1 /* 2 * Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 62 #ifdef __APPLE__ 63 #include "osx_glue.h" 64 #endif /* __APPLE__ */ 65 66 #ifdef __FreeBSD__ 67 #include <sys/cdefs.h> /* prerequisite */ 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/types.h> 71 #include <sys/module.h> 72 #include <sys/errno.h> 73 #include <sys/param.h> /* defines used in kernel.h */ 74 #include <sys/jail.h> 75 #include <sys/kernel.h> /* types used in module initialization */ 76 #include <sys/conf.h> /* cdevsw struct */ 77 #include <sys/uio.h> /* uio struct */ 78 #include <sys/sockio.h> 79 #include <sys/socketvar.h> /* struct socket */ 80 #include <sys/malloc.h> 81 #include <sys/mman.h> /* PROT_EXEC */ 82 #include <sys/poll.h> 83 #include <sys/proc.h> 84 #include <sys/rwlock.h> 85 #include <vm/vm.h> /* vtophys */ 86 #include <vm/pmap.h> /* vtophys */ 87 #include <sys/socket.h> /* sockaddrs */ 88 #include <machine/bus.h> 89 #include <sys/selinfo.h> 90 #include <sys/sysctl.h> 91 #include <net/if.h> 92 #include <net/bpf.h> /* BIOCIMMEDIATE */ 93 #include <net/vnet.h> 94 #include <machine/bus.h> /* bus_dmamap_* */ 95 96 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 97 #endif /* __FreeBSD__ */ 98 99 #include <net/netmap.h> 100 #include <dev/netmap/netmap_kern.h> 101 102 /* XXX the following variables must be deprecated and included in nm_mem */ 103 u_int netmap_total_buffers; 104 u_int netmap_buf_size; 105 char *netmap_buffer_base; /* address of an invalid buffer */ 106 107 /* user-controlled variables */ 108 int netmap_verbose; 109 110 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 111 112 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 113 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 114 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 115 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 116 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 117 int netmap_mitigate = 1; 118 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 119 int netmap_no_pendintr = 1; 120 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 121 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 122 int netmap_txsync_retry = 2; 123 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 124 &netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush."); 125 126 int netmap_drop = 0; /* debugging */ 127 int netmap_flags = 0; /* debug flags */ 128 int netmap_fwd = 0; /* force transparent mode */ 129 130 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 131 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 132 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , ""); 133 134 #ifdef NM_BRIDGE /* support for netmap virtual switch, called VALE */ 135 136 /* 137 * system parameters (most of them in netmap_kern.h) 138 * NM_NAME prefix for switch port names, default "vale" 139 * NM_MAXPORTS number of ports 140 * NM_BRIDGES max number of switches in the system. 141 * XXX should become a sysctl or tunable 142 * 143 * Switch ports are named valeX:Y where X is the switch name and Y 144 * is the port. If Y matches a physical interface name, the port is 145 * connected to a physical device. 146 * 147 * Unlike physical interfaces, switch ports use their own memory region 148 * for rings and buffers. 149 * The virtual interfaces use per-queue lock instead of core lock. 150 * In the tx loop, we aggregate traffic in batches to make all operations 151 * faster. The batch size is NM_BDG_BATCH 152 */ 153 #define NM_BDG_MAXRINGS 16 /* XXX unclear how many. */ 154 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 155 #define NM_BDG_HASH 1024 /* forwarding table entries */ 156 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 157 #define NM_BRIDGES 8 /* number of bridges */ 158 159 160 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 161 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 162 163 #ifdef linux 164 165 #define refcount_acquire(_a) atomic_add(1, (atomic_t *)_a) 166 #define refcount_release(_a) atomic_dec_and_test((atomic_t *)_a) 167 168 #else /* !linux */ 169 170 #ifdef __FreeBSD__ 171 #include <sys/endian.h> 172 #include <sys/refcount.h> 173 #endif /* __FreeBSD__ */ 174 175 #define prefetch(x) __builtin_prefetch(x) 176 177 #endif /* !linux */ 178 179 /* 180 * These are used to handle reference counters for bridge ports. 181 */ 182 #define ADD_BDG_REF(ifp) refcount_acquire(&NA(ifp)->na_bdg_refcount) 183 #define DROP_BDG_REF(ifp) refcount_release(&NA(ifp)->na_bdg_refcount) 184 185 static void bdg_netmap_attach(struct netmap_adapter *); 186 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 187 static int kern_netmap_regif(struct nmreq *nmr); 188 189 /* per-tx-queue entry */ 190 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 191 void *buf; 192 uint32_t ft_dst; /* dst port */ 193 uint16_t ft_len; /* src len */ 194 uint16_t ft_next; /* next packet to same destination */ 195 }; 196 197 /* We need to build a list of buffers going to each destination. 198 * Each buffer is in one entry of struct nm_bdg_fwd, we use ft_next 199 * to build the list, and struct nm_bdg_q below for the queue. 200 * The structure should compact because potentially we have a lot 201 * of destinations. 202 */ 203 struct nm_bdg_q { 204 uint16_t bq_head; 205 uint16_t bq_tail; 206 }; 207 208 struct nm_hash_ent { 209 uint64_t mac; /* the top 2 bytes are the epoch */ 210 uint64_t ports; 211 }; 212 213 /* 214 * Interfaces for a bridge are all in bdg_ports[]. 215 * The array has fixed size, an empty entry does not terminate 216 * the search. But lookups only occur on attach/detach so we 217 * don't mind if they are slow. 218 * 219 * The bridge is non blocking on the transmit ports. 220 * 221 * bdg_lock protects accesses to the bdg_ports array. 222 * This is a rw lock (or equivalent). 223 */ 224 struct nm_bridge { 225 int namelen; /* 0 means free */ 226 227 /* XXX what is the proper alignment/layout ? */ 228 NM_RWLOCK_T bdg_lock; /* protects bdg_ports */ 229 struct netmap_adapter *bdg_ports[NM_BDG_MAXPORTS]; 230 231 char basename[IFNAMSIZ]; 232 /* 233 * The function to decide the destination port. 234 * It returns either of an index of the destination port, 235 * NM_BDG_BROADCAST to broadcast this packet, or NM_BDG_NOPORT not to 236 * forward this packet. ring_nr is the source ring index, and the 237 * function may overwrite this value to forward this packet to a 238 * different ring index. 239 * This function must be set by netmap_bdgctl(). 240 */ 241 bdg_lookup_fn_t nm_bdg_lookup; 242 243 /* the forwarding table, MAC+ports */ 244 struct nm_hash_ent ht[NM_BDG_HASH]; 245 }; 246 247 struct nm_bridge nm_bridges[NM_BRIDGES]; 248 NM_LOCK_T netmap_bridge_mutex; 249 250 /* other OS will have these macros defined in their own glue code. */ 251 252 #ifdef __FreeBSD__ 253 #define BDG_LOCK() mtx_lock(&netmap_bridge_mutex) 254 #define BDG_UNLOCK() mtx_unlock(&netmap_bridge_mutex) 255 #define BDG_WLOCK(b) rw_wlock(&(b)->bdg_lock) 256 #define BDG_WUNLOCK(b) rw_wunlock(&(b)->bdg_lock) 257 #define BDG_RLOCK(b) rw_rlock(&(b)->bdg_lock) 258 #define BDG_RUNLOCK(b) rw_runlock(&(b)->bdg_lock) 259 260 /* set/get variables. OS-specific macros may wrap these 261 * assignments into read/write lock or similar 262 */ 263 #define BDG_SET_VAR(lval, p) (lval = p) 264 #define BDG_GET_VAR(lval) (lval) 265 #define BDG_FREE(p) free(p, M_DEVBUF) 266 #endif /* __FreeBSD__ */ 267 268 static __inline int 269 nma_is_vp(struct netmap_adapter *na) 270 { 271 return na->nm_register == bdg_netmap_reg; 272 } 273 static __inline int 274 nma_is_host(struct netmap_adapter *na) 275 { 276 return na->nm_register == NULL; 277 } 278 static __inline int 279 nma_is_hw(struct netmap_adapter *na) 280 { 281 /* In case of sw adapter, nm_register is NULL */ 282 return !nma_is_vp(na) && !nma_is_host(na); 283 } 284 285 /* 286 * Regarding holding a NIC, if the NIC is owned by the kernel 287 * (i.e., bridge), neither another bridge nor user can use it; 288 * if the NIC is owned by a user, only users can share it. 289 * Evaluation must be done under NMA_LOCK(). 290 */ 291 #define NETMAP_OWNED_BY_KERN(ifp) (!nma_is_vp(NA(ifp)) && NA(ifp)->na_bdg) 292 #define NETMAP_OWNED_BY_ANY(ifp) \ 293 (NETMAP_OWNED_BY_KERN(ifp) || (NA(ifp)->refcount > 0)) 294 295 /* 296 * NA(ifp)->bdg_port port index 297 */ 298 299 // XXX only for multiples of 64 bytes, non overlapped. 300 static inline void 301 pkt_copy(void *_src, void *_dst, int l) 302 { 303 uint64_t *src = _src; 304 uint64_t *dst = _dst; 305 if (unlikely(l >= 1024)) { 306 bcopy(src, dst, l); 307 return; 308 } 309 for (; likely(l > 0); l-=64) { 310 *dst++ = *src++; 311 *dst++ = *src++; 312 *dst++ = *src++; 313 *dst++ = *src++; 314 *dst++ = *src++; 315 *dst++ = *src++; 316 *dst++ = *src++; 317 *dst++ = *src++; 318 } 319 } 320 321 322 /* 323 * locate a bridge among the existing ones. 324 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 325 * We assume that this is called with a name of at least NM_NAME chars. 326 */ 327 static struct nm_bridge * 328 nm_find_bridge(const char *name, int create) 329 { 330 int i, l, namelen; 331 struct nm_bridge *b = NULL; 332 333 namelen = strlen(NM_NAME); /* base length */ 334 l = strlen(name); /* actual length */ 335 for (i = namelen + 1; i < l; i++) { 336 if (name[i] == ':') { 337 namelen = i; 338 break; 339 } 340 } 341 if (namelen >= IFNAMSIZ) 342 namelen = IFNAMSIZ; 343 ND("--- prefix is '%.*s' ---", namelen, name); 344 345 BDG_LOCK(); 346 /* lookup the name, remember empty slot if there is one */ 347 for (i = 0; i < NM_BRIDGES; i++) { 348 struct nm_bridge *x = nm_bridges + i; 349 350 if (x->namelen == 0) { 351 if (create && b == NULL) 352 b = x; /* record empty slot */ 353 } else if (x->namelen != namelen) { 354 continue; 355 } else if (strncmp(name, x->basename, namelen) == 0) { 356 ND("found '%.*s' at %d", namelen, name, i); 357 b = x; 358 break; 359 } 360 } 361 if (i == NM_BRIDGES && b) { /* name not found, can create entry */ 362 strncpy(b->basename, name, namelen); 363 b->namelen = namelen; 364 /* set the default function */ 365 b->nm_bdg_lookup = netmap_bdg_learning; 366 /* reset the MAC address table */ 367 bzero(b->ht, sizeof(struct nm_hash_ent) * NM_BDG_HASH); 368 } 369 BDG_UNLOCK(); 370 return b; 371 } 372 373 374 /* 375 * Free the forwarding tables for rings attached to switch ports. 376 */ 377 static void 378 nm_free_bdgfwd(struct netmap_adapter *na) 379 { 380 int nrings, i; 381 struct netmap_kring *kring; 382 383 nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings; 384 kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings; 385 for (i = 0; i < nrings; i++) { 386 if (kring[i].nkr_ft) { 387 free(kring[i].nkr_ft, M_DEVBUF); 388 kring[i].nkr_ft = NULL; /* protect from freeing twice */ 389 } 390 } 391 if (nma_is_hw(na)) 392 nm_free_bdgfwd(SWNA(na->ifp)); 393 } 394 395 396 /* 397 * Allocate the forwarding tables for the rings attached to the bridge ports. 398 */ 399 static int 400 nm_alloc_bdgfwd(struct netmap_adapter *na) 401 { 402 int nrings, l, i, num_dstq; 403 struct netmap_kring *kring; 404 405 /* all port:rings + broadcast */ 406 num_dstq = NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1; 407 l = sizeof(struct nm_bdg_fwd) * NM_BDG_BATCH; 408 l += sizeof(struct nm_bdg_q) * num_dstq; 409 l += sizeof(uint16_t) * NM_BDG_BATCH; 410 411 nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings; 412 kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings; 413 for (i = 0; i < nrings; i++) { 414 struct nm_bdg_fwd *ft; 415 struct nm_bdg_q *dstq; 416 int j; 417 418 ft = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 419 if (!ft) { 420 nm_free_bdgfwd(na); 421 return ENOMEM; 422 } 423 dstq = (struct nm_bdg_q *)(ft + NM_BDG_BATCH); 424 for (j = 0; j < num_dstq; j++) 425 dstq[j].bq_head = dstq[j].bq_tail = NM_BDG_BATCH; 426 kring[i].nkr_ft = ft; 427 } 428 if (nma_is_hw(na)) 429 nm_alloc_bdgfwd(SWNA(na->ifp)); 430 return 0; 431 } 432 433 #endif /* NM_BRIDGE */ 434 435 436 /* 437 * Fetch configuration from the device, to cope with dynamic 438 * reconfigurations after loading the module. 