.nm_totalsize; 1131 nmr->nr_offset = 0; 1132 nmr->nr_rx_rings = nmr->nr_tx_rings = 0; 1133 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 1134 if (nmr->nr_name[0] == '\0') /* just get memory info */ 1135 break; 1136 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 1137 if (error) 1138 break; 1139 na = NA(ifp); /* retrieve netmap_adapter */ 1140 netmap_update_config(na); 1141 nmr->nr_rx_rings = na->num_rx_rings; 1142 nmr->nr_tx_rings = na->num_tx_rings; 1143 nmr->nr_rx_slots = na->num_rx_desc; 1144 nmr->nr_tx_slots = na->num_tx_desc; 1145 nm_if_rele(ifp); /* return the refcount */ 1146 break; 1147 1148 case NIOCREGIF: 1149 if (nmr->nr_version != NETMAP_API) { 1150 nmr->nr_version = NETMAP_API; 1151 error = EINVAL; 1152 break; 1153 } 1154 /* ensure allocators are ready */ 1155 error = netmap_get_memory(priv); 1156 ND("get_memory returned %d", error); 1157 if (error) 1158 break; 1159 1160 /* protect access to priv from concurrent NIOCREGIF */ 1161 NMA_LOCK(); 1162 if (priv->np_ifp != NULL) { /* thread already registered */ 1163 error = netmap_set_ringid(priv, nmr->nr_ringid); 1164 NMA_UNLOCK(); 1165 break; 1166 } 1167 /* find the interface and a reference */ 1168 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1169 if (error) { 1170 NMA_UNLOCK(); 1171 break; 1172 } 1173 na = NA(ifp); /* retrieve netmap adapter */ 1174 1175 for (i = 10; i > 0; i--) { 1176 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 1177 if (!NETMAP_DELETING(na)) 1178 break; 1179 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1180 tsleep(na, 0, "NIOCREGIF", hz/10); 1181 } 1182 if (i == 0) { 1183 D("too many NIOCREGIF attempts, give up"); 1184 error = EINVAL; 1185 nm_if_rele(ifp); /* return the refcount */ 1186 NMA_UNLOCK(); 1187 break; 1188 } 1189 1190 /* ring configuration may have changed, fetch from the card */ 1191 netmap_update_config(na); 1192 priv->np_ifp = ifp; /* store the reference */ 1193 error = netmap_set_ringid(priv, nmr->nr_ringid); 1194 if (error) 1195 goto error; 1196 nifp = netmap_if_new(nmr->nr_name, na); 1197 if (nifp == NULL) { /* allocation failed */ 1198 error = ENOMEM; 1199 } else if (ifp->if_capenable & IFCAP_NETMAP) { 1200 /* was already set */ 1201 } else { 1202 /* Otherwise set the card in netmap mode 1203 * and make it use the shared buffers. 1204 */ 1205 for (i = 0 ; i < na->num_tx_rings + 1; i++) 1206 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1207 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 1208 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1209 } 1210 error = na->nm_register(ifp, 1); /* mode on */ 1211 if (error) { 1212 netmap_dtor_locked(priv); 1213 netmap_if_free(nifp); 1214 } 1215 } 1216 1217 if (error) { /* reg. failed, release priv and ref */ 1218 error: 1219 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1220 nm_if_rele(ifp); /* return the refcount */ 1221 priv->np_ifp = NULL; 1222 priv->np_nifp = NULL; 1223 NMA_UNLOCK(); 1224 break; 1225 } 1226 1227 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1228 1229 /* the following assignment is a commitment. 1230 * Readers (i.e., poll and *SYNC) check for 1231 * np_nifp != NULL without locking 1232 */ 1233 wmb(); /* make sure previous writes are visible to all CPUs */ 1234 priv->np_nifp = nifp; 1235 NMA_UNLOCK(); 1236 1237 /* return the offset of the netmap_if object */ 1238 nmr->nr_rx_rings = na->num_rx_rings; 1239 nmr->nr_tx_rings = na->num_tx_rings; 1240 nmr->nr_rx_slots = na->num_rx_desc; 1241 nmr->nr_tx_slots = na->num_tx_desc; 1242 nmr->nr_memsize = nm_mem.nm_totalsize; 1243 nmr->nr_offset = netmap_if_offset(nifp); 1244 break; 1245 1246 case NIOCUNREGIF: 1247 // XXX we have no data here ? 1248 D("deprecated, data is %p", nmr); 1249 error = EINVAL; 1250 break; 1251 1252 case NIOCTXSYNC: 1253 case NIOCRXSYNC: 1254 nifp = priv->np_nifp; 1255 1256 if (nifp == NULL) { 1257 error = ENXIO; 1258 break; 1259 } 1260 rmb(); /* make sure following reads are not from cache */ 1261 1262 1263 ifp = priv->np_ifp; /* we have a reference */ 1264 1265 if (ifp == NULL) { 1266 D("Internal error: nifp != NULL && ifp == NULL"); 1267 error = ENXIO; 1268 break; 1269 } 1270 1271 na = NA(ifp); /* retrieve netmap adapter */ 1272 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 1273 if (cmd == NIOCTXSYNC) 1274 netmap_sync_to_host(na); 1275 else 1276 netmap_sync_from_host(na, NULL, NULL); 1277 break; 1278 } 1279 /* find the last ring to scan */ 1280 lim = priv->np_qlast; 1281 if (lim == NETMAP_HW_RING) 1282 lim = (cmd == NIOCTXSYNC) ? 1283 na->num_tx_rings : na->num_rx_rings; 1284 1285 for (i = priv->np_qfirst; i < lim; i++) { 1286 if (cmd == NIOCTXSYNC) { 1287 struct netmap_kring *kring = &na->tx_rings[i]; 1288 if (netmap_verbose & NM_VERB_TXSYNC) 1289 D("pre txsync ring %d cur %d hwcur %d", 1290 i, kring->ring->cur, 1291 kring->nr_hwcur); 1292 na->nm_txsync(ifp, i, 1 /* do lock */); 1293 if (netmap_verbose & NM_VERB_TXSYNC) 1294 D("post txsync ring %d cur %d hwcur %d", 1295 i, kring->ring->cur, 1296 kring->nr_hwcur); 1297 } else { 1298 na->nm_rxsync(ifp, i, 1 /* do lock */); 1299 microtime(&na->rx_rings[i].ring->ts); 1300 } 1301 } 1302 1303 break; 1304 1305 #ifdef __FreeBSD__ 1306 case BIOCIMMEDIATE: 1307 case BIOCGHDRCMPLT: 1308 case BIOCSHDRCMPLT: 1309 case BIOCSSEESENT: 1310 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1311 break; 1312 1313 default: /* allow device-specific ioctls */ 1314 { 1315 struct socket so; 1316 bzero(&so, sizeof(so)); 1317 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1318 if (error) 1319 break; 1320 so.so_vnet = ifp->if_vnet; 1321 // so->so_proto not null. 1322 error = ifioctl(&so, cmd, data, td); 1323 nm_if_rele(ifp); 1324 break; 1325 } 1326 1327 #else /* linux */ 1328 default: 1329 error = EOPNOTSUPP; 1330 #endif /* linux */ 1331 } 1332 1333 CURVNET_RESTORE(); 1334 return (error); 1335 } 1336 1337 1338 /* 1339 * select(2) and poll(2) handlers for the "netmap" device. 