1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi 5 * Copyright (C) 2011-2016 Luigi Rizzo 6 * Copyright (C) 2011-2016 Giuseppe Lettieri 7 * Copyright (C) 2011-2016 Vincenzo Maffione 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 33 /* 34 * $FreeBSD$ 35 * 36 * This module supports memory mapped access to network devices, 37 * see netmap(4). 38 * 39 * The module uses a large, memory pool allocated by the kernel 40 * and accessible as mmapped memory by multiple userspace threads/processes. 41 * The memory pool contains packet buffers and "netmap rings", 42 * i.e. user-accessible copies of the interface's queues. 43 * 44 * Access to the network card works like this: 45 * 1. a process/thread issues one or more open() on /dev/netmap, to create 46 * select()able file descriptor on which events are reported. 47 * 2. on each descriptor, the process issues an ioctl() to identify 48 * the interface that should report events to the file descriptor. 49 * 3. on each descriptor, the process issues an mmap() request to 50 * map the shared memory region within the process' address space. 51 * The list of interesting queues is indicated by a location in 52 * the shared memory region. 53 * 4. using the functions in the netmap(4) userspace API, a process 54 * can look up the occupation state of a queue, access memory buffers, 55 * and retrieve received packets or enqueue packets to transmit. 56 * 5. using some ioctl()s the process can synchronize the userspace view 57 * of the queue with the actual status in the kernel. This includes both 58 * receiving the notification of new packets, and transmitting new 59 * packets on the output interface. 60 * 6. select() or poll() can be used to wait for events on individual 61 * transmit or receive queues (or all queues for a given interface). 62 * 63 64 SYNCHRONIZATION (USER) 65 66 The netmap rings and data structures may be shared among multiple 67 user threads or even independent processes. 68 Any synchronization among those threads/processes is delegated 69 to the threads themselves. Only one thread at a time can be in 70 a system call on the same netmap ring. The OS does not enforce 71 this and only guarantees against system crashes in case of 72 invalid usage. 73 74 LOCKING (INTERNAL) 75 76 Within the kernel, access to the netmap rings is protected as follows: 77 78 - a spinlock on each ring, to handle producer/consumer races on 79 RX rings attached to the host stack (against multiple host 80 threads writing from the host stack to the same ring), 81 and on 'destination' rings attached to a VALE switch 82 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 83 protecting multiple active senders for the same destination) 84 85 - an atomic variable to guarantee that there is at most one 86 instance of *_*xsync() on the ring at any time. 87 For rings connected to user file 88 descriptors, an atomic_test_and_set() protects this, and the 89 lock on the ring is not actually used. 90 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 91 is also used to prevent multiple executions (the driver might indeed 92 already guarantee this). 93 For NIC TX rings connected to a VALE switch, the lock arbitrates 94 access to the queue (both when allocating buffers and when pushing 95 them out). 96 97 - *xsync() should be protected against initializations of the card. 98 On FreeBSD most devices have the reset routine protected by 99 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 100 the RING protection on rx_reset(), this should be added. 101 102 On linux there is an external lock on the tx path, which probably 103 also arbitrates access to the reset routine. XXX to be revised 104 105 - a per-interface core_lock protecting access from the host stack 106 while interfaces may be detached from netmap mode. 107 XXX there should be no need for this lock if we detach the interfaces 108 only while they are down. 109 110 111 --- VALE SWITCH --- 112 113 NMG_LOCK() serializes all modifications to switches and ports. 114 A switch cannot be deleted until all ports are gone. 115 116 For each switch, an SX lock (RWlock on linux) protects 117 deletion of ports. When configuring or deleting a new port, the 118 lock is acquired in exclusive mode (after holding NMG_LOCK). 119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 120 The lock is held throughout the entire forwarding cycle, 121 during which the thread may incur in a page fault. 122 Hence it is important that sleepable shared locks are used. 123 124 On the rx ring, the per-port lock is grabbed initially to reserve 125 a number of slot in the ring, then the lock is released, 126 packets are copied from source to destination, and then 127 the lock is acquired again and the receive ring is updated. 128 (A similar thing is done on the tx ring for NIC and host stack 129 ports attached to the switch) 130 131 */ 132 133 134 /* --- internals ---- 135 * 136 * Roadmap to the code that implements the above. 137 * 138 * > 1. a process/thread issues one or more open() on /dev/netmap, to create 139 * > select()able file descriptor on which events are reported. 140 * 141 * Internally, we allocate a netmap_priv_d structure, that will be 142 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d 143 * structure for each open(). 144 * 145 * os-specific: 146 * FreeBSD: see netmap_open() (netmap_freebsd.c) 147 * linux: see linux_netmap_open() (netmap_linux.c) 148 * 149 * > 2. on each descriptor, the process issues an ioctl() to identify 150 * > the interface that should report events to the file descriptor. 151 * 152 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0. 153 * Most important things happen in netmap_get_na() and 154 * netmap_do_regif(), called from there. Additional details can be 155 * found in the comments above those functions. 156 * 157 * In all cases, this action creates/takes-a-reference-to a 158 * netmap_*_adapter describing the port, and allocates a netmap_if 159 * and all necessary netmap rings, filling them with netmap buffers. 160 * 161 * In this phase, the sync callbacks for each ring are set (these are used 162 * in steps 5 and 6 below). The callbacks depend on the type of adapter. 163 * The adapter creation/initialization code puts them in the 164 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they 165 * are copied from there to the netmap_kring's during netmap_do_regif(), by 166 * the nm_krings_create() callback. All the nm_krings_create callbacks 167 * actually call netmap_krings_create() to perform this and the other 168 * common stuff. netmap_krings_create() also takes care of the host rings, 169 * if needed, by setting their sync callbacks appropriately. 170 * 171 * Additional actions depend on the kind of netmap_adapter that has been 172 * registered: 173 * 174 * - netmap_hw_adapter: [netmap.c] 175 * This is a system netdev/ifp with native netmap support. 176 * The ifp is detached from the host stack by redirecting: 177 * - transmissions (from the network stack) to netmap_transmit() 178 * - receive notifications to the nm_notify() callback for 179 * this adapter. The callback is normally netmap_notify(), unless 180 * the ifp is attached to a bridge using bwrap, in which case it 181 * is netmap_bwrap_intr_notify(). 182 * 183 * - netmap_generic_adapter: [netmap_generic.c] 184 * A system netdev/ifp without native netmap support. 185 * 186 * (the decision about native/non native support is taken in 187 * netmap_get_hw_na(), called by netmap_get_na()) 188 * 189 * - netmap_vp_adapter [netmap_vale.c] 190 * Returned by netmap_get_bdg_na(). 191 * This is a persistent or ephemeral VALE port. Ephemeral ports 192 * are created on the fly if they don't already exist, and are 193 * always attached to a bridge. 194 * Persistent VALE ports must must be created separately, and i 195 * then attached like normal NICs. The NIOCREGIF we are examining 196 * will find them only if they had previosly been created and 197 * attached (see VALE_CTL below). 198 * 199 * - netmap_pipe_adapter [netmap_pipe.c] 200 * Returned by netmap_get_pipe_na(). 201 * Both pipe ends are created, if they didn't already exist. 202 * 203 * - netmap_monitor_adapter [netmap_monitor.c] 204 * Returned by netmap_get_monitor_na(). 205 * If successful, the nm_sync callbacks of the monitored adapter 206 * will be intercepted by the returned monitor. 207 * 208 * - netmap_bwrap_adapter [netmap_vale.c] 209 * Cannot be obtained in this way, see VALE_CTL below 210 * 211 * 212 * os-specific: 213 * linux: we first go through linux_netmap_ioctl() to 214 * adapt the FreeBSD interface to the linux one. 215 * 216 * 217 * > 3. on each descriptor, the process issues an mmap() request to 218 * > map the shared memory region within the process' address space. 