xref: /freebsd/sys/dev/netmap/netmap.c (revision 6871d4882591c9a8fcab24d084c93f0a2972e1af)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi
5  * Copyright (C) 2011-2016 Luigi Rizzo
6  * Copyright (C) 2011-2016 Giuseppe Lettieri
7  * Copyright (C) 2011-2016 Vincenzo Maffione
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *   1. Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *   2. Redistributions in binary form must reproduce the above copyright
16  *      notice, this list of conditions and the following disclaimer in the
17  *      documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 
33 /*
34  * $FreeBSD$
35  *
36  * This module supports memory mapped access to network devices,
37  * see netmap(4).
38  *
39  * The module uses a large, memory pool allocated by the kernel
40  * and accessible as mmapped memory by multiple userspace threads/processes.
41  * The memory pool contains packet buffers and "netmap rings",
42  * i.e. user-accessible copies of the interface's queues.
43  *
44  * Access to the network card works like this:
45  * 1. a process/thread issues one or more open() on /dev/netmap, to create
46  *    select()able file descriptor on which events are reported.
47  * 2. on each descriptor, the process issues an ioctl() to identify
48  *    the interface that should report events to the file descriptor.
49  * 3. on each descriptor, the process issues an mmap() request to
50  *    map the shared memory region within the process' address space.
51  *    The list of interesting queues is indicated by a location in
52  *    the shared memory region.
53  * 4. using the functions in the netmap(4) userspace API, a process
54  *    can look up the occupation state of a queue, access memory buffers,
55  *    and retrieve received packets or enqueue packets to transmit.
56  * 5. using some ioctl()s the process can synchronize the userspace view
57  *    of the queue with the actual status in the kernel. This includes both
58  *    receiving the notification of new packets, and transmitting new
59  *    packets on the output interface.
60  * 6. select() or poll() can be used to wait for events on individual
61  *    transmit or receive queues (or all queues for a given interface).
62  *
63 
64 		SYNCHRONIZATION (USER)
65 
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73 
74 		LOCKING (INTERNAL)
75 
76 Within the kernel, access to the netmap rings is protected as follows:
77 
78 - a spinlock on each ring, to handle producer/consumer races on
79   RX rings attached to the host stack (against multiple host
80   threads writing from the host stack to the same ring),
81   and on 'destination' rings attached to a VALE switch
82   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83   protecting multiple active senders for the same destination)
84 
85 - an atomic variable to guarantee that there is at most one
86   instance of *_*xsync() on the ring at any time.
87   For rings connected to user file
88   descriptors, an atomic_test_and_set() protects this, and the
89   lock on the ring is not actually used.
90   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91   is also used to prevent multiple executions (the driver might indeed
92   already guarantee this).
93   For NIC TX rings connected to a VALE switch, the lock arbitrates
94   access to the queue (both when allocating buffers and when pushing
95   them out).
96 
97 - *xsync() should be protected against initializations of the card.
98   On FreeBSD most devices have the reset routine protected by
99   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100   the RING protection on rx_reset(), this should be added.
101 
102   On linux there is an external lock on the tx path, which probably
103   also arbitrates access to the reset routine. XXX to be revised
104 
105 - a per-interface core_lock protecting access from the host stack
106   while interfaces may be detached from netmap mode.
107   XXX there should be no need for this lock if we detach the interfaces
108   only while they are down.
109 
110 
111 --- VALE SWITCH ---
112 
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115 
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123 
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130 
131  */
132 
133 
134 /* --- internals ----
135  *
136  * Roadmap to the code that implements the above.
137  *
138  * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139  * >    select()able file descriptor on which events are reported.
140  *
141  *  	Internally, we allocate a netmap_priv_d structure, that will be
142  *  	initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143  *  	structure for each open().
144  *
145  *      os-specific:
146  *  	    FreeBSD: see netmap_open() (netmap_freebsd.c)
147  *  	    linux:   see linux_netmap_open() (netmap_linux.c)
148  *
149  * > 2. on each descriptor, the process issues an ioctl() to identify
150  * >    the interface that should report events to the file descriptor.
151  *
152  * 	Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153  * 	Most important things happen in netmap_get_na() and
154  * 	netmap_do_regif(), called from there. Additional details can be
155  * 	found in the comments above those functions.
156  *
157  * 	In all cases, this action creates/takes-a-reference-to a
158  * 	netmap_*_adapter describing the port, and allocates a netmap_if
159  * 	and all necessary netmap rings, filling them with netmap buffers.
160  *
161  *      In this phase, the sync callbacks for each ring are set (these are used
162  *      in steps 5 and 6 below).  The callbacks depend on the type of adapter.
163  *      The adapter creation/initialization code puts them in the
164  * 	netmap_adapter (fields na->nm_txsync and na->nm_rxsync).  Then, they
165  * 	are copied from there to the netmap_kring's during netmap_do_regif(), by
166  * 	the nm_krings_create() callback.  All the nm_krings_create callbacks
167  * 	actually call netmap_krings_create() to perform this and the other
168  * 	common stuff. netmap_krings_create() also takes care of the host rings,
169  * 	if needed, by setting their sync callbacks appropriately.
170  *
171  * 	Additional actions depend on the kind of netmap_adapter that has been
172  * 	registered:
173  *
174  * 	- netmap_hw_adapter:  	     [netmap.c]
175  * 	     This is a system netdev/ifp with native netmap support.
176  * 	     The ifp is detached from the host stack by redirecting:
177  * 	       - transmissions (from the network stack) to netmap_transmit()
178  * 	       - receive notifications to the nm_notify() callback for
179  * 	         this adapter. The callback is normally netmap_notify(), unless
180  * 	         the ifp is attached to a bridge using bwrap, in which case it
181  * 	         is netmap_bwrap_intr_notify().
182  *
183  * 	- netmap_generic_adapter:      [netmap_generic.c]
184  * 	      A system netdev/ifp without native netmap support.
185  *
186  * 	(the decision about native/non native support is taken in
187  * 	 netmap_get_hw_na(), called by netmap_get_na())
188  *
189  * 	- netmap_vp_adapter 		[netmap_vale.c]
190  * 	      Returned by netmap_get_bdg_na().
191  * 	      This is a persistent or ephemeral VALE port. Ephemeral ports
192  * 	      are created on the fly if they don't already exist, and are
193  * 	      always attached to a bridge.
194  * 	      Persistent VALE ports must must be created separately, and i
195  * 	      then attached like normal NICs. The NIOCREGIF we are examining
196  * 	      will find them only if they had previosly been created and
197  * 	      attached (see VALE_CTL below).
198  *
199  * 	- netmap_pipe_adapter 	      [netmap_pipe.c]
200  * 	      Returned by netmap_get_pipe_na().
201  * 	      Both pipe ends are created, if they didn't already exist.
202  *
203  * 	- netmap_monitor_adapter      [netmap_monitor.c]
204  * 	      Returned by netmap_get_monitor_na().
205  * 	      If successful, the nm_sync callbacks of the monitored adapter
206  * 	      will be intercepted by the returned monitor.
207  *
208  * 	- netmap_bwrap_adapter	      [netmap_vale.c]
209  * 	      Cannot be obtained in this way, see VALE_CTL below
210  *
211  *
212  * 	os-specific:
213  * 	    linux: we first go through linux_netmap_ioctl() to
214  * 	           adapt the FreeBSD interface to the linux one.
215  *
216  *
217  * > 3. on each descriptor, the process issues an mmap() request to
218  * >    map the shared memory region within the process' address space.
219  * >    The list of interesting queues is indicated by a location in
220  * >    the shared memory region.
221  *
222  *      os-specific:
223  *  	    FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224  *  	    linux:   linux_netmap_mmap (netmap_linux.c).
225  *
226  * > 4. using the functions in the netmap(4) userspace API, a process
227  * >    can look up the occupation state of a queue, access memory buffers,
228  * >    and retrieve received packets or enqueue packets to transmit.
229  *
230  * 	these actions do not involve the kernel.
231  *
232  * > 5. using some ioctl()s the process can synchronize the userspace view
233  * >    of the queue with the actual status in the kernel. This includes both
234  * >    receiving the notification of new packets, and transmitting new
235  * >    packets on the output interface.
236  *
237  * 	These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238  * 	cases. They invoke the nm_sync callbacks on the netmap_kring
239  * 	structures, as initialized in step 2 and maybe later modified
240  * 	by a monitor. Monitors, however, will always call the original
241  * 	callback before doing anything else.
242  *
243  *
244  * > 6. select() or poll() can be used to wait for events on individual
245  * >    transmit or receive queues (or all queues for a given interface).
246  *
247  * 	Implemented in netmap_poll(). This will call the same nm_sync()
248  * 	callbacks as in step 5 above.
249  *
250  * 	os-specific:
251  * 		linux: we first go through linux_netmap_poll() to adapt
252  * 		       the FreeBSD interface to the linux one.
253  *
254  *
255  *  ----  VALE_CTL -----
256  *
257  *  VALE switches are controlled by issuing a NIOCREGIF with a non-null
258  *  nr_cmd in the nmreq structure. These subcommands are handled by
259  *  netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260  *  and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261  *  subcommands, respectively.
262  *
263  *  Any network interface known to the system (including a persistent VALE
264  *  port) can be attached to a VALE switch by issuing the
265  *  NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266  *  look exactly like ephemeral VALE ports (as created in step 2 above).  The
267  *  attachment of other interfaces, instead, requires the creation of a
268  *  netmap_bwrap_adapter.  Moreover, the attached interface must be put in
269  *  netmap mode. This may require the creation of a netmap_generic_adapter if
270  *  we have no native support for the interface, or if generic adapters have
271  *  been forced by sysctl.
272  *
273  *  Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274  *  called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275  *  callback.  In the case of the bwrap, the callback creates the
276  *  netmap_bwrap_adapter.  The initialization of the bwrap is then
277  *  completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278  *  callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279  *  A generic adapter for the wrapped ifp will be created if needed, when
280  *  netmap_get_bdg_na() calls netmap_get_hw_na().
281  *
282  *
283  *  ---- DATAPATHS -----
284  *
285  *              -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286  *
287  *    na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288  *
289  *    - tx from netmap userspace:
290  *	 concurrently:
291  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292  *                kring->nm_sync() == DEVICE_netmap_txsync()
293  *           2) device interrupt handler
294  *                na->nm_notify()  == netmap_notify()
295  *    - rx from netmap userspace:
296  *       concurrently:
297  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298  *                kring->nm_sync() == DEVICE_netmap_rxsync()
299  *           2) device interrupt handler
300  *                na->nm_notify()  == netmap_notify()
301  *    - rx from host stack
302  *       concurrently:
303  *           1) host stack
304  *                netmap_transmit()
305  *                  na->nm_notify  == netmap_notify()
306  *           2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307  *                kring->nm_sync() == netmap_rxsync_from_host
308  *                  netmap_rxsync_from_host(na, NULL, NULL)
309  *    - tx to host stack
310  *           ioctl(NIOCTXSYNC)/netmap_poll() in process context
311  *             kring->nm_sync() == netmap_txsync_to_host
312  *               netmap_txsync_to_host(na)
313  *                 nm_os_send_up()
314  *                   FreeBSD: na->if_input() == ether_input()
315  *                   linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316  *
317  *
318  *               -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319  *
320  *    na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321  *
322  *    - tx from netmap userspace:
323  *       concurrently:
324  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325  *               kring->nm_sync() == generic_netmap_txsync()
326  *                   nm_os_generic_xmit_frame()
327  *                       linux:   dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328  *                           ifp->ndo_start_xmit == generic_ndo_start_xmit()
329  *                               gna->save_start_xmit == orig. dev. start_xmit
330  *                       FreeBSD: na->if_transmit() == orig. dev if_transmit
331  *           2) generic_mbuf_destructor()
332  *                   na->nm_notify() == netmap_notify()
333  *    - rx from netmap userspace:
334  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335  *               kring->nm_sync() == generic_netmap_rxsync()
336  *                   mbq_safe_dequeue()
337  *           2) device driver
338  *               generic_rx_handler()
339  *                   mbq_safe_enqueue()
340  *                   na->nm_notify() == netmap_notify()
341  *    - rx from host stack
342  *        FreeBSD: same as native
343  *        Linux: same as native except:
344  *           1) host stack
345  *               dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346  *                   ifp->ndo_start_xmit == generic_ndo_start_xmit()
347  *                       netmap_transmit()
348  *                           na->nm_notify() == netmap_notify()
349  *    - tx to host stack (same as native):
350  *
351  *
352  *                           -= VALE =-
353  *
354  *   INCOMING:
355  *
356  *      - VALE ports:
357  *          ioctl(NIOCTXSYNC)/netmap_poll() in process context
358  *              kring->nm_sync() == netmap_vp_txsync()
359  *
360  *      - system device with native support:
361  *         from cable:
362  *             interrupt
363  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
365  *                     netmap_vp_txsync()
366  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
367  *         from host stack:
368  *             netmap_transmit()
369  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370  *                     kring->nm_sync() == netmap_rxsync_from_host()
371  *                     netmap_vp_txsync()
372  *
373  *      - system device with generic support:
374  *         from device driver:
375  *            generic_rx_handler()
376  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377  *                     kring->nm_sync() == generic_netmap_rxsync()
378  *                     netmap_vp_txsync()
379  *                     kring->nm_sync() == generic_netmap_rxsync()
380  *         from host stack:
381  *            netmap_transmit()
382  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383  *                     kring->nm_sync() == netmap_rxsync_from_host()
384  *                     netmap_vp_txsync()
385  *
386  *   (all cases) --> nm_bdg_flush()
387  *                      dest_na->nm_notify() == (see below)
388  *
389  *   OUTGOING:
390  *
391  *      - VALE ports:
392  *         concurrently:
393  *             1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394  *                    kring->nm_sync() == netmap_vp_rxsync()
395  *             2) from nm_bdg_flush()
396  *                    na->nm_notify() == netmap_notify()
397  *
398  *      - system device with native support:
399  *          to cable:
400  *             na->nm_notify() == netmap_bwrap_notify()
401  *                 netmap_vp_rxsync()
402  *                 kring->nm_sync() == DEVICE_netmap_txsync()
403  *                 netmap_vp_rxsync()
404  *          to host stack:
405  *                 netmap_vp_rxsync()
406  *                 kring->nm_sync() == netmap_txsync_to_host
407  *                 netmap_vp_rxsync_locked()
408  *
409  *      - system device with generic adapter:
410  *          to device driver:
411  *             na->nm_notify() == netmap_bwrap_notify()
412  *                 netmap_vp_rxsync()
413  *                 kring->nm_sync() == generic_netmap_txsync()
414  *                 netmap_vp_rxsync()
415  *          to host stack:
416  *                 netmap_vp_rxsync()
417  *                 kring->nm_sync() == netmap_txsync_to_host
418  *                 netmap_vp_rxsync()
419  *
420  */
421 
422 /*
423  * OS-specific code that is used only within this file.
424  * Other OS-specific code that must be accessed by drivers
425  * is present in netmap_kern.h
426  */
427 
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h>	/* defines used in kernel.h */
433 #include <sys/kernel.h>	/* types used in module initialization */
434 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
435 #include <sys/filio.h>	/* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h>	/* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/rwlock.h>
441 #include <sys/socket.h> /* sockaddrs */
442 #include <sys/selinfo.h>
443 #include <sys/sysctl.h>
444 #include <sys/jail.h>
445 #include <net/vnet.h>
446 #include <net/if.h>
447 #include <net/if_var.h>
448 #include <net/bpf.h>		/* BIOCIMMEDIATE */
449 #include <machine/bus.h>	/* bus_dmamap_* */
450 #include <sys/endian.h>
451 #include <sys/refcount.h>
452 #include <net/ethernet.h>	/* ETHER_BPF_MTAP */
453 
454 
455 #elif defined(linux)
456 
457 #include "bsd_glue.h"
458 
459 #elif defined(__APPLE__)
460 
461 #warning OSX support is only partial
462 #include "osx_glue.h"
463 
464 #elif defined (_WIN32)
465 
466 #include "win_glue.h"
467 
468 #else
469 
470 #error	Unsupported platform
471 
472 #endif /* unsupported */
473 
474 /*
475  * common headers
476  */
477 #include <net/netmap.h>
478 #include <dev/netmap/netmap_kern.h>
479 #include <dev/netmap/netmap_mem2.h>
480 
481 
482 /* user-controlled variables */
483 int netmap_verbose;
484 #ifdef CONFIG_NETMAP_DEBUG
485 int netmap_debug;
486 #endif /* CONFIG_NETMAP_DEBUG */
487 
488 static int netmap_no_timestamp; /* don't timestamp on rxsync */
489 int netmap_no_pendintr = 1;
490 int netmap_txsync_retry = 2;
491 static int netmap_fwd = 0;	/* force transparent forwarding */
492 
493 /*
494  * netmap_admode selects the netmap mode to use.
495  * Invalid values are reset to NETMAP_ADMODE_BEST
496  */
497 enum {	NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
498 	NETMAP_ADMODE_NATIVE,	/* either native or none */
499 	NETMAP_ADMODE_GENERIC,	/* force generic */
500 	NETMAP_ADMODE_LAST };
501 static int netmap_admode = NETMAP_ADMODE_BEST;
502 
503 /* netmap_generic_mit controls mitigation of RX notifications for
504  * the generic netmap adapter. The value is a time interval in
505  * nanoseconds. */
506 int netmap_generic_mit = 100*1000;
507 
508 /* We use by default netmap-aware qdiscs with generic netmap adapters,
509  * even if there can be a little performance hit with hardware NICs.
510  * However, using the qdisc is the safer approach, for two reasons:
511  * 1) it prevents non-fifo qdiscs to break the TX notification
512  *    scheme, which is based on mbuf destructors when txqdisc is
513  *    not used.
514  * 2) it makes it possible to transmit over software devices that
515  *    change skb->dev, like bridge, veth, ...
516  *
517  * Anyway users looking for the best performance should
518  * use native adapters.