439 */ 440 static int 441 netmap_update_config(struct netmap_adapter *na) 442 { 443 struct ifnet *ifp = na->ifp; 444 u_int txr, txd, rxr, rxd; 445 446 txr = txd = rxr = rxd = 0; 447 if (na->nm_config) { 448 na->nm_config(ifp, &txr, &txd, &rxr, &rxd); 449 } else { 450 /* take whatever we had at init time */ 451 txr = na->num_tx_rings; 452 txd = na->num_tx_desc; 453 rxr = na->num_rx_rings; 454 rxd = na->num_rx_desc; 455 } 456 457 if (na->num_tx_rings == txr && na->num_tx_desc == txd && 458 na->num_rx_rings == rxr && na->num_rx_desc == rxd) 459 return 0; /* nothing changed */ 460 if (netmap_verbose || na->refcount > 0) { 461 D("stored config %s: txring %d x %d, rxring %d x %d", 462 ifp->if_xname, 463 na->num_tx_rings, na->num_tx_desc, 464 na->num_rx_rings, na->num_rx_desc); 465 D("new config %s: txring %d x %d, rxring %d x %d", 466 ifp->if_xname, txr, txd, rxr, rxd); 467 } 468 if (na->refcount == 0) { 469 D("configuration changed (but fine)"); 470 na->num_tx_rings = txr; 471 na->num_tx_desc = txd; 472 na->num_rx_rings = rxr; 473 na->num_rx_desc = rxd; 474 return 0; 475 } 476 D("configuration changed while active, this is bad..."); 477 return 1; 478 } 479 480 /*------------- memory allocator -----------------*/ 481 #include "netmap_mem2.c" 482 /*------------ end of memory allocator ----------*/ 483 484 485 /* Structure associated to each thread which registered an interface. 486 * 487 * The first 4 fields of this structure are written by NIOCREGIF and 488 * read by poll() and NIOC?XSYNC. 489 * There is low contention among writers (actually, a correct user program 490 * should have no contention among writers) and among writers and readers, 491 * so we use a single global lock to protect the structure initialization. 492 * Since initialization involves the allocation of memory, we reuse the memory 493 * allocator lock. 494 * Read access to the structure is lock free. Readers must check that 495 * np_nifp is not NULL before using the other fields. 496 * If np_nifp is NULL initialization has not been performed, so they should 497 * return an error to userlevel. 498 * 499 * The ref_done field is used to regulate access to the refcount in the 500 * memory allocator. The refcount must be incremented at most once for 501 * each open("/dev/netmap"). The increment is performed by the first 502 * function that calls netmap_get_memory() (currently called by 503 * mmap(), NIOCGINFO and NIOCREGIF). 504 * If the refcount is incremented, it is then decremented when the 505 * private structure is destroyed. 506 */ 507 struct netmap_priv_d { 508 struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */ 509 510 struct ifnet *np_ifp; /* device for which we hold a reference */ 511 int np_ringid; /* from the ioctl */ 512 u_int np_qfirst, np_qlast; /* range of rings to scan */ 513 uint16_t np_txpoll; 514 515 unsigned long ref_done; /* use with NMA_LOCK held */ 516 }; 517 518 519 static int 520 netmap_get_memory(struct netmap_priv_d* p) 521 { 522 int error = 0; 523 NMA_LOCK(); 524 if (!p->ref_done) { 525 error = netmap_memory_finalize(); 526 if (!error) 527 p->ref_done = 1; 528 } 529 NMA_UNLOCK(); 530 return error; 531 } 532 533 /* 534 * File descriptor's private data destructor. 535 * 536 * Call nm_register(ifp,0) to stop netmap mode on the interface and 537 * revert to normal operation. We expect that np_ifp has not gone. 538 */ 539 /* call with NMA_LOCK held */ 540 static void 541 netmap_dtor_locked(void *data) 542 { 543 struct netmap_priv_d *priv = data; 544 struct ifnet *ifp = priv->np_ifp; 545 struct netmap_adapter *na = NA(ifp); 546 struct netmap_if *nifp = priv->np_nifp; 547 548 na->refcount--; 549 if (na->refcount <= 0) { /* last instance */ 550 u_int i, j, lim; 551 552 if (netmap_verbose) 553 D("deleting last instance for %s", ifp->if_xname); 554 /* 555 * (TO CHECK) This function is only called 556 * when the last reference to this file descriptor goes 557 * away. This means we cannot have any pending poll() 558 * or interrupt routine operating on the structure. 559 */ 560 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 561 /* Wake up any sleeping threads. netmap_poll will 562 * then return POLLERR 563 */ 564 for (i = 0; i < na->num_tx_rings + 1; i++) 565 selwakeuppri(&na->tx_rings[i].si, PI_NET); 566 for (i = 0; i < na->num_rx_rings + 1; i++) 567 selwakeuppri(&na->rx_rings[i].si, PI_NET); 568 selwakeuppri(&na->tx_si, PI_NET); 569 selwakeuppri(&na->rx_si, PI_NET); 570 #ifdef NM_BRIDGE 571 nm_free_bdgfwd(na); 572 #endif /* NM_BRIDGE */ 573 /* release all buffers */ 574 for (i = 0; i < na->num_tx_rings + 1; i++) { 575 struct netmap_ring *ring = na->tx_rings[i].ring; 576 lim = na->tx_rings[i].nkr_num_slots; 577 for (j = 0; j < lim; j++) 578 netmap_free_buf(nifp, ring->slot[j].buf_idx); 579 /* knlist_destroy(&na->tx_rings[i].si.si_note); */ 580 mtx_destroy(&na->tx_rings[i].q_lock); 581 } 582 for (i = 0; i < na->num_rx_rings + 1; i++) { 583 struct netmap_ring *ring = na->rx_rings[i].ring; 584 lim = na->rx_rings[i].nkr_num_slots; 585 for (j = 0; j < lim; j++) 586 netmap_free_buf(nifp, ring->slot[j].buf_idx); 587 /* knlist_destroy(&na->rx_rings[i].si.si_note); */ 588 mtx_destroy(&na->rx_rings[i].q_lock); 589 } 590 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 591 /* knlist_destroy(&na->tx_si.si_note); */ 592 /* knlist_destroy(&na->rx_si.si_note); */ 593 netmap_free_rings(na); 594 if (nma_is_hw(na)) 595 SWNA(ifp)->tx_rings = SWNA(ifp)->rx_rings = NULL; 596 } 597 netmap_if_free(nifp); 598 } 599 600 601 /* we assume netmap adapter exists */ 602 static void 603 nm_if_rele(struct ifnet *ifp) 604 { 605 #ifndef NM_BRIDGE 606 if_rele(ifp); 607 #else /* NM_BRIDGE */ 608 int i, full = 0, is_hw; 609 struct nm_bridge *b; 610 struct netmap_adapter *na; 611 612 /* I can be called not only for get_ifp()-ed references where netmap's 613 * capability is guaranteed, but also for non-netmap-capable NICs. 614 */ 615 if (!NETMAP_CAPABLE(ifp) || !NA(ifp)->na_bdg) { 616 if_rele(ifp); 617 return; 618 } 619 if (!DROP_BDG_REF(ifp)) 620 return; 621 622 na = NA(ifp); 623 b = na->na_bdg; 624 is_hw = nma_is_hw(na); 625 626 BDG_WLOCK(b); 627 ND("want to disconnect %s from the bridge", ifp->if_xname); 628 full = 0; 629 /* remove the entry from the bridge, also check 630 * if there are any leftover interfaces 631 * XXX we should optimize this code, e.g. going directly 632 * to na->bdg_port, and having a counter of ports that 633 * are connected. But it is not in a critical path. 634 * In NIC's case, index of sw na is always higher than hw na 635 */ 636 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 637 struct netmap_adapter *tmp = BDG_GET_VAR(b->bdg_ports[i]); 638 639 if (tmp == na) { 640 /* disconnect from bridge */ 641 BDG_SET_VAR(b->bdg_ports[i], NULL); 642 na->na_bdg = NULL; 643 if (is_hw && SWNA(ifp)->na_bdg) { 644 /* disconnect sw adapter too */ 645 int j = SWNA(ifp)->bdg_port; 646 BDG_SET_VAR(b->bdg_ports[j], NULL); 647 SWNA(ifp)->na_bdg = NULL; 648 } 649 } else if (tmp != NULL) { 650 full = 1; 651 } 652 } 653 BDG_WUNLOCK(b); 654 if (full == 0) { 655 ND("marking bridge %d as free", b - nm_bridges); 656 b->namelen = 0; 657 b->nm_bdg_lookup = NULL; 658 } 659 if (na->na_bdg) { /* still attached to the bridge */ 660 D("ouch, cannot find ifp to remove"); 661 } else if (is_hw) { 662 if_rele(ifp); 663 } else { 664 bzero(na, sizeof(*na)); 665 free(na, M_DEVBUF); 666 bzero(ifp, sizeof(*ifp)); 667 free(ifp, M_DEVBUF); 668 } 669 #endif /* NM_BRIDGE */ 670 } 671 672 static void 673 netmap_dtor(void *data) 674 { 675 struct netmap_priv_d *priv = data; 676 struct ifnet *ifp = priv->np_ifp; 677 678 NMA_LOCK(); 679 if (ifp) { 680 struct netmap_adapter *na = NA(ifp); 681 682 if (na->na_bdg) 683 BDG_WLOCK(na->na_bdg); 684 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 685 netmap_dtor_locked(data); 686 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 687 if (na->na_bdg) 688 BDG_WUNLOCK(na->na_bdg); 689 690 nm_if_rele(ifp); /* might also destroy *na */ 691 } 692 if (priv->ref_done) { 693 netmap_memory_deref(); 694 } 695 NMA_UNLOCK(); 696 bzero(priv, sizeof(*priv)); /* XXX for safety */ 697 free(priv, M_DEVBUF); 698 } 699 700 701 #ifdef __FreeBSD__ 702 #include <vm/vm.h> 703 #include <vm/vm_param.h> 704 #include <vm/vm_object.h> 705 #include <vm/vm_page.h> 706 #include <vm/vm_pager.h> 707 #include <vm/uma.h> 708 709 /* 710 * In order to track whether pages are still mapped, we hook into 711 * the standard cdev_pager and intercept the constructor and 712 * destructor. 713 * XXX but then ? Do we really use the information ? 714 * Need to investigate. 715 */ 716 static struct cdev_pager_ops saved_cdev_pager_ops; 717 718 719 static int 720 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 721 vm_ooffset_t foff, struct ucred *cred, u_short *color) 722 { 723 if (netmap_verbose) 724 D("first mmap for %p", handle); 725 return saved_cdev_pager_ops.cdev_pg_ctor(handle, 726 size, prot, foff, cred, color); 727 } 728 729 730 static void 731 netmap_dev_pager_dtor(void *handle) 732 { 733 saved_cdev_pager_ops.cdev_pg_dtor(handle); 734 ND("ready to release memory for %p", handle); 735 } 736 737 738 static struct cdev_pager_ops netmap_cdev_pager_ops = { 739 .cdev_pg_ctor = netmap_dev_pager_ctor, 740 .cdev_pg_dtor = netmap_dev_pager_dtor, 741 .cdev_pg_fault = NULL, 742 }; 743 744 745 // XXX check whether we need netmap_mmap_single _and_ netmap_mmap 746 static int 747 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 748 vm_size_t objsize, vm_object_t *objp, int prot) 749 { 750 vm_object_t obj; 751 752 ND("cdev %p foff %jd size %jd objp %p prot %d", cdev, 753 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 754 obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, 755 curthread->td_ucred); 756 ND("returns obj %p", obj); 757 if (obj == NULL) 758 return EINVAL; 759 if (saved_cdev_pager_ops.cdev_pg_fault == NULL) { 760 ND("initialize cdev_pager_ops"); 761 saved_cdev_pager_ops = *(obj->un_pager.devp.ops); 762 netmap_cdev_pager_ops.cdev_pg_fault = 763 saved_cdev_pager_ops.cdev_pg_fault; 764 }; 765 obj->un_pager.devp.ops = &netmap_cdev_pager_ops; 766 *objp = obj; 767 return 0; 768 } 769 #endif /* __FreeBSD__ */ 770 771 772 /* 773 * mmap(2) support for the "netmap" device. 774 * 775 * Expose all the memory previously allocated by our custom memory 776 * allocator: this way the user has only to issue a single mmap(2), and 777 * can work on all the data structures flawlessly. 778 * 779 * Return 0 on success, -1 otherwise. 780 */ 781 782 #ifdef __FreeBSD__ 783 static int 784 netmap_mmap(__unused struct cdev *dev, 785 #if __FreeBSD_version < 900000 786 vm_offset_t offset, vm_paddr_t *paddr, int nprot 787 #else 788 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 789 __unused vm_memattr_t *memattr 790 #endif 791 ) 792 { 793 int error = 0; 794 struct netmap_priv_d *priv; 795 796 if (nprot & PROT_EXEC) 797 return (-1); // XXX -1 or EINVAL ? 798 799 error = devfs_get_cdevpriv((void **)&priv); 800 if (error == EBADF) { /* called on fault, memory is initialized */ 801 ND(5, "handling fault at ofs 0x%x", offset); 802 error = 0; 803 } else if (error == 0) /* make sure memory is set */ 804 error = netmap_get_memory(priv); 805 if (error) 806 return (error); 807 808 ND("request for offset 0x%x", (uint32_t)offset); 809 *paddr = netmap_ofstophys(offset); 810 811 return (*paddr ? 0 : ENOMEM); 812 } 813 814 815 static int 816 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 817 { 818 if (netmap_verbose) 819 D("dev %p fflag 0x%x devtype %d td %p", 820 dev, fflag, devtype, td); 821 return 0; 822 } 823 824 825 static int 826 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 827 { 828 struct netmap_priv_d *priv; 829 int error; 830 831 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 832 M_NOWAIT | M_ZERO); 833 if (priv == NULL) 834 return ENOMEM; 835 836 error = devfs_set_cdevpriv(priv, netmap_dtor); 837 if (error) 838 return error; 839 840 return 0; 841 } 842 #endif /* __FreeBSD__ */ 843 844 845 /* 846 * Handlers for synchronization of the queues from/to the host. 847 * Netmap has two operating modes: 848 * - in the default mode, the rings connected to the host stack are 849 * just another ring pair managed by userspace; 850 * - in transparent mode (XXX to be defined) incoming packets 851 * (from the host or the NIC) are marked as NS_FORWARD upon 852 * arrival, and the user application has a chance to reset the 853 * flag for packets that should be dropped. 