219 * > The list of interesting queues is indicated by a location in 220 * > the shared memory region. 221 * 222 * os-specific: 223 * FreeBSD: netmap_mmap_single (netmap_freebsd.c). 224 * linux: linux_netmap_mmap (netmap_linux.c). 225 * 226 * > 4. using the functions in the netmap(4) userspace API, a process 227 * > can look up the occupation state of a queue, access memory buffers, 228 * > and retrieve received packets or enqueue packets to transmit. 229 * 230 * these actions do not involve the kernel. 231 * 232 * > 5. using some ioctl()s the process can synchronize the userspace view 233 * > of the queue with the actual status in the kernel. This includes both 234 * > receiving the notification of new packets, and transmitting new 235 * > packets on the output interface. 236 * 237 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC 238 * cases. They invoke the nm_sync callbacks on the netmap_kring 239 * structures, as initialized in step 2 and maybe later modified 240 * by a monitor. Monitors, however, will always call the original 241 * callback before doing anything else. 242 * 243 * 244 * > 6. select() or poll() can be used to wait for events on individual 245 * > transmit or receive queues (or all queues for a given interface). 246 * 247 * Implemented in netmap_poll(). This will call the same nm_sync() 248 * callbacks as in step 5 above. 249 * 250 * os-specific: 251 * linux: we first go through linux_netmap_poll() to adapt 252 * the FreeBSD interface to the linux one. 253 * 254 * 255 * ---- VALE_CTL ----- 256 * 257 * VALE switches are controlled by issuing a NIOCREGIF with a non-null 258 * nr_cmd in the nmreq structure. These subcommands are handled by 259 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created 260 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF 261 * subcommands, respectively. 262 * 263 * Any network interface known to the system (including a persistent VALE 264 * port) can be attached to a VALE switch by issuing the 265 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports 266 * look exactly like ephemeral VALE ports (as created in step 2 above). The 267 * attachment of other interfaces, instead, requires the creation of a 268 * netmap_bwrap_adapter. Moreover, the attached interface must be put in 269 * netmap mode. This may require the creation of a netmap_generic_adapter if 270 * we have no native support for the interface, or if generic adapters have 271 * been forced by sysctl. 272 * 273 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(), 274 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach() 275 * callback. In the case of the bwrap, the callback creates the 276 * netmap_bwrap_adapter. The initialization of the bwrap is then 277 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl() 278 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c). 279 * A generic adapter for the wrapped ifp will be created if needed, when 280 * netmap_get_bdg_na() calls netmap_get_hw_na(). 281 * 282 * 283 * ---- DATAPATHS ----- 284 * 285 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =- 286 * 287 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach() 288 * 289 * - tx from netmap userspace: 290 * concurrently: 291 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 292 * kring->nm_sync() == DEVICE_netmap_txsync() 293 * 2) device interrupt handler 294 * na->nm_notify() == netmap_notify() 295 * - rx from netmap userspace: 296 * concurrently: 297 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 298 * kring->nm_sync() == DEVICE_netmap_rxsync() 299 * 2) device interrupt handler 300 * na->nm_notify() == netmap_notify() 301 * - rx from host stack 302 * concurrently: 303 * 1) host stack 304 * netmap_transmit() 305 * na->nm_notify == netmap_notify() 306 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context 307 * kring->nm_sync() == netmap_rxsync_from_host 308 * netmap_rxsync_from_host(na, NULL, NULL) 309 * - tx to host stack 310 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 311 * kring->nm_sync() == netmap_txsync_to_host 312 * netmap_txsync_to_host(na) 313 * nm_os_send_up() 314 * FreeBSD: na->if_input() == ether_input() 315 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX 316 * 317 * 318 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =- 319 * 320 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach() 321 * 322 * - tx from netmap userspace: 323 * concurrently: 324 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 325 * kring->nm_sync() == generic_netmap_txsync() 326 * nm_os_generic_xmit_frame() 327 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX 328 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 329 * gna->save_start_xmit == orig. dev. start_xmit 330 * FreeBSD: na->if_transmit() == orig. dev if_transmit 331 * 2) generic_mbuf_destructor() 332 * na->nm_notify() == netmap_notify() 333 * - rx from netmap userspace: 334 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 335 * kring->nm_sync() == generic_netmap_rxsync() 336 * mbq_safe_dequeue() 337 * 2) device driver 338 * generic_rx_handler() 339 * mbq_safe_enqueue() 340 * na->nm_notify() == netmap_notify() 341 * - rx from host stack 342 * FreeBSD: same as native 343 * Linux: same as native except: 344 * 1) host stack 345 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX 346 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 347 * netmap_transmit() 348 * na->nm_notify() == netmap_notify() 349 * - tx to host stack (same as native): 350 * 351 * 352 * -= VALE =- 353 * 354 * INCOMING: 355 * 356 * - VALE ports: 357 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 358 * kring->nm_sync() == netmap_vp_txsync() 359 * 360 * - system device with native support: 361 * from cable: 362 * interrupt 363 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 364 * kring->nm_sync() == DEVICE_netmap_rxsync() 365 * netmap_vp_txsync() 366 * kring->nm_sync() == DEVICE_netmap_rxsync() 367 * from host stack: 368 * netmap_transmit() 369 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 370 * kring->nm_sync() == netmap_rxsync_from_host() 371 * netmap_vp_txsync() 372 * 373 * - system device with generic support: 374 * from device driver: 375 * generic_rx_handler() 376 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 377 * kring->nm_sync() == generic_netmap_rxsync() 378 * netmap_vp_txsync() 379 * kring->nm_sync() == generic_netmap_rxsync() 380 * from host stack: 381 * netmap_transmit() 382 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 383 * kring->nm_sync() == netmap_rxsync_from_host() 384 * netmap_vp_txsync() 385 * 386 * (all cases) --> nm_bdg_flush() 387 * dest_na->nm_notify() == (see below) 388 * 389 * OUTGOING: 390 * 391 * - VALE ports: 392 * concurrently: 393 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 394 * kring->nm_sync() == netmap_vp_rxsync() 395 * 2) from nm_bdg_flush() 396 * na->nm_notify() == netmap_notify() 397 * 398 * - system device with native support: 399 * to cable: 400 * na->nm_notify() == netmap_bwrap_notify() 401 * netmap_vp_rxsync() 402 * kring->nm_sync() == DEVICE_netmap_txsync() 403 * netmap_vp_rxsync() 404 * to host stack: 405 * netmap_vp_rxsync() 406 * kring->nm_sync() == netmap_txsync_to_host 407 * netmap_vp_rxsync_locked() 408 * 409 * - system device with generic adapter: 410 * to device driver: 411 * na->nm_notify() == netmap_bwrap_notify() 412 * netmap_vp_rxsync() 413 * kring->nm_sync() == generic_netmap_txsync() 414 * netmap_vp_rxsync() 415 * to host stack: 416 * netmap_vp_rxsync() 417 * kring->nm_sync() == netmap_txsync_to_host 418 * netmap_vp_rxsync() 419 * 420 */ 421 422 /* 423 * OS-specific code that is used only within this file. 424 * Other OS-specific code that must be accessed by drivers 425 * is present in netmap_kern.h 426 */ 427 428 #if defined(__FreeBSD__) 429 #include <sys/cdefs.h> /* prerequisite */ 430 #include <sys/types.h> 431 #include <sys/errno.h> 432 #include <sys/param.h> /* defines used in kernel.h */ 433 #include <sys/kernel.h> /* types used in module initialization */ 434 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 435 #include <sys/filio.h> /* FIONBIO */ 436 #include <sys/sockio.h> 437 #include <sys/socketvar.h> /* struct socket */ 438 #include <sys/malloc.h> 439 #include <sys/poll.h> 440 #include <sys/proc.h> 441 #include <sys/rwlock.h> 442 #include <sys/socket.h> /* sockaddrs */ 443 #include <sys/selinfo.h> 444 #include <sys/sysctl.h> 445 #include <sys/jail.h> 446 #include <sys/epoch.h> 447 #include <net/vnet.h> 448 #include <net/if.h> 449 #include <net/if_var.h> 450 #include <net/bpf.h> /* BIOCIMMEDIATE */ 451 #include <machine/bus.h> /* bus_dmamap_* */ 452 #include <sys/endian.h> 453 #include <sys/refcount.h> 454 #include <net/ethernet.h> /* ETHER_BPF_MTAP */ 455 456 457 #elif defined(linux) 458 459 #include "bsd_glue.h" 460 461 #elif defined(__APPLE__) 462 463 #warning OSX support is only partial 464 #include "osx_glue.h" 465 466 #elif defined (_WIN32) 467 468 #include "win_glue.h" 469 470 #else 471 472 #error Unsupported platform 473 474 #endif /* unsupported */ 475 476 /* 477 * common headers 478 */ 479 #include <net/netmap.h> 480 #include <dev/netmap/netmap_kern.h> 481 #include <dev/netmap/netmap_mem2.h> 482 483 484 /* user-controlled variables */ 485 int netmap_verbose; 486 #ifdef CONFIG_NETMAP_DEBUG 487 int netmap_debug; 488 #endif /* CONFIG_NETMAP_DEBUG */ 489 490 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 491 int netmap_no_pendintr = 1; 492 int netmap_txsync_retry = 2; 493 static int netmap_fwd = 0; /* force transparent forwarding */ 494 495 /* 496 * netmap_admode selects the netmap mode to use. 497 * Invalid values are reset to NETMAP_ADMODE_BEST 498 */ 499 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 500 NETMAP_ADMODE_NATIVE, /* either native or none */ 501 NETMAP_ADMODE_GENERIC, /* force generic */ 502 NETMAP_ADMODE_LAST }; 503 static int netmap_admode = NETMAP_ADMODE_BEST; 504 505 /* netmap_generic_mit controls mitigation of RX notifications for 506 * the generic netmap adapter. The value is a time interval in 507 * nanoseconds. */ 508 int netmap_generic_mit = 100*1000; 509 510 /* We use by default netmap-aware qdiscs with generic netmap adapters, 511 * even if there can be a little performance hit with hardware NICs. 512 * However, using the qdisc is the safer approach, for two reasons: 513 * 1) it prevents non-fifo qdiscs to break the TX notification 514 * scheme, which is based on mbuf destructors when txqdisc is 515 * not used. 516 * 2) it makes it possible to transmit over software devices that 517 * change skb->dev, like bridge, veth, ... 518 * 519 * Anyway users looking for the best performance should 520 * use native adapters. 521 */ 522 #ifdef linux 523 int netmap_generic_txqdisc = 1; 524 #endif 525 526 /* Default number of slots and queues for generic adapters. */ 527 int netmap_generic_ringsize = 1024; 528 int netmap_generic_rings = 1; 529 530 /* Non-zero to enable checksum offloading in NIC drivers */ 531 int netmap_generic_hwcsum = 0; 532 533 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */ 534 int ptnet_vnet_hdr = 1; 535 536 /* 537 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated 538 * in some other operating systems 539 */ 540 SYSBEGIN(main_init); 541 542 SYSCTL_DECL(_dev_netmap); 543 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 544 "Netmap args"); 545 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 546 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 547 #ifdef CONFIG_NETMAP_DEBUG 548 SYSCTL_INT(_dev_netmap, OID_AUTO, debug, 549 CTLFLAG_RW, &netmap_debug, 0, "Debug messages"); 550 #endif /* CONFIG_NETMAP_DEBUG */ 551 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 552 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 553 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr, 554 0, "Always look for new received packets."); 555 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 556 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush."); 557 558 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0, 559 "Force NR_FORWARD mode"); 560 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0, 561 "Adapter mode. 0 selects the best option available," 562 "1 forces native adapter, 2 forces emulated adapter"); 563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum, 564 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default)," 565 "1 to enable checksum generation by the NIC"); 566 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 567 0, "RX notification interval in nanoseconds"); 568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, 569 &netmap_generic_ringsize, 0, 570 "Number of per-ring slots for emulated netmap mode"); 571 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW, 572 &netmap_generic_rings, 0, 573 "Number of TX/RX queues for emulated netmap adapters"); 574 #ifdef linux 575 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW, 576 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters"); 577 #endif 578 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr, 579 0, "Allow ptnet devices to use virtio-net headers"); 580 581 SYSEND; 582 583 NMG_LOCK_T netmap_global_lock; 584 585 /* 586 * mark the ring as stopped, and run through the locks 587 * to make sure other users get to see it. 588 * stopped must be either NR_KR_STOPPED (for unbounded stop) 589 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes) 590 */ 591 static void 592 netmap_disable_ring(struct netmap_kring *kr, int stopped) 593 { 594 nm_kr_stop(kr, stopped); 595 // XXX check if nm_kr_stop is sufficient 596 mtx_lock(&kr->q_lock); 597 mtx_unlock(&kr->q_lock); 598 nm_kr_put(kr); 599 } 600 601 /* stop or enable a single ring */ 602 void 603 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped) 604 { 605 if (stopped) 606 netmap_disable_ring(NMR(na, t)[ring_id], stopped); 607 else 608 NMR(na, t)[ring_id]->nkr_stopped = 0; 609 } 610 611 612 /* stop or enable all the rings of na */ 613 void 614 netmap_set_all_rings(struct netmap_adapter *na, int stopped) 615 { 616 int i; 617 enum txrx t; 618 619 if (!nm_netmap_on(na)) 620 return; 621 622 if (netmap_verbose) { 623 nm_prinf("%s: %sable all rings", na->name, 624 (stopped ? "dis" : "en")); 625 } 626 for_rx_tx(t) { 627 for (i = 0; i < netmap_real_rings(na, t); i++) { 628 netmap_set_ring(na, i, t, stopped); 629 } 630 } 631 } 632 633 /* 634 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s 635 * to finish and prevents any new one from starting. Call this before turning 636 * netmap mode off, or before removing the hardware rings (e.g., on module 637 * onload). 638 */ 639 void 640 netmap_disable_all_rings(struct ifnet *ifp) 641 { 642 if (NM_NA_VALID(ifp)) { 643 netmap_set_all_rings(NA(ifp), NM_KR_LOCKED); 644 } 645 } 646 647 /* 648 * Convenience function used in drivers. Re-enables rxsync and txsync on the 649 * adapter's rings In linux drivers, this should be placed near each 650 * napi_enable(). 651 */ 652 void 653 netmap_enable_all_rings(struct ifnet *ifp) 654 { 655 if (NM_NA_VALID(ifp)) { 656 netmap_set_all_rings(NA(ifp), 0 /* enabled */); 657 } 658 } 659 660 void 661 netmap_make_zombie(struct ifnet *ifp) 662 { 663 if (NM_NA_VALID(ifp)) { 664 struct netmap_adapter *na = NA(ifp); 665 netmap_set_all_rings(na, NM_KR_LOCKED); 666 na->na_flags |= NAF_ZOMBIE; 667 netmap_set_all_rings(na, 0); 668 } 669 } 670 671 void 672 netmap_undo_zombie(struct ifnet *ifp) 673 { 674 if (NM_NA_VALID(ifp)) { 675 struct netmap_adapter *na = NA(ifp); 676 if (na->na_flags & NAF_ZOMBIE) { 677 netmap_set_all_rings(na, NM_KR_LOCKED); 678 na->na_flags &= ~NAF_ZOMBIE; 679 netmap_set_all_rings(na, 0); 680 } 681 } 682 } 683 684 /* 685 * generic bound_checking function 686 */ 687 u_int 688 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 689 { 690 u_int oldv = *v; 691 const char *op = NULL; 692 693 if (dflt < lo) 694 dflt = lo; 695 if (dflt > hi) 696 dflt = hi; 697 if (oldv < lo) { 698 *v = dflt; 699 op = "Bump"; 700 } else if (oldv > hi) { 701 *v = hi; 702 op = "Clamp"; 703 } 704 if (op && msg) 705 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv); 706 return *v; 707 } 708 709 710 /* 711 * packet-dump function, user-supplied or static buffer. 712 * The destination buffer must be at least 30+4*len 713 */ 714 const char * 715 nm_dump_buf(char *p, int len, int lim, char *dst) 716 { 717 static char _dst[8192]; 718 int i, j, i0; 719 static char hex[] ="0123456789abcdef"; 720 char *o; /* output position */ 721 722 #define P_HI(x) hex[((x) & 0xf0)>>4] 723 #define P_LO(x) hex[((x) & 0xf)] 724 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 725 if (!dst) 726 dst = _dst; 727 if (lim <= 0 || lim > len) 728 lim = len; 729 o = dst; 730 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 731 o += strlen(o); 732 /* hexdump routine */ 733 for (i = 0; i < lim; ) { 734 sprintf(o, "%5d: ", i); 735 o += strlen(o); 736 memset(o, ' ', 48); 737 i0 = i; 738 for (j=0; j < 16 && i < lim; i++, j++) { 739 o[j*3] = P_HI(p[i]); 740 o[j*3+1] = P_LO(p[i]); 741 } 742 i = i0; 743 for (j=0; j < 16 && i < lim; i++, j++) 744 o[j + 48] = P_C(p[i]); 745 o[j+48] = '\n'; 746 o += j+49; 747 } 748 *o = '\0'; 749 #undef P_HI 750 #undef P_LO 751 #undef P_C 752 return dst; 753 } 754 755 756 /* 757 * Fetch configuration from the device, to cope with dynamic 758 * reconfigurations after loading the module. 