519  */
520 #ifdef linux
521 int netmap_generic_txqdisc = 1;
522 #endif
523 
524 /* Default number of slots and queues for generic adapters. */
525 int netmap_generic_ringsize = 1024;
526 int netmap_generic_rings = 1;
527 
528 /* Non-zero to enable checksum offloading in NIC drivers */
529 int netmap_generic_hwcsum = 0;
530 
531 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
532 int ptnet_vnet_hdr = 1;
533 
534 /*
535  * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
536  * in some other operating systems
537  */
538 SYSBEGIN(main_init);
539 
540 SYSCTL_DECL(_dev_netmap);
541 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
542 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
543 		CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
544 #ifdef CONFIG_NETMAP_DEBUG
545 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
546 		CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
547 #endif /* CONFIG_NETMAP_DEBUG */
548 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
549 		CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
551 		0, "Always look for new received packets.");
552 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
553 		&netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
554 
555 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
556 		"Force NR_FORWARD mode");
557 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
558 		"Adapter mode. 0 selects the best option available,"
559 		"1 forces native adapter, 2 forces emulated adapter");
560 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
561 		0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
562 		"1 to enable checksum generation by the NIC");
563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
564 		0, "RX notification interval in nanoseconds");
565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
566 		&netmap_generic_ringsize, 0,
567 		"Number of per-ring slots for emulated netmap mode");
568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
569 		&netmap_generic_rings, 0,
570 		"Number of TX/RX queues for emulated netmap adapters");
571 #ifdef linux
572 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
573 		&netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
574 #endif
575 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
576 		0, "Allow ptnet devices to use virtio-net headers");
577 
578 SYSEND;
579 
580 NMG_LOCK_T	netmap_global_lock;
581 
582 /*
583  * mark the ring as stopped, and run through the locks
584  * to make sure other users get to see it.
585  * stopped must be either NR_KR_STOPPED (for unbounded stop)
586  * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
587  */
588 static void
589 netmap_disable_ring(struct netmap_kring *kr, int stopped)
590 {
591 	nm_kr_stop(kr, stopped);
592 	// XXX check if nm_kr_stop is sufficient
593 	mtx_lock(&kr->q_lock);
594 	mtx_unlock(&kr->q_lock);
595 	nm_kr_put(kr);
596 }
597 
598 /* stop or enable a single ring */
599 void
600 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
601 {
602 	if (stopped)
603 		netmap_disable_ring(NMR(na, t)[ring_id], stopped);
604 	else
605 		NMR(na, t)[ring_id]->nkr_stopped = 0;
606 }
607 
608 
609 /* stop or enable all the rings of na */
610 void
611 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
612 {
613 	int i;
614 	enum txrx t;
615 
616 	if (!nm_netmap_on(na))
617 		return;
618 
619 	for_rx_tx(t) {
620 		for (i = 0; i < netmap_real_rings(na, t); i++) {
621 			netmap_set_ring(na, i, t, stopped);
622 		}
623 	}
624 }
625 
626 /*
627  * Convenience function used in drivers.  Waits for current txsync()s/rxsync()s
628  * to finish and prevents any new one from starting.  Call this before turning
629  * netmap mode off, or before removing the hardware rings (e.g., on module
630  * onload).
631  */
632 void
633 netmap_disable_all_rings(struct ifnet *ifp)
634 {
635 	if (NM_NA_VALID(ifp)) {
636 		netmap_set_all_rings(NA(ifp), NM_KR_STOPPED);
637 	}
638 }
639 
640 /*
641  * Convenience function used in drivers.  Re-enables rxsync and txsync on the
642  * adapter's rings In linux drivers, this should be placed near each
643  * napi_enable().
644  */
645 void
646 netmap_enable_all_rings(struct ifnet *ifp)
647 {
648 	if (NM_NA_VALID(ifp)) {
649 		netmap_set_all_rings(NA(ifp), 0 /* enabled */);
650 	}
651 }
652 
653 void
654 netmap_make_zombie(struct ifnet *ifp)
655 {
656 	if (NM_NA_VALID(ifp)) {
657 		struct netmap_adapter *na = NA(ifp);
658 		netmap_set_all_rings(na, NM_KR_LOCKED);
659 		na->na_flags |= NAF_ZOMBIE;
660 		netmap_set_all_rings(na, 0);
661 	}
662 }
663 
664 void
665 netmap_undo_zombie(struct ifnet *ifp)
666 {
667 	if (NM_NA_VALID(ifp)) {
668 		struct netmap_adapter *na = NA(ifp);
669 		if (na->na_flags & NAF_ZOMBIE) {
670 			netmap_set_all_rings(na, NM_KR_LOCKED);
671 			na->na_flags &= ~NAF_ZOMBIE;
672 			netmap_set_all_rings(na, 0);
673 		}
674 	}
675 }
676 
677 /*
678  * generic bound_checking function
679  */
680 u_int
681 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
682 {
683 	u_int oldv = *v;
684 	const char *op = NULL;
685 
686 	if (dflt < lo)
687 		dflt = lo;
688 	if (dflt > hi)
689 		dflt = hi;
690 	if (oldv < lo) {
691 		*v = dflt;
692 		op = "Bump";
693 	} else if (oldv > hi) {
694 		*v = hi;
695 		op = "Clamp";
696 	}
697 	if (op && msg)
698 		nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
699 	return *v;
700 }
701 
702 
703 /*
704  * packet-dump function, user-supplied or static buffer.
705  * The destination buffer must be at least 30+4*len
706  */
707 const char *
708 nm_dump_buf(char *p, int len, int lim, char *dst)
709 {
710 	static char _dst[8192];
711 	int i, j, i0;
712 	static char hex[] ="0123456789abcdef";
713 	char *o;	/* output position */
714 
715 #define P_HI(x)	hex[((x) & 0xf0)>>4]
716 #define P_LO(x)	hex[((x) & 0xf)]
717 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
718 	if (!dst)
719 		dst = _dst;
720 	if (lim <= 0 || lim > len)
721 		lim = len;
722 	o = dst;
723 	sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
724 	o += strlen(o);
725 	/* hexdump routine */
726 	for (i = 0; i < lim; ) {
727 		sprintf(o, "%5d: ", i);
728 		o += strlen(o);
729 		memset(o, ' ', 48);
730 		i0 = i;
731 		for (j=0; j < 16 && i < lim; i++, j++) {
732 			o[j*3] = P_HI(p[i]);
733 			o[j*3+1] = P_LO(p[i]);
734 		}
735 		i = i0;
736 		for (j=0; j < 16 && i < lim; i++, j++)
737 			o[j + 48] = P_C(p[i]);
738 		o[j+48] = '\n';
739 		o += j+49;
740 	}
741 	*o = '\0';
742 #undef P_HI
743 #undef P_LO
744 #undef P_C
745 	return dst;
746 }
747 
748 
749 /*
750  * Fetch configuration from the device, to cope with dynamic
751  * reconfigurations after loading the module.
752  */
753 /* call with NMG_LOCK held */
754 int
755 netmap_update_config(struct netmap_adapter *na)
756 {
757 	struct nm_config_info info;
758 
759 	bzero(&info, sizeof(info));
760 	if (na->nm_config == NULL ||
761 	    na->nm_config(na, &info)) {
762 		/* take whatever we had at init time */
763 		info.num_tx_rings = na->num_tx_rings;
764 		info.num_tx_descs = na->num_tx_desc;
765 		info.num_rx_rings = na->num_rx_rings;
766 		info.num_rx_descs = na->num_rx_desc;
767 		info.rx_buf_maxsize = na->rx_buf_maxsize;
768 	}
769 
770 	if (na->num_tx_rings == info.num_tx_rings &&
771 	    na->num_tx_desc == info.num_tx_descs &&
772 	    na->num_rx_rings == info.num_rx_rings &&
773 	    na->num_rx_desc == info.num_rx_descs &&
774 	    na->rx_buf_maxsize == info.rx_buf_maxsize)
775 		return 0; /* nothing changed */
776 	if (na->active_fds == 0) {
777 		na->num_tx_rings = info.num_tx_rings;
778 		na->num_tx_desc = info.num_tx_descs;
779 		na->num_rx_rings = info.num_rx_rings;
780 		na->num_rx_desc = info.num_rx_descs;
781 		na->rx_buf_maxsize = info.rx_buf_maxsize;
782 		if (netmap_verbose)
783 			nm_prinf("configuration changed for %s: txring %d x %d, "
784 				"rxring %d x %d, rxbufsz %d",
785 				na->name, na->num_tx_rings, na->num_tx_desc,
786 				na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
787 		return 0;
788 	}
789 	nm_prerr("WARNING: configuration changed for %s while active: "
790 		"txring %d x %d, rxring %d x %d, rxbufsz %d",
791 		na->name, info.num_tx_rings, info.num_tx_descs,
792 		info.num_rx_rings, info.num_rx_descs,
793 		info.rx_buf_maxsize);
794 	return 1;
795 }
796 
797 /* nm_sync callbacks for the host rings */
798 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
799 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
800 
801 /* create the krings array and initialize the fields common to all adapters.
802  * The array layout is this:
803  *
804  *                    +----------+
805  * na->tx_rings ----->|          | \
806  *                    |          |  } na->num_tx_ring
807  *                    |          | /
808  *                    +----------+
809  *                    |          |    host tx kring
810  * na->rx_rings ----> +----------+
811  *                    |          | \
812  *                    |          |  } na->num_rx_rings
813  *                    |          | /
814  *                    +----------+
815  *                    |          |    host rx kring
816  *                    +----------+
817  * na->tailroom ----->|          | \
818  *                    |          |  } tailroom bytes
819  *                    |          | /
820  *                    +----------+
821  *
822  * Note: for compatibility, host krings are created even when not needed.
823  * The tailroom space is currently used by vale ports for allocating leases.
824  */
825 /* call with NMG_LOCK held */
826 int
827 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
828 {
829 	u_int i, len, ndesc;
830 	struct netmap_kring *kring;
831 	u_int n[NR_TXRX];
832 	enum txrx t;
833 
834 	if (na->tx_rings != NULL) {
835 		if (netmap_debug & NM_DEBUG_ON)
836 			nm_prerr("warning: krings were already created");
837 		return 0;
838 	}
839 
840 	/* account for the (possibly fake) host rings */
841 	n[NR_TX] = netmap_all_rings(na, NR_TX);
842 	n[NR_RX] = netmap_all_rings(na, NR_RX);
843 
844 	len = (n[NR_TX] + n[NR_RX]) *
845 		(sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
846 		+ tailroom;
847 
848 	na->tx_rings = nm_os_malloc((size_t)len);
849 	if (na->tx_rings == NULL) {
850 		nm_prerr("Cannot allocate krings");
851 		return ENOMEM;
852 	}
853 	na->rx_rings = na->tx_rings + n[NR_TX];
854 	na->tailroom = na->rx_rings + n[NR_RX];
855 
856 	/* link the krings in the krings array */
857 	kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
858 	for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
859 		na->tx_rings[i] = kring;
860 		kring++;
861 	}
862 
863 	/*
864 	 * All fields in krings are 0 except the one initialized below.
865 	 * but better be explicit on important kring fields.
866 	 */
867 	for_rx_tx(t) {
868 		ndesc = nma_get_ndesc(na, t);
869 		for (i = 0; i < n[t]; i++) {
870 			kring = NMR(na, t)[i];
871 			bzero(kring, sizeof(*kring));
872 			kring->na = na;
873 			kring->notify_na = na;
874 			kring->ring_id = i;
875 			kring->tx = t;
876 			kring->nkr_num_slots = ndesc;
877 			kring->nr_mode = NKR_NETMAP_OFF;
878 			kring->nr_pending_mode = NKR_NETMAP_OFF;
879 			if (i < nma_get_nrings(na, t)) {
880 				kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
881 			} else {
882 				if (!(na->na_flags & NAF_HOST_RINGS))
883 					kring->nr_kflags |= NKR_FAKERING;
884 				kring->nm_sync = (t == NR_TX ?
885 						netmap_txsync_to_host:
886 						netmap_rxsync_from_host);
887 			}
888 			kring->nm_notify = na->nm_notify;
889 			kring->rhead = kring->rcur = kring->nr_hwcur = 0;
890 			/*
891 			 * IMPORTANT: Always keep one slot empty.
892 			 */
893 			kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
894 			snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
895 					nm_txrx2str(t), i);
896 			ND("ktx %s h %d c %d t %d",
897 				kring->name, kring->rhead, kring->rcur, kring->rtail);
898 			mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
899 			nm_os_selinfo_init(&kring->si);
900 		}
901 		nm_os_selinfo_init(&na->si[t]);
902 	}
903 
904 
905 	return 0;
906 }
907 
908 
909 /* undo the actions performed by netmap_krings_create */
910 /* call with NMG_LOCK held */
911 void
912 netmap_krings_delete(struct netmap_adapter *na)
913 {
914 	struct netmap_kring **kring = na->tx_rings;
915 	enum txrx t;
916 
917 	if (na->tx_rings == NULL) {
918 		if (netmap_debug & NM_DEBUG_ON)
919 			nm_prerr("warning: krings were already deleted");
920 		return;
921 	}
922 
923 	for_rx_tx(t)
924 		nm_os_selinfo_uninit(&na->si[t]);
925 
926 	/* we rely on the krings layout described above */
927 	for ( ; kring != na->tailroom; kring++) {
928 		mtx_destroy(&(*kring)->q_lock);
929 		nm_os_selinfo_uninit(&(*kring)->si);
930 	}
931 	nm_os_free(na->tx_rings);
932 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
933 }
934 
935 
936 /*
937  * Destructor for NIC ports. They also have an mbuf queue
938  * on the rings connected to the host so we need to purge
939  * them first.
940  */
941 /* call with NMG_LOCK held */
942 void
943 netmap_hw_krings_delete(struct netmap_adapter *na)
944 {
945 	u_int lim = netmap_real_rings(na, NR_RX), i;
946 
947 	for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
948 		struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
949 		ND("destroy sw mbq with len %d", mbq_len(q));
950 		mbq_purge(q);
951 		mbq_safe_fini(q);
952 	}
953 	netmap_krings_delete(na);
954 }
955 
956 static void
957 netmap_mem_drop(struct netmap_adapter *na)
958 {
959 	int last = netmap_mem_deref(na->nm_mem, na);
960 	/* if the native allocator had been overrided on regif,
961 	 * restore it now and drop the temporary one
962 	 */
963 	if (last && na->nm_mem_prev) {
964 		netmap_mem_put(na->nm_mem);
965 		na->nm_mem = na->nm_mem_prev;
966 		na->nm_mem_prev = NULL;
967 	}
968 }
969 
970 /*
971  * Undo everything that was done in netmap_do_regif(). In particular,
972  * call nm_register(ifp,0) to stop netmap mode on the interface and
973  * revert to normal operation.
974  */
975 /* call with NMG_LOCK held */
976 static void netmap_unset_ringid(struct netmap_priv_d *);
977 static void netmap_krings_put(struct netmap_priv_d *);
978 void
979 netmap_do_unregif(struct netmap_priv_d *priv)
980 {
981 	struct netmap_adapter *na = priv->np_na;
982 
983 	NMG_LOCK_ASSERT();
984 	na->active_fds--;
985 	/* unset nr_pending_mode and possibly release exclusive mode */
986 	netmap_krings_put(priv);
987 
988 #ifdef	WITH_MONITOR
989 	/* XXX check whether we have to do something with monitor
990 	 * when rings change nr_mode. */
991 	if (na->active_fds <= 0) {
992 		/* walk through all the rings and tell any monitor
993 		 * that the port is going to exit netmap mode
994 		 */
995 		netmap_monitor_stop(na);
996 	}
997 #endif
998 
999 	if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1000 		na->nm_register(na, 0);
1001 	}
1002 
1003 	/* delete rings and buffers that are no longer needed */
1004 	netmap_mem_rings_delete(na);
1005 
1006 	if (na->active_fds <= 0) {	/* last instance */
1007 		/*
1008 		 * (TO CHECK) We enter here
1009 		 * when the last reference to this file descriptor goes
1010 		 * away. This means we cannot have any pending poll()
1011 		 * or interrupt routine operating on the structure.
1012 		 * XXX The file may be closed in a thread while
1013 		 * another thread is using it.
1014 		 * Linux keeps the file opened until the last reference
1015 		 * by any outstanding ioctl/poll or mmap is gone.
1016 		 * FreeBSD does not track mmap()s (but we do) and
1017 		 * wakes up any sleeping poll(). Need to check what
1018 		 * happens if the close() occurs while a concurrent
1019 		 * syscall is running.
1020 		 */
1021 		if (netmap_debug & NM_DEBUG_ON)
1022 			nm_prinf("deleting last instance for %s", na->name);
1023 
1024 		if (nm_netmap_on(na)) {
1025 			nm_prerr("BUG: netmap on while going to delete the krings");
1026 		}
1027 
1028 		na->nm_krings_delete(na);
1029 	}
1030 
1031 	/* possibily decrement counter of tx_si/rx_si users */
1032 	netmap_unset_ringid(priv);
1033 	/* delete the nifp */
1034 	netmap_mem_if_delete(na, priv->np_nifp);
1035 	/* drop the allocator */
1036 	netmap_mem_drop(na);
1037 	/* mark the priv as unregistered */
1038 	priv->np_na = NULL;
1039 	priv->np_nifp = NULL;
1040 }
1041 
1042 struct netmap_priv_d*
1043 netmap_priv_new(void)
1044 {
1045 	struct netmap_priv_d *priv;
1046 
1047 	priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1048 	if (priv == NULL)
1049 		return NULL;
1050 	priv->np_refs = 1;
1051 	nm_os_get_module();
1052 	return priv;
1053 }
1054 
1055 /*
1056  * Destructor of the netmap_priv_d, called when the fd is closed
1057  * Action: undo all the things done by NIOCREGIF,
1058  * On FreeBSD we need to track whether there are active mmap()s,
1059  * and we use np_active_mmaps for that. On linux, the field is always 0.
1060  * Return: 1 if we can free priv, 0 otherwise.