854 * On the RXSYNC or poll(), packets in RX rings between 855 * kring->nr_kcur and ring->cur with NS_FORWARD still set are moved 856 * to the other side. 857 * The transfer NIC --> host is relatively easy, just encapsulate 858 * into mbufs and we are done. The host --> NIC side is slightly 859 * harder because there might not be room in the tx ring so it 860 * might take a while before releasing the buffer. 861 */ 862 863 864 /* 865 * pass a chain of buffers to the host stack as coming from 'dst' 866 */ 867 static void 868 netmap_send_up(struct ifnet *dst, struct mbuf *head) 869 { 870 struct mbuf *m; 871 872 /* send packets up, outside the lock */ 873 while ((m = head) != NULL) { 874 head = head->m_nextpkt; 875 m->m_nextpkt = NULL; 876 if (netmap_verbose & NM_VERB_HOST) 877 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 878 NM_SEND_UP(dst, m); 879 } 880 } 881 882 struct mbq { 883 struct mbuf *head; 884 struct mbuf *tail; 885 int count; 886 }; 887 888 889 /* 890 * put a copy of the buffers marked NS_FORWARD into an mbuf chain. 891 * Run from hwcur to cur - reserved 892 */ 893 static void 894 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 895 { 896 /* Take packets from hwcur to cur-reserved and pass them up. 897 * In case of no buffers we give up. At the end of the loop, 898 * the queue is drained in all cases. 899 * XXX handle reserved 900 */ 901 int k = kring->ring->cur - kring->ring->reserved; 902 u_int n, lim = kring->nkr_num_slots - 1; 903 struct mbuf *m, *tail = q->tail; 904 905 if (k < 0) 906 k = k + kring->nkr_num_slots; 907 for (n = kring->nr_hwcur; n != k;) { 908 struct netmap_slot *slot = &kring->ring->slot[n]; 909 910 n = (n == lim) ? 0 : n + 1; 911 if ((slot->flags & NS_FORWARD) == 0 && !force) 912 continue; 913 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 914 D("bad pkt at %d len %d", n, slot->len); 915 continue; 916 } 917 slot->flags &= ~NS_FORWARD; // XXX needed ? 918 m = m_devget(NMB(slot), slot->len, 0, kring->na->ifp, NULL); 919 920 if (m == NULL) 921 break; 922 if (tail) 923 tail->m_nextpkt = m; 924 else 925 q->head = m; 926 tail = m; 927 q->count++; 928 m->m_nextpkt = NULL; 929 } 930 q->tail = tail; 931 } 932 933 934 /* 935 * called under main lock to send packets from the host to the NIC 936 * The host ring has packets from nr_hwcur to (cur - reserved) 937 * to be sent down. We scan the tx rings, which have just been 938 * flushed so nr_hwcur == cur. Pushing packets down means 939 * increment cur and decrement avail. 940 * XXX to be verified 941 */ 942 static void 943 netmap_sw_to_nic(struct netmap_adapter *na) 944 { 945 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 946 struct netmap_kring *k1 = &na->tx_rings[0]; 947 int i, howmany, src_lim, dst_lim; 948 949 howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */ 950 951 src_lim = kring->nkr_num_slots; 952 for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) { 953 ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail); 954 dst_lim = k1->nkr_num_slots; 955 while (howmany > 0 && k1->ring->avail > 0) { 956 struct netmap_slot *src, *dst, tmp; 957 src = &kring->ring->slot[kring->nr_hwcur]; 958 dst = &k1->ring->slot[k1->ring->cur]; 959 tmp = *src; 960 src->buf_idx = dst->buf_idx; 961 src->flags = NS_BUF_CHANGED; 962 963 dst->buf_idx = tmp.buf_idx; 964 dst->len = tmp.len; 965 dst->flags = NS_BUF_CHANGED; 966 ND("out len %d buf %d from %d to %d", 967 dst->len, dst->buf_idx, 968 kring->nr_hwcur, k1->ring->cur); 969 970 if (++kring->nr_hwcur >= src_lim) 971 kring->nr_hwcur = 0; 972 howmany--; 973 kring->nr_hwavail--; 974 if (++k1->ring->cur >= dst_lim) 975 k1->ring->cur = 0; 976 k1->ring->avail--; 977 } 978 kring->ring->cur = kring->nr_hwcur; // XXX 979 k1++; 980 } 981 } 982 983 984 /* 985 * netmap_sync_to_host() passes packets up. We are called from a 986 * system call in user process context, and the only contention 987 * can be among multiple user threads erroneously calling 988 * this routine concurrently. 989 */ 990 static void 991 netmap_sync_to_host(struct netmap_adapter *na) 992 { 993 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 994 struct netmap_ring *ring = kring->ring; 995 u_int k, lim = kring->nkr_num_slots - 1; 996 struct mbq q = { NULL, NULL }; 997 998 k = ring->cur; 999 if (k > lim) { 1000 netmap_ring_reinit(kring); 1001 return; 1002 } 1003 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 1004 1005 /* Take packets from hwcur to cur and pass them up. 1006 * In case of no buffers we give up. At the end of the loop, 1007 * the queue is drained in all cases. 1008 */ 1009 netmap_grab_packets(kring, &q, 1); 1010 kring->nr_hwcur = k; 1011 kring->nr_hwavail = ring->avail = lim; 1012 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 1013 1014 netmap_send_up(na->ifp, q.head); 1015 } 1016 1017 1018 /* SWNA(ifp)->txrings[0] is always NA(ifp)->txrings[NA(ifp)->num_txrings] */ 1019 static int 1020 netmap_bdg_to_host(struct ifnet *ifp, u_int ring_nr, int do_lock) 1021 { 1022 (void)ring_nr; 1023 (void)do_lock; 1024 netmap_sync_to_host(NA(ifp)); 1025 return 0; 1026 } 1027 1028 1029 /* 1030 * rxsync backend for packets coming from the host stack. 1031 * They have been put in the queue by netmap_start() so we 1032 * need to protect access to the kring using a lock. 1033 * 1034 * This routine also does the selrecord if called from the poll handler 1035 * (we know because td != NULL). 1036 * 1037 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 1038 * as an additional hidden argument. 1039 */ 1040 static void 1041 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 1042 { 1043 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1044 struct netmap_ring *ring = kring->ring; 1045 u_int j, n, lim = kring->nkr_num_slots; 1046 u_int k = ring->cur, resvd = ring->reserved; 1047 1048 (void)pwait; /* disable unused warnings */ 1049 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 1050 if (k >= lim) { 1051 netmap_ring_reinit(kring); 1052 return; 1053 } 1054 /* new packets are already set in nr_hwavail */ 1055 /* skip past packets that userspace has released */ 1056 j = kring->nr_hwcur; 1057 if (resvd > 0) { 1058 if (resvd + ring->avail >= lim + 1) { 1059 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 1060 ring->reserved = resvd = 0; // XXX panic... 1061 } 1062 k = (k >= resvd) ? k - resvd : k + lim - resvd; 1063 } 1064 if (j != k) { 1065 n = k >= j ? k - j : k + lim - j; 1066 kring->nr_hwavail -= n; 1067 kring->nr_hwcur = k; 1068 } 1069 k = ring->avail = kring->nr_hwavail - resvd; 1070 if (k == 0 && td) 1071 selrecord(td, &kring->si); 1072 if (k && (netmap_verbose & NM_VERB_HOST)) 1073 D("%d pkts from stack", k); 1074 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 1075 } 1076 1077 1078 /* 1079 * get a refcounted reference to an interface. 1080 * Return ENXIO if the interface does not exist, EINVAL if netmap 1081 * is not supported by the interface. 1082 * If successful, hold a reference. 1083 * 1084 * During the NIC is attached to a bridge, reference is managed 1085 * at na->na_bdg_refcount using ADD/DROP_BDG_REF() as well as 1086 * virtual ports. Hence, on the final DROP_BDG_REF(), the NIC 1087 * is detached from the bridge, then ifp's refcount is dropped (this 1088 * is equivalent to that ifp is destroyed in case of virtual ports. 1089 * 1090 * This function uses if_rele() when we want to prevent the NIC from 1091 * being detached from the bridge in error handling. But once refcount 1092 * is acquired by this function, it must be released using nm_if_rele(). 1093 */ 1094 static int 1095 get_ifp(struct nmreq *nmr, struct ifnet **ifp) 1096 { 1097 const char *name = nmr->nr_name; 1098 int namelen = strlen(name); 1099 #ifdef NM_BRIDGE 1100 struct ifnet *iter = NULL; 1101 int no_prefix = 0; 1102 1103 do { 1104 struct nm_bridge *b; 1105 struct netmap_adapter *na; 1106 int i, cand = -1, cand2 = -1; 1107 1108 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) { 1109 no_prefix = 1; 1110 break; 1111 } 1112 b = nm_find_bridge(name, 1 /* create a new one if no exist */ ); 1113 if (b == NULL) { 1114 D("no bridges available for '%s'", name); 1115 return (ENXIO); 1116 } 1117 /* Now we are sure that name starts with the bridge's name */ 1118 BDG_WLOCK(b); 1119 /* lookup in the local list of ports */ 1120 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 1121 na = BDG_GET_VAR(b->bdg_ports[i]); 1122 if (na == NULL) { 1123 if (cand == -1) 1124 cand = i; /* potential insert point */ 1125 else if (cand2 == -1) 1126 cand2 = i; /* for host stack */ 1127 continue; 1128 } 1129 iter = na->ifp; 1130 /* XXX make sure the name only contains one : */ 1131 if (!strcmp(iter->if_xname, name) /* virtual port */ || 1132 (namelen > b->namelen && !strcmp(iter->if_xname, 1133 name + b->namelen + 1)) /* NIC */) { 1134 ADD_BDG_REF(iter); 1135 ND("found existing interface"); 1136 BDG_WUNLOCK(b); 1137 break; 1138 } 1139 } 1140 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 1141 break; 1142 if (cand == -1) { 1143 D("bridge full, cannot create new port"); 1144 no_port: 1145 BDG_WUNLOCK(b); 1146 *ifp = NULL; 1147 return EINVAL; 1148 } 1149 ND("create new bridge port %s", name); 1150 /* 1151 * create a struct ifnet for the new port. 1152 * The forwarding table is attached to the kring(s). 1153 */ 1154 /* 1155 * try see if there is a matching NIC with this name 1156 * (after the bridge's name) 1157 */ 1158 iter = ifunit_ref(name + b->namelen + 1); 1159 if (!iter) { /* this is a virtual port */ 1160 /* Create a temporary NA with arguments, then 1161 * bdg_netmap_attach() will allocate the real one 1162 * and attach it to the ifp 1163 */ 1164 struct netmap_adapter tmp_na; 1165 1166 if (nmr->nr_cmd) /* nr_cmd must be for a NIC */ 1167 goto no_port; 1168 bzero(&tmp_na, sizeof(tmp_na)); 1169 /* bound checking */ 1170 if (nmr->nr_tx_rings < 1) 1171 nmr->nr_tx_rings = 1; 1172 if (nmr->nr_tx_rings > NM_BDG_MAXRINGS) 1173 nmr->nr_tx_rings = NM_BDG_MAXRINGS; 1174 tmp_na.num_tx_rings = nmr->nr_tx_rings; 1175 if (nmr->nr_rx_rings < 1) 1176 nmr->nr_rx_rings = 1; 1177 if (nmr->nr_rx_rings > NM_BDG_MAXRINGS) 1178 nmr->nr_rx_rings = NM_BDG_MAXRINGS; 1179 tmp_na.num_rx_rings = nmr->nr_rx_rings; 1180 1181 iter = malloc(sizeof(*iter), M_DEVBUF, M_NOWAIT | M_ZERO); 1182 if (!iter) 1183 goto no_port; 1184 strcpy(iter->if_xname, name); 1185 tmp_na.ifp = iter; 1186 /* bdg_netmap_attach creates a struct netmap_adapter */ 1187 bdg_netmap_attach(&tmp_na); 1188 } else if (NETMAP_CAPABLE(iter)) { /* this is a NIC */ 1189 /* cannot attach the NIC that any user or another 1190 * bridge already holds. 1191 */ 1192 if (NETMAP_OWNED_BY_ANY(iter) || cand2 == -1) { 1193 ifunit_rele: 1194 if_rele(iter); /* don't detach from bridge */ 1195 goto no_port; 1196 } 1197 /* bind the host stack to the bridge */ 1198 if (nmr->nr_arg1 == NETMAP_BDG_HOST) { 1199 BDG_SET_VAR(b->bdg_ports[cand2], SWNA(iter)); 1200 SWNA(iter)->bdg_port = cand2; 1201 SWNA(iter)->na_bdg = b; 1202 } 1203 } else /* not a netmap-capable NIC */ 1204 goto ifunit_rele; 1205 na = NA(iter); 1206 na->bdg_port = cand; 1207 /* bind the port to the bridge (virtual ports are not active) */ 1208 BDG_SET_VAR(b->bdg_ports[cand], na); 1209 na->na_bdg = b; 1210 ADD_BDG_REF(iter); 1211 BDG_WUNLOCK(b); 1212 ND("attaching virtual bridge %p", b); 1213 } while (0); 1214 *ifp = iter; 1215 if (! *ifp) 1216 #endif /* NM_BRIDGE */ 1217 *ifp = ifunit_ref(name); 1218 if (*ifp == NULL) 1219 return (ENXIO); 1220 /* can do this if the capability exists and if_pspare[0] 1221 * points to the netmap descriptor. 1222 */ 1223 if (NETMAP_CAPABLE(*ifp)) { 1224 #ifdef NM_BRIDGE 1225 /* Users cannot use the NIC attached to a bridge directly */ 1226 if (no_prefix && NETMAP_OWNED_BY_KERN(*ifp)) { 1227 if_rele(*ifp); /* don't detach from bridge */ 1228 return EINVAL; 1229 } else 1230 #endif /* NM_BRIDGE */ 1231 return 0; /* valid pointer, we hold the refcount */ 1232 } 1233 nm_if_rele(*ifp); 1234 return EINVAL; // not NETMAP capable 1235 } 1236 1237 1238 /* 1239 * Error routine called when txsync/rxsync detects an error. 1240 * Can't do much more than resetting cur = hwcur, avail = hwavail. 1241 * Return 1 on reinit. 1242 * 1243 * This routine is only called by the upper half of the kernel. 