759 */ 760 /* call with NMG_LOCK held */ 761 int 762 netmap_update_config(struct netmap_adapter *na) 763 { 764 struct nm_config_info info; 765 766 bzero(&info, sizeof(info)); 767 if (na->nm_config == NULL || 768 na->nm_config(na, &info)) { 769 /* take whatever we had at init time */ 770 info.num_tx_rings = na->num_tx_rings; 771 info.num_tx_descs = na->num_tx_desc; 772 info.num_rx_rings = na->num_rx_rings; 773 info.num_rx_descs = na->num_rx_desc; 774 info.rx_buf_maxsize = na->rx_buf_maxsize; 775 } 776 777 if (na->num_tx_rings == info.num_tx_rings && 778 na->num_tx_desc == info.num_tx_descs && 779 na->num_rx_rings == info.num_rx_rings && 780 na->num_rx_desc == info.num_rx_descs && 781 na->rx_buf_maxsize == info.rx_buf_maxsize) 782 return 0; /* nothing changed */ 783 if (na->active_fds == 0) { 784 na->num_tx_rings = info.num_tx_rings; 785 na->num_tx_desc = info.num_tx_descs; 786 na->num_rx_rings = info.num_rx_rings; 787 na->num_rx_desc = info.num_rx_descs; 788 na->rx_buf_maxsize = info.rx_buf_maxsize; 789 if (netmap_verbose) 790 nm_prinf("configuration changed for %s: txring %d x %d, " 791 "rxring %d x %d, rxbufsz %d", 792 na->name, na->num_tx_rings, na->num_tx_desc, 793 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize); 794 return 0; 795 } 796 nm_prerr("WARNING: configuration changed for %s while active: " 797 "txring %d x %d, rxring %d x %d, rxbufsz %d", 798 na->name, info.num_tx_rings, info.num_tx_descs, 799 info.num_rx_rings, info.num_rx_descs, 800 info.rx_buf_maxsize); 801 return 1; 802 } 803 804 /* nm_sync callbacks for the host rings */ 805 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags); 806 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags); 807 808 /* create the krings array and initialize the fields common to all adapters. 809 * The array layout is this: 810 * 811 * +----------+ 812 * na->tx_rings ----->| | \ 813 * | | } na->num_tx_ring 814 * | | / 815 * +----------+ 816 * | | host tx kring 817 * na->rx_rings ----> +----------+ 818 * | | \ 819 * | | } na->num_rx_rings 820 * | | / 821 * +----------+ 822 * | | host rx kring 823 * +----------+ 824 * na->tailroom ----->| | \ 825 * | | } tailroom bytes 826 * | | / 827 * +----------+ 828 * 829 * Note: for compatibility, host krings are created even when not needed. 830 * The tailroom space is currently used by vale ports for allocating leases. 831 */ 832 /* call with NMG_LOCK held */ 833 int 834 netmap_krings_create(struct netmap_adapter *na, u_int tailroom) 835 { 836 u_int i, len, ndesc; 837 struct netmap_kring *kring; 838 u_int n[NR_TXRX]; 839 enum txrx t; 840 int err = 0; 841 842 if (na->tx_rings != NULL) { 843 if (netmap_debug & NM_DEBUG_ON) 844 nm_prerr("warning: krings were already created"); 845 return 0; 846 } 847 848 /* account for the (possibly fake) host rings */ 849 n[NR_TX] = netmap_all_rings(na, NR_TX); 850 n[NR_RX] = netmap_all_rings(na, NR_RX); 851 852 len = (n[NR_TX] + n[NR_RX]) * 853 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *)) 854 + tailroom; 855 856 na->tx_rings = nm_os_malloc((size_t)len); 857 if (na->tx_rings == NULL) { 858 nm_prerr("Cannot allocate krings"); 859 return ENOMEM; 860 } 861 na->rx_rings = na->tx_rings + n[NR_TX]; 862 na->tailroom = na->rx_rings + n[NR_RX]; 863 864 /* link the krings in the krings array */ 865 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom); 866 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) { 867 na->tx_rings[i] = kring; 868 kring++; 869 } 870 871 /* 872 * All fields in krings are 0 except the one initialized below. 873 * but better be explicit on important kring fields. 874 */ 875 for_rx_tx(t) { 876 ndesc = nma_get_ndesc(na, t); 877 for (i = 0; i < n[t]; i++) { 878 kring = NMR(na, t)[i]; 879 bzero(kring, sizeof(*kring)); 880 kring->notify_na = na; 881 kring->ring_id = i; 882 kring->tx = t; 883 kring->nkr_num_slots = ndesc; 884 kring->nr_mode = NKR_NETMAP_OFF; 885 kring->nr_pending_mode = NKR_NETMAP_OFF; 886 if (i < nma_get_nrings(na, t)) { 887 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync); 888 } else { 889 if (!(na->na_flags & NAF_HOST_RINGS)) 890 kring->nr_kflags |= NKR_FAKERING; 891 kring->nm_sync = (t == NR_TX ? 892 netmap_txsync_to_host: 893 netmap_rxsync_from_host); 894 } 895 kring->nm_notify = na->nm_notify; 896 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 897 /* 898 * IMPORTANT: Always keep one slot empty. 899 */ 900 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0); 901 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name, 902 nm_txrx2str(t), i); 903 nm_prdis("ktx %s h %d c %d t %d", 904 kring->name, kring->rhead, kring->rcur, kring->rtail); 905 err = nm_os_selinfo_init(&kring->si, kring->name); 906 if (err) { 907 netmap_krings_delete(na); 908 return err; 909 } 910 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF); 911 kring->na = na; /* setting this field marks the mutex as initialized */ 912 } 913 err = nm_os_selinfo_init(&na->si[t], na->name); 914 if (err) { 915 netmap_krings_delete(na); 916 return err; 917 } 918 } 919 920 return 0; 921 } 922 923 924 /* undo the actions performed by netmap_krings_create */ 925 /* call with NMG_LOCK held */ 926 void 927 netmap_krings_delete(struct netmap_adapter *na) 928 { 929 struct netmap_kring **kring = na->tx_rings; 930 enum txrx t; 931 932 if (na->tx_rings == NULL) { 933 if (netmap_debug & NM_DEBUG_ON) 934 nm_prerr("warning: krings were already deleted"); 935 return; 936 } 937 938 for_rx_tx(t) 939 nm_os_selinfo_uninit(&na->si[t]); 940 941 /* we rely on the krings layout described above */ 942 for ( ; kring != na->tailroom; kring++) { 943 if ((*kring)->na != NULL) 944 mtx_destroy(&(*kring)->q_lock); 945 nm_os_selinfo_uninit(&(*kring)->si); 946 } 947 nm_os_free(na->tx_rings); 948 na->tx_rings = na->rx_rings = na->tailroom = NULL; 949 } 950 951 952 /* 953 * Destructor for NIC ports. They also have an mbuf queue 954 * on the rings connected to the host so we need to purge 955 * them first. 956 */ 957 /* call with NMG_LOCK held */ 958 void 959 netmap_hw_krings_delete(struct netmap_adapter *na) 960 { 961 u_int lim = netmap_real_rings(na, NR_RX), i; 962 963 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) { 964 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue; 965 nm_prdis("destroy sw mbq with len %d", mbq_len(q)); 966 mbq_purge(q); 967 mbq_safe_fini(q); 968 } 969 netmap_krings_delete(na); 970 } 971 972 static void 973 netmap_mem_drop(struct netmap_adapter *na) 974 { 975 int last = netmap_mem_deref(na->nm_mem, na); 976 /* if the native allocator had been overrided on regif, 977 * restore it now and drop the temporary one 978 */ 979 if (last && na->nm_mem_prev) { 980 netmap_mem_put(na->nm_mem); 981 na->nm_mem = na->nm_mem_prev; 982 na->nm_mem_prev = NULL; 983 } 984 } 985 986 /* 987 * Undo everything that was done in netmap_do_regif(). In particular, 988 * call nm_register(ifp,0) to stop netmap mode on the interface and 989 * revert to normal operation. 990 */ 991 /* call with NMG_LOCK held */ 992 static void netmap_unset_ringid(struct netmap_priv_d *); 993 static void netmap_krings_put(struct netmap_priv_d *); 994 void 995 netmap_do_unregif(struct netmap_priv_d *priv) 996 { 997 struct netmap_adapter *na = priv->np_na; 998 999 NMG_LOCK_ASSERT(); 1000 na->active_fds--; 1001 /* unset nr_pending_mode and possibly release exclusive mode */ 1002 netmap_krings_put(priv); 1003 1004 #ifdef WITH_MONITOR 1005 /* XXX check whether we have to do something with monitor 1006 * when rings change nr_mode. */ 1007 if (na->active_fds <= 0) { 1008 /* walk through all the rings and tell any monitor 1009 * that the port is going to exit netmap mode 1010 */ 1011 netmap_monitor_stop(na); 1012 } 1013 #endif 1014 1015 if (na->active_fds <= 0 || nm_kring_pending(priv)) { 1016 na->nm_register(na, 0); 1017 } 1018 1019 /* delete rings and buffers that are no longer needed */ 1020 netmap_mem_rings_delete(na); 1021 1022 if (na->active_fds <= 0) { /* last instance */ 1023 /* 1024 * (TO CHECK) We enter here 1025 * when the last reference to this file descriptor goes 1026 * away. This means we cannot have any pending poll() 1027 * or interrupt routine operating on the structure. 1028 * XXX The file may be closed in a thread while 1029 * another thread is using it. 1030 * Linux keeps the file opened until the last reference 1031 * by any outstanding ioctl/poll or mmap is gone. 1032 * FreeBSD does not track mmap()s (but we do) and 1033 * wakes up any sleeping poll(). Need to check what 1034 * happens if the close() occurs while a concurrent 1035 * syscall is running. 