1340 * 1341 * Can be called for one or more queues. 1342 * Return true the event mask corresponding to ready events. 1343 * If there are no ready events, do a selrecord on either individual 1344 * selfd or on the global one. 1345 * Device-dependent parts (locking and sync of tx/rx rings) 1346 * are done through callbacks. 1347 * 1348 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1349 * The first one is remapped to pwait as selrecord() uses the name as an 1350 * hidden argument. 1351 */ 1352 static int 1353 netmap_poll(struct cdev *dev, int events, struct thread *td) 1354 { 1355 struct netmap_priv_d *priv = NULL; 1356 struct netmap_adapter *na; 1357 struct ifnet *ifp; 1358 struct netmap_kring *kring; 1359 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1360 u_int lim_tx, lim_rx, host_forwarded = 0; 1361 struct mbq q = { NULL, NULL, 0 }; 1362 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1363 void *pwait = dev; /* linux compatibility */ 1364 1365 (void)pwait; 1366 1367 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1368 return POLLERR; 1369 1370 if (priv->np_nifp == NULL) { 1371 D("No if registered"); 1372 return POLLERR; 1373 } 1374 rmb(); /* make sure following reads are not from cache */ 1375 1376 ifp = priv->np_ifp; 1377 // XXX check for deleting() ? 1378 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1379 return POLLERR; 1380 1381 if (netmap_verbose & 0x8000) 1382 D("device %s events 0x%x", ifp->if_xname, events); 1383 want_tx = events & (POLLOUT | POLLWRNORM); 1384 want_rx = events & (POLLIN | POLLRDNORM); 1385 1386 na = NA(ifp); /* retrieve netmap adapter */ 1387 1388 lim_tx = na->num_tx_rings; 1389 lim_rx = na->num_rx_rings; 1390 /* how many queues we are scanning */ 1391 if (priv->np_qfirst == NETMAP_SW_RING) { 1392 if (priv->np_txpoll || want_tx) { 1393 /* push any packets up, then we are always ready */ 1394 kring = &na->tx_rings[lim_tx]; 1395 netmap_sync_to_host(na); 1396 revents |= want_tx; 1397 } 1398 if (want_rx) { 1399 kring = &na->rx_rings[lim_rx]; 1400 if (kring->ring->avail == 0) 1401 netmap_sync_from_host(na, td, dev); 1402 if (kring->ring->avail > 0) { 1403 revents |= want_rx; 1404 } 1405 } 1406 return (revents); 1407 } 1408 1409 /* if we are in transparent mode, check also the host rx ring */ 1410 kring = &na->rx_rings[lim_rx]; 1411 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1412 && want_rx 1413 && (netmap_fwd || kring->ring->flags & NR_FORWARD) ) { 1414 if (kring->ring->avail == 0) 1415 netmap_sync_from_host(na, td, dev); 1416 if (kring->ring->avail > 0) 1417 revents |= want_rx; 1418 } 1419 1420 /* 1421 * check_all is set if the card has more than one queue and 1422 * the client is polling all of them. If true, we sleep on 1423 * the "global" selfd, otherwise we sleep on individual selfd 1424 * (we can only sleep on one of them per direction). 1425 * The interrupt routine in the driver should always wake on 1426 * the individual selfd, and also on the global one if the card 1427 * has more than one ring. 1428 * 1429 * If the card has only one lock, we just use that. 1430 * If the card has separate ring locks, we just use those 1431 * unless we are doing check_all, in which case the whole 1432 * loop is wrapped by the global lock. 1433 * We acquire locks only when necessary: if poll is called 1434 * when buffers are available, we can just return without locks. 1435 * 1436 * rxsync() is only called if we run out of buffers on a POLLIN. 1437 * txsync() is called if we run out of buffers on POLLOUT, or 1438 * there are pending packets to send. The latter can be disabled 1439 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1440 */ 1441 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1442 1443 /* 1444 * core_lock indicates what to do with the core lock. 1445 * The core lock is used when either the card has no individual 1446 * locks, or it has individual locks but we are cheking all 1447 * rings so we need the core lock to avoid missing wakeup events. 1448 * 1449 * It has three possible states: 1450 * NO_CL we don't need to use the core lock, e.g. 1451 * because we are protected by individual locks. 1452 * NEED_CL we need the core lock. In this case, when we 1453 * call the lock routine, move to LOCKED_CL 1454 * to remember to release the lock once done. 1455 * LOCKED_CL core lock is set, so we need to release it. 1456 */ 1457 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1458 #ifdef NM_BRIDGE 1459 /* the bridge uses separate locks */ 1460 if (na->nm_register == bdg_netmap_reg) { 1461 ND("not using core lock for %s", ifp->if_xname); 1462 core_lock = NO_CL; 1463 } 1464 #endif /* NM_BRIDGE */ 1465 if (priv->np_qlast != NETMAP_HW_RING) { 1466 lim_tx = lim_rx = priv->np_qlast; 1467 } 1468 1469 /* 1470 * We start with a lock free round which is good if we have 1471 * data available. If this fails, then lock and call the sync 1472 * routines. 