1244 * It only reads hwcur (which is changed only by the upper half, too) 1245 * and hwavail (which may be changed by the lower half, but only on 1246 * a tx ring and only to increase it, so any error will be recovered 1247 * on the next call). For the above, we don't strictly need to call 1248 * it under lock. 1249 */ 1250 int 1251 netmap_ring_reinit(struct netmap_kring *kring) 1252 { 1253 struct netmap_ring *ring = kring->ring; 1254 u_int i, lim = kring->nkr_num_slots - 1; 1255 int errors = 0; 1256 1257 RD(10, "called for %s", kring->na->ifp->if_xname); 1258 if (ring->cur > lim) 1259 errors++; 1260 for (i = 0; i <= lim; i++) { 1261 u_int idx = ring->slot[i].buf_idx; 1262 u_int len = ring->slot[i].len; 1263 if (idx < 2 || idx >= netmap_total_buffers) { 1264 if (!errors++) 1265 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 1266 ring->slot[i].buf_idx = 0; 1267 ring->slot[i].len = 0; 1268 } else if (len > NETMAP_BUF_SIZE) { 1269 ring->slot[i].len = 0; 1270 if (!errors++) 1271 D("bad len %d at slot %d idx %d", 1272 len, i, idx); 1273 } 1274 } 1275 if (errors) { 1276 int pos = kring - kring->na->tx_rings; 1277 int n = kring->na->num_tx_rings + 1; 1278 1279 RD(10, "total %d errors", errors); 1280 errors++; 1281 RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 1282 kring->na->ifp->if_xname, 1283 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 1284 ring->cur, kring->nr_hwcur, 1285 ring->avail, kring->nr_hwavail); 1286 ring->cur = kring->nr_hwcur; 1287 ring->avail = kring->nr_hwavail; 1288 } 1289 return (errors ? 1 : 0); 1290 } 1291 1292 1293 /* 1294 * Set the ring ID. For devices with a single queue, a request 1295 * for all rings is the same as a single ring. 1296 */ 1297 static int 1298 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 1299 { 1300 struct ifnet *ifp = priv->np_ifp; 1301 struct netmap_adapter *na = NA(ifp); 1302 u_int i = ringid & NETMAP_RING_MASK; 1303 /* initially (np_qfirst == np_qlast) we don't want to lock */ 1304 int need_lock = (priv->np_qfirst != priv->np_qlast); 1305 int lim = na->num_rx_rings; 1306 1307 if (na->num_tx_rings > lim) 1308 lim = na->num_tx_rings; 1309 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 1310 D("invalid ring id %d", i); 1311 return (EINVAL); 1312 } 1313 if (need_lock) 1314 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1315 priv->np_ringid = ringid; 1316 if (ringid & NETMAP_SW_RING) { 1317 priv->np_qfirst = NETMAP_SW_RING; 1318 priv->np_qlast = 0; 1319 } else if (ringid & NETMAP_HW_RING) { 1320 priv->np_qfirst = i; 1321 priv->np_qlast = i + 1; 1322 } else { 1323 priv->np_qfirst = 0; 1324 priv->np_qlast = NETMAP_HW_RING ; 1325 } 1326 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 1327 if (need_lock) 1328 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1329 if (netmap_verbose) { 1330 if (ringid & NETMAP_SW_RING) 1331 D("ringid %s set to SW RING", ifp->if_xname); 1332 else if (ringid & NETMAP_HW_RING) 1333 D("ringid %s set to HW RING %d", ifp->if_xname, 1334 priv->np_qfirst); 1335 else 1336 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 1337 } 1338 return 0; 1339 } 1340 1341 1342 /* 1343 * possibly move the interface to netmap-mode. 1344 * If success it returns a pointer to netmap_if, otherwise NULL. 1345 * This must be called with NMA_LOCK held. 1346 */ 1347 static struct netmap_if * 1348 netmap_do_regif(struct netmap_priv_d *priv, struct ifnet *ifp, 1349 uint16_t ringid, int *err) 1350 { 1351 struct netmap_adapter *na = NA(ifp); 1352 struct netmap_if *nifp = NULL; 1353 int i, error; 1354 1355 if (na->na_bdg) 1356 BDG_WLOCK(na->na_bdg); 1357 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 1358 1359 /* ring configuration may have changed, fetch from the card */ 1360 netmap_update_config(na); 1361 priv->np_ifp = ifp; /* store the reference */ 1362 error = netmap_set_ringid(priv, ringid); 1363 if (error) 1364 goto out; 1365 nifp = netmap_if_new(ifp->if_xname, na); 1366 if (nifp == NULL) { /* allocation failed */ 1367 error = ENOMEM; 1368 } else if (ifp->if_capenable & IFCAP_NETMAP) { 1369 /* was already set */ 1370 } else { 1371 /* Otherwise set the card in netmap mode 1372 * and make it use the shared buffers. 1373 */ 1374 for (i = 0 ; i < na->num_tx_rings + 1; i++) 1375 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", 1376 MTX_NETWORK_LOCK, MTX_DEF); 1377 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 1378 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", 1379 MTX_NETWORK_LOCK, MTX_DEF); 1380 } 1381 if (nma_is_hw(na)) { 1382 SWNA(ifp)->tx_rings = &na->tx_rings[na->num_tx_rings]; 1383 SWNA(ifp)->rx_rings = &na->rx_rings[na->num_rx_rings]; 1384 } 1385 error = na->nm_register(ifp, 1); /* mode on */ 1386 #ifdef NM_BRIDGE 1387 if (!error) 1388 error = nm_alloc_bdgfwd(na); 1389 #endif /* NM_BRIDGE */ 1390 if (error) { 1391 netmap_dtor_locked(priv); 1392 /* nifp is not yet in priv, so free it separately */ 1393 netmap_if_free(nifp); 1394 nifp = NULL; 1395 } 1396 1397 } 1398 out: 1399 *err = error; 1400 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1401 if (na->na_bdg) 1402 BDG_WUNLOCK(na->na_bdg); 1403 return nifp; 1404 } 1405 1406 1407 /* Process NETMAP_BDG_ATTACH and NETMAP_BDG_DETACH */ 1408 static int 1409 kern_netmap_regif(struct nmreq *nmr) 1410 { 1411 struct ifnet *ifp; 1412 struct netmap_if *nifp; 1413 struct netmap_priv_d *npriv; 1414 int error; 1415 1416 npriv = malloc(sizeof(*npriv), M_DEVBUF, M_NOWAIT|M_ZERO); 1417 if (npriv == NULL) 1418 return ENOMEM; 1419 error = netmap_get_memory(npriv); 1420 if (error) { 1421 free_exit: 1422 bzero(npriv, sizeof(*npriv)); 1423 free(npriv, M_DEVBUF); 1424 return error; 1425 } 1426 1427 NMA_LOCK(); 1428 error = get_ifp(nmr, &ifp); 1429 if (error) { /* no device, or another bridge or user owns the device */ 1430 NMA_UNLOCK(); 1431 goto free_exit; 1432 } else if (!NETMAP_OWNED_BY_KERN(ifp)) { 1433 /* got reference to a virtual port or direct access to a NIC. 1434 * perhaps specified no bridge's prefix or wrong NIC's name 1435 */ 1436 error = EINVAL; 1437 unref_exit: 1438 nm_if_rele(ifp); 1439 NMA_UNLOCK(); 1440 goto free_exit; 1441 } 1442 1443 if (nmr->nr_cmd == NETMAP_BDG_DETACH) { 1444 if (NA(ifp)->refcount == 0) { /* not registered */ 1445 error = EINVAL; 1446 goto unref_exit; 1447 } 1448 NMA_UNLOCK(); 1449 1450 netmap_dtor(NA(ifp)->na_kpriv); /* unregister */ 1451 NA(ifp)->na_kpriv = NULL; 1452 nm_if_rele(ifp); /* detach from the bridge */ 1453 goto free_exit; 1454 } else if (NA(ifp)->refcount > 0) { /* already registered */ 1455 error = EINVAL; 1456 goto unref_exit; 1457 } 1458 1459 nifp = netmap_do_regif(npriv, ifp, nmr->nr_ringid, &error); 1460 if (!nifp) 1461 goto unref_exit; 1462 wmb(); // XXX do we need it ? 1463 npriv->np_nifp = nifp; 1464 NA(ifp)->na_kpriv = npriv; 1465 NMA_UNLOCK(); 1466 D("registered %s to netmap-mode", ifp->if_xname); 1467 return 0; 1468 } 1469 1470 1471 /* CORE_LOCK is not necessary */ 1472 static void 1473 netmap_swlock_wrapper(struct ifnet *dev, int what, u_int queueid) 1474 { 1475 struct netmap_adapter *na = SWNA(dev); 1476 1477 switch (what) { 1478 case NETMAP_TX_LOCK: 1479 mtx_lock(&na->tx_rings[queueid].q_lock); 1480 break; 1481 1482 case NETMAP_TX_UNLOCK: 1483 mtx_unlock(&na->tx_rings[queueid].q_lock); 1484 break; 1485 1486 case NETMAP_RX_LOCK: 1487 mtx_lock(&na->rx_rings[queueid].q_lock); 1488 break; 1489 1490 case NETMAP_RX_UNLOCK: 1491 mtx_unlock(&na->rx_rings[queueid].q_lock); 1492 break; 1493 } 1494 } 1495 1496 1497 /* Initialize necessary fields of sw adapter located in right after hw's 1498 * one. sw adapter attaches a pair of sw rings of the netmap-mode NIC. 1499 * It is always activated and deactivated at the same tie with the hw's one. 1500 * Thus we don't need refcounting on the sw adapter. 1501 * Regardless of NIC's feature we use separate lock so that anybody can lock 1502 * me independently from the hw adapter. 1503 * Make sure nm_register is NULL to be handled as FALSE in nma_is_hw 1504 */ 1505 static void 1506 netmap_attach_sw(struct ifnet *ifp) 1507 { 1508 struct netmap_adapter *hw_na = NA(ifp); 1509 struct netmap_adapter *na = SWNA(ifp); 1510 1511 na->ifp = ifp; 1512 na->separate_locks = 1; 1513 na->nm_lock = netmap_swlock_wrapper; 1514 na->num_rx_rings = na->num_tx_rings = 1; 1515 na->num_tx_desc = hw_na->num_tx_desc; 1516 na->num_rx_desc = hw_na->num_rx_desc; 1517 na->nm_txsync = netmap_bdg_to_host; 1518 } 1519 1520 1521 /* exported to kernel callers */ 1522 int 1523 netmap_bdg_ctl(struct nmreq *nmr, bdg_lookup_fn_t func) 1524 { 1525 struct nm_bridge *b; 1526 struct netmap_adapter *na; 1527 struct ifnet *iter; 1528 char *name = nmr->nr_name; 1529 int cmd = nmr->nr_cmd, namelen = strlen(name); 1530 int error = 0, i, j; 1531 1532 switch (cmd) { 1533 case NETMAP_BDG_ATTACH: 1534 case NETMAP_BDG_DETACH: 1535 error = kern_netmap_regif(nmr); 1536 break; 1537 1538 case NETMAP_BDG_LIST: 1539 /* this is used to enumerate bridges and ports */ 1540 if (namelen) { /* look up indexes of bridge and port */ 1541 if (strncmp(name, NM_NAME, strlen(NM_NAME))) { 1542 error = EINVAL; 1543 break; 1544 } 1545 b = nm_find_bridge(name, 0 /* don't create */); 1546 if (!b) { 1547 error = ENOENT; 1548 break; 1549 } 1550 1551 BDG_RLOCK(b); 1552 error = ENOENT; 1553 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 1554 na = BDG_GET_VAR(b->bdg_ports[i]); 1555 if (na == NULL) 1556 continue; 1557 iter = na->ifp; 1558 /* the former and the latter identify a 1559 * virtual port and a NIC, respectively 1560 */ 1561 if (!strcmp(iter->if_xname, name) || 1562 (namelen > b->namelen && 1563 !strcmp(iter->if_xname, 1564 name + b->namelen + 1))) { 1565 /* bridge index */ 1566 nmr->nr_arg1 = b - nm_bridges; 1567 nmr->nr_arg2 = i; /* port index */ 1568 error = 0; 1569 break; 1570 } 1571 } 1572 BDG_RUNLOCK(b); 1573 } else { 1574 /* return the first non-empty entry starting from 1575 * bridge nr_arg1 and port nr_arg2. 1576 * 1577 * Users can detect the end of the same bridge by 1578 * seeing the new and old value of nr_arg1, and can 1579 * detect the end of all the bridge by error != 0 1580 */ 1581 i = nmr->nr_arg1; 1582 j = nmr->nr_arg2; 1583 1584 for (error = ENOENT; error && i < NM_BRIDGES; i++) { 1585 b = nm_bridges + i; 1586 BDG_RLOCK(b); 1587 for (; j < NM_BDG_MAXPORTS; j++) { 1588 na = BDG_GET_VAR(b->bdg_ports[j]); 1589 if (na == NULL) 1590 continue; 1591 iter = na->ifp; 1592 nmr->nr_arg1 = i; 1593 nmr->nr_arg2 = j; 1594 strncpy(name, iter->if_xname, IFNAMSIZ); 1595 error = 0; 1596 break; 1597 } 1598 BDG_RUNLOCK(b); 1599 j = 0; /* following bridges scan from 0 */ 1600 } 1601 } 1602 break; 1603 1604 case NETMAP_BDG_LOOKUP_REG: 1605 /* register a lookup function to the given bridge. 1606 * nmr->nr_name may be just bridge's name (including ':' 1607 * if it is not just NM_NAME). 1608 */ 1609 if (!func) { 1610 error = EINVAL; 1611 break; 1612 } 1613 b = nm_find_bridge(name, 0 /* don't create */); 1614 if (!b) { 1615 error = EINVAL; 1616 break; 1617 } 1618 BDG_WLOCK(b); 1619 b->nm_bdg_lookup = func; 1620 BDG_WUNLOCK(b); 1621 break; 1622 default: 1623 D("invalid cmd (nmr->nr_cmd) (0x%x)", cmd); 1624 error = EINVAL; 1625 break; 1626 } 1627 return error; 1628 } 1629 1630 1631 /* 1632 * ioctl(2) support for the "netmap" device. 1633 * 1634 * Following a list of accepted commands: 1635 * - NIOCGINFO 1636 * - SIOCGIFADDR just for convenience 1637 * - NIOCREGIF 1638 * - NIOCUNREGIF 1639 * - NIOCTXSYNC 1640 * - NIOCRXSYNC 1641 * 1642 * Return 0 on success, errno otherwise. 1643 */ 1644 static int 1645 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 1646 int fflag, struct thread *td) 1647 { 1648 struct netmap_priv_d *priv = NULL; 1649 struct ifnet *ifp; 1650 struct nmreq *nmr = (struct nmreq *) data; 1651 struct netmap_adapter *na; 1652 int error; 1653 u_int i, lim; 1654 struct netmap_if *nifp; 1655 1656 (void)dev; /* UNUSED */ 1657 (void)fflag; /* UNUSED */ 1658 #ifdef linux 1659 #define devfs_get_cdevpriv(pp) \ 1660 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 1661 (*pp ? 