1061  *
1062  */
1063 /* call with NMG_LOCK held */
1064 void
1065 netmap_priv_delete(struct netmap_priv_d *priv)
1066 {
1067 	struct netmap_adapter *na = priv->np_na;
1068 
1069 	/* number of active references to this fd */
1070 	if (--priv->np_refs > 0) {
1071 		return;
1072 	}
1073 	nm_os_put_module();
1074 	if (na) {
1075 		netmap_do_unregif(priv);
1076 	}
1077 	netmap_unget_na(na, priv->np_ifp);
1078 	bzero(priv, sizeof(*priv));	/* for safety */
1079 	nm_os_free(priv);
1080 }
1081 
1082 
1083 /* call with NMG_LOCK *not* held */
1084 void
1085 netmap_dtor(void *data)
1086 {
1087 	struct netmap_priv_d *priv = data;
1088 
1089 	NMG_LOCK();
1090 	netmap_priv_delete(priv);
1091 	NMG_UNLOCK();
1092 }
1093 
1094 
1095 /*
1096  * Handlers for synchronization of the rings from/to the host stack.
1097  * These are associated to a network interface and are just another
1098  * ring pair managed by userspace.
1099  *
1100  * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1101  * flags):
1102  *
1103  * - Before releasing buffers on hw RX rings, the application can mark
1104  *   them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1105  *   will be forwarded to the host stack, similarly to what happened if
1106  *   the application moved them to the host TX ring.
1107  *
1108  * - Before releasing buffers on the host RX ring, the application can
1109  *   mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1110  *   they will be forwarded to the hw TX rings, saving the application
1111  *   from doing the same task in user-space.
1112  *
1113  * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD
1114  * flag, or globally with the netmap_fwd sysctl.
1115  *
1116  * The transfer NIC --> host is relatively easy, just encapsulate
1117  * into mbufs and we are done. The host --> NIC side is slightly
1118  * harder because there might not be room in the tx ring so it
1119  * might take a while before releasing the buffer.
1120  */
1121 
1122 
1123 /*
1124  * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1125  * We do not need to lock because the queue is private.
1126  * After this call the queue is empty.
1127  */
1128 static void
1129 netmap_send_up(struct ifnet *dst, struct mbq *q)
1130 {
1131 	struct mbuf *m;
1132 	struct mbuf *head = NULL, *prev = NULL;
1133 
1134 	/* Send packets up, outside the lock; head/prev machinery
1135 	 * is only useful for Windows. */
1136 	while ((m = mbq_dequeue(q)) != NULL) {
1137 		if (netmap_debug & NM_DEBUG_HOST)
1138 			nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1139 		prev = nm_os_send_up(dst, m, prev);
1140 		if (head == NULL)
1141 			head = prev;
1142 	}
1143 	if (head)
1144 		nm_os_send_up(dst, NULL, head);
1145 	mbq_fini(q);
1146 }
1147 
1148 
1149 /*
1150  * Scan the buffers from hwcur to ring->head, and put a copy of those
1151  * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1152  * Drop remaining packets in the unlikely event
1153  * of an mbuf shortage.
1154  */
1155 static void
1156 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1157 {
1158 	u_int const lim = kring->nkr_num_slots - 1;
1159 	u_int const head = kring->rhead;
1160 	u_int n;
1161 	struct netmap_adapter *na = kring->na;
1162 
1163 	for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1164 		struct mbuf *m;
1165 		struct netmap_slot *slot = &kring->ring->slot[n];
1166 
1167 		if ((slot->flags & NS_FORWARD) == 0 && !force)
1168 			continue;
1169 		if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1170 			RD(5, "bad pkt at %d len %d", n, slot->len);
1171 			continue;
1172 		}
1173 		slot->flags &= ~NS_FORWARD; // XXX needed ?
1174 		/* XXX TODO: adapt to the case of a multisegment packet */
1175 		m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1176 
1177 		if (m == NULL)
1178 			break;
1179 		mbq_enqueue(q, m);
1180 	}
1181 }
1182 
1183 static inline int
1184 _nm_may_forward(struct netmap_kring *kring)
1185 {
1186 	return	((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1187 		 kring->na->na_flags & NAF_HOST_RINGS &&
1188 		 kring->tx == NR_RX);
1189 }
1190 
1191 static inline int
1192 nm_may_forward_up(struct netmap_kring *kring)
1193 {
1194 	return	_nm_may_forward(kring) &&
1195 		 kring->ring_id != kring->na->num_rx_rings;
1196 }
1197 
1198 static inline int
1199 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1200 {
1201 	return	_nm_may_forward(kring) &&
1202 		 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1203 		 kring->ring_id == kring->na->num_rx_rings;
1204 }
1205 
1206 /*
1207  * Send to the NIC rings packets marked NS_FORWARD between
1208  * kring->nr_hwcur and kring->rhead.
1209  * Called under kring->rx_queue.lock on the sw rx ring.
1210  *
1211  * It can only be called if the user opened all the TX hw rings,
1212  * see NAF_CAN_FORWARD_DOWN flag.
1213  * We can touch the TX netmap rings (slots, head and cur) since
1214  * we are in poll/ioctl system call context, and the application
1215  * is not supposed to touch the ring (using a different thread)
1216  * during the execution of the system call.
1217  */
1218 static u_int
1219 netmap_sw_to_nic(struct netmap_adapter *na)
1220 {
1221 	struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1222 	struct netmap_slot *rxslot = kring->ring->slot;
1223 	u_int i, rxcur = kring->nr_hwcur;
1224 	u_int const head = kring->rhead;
1225 	u_int const src_lim = kring->nkr_num_slots - 1;
1226 	u_int sent = 0;
1227 
1228 	/* scan rings to find space, then fill as much as possible */
1229 	for (i = 0; i < na->num_tx_rings; i++) {
1230 		struct netmap_kring *kdst = na->tx_rings[i];
1231 		struct netmap_ring *rdst = kdst->ring;
1232 		u_int const dst_lim = kdst->nkr_num_slots - 1;
1233 
1234 		/* XXX do we trust ring or kring->rcur,rtail ? */
1235 		for (; rxcur != head && !nm_ring_empty(rdst);
1236 		     rxcur = nm_next(rxcur, src_lim) ) {
1237 			struct netmap_slot *src, *dst, tmp;
1238 			u_int dst_head = rdst->head;
1239 
1240 			src = &rxslot[rxcur];
1241 			if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1242 				continue;
1243 
1244 			sent++;
1245 
1246 			dst = &rdst->slot[dst_head];
1247 
1248 			tmp = *src;
1249 
1250 			src->buf_idx = dst->buf_idx;
1251 			src->flags = NS_BUF_CHANGED;
1252 
1253 			dst->buf_idx = tmp.buf_idx;
1254 			dst->len = tmp.len;
1255 			dst->flags = NS_BUF_CHANGED;
1256 
1257 			rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1258 		}
1259 		/* if (sent) XXX txsync ? it would be just an optimization */
1260 	}
1261 	return sent;
1262 }
1263 
1264 
1265 /*
1266  * netmap_txsync_to_host() passes packets up. We are called from a
1267  * system call in user process context, and the only contention
1268  * can be among multiple user threads erroneously calling
1269  * this routine concurrently.
1270  */
1271 static int
1272 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1273 {
1274 	struct netmap_adapter *na = kring->na;
1275 	u_int const lim = kring->nkr_num_slots - 1;
1276 	u_int const head = kring->rhead;
1277 	struct mbq q;
1278 
1279 	/* Take packets from hwcur to head and pass them up.
1280 	 * Force hwcur = head since netmap_grab_packets() stops at head
1281 	 */
1282 	mbq_init(&q);
1283 	netmap_grab_packets(kring, &q, 1 /* force */);
1284 	ND("have %d pkts in queue", mbq_len(&q));
1285 	kring->nr_hwcur = head;
1286 	kring->nr_hwtail = head + lim;
1287 	if (kring->nr_hwtail > lim)
1288 		kring->nr_hwtail -= lim + 1;
1289 
1290 	netmap_send_up(na->ifp, &q);
1291 	return 0;
1292 }
1293 
1294 
1295 /*
1296  * rxsync backend for packets coming from the host stack.
1297  * They have been put in kring->rx_queue by netmap_transmit().
1298  * We protect access to the kring using kring->rx_queue.lock
1299  *
1300  * also moves to the nic hw rings any packet the user has marked
1301  * for transparent-mode forwarding, then sets the NR_FORWARD
1302  * flag in the kring to let the caller push them out
1303  */
1304 static int
1305 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1306 {
1307 	struct netmap_adapter *na = kring->na;
1308 	struct netmap_ring *ring = kring->ring;
1309 	u_int nm_i, n;
1310 	u_int const lim = kring->nkr_num_slots - 1;
1311 	u_int const head = kring->rhead;
1312 	int ret = 0;
1313 	struct mbq *q = &kring->rx_queue, fq;
1314 
1315 	mbq_init(&fq); /* fq holds packets to be freed */
1316 
1317 	mbq_lock(q);
1318 
1319 	/* First part: import newly received packets */
1320 	n = mbq_len(q);
1321 	if (n) { /* grab packets from the queue */
1322 		struct mbuf *m;
1323 		uint32_t stop_i;
1324 
1325 		nm_i = kring->nr_hwtail;
1326 		stop_i = nm_prev(kring->nr_hwcur, lim);
1327 		while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1328 			int len = MBUF_LEN(m);
1329 			struct netmap_slot *slot = &ring->slot[nm_i];
1330 
1331 			m_copydata(m, 0, len, NMB(na, slot));
1332 			ND("nm %d len %d", nm_i, len);
1333 			if (netmap_debug & NM_DEBUG_HOST)
1334 				nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1335 
1336 			slot->len = len;
1337 			slot->flags = 0;
1338 			nm_i = nm_next(nm_i, lim);
1339 			mbq_enqueue(&fq, m);
1340 		}
1341 		kring->nr_hwtail = nm_i;
1342 	}
1343 
1344 	/*
1345 	 * Second part: skip past packets that userspace has released.
1346 	 */
1347 	nm_i = kring->nr_hwcur;
1348 	if (nm_i != head) { /* something was released */
1349 		if (nm_may_forward_down(kring, flags)) {
1350 			ret = netmap_sw_to_nic(na);
1351 			if (ret > 0) {
1352 				kring->nr_kflags |= NR_FORWARD;
1353 				ret = 0;
1354 			}
1355 		}
1356 		kring->nr_hwcur = head;
1357 	}
1358 
1359 	mbq_unlock(q);
1360 
1361 	mbq_purge(&fq);
1362 	mbq_fini(&fq);
1363 
1364 	return ret;
1365 }
1366 
1367 
1368 /* Get a netmap adapter for the port.
1369  *
1370  * If it is possible to satisfy the request, return 0
1371  * with *na containing the netmap adapter found.
1372  * Otherwise return an error code, with *na containing NULL.
1373  *
1374  * When the port is attached to a bridge, we always return
1375  * EBUSY.
1376  * Otherwise, if the port is already bound to a file descriptor,
1377  * then we unconditionally return the existing adapter into *na.
1378  * In all the other cases, we return (into *na) either native,
1379  * generic or NULL, according to the following table:
1380  *
1381  *					native_support
1382  * active_fds   dev.netmap.admode         YES     NO
1383  * -------------------------------------------------------
1384  *    >0              *                 NA(ifp) NA(ifp)
1385  *
1386  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
1387  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
1388  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
1389  *
1390  */
1391 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1392 int
1393 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1394 {
1395 	/* generic support */
1396 	int i = netmap_admode;	/* Take a snapshot. */
1397 	struct netmap_adapter *prev_na;
1398 	int error = 0;
1399 
1400 	*na = NULL; /* default */
1401 
1402 	/* reset in case of invalid value */
1403 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1404 		i = netmap_admode = NETMAP_ADMODE_BEST;
1405 
1406 	if (NM_NA_VALID(ifp)) {
1407 		prev_na = NA(ifp);
1408 		/* If an adapter already exists, return it if
1409 		 * there are active file descriptors or if
1410 		 * netmap is not forced to use generic
1411 		 * adapters.
1412 		 */
1413 		if (NETMAP_OWNED_BY_ANY(prev_na)
1414 			|| i != NETMAP_ADMODE_GENERIC
1415 			|| prev_na->na_flags & NAF_FORCE_NATIVE
1416 #ifdef WITH_PIPES
1417 			/* ugly, but we cannot allow an adapter switch
1418 			 * if some pipe is referring to this one
1419 			 */
1420 			|| prev_na->na_next_pipe > 0
1421 #endif
1422 		) {
1423 			*na = prev_na;
1424 			goto assign_mem;
1425 		}
1426 	}
1427 
1428 	/* If there isn't native support and netmap is not allowed
1429 	 * to use generic adapters, we cannot satisfy the request.
1430 	 */
1431 	if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1432 		return EOPNOTSUPP;
1433 
1434 	/* Otherwise, create a generic adapter and return it,
1435 	 * saving the previously used netmap adapter, if any.
1436 	 *
1437 	 * Note that here 'prev_na', if not NULL, MUST be a
1438 	 * native adapter, and CANNOT be a generic one. This is
1439 	 * true because generic adapters are created on demand, and
1440 	 * destroyed when not used anymore. Therefore, if the adapter
1441 	 * currently attached to an interface 'ifp' is generic, it
1442 	 * must be that
1443 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1444 	 * Consequently, if NA(ifp) is generic, we will enter one of
1445 	 * the branches above. This ensures that we never override
1446 	 * a generic adapter with another generic adapter.
1447 	 */
1448 	error = generic_netmap_attach(ifp);
1449 	if (error)
1450 		return error;
1451 
1452 	*na = NA(ifp);
1453 
1454 assign_mem:
1455 	if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1456 	    (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1457 		(*na)->nm_mem_prev = (*na)->nm_mem;
1458 		(*na)->nm_mem = netmap_mem_get(nmd);
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 /*
1465  * MUST BE CALLED UNDER NMG_LOCK()
1466  *
1467  * Get a refcounted reference to a netmap adapter attached
1468  * to the interface specified by req.
1469  * This is always called in the execution of an ioctl().
1470  *
1471  * Return ENXIO if the interface specified by the request does
1472  * not exist, ENOTSUP if netmap is not supported by the interface,
1473  * EBUSY if the interface is already attached to a bridge,
1474  * EINVAL if parameters are invalid, ENOMEM if needed resources
1475  * could not be allocated.
1476  * If successful, hold a reference to the netmap adapter.
1477  *
1478  * If the interface specified by req is a system one, also keep
1479  * a reference to it and return a valid *ifp.
1480  */
1481 int
1482 netmap_get_na(struct nmreq_header *hdr,
1483 	      struct netmap_adapter **na, struct ifnet **ifp,
1484 	      struct netmap_mem_d *nmd, int create)
1485 {
1486 	struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1487 	int error = 0;
1488 	struct netmap_adapter *ret = NULL;
1489 	int nmd_ref = 0;
1490 
1491 	*na = NULL;     /* default return value */
1492 	*ifp = NULL;
1493 
1494 	if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1495 		return EINVAL;
1496 	}
1497 
1498 	if (req->nr_mode == NR_REG_PIPE_MASTER ||
1499 			req->nr_mode == NR_REG_PIPE_SLAVE) {
1500 		/* Do not accept deprecated pipe modes. */
1501 		nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1502 		return EINVAL;
1503 	}
1504 
1505 	NMG_LOCK_ASSERT();
1506 
1507 	/* if the request contain a memid, try to find the
1508 	 * corresponding memory region
1509 	 */
1510 	if (nmd == NULL && req->nr_mem_id) {
1511 		nmd = netmap_mem_find(req->nr_mem_id);
1512 		if (nmd == NULL)
1513 			return EINVAL;
1514 		/* keep the rereference */
1515 		nmd_ref = 1;
1516 	}
1517 
1518 	/* We cascade through all possible types of netmap adapter.
1519 	 * All netmap_get_*_na() functions return an error and an na,
1520 	 * with the following combinations:
1521 	 *
1522 	 * error    na
1523 	 *   0	   NULL		type doesn't match
1524 	 *  !0	   NULL		type matches, but na creation/lookup failed
1525 	 *   0	  !NULL		type matches and na created/found
1526 	 *  !0    !NULL		impossible
1527 	 */
1528 	error = netmap_get_null_na(hdr, na, nmd, create);
1529 	if (error || *na != NULL)
1530 		goto out;
1531 
1532 	/* try to see if this is a monitor port */
1533 	error = netmap_get_monitor_na(hdr, na, nmd, create);
1534 	if (error || *na != NULL)
1535 		goto out;
1536 
1537 	/* try to see if this is a pipe port */
1538 	error = netmap_get_pipe_na(hdr, na, nmd, create);
1539 	if (error || *na != NULL)
1540 		goto out;
1541 
1542 	/* try to see if this is a bridge port */
1543 	error = netmap_get_vale_na(hdr, na, nmd, create);
1544 	if (error)
1545 		goto out;
1546 
1547 	if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1548 		goto out;
1549 
1550 	/*
1551 	 * This must be a hardware na, lookup the name in the system.
1552 	 * Note that by hardware we actually mean "it shows up in ifconfig".
1553 	 * This may still be a tap, a veth/epair, or even a
1554 	 * persistent VALE port.
1555 	 */
1556 	*ifp = ifunit_ref(hdr->nr_name);
1557 	if (*ifp == NULL) {
1558 		error = ENXIO;
1559 		goto out;
1560 	}
1561 
1562 	error = netmap_get_hw_na(*ifp, nmd, &ret);
1563 	if (error)
1564 		goto out;
1565 
1566 	*na = ret;
1567 	netmap_adapter_get(ret);
1568 
1569 out:
1570 	if (error) {
1571 		if (ret)
1572 			netmap_adapter_put(ret);
1573 		if (*ifp) {
1574 			if_rele(*ifp);
1575 			*ifp = NULL;
1576 		}
1577 	}
1578 	if (nmd_ref)
1579 		netmap_mem_put(nmd);
1580 
1581 	return error;
1582 }
1583 
1584 /* undo netmap_get_na() */
1585 void
1586 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1587 {
1588 	if (ifp)
1589 		if_rele(ifp);
1590 	if (na)
1591 		netmap_adapter_put(na);
1592 }
1593 
1594 
1595 #define NM_FAIL_ON(t) do {						\
1596 	if (unlikely(t)) {						\
1597 		RD(5, "%s: fail '" #t "' "				\
1598 			"h %d c %d t %d "				\
1599 			"rh %d rc %d rt %d "				\
1600 			"hc %d ht %d",					\
1601 			kring->name,					\
1602 			head, cur, ring->tail,				\
1603 			kring->rhead, kring->rcur, kring->rtail,	\
1604 			kring->nr_hwcur, kring->nr_hwtail);		\
1605 		return kring->nkr_num_slots;				\
1606 	}								\
1607 } while (0)
1608 
1609 /*
1610  * validate parameters on entry for *_txsync()
1611  * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1612  * in case of error.