1473 */ 1474 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1475 kring = &na->rx_rings[i]; 1476 if (kring->ring->avail > 0) { 1477 revents |= want_rx; 1478 want_rx = 0; /* also breaks the loop */ 1479 } 1480 } 1481 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1482 kring = &na->tx_rings[i]; 1483 if (kring->ring->avail > 0) { 1484 revents |= want_tx; 1485 want_tx = 0; /* also breaks the loop */ 1486 } 1487 } 1488 1489 /* 1490 * If we to push packets out (priv->np_txpoll) or want_tx is 1491 * still set, we do need to run the txsync calls (on all rings, 1492 * to avoid that the tx rings stall). 1493 */ 1494 if (priv->np_txpoll || want_tx) { 1495 flush_tx: 1496 for (i = priv->np_qfirst; i < lim_tx; i++) { 1497 kring = &na->tx_rings[i]; 1498 /* 1499 * Skip the current ring if want_tx == 0 1500 * (we have already done a successful sync on 1501 * a previous ring) AND kring->cur == kring->hwcur 1502 * (there are no pending transmissions for this ring). 1503 */ 1504 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1505 continue; 1506 if (core_lock == NEED_CL) { 1507 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1508 core_lock = LOCKED_CL; 1509 } 1510 if (na->separate_locks) 1511 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 1512 if (netmap_verbose & NM_VERB_TXSYNC) 1513 D("send %d on %s %d", 1514 kring->ring->cur, 1515 ifp->if_xname, i); 1516 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 1517 revents |= POLLERR; 1518 1519 /* Check avail/call selrecord only if called with POLLOUT */ 1520 if (want_tx) { 1521 if (kring->ring->avail > 0) { 1522 /* stop at the first ring. We don't risk 1523 * starvation. 1524 */ 1525 revents |= want_tx; 1526 want_tx = 0; 1527 } else if (!check_all) 1528 selrecord(td, &kring->si); 1529 } 1530 if (na->separate_locks) 1531 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 1532 } 1533 } 1534 1535 /* 1536 * now if want_rx is still set we need to lock and rxsync. 1537 * Do it on all rings because otherwise we starve. 1538 */ 1539 if (want_rx) { 1540 for (i = priv->np_qfirst; i < lim_rx; i++) { 1541 kring = &na->rx_rings[i]; 1542 if (core_lock == NEED_CL) { 1543 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1544 core_lock = LOCKED_CL; 1545 } 1546 if (na->separate_locks) 1547 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 1548 if (netmap_fwd ||kring->ring->flags & NR_FORWARD) { 1549 ND(10, "forwarding some buffers up %d to %d", 1550 kring->nr_hwcur, kring->ring->cur); 1551 netmap_grab_packets(kring, &q, netmap_fwd); 1552 } 1553 1554 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 1555 revents |= POLLERR; 1556 if (netmap_no_timestamp == 0 || 1557 kring->ring->flags & NR_TIMESTAMP) { 1558 microtime(&kring->ring->ts); 1559 } 1560 1561 if (kring->ring->avail > 0) 1562 revents |= want_rx; 1563 else if (!check_all) 1564 selrecord(td, &kring->si); 1565 if (na->separate_locks) 1566 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 1567 } 1568 } 1569 if (check_all && revents == 0) { /* signal on the global queue */ 1570 if (want_tx) 1571 selrecord(td, &na->tx_si); 1572 if (want_rx) 1573 selrecord(td, &na->rx_si); 1574 } 1575 1576 /* forward host to the netmap ring */ 1577 kring = &na->rx_rings[lim_rx]; 1578 if (kring->nr_hwavail > 0) 1579 ND("host rx %d has %d packets", lim_rx, kring->nr_hwavail); 1580 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1581 && (netmap_fwd || kring->ring->flags & NR_FORWARD) 1582 && kring->nr_hwavail > 0 && !host_forwarded) { 1583 if (core_lock == NEED_CL) { 1584 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1585 core_lock = LOCKED_CL; 1586 } 1587 netmap_sw_to_nic(na); 1588 host_forwarded = 1; /* prevent another pass */ 1589 want_rx = 0; 1590 goto flush_tx; 1591 } 1592 1593 if (core_lock == LOCKED_CL) 1594 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1595 if (q.head) 1596 netmap_send_up(na->ifp, q.head); 1597 1598 return (revents); 1599 } 1600 1601 /*------- driver support routines ------*/ 1602 1603 /* 1604 * default lock wrapper. 1605 */ 1606 static void 1607 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 1608 { 1609 struct netmap_adapter *na = NA(dev); 1610 1611 switch (what) { 1612 #ifdef linux /* some system do not need lock on register */ 1613 case NETMAP_REG_LOCK: 1614 case NETMAP_REG_UNLOCK: 1615 break; 1616 #endif /* linux */ 1617 1618 case NETMAP_CORE_LOCK: 1619 mtx_lock(&na->core_lock); 1620 break; 1621 1622 case NETMAP_CORE_UNLOCK: 1623 mtx_unlock(&na->core_lock); 1624 break; 1625 1626 case NETMAP_TX_LOCK: 1627 mtx_lock(&na->tx_rings[queueid].q_lock); 1628 break; 1629 1630 case NETMAP_TX_UNLOCK: 1631 mtx_unlock(&na->tx_rings[queueid].q_lock); 1632 break; 1633 1634 case NETMAP_RX_LOCK: 1635 mtx_lock(&na->rx_rings[queueid].q_lock); 1636 break; 1637 1638 case NETMAP_RX_UNLOCK: 1639 mtx_unlock(&na->rx_rings[queueid].q_lock); 1640 break; 1641 } 1642 } 1643 1644 1645 /* 1646 * Initialize a ``netmap_adapter`` object created by driver on attach. 1647 * We allocate a block of memory with room for a struct netmap_adapter 1648 * plus two sets of N+2 struct netmap_kring (where N is the number 1649 * of hardware rings): 1650 * krings 0..N-1 are for the hardware queues. 