0 : ENOENT); }) 1662 1663 /* devfs_set_cdevpriv cannot fail on linux */ 1664 #define devfs_set_cdevpriv(p, fn) \ 1665 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 1666 1667 1668 #define devfs_clear_cdevpriv() do { \ 1669 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 1670 } while (0) 1671 #endif /* linux */ 1672 1673 CURVNET_SET(TD_TO_VNET(td)); 1674 1675 error = devfs_get_cdevpriv((void **)&priv); 1676 if (error) { 1677 CURVNET_RESTORE(); 1678 /* XXX ENOENT should be impossible, since the priv 1679 * is now created in the open */ 1680 return (error == ENOENT ? ENXIO : error); 1681 } 1682 1683 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 1684 switch (cmd) { 1685 case NIOCGINFO: /* return capabilities etc */ 1686 if (nmr->nr_version != NETMAP_API) { 1687 D("API mismatch got %d have %d", 1688 nmr->nr_version, NETMAP_API); 1689 nmr->nr_version = NETMAP_API; 1690 error = EINVAL; 1691 break; 1692 } 1693 if (nmr->nr_cmd == NETMAP_BDG_LIST) { 1694 error = netmap_bdg_ctl(nmr, NULL); 1695 break; 1696 } 1697 /* update configuration */ 1698 error = netmap_get_memory(priv); 1699 ND("get_memory returned %d", error); 1700 if (error) 1701 break; 1702 /* memsize is always valid */ 1703 nmr->nr_memsize = nm_mem.nm_totalsize; 1704 nmr->nr_offset = 0; 1705 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 1706 if (nmr->nr_name[0] == '\0') /* just get memory info */ 1707 break; 1708 /* lock because get_ifp and update_config see na->refcount */ 1709 NMA_LOCK(); 1710 error = get_ifp(nmr, &ifp); /* get a refcount */ 1711 if (error) { 1712 NMA_UNLOCK(); 1713 break; 1714 } 1715 na = NA(ifp); /* retrieve netmap_adapter */ 1716 netmap_update_config(na); 1717 NMA_UNLOCK(); 1718 nmr->nr_rx_rings = na->num_rx_rings; 1719 nmr->nr_tx_rings = na->num_tx_rings; 1720 nmr->nr_rx_slots = na->num_rx_desc; 1721 nmr->nr_tx_slots = na->num_tx_desc; 1722 nm_if_rele(ifp); /* return the refcount */ 1723 break; 1724 1725 case NIOCREGIF: 1726 if (nmr->nr_version != NETMAP_API) { 1727 nmr->nr_version = NETMAP_API; 1728 error = EINVAL; 1729 break; 1730 } 1731 /* possibly attach/detach NIC and VALE switch */ 1732 i = nmr->nr_cmd; 1733 if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH) { 1734 error = netmap_bdg_ctl(nmr, NULL); 1735 break; 1736 } else if (i != 0) { 1737 D("nr_cmd must be 0 not %d", i); 1738 error = EINVAL; 1739 break; 1740 } 1741 1742 /* ensure allocators are ready */ 1743 error = netmap_get_memory(priv); 1744 ND("get_memory returned %d", error); 1745 if (error) 1746 break; 1747 1748 /* protect access to priv from concurrent NIOCREGIF */ 1749 NMA_LOCK(); 1750 if (priv->np_ifp != NULL) { /* thread already registered */ 1751 error = netmap_set_ringid(priv, nmr->nr_ringid); 1752 unlock_out: 1753 NMA_UNLOCK(); 1754 break; 1755 } 1756 /* find the interface and a reference */ 1757 error = get_ifp(nmr, &ifp); /* keep reference */ 1758 if (error) 1759 goto unlock_out; 1760 else if (NETMAP_OWNED_BY_KERN(ifp)) { 1761 nm_if_rele(ifp); 1762 goto unlock_out; 1763 } 1764 nifp = netmap_do_regif(priv, ifp, nmr->nr_ringid, &error); 1765 if (!nifp) { /* reg. failed, release priv and ref */ 1766 nm_if_rele(ifp); /* return the refcount */ 1767 priv->np_ifp = NULL; 1768 priv->np_nifp = NULL; 1769 goto unlock_out; 1770 } 1771 1772 /* the following assignment is a commitment. 1773 * Readers (i.e., poll and *SYNC) check for 1774 * np_nifp != NULL without locking 1775 */ 1776 wmb(); /* make sure previous writes are visible to all CPUs */ 1777 priv->np_nifp = nifp; 1778 NMA_UNLOCK(); 1779 1780 /* return the offset of the netmap_if object */ 1781 na = NA(ifp); /* retrieve netmap adapter */ 1782 nmr->nr_rx_rings = na->num_rx_rings; 1783 nmr->nr_tx_rings = na->num_tx_rings; 1784 nmr->nr_rx_slots = na->num_rx_desc; 1785 nmr->nr_tx_slots = na->num_tx_desc; 1786 nmr->nr_memsize = nm_mem.nm_totalsize; 1787 nmr->nr_offset = netmap_if_offset(nifp); 1788 break; 1789 1790 case NIOCUNREGIF: 1791 // XXX we have no data here ? 1792 D("deprecated, data is %p", nmr); 1793 error = EINVAL; 1794 break; 1795 1796 case NIOCTXSYNC: 1797 case NIOCRXSYNC: 1798 nifp = priv->np_nifp; 1799 1800 if (nifp == NULL) { 1801 error = ENXIO; 1802 break; 1803 } 1804 rmb(); /* make sure following reads are not from cache */ 1805 1806 1807 ifp = priv->np_ifp; /* we have a reference */ 1808 1809 if (ifp == NULL) { 1810 D("Internal error: nifp != NULL && ifp == NULL"); 1811 error = ENXIO; 1812 break; 1813 } 1814 1815 na = NA(ifp); /* retrieve netmap adapter */ 1816 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 1817 if (cmd == NIOCTXSYNC) 1818 netmap_sync_to_host(na); 1819 else 1820 netmap_sync_from_host(na, NULL, NULL); 1821 break; 1822 } 1823 /* find the last ring to scan */ 1824 lim = priv->np_qlast; 1825 if (lim == NETMAP_HW_RING) 1826 lim = (cmd == NIOCTXSYNC) ? 1827 na->num_tx_rings : na->num_rx_rings; 1828 1829 for (i = priv->np_qfirst; i < lim; i++) { 1830 if (cmd == NIOCTXSYNC) { 1831 struct netmap_kring *kring = &na->tx_rings[i]; 1832 if (netmap_verbose & NM_VERB_TXSYNC) 1833 D("pre txsync ring %d cur %d hwcur %d", 1834 i, kring->ring->cur, 1835 kring->nr_hwcur); 1836 na->nm_txsync(ifp, i, 1 /* do lock */); 1837 if (netmap_verbose & NM_VERB_TXSYNC) 1838 D("post txsync ring %d cur %d hwcur %d", 1839 i, kring->ring->cur, 1840 kring->nr_hwcur); 1841 } else { 1842 na->nm_rxsync(ifp, i, 1 /* do lock */); 1843 microtime(&na->rx_rings[i].ring->ts); 1844 } 1845 } 1846 1847 break; 1848 1849 #ifdef __FreeBSD__ 1850 case BIOCIMMEDIATE: 1851 case BIOCGHDRCMPLT: 1852 case BIOCSHDRCMPLT: 1853 case BIOCSSEESENT: 1854 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1855 break; 1856 1857 default: /* allow device-specific ioctls */ 1858 { 1859 struct socket so; 1860 bzero(&so, sizeof(so)); 1861 error = get_ifp(nmr, &ifp); /* keep reference */ 1862 if (error) 1863 break; 1864 so.so_vnet = ifp->if_vnet; 1865 // so->so_proto not null. 1866 error = ifioctl(&so, cmd, data, td); 1867 nm_if_rele(ifp); 1868 break; 1869 } 1870 1871 #else /* linux */ 1872 default: 1873 error = EOPNOTSUPP; 1874 #endif /* linux */ 1875 } 1876 1877 CURVNET_RESTORE(); 1878 return (error); 1879 } 1880 1881 1882 /* 1883 * select(2) and poll(2) handlers for the "netmap" device. 1884 * 1885 * Can be called for one or more queues. 1886 * Return true the event mask corresponding to ready events. 1887 * If there are no ready events, do a selrecord on either individual 1888 * selfd or on the global one. 1889 * Device-dependent parts (locking and sync of tx/rx rings) 1890 * are done through callbacks. 1891 * 1892 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1893 * The first one is remapped to pwait as selrecord() uses the name as an 1894 * hidden argument. 1895 */ 1896 static int 1897 netmap_poll(struct cdev *dev, int events, struct thread *td) 1898 { 1899 struct netmap_priv_d *priv = NULL; 1900 struct netmap_adapter *na; 1901 struct ifnet *ifp; 1902 struct netmap_kring *kring; 1903 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1904 u_int lim_tx, lim_rx, host_forwarded = 0; 1905 struct mbq q = { NULL, NULL, 0 }; 1906 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1907 void *pwait = dev; /* linux compatibility */ 1908 1909 (void)pwait; 1910 1911 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1912 return POLLERR; 1913 1914 if (priv->np_nifp == NULL) { 1915 D("No if registered"); 1916 return POLLERR; 1917 } 1918 rmb(); /* make sure following reads are not from cache */ 1919 1920 ifp = priv->np_ifp; 1921 // XXX check for deleting() ? 1922 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1923 return POLLERR; 1924 1925 if (netmap_verbose & 0x8000) 1926 D("device %s events 0x%x", ifp->if_xname, events); 1927 want_tx = events & (POLLOUT | POLLWRNORM); 1928 want_rx = events & (POLLIN | POLLRDNORM); 1929 1930 na = NA(ifp); /* retrieve netmap adapter */ 1931 1932 lim_tx = na->num_tx_rings; 1933 lim_rx = na->num_rx_rings; 1934 /* how many queues we are scanning */ 1935 if (priv->np_qfirst == NETMAP_SW_RING) { 1936 if (priv->np_txpoll || want_tx) { 1937 /* push any packets up, then we are always ready */ 1938 netmap_sync_to_host(na); 1939 revents |= want_tx; 1940 } 1941 if (want_rx) { 1942 kring = &na->rx_rings[lim_rx]; 1943 if (kring->ring->avail == 0) 1944 netmap_sync_from_host(na, td, dev); 1945 if (kring->ring->avail > 0) { 1946 revents |= want_rx; 1947 } 1948 } 1949 return (revents); 1950 } 1951 1952 /* if we are in transparent mode, check also the host rx ring */ 1953 kring = &na->rx_rings[lim_rx]; 1954 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1955 && want_rx 1956 && (netmap_fwd || kring->ring->flags & NR_FORWARD) ) { 1957 if (kring->ring->avail == 0) 1958 netmap_sync_from_host(na, td, dev); 1959 if (kring->ring->avail > 0) 1960 revents |= want_rx; 1961 } 1962 1963 /* 1964 * check_all is set if the card has more than one queue and 1965 * the client is polling all of them. If true, we sleep on 1966 * the "global" selfd, otherwise we sleep on individual selfd 1967 * (we can only sleep on one of them per direction). 1968 * The interrupt routine in the driver should always wake on 1969 * the individual selfd, and also on the global one if the card 1970 * has more than one ring. 1971 * 1972 * If the card has only one lock, we just use that. 1973 * If the card has separate ring locks, we just use those 1974 * unless we are doing check_all, in which case the whole 1975 * loop is wrapped by the global lock. 1976 * We acquire locks only when necessary: if poll is called 1977 * when buffers are available, we can just return without locks. 1978 * 1979 * rxsync() is only called if we run out of buffers on a POLLIN. 1980 * txsync() is called if we run out of buffers on POLLOUT, or 1981 * there are pending packets to send. The latter can be disabled 1982 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1983 */ 1984 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1985 1986 /* 1987 * core_lock indicates what to do with the core lock. 1988 * The core lock is used when either the card has no individual 1989 * locks, or it has individual locks but we are cheking all 1990 * rings so we need the core lock to avoid missing wakeup events. 1991 * 1992 * It has three possible states: 1993 * NO_CL we don't need to use the core lock, e.g. 1994 * because we are protected by individual locks. 1995 * NEED_CL we need the core lock. In this case, when we 1996 * call the lock routine, move to LOCKED_CL 1997 * to remember to release the lock once done. 1998 * LOCKED_CL core lock is set, so we need to release it. 1999 */ 2000 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 2001 #ifdef NM_BRIDGE 2002 /* the bridge uses separate locks */ 2003 if (na->nm_register == bdg_netmap_reg) { 2004 ND("not using core lock for %s", ifp->if_xname); 2005 core_lock = NO_CL; 2006 } 2007 #endif /* NM_BRIDGE */ 2008 if (priv->np_qlast != NETMAP_HW_RING) { 2009 lim_tx = lim_rx = priv->np_qlast; 2010 } 2011 2012 /* 2013 * We start with a lock free round which is good if we have 2014 * data available. If this fails, then lock and call the sync 2015 * routines. 2016 */ 2017 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 2018 kring = &na->rx_rings[i]; 2019 if (kring->ring->avail > 0) { 2020 revents |= want_rx; 2021 want_rx = 0; /* also breaks the loop */ 2022 } 2023 } 2024 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 2025 kring = &na->tx_rings[i]; 2026 if (kring->ring->avail > 0) { 2027 revents |= want_tx; 2028 want_tx = 0; /* also breaks the loop */ 2029 } 2030 } 2031 2032 /* 2033 * If we to push packets out (priv->np_txpoll) or want_tx is 2034 * still set, we do need to run the txsync calls (on all rings, 2035 * to avoid that the tx rings stall). 2036 */ 2037 if (priv->np_txpoll || want_tx) { 2038 flush_tx: 2039 for (i = priv->np_qfirst; i < lim_tx; i++) { 2040 kring = &na->tx_rings[i]; 2041 /* 2042 * Skip the current ring if want_tx == 0 2043 * (we have already done a successful sync on 2044 * a previous ring) AND kring->cur == kring->hwcur 2045 * (there are no pending transmissions for this ring). 2046 */ 2047 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 2048 continue; 2049 if (core_lock == NEED_CL) { 2050 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2051 core_lock = LOCKED_CL; 2052 } 2053 if (na->separate_locks) 2054 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 2055 if (netmap_verbose & NM_VERB_TXSYNC) 2056 D("send %d on %s %d", 2057 kring->ring->cur, 2058 ifp->if_xname, i); 2059 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 2060 revents |= POLLERR; 2061 2062 /* Check avail/call selrecord only if called with POLLOUT */ 2063 if (want_tx) { 2064 if (kring->ring->avail > 0) { 2065 /* stop at the first ring. We don't risk 2066 * starvation. 