1036 */ 1037 if (netmap_debug & NM_DEBUG_ON) 1038 nm_prinf("deleting last instance for %s", na->name); 1039 1040 if (nm_netmap_on(na)) { 1041 nm_prerr("BUG: netmap on while going to delete the krings"); 1042 } 1043 1044 na->nm_krings_delete(na); 1045 1046 /* restore the default number of host tx and rx rings */ 1047 if (na->na_flags & NAF_HOST_RINGS) { 1048 na->num_host_tx_rings = 1; 1049 na->num_host_rx_rings = 1; 1050 } else { 1051 na->num_host_tx_rings = 0; 1052 na->num_host_rx_rings = 0; 1053 } 1054 } 1055 1056 /* possibily decrement counter of tx_si/rx_si users */ 1057 netmap_unset_ringid(priv); 1058 /* delete the nifp */ 1059 netmap_mem_if_delete(na, priv->np_nifp); 1060 /* drop the allocator */ 1061 netmap_mem_drop(na); 1062 /* mark the priv as unregistered */ 1063 priv->np_na = NULL; 1064 priv->np_nifp = NULL; 1065 } 1066 1067 struct netmap_priv_d* 1068 netmap_priv_new(void) 1069 { 1070 struct netmap_priv_d *priv; 1071 1072 priv = nm_os_malloc(sizeof(struct netmap_priv_d)); 1073 if (priv == NULL) 1074 return NULL; 1075 priv->np_refs = 1; 1076 nm_os_get_module(); 1077 return priv; 1078 } 1079 1080 /* 1081 * Destructor of the netmap_priv_d, called when the fd is closed 1082 * Action: undo all the things done by NIOCREGIF, 1083 * On FreeBSD we need to track whether there are active mmap()s, 1084 * and we use np_active_mmaps for that. On linux, the field is always 0. 1085 * Return: 1 if we can free priv, 0 otherwise. 1086 * 1087 */ 1088 /* call with NMG_LOCK held */ 1089 void 1090 netmap_priv_delete(struct netmap_priv_d *priv) 1091 { 1092 struct netmap_adapter *na = priv->np_na; 1093 1094 /* number of active references to this fd */ 1095 if (--priv->np_refs > 0) { 1096 return; 1097 } 1098 nm_os_put_module(); 1099 if (na) { 1100 netmap_do_unregif(priv); 1101 } 1102 netmap_unget_na(na, priv->np_ifp); 1103 bzero(priv, sizeof(*priv)); /* for safety */ 1104 nm_os_free(priv); 1105 } 1106 1107 1108 /* call with NMG_LOCK *not* held */ 1109 void 1110 netmap_dtor(void *data) 1111 { 1112 struct netmap_priv_d *priv = data; 1113 1114 NMG_LOCK(); 1115 netmap_priv_delete(priv); 1116 NMG_UNLOCK(); 1117 } 1118 1119 1120 /* 1121 * Handlers for synchronization of the rings from/to the host stack. 1122 * These are associated to a network interface and are just another 1123 * ring pair managed by userspace. 1124 * 1125 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD 1126 * flags): 1127 * 1128 * - Before releasing buffers on hw RX rings, the application can mark 1129 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they 1130 * will be forwarded to the host stack, similarly to what happened if 1131 * the application moved them to the host TX ring. 1132 * 1133 * - Before releasing buffers on the host RX ring, the application can 1134 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(), 1135 * they will be forwarded to the hw TX rings, saving the application 1136 * from doing the same task in user-space. 1137 * 1138 * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD 1139 * flag, or globally with the netmap_fwd sysctl. 1140 * 1141 * The transfer NIC --> host is relatively easy, just encapsulate 1142 * into mbufs and we are done. The host --> NIC side is slightly 1143 * harder because there might not be room in the tx ring so it 1144 * might take a while before releasing the buffer. 1145 */ 1146 1147 1148 /* 1149 * Pass a whole queue of mbufs to the host stack as coming from 'dst' 1150 * We do not need to lock because the queue is private. 1151 * After this call the queue is empty. 1152 */ 1153 static void 1154 netmap_send_up(struct ifnet *dst, struct mbq *q) 1155 { 1156 struct mbuf *m; 1157 struct mbuf *head = NULL, *prev = NULL; 1158 #ifdef __FreeBSD__ 1159 struct epoch_tracker et; 1160 1161 NET_EPOCH_ENTER(et); 1162 #endif /* __FreeBSD__ */ 1163 /* Send packets up, outside the lock; head/prev machinery 1164 * is only useful for Windows. */ 1165 while ((m = mbq_dequeue(q)) != NULL) { 1166 if (netmap_debug & NM_DEBUG_HOST) 1167 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m)); 1168 prev = nm_os_send_up(dst, m, prev); 1169 if (head == NULL) 1170 head = prev; 1171 } 1172 if (head) 1173 nm_os_send_up(dst, NULL, head); 1174 #ifdef __FreeBSD__ 1175 NET_EPOCH_EXIT(et); 1176 #endif /* __FreeBSD__ */ 1177 mbq_fini(q); 1178 } 1179 1180 1181 /* 1182 * Scan the buffers from hwcur to ring->head, and put a copy of those 1183 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs. 1184 * Drop remaining packets in the unlikely event 1185 * of an mbuf shortage. 1186 */ 1187 static void 1188 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 1189 { 1190 u_int const lim = kring->nkr_num_slots - 1; 1191 u_int const head = kring->rhead; 1192 u_int n; 1193 struct netmap_adapter *na = kring->na; 1194 1195 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 1196 struct mbuf *m; 1197 struct netmap_slot *slot = &kring->ring->slot[n]; 1198 1199 if ((slot->flags & NS_FORWARD) == 0 && !force) 1200 continue; 1201 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) { 1202 nm_prlim(5, "bad pkt at %d len %d", n, slot->len); 1203 continue; 1204 } 1205 slot->flags &= ~NS_FORWARD; // XXX needed ? 1206 /* XXX TODO: adapt to the case of a multisegment packet */ 1207 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL); 1208 1209 if (m == NULL) 1210 break; 1211 mbq_enqueue(q, m); 1212 } 1213 } 1214 1215 static inline int 1216 _nm_may_forward(struct netmap_kring *kring) 1217 { 1218 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) && 1219 kring->na->na_flags & NAF_HOST_RINGS && 1220 kring->tx == NR_RX); 1221 } 1222 1223 static inline int 1224 nm_may_forward_up(struct netmap_kring *kring) 1225 { 1226 return _nm_may_forward(kring) && 1227 kring->ring_id != kring->na->num_rx_rings; 1228 } 1229 1230 static inline int 1231 nm_may_forward_down(struct netmap_kring *kring, int sync_flags) 1232 { 1233 return _nm_may_forward(kring) && 1234 (sync_flags & NAF_CAN_FORWARD_DOWN) && 1235 kring->ring_id == kring->na->num_rx_rings; 1236 } 1237 1238 /* 1239 * Send to the NIC rings packets marked NS_FORWARD between 1240 * kring->nr_hwcur and kring->rhead. 1241 * Called under kring->rx_queue.lock on the sw rx ring. 1242 * 1243 * It can only be called if the user opened all the TX hw rings, 1244 * see NAF_CAN_FORWARD_DOWN flag. 1245 * We can touch the TX netmap rings (slots, head and cur) since 1246 * we are in poll/ioctl system call context, and the application 1247 * is not supposed to touch the ring (using a different thread) 1248 * during the execution of the system call. 1249 */ 1250 static u_int 1251 netmap_sw_to_nic(struct netmap_adapter *na) 1252 { 1253 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings]; 1254 struct netmap_slot *rxslot = kring->ring->slot; 1255 u_int i, rxcur = kring->nr_hwcur; 1256 u_int const head = kring->rhead; 1257 u_int const src_lim = kring->nkr_num_slots - 1; 1258 u_int sent = 0; 1259 1260 /* scan rings to find space, then fill as much as possible */ 1261 for (i = 0; i < na->num_tx_rings; i++) { 1262 struct netmap_kring *kdst = na->tx_rings[i]; 1263 struct netmap_ring *rdst = kdst->ring; 1264 u_int const dst_lim = kdst->nkr_num_slots - 1; 1265 1266 /* XXX do we trust ring or kring->rcur,rtail ? */ 1267 for (; rxcur != head && !nm_ring_empty(rdst); 1268 rxcur = nm_next(rxcur, src_lim) ) { 1269 struct netmap_slot *src, *dst, tmp; 1270 u_int dst_head = rdst->head; 1271 1272 src = &rxslot[rxcur]; 1273 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 1274 continue; 1275 1276 sent++; 1277 1278 dst = &rdst->slot[dst_head]; 1279 1280 tmp = *src; 1281 1282 src->buf_idx = dst->buf_idx; 1283 src->flags = NS_BUF_CHANGED; 1284 1285 dst->buf_idx = tmp.buf_idx; 1286 dst->len = tmp.len; 1287 dst->flags = NS_BUF_CHANGED; 1288 1289 rdst->head = rdst->cur = nm_next(dst_head, dst_lim); 1290 } 1291 /* if (sent) XXX txsync ? it would be just an optimization */ 1292 } 1293 return sent; 1294 } 1295 1296 1297 /* 1298 * netmap_txsync_to_host() passes packets up. We are called from a 1299 * system call in user process context, and the only contention 1300 * can be among multiple user threads erroneously calling 1301 * this routine concurrently. 1302 */ 1303 static int 1304 netmap_txsync_to_host(struct netmap_kring *kring, int flags) 1305 { 1306 struct netmap_adapter *na = kring->na; 1307 u_int const lim = kring->nkr_num_slots - 1; 1308 u_int const head = kring->rhead; 1309 struct mbq q; 1310 1311 /* Take packets from hwcur to head and pass them up. 1312 * Force hwcur = head since netmap_grab_packets() stops at head 1313 */ 1314 mbq_init(&q); 1315 netmap_grab_packets(kring, &q, 1 /* force */); 1316 nm_prdis("have %d pkts in queue", mbq_len(&q)); 1317 kring->nr_hwcur = head; 1318 kring->nr_hwtail = head + lim; 1319 if (kring->nr_hwtail > lim) 1320 kring->nr_hwtail -= lim + 1; 1321 1322 netmap_send_up(na->ifp, &q); 1323 return 0; 1324 } 1325 1326 1327 /* 1328 * rxsync backend for packets coming from the host stack. 