1613  *
1614  * rhead, rcur and rtail=hwtail are stored from previous round.
1615  * hwcur is the next packet to send to the ring.
1616  *
1617  * We want
1618  *    hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1619  *
1620  * hwcur, rhead, rtail and hwtail are reliable
1621  */
1622 u_int
1623 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1624 {
1625 	u_int head = ring->head; /* read only once */
1626 	u_int cur = ring->cur; /* read only once */
1627 	u_int n = kring->nkr_num_slots;
1628 
1629 	ND(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1630 		kring->name,
1631 		kring->nr_hwcur, kring->nr_hwtail,
1632 		ring->head, ring->cur, ring->tail);
1633 #if 1 /* kernel sanity checks; but we can trust the kring. */
1634 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1635 	    kring->rtail >= n ||  kring->nr_hwtail >= n);
1636 #endif /* kernel sanity checks */
1637 	/*
1638 	 * user sanity checks. We only use head,
1639 	 * A, B, ... are possible positions for head:
1640 	 *
1641 	 *  0    A  rhead   B  rtail   C  n-1
1642 	 *  0    D  rtail   E  rhead   F  n-1
1643 	 *
1644 	 * B, F, D are valid. A, C, E are wrong
1645 	 */
1646 	if (kring->rtail >= kring->rhead) {
1647 		/* want rhead <= head <= rtail */
1648 		NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1649 		/* and also head <= cur <= rtail */
1650 		NM_FAIL_ON(cur < head || cur > kring->rtail);
1651 	} else { /* here rtail < rhead */
1652 		/* we need head outside rtail .. rhead */
1653 		NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1654 
1655 		/* two cases now: head <= rtail or head >= rhead  */
1656 		if (head <= kring->rtail) {
1657 			/* want head <= cur <= rtail */
1658 			NM_FAIL_ON(cur < head || cur > kring->rtail);
1659 		} else { /* head >= rhead */
1660 			/* cur must be outside rtail..head */
1661 			NM_FAIL_ON(cur > kring->rtail && cur < head);
1662 		}
1663 	}
1664 	if (ring->tail != kring->rtail) {
1665 		RD(5, "%s tail overwritten was %d need %d", kring->name,
1666 			ring->tail, kring->rtail);
1667 		ring->tail = kring->rtail;
1668 	}
1669 	kring->rhead = head;
1670 	kring->rcur = cur;
1671 	return head;
1672 }
1673 
1674 
1675 /*
1676  * validate parameters on entry for *_rxsync()
1677  * Returns ring->head if ok, kring->nkr_num_slots on error.
1678  *
1679  * For a valid configuration,
1680  * hwcur <= head <= cur <= tail <= hwtail
1681  *
1682  * We only consider head and cur.
1683  * hwcur and hwtail are reliable.
1684  *
1685  */
1686 u_int
1687 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1688 {
1689 	uint32_t const n = kring->nkr_num_slots;
1690 	uint32_t head, cur;
1691 
1692 	ND(5,"%s kc %d kt %d h %d c %d t %d",
1693 		kring->name,
1694 		kring->nr_hwcur, kring->nr_hwtail,
1695 		ring->head, ring->cur, ring->tail);
1696 	/*
1697 	 * Before storing the new values, we should check they do not
1698 	 * move backwards. However:
1699 	 * - head is not an issue because the previous value is hwcur;
1700 	 * - cur could in principle go back, however it does not matter
1701 	 *   because we are processing a brand new rxsync()
1702 	 */
1703 	cur = kring->rcur = ring->cur;	/* read only once */
1704 	head = kring->rhead = ring->head;	/* read only once */
1705 #if 1 /* kernel sanity checks */
1706 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1707 #endif /* kernel sanity checks */
1708 	/* user sanity checks */
1709 	if (kring->nr_hwtail >= kring->nr_hwcur) {
1710 		/* want hwcur <= rhead <= hwtail */
1711 		NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1712 		/* and also rhead <= rcur <= hwtail */
1713 		NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1714 	} else {
1715 		/* we need rhead outside hwtail..hwcur */
1716 		NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1717 		/* two cases now: head <= hwtail or head >= hwcur  */
1718 		if (head <= kring->nr_hwtail) {
1719 			/* want head <= cur <= hwtail */
1720 			NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1721 		} else {
1722 			/* cur must be outside hwtail..head */
1723 			NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1724 		}
1725 	}
1726 	if (ring->tail != kring->rtail) {
1727 		RD(5, "%s tail overwritten was %d need %d",
1728 			kring->name,
1729 			ring->tail, kring->rtail);
1730 		ring->tail = kring->rtail;
1731 	}
1732 	return head;
1733 }
1734 
1735 
1736 /*
1737  * Error routine called when txsync/rxsync detects an error.
1738  * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1739  * Return 1 on reinit.
1740  *
1741  * This routine is only called by the upper half of the kernel.
1742  * It only reads hwcur (which is changed only by the upper half, too)
1743  * and hwtail (which may be changed by the lower half, but only on
1744  * a tx ring and only to increase it, so any error will be recovered
1745  * on the next call). For the above, we don't strictly need to call
1746  * it under lock.
1747  */
1748 int
1749 netmap_ring_reinit(struct netmap_kring *kring)
1750 {
1751 	struct netmap_ring *ring = kring->ring;
1752 	u_int i, lim = kring->nkr_num_slots - 1;
1753 	int errors = 0;
1754 
1755 	// XXX KASSERT nm_kr_tryget
1756 	RD(10, "called for %s", kring->name);
1757 	// XXX probably wrong to trust userspace
1758 	kring->rhead = ring->head;
1759 	kring->rcur  = ring->cur;
1760 	kring->rtail = ring->tail;
1761 
1762 	if (ring->cur > lim)
1763 		errors++;
1764 	if (ring->head > lim)
1765 		errors++;
1766 	if (ring->tail > lim)
1767 		errors++;
1768 	for (i = 0; i <= lim; i++) {
1769 		u_int idx = ring->slot[i].buf_idx;
1770 		u_int len = ring->slot[i].len;
1771 		if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1772 			RD(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1773 			ring->slot[i].buf_idx = 0;
1774 			ring->slot[i].len = 0;
1775 		} else if (len > NETMAP_BUF_SIZE(kring->na)) {
1776 			ring->slot[i].len = 0;
1777 			RD(5, "bad len at slot %d idx %d len %d", i, idx, len);
1778 		}
1779 	}
1780 	if (errors) {
1781 		RD(10, "total %d errors", errors);
1782 		RD(10, "%s reinit, cur %d -> %d tail %d -> %d",
1783 			kring->name,
1784 			ring->cur, kring->nr_hwcur,
1785 			ring->tail, kring->nr_hwtail);
1786 		ring->head = kring->rhead = kring->nr_hwcur;
1787 		ring->cur  = kring->rcur  = kring->nr_hwcur;
1788 		ring->tail = kring->rtail = kring->nr_hwtail;
1789 	}
1790 	return (errors ? 1 : 0);
1791 }
1792 
1793 /* interpret the ringid and flags fields of an nmreq, by translating them
1794  * into a pair of intervals of ring indices:
1795  *
1796  * [priv->np_txqfirst, priv->np_txqlast) and
1797  * [priv->np_rxqfirst, priv->np_rxqlast)
1798  *
1799  */
1800 int
1801 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1802 			uint16_t nr_ringid, uint64_t nr_flags)
1803 {
1804 	struct netmap_adapter *na = priv->np_na;
1805 	int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1806 	enum txrx t;
1807 	u_int j;
1808 
1809 	for_rx_tx(t) {
1810 		if (nr_flags & excluded_direction[t]) {
1811 			priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1812 			continue;
1813 		}
1814 		switch (nr_mode) {
1815 		case NR_REG_ALL_NIC:
1816 		case NR_REG_NULL:
1817 			priv->np_qfirst[t] = 0;
1818 			priv->np_qlast[t] = nma_get_nrings(na, t);
1819 			ND("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1820 				priv->np_qfirst[t], priv->np_qlast[t]);
1821 			break;
1822 		case NR_REG_SW:
1823 		case NR_REG_NIC_SW:
1824 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1825 				nm_prerr("host rings not supported");
1826 				return EINVAL;
1827 			}
1828 			priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1829 				nma_get_nrings(na, t) : 0);
1830 			priv->np_qlast[t] = netmap_all_rings(na, t);
1831 			ND("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1832 				nm_txrx2str(t),
1833 				priv->np_qfirst[t], priv->np_qlast[t]);
1834 			break;
1835 		case NR_REG_ONE_NIC:
1836 			if (nr_ringid >= na->num_tx_rings &&
1837 					nr_ringid >= na->num_rx_rings) {
1838 				nm_prerr("invalid ring id %d", nr_ringid);
1839 				return EINVAL;
1840 			}
1841 			/* if not enough rings, use the first one */
1842 			j = nr_ringid;
1843 			if (j >= nma_get_nrings(na, t))
1844 				j = 0;
1845 			priv->np_qfirst[t] = j;
1846 			priv->np_qlast[t] = j + 1;
1847 			ND("ONE_NIC: %s %d %d", nm_txrx2str(t),
1848 				priv->np_qfirst[t], priv->np_qlast[t]);
1849 			break;
1850 		default:
1851 			nm_prerr("invalid regif type %d", nr_mode);
1852 			return EINVAL;
1853 		}
1854 	}
1855 	priv->np_flags = nr_flags;
1856 
1857 	/* Allow transparent forwarding mode in the host --> nic
1858 	 * direction only if all the TX hw rings have been opened. */
1859 	if (priv->np_qfirst[NR_TX] == 0 &&
1860 			priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1861 		priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1862 	}
1863 
1864 	if (netmap_verbose) {
1865 		nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1866 			na->name,
1867 			priv->np_qfirst[NR_TX],
1868 			priv->np_qlast[NR_TX],
1869 			priv->np_qfirst[NR_RX],
1870 			priv->np_qlast[NR_RX],
1871 			nr_ringid);
1872 	}
1873 	return 0;
1874 }
1875 
1876 
1877 /*
1878  * Set the ring ID. For devices with a single queue, a request
1879  * for all rings is the same as a single ring.
1880  */
1881 static int
1882 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1883 		uint16_t nr_ringid, uint64_t nr_flags)
1884 {
1885 	struct netmap_adapter *na = priv->np_na;
1886 	int error;
1887 	enum txrx t;
1888 
1889 	error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags);
1890 	if (error) {
1891 		return error;
1892 	}
1893 
1894 	priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1;
1895 
1896 	/* optimization: count the users registered for more than
1897 	 * one ring, which are the ones sleeping on the global queue.
1898 	 * The default netmap_notify() callback will then
1899 	 * avoid signaling the global queue if nobody is using it
1900 	 */
1901 	for_rx_tx(t) {
1902 		if (nm_si_user(priv, t))
1903 			na->si_users[t]++;
1904 	}
1905 	return 0;
1906 }
1907 
1908 static void
1909 netmap_unset_ringid(struct netmap_priv_d *priv)
1910 {
1911 	struct netmap_adapter *na = priv->np_na;
1912 	enum txrx t;
1913 
1914 	for_rx_tx(t) {
1915 		if (nm_si_user(priv, t))
1916 			na->si_users[t]--;
1917 		priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1918 	}
1919 	priv->np_flags = 0;
1920 	priv->np_txpoll = 0;
1921 	priv->np_kloop_state = 0;
1922 }
1923 
1924 
1925 /* Set the nr_pending_mode for the requested rings.
1926  * If requested, also try to get exclusive access to the rings, provided
1927  * the rings we want to bind are not exclusively owned by a previous bind.
1928  */
1929 static int
1930 netmap_krings_get(struct netmap_priv_d *priv)
1931 {
1932 	struct netmap_adapter *na = priv->np_na;
1933 	u_int i;
1934 	struct netmap_kring *kring;
1935 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1936 	enum txrx t;
1937 
1938 	if (netmap_debug & NM_DEBUG_ON)
1939 		nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
1940 			na->name,
1941 			priv->np_qfirst[NR_TX],
1942 			priv->np_qlast[NR_TX],
1943 			priv->np_qfirst[NR_RX],
1944 			priv->np_qlast[NR_RX]);
1945 
1946 	/* first round: check that all the requested rings
1947 	 * are neither alread exclusively owned, nor we
1948 	 * want exclusive ownership when they are already in use
1949 	 */
1950 	for_rx_tx(t) {
1951 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1952 			kring = NMR(na, t)[i];
1953 			if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
1954 			    (kring->users && excl))
1955 			{
1956 				ND("ring %s busy", kring->name);
1957 				return EBUSY;
1958 			}
1959 		}
1960 	}
1961 
1962 	/* second round: increment usage count (possibly marking them
1963 	 * as exclusive) and set the nr_pending_mode
1964 	 */
1965 	for_rx_tx(t) {
1966 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1967 			kring = NMR(na, t)[i];
1968 			kring->users++;
1969 			if (excl)
1970 				kring->nr_kflags |= NKR_EXCLUSIVE;
1971 	                kring->nr_pending_mode = NKR_NETMAP_ON;
1972 		}
1973 	}
1974 
1975 	return 0;
1976 
1977 }
1978 
1979 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
1980  * if was asked on regif, and unset the nr_pending_mode if we are the
1981  * last users of the involved rings. */
1982 static void
1983 netmap_krings_put(struct netmap_priv_d *priv)
1984 {
1985 	struct netmap_adapter *na = priv->np_na;
1986 	u_int i;
1987 	struct netmap_kring *kring;
1988 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1989 	enum txrx t;
1990 
1991 	ND("%s: releasing tx [%d, %d) rx [%d, %d)",
1992 			na->name,
1993 			priv->np_qfirst[NR_TX],
1994 			priv->np_qlast[NR_TX],
1995 			priv->np_qfirst[NR_RX],
1996 			priv->np_qlast[MR_RX]);
1997 
1998 	for_rx_tx(t) {
1999 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2000 			kring = NMR(na, t)[i];
2001 			if (excl)
2002 				kring->nr_kflags &= ~NKR_EXCLUSIVE;
2003 			kring->users--;
2004 			if (kring->users == 0)
2005 				kring->nr_pending_mode = NKR_NETMAP_OFF;
2006 		}
2007 	}
2008 }
2009 
2010 static int
2011 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2012 {
2013 	return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2014 }
2015 
2016 /* Validate the CSB entries for both directions (atok and ktoa).
2017  * To be called under NMG_LOCK(). */
2018 static int
2019 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2020 {
2021 	struct nm_csb_atok *csb_atok_base =
2022 		(struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2023 	struct nm_csb_ktoa *csb_ktoa_base =
2024 		(struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2025 	enum txrx t;
2026 	int num_rings[NR_TXRX], tot_rings;
2027 	size_t entry_size[2];
2028 	void *csb_start[2];
2029 	int i;
2030 
2031 	if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2032 		nm_prerr("Cannot update CSB while kloop is running");
2033 		return EBUSY;
2034 	}
2035 
2036 	tot_rings = 0;
2037 	for_rx_tx(t) {
2038 		num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2039 		tot_rings += num_rings[t];
2040 	}
2041 	if (tot_rings <= 0)
2042 		return 0;
2043 
2044 	if (!(priv->np_flags & NR_EXCLUSIVE)) {
2045 		nm_prerr("CSB mode requires NR_EXCLUSIVE");
2046 		return EINVAL;
2047 	}
2048 
2049 	entry_size[0] = sizeof(*csb_atok_base);
2050 	entry_size[1] = sizeof(*csb_ktoa_base);
2051 	csb_start[0] = (void *)csb_atok_base;
2052 	csb_start[1] = (void *)csb_ktoa_base;
2053 
2054 	for (i = 0; i < 2; i++) {
2055 		/* On Linux we could use access_ok() to simplify
2056 		 * the validation. However, the advantage of
2057 		 * this approach is that it works also on
2058 		 * FreeBSD. */
2059 		size_t csb_size = tot_rings * entry_size[i];
2060 		void *tmp;
2061 		int err;
2062 
2063 		if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2064 			nm_prerr("Unaligned CSB address");
2065 			return EINVAL;
2066 		}
2067 
2068 		tmp = nm_os_malloc(csb_size);
2069 		if (!tmp)
2070 			return ENOMEM;
2071 		if (i == 0) {
2072 			/* Application --> kernel direction. */
2073 			err = copyin(csb_start[i], tmp, csb_size);
2074 		} else {
2075 			/* Kernel --> application direction. */
2076 			memset(tmp, 0, csb_size);
2077 			err = copyout(tmp, csb_start[i], csb_size);
2078 		}
2079 		nm_os_free(tmp);
2080 		if (err) {
2081 			nm_prerr("Invalid CSB address");
2082 			return err;
2083 		}
2084 	}
2085 
2086 	priv->np_csb_atok_base = csb_atok_base;
2087 	priv->np_csb_ktoa_base = csb_ktoa_base;
2088 
2089 	/* Initialize the CSB. */
2090 	for_rx_tx(t) {
2091 		for (i = 0; i < num_rings[t]; i++) {
2092 			struct netmap_kring *kring =
2093 				NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2094 			struct nm_csb_atok *csb_atok = csb_atok_base + i;
2095 			struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2096 
2097 			if (t == NR_RX) {
2098 				csb_atok += num_rings[NR_TX];
2099 				csb_ktoa += num_rings[NR_TX];
2100 			}
2101 
2102 			CSB_WRITE(csb_atok, head, kring->rhead);
2103 			CSB_WRITE(csb_atok, cur, kring->rcur);
2104 			CSB_WRITE(csb_atok, appl_need_kick, 1);
2105 			CSB_WRITE(csb_atok, sync_flags, 1);
2106 			CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2107 			CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2108 			CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2109 
2110 			nm_prinf("csb_init for kring %s: head %u, cur %u, "
2111 				"hwcur %u, hwtail %u", kring->name,
2112 				kring->rhead, kring->rcur, kring->nr_hwcur,
2113 				kring->nr_hwtail);
2114 		}
2115 	}
2116 
2117 	return 0;
2118 }
2119 
2120 /* Ensure that the netmap adapter can support the given MTU.