2067 */ 2068 revents |= want_tx; 2069 want_tx = 0; 2070 } else if (!check_all) 2071 selrecord(td, &kring->si); 2072 } 2073 if (na->separate_locks) 2074 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 2075 } 2076 } 2077 2078 /* 2079 * now if want_rx is still set we need to lock and rxsync. 2080 * Do it on all rings because otherwise we starve. 2081 */ 2082 if (want_rx) { 2083 for (i = priv->np_qfirst; i < lim_rx; i++) { 2084 kring = &na->rx_rings[i]; 2085 if (core_lock == NEED_CL) { 2086 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2087 core_lock = LOCKED_CL; 2088 } 2089 if (na->separate_locks) 2090 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 2091 if (netmap_fwd ||kring->ring->flags & NR_FORWARD) { 2092 ND(10, "forwarding some buffers up %d to %d", 2093 kring->nr_hwcur, kring->ring->cur); 2094 netmap_grab_packets(kring, &q, netmap_fwd); 2095 } 2096 2097 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 2098 revents |= POLLERR; 2099 if (netmap_no_timestamp == 0 || 2100 kring->ring->flags & NR_TIMESTAMP) { 2101 microtime(&kring->ring->ts); 2102 } 2103 2104 if (kring->ring->avail > 0) 2105 revents |= want_rx; 2106 else if (!check_all) 2107 selrecord(td, &kring->si); 2108 if (na->separate_locks) 2109 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 2110 } 2111 } 2112 if (check_all && revents == 0) { /* signal on the global queue */ 2113 if (want_tx) 2114 selrecord(td, &na->tx_si); 2115 if (want_rx) 2116 selrecord(td, &na->rx_si); 2117 } 2118 2119 /* forward host to the netmap ring */ 2120 kring = &na->rx_rings[lim_rx]; 2121 if (kring->nr_hwavail > 0) 2122 ND("host rx %d has %d packets", lim_rx, kring->nr_hwavail); 2123 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 2124 && (netmap_fwd || kring->ring->flags & NR_FORWARD) 2125 && kring->nr_hwavail > 0 && !host_forwarded) { 2126 if (core_lock == NEED_CL) { 2127 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2128 core_lock = LOCKED_CL; 2129 } 2130 netmap_sw_to_nic(na); 2131 host_forwarded = 1; /* prevent another pass */ 2132 want_rx = 0; 2133 goto flush_tx; 2134 } 2135 2136 if (core_lock == LOCKED_CL) 2137 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 2138 if (q.head) 2139 netmap_send_up(na->ifp, q.head); 2140 2141 return (revents); 2142 } 2143 2144 /*------- driver support routines ------*/ 2145 2146 2147 /* 2148 * default lock wrapper. 2149 */ 2150 static void 2151 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 2152 { 2153 struct netmap_adapter *na = NA(dev); 2154 2155 switch (what) { 2156 #ifdef linux /* some system do not need lock on register */ 2157 case NETMAP_REG_LOCK: 2158 case NETMAP_REG_UNLOCK: 2159 break; 2160 #endif /* linux */ 2161 2162 case NETMAP_CORE_LOCK: 2163 mtx_lock(&na->core_lock); 2164 break; 2165 2166 case NETMAP_CORE_UNLOCK: 2167 mtx_unlock(&na->core_lock); 2168 break; 2169 2170 case NETMAP_TX_LOCK: 2171 mtx_lock(&na->tx_rings[queueid].q_lock); 2172 break; 2173 2174 case NETMAP_TX_UNLOCK: 2175 mtx_unlock(&na->tx_rings[queueid].q_lock); 2176 break; 2177 2178 case NETMAP_RX_LOCK: 2179 mtx_lock(&na->rx_rings[queueid].q_lock); 2180 break; 2181 2182 case NETMAP_RX_UNLOCK: 2183 mtx_unlock(&na->rx_rings[queueid].q_lock); 2184 break; 2185 } 2186 } 2187 2188 2189 /* 2190 * Initialize a ``netmap_adapter`` object created by driver on attach. 2191 * We allocate a block of memory with room for a struct netmap_adapter 2192 * plus two sets of N+2 struct netmap_kring (where N is the number 2193 * of hardware rings): 2194 * krings 0..N-1 are for the hardware queues. 2195 * kring N is for the host stack queue 2196 * kring N+1 is only used for the selinfo for all queues. 2197 * Return 0 on success, ENOMEM otherwise. 2198 * 2199 * By default the receive and transmit adapter ring counts are both initialized 2200 * to num_queues. na->num_tx_rings can be set for cards with different tx/rx 2201 * setups. 2202 */ 2203 int 2204 netmap_attach(struct netmap_adapter *arg, int num_queues) 2205 { 2206 struct netmap_adapter *na = NULL; 2207 struct ifnet *ifp = arg ? arg->ifp : NULL; 2208 int len; 2209 2210 if (arg == NULL || ifp == NULL) 2211 goto fail; 2212 len = nma_is_vp(arg) ? sizeof(*na) : sizeof(*na) * 2; 2213 na = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2214 if (na == NULL) 2215 goto fail; 2216 WNA(ifp) = na; 2217 *na = *arg; /* copy everything, trust the driver to not pass junk */ 2218 NETMAP_SET_CAPABLE(ifp); 2219 if (na->num_tx_rings == 0) 2220 na->num_tx_rings = num_queues; 2221 na->num_rx_rings = num_queues; 2222 na->refcount = na->na_single = na->na_multi = 0; 2223 /* Core lock initialized here, others after netmap_if_new. */ 2224 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF); 2225 if (na->nm_lock == NULL) { 2226 ND("using default locks for %s", ifp->if_xname); 2227 na->nm_lock = netmap_lock_wrapper; 2228 } 2229 #ifdef linux 2230 if (ifp->netdev_ops) { 2231 ND("netdev_ops %p", ifp->netdev_ops); 2232 /* prepare a clone of the netdev ops */ 2233 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28) 2234 na->nm_ndo.ndo_start_xmit = ifp->netdev_ops; 2235 #else 2236 na->nm_ndo = *ifp->netdev_ops; 2237 #endif 2238 } 2239 na->nm_ndo.ndo_start_xmit = linux_netmap_start; 2240 #endif 2241 if (!nma_is_vp(arg)) 2242 netmap_attach_sw(ifp); 2243 D("success for %s", ifp->if_xname); 2244 return 0; 2245 2246 fail: 2247 D("fail, arg %p ifp %p na %p", arg, ifp, na); 2248 netmap_detach(ifp); 2249 return (na ? EINVAL : ENOMEM); 2250 } 2251 2252 2253 /* 2254 * Free the allocated memory linked to the given ``netmap_adapter`` 2255 * object. 2256 */ 2257 void 2258 netmap_detach(struct ifnet *ifp) 2259 { 2260 struct netmap_adapter *na = NA(ifp); 2261 2262 if (!na) 2263 return; 2264 2265 mtx_destroy(&na->core_lock); 2266 2267 if (na->tx_rings) { /* XXX should not happen */ 2268 D("freeing leftover tx_rings"); 2269 free(na->tx_rings, M_DEVBUF); 2270 } 2271 bzero(na, sizeof(*na)); 2272 WNA(ifp) = NULL; 2273 free(na, M_DEVBUF); 2274 } 2275 2276 2277 int 2278 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na, u_int ring_nr); 2279 2280 /* we don't need to lock myself */ 2281 static int 2282 bdg_netmap_start(struct ifnet *ifp, struct mbuf *m) 2283 { 2284 struct netmap_adapter *na = SWNA(ifp); 2285 struct nm_bdg_fwd *ft = na->rx_rings[0].nkr_ft; 2286 char *buf = NMB(&na->rx_rings[0].ring->slot[0]); 2287 u_int len = MBUF_LEN(m); 2288 2289 if (!na->na_bdg) /* SWNA is not configured to be attached */ 2290 return EBUSY; 2291 m_copydata(m, 0, len, buf); 2292 ft->ft_len = len; 2293 ft->buf = buf; 2294 nm_bdg_flush(ft, 1, na, 0); 2295 2296 /* release the mbuf in either cases of success or failure. As an 2297 * alternative, put the mbuf in a free list and free the list 2298 * only when really necessary. 2299 */ 2300 m_freem(m); 2301 2302 return (0); 2303 } 2304 2305 2306 /* 2307 * Intercept packets from the network stack and pass them 2308 * to netmap as incoming packets on the 'software' ring. 2309 * We are not locked when called. 2310 */ 2311 int 2312 netmap_start(struct ifnet *ifp, struct mbuf *m) 2313 { 2314 struct netmap_adapter *na = NA(ifp); 2315 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 2316 u_int i, len = MBUF_LEN(m); 2317 u_int error = EBUSY, lim = kring->nkr_num_slots - 1; 2318 struct netmap_slot *slot; 2319 2320 if (netmap_verbose & NM_VERB_HOST) 2321 D("%s packet %d len %d from the stack", ifp->if_xname, 2322 kring->nr_hwcur + kring->nr_hwavail, len); 2323 if (len > NETMAP_BUF_SIZE) { /* too long for us */ 2324 D("%s from_host, drop packet size %d > %d", ifp->if_xname, 2325 len, NETMAP_BUF_SIZE); 2326 m_freem(m); 2327 return EINVAL; 2328 } 2329 if (na->na_bdg) 2330 return bdg_netmap_start(ifp, m); 2331 2332 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2333 if (kring->nr_hwavail >= lim) { 2334 if (netmap_verbose) 2335 D("stack ring %s full\n", ifp->if_xname); 2336 goto done; /* no space */ 2337 } 2338 2339 /* compute the insert position */ 2340 i = kring->nr_hwcur + kring->nr_hwavail; 2341 if (i > lim) 2342 i -= lim + 1; 2343 slot = &kring->ring->slot[i]; 2344 m_copydata(m, 0, len, NMB(slot)); 2345 slot->len = len; 2346 slot->flags = kring->nkr_slot_flags; 2347 kring->nr_hwavail++; 2348 if (netmap_verbose & NM_VERB_HOST) 2349 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 2350 selwakeuppri(&kring->si, PI_NET); 2351 error = 0; 2352 done: 2353 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 2354 2355 /* release the mbuf in either cases of success or failure. As an 2356 * alternative, put the mbuf in a free list and free the list 2357 * only when really necessary. 2358 */ 2359 m_freem(m); 2360 2361 return (error); 2362 } 2363 2364 2365 /* 2366 * netmap_reset() is called by the driver routines when reinitializing 2367 * a ring. The driver is in charge of locking to protect the kring. 2368 * If netmap mode is not set just return NULL. 2369 */ 2370 struct netmap_slot * 2371 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 2372 u_int new_cur) 2373 { 2374 struct netmap_kring *kring; 2375 int new_hwofs, lim; 2376 2377 if (na == NULL) 2378 return NULL; /* no netmap support here */ 2379 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 2380 return NULL; /* nothing to reinitialize */ 2381 2382 if (tx == NR_TX) { 2383 if (n >= na->num_tx_rings) 2384 return NULL; 2385 kring = na->tx_rings + n; 2386 new_hwofs = kring->nr_hwcur - new_cur; 2387 } else { 2388 if (n >= na->num_rx_rings) 2389 return NULL; 2390 kring = na->rx_rings + n; 2391 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 2392 } 2393 lim = kring->nkr_num_slots - 1; 2394 if (new_hwofs > lim) 2395 new_hwofs -= lim + 1; 2396 2397 /* Alwayws set the new offset value and realign the ring. */ 2398 kring->nkr_hwofs = new_hwofs; 2399 if (tx == NR_TX) 2400 kring->nr_hwavail = kring->nkr_num_slots - 1; 2401 ND(10, "new hwofs %d on %s %s[%d]", 2402 kring->nkr_hwofs, na->ifp->if_xname, 2403 tx == NR_TX ? "TX" : "RX", n); 2404 2405 #if 0 // def linux 2406 /* XXX check that the mappings are correct */ 2407 /* need ring_nr, adapter->pdev, direction */ 2408 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 2409 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 2410 D("error mapping rx netmap buffer %d", i); 2411 // XXX fix error handling 2412 } 2413 2414 #endif /* linux */ 2415 /* 2416 * Wakeup on the individual and global lock 2417 * We do the wakeup here, but the ring is not yet reconfigured. 2418 * However, we are under lock so there are no races. 2419 */ 2420 selwakeuppri(&kring->si, PI_NET); 2421 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 2422 return kring->ring->slot; 2423 } 2424 2425 2426 /* returns the next position in the ring */ 2427 static int 2428 nm_bdg_preflush(struct netmap_adapter *na, u_int ring_nr, 2429 struct netmap_kring *kring, u_int end) 2430 { 2431 struct netmap_ring *ring = kring->ring; 2432 struct nm_bdg_fwd *ft = kring->nkr_ft; 2433 u_int j = kring->nr_hwcur, lim = kring->nkr_num_slots - 1; 2434 u_int ft_i = 0; /* start from 0 */ 2435 2436 for (; likely(j != end); j = unlikely(j == lim) ? 0 : j+1) { 2437 struct netmap_slot *slot = &ring->slot[j]; 2438 int len = ft[ft_i].ft_len = slot->len; 2439 char *buf = ft[ft_i].buf = NMB(slot); 2440 2441 prefetch(buf); 2442 if (unlikely(len < 14)) 2443 continue; 2444 if (unlikely(++ft_i == netmap_bridge)) 2445 ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr); 2446 } 2447 if (ft_i) 2448 ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr); 2449 return j; 2450 } 2451 2452 2453 /* 2454 * Pass packets from nic to the bridge. Must be called with 2455 * proper locks on the source interface. 2456 * Note, no user process can access this NIC so we can ignore 2457 * the info in the 'ring'. 