1329 * They have been put in kring->rx_queue by netmap_transmit(). 1330 * We protect access to the kring using kring->rx_queue.lock 1331 * 1332 * also moves to the nic hw rings any packet the user has marked 1333 * for transparent-mode forwarding, then sets the NR_FORWARD 1334 * flag in the kring to let the caller push them out 1335 */ 1336 static int 1337 netmap_rxsync_from_host(struct netmap_kring *kring, int flags) 1338 { 1339 struct netmap_adapter *na = kring->na; 1340 struct netmap_ring *ring = kring->ring; 1341 u_int nm_i, n; 1342 u_int const lim = kring->nkr_num_slots - 1; 1343 u_int const head = kring->rhead; 1344 int ret = 0; 1345 struct mbq *q = &kring->rx_queue, fq; 1346 1347 mbq_init(&fq); /* fq holds packets to be freed */ 1348 1349 mbq_lock(q); 1350 1351 /* First part: import newly received packets */ 1352 n = mbq_len(q); 1353 if (n) { /* grab packets from the queue */ 1354 struct mbuf *m; 1355 uint32_t stop_i; 1356 1357 nm_i = kring->nr_hwtail; 1358 stop_i = nm_prev(kring->nr_hwcur, lim); 1359 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 1360 int len = MBUF_LEN(m); 1361 struct netmap_slot *slot = &ring->slot[nm_i]; 1362 1363 m_copydata(m, 0, len, NMB(na, slot)); 1364 nm_prdis("nm %d len %d", nm_i, len); 1365 if (netmap_debug & NM_DEBUG_HOST) 1366 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL)); 1367 1368 slot->len = len; 1369 slot->flags = 0; 1370 nm_i = nm_next(nm_i, lim); 1371 mbq_enqueue(&fq, m); 1372 } 1373 kring->nr_hwtail = nm_i; 1374 } 1375 1376 /* 1377 * Second part: skip past packets that userspace has released. 1378 */ 1379 nm_i = kring->nr_hwcur; 1380 if (nm_i != head) { /* something was released */ 1381 if (nm_may_forward_down(kring, flags)) { 1382 ret = netmap_sw_to_nic(na); 1383 if (ret > 0) { 1384 kring->nr_kflags |= NR_FORWARD; 1385 ret = 0; 1386 } 1387 } 1388 kring->nr_hwcur = head; 1389 } 1390 1391 mbq_unlock(q); 1392 1393 mbq_purge(&fq); 1394 mbq_fini(&fq); 1395 1396 return ret; 1397 } 1398 1399 1400 /* Get a netmap adapter for the port. 1401 * 1402 * If it is possible to satisfy the request, return 0 1403 * with *na containing the netmap adapter found. 1404 * Otherwise return an error code, with *na containing NULL. 1405 * 1406 * When the port is attached to a bridge, we always return 1407 * EBUSY. 1408 * Otherwise, if the port is already bound to a file descriptor, 1409 * then we unconditionally return the existing adapter into *na. 1410 * In all the other cases, we return (into *na) either native, 1411 * generic or NULL, according to the following table: 1412 * 1413 * native_support 1414 * active_fds dev.netmap.admode YES NO 1415 * ------------------------------------------------------- 1416 * >0 * NA(ifp) NA(ifp) 1417 * 1418 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1419 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1420 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1421 * 1422 */ 1423 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */ 1424 int 1425 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na) 1426 { 1427 /* generic support */ 1428 int i = netmap_admode; /* Take a snapshot. */ 1429 struct netmap_adapter *prev_na; 1430 int error = 0; 1431 1432 *na = NULL; /* default */ 1433 1434 /* reset in case of invalid value */ 1435 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1436 i = netmap_admode = NETMAP_ADMODE_BEST; 1437 1438 if (NM_NA_VALID(ifp)) { 1439 prev_na = NA(ifp); 1440 /* If an adapter already exists, return it if 1441 * there are active file descriptors or if 1442 * netmap is not forced to use generic 1443 * adapters. 1444 */ 1445 if (NETMAP_OWNED_BY_ANY(prev_na) 1446 || i != NETMAP_ADMODE_GENERIC 1447 || prev_na->na_flags & NAF_FORCE_NATIVE 1448 #ifdef WITH_PIPES 1449 /* ugly, but we cannot allow an adapter switch 1450 * if some pipe is referring to this one 1451 */ 1452 || prev_na->na_next_pipe > 0 1453 #endif 1454 ) { 1455 *na = prev_na; 1456 goto assign_mem; 1457 } 1458 } 1459 1460 /* If there isn't native support and netmap is not allowed 1461 * to use generic adapters, we cannot satisfy the request. 1462 */ 1463 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE) 1464 return EOPNOTSUPP; 1465 1466 /* Otherwise, create a generic adapter and return it, 1467 * saving the previously used netmap adapter, if any. 1468 * 1469 * Note that here 'prev_na', if not NULL, MUST be a 1470 * native adapter, and CANNOT be a generic one. This is 1471 * true because generic adapters are created on demand, and 1472 * destroyed when not used anymore. Therefore, if the adapter 1473 * currently attached to an interface 'ifp' is generic, it 1474 * must be that 1475 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1476 * Consequently, if NA(ifp) is generic, we will enter one of 1477 * the branches above. This ensures that we never override 1478 * a generic adapter with another generic adapter. 1479 */ 1480 error = generic_netmap_attach(ifp); 1481 if (error) 1482 return error; 1483 1484 *na = NA(ifp); 1485 1486 assign_mem: 1487 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) && 1488 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) { 1489 (*na)->nm_mem_prev = (*na)->nm_mem; 1490 (*na)->nm_mem = netmap_mem_get(nmd); 1491 } 1492 1493 return 0; 1494 } 1495 1496 /* 1497 * MUST BE CALLED UNDER NMG_LOCK() 1498 * 1499 * Get a refcounted reference to a netmap adapter attached 1500 * to the interface specified by req. 1501 * This is always called in the execution of an ioctl(). 1502 * 1503 * Return ENXIO if the interface specified by the request does 1504 * not exist, ENOTSUP if netmap is not supported by the interface, 1505 * EBUSY if the interface is already attached to a bridge, 1506 * EINVAL if parameters are invalid, ENOMEM if needed resources 1507 * could not be allocated. 1508 * If successful, hold a reference to the netmap adapter. 1509 * 1510 * If the interface specified by req is a system one, also keep 1511 * a reference to it and return a valid *ifp. 1512 */ 1513 int 1514 netmap_get_na(struct nmreq_header *hdr, 1515 struct netmap_adapter **na, struct ifnet **ifp, 1516 struct netmap_mem_d *nmd, int create) 1517 { 1518 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; 1519 int error = 0; 1520 struct netmap_adapter *ret = NULL; 1521 int nmd_ref = 0; 1522 1523 *na = NULL; /* default return value */ 1524 *ifp = NULL; 1525 1526 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { 1527 return EINVAL; 1528 } 1529 1530 if (req->nr_mode == NR_REG_PIPE_MASTER || 1531 req->nr_mode == NR_REG_PIPE_SLAVE) { 1532 /* Do not accept deprecated pipe modes. */ 1533 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax"); 1534 return EINVAL; 1535 } 1536 1537 NMG_LOCK_ASSERT(); 1538 1539 /* if the request contain a memid, try to find the 1540 * corresponding memory region 1541 */ 1542 if (nmd == NULL && req->nr_mem_id) { 1543 nmd = netmap_mem_find(req->nr_mem_id); 1544 if (nmd == NULL) 1545 return EINVAL; 1546 /* keep the rereference */ 1547 nmd_ref = 1; 1548 } 1549 1550 /* We cascade through all possible types of netmap adapter. 1551 * All netmap_get_*_na() functions return an error and an na, 1552 * with the following combinations: 1553 * 1554 * error na 1555 * 0 NULL type doesn't match 1556 * !0 NULL type matches, but na creation/lookup failed 1557 * 0 !NULL type matches and na created/found 1558 * !0 !NULL impossible 1559 */ 1560 error = netmap_get_null_na(hdr, na, nmd, create); 1561 if (error || *na != NULL) 1562 goto out; 1563 1564 /* try to see if this is a monitor port */ 1565 error = netmap_get_monitor_na(hdr, na, nmd, create); 1566 if (error || *na != NULL) 1567 goto out; 1568 1569 /* try to see if this is a pipe port */ 1570 error = netmap_get_pipe_na(hdr, na, nmd, create); 1571 if (error || *na != NULL) 1572 goto out; 1573 1574 /* try to see if this is a bridge port */ 1575 error = netmap_get_vale_na(hdr, na, nmd, create); 1576 if (error) 1577 goto out; 1578 1579 if (*na != NULL) /* valid match in netmap_get_bdg_na() */ 1580 goto out; 1581 1582 /* 1583 * This must be a hardware na, lookup the name in the system. 1584 * Note that by hardware we actually mean "it shows up in ifconfig". 