2121  * @return EINVAL if the na cannot be set to mtu, 0 otherwise.
2122  */
2123 int
2124 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) {
2125 	unsigned nbs = NETMAP_BUF_SIZE(na);
2126 
2127 	if (mtu <= na->rx_buf_maxsize) {
2128 		/* The MTU fits a single NIC slot. We only
2129 		 * Need to check that netmap buffers are
2130 		 * large enough to hold an MTU. NS_MOREFRAG
2131 		 * cannot be used in this case. */
2132 		if (nbs < mtu) {
2133 			nm_prerr("error: netmap buf size (%u) "
2134 				 "< device MTU (%u)", nbs, mtu);
2135 			return EINVAL;
2136 		}
2137 	} else {
2138 		/* More NIC slots may be needed to receive
2139 		 * or transmit a single packet. Check that
2140 		 * the adapter supports NS_MOREFRAG and that
2141 		 * netmap buffers are large enough to hold
2142 		 * the maximum per-slot size. */
2143 		if (!(na->na_flags & NAF_MOREFRAG)) {
2144 			nm_prerr("error: large MTU (%d) needed "
2145 				 "but %s does not support "
2146 				 "NS_MOREFRAG", mtu,
2147 				 na->ifp->if_xname);
2148 			return EINVAL;
2149 		} else if (nbs < na->rx_buf_maxsize) {
2150 			nm_prerr("error: using NS_MOREFRAG on "
2151 				 "%s requires netmap buf size "
2152 				 ">= %u", na->ifp->if_xname,
2153 				 na->rx_buf_maxsize);
2154 			return EINVAL;
2155 		} else {
2156 			nm_prinf("info: netmap application on "
2157 				 "%s needs to support "
2158 				 "NS_MOREFRAG "
2159 				 "(MTU=%u,netmap_buf_size=%u)",
2160 				 na->ifp->if_xname, mtu, nbs);
2161 		}
2162 	}
2163 	return 0;
2164 }
2165 
2166 
2167 /*
2168  * possibly move the interface to netmap-mode.
2169  * If success it returns a pointer to netmap_if, otherwise NULL.
2170  * This must be called with NMG_LOCK held.
2171  *
2172  * The following na callbacks are called in the process:
2173  *
2174  * na->nm_config()			[by netmap_update_config]
2175  * (get current number and size of rings)
2176  *
2177  *  	We have a generic one for linux (netmap_linux_config).
2178  *  	The bwrap has to override this, since it has to forward
2179  *  	the request to the wrapped adapter (netmap_bwrap_config).
2180  *
2181  *
2182  * na->nm_krings_create()
2183  * (create and init the krings array)
2184  *
2185  * 	One of the following:
2186  *
2187  *	* netmap_hw_krings_create, 			(hw ports)
2188  *		creates the standard layout for the krings
2189  * 		and adds the mbq (used for the host rings).
2190  *
2191  * 	* netmap_vp_krings_create			(VALE ports)
2192  * 		add leases and scratchpads
2193  *
2194  * 	* netmap_pipe_krings_create			(pipes)
2195  * 		create the krings and rings of both ends and
2196  * 		cross-link them
2197  *
2198  *      * netmap_monitor_krings_create 			(monitors)
2199  *      	avoid allocating the mbq
2200  *
2201  *      * netmap_bwrap_krings_create			(bwraps)
2202  *      	create both the brap krings array,
2203  *      	the krings array of the wrapped adapter, and
2204  *      	(if needed) the fake array for the host adapter
2205  *
2206  * na->nm_register(, 1)
2207  * (put the adapter in netmap mode)
2208  *
2209  * 	This may be one of the following:
2210  *
2211  * 	* netmap_hw_reg				        (hw ports)
2212  * 		checks that the ifp is still there, then calls
2213  * 		the hardware specific callback;
2214  *
2215  * 	* netmap_vp_reg					(VALE ports)
2216  *		If the port is connected to a bridge,
2217  *		set the NAF_NETMAP_ON flag under the
2218  *		bridge write lock.
2219  *
2220  *	* netmap_pipe_reg				(pipes)
2221  *		inform the other pipe end that it is no
2222  *		longer responsible for the lifetime of this
2223  *		pipe end
2224  *
2225  *	* netmap_monitor_reg				(monitors)
2226  *		intercept the sync callbacks of the monitored
2227  *		rings
2228  *
2229  *	* netmap_bwrap_reg				(bwraps)
2230  *		cross-link the bwrap and hwna rings,
2231  *		forward the request to the hwna, override
2232  *		the hwna notify callback (to get the frames
2233  *		coming from outside go through the bridge).
2234  *
2235  *
2236  */
2237 int
2238 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2239 	uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags)
2240 {
2241 	struct netmap_if *nifp = NULL;
2242 	int error;
2243 
2244 	NMG_LOCK_ASSERT();
2245 	priv->np_na = na;     /* store the reference */
2246 	error = netmap_mem_finalize(na->nm_mem, na);
2247 	if (error)
2248 		goto err;
2249 
2250 	if (na->active_fds == 0) {
2251 
2252 		/* cache the allocator info in the na */
2253 		error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2254 		if (error)
2255 			goto err_drop_mem;
2256 		ND("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2257 					    na->na_lut.objsize);
2258 
2259 		/* ring configuration may have changed, fetch from the card */
2260 		netmap_update_config(na);
2261 	}
2262 
2263 	/* compute the range of tx and rx rings to monitor */
2264 	error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags);
2265 	if (error)
2266 		goto err_put_lut;
2267 
2268 	if (na->active_fds == 0) {
2269 		/*
2270 		 * If this is the first registration of the adapter,
2271 		 * perform sanity checks and create the in-kernel view
2272 		 * of the netmap rings (the netmap krings).
2273 		 */
2274 		if (na->ifp && nm_priv_rx_enabled(priv)) {
2275 			/* This netmap adapter is attached to an ifnet. */
2276 			unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2277 
2278 			ND("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2279 				na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na));
2280 
2281 			if (na->rx_buf_maxsize == 0) {
2282 				nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2283 				error = EIO;
2284 				goto err_drop_mem;
2285 			}
2286 
2287 			error = netmap_buf_size_validate(na, mtu);
2288 			if (error)
2289 				goto err_drop_mem;
2290 		}
2291 
2292 		/*
2293 		 * Depending on the adapter, this may also create
2294 		 * the netmap rings themselves
2295 		 */
2296 		error = na->nm_krings_create(na);
2297 		if (error)
2298 			goto err_put_lut;
2299 
2300 	}
2301 
2302 	/* now the krings must exist and we can check whether some
2303 	 * previous bind has exclusive ownership on them, and set
2304 	 * nr_pending_mode
2305 	 */
2306 	error = netmap_krings_get(priv);
2307 	if (error)
2308 		goto err_del_krings;
2309 
2310 	/* create all needed missing netmap rings */
2311 	error = netmap_mem_rings_create(na);
2312 	if (error)
2313 		goto err_rel_excl;
2314 
2315 	/* in all cases, create a new netmap if */
2316 	nifp = netmap_mem_if_new(na, priv);
2317 	if (nifp == NULL) {
2318 		error = ENOMEM;
2319 		goto err_rel_excl;
2320 	}
2321 
2322 	if (nm_kring_pending(priv)) {
2323 		/* Some kring is switching mode, tell the adapter to
2324 		 * react on this. */
2325 		error = na->nm_register(na, 1);
2326 		if (error)
2327 			goto err_del_if;
2328 	}
2329 
2330 	/* Commit the reference. */
2331 	na->active_fds++;
2332 
2333 	/*
2334 	 * advertise that the interface is ready by setting np_nifp.
2335 	 * The barrier is needed because readers (poll, *SYNC and mmap)
2336 	 * check for priv->np_nifp != NULL without locking
2337 	 */
2338 	mb(); /* make sure previous writes are visible to all CPUs */
2339 	priv->np_nifp = nifp;
2340 
2341 	return 0;
2342 
2343 err_del_if:
2344 	netmap_mem_if_delete(na, nifp);
2345 err_rel_excl:
2346 	netmap_krings_put(priv);
2347 	netmap_mem_rings_delete(na);
2348 err_del_krings:
2349 	if (na->active_fds == 0)
2350 		na->nm_krings_delete(na);
2351 err_put_lut:
2352 	if (na->active_fds == 0)
2353 		memset(&na->na_lut, 0, sizeof(na->na_lut));
2354 err_drop_mem:
2355 	netmap_mem_drop(na);
2356 err:
2357 	priv->np_na = NULL;
2358 	return error;
2359 }
2360 
2361 
2362 /*
2363  * update kring and ring at the end of rxsync/txsync.
2364  */
2365 static inline void
2366 nm_sync_finalize(struct netmap_kring *kring)
2367 {
2368 	/*
2369 	 * Update ring tail to what the kernel knows
2370 	 * After txsync: head/rhead/hwcur might be behind cur/rcur
2371 	 * if no carrier.
2372 	 */
2373 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
2374 
2375 	ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2376 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
2377 		kring->rhead, kring->rcur, kring->rtail);
2378 }
2379 
2380 /* set ring timestamp */
2381 static inline void
2382 ring_timestamp_set(struct netmap_ring *ring)
2383 {
2384 	if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2385 		microtime(&ring->ts);
2386 	}
2387 }
2388 
2389 static int nmreq_copyin(struct nmreq_header *, int);
2390 static int nmreq_copyout(struct nmreq_header *, int);
2391 static int nmreq_checkoptions(struct nmreq_header *);
2392 
2393 /*
2394  * ioctl(2) support for the "netmap" device.
2395  *
2396  * Following a list of accepted commands:
2397  * - NIOCCTRL		device control API
2398  * - NIOCTXSYNC		sync TX rings
2399  * - NIOCRXSYNC		sync RX rings
2400  * - SIOCGIFADDR	just for convenience
2401  * - NIOCGINFO		deprecated (legacy API)
2402  * - NIOCREGIF		deprecated (legacy API)
2403  *
2404  * Return 0 on success, errno otherwise.
2405  */
2406 int
2407 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2408 		struct thread *td, int nr_body_is_user)
2409 {
2410 	struct mbq q;	/* packets from RX hw queues to host stack */
2411 	struct netmap_adapter *na = NULL;
2412 	struct netmap_mem_d *nmd = NULL;
2413 	struct ifnet *ifp = NULL;
2414 	int error = 0;
2415 	u_int i, qfirst, qlast;
2416 	struct netmap_kring **krings;
2417 	int sync_flags;
2418 	enum txrx t;
2419 
2420 	switch (cmd) {
2421 	case NIOCCTRL: {
2422 		struct nmreq_header *hdr = (struct nmreq_header *)data;
2423 
2424 		if (hdr->nr_version < NETMAP_MIN_API ||
2425 		    hdr->nr_version > NETMAP_MAX_API) {
2426 			nm_prerr("API mismatch: got %d need %d",
2427 				hdr->nr_version, NETMAP_API);
2428 			return EINVAL;
2429 		}
2430 
2431 		/* Make a kernel-space copy of the user-space nr_body.
2432 		 * For convenince, the nr_body pointer and the pointers
2433 		 * in the options list will be replaced with their
2434 		 * kernel-space counterparts. The original pointers are
2435 		 * saved internally and later restored by nmreq_copyout
2436 		 */
2437 		error = nmreq_copyin(hdr, nr_body_is_user);
2438 		if (error) {
2439 			return error;
2440 		}
2441 
2442 		/* Sanitize hdr->nr_name. */
2443 		hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2444 
2445 		switch (hdr->nr_reqtype) {
2446 		case NETMAP_REQ_REGISTER: {
2447 			struct nmreq_register *req =
2448 				(struct nmreq_register *)(uintptr_t)hdr->nr_body;
2449 			struct netmap_if *nifp;
2450 
2451 			/* Protect access to priv from concurrent requests. */
2452 			NMG_LOCK();
2453 			do {
2454 				struct nmreq_option *opt;
2455 				u_int memflags;
2456 
2457 				if (priv->np_nifp != NULL) {	/* thread already registered */
2458 					error = EBUSY;
2459 					break;
2460 				}
2461 
2462 #ifdef WITH_EXTMEM
2463 				opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2464 						NETMAP_REQ_OPT_EXTMEM);
2465 				if (opt != NULL) {
2466 					struct nmreq_opt_extmem *e =
2467 						(struct nmreq_opt_extmem *)opt;
2468 
2469 					error = nmreq_checkduplicate(opt);
2470 					if (error) {
2471 						opt->nro_status = error;
2472 						break;
2473 					}
2474 					nmd = netmap_mem_ext_create(e->nro_usrptr,
2475 							&e->nro_info, &error);
2476 					opt->nro_status = error;
2477 					if (nmd == NULL)
2478 						break;
2479 				}
2480 #endif /* WITH_EXTMEM */
2481 
2482 				if (nmd == NULL && req->nr_mem_id) {
2483 					/* find the allocator and get a reference */
2484 					nmd = netmap_mem_find(req->nr_mem_id);
2485 					if (nmd == NULL) {
2486 						if (netmap_verbose) {
2487 							nm_prerr("%s: failed to find mem_id %u",
2488 									hdr->nr_name, req->nr_mem_id);
2489 						}
2490 						error = EINVAL;
2491 						break;
2492 					}
2493 				}
2494 				/* find the interface and a reference */
2495 				error = netmap_get_na(hdr, &na, &ifp, nmd,
2496 						      1 /* create */); /* keep reference */
2497 				if (error)
2498 					break;
2499 				if (NETMAP_OWNED_BY_KERN(na)) {
2500 					error = EBUSY;
2501 					break;
2502 				}
2503 
2504 				if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2505 					nm_prerr("virt_hdr_len=%d, but application does "
2506 						"not accept it", na->virt_hdr_len);
2507 					error = EIO;
2508 					break;
2509 				}
2510 
2511 				error = netmap_do_regif(priv, na, req->nr_mode,
2512 							req->nr_ringid, req->nr_flags);
2513 				if (error) {    /* reg. failed, release priv and ref */
2514 					break;
2515 				}
2516 
2517 				opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2518 							NETMAP_REQ_OPT_CSB);
2519 				if (opt != NULL) {
2520 					struct nmreq_opt_csb *csbo =
2521 						(struct nmreq_opt_csb *)opt;
2522 					error = nmreq_checkduplicate(opt);
2523 					if (!error) {
2524 						error = netmap_csb_validate(priv, csbo);
2525 					}
2526 					opt->nro_status = error;
2527 					if (error) {
2528 						netmap_do_unregif(priv);
2529 						break;
2530 					}
2531 				}
2532 
2533 				nifp = priv->np_nifp;
2534 				priv->np_td = td; /* for debugging purposes */
2535 
2536 				/* return the offset of the netmap_if object */
2537 				req->nr_rx_rings = na->num_rx_rings;
2538 				req->nr_tx_rings = na->num_tx_rings;
2539 				req->nr_rx_slots = na->num_rx_desc;
2540 				req->nr_tx_slots = na->num_tx_desc;
2541 				error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2542 					&req->nr_mem_id);
2543 				if (error) {
2544 					netmap_do_unregif(priv);
2545 					break;
2546 				}
2547 				if (memflags & NETMAP_MEM_PRIVATE) {
2548 					*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2549 				}
2550 				for_rx_tx(t) {
2551 					priv->np_si[t] = nm_si_user(priv, t) ?