1651 * kring N is for the host stack queue 1652 * kring N+1 is only used for the selinfo for all queues. 1653 * Return 0 on success, ENOMEM otherwise. 1654 * 1655 * By default the receive and transmit adapter ring counts are both initialized 1656 * to num_queues. na->num_tx_rings can be set for cards with different tx/rx 1657 * setups. 1658 */ 1659 int 1660 netmap_attach(struct netmap_adapter *arg, int num_queues) 1661 { 1662 struct netmap_adapter *na = NULL; 1663 struct ifnet *ifp = arg ? arg->ifp : NULL; 1664 1665 if (arg == NULL || ifp == NULL) 1666 goto fail; 1667 na = malloc(sizeof(*na), M_DEVBUF, M_NOWAIT | M_ZERO); 1668 if (na == NULL) 1669 goto fail; 1670 WNA(ifp) = na; 1671 *na = *arg; /* copy everything, trust the driver to not pass junk */ 1672 NETMAP_SET_CAPABLE(ifp); 1673 if (na->num_tx_rings == 0) 1674 na->num_tx_rings = num_queues; 1675 na->num_rx_rings = num_queues; 1676 na->refcount = na->na_single = na->na_multi = 0; 1677 /* Core lock initialized here, others after netmap_if_new. */ 1678 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF); 1679 if (na->nm_lock == NULL) { 1680 ND("using default locks for %s", ifp->if_xname); 1681 na->nm_lock = netmap_lock_wrapper; 1682 } 1683 1684 #ifdef linux 1685 if (!ifp->netdev_ops) { 1686 D("ouch, we cannot override netdev_ops"); 1687 goto fail; 1688 } 1689 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 28) 1690 /* if needed, prepare a clone of the entire netdev ops */ 1691 na->nm_ndo = *ifp->netdev_ops; 1692 #endif /* 2.6.28 and above */ 1693 na->nm_ndo.ndo_start_xmit = linux_netmap_start; 1694 #endif /* linux */ 1695 1696 D("success for %s", ifp->if_xname); 1697 return 0; 1698 1699 fail: 1700 D("fail, arg %p ifp %p na %p", arg, ifp, na); 1701 netmap_detach(ifp); 1702 return (na ? EINVAL : ENOMEM); 1703 } 1704 1705 1706 /* 1707 * Free the allocated memory linked to the given ``netmap_adapter`` 1708 * object. 1709 */ 1710 void 1711 netmap_detach(struct ifnet *ifp) 1712 { 1713 struct netmap_adapter *na = NA(ifp); 1714 1715 if (!na) 1716 return; 1717 1718 mtx_destroy(&na->core_lock); 1719 1720 if (na->tx_rings) { /* XXX should not happen */ 1721 D("freeing leftover tx_rings"); 1722 free(na->tx_rings, M_DEVBUF); 1723 } 1724 bzero(na, sizeof(*na)); 1725 WNA(ifp) = NULL; 1726 free(na, M_DEVBUF); 1727 } 1728 1729 1730 /* 1731 * Intercept packets from the network stack and pass them 1732 * to netmap as incoming packets on the 'software' ring. 1733 * We are not locked when called. 1734 */ 1735 int 1736 netmap_start(struct ifnet *ifp, struct mbuf *m) 1737 { 1738 struct netmap_adapter *na = NA(ifp); 1739 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1740 u_int i, len = MBUF_LEN(m); 1741 u_int error = EBUSY, lim = kring->nkr_num_slots - 1; 1742 struct netmap_slot *slot; 1743 1744 if (netmap_verbose & NM_VERB_HOST) 1745 D("%s packet %d len %d from the stack", ifp->if_xname, 1746 kring->nr_hwcur + kring->nr_hwavail, len); 1747 if (len > NETMAP_BUF_SIZE) { /* too long for us */ 1748 D("%s from_host, drop packet size %d > %d", ifp->if_xname, 1749 len, NETMAP_BUF_SIZE); 1750 m_freem(m); 1751 return EINVAL; 1752 } 1753 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1754 if (kring->nr_hwavail >= lim) { 1755 if (netmap_verbose) 1756 D("stack ring %s full\n", ifp->if_xname); 1757 goto done; /* no space */ 1758 } 1759 1760 /* compute the insert position */ 1761 i = kring->nr_hwcur + kring->nr_hwavail; 1762 if (i > lim) 1763 i -= lim + 1; 1764 slot = &kring->ring->slot[i]; 1765 m_copydata(m, 0, len, NMB(slot)); 1766 slot->len = len; 1767 slot->flags = kring->nkr_slot_flags; 1768 kring->nr_hwavail++; 1769 if (netmap_verbose & NM_VERB_HOST) 1770 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 1771 selwakeuppri(&kring->si, PI_NET); 1772 error = 0; 1773 done: 1774 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1775 1776 /* release the mbuf in either cases of success or failure. As an 1777 * alternative, put the mbuf in a free list and free the list 1778 * only when really necessary. 1779 */ 1780 m_freem(m); 1781 1782 return (error); 1783 } 1784 1785 1786 /* 1787 * netmap_reset() is called by the driver routines when reinitializing 1788 * a ring. The driver is in charge of locking to protect the kring. 1789 * If netmap mode is not set just return NULL. 1790 */ 1791 struct netmap_slot * 1792 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1793 u_int new_cur) 1794 { 1795 struct netmap_kring *kring; 1796 int new_hwofs, lim; 1797 1798 if (na == NULL) 1799 return NULL; /* no netmap support here */ 1800 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1801 return NULL; /* nothing to reinitialize */ 1802 1803 if (tx == NR_TX) { 1804 if (n >= na->num_tx_rings) 1805 return NULL; 1806 kring = na->tx_rings + n; 1807 new_hwofs = kring->nr_hwcur - new_cur; 1808 } else { 1809 if (n >= na->num_rx_rings) 1810 return NULL; 1811 kring = na->rx_rings + n; 1812 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1813 } 1814 lim = kring->nkr_num_slots - 1; 1815 if (new_hwofs > lim) 1816 new_hwofs -= lim + 1; 1817 1818 /* Alwayws set the new offset value and realign the ring. */ 1819 kring->nkr_hwofs = new_hwofs; 1820 if (tx == NR_TX) 1821 kring->nr_hwavail = kring->nkr_num_slots - 1; 1822 ND(10, "new hwofs %d on %s %s[%d]", 1823 kring->nkr_hwofs, na->ifp->if_xname, 1824 tx == NR_TX ? "TX" : "RX", n); 1825 1826 #if 0 // def linux 1827 /* XXX check that the mappings are correct */ 1828 /* need ring_nr, adapter->pdev, direction */ 1829 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 1830 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1831 D("error mapping rx netmap buffer %d", i); 1832 // XXX fix error handling 1833 } 1834 1835 #endif /* linux */ 1836 /* 1837 * Wakeup on the individual and global lock 1838 * We do the wakeup here, but the ring is not yet reconfigured. 