1585 * This may still be a tap, a veth/epair, or even a 1586 * persistent VALE port. 1587 */ 1588 *ifp = ifunit_ref(hdr->nr_name); 1589 if (*ifp == NULL) { 1590 error = ENXIO; 1591 goto out; 1592 } 1593 1594 error = netmap_get_hw_na(*ifp, nmd, &ret); 1595 if (error) 1596 goto out; 1597 1598 *na = ret; 1599 netmap_adapter_get(ret); 1600 1601 /* 1602 * if the adapter supports the host rings and it is not alread open, 1603 * try to set the number of host rings as requested by the user 1604 */ 1605 if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) { 1606 if (req->nr_host_tx_rings) 1607 (*na)->num_host_tx_rings = req->nr_host_tx_rings; 1608 if (req->nr_host_rx_rings) 1609 (*na)->num_host_rx_rings = req->nr_host_rx_rings; 1610 } 1611 nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings, 1612 (*na)->num_host_rx_rings); 1613 1614 out: 1615 if (error) { 1616 if (ret) 1617 netmap_adapter_put(ret); 1618 if (*ifp) { 1619 if_rele(*ifp); 1620 *ifp = NULL; 1621 } 1622 } 1623 if (nmd_ref) 1624 netmap_mem_put(nmd); 1625 1626 return error; 1627 } 1628 1629 /* undo netmap_get_na() */ 1630 void 1631 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp) 1632 { 1633 if (ifp) 1634 if_rele(ifp); 1635 if (na) 1636 netmap_adapter_put(na); 1637 } 1638 1639 1640 #define NM_FAIL_ON(t) do { \ 1641 if (unlikely(t)) { \ 1642 nm_prlim(5, "%s: fail '" #t "' " \ 1643 "h %d c %d t %d " \ 1644 "rh %d rc %d rt %d " \ 1645 "hc %d ht %d", \ 1646 kring->name, \ 1647 head, cur, ring->tail, \ 1648 kring->rhead, kring->rcur, kring->rtail, \ 1649 kring->nr_hwcur, kring->nr_hwtail); \ 1650 return kring->nkr_num_slots; \ 1651 } \ 1652 } while (0) 1653 1654 /* 1655 * validate parameters on entry for *_txsync() 1656 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1657 * in case of error. 1658 * 1659 * rhead, rcur and rtail=hwtail are stored from previous round. 1660 * hwcur is the next packet to send to the ring. 1661 * 1662 * We want 1663 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1664 * 1665 * hwcur, rhead, rtail and hwtail are reliable 1666 */ 1667 u_int 1668 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1669 { 1670 u_int head = ring->head; /* read only once */ 1671 u_int cur = ring->cur; /* read only once */ 1672 u_int n = kring->nkr_num_slots; 1673 1674 nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1675 kring->name, 1676 kring->nr_hwcur, kring->nr_hwtail, 1677 ring->head, ring->cur, ring->tail); 1678 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1679 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n || 1680 kring->rtail >= n || kring->nr_hwtail >= n); 1681 #endif /* kernel sanity checks */ 1682 /* 1683 * user sanity checks. We only use head, 1684 * A, B, ... are possible positions for head: 1685 * 1686 * 0 A rhead B rtail C n-1 1687 * 0 D rtail E rhead F n-1 1688 * 1689 * B, F, D are valid. A, C, E are wrong 1690 */ 1691 if (kring->rtail >= kring->rhead) { 1692 /* want rhead <= head <= rtail */ 1693 NM_FAIL_ON(head < kring->rhead || head > kring->rtail); 1694 /* and also head <= cur <= rtail */ 1695 NM_FAIL_ON(cur < head || cur > kring->rtail); 1696 } else { /* here rtail < rhead */ 1697 /* we need head outside rtail .. rhead */ 1698 NM_FAIL_ON(head > kring->rtail && head < kring->rhead); 1699 1700 /* two cases now: head <= rtail or head >= rhead */ 1701 if (head <= kring->rtail) { 1702 /* want head <= cur <= rtail */ 1703 NM_FAIL_ON(cur < head || cur > kring->rtail); 1704 } else { /* head >= rhead */ 1705 /* cur must be outside rtail..head */ 1706 NM_FAIL_ON(cur > kring->rtail && cur < head); 1707 } 1708 } 1709 if (ring->tail != kring->rtail) { 1710 nm_prlim(5, "%s tail overwritten was %d need %d", kring->name, 1711 ring->tail, kring->rtail); 1712 ring->tail = kring->rtail; 1713 } 1714 kring->rhead = head; 1715 kring->rcur = cur; 1716 return head; 1717 } 1718 1719 1720 /* 1721 * validate parameters on entry for *_rxsync() 1722 * Returns ring->head if ok, kring->nkr_num_slots on error. 1723 * 1724 * For a valid configuration, 1725 * hwcur <= head <= cur <= tail <= hwtail 1726 * 1727 * We only consider head and cur. 1728 * hwcur and hwtail are reliable. 1729 * 1730 */ 1731 u_int 1732 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1733 { 1734 uint32_t const n = kring->nkr_num_slots; 1735 uint32_t head, cur; 1736 1737 nm_prdis(5,"%s kc %d kt %d h %d c %d t %d", 1738 kring->name, 1739 kring->nr_hwcur, kring->nr_hwtail, 1740 ring->head, ring->cur, ring->tail); 1741 /* 1742 * Before storing the new values, we should check they do not 1743 * move backwards. However: 1744 * - head is not an issue because the previous value is hwcur; 1745 * - cur could in principle go back, however it does not matter 1746 * because we are processing a brand new rxsync() 1747 */ 1748 cur = kring->rcur = ring->cur; /* read only once */ 1749 head = kring->rhead = ring->head; /* read only once */ 1750 #if 1 /* kernel sanity checks */ 1751 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n); 1752 #endif /* kernel sanity checks */ 1753 /* user sanity checks */ 1754 if (kring->nr_hwtail >= kring->nr_hwcur) { 1755 /* want hwcur <= rhead <= hwtail */ 1756 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail); 1757 /* and also rhead <= rcur <= hwtail */ 1758 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1759 } else { 1760 /* we need rhead outside hwtail..hwcur */ 1761 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail); 1762 /* two cases now: head <= hwtail or head >= hwcur */ 1763 if (head <= kring->nr_hwtail) { 1764 /* want head <= cur <= hwtail */ 1765 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1766 } else { 1767 /* cur must be outside hwtail..head */ 1768 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail); 1769 } 1770 } 1771 if (ring->tail != kring->rtail) { 1772 nm_prlim(5, "%s tail overwritten was %d need %d", 1773 kring->name, 1774 ring->tail, kring->rtail); 1775 ring->tail = kring->rtail; 1776 } 1777 return head; 1778 } 1779 1780 1781 /* 1782 * Error routine called when txsync/rxsync detects an error. 1783 * Can't do much more than resetting head = cur = hwcur, tail = hwtail 1784 * Return 1 on reinit. 1785 * 1786 * This routine is only called by the upper half of the kernel. 1787 * It only reads hwcur (which is changed only by the upper half, too) 1788 * and hwtail (which may be changed by the lower half, but only on 1789 * a tx ring and only to increase it, so any error will be recovered 1790 * on the next call). For the above, we don't strictly need to call 1791 * it under lock. 1792 */ 1793 int 1794 netmap_ring_reinit(struct netmap_kring *kring) 1795 { 1796 struct netmap_ring *ring = kring->ring; 1797 u_int i, lim = kring->nkr_num_slots - 1; 1798 int errors = 0; 1799 1800 // XXX KASSERT nm_kr_tryget 1801 nm_prlim(10, "called for %s", kring->name); 1802 // XXX probably wrong to trust userspace 1803 kring->rhead = ring->head; 1804 kring->rcur = ring->cur; 1805 kring->rtail = ring->tail; 1806 1807 if (ring->cur > lim) 1808 errors++; 1809 if (ring->head > lim) 1810 errors++; 1811 if (ring->tail > lim) 1812 errors++; 1813 for (i = 0; i <= lim; i++) { 1814 u_int idx = ring->slot[i].buf_idx; 1815 u_int len = ring->slot[i].len; 1816 if (idx < 2 || idx >= kring->na->na_lut.objtotal) { 1817 nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1818 ring->slot[i].buf_idx = 0; 1819 ring->slot[i].len = 0; 1820 } else if (len > NETMAP_BUF_SIZE(kring->na)) { 1821 ring->slot[i].len = 0; 1822 nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len); 1823 } 1824 } 1825 if (errors) { 1826 nm_prlim(10, "total %d errors", errors); 1827 nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d", 1828 kring->name, 1829 ring->cur, kring->nr_hwcur, 1830 ring->tail, kring->nr_hwtail); 1831 ring->head = kring->rhead = kring->nr_hwcur; 1832 ring->cur = kring->rcur = kring->nr_hwcur; 1833 ring->tail = kring->rtail = kring->nr_hwtail; 1834 } 1835 return (errors ? 1 : 0); 1836 } 1837 1838 /* interpret the ringid and flags fields of an nmreq, by translating them 1839 * into a pair of intervals of ring indices: 1840 * 1841 * [priv->np_txqfirst, priv->np_txqlast) and 1842 * [priv->np_rxqfirst, priv->np_rxqlast) 1843 * 1844 */ 1845 int 1846 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1847 uint16_t nr_ringid, uint64_t nr_flags) 1848 { 1849 struct netmap_adapter *na = priv->np_na; 1850 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY }; 1851 enum txrx t; 1852 u_int j; 1853 1854 for_rx_tx(t) { 1855 if (nr_flags & excluded_direction[t]) { 1856 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1857 continue; 1858 } 1859 switch (nr_mode) { 1860 case NR_REG_ALL_NIC: 1861 case NR_REG_NULL: 1862 priv->np_qfirst[t] = 0; 1863 priv->np_qlast[t] = nma_get_nrings(na, t); 1864 nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t), 1865 priv->np_qfirst[t], priv->np_qlast[t]); 1866 break; 1867 case NR_REG_SW: 1868 case NR_REG_NIC_SW: 1869 if (!(na->na_flags & NAF_HOST_RINGS)) { 1870 nm_prerr("host rings not supported"); 1871 return EINVAL; 1872 } 1873 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ? 