2552 						&na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2553 				}
2554 
2555 				if (req->nr_extra_bufs) {
2556 					if (netmap_verbose)
2557 						nm_prinf("requested %d extra buffers",
2558 							req->nr_extra_bufs);
2559 					req->nr_extra_bufs = netmap_extra_alloc(na,
2560 						&nifp->ni_bufs_head, req->nr_extra_bufs);
2561 					if (netmap_verbose)
2562 						nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2563 				}
2564 				req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2565 
2566 				error = nmreq_checkoptions(hdr);
2567 				if (error) {
2568 					netmap_do_unregif(priv);
2569 					break;
2570 				}
2571 
2572 				/* store ifp reference so that priv destructor may release it */
2573 				priv->np_ifp = ifp;
2574 			} while (0);
2575 			if (error) {
2576 				netmap_unget_na(na, ifp);
2577 			}
2578 			/* release the reference from netmap_mem_find() or
2579 			 * netmap_mem_ext_create()
2580 			 */
2581 			if (nmd)
2582 				netmap_mem_put(nmd);
2583 			NMG_UNLOCK();
2584 			break;
2585 		}
2586 
2587 		case NETMAP_REQ_PORT_INFO_GET: {
2588 			struct nmreq_port_info_get *req =
2589 				(struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2590 
2591 			NMG_LOCK();
2592 			do {
2593 				u_int memflags;
2594 
2595 				if (hdr->nr_name[0] != '\0') {
2596 					/* Build a nmreq_register out of the nmreq_port_info_get,
2597 					 * so that we can call netmap_get_na(). */
2598 					struct nmreq_register regreq;
2599 					bzero(&regreq, sizeof(regreq));
2600 					regreq.nr_mode = NR_REG_ALL_NIC;
2601 					regreq.nr_tx_slots = req->nr_tx_slots;
2602 					regreq.nr_rx_slots = req->nr_rx_slots;
2603 					regreq.nr_tx_rings = req->nr_tx_rings;
2604 					regreq.nr_rx_rings = req->nr_rx_rings;
2605 					regreq.nr_mem_id = req->nr_mem_id;
2606 
2607 					/* get a refcount */
2608 					hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2609 					hdr->nr_body = (uintptr_t)&regreq;
2610 					error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2611 					hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2612 					hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2613 					if (error) {
2614 						na = NULL;
2615 						ifp = NULL;
2616 						break;
2617 					}
2618 					nmd = na->nm_mem; /* get memory allocator */
2619 				} else {
2620 					nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2621 					if (nmd == NULL) {
2622 						if (netmap_verbose)
2623 							nm_prerr("%s: failed to find mem_id %u",
2624 									hdr->nr_name,
2625 									req->nr_mem_id ? req->nr_mem_id : 1);
2626 						error = EINVAL;
2627 						break;
2628 					}
2629 				}
2630 
2631 				error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2632 					&req->nr_mem_id);
2633 				if (error)
2634 					break;
2635 				if (na == NULL) /* only memory info */
2636 					break;
2637 				netmap_update_config(na);
2638 				req->nr_rx_rings = na->num_rx_rings;
2639 				req->nr_tx_rings = na->num_tx_rings;
2640 				req->nr_rx_slots = na->num_rx_desc;
2641 				req->nr_tx_slots = na->num_tx_desc;
2642 			} while (0);
2643 			netmap_unget_na(na, ifp);
2644 			NMG_UNLOCK();
2645 			break;
2646 		}
2647 #ifdef WITH_VALE
2648 		case NETMAP_REQ_VALE_ATTACH: {
2649 			error = netmap_vale_attach(hdr, NULL /* userspace request */);
2650 			break;
2651 		}
2652 
2653 		case NETMAP_REQ_VALE_DETACH: {
2654 			error = netmap_vale_detach(hdr, NULL /* userspace request */);
2655 			break;
2656 		}
2657 
2658 		case NETMAP_REQ_VALE_LIST: {
2659 			error = netmap_vale_list(hdr);
2660 			break;
2661 		}
2662 
2663 		case NETMAP_REQ_PORT_HDR_SET: {
2664 			struct nmreq_port_hdr *req =
2665 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2666 			/* Build a nmreq_register out of the nmreq_port_hdr,
2667 			 * so that we can call netmap_get_bdg_na(). */
2668 			struct nmreq_register regreq;
2669 			bzero(&regreq, sizeof(regreq));
2670 			regreq.nr_mode = NR_REG_ALL_NIC;
2671 
2672 			/* For now we only support virtio-net headers, and only for
2673 			 * VALE ports, but this may change in future. Valid lengths
2674 			 * for the virtio-net header are 0 (no header), 10 and 12. */
2675 			if (req->nr_hdr_len != 0 &&
2676 				req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
2677 					req->nr_hdr_len != 12) {
2678 				if (netmap_verbose)
2679 					nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
2680 				error = EINVAL;
2681 				break;
2682 			}
2683 			NMG_LOCK();
2684 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2685 			hdr->nr_body = (uintptr_t)&regreq;
2686 			error = netmap_get_vale_na(hdr, &na, NULL, 0);
2687 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
2688 			hdr->nr_body = (uintptr_t)req;
2689 			if (na && !error) {
2690 				struct netmap_vp_adapter *vpna =
2691 					(struct netmap_vp_adapter *)na;
2692 				na->virt_hdr_len = req->nr_hdr_len;
2693 				if (na->virt_hdr_len) {
2694 					vpna->mfs = NETMAP_BUF_SIZE(na);
2695 				}
2696 				if (netmap_verbose)
2697 					nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
2698 				netmap_adapter_put(na);
2699 			} else if (!na) {
2700 				error = ENXIO;
2701 			}
2702 			NMG_UNLOCK();
2703 			break;
2704 		}
2705 
2706 		case NETMAP_REQ_PORT_HDR_GET: {
2707 			/* Get vnet-header length for this netmap port */
2708 			struct nmreq_port_hdr *req =
2709 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2710 			/* Build a nmreq_register out of the nmreq_port_hdr,
2711 			 * so that we can call netmap_get_bdg_na(). */
2712 			struct nmreq_register regreq;
2713 			struct ifnet *ifp;
2714 
2715 			bzero(&regreq, sizeof(regreq));
2716 			regreq.nr_mode = NR_REG_ALL_NIC;
2717 			NMG_LOCK();
2718 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2719 			hdr->nr_body = (uintptr_t)&regreq;
2720 			error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
2721 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
2722 			hdr->nr_body = (uintptr_t)req;
2723 			if (na && !error) {
2724 				req->nr_hdr_len = na->virt_hdr_len;
2725 			}
2726 			netmap_unget_na(na, ifp);
2727 			NMG_UNLOCK();
2728 			break;
2729 		}
2730 
2731 		case NETMAP_REQ_VALE_NEWIF: {
2732 			error = nm_vi_create(hdr);
2733 			break;
2734 		}
2735 
2736 		case NETMAP_REQ_VALE_DELIF: {
2737 			error = nm_vi_destroy(hdr->nr_name);
2738 			break;
2739 		}
2740 
2741 		case NETMAP_REQ_VALE_POLLING_ENABLE:
2742 		case NETMAP_REQ_VALE_POLLING_DISABLE: {
2743 			error = nm_bdg_polling(hdr);
2744 			break;
2745 		}
2746 #endif  /* WITH_VALE */
2747 		case NETMAP_REQ_POOLS_INFO_GET: {
2748 			/* Get information from the memory allocator used for
2749 			 * hdr->nr_name. */
2750 			struct nmreq_pools_info *req =
2751 				(struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
2752 			NMG_LOCK();
2753 			do {
2754 				/* Build a nmreq_register out of the nmreq_pools_info,
2755 				 * so that we can call netmap_get_na(). */
2756 				struct nmreq_register regreq;
2757 				bzero(&regreq, sizeof(regreq));
2758 				regreq.nr_mem_id = req->nr_mem_id;
2759 				regreq.nr_mode = NR_REG_ALL_NIC;
2760 
2761 				hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2762 				hdr->nr_body = (uintptr_t)&regreq;
2763 				error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2764 				hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
2765 				hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2766 				if (error) {
2767 					na = NULL;
2768 					ifp = NULL;
2769 					break;
2770 				}
2771 				nmd = na->nm_mem; /* grab the memory allocator */
2772 				if (nmd == NULL) {
2773 					error = EINVAL;
2774 					break;
2775 				}
2776 
2777 				/* Finalize the memory allocator, get the pools
2778 				 * information and release the allocator. */
2779 				error = netmap_mem_finalize(nmd, na);
2780 				if (error) {
2781 					break;
2782 				}
2783 				error = netmap_mem_pools_info_get(req, nmd);
2784 				netmap_mem_drop(na);
2785 			} while (0);
2786 			netmap_unget_na(na, ifp);
2787 			NMG_UNLOCK();
2788 			break;
2789 		}
2790 
2791 		case NETMAP_REQ_CSB_ENABLE: {
2792 			struct nmreq_option *opt;
2793 
2794 			opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2795 						NETMAP_REQ_OPT_CSB);
2796 			if (opt == NULL) {
2797 				error = EINVAL;
2798 			} else {
2799 				struct nmreq_opt_csb *csbo =
2800 					(struct nmreq_opt_csb *)opt;
2801 				error = nmreq_checkduplicate(opt);
2802 				if (!error) {
2803 					NMG_LOCK();
2804 					error = netmap_csb_validate(priv, csbo);
2805 					NMG_UNLOCK();
2806 				}
2807 				opt->nro_status = error;
2808 			}
2809 			break;
2810 		}
2811 
2812 		case NETMAP_REQ_SYNC_KLOOP_START: {
2813 			error = netmap_sync_kloop(priv, hdr);
2814 			break;
2815 		}
2816 
2817 		case NETMAP_REQ_SYNC_KLOOP_STOP: {
2818 			error = netmap_sync_kloop_stop(priv);
2819 			break;
2820 		}
2821 
2822 		default: {
2823 			error = EINVAL;
2824 			break;
2825 		}
2826 		}
2827 		/* Write back request body to userspace and reset the
2828 		 * user-space pointer. */
2829 		error = nmreq_copyout(hdr, error);
2830 		break;
2831 	}
2832 
2833 	case NIOCTXSYNC:
2834 	case NIOCRXSYNC: {
2835 		if (unlikely(priv->np_nifp == NULL)) {
2836 			error = ENXIO;
2837 			break;
2838 		}
2839 		mb(); /* make sure following reads are not from cache */
2840 
2841 		if (unlikely(priv->np_csb_atok_base)) {
2842 			nm_prerr("Invalid sync in CSB mode");
2843 			error = EBUSY;
2844 			break;
2845 		}
2846 
2847 		na = priv->np_na;      /* we have a reference */
2848 
2849 		mbq_init(&q);
2850 		t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
2851 		krings = NMR(na, t);
2852 		qfirst = priv->np_qfirst[t];
2853 		qlast = priv->np_qlast[t];
2854 		sync_flags = priv->np_sync_flags;
2855 
2856 		for (i = qfirst; i < qlast; i++) {
2857 			struct netmap_kring *kring = krings[i];
2858 			struct netmap_ring *ring = kring->ring;
2859 
2860 			if (unlikely(nm_kr_tryget(kring, 1, &error))) {
2861 				error = (error ? EIO : 0);
2862 				continue;
2863 			}
2864 
2865 			if (cmd == NIOCTXSYNC) {
2866 				if (netmap_debug & NM_DEBUG_TXSYNC)
2867 					nm_prinf("pre txsync ring %d cur %d hwcur %d",
2868 					    i, ring->cur,
2869 					    kring->nr_hwcur);
2870 				if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2871 					netmap_ring_reinit(kring);
2872 				} else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
2873 					nm_sync_finalize(kring);
2874 				}
2875 				if (netmap_debug & NM_DEBUG_TXSYNC)
2876 					nm_prinf("post txsync ring %d cur %d hwcur %d",
2877 					    i, ring->cur,
2878 					    kring->nr_hwcur);
2879 			} else {
2880 				if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2881 					netmap_ring_reinit(kring);
2882 				}
2883 				if (nm_may_forward_up(kring)) {
2884 					/* transparent forwarding, see netmap_poll() */
2885 					netmap_grab_packets(kring, &q, netmap_fwd);
2886 				}
2887 				if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
2888 					nm_sync_finalize(kring);
2889 				}
2890 				ring_timestamp_set(ring);
2891 			}
2892 			nm_kr_put(kring);
2893 		}
2894 
2895 		if (mbq_peek(&q)) {
2896 			netmap_send_up(na->ifp, &q);
2897 		}
2898 
2899 		break;
2900 	}
2901 
2902 	default: {
2903 		return netmap_ioctl_legacy(priv, cmd, data, td);
2904 		break;
2905 	}
2906 	}
2907 
2908 	return (error);
2909 }
2910 
2911 size_t
2912 nmreq_size_by_type(uint16_t nr_reqtype)
2913 {
2914 	switch (nr_reqtype) {
2915 	case NETMAP_REQ_REGISTER:
2916 		return sizeof(struct nmreq_register);
2917 	case NETMAP_REQ_PORT_INFO_GET:
2918 		return sizeof(struct nmreq_port_info_get);
2919 	case NETMAP_REQ_VALE_ATTACH:
2920 		return sizeof(struct nmreq_vale_attach);
2921 	case NETMAP_REQ_VALE_DETACH:
2922 		return sizeof(struct nmreq_vale_detach);
2923 	case NETMAP_REQ_VALE_LIST:
2924 		return sizeof(struct nmreq_vale_list);
2925 	case NETMAP_REQ_PORT_HDR_SET:
2926 	case NETMAP_REQ_PORT_HDR_GET:
2927 		return sizeof(struct nmreq_port_hdr);
2928 	case NETMAP_REQ_VALE_NEWIF:
2929 		return sizeof(struct nmreq_vale_newif);
2930 	case NETMAP_REQ_VALE_DELIF:
2931 	case NETMAP_REQ_SYNC_KLOOP_STOP:
2932 	case NETMAP_REQ_CSB_ENABLE:
2933 		return 0;
2934 	case NETMAP_REQ_VALE_POLLING_ENABLE:
2935 	case NETMAP_REQ_VALE_POLLING_DISABLE:
2936 		return sizeof(struct nmreq_vale_polling);
2937 	case NETMAP_REQ_POOLS_INFO_GET:
2938 		return sizeof(struct nmreq_pools_info);
2939 	case NETMAP_REQ_SYNC_KLOOP_START:
2940 		return sizeof(struct nmreq_sync_kloop_start);
2941 	}
2942 	return 0;
2943 }
2944 
2945 static size_t
2946 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
2947 {
2948 	size_t rv = sizeof(struct nmreq_option);
2949 #ifdef NETMAP_REQ_OPT_DEBUG
2950 	if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
2951 		return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
2952 #endif /* NETMAP_REQ_OPT_DEBUG */
2953 	switch (nro_reqtype) {
2954 #ifdef WITH_EXTMEM
2955 	case NETMAP_REQ_OPT_EXTMEM:
2956 		rv = sizeof(struct nmreq_opt_extmem);
2957 		break;
2958 #endif /* WITH_EXTMEM */
2959 	case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
2960 		if (nro_size >= rv)
2961 			rv = nro_size;
2962 		break;
2963 	case NETMAP_REQ_OPT_CSB:
2964 		rv = sizeof(struct nmreq_opt_csb);
2965 		break;
2966 	}
2967 	/* subtract the common header */
2968 	return rv - sizeof(struct nmreq_option);
2969 }
2970 
2971 int
2972 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
2973 {
2974 	size_t rqsz, optsz, bufsz;
2975 	int error;
2976 	char *ker = NULL, *p;
2977 	struct nmreq_option **next, *src;
2978 	struct nmreq_option buf;
2979 	uint64_t *ptrs;
2980 
2981 	if (hdr->nr_reserved) {
2982 		if (netmap_verbose)
2983 			nm_prerr("nr_reserved must be zero");
2984 		return EINVAL;
2985 	}
2986 
2987 	if (!nr_body_is_user)
2988 		return 0;
2989 
2990 	hdr->nr_reserved = nr_body_is_user;
2991 
2992 	/* compute the total size of the buffer */
2993 	rqsz = nmreq_size_by_type(hdr->nr_reqtype);
2994 	if (rqsz > NETMAP_REQ_MAXSIZE) {
2995 		error = EMSGSIZE;
2996 		goto out_err;
2997 	}
2998 	if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
2999 		(!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
3000 		/* Request body expected, but not found; or
3001 		 * request body found but unexpected. */
3002 		if (netmap_verbose)
3003 			nm_prerr("nr_body expected but not found, or vice versa");
3004 		error = EINVAL;
3005 		goto out_err;
3006 	}
3007 
3008 	bufsz = 2 * sizeof(void *) + rqsz;
3009 	optsz = 0;
3010 	for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src;
3011 	     src = (struct nmreq_option *)(uintptr_t)buf.nro_next)
3012 	{
3013 		error = copyin(src, &buf, sizeof(*src));
3014 		if (error)
3015 			goto out_err;
3016 		optsz += sizeof(*src);
3017 		optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size);
3018 		if (rqsz + optsz > NETMAP_REQ_MAXSIZE) {
3019 			error = EMSGSIZE;
3020 			goto out_err;
3021 		}
3022 		bufsz += optsz + sizeof(void *);
3023 	}
3024 
3025 	ker = nm_os_malloc(bufsz);
3026 	if (ker == NULL) {
3027 		error = ENOMEM;
3028 		goto out_err;
3029 	}
3030 	p = ker;
3031 
3032 	/* make a copy of the user pointers */
3033 	ptrs = (uint64_t*)p;
3034 	*ptrs++ = hdr->nr_body;
3035 	*ptrs++ = hdr->nr_options;
3036 	p = (char *)ptrs;
3037 
3038 	/* copy the body */
3039 	error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz);
3040 	if (error)
3041 		goto out_restore;
3042 	/* overwrite the user pointer with the in-kernel one */
3043 	hdr->nr_body = (uintptr_t)p;
3044 	p += rqsz;
3045 
3046 	/* copy the options */
3047 	next = (struct nmreq_option **)&hdr->nr_options;
3048 	src = *next;
3049 	while (src) {
3050 		struct nmreq_option *opt;
3051 
3052 		/* copy the option header */
3053 		ptrs = (uint64_t *)p;
3054 		opt = (struct nmreq_option *)(ptrs + 1);
3055 		error = copyin(src, opt, sizeof(*src));
3056 		if (error)
3057 			goto out_restore;
3058 		/* make a copy of the user next pointer */
3059 		*ptrs = opt->nro_next;
3060 		/* overwrite the user pointer with the in-kernel one */
3061 		*next = opt;
3062 
3063 		/* initialize the option as not supported.
3064 		 * Recognized options will update this field.