1839 * However, we are under lock so there are no races. 1840 */ 1841 selwakeuppri(&kring->si, PI_NET); 1842 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 1843 return kring->ring->slot; 1844 } 1845 1846 1847 /* 1848 * Default functions to handle rx/tx interrupts 1849 * we have 4 cases: 1850 * 1 ring, single lock: 1851 * lock(core); wake(i=0); unlock(core) 1852 * N rings, single lock: 1853 * lock(core); wake(i); wake(N+1) unlock(core) 1854 * 1 ring, separate locks: (i=0) 1855 * lock(i); wake(i); unlock(i) 1856 * N rings, separate locks: 1857 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 1858 * work_done is non-null on the RX path. 1859 * 1860 * The 'q' argument also includes flag to tell whether the queue is 1861 * already locked on enter, and whether it should remain locked on exit. 1862 * This helps adapting to different defaults in drivers and OSes. 1863 */ 1864 int 1865 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 1866 { 1867 struct netmap_adapter *na; 1868 struct netmap_kring *r; 1869 NM_SELINFO_T *main_wq; 1870 int locktype, unlocktype, lock; 1871 1872 if (!(ifp->if_capenable & IFCAP_NETMAP)) 1873 return 0; 1874 1875 lock = q & (NETMAP_LOCKED_ENTER | NETMAP_LOCKED_EXIT); 1876 q = q & NETMAP_RING_MASK; 1877 1878 ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 1879 na = NA(ifp); 1880 if (na->na_flags & NAF_SKIP_INTR) { 1881 ND("use regular interrupt"); 1882 return 0; 1883 } 1884 1885 if (work_done) { /* RX path */ 1886 if (q >= na->num_rx_rings) 1887 return 0; // not a physical queue 1888 r = na->rx_rings + q; 1889 r->nr_kflags |= NKR_PENDINTR; 1890 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 1891 locktype = NETMAP_RX_LOCK; 1892 unlocktype = NETMAP_RX_UNLOCK; 1893 } else { /* TX path */ 1894 if (q >= na->num_tx_rings) 1895 return 0; // not a physical queue 1896 r = na->tx_rings + q; 1897 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 1898 work_done = &q; /* dummy */ 1899 locktype = NETMAP_TX_LOCK; 1900 unlocktype = NETMAP_TX_UNLOCK; 1901 } 1902 if (na->separate_locks) { 1903 if (!(lock & NETMAP_LOCKED_ENTER)) 1904 na->nm_lock(ifp, locktype, q); 1905 selwakeuppri(&r->si, PI_NET); 1906 na->nm_lock(ifp, unlocktype, q); 1907 if (main_wq) { 1908 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1909 selwakeuppri(main_wq, PI_NET); 1910 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1911 } 1912 /* lock the queue again if requested */ 1913 if (lock & NETMAP_LOCKED_EXIT) 1914 na->nm_lock(ifp, locktype, q); 1915 } else { 1916 if (!(lock & NETMAP_LOCKED_ENTER)) 1917 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1918 selwakeuppri(&r->si, PI_NET); 1919 if (main_wq) 1920 selwakeuppri(main_wq, PI_NET); 1921 if (!(lock & NETMAP_LOCKED_EXIT)) 1922 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1923 } 1924 *work_done = 1; /* do not fire napi again */ 1925 return 1; 1926 } 1927 1928 1929 #ifdef linux /* linux-specific routines */ 1930 1931 /* 1932 * Remap linux arguments into the FreeBSD call. 1933 * - pwait is the poll table, passed as 'dev'; 1934 * If pwait == NULL someone else already woke up before. We can report 1935 * events but they are filtered upstream. 1936 * If pwait != NULL, then pwait->key contains the list of events. 1937 * - events is computed from pwait as above. 1938 * - file is passed as 'td'; 1939 */ 1940 static u_int 1941 linux_netmap_poll(struct file * file, struct poll_table_struct *pwait) 1942 { 1943 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28) 1944 int events = POLLIN | POLLOUT; /* XXX maybe... */ 1945 #elif LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0) 1946 int events = pwait ? pwait->key : POLLIN | POLLOUT; 1947 #else /* in 3.4.0 field 'key' was renamed to '_key' */ 1948 int events = pwait ? pwait->_key : POLLIN | POLLOUT; 1949 #endif 1950 return netmap_poll((void *)pwait, events, (void *)file); 1951 } 1952 1953 static int 1954 linux_netmap_mmap(struct file *f, struct vm_area_struct *vma) 1955 { 1956 int lut_skip, i, j; 1957 int user_skip = 0; 1958 struct lut_entry *l_entry; 1959 int error = 0; 1960 unsigned long off, tomap; 1961 /* 1962 * vma->vm_start: start of mapping user address space 1963 * vma->vm_end: end of the mapping user address space 1964 * vma->vm_pfoff: offset of first page in the device 1965 */ 1966 1967 // XXX security checks 1968 1969 error = netmap_get_memory(f->private_data); 1970 ND("get_memory returned %d", error); 1971 if (error) 1972 return -error; 1973 1974 off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */ 1975 tomap = vma->vm_end - vma->vm_start; 1976 for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */ 1977 const struct netmap_obj_pool *p = &nm_mem.pools[i]; 1978 /* 1979 * In each pool memory is allocated in clusters 1980 * of size _clustsize, each containing clustentries 1981 * entries. For each object k we already store the 1982 * vtophys mapping in lut[k] so we use that, scanning 1983 * the lut[] array in steps of clustentries, 1984 * and we map each cluster (not individual pages, 1985 * it would be overkill -- XXX slow ? 