2458 */ 2459 static void 2460 netmap_nic_to_bdg(struct ifnet *ifp, u_int ring_nr) 2461 { 2462 struct netmap_adapter *na = NA(ifp); 2463 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 2464 struct netmap_ring *ring = kring->ring; 2465 int j, k, lim = kring->nkr_num_slots - 1; 2466 2467 /* fetch packets that have arrived */ 2468 na->nm_rxsync(ifp, ring_nr, 0); 2469 /* XXX we don't count reserved, but it should be 0 */ 2470 j = kring->nr_hwcur; 2471 k = j + kring->nr_hwavail; 2472 if (k > lim) 2473 k -= lim + 1; 2474 if (k == j && netmap_verbose) { 2475 D("how strange, interrupt with no packets on %s", 2476 ifp->if_xname); 2477 return; 2478 } 2479 2480 j = nm_bdg_preflush(na, ring_nr, kring, k); 2481 2482 /* we consume everything, but we cannot update kring directly 2483 * because the nic may have destroyed the info in the NIC ring. 2484 * So we need to call rxsync again to restore it. 2485 */ 2486 ring->cur = j; 2487 ring->avail = 0; 2488 na->nm_rxsync(ifp, ring_nr, 0); 2489 return; 2490 } 2491 2492 2493 /* 2494 * Default functions to handle rx/tx interrupts 2495 * we have 4 cases: 2496 * 1 ring, single lock: 2497 * lock(core); wake(i=0); unlock(core) 2498 * N rings, single lock: 2499 * lock(core); wake(i); wake(N+1) unlock(core) 2500 * 1 ring, separate locks: (i=0) 2501 * lock(i); wake(i); unlock(i) 2502 * N rings, separate locks: 2503 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 2504 * work_done is non-null on the RX path. 2505 * 2506 * The 'q' argument also includes flag to tell whether the queue is 2507 * already locked on enter, and whether it should remain locked on exit. 2508 * This helps adapting to different defaults in drivers and OSes. 2509 */ 2510 int 2511 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 2512 { 2513 struct netmap_adapter *na; 2514 struct netmap_kring *r; 2515 NM_SELINFO_T *main_wq; 2516 int locktype, unlocktype, nic_to_bridge, lock; 2517 2518 if (!(ifp->if_capenable & IFCAP_NETMAP)) 2519 return 0; 2520 2521 lock = q & (NETMAP_LOCKED_ENTER | NETMAP_LOCKED_EXIT); 2522 q = q & NETMAP_RING_MASK; 2523 2524 ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 2525 na = NA(ifp); 2526 if (na->na_flags & NAF_SKIP_INTR) { 2527 ND("use regular interrupt"); 2528 return 0; 2529 } 2530 2531 if (work_done) { /* RX path */ 2532 if (q >= na->num_rx_rings) 2533 return 0; // not a physical queue 2534 r = na->rx_rings + q; 2535 r->nr_kflags |= NKR_PENDINTR; 2536 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 2537 /* set a flag if the NIC is attached to a VALE switch */ 2538 nic_to_bridge = (na->na_bdg != NULL); 2539 locktype = NETMAP_RX_LOCK; 2540 unlocktype = NETMAP_RX_UNLOCK; 2541 } else { /* TX path */ 2542 if (q >= na->num_tx_rings) 2543 return 0; // not a physical queue 2544 r = na->tx_rings + q; 2545 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 2546 work_done = &q; /* dummy */ 2547 nic_to_bridge = 0; 2548 locktype = NETMAP_TX_LOCK; 2549 unlocktype = NETMAP_TX_UNLOCK; 2550 } 2551 if (na->separate_locks) { 2552 if (!(lock & NETMAP_LOCKED_ENTER)) 2553 na->nm_lock(ifp, locktype, q); 2554 /* If a NIC is attached to a bridge, flush packets 2555 * (and no need to wakeup anyone). Otherwise, wakeup 2556 * possible processes waiting for packets. 2557 */ 2558 if (nic_to_bridge) 2559 netmap_nic_to_bdg(ifp, q); 2560 else 2561 selwakeuppri(&r->si, PI_NET); 2562 na->nm_lock(ifp, unlocktype, q); 2563 if (main_wq && !nic_to_bridge) { 2564 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2565 selwakeuppri(main_wq, PI_NET); 2566 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 2567 } 2568 /* lock the queue again if requested */ 2569 if (lock & NETMAP_LOCKED_EXIT) 2570 na->nm_lock(ifp, locktype, q); 2571 } else { 2572 if (!(lock & NETMAP_LOCKED_ENTER)) 2573 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2574 if (nic_to_bridge) 2575 netmap_nic_to_bdg(ifp, q); 2576 else { 2577 selwakeuppri(&r->si, PI_NET); 2578 if (main_wq) 2579 selwakeuppri(main_wq, PI_NET); 2580 } 2581 if (!(lock & NETMAP_LOCKED_EXIT)) 2582 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 2583 } 2584 *work_done = 1; /* do not fire napi again */ 2585 return 1; 2586 } 2587 2588 2589 #ifdef linux /* linux-specific routines */ 2590 2591 2592 /* 2593 * Remap linux arguments into the FreeBSD call. 2594 * - pwait is the poll table, passed as 'dev'; 2595 * If pwait == NULL someone else already woke up before. We can report 2596 * events but they are filtered upstream. 2597 * If pwait != NULL, then pwait->key contains the list of events. 2598 * - events is computed from pwait as above. 2599 * - file is passed as 'td'; 2600 */ 2601 static u_int 2602 linux_netmap_poll(struct file * file, struct poll_table_struct *pwait) 2603 { 2604 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28) 2605 int events = POLLIN | POLLOUT; /* XXX maybe... */ 2606 #elif LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0) 2607 int events = pwait ? pwait->key : POLLIN | POLLOUT; 2608 #else /* in 3.4.0 field 'key' was renamed to '_key' */ 2609 int events = pwait ? pwait->_key : POLLIN | POLLOUT; 2610 #endif 2611 return netmap_poll((void *)pwait, events, (void *)file); 2612 } 2613 2614 2615 static int 2616 linux_netmap_mmap(struct file *f, struct vm_area_struct *vma) 2617 { 2618 int lut_skip, i, j; 2619 int user_skip = 0; 2620 struct lut_entry *l_entry; 2621 int error = 0; 2622 unsigned long off, tomap; 2623 /* 2624 * vma->vm_start: start of mapping user address space 2625 * vma->vm_end: end of the mapping user address space 2626 * vma->vm_pfoff: offset of first page in the device 2627 */ 2628 2629 // XXX security checks 2630 2631 error = netmap_get_memory(f->private_data); 2632 ND("get_memory returned %d", error); 2633 if (error) 2634 return -error; 2635 2636 off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */ 2637 tomap = vma->vm_end - vma->vm_start; 2638 for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */ 2639 const struct netmap_obj_pool *p = &nm_mem.pools[i]; 2640 /* 2641 * In each pool memory is allocated in clusters 2642 * of size _clustsize, each containing clustentries 2643 * entries. For each object k we already store the 2644 * vtophys mapping in lut[k] so we use that, scanning 2645 * the lut[] array in steps of clustentries, 2646 * and we map each cluster (not individual pages, 2647 * it would be overkill -- XXX slow ? 20130415). 2648 */ 2649 2650 /* 2651 * We interpret vm_pgoff as an offset into the whole 2652 * netmap memory, as if all clusters where contiguous. 2653 */ 2654 for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) { 2655 unsigned long paddr, mapsize; 2656 if (p->_clustsize <= off) { 2657 off -= p->_clustsize; 2658 continue; 2659 } 2660 l_entry = &p->lut[lut_skip]; /* first obj in the cluster */ 2661 paddr = l_entry->paddr + off; 2662 mapsize = p->_clustsize - off; 2663 off = 0; 2664 if (mapsize > tomap) 2665 mapsize = tomap; 2666 ND("remap_pfn_range(%lx, %lx, %lx)", 2667 vma->vm_start + user_skip, 2668 paddr >> PAGE_SHIFT, mapsize); 2669 if (remap_pfn_range(vma, vma->vm_start + user_skip, 2670 paddr >> PAGE_SHIFT, mapsize, 2671 vma->vm_page_prot)) 2672 return -EAGAIN; // XXX check return value 2673 user_skip += mapsize; 2674 tomap -= mapsize; 2675 if (tomap == 0) 2676 goto done; 2677 } 2678 } 2679 done: 2680 2681 return 0; 2682 } 2683 2684 2685 static netdev_tx_t 2686 linux_netmap_start(struct sk_buff *skb, struct net_device *dev) 2687 { 2688 netmap_start(dev, skb); 2689 return (NETDEV_TX_OK); 2690 } 2691 2692 2693 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38 2694 #define LIN_IOCTL_NAME .ioctl 2695 int 2696 linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */) 2697 #else 2698 #define LIN_IOCTL_NAME .unlocked_ioctl 2699 long 2700 linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */) 2701 #endif 2702 { 2703 int ret; 2704 struct nmreq nmr; 2705 bzero(&nmr, sizeof(nmr)); 2706 2707 if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0) 2708 return -EFAULT; 2709 ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file); 2710 if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0) 2711 return -EFAULT; 2712 return -ret; 2713 } 2714 2715 2716 static int 2717 netmap_release(struct inode *inode, struct file *file) 2718 { 2719 (void)inode; /* UNUSED */ 2720 if (file->private_data) 2721 netmap_dtor(file->private_data); 2722 return (0); 2723 } 2724 2725 2726 static int 2727 linux_netmap_open(struct inode *inode, struct file *file) 2728 { 2729 struct netmap_priv_d *priv; 2730 (void)inode; /* UNUSED */ 2731 2732 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 2733 M_NOWAIT | M_ZERO); 2734 if (priv == NULL) 2735 return -ENOMEM; 2736 2737 file->private_data = priv; 2738 2739 return (0); 2740 } 2741 2742 2743 static struct file_operations netmap_fops = { 2744 .owner = THIS_MODULE, 2745 .open = linux_netmap_open, 2746 .mmap = linux_netmap_mmap, 2747 LIN_IOCTL_NAME = linux_netmap_ioctl, 2748 .poll = linux_netmap_poll, 2749 .release = netmap_release, 2750 }; 2751 2752 2753 static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */ 2754 MISC_DYNAMIC_MINOR, 2755 "netmap", 2756 &netmap_fops, 2757 }; 2758 2759 static int netmap_init(void); 2760 static void netmap_fini(void); 2761 2762 2763 /* Errors have negative values on linux */ 2764 static int linux_netmap_init(void) 2765 { 2766 return -netmap_init(); 2767 } 2768 2769 module_init(linux_netmap_init); 2770 module_exit(netmap_fini); 2771 /* export certain symbols to other modules */ 2772 EXPORT_SYMBOL(netmap_attach); // driver attach routines 2773 EXPORT_SYMBOL(netmap_detach); // driver detach routines 2774 EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error 2775 EXPORT_SYMBOL(netmap_buffer_lut); 2776 EXPORT_SYMBOL(netmap_total_buffers); // index check 2777 EXPORT_SYMBOL(netmap_buffer_base); 2778 EXPORT_SYMBOL(netmap_reset); // ring init routines 2779 EXPORT_SYMBOL(netmap_buf_size); 2780 EXPORT_SYMBOL(netmap_rx_irq); // default irq handler 2781 EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away 2782 EXPORT_SYMBOL(netmap_bdg_ctl); // bridge configuration routine 2783 EXPORT_SYMBOL(netmap_bdg_learning); // the default lookup function 2784 2785 2786 MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/"); 2787 MODULE_DESCRIPTION("The netmap packet I/O framework"); 2788 MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */ 2789 2790 #else /* __FreeBSD__ */ 2791 2792 2793 static struct cdevsw netmap_cdevsw = { 2794 .d_version = D_VERSION, 2795 .d_name = "netmap", 2796 .d_open = netmap_open, 2797 .d_mmap = netmap_mmap, 2798 .d_mmap_single = netmap_mmap_single, 2799 .d_ioctl = netmap_ioctl, 2800 .d_poll = netmap_poll, 2801 .d_close = netmap_close, 2802 }; 2803 #endif /* __FreeBSD__ */ 2804 2805 #ifdef NM_BRIDGE 2806 /* 2807 *---- support for virtual bridge ----- 2808 */ 2809 2810 /* ----- FreeBSD if_bridge hash function ------- */ 2811 2812 /* 2813 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2814 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2815 * 2816 * http://www.burtleburtle.net/bob/hash/spooky.html 2817 */ 2818 #define mix(a, b, c) \ 2819 do { \ 2820 a -= b; a -= c; a ^= (c >> 13); \ 2821 b -= c; b -= a; b ^= (a << 8); \ 2822 c -= a; c -= b; c ^= (b >> 13); \ 2823 a -= b; a -= c; a ^= (c >> 12); \ 2824 b -= c; b -= a; b ^= (a << 16); \ 2825 c -= a; c -= b; c ^= (b >> 5); \ 2826 a -= b; a -= c; a ^= (c >> 3); \ 2827 b -= c; b -= a; b ^= (a << 10); \ 2828 c -= a; c -= b; c ^= (b >> 15); \ 2829 } while (/*CONSTCOND*/0) 2830 2831 static __inline uint32_t 2832 nm_bridge_rthash(const uint8_t *addr) 2833 { 2834 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 2835 2836 b += addr[5] << 8; 2837 b += addr[4]; 2838 a += addr[3] << 24; 2839 a += addr[2] << 16; 2840 a += addr[1] << 8; 2841 a += addr[0]; 2842 2843 mix(a, b, c); 2844 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 2845 return (c & BRIDGE_RTHASH_MASK); 2846 } 2847 2848 #undef mix 2849 2850 2851 static int 2852 bdg_netmap_reg(struct ifnet *ifp, int onoff) 2853 { 2854 // struct nm_bridge *b = NA(ifp)->na_bdg; 2855 2856 /* the interface is already attached to the bridge, 2857 * so we only need to toggle IFCAP_NETMAP. 2858 * Locking is not necessary (we are already under 2859 * NMA_LOCK, and the port is not in use during this call). 2860 */ 2861 /* BDG_WLOCK(b); */ 2862 if (onoff) { 2863 ifp->if_capenable |= IFCAP_NETMAP; 2864 } else { 2865 ifp->if_capenable &= ~IFCAP_NETMAP; 2866 } 2867 /* BDG_WUNLOCK(b); */ 2868 return 0; 2869 } 2870 2871 2872 /* 2873 * Lookup function for a learning bridge. 