3065 		 */
3066 		opt->nro_status = EOPNOTSUPP;
3067 
3068 		p = (char *)(opt + 1);
3069 
3070 		/* copy the option body */
3071 		optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3072 						opt->nro_size);
3073 		if (optsz) {
3074 			/* the option body follows the option header */
3075 			error = copyin(src + 1, p, optsz);
3076 			if (error)
3077 				goto out_restore;
3078 			p += optsz;
3079 		}
3080 
3081 		/* move to next option */
3082 		next = (struct nmreq_option **)&opt->nro_next;
3083 		src = *next;
3084 	}
3085 	return 0;
3086 
3087 out_restore:
3088 	ptrs = (uint64_t *)ker;
3089 	hdr->nr_body = *ptrs++;
3090 	hdr->nr_options = *ptrs++;
3091 	hdr->nr_reserved = 0;
3092 	nm_os_free(ker);
3093 out_err:
3094 	return error;
3095 }
3096 
3097 static int
3098 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3099 {
3100 	struct nmreq_option *src, *dst;
3101 	void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3102 	uint64_t *ptrs;
3103 	size_t bodysz;
3104 	int error;
3105 
3106 	if (!hdr->nr_reserved)
3107 		return rerror;
3108 
3109 	/* restore the user pointers in the header */
3110 	ptrs = (uint64_t *)ker - 2;
3111 	bufstart = ptrs;
3112 	hdr->nr_body = *ptrs++;
3113 	src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3114 	hdr->nr_options = *ptrs;
3115 
3116 	if (!rerror) {
3117 		/* copy the body */
3118 		bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3119 		error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3120 		if (error) {
3121 			rerror = error;
3122 			goto out;
3123 		}
3124 	}
3125 
3126 	/* copy the options */
3127 	dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3128 	while (src) {
3129 		size_t optsz;
3130 		uint64_t next;
3131 
3132 		/* restore the user pointer */
3133 		next = src->nro_next;
3134 		ptrs = (uint64_t *)src - 1;
3135 		src->nro_next = *ptrs;
3136 
3137 		/* always copy the option header */
3138 		error = copyout(src, dst, sizeof(*src));
3139 		if (error) {
3140 			rerror = error;
3141 			goto out;
3142 		}
3143 
3144 		/* copy the option body only if there was no error */
3145 		if (!rerror && !src->nro_status) {
3146 			optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3147 							src->nro_size);
3148 			if (optsz) {
3149 				error = copyout(src + 1, dst + 1, optsz);
3150 				if (error) {
3151 					rerror = error;
3152 					goto out;
3153 				}
3154 			}
3155 		}
3156 		src = (struct nmreq_option *)(uintptr_t)next;
3157 		dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3158 	}
3159 
3160 
3161 out:
3162 	hdr->nr_reserved = 0;
3163 	nm_os_free(bufstart);
3164 	return rerror;
3165 }
3166 
3167 struct nmreq_option *
3168 nmreq_findoption(struct nmreq_option *opt, uint16_t reqtype)
3169 {
3170 	for ( ; opt; opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3171 		if (opt->nro_reqtype == reqtype)
3172 			return opt;
3173 	return NULL;
3174 }
3175 
3176 int
3177 nmreq_checkduplicate(struct nmreq_option *opt) {
3178 	uint16_t type = opt->nro_reqtype;
3179 	int dup = 0;
3180 
3181 	while ((opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)opt->nro_next,
3182 			type))) {
3183 		dup++;
3184 		opt->nro_status = EINVAL;
3185 	}
3186 	return (dup ? EINVAL : 0);
3187 }
3188 
3189 static int
3190 nmreq_checkoptions(struct nmreq_header *hdr)
3191 {
3192 	struct nmreq_option *opt;
3193 	/* return error if there is still any option
3194 	 * marked as not supported
3195 	 */
3196 
3197 	for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3198 	     opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3199 		if (opt->nro_status == EOPNOTSUPP)
3200 			return EOPNOTSUPP;
3201 
3202 	return 0;
3203 }
3204 
3205 /*
3206  * select(2) and poll(2) handlers for the "netmap" device.
3207  *
3208  * Can be called for one or more queues.
3209  * Return true the event mask corresponding to ready events.
3210  * If there are no ready events, do a selrecord on either individual
3211  * selinfo or on the global one.
3212  * Device-dependent parts (locking and sync of tx/rx rings)
3213  * are done through callbacks.
3214  *
3215  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3216  * The first one is remapped to pwait as selrecord() uses the name as an
3217  * hidden argument.
3218  */
3219 int
3220 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3221 {
3222 	struct netmap_adapter *na;
3223 	struct netmap_kring *kring;
3224 	struct netmap_ring *ring;
3225 	u_int i, want[NR_TXRX], revents = 0;
3226 	NM_SELINFO_T *si[NR_TXRX];
3227 #define want_tx want[NR_TX]
3228 #define want_rx want[NR_RX]
3229 	struct mbq q;	/* packets from RX hw queues to host stack */
3230 
3231 	/*
3232 	 * In order to avoid nested locks, we need to "double check"
3233 	 * txsync and rxsync if we decide to do a selrecord().
3234 	 * retry_tx (and retry_rx, later) prevent looping forever.
3235 	 */
3236 	int retry_tx = 1, retry_rx = 1;
3237 
3238 	/* Transparent mode: send_down is 1 if we have found some
3239 	 * packets to forward (host RX ring --> NIC) during the rx
3240 	 * scan and we have not sent them down to the NIC yet.
3241 	 * Transparent mode requires to bind all rings to a single
3242 	 * file descriptor.
3243 	 */
3244 	int send_down = 0;
3245 	int sync_flags = priv->np_sync_flags;
3246 
3247 	mbq_init(&q);
3248 
3249 	if (unlikely(priv->np_nifp == NULL)) {
3250 		return POLLERR;
3251 	}
3252 	mb(); /* make sure following reads are not from cache */
3253 
3254 	na = priv->np_na;
3255 
3256 	if (unlikely(!nm_netmap_on(na)))
3257 		return POLLERR;
3258 
3259 	if (unlikely(priv->np_csb_atok_base)) {
3260 		nm_prerr("Invalid poll in CSB mode");
3261 		return POLLERR;
3262 	}
3263 
3264 	if (netmap_debug & NM_DEBUG_ON)
3265 		nm_prinf("device %s events 0x%x", na->name, events);
3266 	want_tx = events & (POLLOUT | POLLWRNORM);
3267 	want_rx = events & (POLLIN | POLLRDNORM);
3268 
3269 	/*
3270 	 * If the card has more than one queue AND the file descriptor is
3271 	 * bound to all of them, we sleep on the "global" selinfo, otherwise
3272 	 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3273 	 * per file descriptor).
3274 	 * The interrupt routine in the driver wake one or the other
3275 	 * (or both) depending on which clients are active.
3276 	 *
3277 	 * rxsync() is only called if we run out of buffers on a POLLIN.
3278 	 * txsync() is called if we run out of buffers on POLLOUT, or
3279 	 * there are pending packets to send. The latter can be disabled
3280 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3281 	 */
3282 	si[NR_RX] = nm_si_user(priv, NR_RX) ? &na->si[NR_RX] :
3283 				&na->rx_rings[priv->np_qfirst[NR_RX]]->si;
3284 	si[NR_TX] = nm_si_user(priv, NR_TX) ? &na->si[NR_TX] :
3285 				&na->tx_rings[priv->np_qfirst[NR_TX]]->si;
3286 
3287 #ifdef __FreeBSD__
3288 	/*
3289 	 * We start with a lock free round which is cheap if we have
3290 	 * slots available. If this fails, then lock and call the sync
3291 	 * routines. We can't do this on Linux, as the contract says
3292 	 * that we must call nm_os_selrecord() unconditionally.
3293 	 */
3294 	if (want_tx) {
3295 		const enum txrx t = NR_TX;
3296 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3297 			kring = NMR(na, t)[i];
3298 			if (kring->ring->cur != kring->ring->tail) {
3299 				/* Some unseen TX space is available, so what
3300 				 * we don't need to run txsync. */
3301 				revents |= want[t];
3302 				want[t] = 0;
3303 				break;
3304 			}
3305 		}
3306 	}
3307 	if (want_rx) {
3308 		const enum txrx t = NR_RX;
3309 		int rxsync_needed = 0;
3310 
3311 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3312 			kring = NMR(na, t)[i];
3313 			if (kring->ring->cur == kring->ring->tail
3314 				|| kring->rhead != kring->ring->head) {
3315 				/* There are no unseen packets on this ring,
3316 				 * or there are some buffers to be returned
3317 				 * to the netmap port. We therefore go ahead
3318 				 * and run rxsync. */
3319 				rxsync_needed = 1;
3320 				break;
3321 			}
3322 		}
3323 		if (!rxsync_needed) {
3324 			revents |= want_rx;
3325 			want_rx = 0;
3326 		}
3327 	}
3328 #endif
3329 
3330 #ifdef linux
3331 	/* The selrecord must be unconditional on linux. */
3332 	nm_os_selrecord(sr, si[NR_RX]);
3333 	nm_os_selrecord(sr, si[NR_TX]);
3334 #endif /* linux */
3335 
3336 	/*
3337 	 * If we want to push packets out (priv->np_txpoll) or
3338 	 * want_tx is still set, we must issue txsync calls
3339 	 * (on all rings, to avoid that the tx rings stall).
3340 	 * Fortunately, normal tx mode has np_txpoll set.
3341 	 */
3342 	if (priv->np_txpoll || want_tx) {
3343 		/*
3344 		 * The first round checks if anyone is ready, if not
3345 		 * do a selrecord and another round to handle races.
3346 		 * want_tx goes to 0 if any space is found, and is
3347 		 * used to skip rings with no pending transmissions.
3348 		 */
3349 flush_tx:
3350 		for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3351 			int found = 0;
3352 
3353 			kring = na->tx_rings[i];
3354 			ring = kring->ring;
3355 
3356 			/*
3357 			 * Don't try to txsync this TX ring if we already found some
3358 			 * space in some of the TX rings (want_tx == 0) and there are no
3359 			 * TX slots in this ring that need to be flushed to the NIC
3360 			 * (head == hwcur).
3361 			 */
3362 			if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3363 				continue;
3364 
3365 			if (nm_kr_tryget(kring, 1, &revents))
3366 				continue;
3367 
3368 			if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3369 				netmap_ring_reinit(kring);
3370 				revents |= POLLERR;
3371 			} else {
3372 				if (kring->nm_sync(kring, sync_flags))
3373 					revents |= POLLERR;
3374 				else
3375 					nm_sync_finalize(kring);
3376 			}
3377 
3378 			/*
3379 			 * If we found new slots, notify potential
3380 			 * listeners on the same ring.
3381 			 * Since we just did a txsync, look at the copies
3382 			 * of cur,tail in the kring.
3383 			 */
3384 			found = kring->rcur != kring->rtail;
3385 			nm_kr_put(kring);
3386 			if (found) { /* notify other listeners */
3387 				revents |= want_tx;
3388 				want_tx = 0;
3389 #ifndef linux
3390 				kring->nm_notify(kring, 0);
3391 #endif /* linux */
3392 			}
3393 		}
3394 		/* if there were any packet to forward we must have handled them by now */
3395 		send_down = 0;
3396 		if (want_tx && retry_tx && sr) {
3397 #ifndef linux
3398 			nm_os_selrecord(sr, si[NR_TX]);
3399 #endif /* !linux */
3400 			retry_tx = 0;
3401 			goto flush_tx;
3402 		}
3403 	}
3404 
3405 	/*
3406 	 * If want_rx is still set scan receive rings.
3407 	 * Do it on all rings because otherwise we starve.
3408 	 */
3409 	if (want_rx) {
3410 		/* two rounds here for race avoidance */
3411 do_retry_rx:
3412 		for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3413 			int found = 0;
3414 
3415 			kring = na->rx_rings[i];
3416 			ring = kring->ring;
3417 
3418 			if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3419 				continue;
3420 
3421 			if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3422 				netmap_ring_reinit(kring);
3423 				revents |= POLLERR;
3424 			}
3425 			/* now we can use kring->rcur, rtail */
3426 
3427 			/*
3428 			 * transparent mode support: collect packets from
3429 			 * hw rxring(s) that have been released by the user
3430 			 */
3431 			if (nm_may_forward_up(kring)) {
3432 				netmap_grab_packets(kring, &q, netmap_fwd);
3433 			}
3434 
3435 			/* Clear the NR_FORWARD flag anyway, it may be set by
3436 			 * the nm_sync() below only on for the host RX ring (see
3437 			 * netmap_rxsync_from_host()). */
3438 			kring->nr_kflags &= ~NR_FORWARD;
3439 			if (kring->nm_sync(kring, sync_flags))
3440 				revents |= POLLERR;
3441 			else
3442 				nm_sync_finalize(kring);
3443 			send_down |= (kring->nr_kflags & NR_FORWARD);
3444 			ring_timestamp_set(ring);
3445 			found = kring->rcur != kring->rtail;
3446 			nm_kr_put(kring);
3447 			if (found) {
3448 				revents |= want_rx;
3449 				retry_rx = 0;
3450 #ifndef linux
3451 				kring->nm_notify(kring, 0);
3452 #endif /* linux */
3453 			}
3454 		}
3455 
3456 #ifndef linux
3457 		if (retry_rx && sr) {
3458 			nm_os_selrecord(sr, si[NR_RX]);
3459 		}
3460 #endif /* !linux */
3461 		if (send_down || retry_rx) {
3462 			retry_rx = 0;
3463 			if (send_down)
3464 				goto flush_tx; /* and retry_rx */
3465 			else
3466 				goto do_retry_rx;
3467 		}
3468 	}
3469 
3470 	/*
3471 	 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3472 	 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3473 	 * to the host stack.
3474 	 */
3475 
3476 	if (mbq_peek(&q)) {
3477 		netmap_send_up(na->ifp, &q);
3478 	}
3479 
3480 	return (revents);
3481 #undef want_tx
3482 #undef want_rx
3483 }
3484 
3485 int
3486 nma_intr_enable(struct netmap_adapter *na, int onoff)
3487 {
3488 	bool changed = false;
3489 	enum txrx t;
3490 	int i;
3491 
3492 	for_rx_tx(t) {
3493 		for (i = 0; i < nma_get_nrings(na, t); i++) {
3494 			struct netmap_kring *kring = NMR(na, t)[i];
3495 			int on = !(kring->nr_kflags & NKR_NOINTR);
3496 
3497 			if (!!onoff != !!on) {
3498 				changed = true;
3499 			}
3500 			if (onoff) {
3501 				kring->nr_kflags &= ~NKR_NOINTR;
3502 			} else {
3503 				kring->nr_kflags |= NKR_NOINTR;
3504 			}
3505 		}
3506 	}
3507 
3508 	if (!changed) {
3509 		return 0; /* nothing to do */
3510 	}
3511 
3512 	if (!na->nm_intr) {
3513 		nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3514 		  na->name);
3515 		return -1;
3516 	}
3517 
3518 	na->nm_intr(na, onoff);
3519 
3520 	return 0;
3521 }
3522 
3523 
3524 /*-------------------- driver support routines -------------------*/
3525 
3526 /* default notify callback */
3527 static int
3528 netmap_notify(struct netmap_kring *kring, int flags)
3529 {
3530 	struct netmap_adapter *na = kring->notify_na;
3531 	enum txrx t = kring->tx;
3532 
3533 	nm_os_selwakeup(&kring->si);
3534 	/* optimization: avoid a wake up on the global
3535 	 * queue if nobody has registered for more
3536 	 * than one ring
3537 	 */
3538 	if (na->si_users[t] > 0)
3539 		nm_os_selwakeup(&na->si[t]);
3540 
3541 	return NM_IRQ_COMPLETED;
3542 }
3543 
3544 /* called by all routines that create netmap_adapters.
3545  * provide some defaults and get a reference to the
3546  * memory allocator
3547  */
3548 int
3549 netmap_attach_common(struct netmap_adapter *na)
3550 {
3551 	if (!na->rx_buf_maxsize) {
3552 		/* Set a conservative default (larger is safer). */
3553 		na->rx_buf_maxsize = PAGE_SIZE;
3554 	}
3555 
3556 #ifdef __FreeBSD__
3557 	if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3558 		na->if_input = na->ifp->if_input; /* for netmap_send_up */
3559 	}
3560 	na->pdev = na; /* make sure netmap_mem_map() is called */
3561 #endif /* __FreeBSD__ */
3562 	if (na->na_flags & NAF_HOST_RINGS) {
3563 		if (na->num_host_rx_rings == 0)
3564 			na->num_host_rx_rings = 1;
3565 		if (na->num_host_tx_rings == 0)
3566 			na->num_host_tx_rings = 1;
3567 	}
3568 	if (na->nm_krings_create == NULL) {
3569 		/* we assume that we have been called by a driver,
3570 		 * since other port types all provide their own
3571 		 * nm_krings_create
3572 		 */
3573 		na->nm_krings_create = netmap_hw_krings_create;
3574 		na->nm_krings_delete = netmap_hw_krings_delete;
3575 	}
3576 	if (na->nm_notify == NULL)
3577 		na->nm_notify = netmap_notify;
3578 	na->active_fds = 0;
3579 
3580 	if (na->nm_mem == NULL) {
3581 		/* use the global allocator */
3582 		na->nm_mem = netmap_mem_get(&nm_mem);
3583 	}
3584 #ifdef WITH_VALE
3585 	if (na->nm_bdg_attach == NULL)
3586 		/* no special nm_bdg_attach callback. On VALE
3587 		 * attach, we need to interpose a bwrap
3588 		 */
3589 		na->nm_bdg_attach = netmap_default_bdg_attach;
3590 #endif
3591 
3592 	return 0;
3593 }
3594 
3595 /* Wrapper for the register callback provided netmap-enabled
3596  * hardware drivers.
3597  * nm_iszombie(na) means that the driver module has been
3598  * unloaded, so we cannot call into it.
3599  * nm_os_ifnet_lock() must guarantee mutual exclusion with
3600  * module unloading.
3601  */
3602 static int
3603 netmap_hw_reg(struct netmap_adapter *na, int onoff)
3604 {
3605 	struct netmap_hw_adapter *hwna =
3606 		(struct netmap_hw_adapter*)na;
3607 	int error = 0;
3608 
3609 	nm_os_ifnet_lock();
3610 
3611 	if (nm_iszombie(na)) {
3612 		if (onoff) {
3613 			error = ENXIO;
3614 		} else if (na != NULL) {
3615 			na->na_flags &= ~NAF_NETMAP_ON;
3616 		}
3617 		goto out;
3618 	}
3619 
3620 	error = hwna->nm_hw_register(na, onoff);
3621 
3622 out:
3623 	nm_os_ifnet_unlock();
3624 
3625 	return error;
3626 }
3627 
3628 static void
3629 netmap_hw_dtor(struct netmap_adapter *na)
3630 {
3631 	if (na->ifp == NULL)
3632 		return;
3633 
3634 	NM_DETACH_NA(na->ifp);
3635 }
3636 
3637 
3638 /*
3639  * Allocate a netmap_adapter object, and initialize it from the
3640  * 'arg' passed by the driver on attach.
3641  * We allocate a block of memory of 'size' bytes, which has room
3642  * for struct netmap_adapter plus additional room private to
3643  * the caller.
3644  * Return 0 on success, ENOMEM otherwise.