20130415). 1986 */ 1987 1988 /* 1989 * We interpret vm_pgoff as an offset into the whole 1990 * netmap memory, as if all clusters where contiguous. 1991 */ 1992 for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) { 1993 unsigned long paddr, mapsize; 1994 if (p->_clustsize <= off) { 1995 off -= p->_clustsize; 1996 continue; 1997 } 1998 l_entry = &p->lut[lut_skip]; /* first obj in the cluster */ 1999 paddr = l_entry->paddr + off; 2000 mapsize = p->_clustsize - off; 2001 off = 0; 2002 if (mapsize > tomap) 2003 mapsize = tomap; 2004 ND("remap_pfn_range(%lx, %lx, %lx)", 2005 vma->vm_start + user_skip, 2006 paddr >> PAGE_SHIFT, mapsize); 2007 if (remap_pfn_range(vma, vma->vm_start + user_skip, 2008 paddr >> PAGE_SHIFT, mapsize, 2009 vma->vm_page_prot)) 2010 return -EAGAIN; // XXX check return value 2011 user_skip += mapsize; 2012 tomap -= mapsize; 2013 if (tomap == 0) 2014 goto done; 2015 } 2016 } 2017 done: 2018 2019 return 0; 2020 } 2021 2022 static netdev_tx_t 2023 linux_netmap_start(struct sk_buff *skb, struct net_device *dev) 2024 { 2025 netmap_start(dev, skb); 2026 return (NETDEV_TX_OK); 2027 } 2028 2029 2030 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38 2031 #define LIN_IOCTL_NAME .ioctl 2032 int 2033 linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */) 2034 #else 2035 #define LIN_IOCTL_NAME .unlocked_ioctl 2036 long 2037 linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */) 2038 #endif 2039 { 2040 int ret; 2041 struct nmreq nmr; 2042 bzero(&nmr, sizeof(nmr)); 2043 2044 if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0) 2045 return -EFAULT; 2046 ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file); 2047 if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0) 2048 return -EFAULT; 2049 return -ret; 2050 } 2051 2052 2053 static int 2054 netmap_release(struct inode *inode, struct file *file) 2055 { 2056 (void)inode; /* UNUSED */ 2057 if (file->private_data) 2058 netmap_dtor(file->private_data); 2059 return (0); 2060 } 2061 2062 static int 2063 linux_netmap_open(struct inode *inode, struct file *file) 2064 { 2065 struct netmap_priv_d *priv; 2066 (void)inode; /* UNUSED */ 2067 2068 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 2069 M_NOWAIT | M_ZERO); 2070 if (priv == NULL) 2071 return -ENOMEM; 2072 2073 file->private_data = priv; 2074 2075 return (0); 2076 } 2077 2078 static struct file_operations netmap_fops = { 2079 .open = linux_netmap_open, 2080 .mmap = linux_netmap_mmap, 2081 LIN_IOCTL_NAME = linux_netmap_ioctl, 2082 .poll = linux_netmap_poll, 2083 .release = netmap_release, 2084 }; 2085 2086 static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */ 2087 MISC_DYNAMIC_MINOR, 2088 "netmap", 2089 &netmap_fops, 2090 }; 2091 2092 static int netmap_init(void); 2093 static void netmap_fini(void); 2094 2095 /* Errors have negative values on linux */ 2096 static int linux_netmap_init(void) 2097 { 2098 return -netmap_init(); 2099 } 2100 2101 module_init(linux_netmap_init); 2102 module_exit(netmap_fini); 2103 /* export certain symbols to other modules */ 2104 EXPORT_SYMBOL(netmap_attach); // driver attach routines 2105 EXPORT_SYMBOL(netmap_detach); // driver detach routines 2106 EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error 2107 EXPORT_SYMBOL(netmap_buffer_lut); 2108 EXPORT_SYMBOL(netmap_total_buffers); // index check 2109 EXPORT_SYMBOL(netmap_buffer_base); 2110 EXPORT_SYMBOL(netmap_reset); // ring init routines 2111 EXPORT_SYMBOL(netmap_buf_size); 2112 EXPORT_SYMBOL(netmap_rx_irq); // default irq handler 2113 EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away 2114 2115 2116 MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/"); 2117 MODULE_DESCRIPTION("The netmap packet I/O framework"); 2118 MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */ 2119 2120 #else /* __FreeBSD__ */ 2121 2122 static struct cdevsw netmap_cdevsw = { 2123 .d_version = D_VERSION, 2124 .d_name = "netmap", 2125 .d_open = netmap_open, 2126 .d_mmap = netmap_mmap, 2127 .d_mmap_single = netmap_mmap_single, 2128 .d_ioctl = netmap_ioctl, 2129 .d_poll = netmap_poll, 2130 .d_close = netmap_close, 2131 }; 2132 #endif /* __FreeBSD__ */ 2133 2134 #ifdef NM_BRIDGE 2135 /* 2136 *---- support for virtual bridge ----- 2137 */ 2138 2139 /* ----- FreeBSD if_bridge hash function ------- */ 2140 2141 /* 2142 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2143 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2144 * 2145 * http://www.burtleburtle.net/bob/hash/spooky.html 2146 */ 2147 #define mix(a, b, c) \ 2148 do { \ 2149 a -= b; a -= c; a ^= (c >> 13); \ 2150 b -= c; b -= a; b ^= (a << 8); \ 2151 c -= a; c -= b; c ^= (b >> 13); \ 2152 a -= b; a -= c; a ^= (c >> 12); \ 2153 b -= c; b -= a; b ^= (a << 16); \ 2154 c -= a; c -= b; c ^= (b >> 5); \ 2155 a -= b; a -= c; a ^= (c >> 3); \ 2156 b -= c; b -= a; b ^= (a << 10); \ 2157 c -= a; c -= b; c ^= (b >> 15); \ 2158 } while (/*CONSTCOND*/0) 2159 2160 static __inline uint32_t 2161 nm_bridge_rthash(const uint8_t *addr) 2162 { 2163 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 2164 2165 b += addr[5] << 8; 2166 b += addr[4]; 2167 a += addr[3] << 24; 2168 a += addr[2] << 16; 2169 a += addr[1] << 8; 2170 a += addr[0]; 2171 2172 mix(a, b, c); 2173 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 2174 return (c & BRIDGE_RTHASH_MASK); 2175 } 2176 2177 #undef mix 2178 2179 2180 static int 2181 bdg_netmap_reg(struct ifnet *ifp, int onoff) 2182 { 2183 int i, err = 0; 2184 struct nm_bridge *b = ifp->if_bridge; 2185 2186 BDG_LOCK(b); 2187 if (onoff) { 2188 /* the interface must be already in the list. 2189 * only need to mark the port as active 2190 */ 2191 ND("should attach %s to the bridge", ifp->if_xname); 2192 for (i=0; i < NM_BDG_MAXPORTS; i++) 2193 if (b->bdg_ports[i] == ifp) 2194 break; 2195 if (i == NM_BDG_MAXPORTS) { 2196 D("no more ports available"); 2197 err = EINVAL; 2198 goto done; 2199 } 2200 ND("setting %s in netmap mode", ifp->if_xname); 2201 ifp->if_capenable |= IFCAP_NETMAP; 2202 NA(ifp)->bdg_port = i; 2203 b->act_ports |= (1<<i); 2204 b->bdg_ports[i] = ifp; 2205 } else { 2206 /* should be in the list, too -- remove from the mask */ 2207 ND("removing %s from netmap mode", ifp->if_xname); 2208 ifp->if_capenable &= ~IFCAP_NETMAP; 2209 i = NA(ifp)->bdg_port; 2210 b->act_ports &= ~(1<<i); 2211 } 2212 done: 2213 BDG_UNLOCK(b); 2214 return err; 2215 } 2216 2217 2218 static int 2219 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp) 2220 { 2221 int i, ifn; 2222 uint64_t all_dst, dst; 2223 uint32_t sh, dh; 2224 uint64_t mysrc = 1 << NA(ifp)->bdg_port; 2225 uint64_t smac, dmac; 2226 struct netmap_slot *slot; 2227 struct nm_bridge *b = ifp->if_bridge; 2228 2229 ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports); 2230 /* only consider valid destinations */ 2231 all_dst = (b->act_ports & ~mysrc); 2232 /* first pass: hash and find destinations */ 2233 for (i = 0; likely(i < n); i++) { 2234 uint8_t *buf = ft[i].buf; 2235 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 2236 smac = le64toh(*(uint64_t *)(buf + 4)); 2237 smac >>= 16; 2238 if (unlikely(netmap_verbose)) { 2239 uint8_t *s = buf+6, *d = buf; 2240 D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x", 2241 i, 2242 ft[i].len, 2243 s[0], s[1], s[2], s[3], s[4], s[5], 2244 d[0], d[1], d[2], d[3], d[4], d[5]); 2245 } 2246 /* 2247 * The hash is somewhat expensive, there might be some 2248 * worthwhile optimizations here. 2249 */ 2250 if ((buf[6] & 1) == 0) { /* valid src */ 2251 uint8_t *s = buf+6; 2252 sh = nm_bridge_rthash(buf+6); // XXX hash of source 2253 /* update source port forwarding entry */ 2254 b->ht[sh].mac = smac; /* XXX expire ? */ 2255 b->ht[sh].ports = mysrc; 2256 if (netmap_verbose) 2257 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 2258 s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port); 2259 } 2260 dst = 0; 2261 if ( (buf[0] & 1) == 0) { /* unicast */ 2262 uint8_t *d = buf; 2263 dh = nm_bridge_rthash(buf); // XXX hash of dst 2264 if (b->ht[dh].mac == dmac) { /* found dst */ 2265 dst = b->ht[dh].ports; 2266 if (netmap_verbose) 2267 D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x", 2268 d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16)); 2269 } 2270 } 2271 if (dst == 0) 2272 dst = all_dst; 2273 dst &= all_dst; /* only consider valid ports */ 2274 if (unlikely(netmap_verbose)) 2275 D("pkt goes to ports 0x%x", (uint32_t)dst); 2276 ft[i].dst = dst; 2277 } 2278 2279 /* second pass, scan interfaces and forward */ 2280 all_dst = (b->act_ports & ~mysrc); 2281 for (ifn = 0; all_dst; ifn++) { 2282 struct ifnet *dst_ifp = b->bdg_ports[ifn]; 2283 struct netmap_adapter *na; 2284 struct netmap_kring *kring; 2285 struct netmap_ring *ring; 2286 int j, lim, sent, locked; 2287 2288 if (!dst_ifp) 2289 continue; 2290 ND("scan port %d %s", ifn, dst_ifp->if_xname); 2291 dst = 1 << ifn; 2292 if ((dst & all_dst) == 0) /* skip if not set */ 2293 continue; 2294 all_dst &= ~dst; /* clear current node */ 2295 na = NA(dst_ifp); 2296 2297 ring = NULL; 2298 kring = NULL; 2299 lim = sent = locked = 0; 2300 /* inside, scan slots */ 2301 for (i = 0; likely(i < n); i++) { 2302 if ((ft[i].dst & dst) == 0) 2303 continue; /* not here */ 2304 if (!locked) { 2305 kring = &na->rx_rings[0]; 2306 ring = kring->ring; 2307 lim = kring->nkr_num_slots - 1; 2308 na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0); 2309 locked = 1; 2310 } 2311 if (unlikely(kring->nr_hwavail >= lim)) { 2312 if (netmap_verbose) 2313 D("rx ring full on %s", ifp->if_xname); 2314 break; 2315 } 2316 j = kring->nr_hwcur + kring->nr_hwavail; 2317 if (j > lim) 2318 j -= kring->nkr_num_slots; 2319 slot = &ring->slot[j]; 2320 ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j); 2321 pkt_copy(ft[i].buf, NMB(slot), ft[i].len); 2322 slot->len = ft[i].len; 2323 kring->nr_hwavail++; 2324 sent++; 2325 } 2326 if (locked) { 2327 ND("sent %d on %s", sent, dst_ifp->if_xname); 2328 if (sent) 2329 selwakeuppri(&kring->si, PI_NET); 2330 na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0); 2331 } 2332 } 2333 return 0; 2334 } 2335 2336 /* 2337 * main dispatch routine 2338 */ 2339 static int 2340 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2341 { 2342 struct netmap_adapter *na = NA(ifp); 2343 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 2344 struct netmap_ring *ring = kring->ring; 2345 int i, j, k, lim = kring->nkr_num_slots - 1; 2346 struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1); 2347 int ft_i; /* position in the forwarding table */ 2348 2349 k = ring->cur; 2350 if (k > lim) 2351 return netmap_ring_reinit(kring); 2352 if (do_lock) 2353 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 2354 2355 if (netmap_bridge <= 0) { /* testing only */ 2356 j = k; // used all 2357 goto done; 2358 } 2359 if (netmap_bridge > NM_BDG_BATCH) 2360 netmap_bridge = NM_BDG_BATCH; 2361 2362 ft_i = 0; /* start from 0 */ 2363 for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) { 2364 struct netmap_slot *slot = &ring->slot[j]; 2365 int len = ft[ft_i].len = slot->len; 2366 char *buf = ft[ft_i].buf = NMB(slot); 2367 2368 prefetch(buf); 2369 if (unlikely(len < 14)) 2370 continue; 2371 if (unlikely(++ft_i == netmap_bridge)) 2372 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2373 } 2374 if (ft_i) 2375 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2376 /* count how many packets we sent */ 2377 i = k - j; 2378 if (i < 0) 2379 i += kring->nkr_num_slots; 2380 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 2381 if (j != k) 2382 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 2383 2384 done: 2385 kring->nr_hwcur = j; 2386 ring->avail = kring->nr_hwavail; 2387 if (do_lock) 2388 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 2389 2390 if (netmap_verbose) 2391 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 2392 return 0; 2393 } 2394 2395 static int 2396 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2397 { 2398 struct netmap_adapter *na = NA(ifp); 2399 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 2400 struct netmap_ring *ring = kring->ring; 2401 u_int j, n, lim = kring->nkr_num_slots - 1; 2402 u_int k = ring->cur, resvd = ring->reserved; 2403 2404 ND("%s ring %d lock %d avail %d", 2405 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 2406 2407 if (k > lim) 2408 return netmap_ring_reinit(kring); 2409 if (do_lock) 2410 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 2411 2412 /* skip past packets that userspace has released */ 2413 j = kring->nr_hwcur; /* netmap ring index */ 2414 if (resvd > 0) { 2415 if (resvd + ring->avail >= lim + 1) { 2416 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 2417 ring->reserved = resvd = 0; // XXX panic... 2418 } 2419 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 2420 } 2421 2422 if (j != k) { /* userspace has released some packets. */ 2423 n = k - j; 2424 if (n < 0) 2425 n += kring->nkr_num_slots; 2426 ND("userspace releases %d packets", n); 2427 for (n = 0; likely(j != k); n++) { 2428 struct netmap_slot *slot = &ring->slot[j]; 2429 void *addr = NMB(slot); 2430 2431 if (addr == netmap_buffer_base) { /* bad buf */ 2432 if (do_lock) 2433 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2434 return netmap_ring_reinit(kring); 2435 } 2436 /* decrease refcount for buffer */ 2437 2438 slot->flags &= ~NS_BUF_CHANGED; 2439 j = unlikely(j == lim) ? 0 : j + 1; 2440 } 2441 kring->nr_hwavail -= n; 2442 kring->nr_hwcur = k; 2443 } 2444 /* tell userspace that there are new packets */ 2445 ring->avail = kring->nr_hwavail - resvd; 2446 2447 if (do_lock) 2448 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2449 return 0; 2450 } 2451 2452 static void 2453 bdg_netmap_attach(struct ifnet *ifp) 2454 { 2455 struct netmap_adapter na; 2456 2457 ND("attaching virtual bridge"); 2458 bzero(&na, sizeof(na)); 2459 2460 na.ifp = ifp; 2461 na.separate_locks = 1; 2462 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 2463 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 2464 na.nm_txsync = bdg_netmap_txsync; 2465 na.nm_rxsync = bdg_netmap_rxsync; 2466 na.nm_register = bdg_netmap_reg; 2467 netmap_attach(&na, 1); 2468 } 2469 2470 #endif /* NM_BRIDGE */ 2471 2472 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 2473 2474 2475 /* 2476 * Module loader. 2477 * 2478 * Create the /dev/netmap device and initialize all global 2479 * variables. 2480 * 2481 * Return 0 on success, errno on failure. 2482 */ 2483 static int 2484 netmap_init(void) 2485 { 2486 int error; 2487 2488 error = netmap_memory_init(); 2489 if (error != 0) { 2490 printf("netmap: unable to initialize the memory allocator.\n"); 2491 return (error); 2492 } 2493 printf("netmap: loaded module\n"); 2494 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 2495 "netmap"); 2496 2497 #ifdef NM_BRIDGE 2498 { 2499 int i; 2500 for (i = 0; i < NM_BRIDGES; i++) 2501 mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF); 2502 } 2503 #endif 2504 return (error); 2505 } 2506 2507 2508 /* 2509 * Module unloader. 2510 * 2511 * Free all the memory, and destroy the ``/dev/netmap`` device. 2512 */ 2513 static void 2514 netmap_fini(void) 2515 { 2516 destroy_dev(netmap_dev); 2517 netmap_memory_fini(); 2518 printf("netmap: unloaded module.\n"); 2519 } 2520 2521 2522 #ifdef __FreeBSD__ 2523 /* 2524 * Kernel entry point. 2525 * 2526 * Initialize/finalize the module and return. 2527 * 2528 * Return 0 on success, errno on failure. 2529 */ 2530 static int 2531 netmap_loader(__unused struct module *module, int event, __unused void *arg) 2532 { 2533 int error = 0; 2534 2535 switch (event) { 2536 case MOD_LOAD: 2537 error = netmap_init(); 2538 break; 2539 2540 case MOD_UNLOAD: 2541 netmap_fini(); 2542 break; 2543 2544 default: 2545 error = EOPNOTSUPP; 2546 break; 2547 } 2548 2549 return (error); 2550 } 2551 2552 2553 DEV_MODULE(netmap, netmap_loader, NULL); 2554 #endif /* __FreeBSD__ */ 2555