2874 * Update the hash table with the source address, 2875 * and then returns the destination port index, and the 2876 * ring in *dst_ring (at the moment, always use ring 0) 2877 */ 2878 u_int 2879 netmap_bdg_learning(char *buf, u_int len, uint8_t *dst_ring, 2880 struct netmap_adapter *na) 2881 { 2882 struct nm_hash_ent *ht = na->na_bdg->ht; 2883 uint32_t sh, dh; 2884 u_int dst, mysrc = na->bdg_port; 2885 uint64_t smac, dmac; 2886 2887 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 2888 smac = le64toh(*(uint64_t *)(buf + 4)); 2889 smac >>= 16; 2890 2891 /* 2892 * The hash is somewhat expensive, there might be some 2893 * worthwhile optimizations here. 2894 */ 2895 if ((buf[6] & 1) == 0) { /* valid src */ 2896 uint8_t *s = buf+6; 2897 sh = nm_bridge_rthash(buf+6); // XXX hash of source 2898 /* update source port forwarding entry */ 2899 ht[sh].mac = smac; /* XXX expire ? */ 2900 ht[sh].ports = mysrc; 2901 if (netmap_verbose) 2902 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 2903 s[0], s[1], s[2], s[3], s[4], s[5], mysrc); 2904 } 2905 dst = NM_BDG_BROADCAST; 2906 if ((buf[0] & 1) == 0) { /* unicast */ 2907 dh = nm_bridge_rthash(buf); // XXX hash of dst 2908 if (ht[dh].mac == dmac) { /* found dst */ 2909 dst = ht[dh].ports; 2910 } 2911 /* XXX otherwise return NM_BDG_UNKNOWN ? */ 2912 } 2913 *dst_ring = 0; 2914 return dst; 2915 } 2916 2917 2918 /* 2919 * This flush routine supports only unicast and broadcast but a large 2920 * number of ports, and lets us replace the learn and dispatch functions. 2921 */ 2922 int 2923 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na, 2924 u_int ring_nr) 2925 { 2926 struct nm_bdg_q *dst_ents, *brddst; 2927 uint16_t num_dsts = 0, *dsts; 2928 struct nm_bridge *b = na->na_bdg; 2929 u_int i, me = na->bdg_port; 2930 2931 dst_ents = (struct nm_bdg_q *)(ft + NM_BDG_BATCH); 2932 dsts = (uint16_t *)(dst_ents + NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1); 2933 2934 BDG_RLOCK(b); 2935 2936 /* first pass: find a destination */ 2937 for (i = 0; likely(i < n); i++) { 2938 uint8_t *buf = ft[i].buf; 2939 uint8_t dst_ring = ring_nr; 2940 uint16_t dst_port, d_i; 2941 struct nm_bdg_q *d; 2942 2943 dst_port = b->nm_bdg_lookup(buf, ft[i].ft_len, &dst_ring, na); 2944 if (dst_port == NM_BDG_NOPORT) { 2945 continue; /* this packet is identified to be dropped */ 2946 } else if (unlikely(dst_port > NM_BDG_MAXPORTS)) { 2947 continue; 2948 } else if (dst_port == NM_BDG_BROADCAST) { 2949 dst_ring = 0; /* broadcasts always go to ring 0 */ 2950 } else if (unlikely(dst_port == me || 2951 !BDG_GET_VAR(b->bdg_ports[dst_port]))) { 2952 continue; 2953 } 2954 2955 /* get a position in the scratch pad */ 2956 d_i = dst_port * NM_BDG_MAXRINGS + dst_ring; 2957 d = dst_ents + d_i; 2958 if (d->bq_head == NM_BDG_BATCH) { /* new destination */ 2959 d->bq_head = d->bq_tail = i; 2960 /* remember this position to be scanned later */ 2961 if (dst_port != NM_BDG_BROADCAST) 2962 dsts[num_dsts++] = d_i; 2963 } 2964 ft[d->bq_tail].ft_next = i; 2965 d->bq_tail = i; 2966 } 2967 2968 /* if there is a broadcast, set ring 0 of all ports to be scanned 2969 * XXX This would be optimized by recording the highest index of active 2970 * ports. 2971 */ 2972 brddst = dst_ents + NM_BDG_BROADCAST * NM_BDG_MAXRINGS; 2973 if (brddst->bq_head != NM_BDG_BATCH) { 2974 for (i = 0; likely(i < NM_BDG_MAXPORTS); i++) { 2975 uint16_t d_i = i * NM_BDG_MAXRINGS; 2976 if (unlikely(i == me) || !BDG_GET_VAR(b->bdg_ports[i])) 2977 continue; 2978 else if (dst_ents[d_i].bq_head == NM_BDG_BATCH) 2979 dsts[num_dsts++] = d_i; 2980 } 2981 } 2982 2983 /* second pass: scan destinations (XXX will be modular somehow) */ 2984 for (i = 0; i < num_dsts; i++) { 2985 struct ifnet *dst_ifp; 2986 struct netmap_adapter *dst_na; 2987 struct netmap_kring *kring; 2988 struct netmap_ring *ring; 2989 u_int dst_nr, is_vp, lim, j, sent = 0, d_i, next, brd_next; 2990 int howmany, retry = netmap_txsync_retry; 2991 struct nm_bdg_q *d; 2992 2993 d_i = dsts[i]; 2994 d = dst_ents + d_i; 2995 dst_na = BDG_GET_VAR(b->bdg_ports[d_i/NM_BDG_MAXRINGS]); 2996 /* protect from the lookup function returning an inactive 2997 * destination port 2998 */ 2999 if (unlikely(dst_na == NULL)) 3000 continue; 3001 else if (dst_na->na_flags & NAF_SW_ONLY) 3002 continue; 3003 dst_ifp = dst_na->ifp; 3004 /* 3005 * The interface may be in !netmap mode in two cases: 3006 * - when na is attached but not activated yet; 3007 * - when na is being deactivated but is still attached. 3008 */ 3009 if (unlikely(!(dst_ifp->if_capenable & IFCAP_NETMAP))) 3010 continue; 3011 3012 /* there is at least one either unicast or broadcast packet */ 3013 brd_next = brddst->bq_head; 3014 next = d->bq_head; 3015 3016 is_vp = nma_is_vp(dst_na); 3017 dst_nr = d_i & (NM_BDG_MAXRINGS-1); 3018 if (is_vp) { /* virtual port */ 3019 if (dst_nr >= dst_na->num_rx_rings) 3020 dst_nr = dst_nr % dst_na->num_rx_rings; 3021 kring = &dst_na->rx_rings[dst_nr]; 3022 ring = kring->ring; 3023 lim = kring->nkr_num_slots - 1; 3024 dst_na->nm_lock(dst_ifp, NETMAP_RX_LOCK, dst_nr); 3025 j = kring->nr_hwcur + kring->nr_hwavail; 3026 if (j > lim) 3027 j -= kring->nkr_num_slots; 3028 howmany = lim - kring->nr_hwavail; 3029 } else { /* hw or sw adapter */ 3030 if (dst_nr >= dst_na->num_tx_rings) 3031 dst_nr = dst_nr % dst_na->num_tx_rings; 3032 kring = &dst_na->tx_rings[dst_nr]; 3033 ring = kring->ring; 3034 lim = kring->nkr_num_slots - 1; 3035 dst_na->nm_lock(dst_ifp, NETMAP_TX_LOCK, dst_nr); 3036 retry: 3037 dst_na->nm_txsync(dst_ifp, dst_nr, 0); 3038 /* see nm_bdg_flush() */ 3039 j = kring->nr_hwcur; 3040 howmany = kring->nr_hwavail; 3041 } 3042 while (howmany-- > 0) { 3043 struct netmap_slot *slot; 3044 struct nm_bdg_fwd *ft_p; 3045 3046 if (next < brd_next) { 3047 ft_p = ft + next; 3048 next = ft_p->ft_next; 3049 } else { /* insert broadcast */ 3050 ft_p = ft + brd_next; 3051 brd_next = ft_p->ft_next; 3052 } 3053 slot = &ring->slot[j]; 3054 ND("send %d %d bytes at %s:%d", i, ft_p->ft_len, dst_ifp->if_xname, j); 3055 pkt_copy(ft_p->buf, NMB(slot), ft_p->ft_len); 3056 slot->len = ft_p->ft_len; 3057 j = (j == lim) ? 0: j + 1; /* XXX to be macro-ed */ 3058 sent++; 3059 if (next == d->bq_tail && brd_next == brddst->bq_tail) 3060 break; 3061 } 3062 if (netmap_verbose && (howmany < 0)) 3063 D("rx ring full on %s", dst_ifp->if_xname); 3064 if (is_vp) { 3065 if (sent) { 3066 kring->nr_hwavail += sent; 3067 selwakeuppri(&kring->si, PI_NET); 3068 } 3069 dst_na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, dst_nr); 3070 } else { 3071 if (sent) { 3072 ring->avail -= sent; 3073 ring->cur = j; 3074 dst_na->nm_txsync(dst_ifp, dst_nr, 0); 3075 } 3076 /* retry to send more packets */ 3077 if (nma_is_hw(dst_na) && howmany < 0 && retry--) 3078 goto retry; 3079 dst_na->nm_lock(dst_ifp, NETMAP_TX_UNLOCK, dst_nr); 3080 } 3081 d->bq_head = d->bq_tail = NM_BDG_BATCH; /* cleanup */ 3082 } 3083 brddst->bq_head = brddst->bq_tail = NM_BDG_BATCH; /* cleanup */ 3084 BDG_RUNLOCK(b); 3085 return 0; 3086 } 3087 3088 3089 /* 3090 * main dispatch routine 3091 */ 3092 static int 3093 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 3094 { 3095 struct netmap_adapter *na = NA(ifp); 3096 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 3097 struct netmap_ring *ring = kring->ring; 3098 int i, j, k, lim = kring->nkr_num_slots - 1; 3099 3100 k = ring->cur; 3101 if (k > lim) 3102 return netmap_ring_reinit(kring); 3103 if (do_lock) 3104 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 3105 3106 if (netmap_bridge <= 0) { /* testing only */ 3107 j = k; // used all 3108 goto done; 3109 } 3110 if (netmap_bridge > NM_BDG_BATCH) 3111 netmap_bridge = NM_BDG_BATCH; 3112 3113 j = nm_bdg_preflush(na, ring_nr, kring, k); 3114 i = k - j; 3115 if (i < 0) 3116 i += kring->nkr_num_slots; 3117 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 3118 if (j != k) 3119 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 3120 3121 done: 3122 kring->nr_hwcur = j; 3123 ring->avail = kring->nr_hwavail; 3124 if (do_lock) 3125 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 3126 3127 if (netmap_verbose) 3128 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 3129 return 0; 3130 } 3131 3132 3133 static int 3134 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 3135 { 3136 struct netmap_adapter *na = NA(ifp); 3137 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 3138 struct netmap_ring *ring = kring->ring; 3139 u_int j, lim = kring->nkr_num_slots - 1; 3140 u_int k = ring->cur, resvd = ring->reserved; 3141 int n; 3142 3143 ND("%s ring %d lock %d avail %d", 3144 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 3145 3146 if (k > lim) 3147 return netmap_ring_reinit(kring); 3148 if (do_lock) 3149 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 3150 3151 /* skip past packets that userspace has released */ 3152 j = kring->nr_hwcur; /* netmap ring index */ 3153 if (resvd > 0) { 3154 if (resvd + ring->avail >= lim + 1) { 3155 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 3156 ring->reserved = resvd = 0; // XXX panic... 3157 } 3158 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 3159 } 3160 3161 if (j != k) { /* userspace has released some packets. */ 3162 n = k - j; 3163 if (n < 0) 3164 n += kring->nkr_num_slots; 3165 ND("userspace releases %d packets", n); 3166 for (n = 0; likely(j != k); n++) { 3167 struct netmap_slot *slot = &ring->slot[j]; 3168 void *addr = NMB(slot); 3169 3170 if (addr == netmap_buffer_base) { /* bad buf */ 3171 if (do_lock) 3172 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 3173 return netmap_ring_reinit(kring); 3174 } 3175 /* decrease refcount for buffer */ 3176 3177 slot->flags &= ~NS_BUF_CHANGED; 3178 j = unlikely(j == lim) ? 0 : j + 1; 3179 } 3180 kring->nr_hwavail -= n; 3181 kring->nr_hwcur = k; 3182 } 3183 /* tell userspace that there are new packets */ 3184 ring->avail = kring->nr_hwavail - resvd; 3185 3186 if (do_lock) 3187 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 3188 return 0; 3189 } 3190 3191 3192 static void 3193 bdg_netmap_attach(struct netmap_adapter *arg) 3194 { 3195 struct netmap_adapter na; 3196 3197 ND("attaching virtual bridge"); 3198 bzero(&na, sizeof(na)); 3199 3200 na.ifp = arg->ifp; 3201 na.separate_locks = 1; 3202 na.num_tx_rings = arg->num_tx_rings; 3203 na.num_rx_rings = arg->num_rx_rings; 3204 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 3205 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 3206 na.nm_txsync = bdg_netmap_txsync; 3207 na.nm_rxsync = bdg_netmap_rxsync; 3208 na.nm_register = bdg_netmap_reg; 3209 netmap_attach(&na, na.num_tx_rings); 3210 } 3211 3212 #endif /* NM_BRIDGE */ 3213 3214 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 3215 3216 3217 /* 3218 * Module loader. 3219 * 3220 * Create the /dev/netmap device and initialize all global 3221 * variables. 3222 * 3223 * Return 0 on success, errno on failure. 3224 */ 3225 static int 3226 netmap_init(void) 3227 { 3228 int error; 3229 3230 error = netmap_memory_init(); 3231 if (error != 0) { 3232 printf("netmap: unable to initialize the memory allocator.\n"); 3233 return (error); 3234 } 3235 printf("netmap: loaded module\n"); 3236 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 3237 "netmap"); 3238 3239 #ifdef NM_BRIDGE 3240 { 3241 int i; 3242 mtx_init(&netmap_bridge_mutex, "netmap_bridge_mutex", 3243 MTX_NETWORK_LOCK, MTX_DEF); 3244 bzero(nm_bridges, sizeof(struct nm_bridge) * NM_BRIDGES); /* safety */ 3245 for (i = 0; i < NM_BRIDGES; i++) 3246 rw_init(&nm_bridges[i].bdg_lock, "bdg lock"); 3247 } 3248 #endif 3249 return (error); 3250 } 3251 3252 3253 /* 3254 * Module unloader. 3255 * 3256 * Free all the memory, and destroy the ``/dev/netmap`` device. 3257 */ 3258 static void 3259 netmap_fini(void) 3260 { 3261 destroy_dev(netmap_dev); 3262 netmap_memory_fini(); 3263 printf("netmap: unloaded module.\n"); 3264 } 3265 3266 3267 #ifdef __FreeBSD__ 3268 /* 3269 * Kernel entry point. 3270 * 3271 * Initialize/finalize the module and return. 3272 * 3273 * Return 0 on success, errno on failure. 3274 */ 3275 static int 3276 netmap_loader(__unused struct module *module, int event, __unused void *arg) 3277 { 3278 int error = 0; 3279 3280 switch (event) { 3281 case MOD_LOAD: 3282 error = netmap_init(); 3283 break; 3284 3285 case MOD_UNLOAD: 3286 netmap_fini(); 3287 break; 3288 3289 default: 3290 error = EOPNOTSUPP; 3291 break; 3292 } 3293 3294 return (error); 3295 } 3296 3297 3298 DEV_MODULE(netmap, netmap_loader, NULL); 3299 #endif /* __FreeBSD__ */ 3300