3645  */
3646 int
3647 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
3648 {
3649 	struct netmap_hw_adapter *hwna = NULL;
3650 	struct ifnet *ifp = NULL;
3651 
3652 	if (size < sizeof(struct netmap_hw_adapter)) {
3653 		if (netmap_debug & NM_DEBUG_ON)
3654 			nm_prerr("Invalid netmap adapter size %d", (int)size);
3655 		return EINVAL;
3656 	}
3657 
3658 	if (arg == NULL || arg->ifp == NULL) {
3659 		if (netmap_debug & NM_DEBUG_ON)
3660 			nm_prerr("either arg or arg->ifp is NULL");
3661 		return EINVAL;
3662 	}
3663 
3664 	if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
3665 		if (netmap_debug & NM_DEBUG_ON)
3666 			nm_prerr("%s: invalid rings tx %d rx %d",
3667 				arg->name, arg->num_tx_rings, arg->num_rx_rings);
3668 		return EINVAL;
3669 	}
3670 
3671 	ifp = arg->ifp;
3672 	if (NM_NA_CLASH(ifp)) {
3673 		/* If NA(ifp) is not null but there is no valid netmap
3674 		 * adapter it means that someone else is using the same
3675 		 * pointer (e.g. ax25_ptr on linux). This happens for
3676 		 * instance when also PF_RING is in use. */
3677 		nm_prerr("Error: netmap adapter hook is busy");
3678 		return EBUSY;
3679 	}
3680 
3681 	hwna = nm_os_malloc(size);
3682 	if (hwna == NULL)
3683 		goto fail;
3684 	hwna->up = *arg;
3685 	hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
3686 	strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
3687 	if (override_reg) {
3688 		hwna->nm_hw_register = hwna->up.nm_register;
3689 		hwna->up.nm_register = netmap_hw_reg;
3690 	}
3691 	if (netmap_attach_common(&hwna->up)) {
3692 		nm_os_free(hwna);
3693 		goto fail;
3694 	}
3695 	netmap_adapter_get(&hwna->up);
3696 
3697 	NM_ATTACH_NA(ifp, &hwna->up);
3698 
3699 	nm_os_onattach(ifp);
3700 
3701 	if (arg->nm_dtor == NULL) {
3702 		hwna->up.nm_dtor = netmap_hw_dtor;
3703 	}
3704 
3705 	if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
3706 	    hwna->up.num_tx_rings, hwna->up.num_tx_desc,
3707 	    hwna->up.num_rx_rings, hwna->up.num_rx_desc);
3708 	return 0;
3709 
3710 fail:
3711 	nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
3712 	return (hwna ? EINVAL : ENOMEM);
3713 }
3714 
3715 
3716 int
3717 netmap_attach(struct netmap_adapter *arg)
3718 {
3719 	return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
3720 			1 /* override nm_reg */);
3721 }
3722 
3723 
3724 void
3725 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
3726 {
3727 	if (!na) {
3728 		return;
3729 	}
3730 
3731 	refcount_acquire(&na->na_refcount);
3732 }
3733 
3734 
3735 /* returns 1 iff the netmap_adapter is destroyed */
3736 int
3737 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
3738 {
3739 	if (!na)
3740 		return 1;
3741 
3742 	if (!refcount_release(&na->na_refcount))
3743 		return 0;
3744 
3745 	if (na->nm_dtor)
3746 		na->nm_dtor(na);
3747 
3748 	if (na->tx_rings) { /* XXX should not happen */
3749 		if (netmap_debug & NM_DEBUG_ON)
3750 			nm_prerr("freeing leftover tx_rings");
3751 		na->nm_krings_delete(na);
3752 	}
3753 	netmap_pipe_dealloc(na);
3754 	if (na->nm_mem)
3755 		netmap_mem_put(na->nm_mem);
3756 	bzero(na, sizeof(*na));
3757 	nm_os_free(na);
3758 
3759 	return 1;
3760 }
3761 
3762 /* nm_krings_create callback for all hardware native adapters */
3763 int
3764 netmap_hw_krings_create(struct netmap_adapter *na)
3765 {
3766 	int ret = netmap_krings_create(na, 0);
3767 	if (ret == 0) {
3768 		/* initialize the mbq for the sw rx ring */
3769 		u_int lim = netmap_real_rings(na, NR_RX), i;
3770 		for (i = na->num_rx_rings; i < lim; i++) {
3771 			mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
3772 		}
3773 		ND("initialized sw rx queue %d", na->num_rx_rings);
3774 	}
3775 	return ret;
3776 }
3777 
3778 
3779 
3780 /*
3781  * Called on module unload by the netmap-enabled drivers
3782  */
3783 void
3784 netmap_detach(struct ifnet *ifp)
3785 {
3786 	struct netmap_adapter *na = NA(ifp);
3787 
3788 	if (!na)
3789 		return;
3790 
3791 	NMG_LOCK();
3792 	netmap_set_all_rings(na, NM_KR_LOCKED);
3793 	/*
3794 	 * if the netmap adapter is not native, somebody
3795 	 * changed it, so we can not release it here.
3796 	 * The NAF_ZOMBIE flag will notify the new owner that
3797 	 * the driver is gone.
3798 	 */
3799 	if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
3800 		na->na_flags |= NAF_ZOMBIE;
3801 	}
3802 	/* give active users a chance to notice that NAF_ZOMBIE has been
3803 	 * turned on, so that they can stop and return an error to userspace.
3804 	 * Note that this becomes a NOP if there are no active users and,
3805 	 * therefore, the put() above has deleted the na, since now NA(ifp) is
3806 	 * NULL.
3807 	 */
3808 	netmap_enable_all_rings(ifp);
3809 	NMG_UNLOCK();
3810 }
3811 
3812 
3813 /*
3814  * Intercept packets from the network stack and pass them
3815  * to netmap as incoming packets on the 'software' ring.
3816  *
3817  * We only store packets in a bounded mbq and then copy them
3818  * in the relevant rxsync routine.
3819  *
3820  * We rely on the OS to make sure that the ifp and na do not go
3821  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
3822  * In nm_register() or whenever there is a reinitialization,
3823  * we make sure to make the mode change visible here.
3824  */
3825 int
3826 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
3827 {
3828 	struct netmap_adapter *na = NA(ifp);
3829 	struct netmap_kring *kring, *tx_kring;
3830 	u_int len = MBUF_LEN(m);
3831 	u_int error = ENOBUFS;
3832 	unsigned int txr;
3833 	struct mbq *q;
3834 	int busy;
3835 	u_int i;
3836 
3837 	i = MBUF_TXQ(m);
3838 	if (i >= na->num_host_rx_rings) {
3839 		i = i % na->num_host_rx_rings;
3840 	}
3841 	kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
3842 
3843 	// XXX [Linux] we do not need this lock
3844 	// if we follow the down/configure/up protocol -gl
3845 	// mtx_lock(&na->core_lock);
3846 
3847 	if (!nm_netmap_on(na)) {
3848 		nm_prerr("%s not in netmap mode anymore", na->name);
3849 		error = ENXIO;
3850 		goto done;
3851 	}
3852 
3853 	txr = MBUF_TXQ(m);
3854 	if (txr >= na->num_tx_rings) {
3855 		txr %= na->num_tx_rings;
3856 	}
3857 	tx_kring = NMR(na, NR_TX)[txr];
3858 
3859 	if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
3860 		return MBUF_TRANSMIT(na, ifp, m);
3861 	}
3862 
3863 	q = &kring->rx_queue;
3864 
3865 	// XXX reconsider long packets if we handle fragments
3866 	if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
3867 		nm_prerr("%s from_host, drop packet size %d > %d", na->name,
3868 			len, NETMAP_BUF_SIZE(na));
3869 		goto done;
3870 	}
3871 
3872 	if (!netmap_generic_hwcsum) {
3873 		if (nm_os_mbuf_has_csum_offld(m)) {
3874 			RD(1, "%s drop mbuf that needs checksum offload", na->name);
3875 			goto done;
3876 		}
3877 	}
3878 
3879 	if (nm_os_mbuf_has_seg_offld(m)) {
3880 		RD(1, "%s drop mbuf that needs generic segmentation offload", na->name);
3881 		goto done;
3882 	}
3883 
3884 #ifdef __FreeBSD__
3885 	ETHER_BPF_MTAP(ifp, m);
3886 #endif /* __FreeBSD__ */
3887 
3888 	/* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
3889 	 * and maybe other instances of netmap_transmit (the latter
3890 	 * not possible on Linux).
3891 	 * We enqueue the mbuf only if we are sure there is going to be
3892 	 * enough room in the host RX ring, otherwise we drop it.
3893 	 */
3894 	mbq_lock(q);
3895 
3896 	busy = kring->nr_hwtail - kring->nr_hwcur;
3897 	if (busy < 0)
3898 		busy += kring->nkr_num_slots;
3899 	if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
3900 		RD(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
3901 			kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
3902 	} else {
3903 		mbq_enqueue(q, m);
3904 		ND(2, "%s %d bufs in queue", na->name, mbq_len(q));
3905 		/* notify outside the lock */
3906 		m = NULL;
3907 		error = 0;
3908 	}
3909 	mbq_unlock(q);
3910 
3911 done:
3912 	if (m)
3913 		m_freem(m);
3914 	/* unconditionally wake up listeners */
3915 	kring->nm_notify(kring, 0);
3916 	/* this is normally netmap_notify(), but for nics
3917 	 * connected to a bridge it is netmap_bwrap_intr_notify(),
3918 	 * that possibly forwards the frames through the switch
3919 	 */
3920 
3921 	return (error);
3922 }
3923 
3924 
3925 /*
3926  * netmap_reset() is called by the driver routines when reinitializing
3927  * a ring. The driver is in charge of locking to protect the kring.
3928  * If native netmap mode is not set just return NULL.
3929  * If native netmap mode is set, in particular, we have to set nr_mode to
3930  * NKR_NETMAP_ON.
3931  */
3932 struct netmap_slot *
3933 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
3934 	u_int new_cur)
3935 {
3936 	struct netmap_kring *kring;
3937 	int new_hwofs, lim;
3938 
3939 	if (!nm_native_on(na)) {
3940 		ND("interface not in native netmap mode");
3941 		return NULL;	/* nothing to reinitialize */
3942 	}
3943 
3944 	/* XXX note- in the new scheme, we are not guaranteed to be
3945 	 * under lock (e.g. when called on a device reset).
3946 	 * In this case, we should set a flag and do not trust too
3947 	 * much the values. In practice: TODO
3948 	 * - set a RESET flag somewhere in the kring
3949 	 * - do the processing in a conservative way
3950 	 * - let the *sync() fixup at the end.
3951 	 */
3952 	if (tx == NR_TX) {
3953 		if (n >= na->num_tx_rings)
3954 			return NULL;
3955 
3956 		kring = na->tx_rings[n];
3957 
3958 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
3959 			kring->nr_mode = NKR_NETMAP_OFF;
3960 			return NULL;
3961 		}
3962 
3963 		// XXX check whether we should use hwcur or rcur
3964 		new_hwofs = kring->nr_hwcur - new_cur;
3965 	} else {
3966 		if (n >= na->num_rx_rings)
3967 			return NULL;
3968 		kring = na->rx_rings[n];
3969 
3970 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
3971 			kring->nr_mode = NKR_NETMAP_OFF;
3972 			return NULL;
3973 		}
3974 
3975 		new_hwofs = kring->nr_hwtail - new_cur;
3976 	}
3977 	lim = kring->nkr_num_slots - 1;
3978 	if (new_hwofs > lim)
3979 		new_hwofs -= lim + 1;
3980 
3981 	/* Always set the new offset value and realign the ring. */
3982 	if (netmap_debug & NM_DEBUG_ON)
3983 	    nm_prinf("%s %s%d hwofs %d -> %d, hwtail %d -> %d",
3984 		na->name,
3985 		tx == NR_TX ? "TX" : "RX", n,
3986 		kring->nkr_hwofs, new_hwofs,
3987 		kring->nr_hwtail,
3988 		tx == NR_TX ? lim : kring->nr_hwtail);
3989 	kring->nkr_hwofs = new_hwofs;
3990 	if (tx == NR_TX) {
3991 		kring->nr_hwtail = kring->nr_hwcur + lim;
3992 		if (kring->nr_hwtail > lim)
3993 			kring->nr_hwtail -= lim + 1;
3994 	}
3995 
3996 	/*
3997 	 * Wakeup on the individual and global selwait
3998 	 * We do the wakeup here, but the ring is not yet reconfigured.
3999 	 * However, we are under lock so there are no races.
4000 	 */
4001 	kring->nr_mode = NKR_NETMAP_ON;
4002 	kring->nm_notify(kring, 0);
4003 	return kring->ring->slot;
4004 }
4005 
4006 
4007 /*
4008  * Dispatch rx/tx interrupts to the netmap rings.
4009  *
4010  * "work_done" is non-null on the RX path, NULL for the TX path.
4011  * We rely on the OS to make sure that there is only one active
4012  * instance per queue, and that there is appropriate locking.
4013  *
4014  * The 'notify' routine depends on what the ring is attached to.
4015  * - for a netmap file descriptor, do a selwakeup on the individual
4016  *   waitqueue, plus one on the global one if needed
4017  *   (see netmap_notify)
4018  * - for a nic connected to a switch, call the proper forwarding routine
4019  *   (see netmap_bwrap_intr_notify)
4020  */
4021 int
4022 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4023 {
4024 	struct netmap_kring *kring;
4025 	enum txrx t = (work_done ? NR_RX : NR_TX);
4026 
4027 	q &= NETMAP_RING_MASK;
4028 
4029 	if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4030 	        nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4031 	}
4032 
4033 	if (q >= nma_get_nrings(na, t))
4034 		return NM_IRQ_PASS; // not a physical queue
4035 
4036 	kring = NMR(na, t)[q];
4037 
4038 	if (kring->nr_mode == NKR_NETMAP_OFF) {
4039 		return NM_IRQ_PASS;
4040 	}
4041 
4042 	if (t == NR_RX) {
4043 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
4044 		*work_done = 1; /* do not fire napi again */
4045 	}
4046 
4047 	return kring->nm_notify(kring, 0);
4048 }
4049 
4050 
4051 /*
4052  * Default functions to handle rx/tx interrupts from a physical device.
4053  * "work_done" is non-null on the RX path, NULL for the TX path.
4054  *
4055  * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4056  * so that the caller proceeds with regular processing.
4057  * Otherwise call netmap_common_irq().
4058  *
4059  * If the card is connected to a netmap file descriptor,
4060  * do a selwakeup on the individual queue, plus one on the global one
4061  * if needed (multiqueue card _and_ there are multiqueue listeners),
4062  * and return NR_IRQ_COMPLETED.
4063  *
4064  * Finally, if called on rx from an interface connected to a switch,
4065  * calls the proper forwarding routine.
4066  */
4067 int
4068 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
4069 {
4070 	struct netmap_adapter *na = NA(ifp);
4071 
4072 	/*
4073 	 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4074 	 * we still use the regular driver even though the previous
4075 	 * check fails. It is unclear whether we should use
4076 	 * nm_native_on() here.
4077 	 */
4078 	if (!nm_netmap_on(na))
4079 		return NM_IRQ_PASS;
4080 
4081 	if (na->na_flags & NAF_SKIP_INTR) {
4082 		ND("use regular interrupt");
4083 		return NM_IRQ_PASS;
4084 	}
4085 
4086 	return netmap_common_irq(na, q, work_done);
4087 }
4088 
4089 /* set/clear native flags and if_transmit/netdev_ops */
4090 void
4091 nm_set_native_flags(struct netmap_adapter *na)
4092 {
4093 	struct ifnet *ifp = na->ifp;
4094 
4095 	/* We do the setup for intercepting packets only if we are the
4096 	 * first user of this adapapter. */
4097 	if (na->active_fds > 0) {
4098 		return;
4099 	}
4100 
4101 	na->na_flags |= NAF_NETMAP_ON;
4102 	nm_os_onenter(ifp);
4103 	nm_update_hostrings_mode(na);
4104 }
4105 
4106 void
4107 nm_clear_native_flags(struct netmap_adapter *na)
4108 {
4109 	struct ifnet *ifp = na->ifp;
4110 
4111 	/* We undo the setup for intercepting packets only if we are the
4112 	 * last user of this adapter. */
4113 	if (na->active_fds > 0) {
4114 		return;
4115 	}
4116 
4117 	nm_update_hostrings_mode(na);
4118 	nm_os_onexit(ifp);
4119 
4120 	na->na_flags &= ~NAF_NETMAP_ON;
4121 }
4122 
4123 /*
4124  * Module loader and unloader
4125  *
4126  * netmap_init() creates the /dev/netmap device and initializes
4127  * all global variables. Returns 0 on success, errno on failure
4128  * (but there is no chance)
4129  *
4130  * netmap_fini() destroys everything.
4131  */
4132 
4133 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4134 extern struct cdevsw netmap_cdevsw;
4135 
4136 
4137 void
4138 netmap_fini(void)
4139 {
4140 	if (netmap_dev)
4141 		destroy_dev(netmap_dev);
4142 	/* we assume that there are no longer netmap users */
4143 	nm_os_ifnet_fini();
4144 	netmap_uninit_bridges();
4145 	netmap_mem_fini();
4146 	NMG_LOCK_DESTROY();
4147 	nm_prinf("netmap: unloaded module.");
4148 }
4149 
4150 
4151 int
4152 netmap_init(void)
4153 {
4154 	int error;
4155 
4156 	NMG_LOCK_INIT();
4157 
4158 	error = netmap_mem_init();
4159 	if (error != 0)
4160 		goto fail;
4161 	/*
4162 	 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4163 	 * when the module is compiled in.
4164 	 * XXX could use make_dev_credv() to get error number
4165 	 */
4166 	netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4167 		&netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4168 			      "netmap");
4169 	if (!netmap_dev)
4170 		goto fail;
4171 
4172 	error = netmap_init_bridges();
4173 	if (error)
4174 		goto fail;
4175 
4176 #ifdef __FreeBSD__
4177 	nm_os_vi_init_index();
4178 #endif
4179 
4180 	error = nm_os_ifnet_init();
4181 	if (error)
4182 		goto fail;
4183 
4184 	nm_prinf("netmap: loaded module");
4185 	return (0);
4186 fail:
4187 	netmap_fini();
4188 	return (EINVAL); /* may be incorrect */
4189 }
4190