1874 nma_get_nrings(na, t) : 0); 1875 priv->np_qlast[t] = netmap_all_rings(na, t); 1876 nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW", 1877 nm_txrx2str(t), 1878 priv->np_qfirst[t], priv->np_qlast[t]); 1879 break; 1880 case NR_REG_ONE_NIC: 1881 if (nr_ringid >= na->num_tx_rings && 1882 nr_ringid >= na->num_rx_rings) { 1883 nm_prerr("invalid ring id %d", nr_ringid); 1884 return EINVAL; 1885 } 1886 /* if not enough rings, use the first one */ 1887 j = nr_ringid; 1888 if (j >= nma_get_nrings(na, t)) 1889 j = 0; 1890 priv->np_qfirst[t] = j; 1891 priv->np_qlast[t] = j + 1; 1892 nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t), 1893 priv->np_qfirst[t], priv->np_qlast[t]); 1894 break; 1895 case NR_REG_ONE_SW: 1896 if (!(na->na_flags & NAF_HOST_RINGS)) { 1897 nm_prerr("host rings not supported"); 1898 return EINVAL; 1899 } 1900 if (nr_ringid >= na->num_host_tx_rings && 1901 nr_ringid >= na->num_host_rx_rings) { 1902 nm_prerr("invalid ring id %d", nr_ringid); 1903 return EINVAL; 1904 } 1905 /* if not enough rings, use the first one */ 1906 j = nr_ringid; 1907 if (j >= nma_get_host_nrings(na, t)) 1908 j = 0; 1909 priv->np_qfirst[t] = nma_get_nrings(na, t) + j; 1910 priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1; 1911 nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t), 1912 priv->np_qfirst[t], priv->np_qlast[t]); 1913 break; 1914 default: 1915 nm_prerr("invalid regif type %d", nr_mode); 1916 return EINVAL; 1917 } 1918 } 1919 priv->np_flags = nr_flags; 1920 1921 /* Allow transparent forwarding mode in the host --> nic 1922 * direction only if all the TX hw rings have been opened. */ 1923 if (priv->np_qfirst[NR_TX] == 0 && 1924 priv->np_qlast[NR_TX] >= na->num_tx_rings) { 1925 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN; 1926 } 1927 1928 if (netmap_verbose) { 1929 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d", 1930 na->name, 1931 priv->np_qfirst[NR_TX], 1932 priv->np_qlast[NR_TX], 1933 priv->np_qfirst[NR_RX], 1934 priv->np_qlast[NR_RX], 1935 nr_ringid); 1936 } 1937 return 0; 1938 } 1939 1940 1941 /* 1942 * Set the ring ID. For devices with a single queue, a request 1943 * for all rings is the same as a single ring. 1944 */ 1945 static int 1946 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1947 uint16_t nr_ringid, uint64_t nr_flags) 1948 { 1949 struct netmap_adapter *na = priv->np_na; 1950 int error; 1951 enum txrx t; 1952 1953 error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags); 1954 if (error) { 1955 return error; 1956 } 1957 1958 priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1; 1959 1960 /* optimization: count the users registered for more than 1961 * one ring, which are the ones sleeping on the global queue. 1962 * The default netmap_notify() callback will then 1963 * avoid signaling the global queue if nobody is using it 1964 */ 1965 for_rx_tx(t) { 1966 if (nm_si_user(priv, t)) 1967 na->si_users[t]++; 1968 } 1969 return 0; 1970 } 1971 1972 static void 1973 netmap_unset_ringid(struct netmap_priv_d *priv) 1974 { 1975 struct netmap_adapter *na = priv->np_na; 1976 enum txrx t; 1977 1978 for_rx_tx(t) { 1979 if (nm_si_user(priv, t)) 1980 na->si_users[t]--; 1981 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1982 } 1983 priv->np_flags = 0; 1984 priv->np_txpoll = 0; 1985 priv->np_kloop_state = 0; 1986 } 1987 1988 1989 /* Set the nr_pending_mode for the requested rings. 1990 * If requested, also try to get exclusive access to the rings, provided 1991 * the rings we want to bind are not exclusively owned by a previous bind. 1992 */ 1993 static int 1994 netmap_krings_get(struct netmap_priv_d *priv) 1995 { 1996 struct netmap_adapter *na = priv->np_na; 1997 u_int i; 1998 struct netmap_kring *kring; 1999 int excl = (priv->np_flags & NR_EXCLUSIVE); 2000 enum txrx t; 2001 2002 if (netmap_debug & NM_DEBUG_ON) 2003 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)", 2004 na->name, 2005 priv->np_qfirst[NR_TX], 2006 priv->np_qlast[NR_TX], 2007 priv->np_qfirst[NR_RX], 2008 priv->np_qlast[NR_RX]); 2009 2010 /* first round: check that all the requested rings 2011 * are neither alread exclusively owned, nor we 2012 * want exclusive ownership when they are already in use 2013 */ 2014 for_rx_tx(t) { 2015 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 2016 kring = NMR(na, t)[i]; 2017 if ((kring->nr_kflags & NKR_EXCLUSIVE) || 2018 (kring->users && excl)) 2019 { 2020 nm_prdis("ring %s busy", kring->name); 2021 return EBUSY; 2022 } 2023 } 2024 } 2025 2026 /* second round: increment usage count (possibly marking them 2027 * as exclusive) and set the nr_pending_mode 2028 */ 2029 for_rx_tx(t) { 2030 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 2031 kring = NMR(na, t)[i]; 2032 kring->users++; 2033 if (excl) 2034 kring->nr_kflags |= NKR_EXCLUSIVE; 2035 kring->nr_pending_mode = NKR_NETMAP_ON; 2036 } 2037 } 2038 2039 return 0; 2040 2041 } 2042 2043 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode 2044 * if was asked on regif, and unset the nr_pending_mode if we are the 2045 * last users of the involved rings. */ 2046 static void 2047 netmap_krings_put(struct netmap_priv_d *priv) 2048 { 2049 struct netmap_adapter *na = priv->np_na; 2050 u_int i; 2051 struct netmap_kring *kring; 2052 int excl = (priv->np_flags & NR_EXCLUSIVE); 2053 enum txrx t; 2054 2055 nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)", 2056 na->name, 2057 priv->np_qfirst[NR_TX], 2058 priv->np_qlast[NR_TX], 2059 priv->np_qfirst[NR_RX], 2060 priv->np_qlast[MR_RX]); 2061 2062 for_rx_tx(t) { 2063 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 2064 kring = NMR(na, t)[i]; 2065 if (excl) 2066 kring->nr_kflags &= ~NKR_EXCLUSIVE; 2067 kring->users--; 2068 if (kring->users == 0) 2069 kring->nr_pending_mode = NKR_NETMAP_OFF; 2070 } 2071 } 2072 } 2073 2074 static int 2075 nm_priv_rx_enabled(struct netmap_priv_d *priv) 2076 { 2077 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]); 2078 } 2079 2080 /* Validate the CSB entries for both directions (atok and ktoa). 2081 * To be called under NMG_LOCK(). */ 2082 static int 2083 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo) 2084 { 2085 struct nm_csb_atok *csb_atok_base = 2086 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok; 2087 struct nm_csb_ktoa *csb_ktoa_base = 2088 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa; 2089 enum txrx t; 2090 int num_rings[NR_TXRX], tot_rings; 2091 size_t entry_size[2]; 2092 void *csb_start[2]; 2093 int i; 2094 2095 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) { 2096 nm_prerr("Cannot update CSB while kloop is running"); 2097 return EBUSY; 2098 } 2099 2100 tot_rings = 0; 2101 for_rx_tx(t) { 2102 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t]; 2103 tot_rings += num_rings[t]; 2104 } 2105 if (tot_rings <= 0) 2106 return 0; 2107 2108 if (!(priv->np_flags & NR_EXCLUSIVE)) { 2109 nm_prerr("CSB mode requires NR_EXCLUSIVE"); 2110 return EINVAL; 2111 } 2112 2113 entry_size[0] = sizeof(*csb_atok_base); 2114 entry_size[1] = sizeof(*csb_ktoa_base); 2115 csb_start[0] = (void *)csb_atok_base; 2116 csb_start[1] = (void *)csb_ktoa_base; 2117 2118 for (i = 0; i < 2; i++) { 2119 /* On Linux we could use access_ok() to simplify 2120 * the validation. However, the advantage of 2121 * this approach is that it works also on 2122 * FreeBSD. */ 2123 size_t csb_size = tot_rings * entry_size[i]; 2124 void *tmp; 2125 int err; 2126 2127 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) { 2128 nm_prerr("Unaligned CSB address"); 2129 return EINVAL; 2130 } 2131 2132 tmp = nm_os_malloc(csb_size); 2133 if (!tmp) 2134 return ENOMEM; 2135 if (i == 0) { 2136 /* Application --> kernel direction. */ 2137 err = copyin(csb_start[i], tmp, csb_size); 2138 } else { 2139 /* Kernel --> application direction. */ 2140 memset(tmp, 0, csb_size); 2141 err = copyout(tmp, csb_start[i], csb_size); 2142 } 2143 nm_os_free(tmp); 2144 if (err) { 2145 nm_prerr("Invalid CSB address"); 2146 return err; 2147 } 2148 } 2149 2150 priv->np_csb_atok_base = csb_atok_base; 2151 priv->np_csb_ktoa_base = csb_ktoa_base; 2152 2153 /* Initialize the CSB. */ 2154 for_rx_tx(t) { 2155 for (i = 0; i < num_rings[t]; i++) { 2156 struct netmap_kring *kring = 2157 NMR(priv->np_na, t)[i + priv->np_qfirst[t]]; 2158 struct nm_csb_atok *csb_atok = csb_atok_base + i; 2159 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i; 2160 2161 if (t == NR_RX) { 2162 csb_atok += num_rings[NR_TX]; 2163 csb_ktoa += num_rings[NR_TX]; 2164 } 2165 2166 CSB_WRITE(csb_atok, head, kring->rhead); 2167 CSB_WRITE(csb_atok, cur, kring->rcur); 2168 CSB_WRITE(csb_atok, appl_need_kick, 1); 2169 CSB_WRITE(csb_atok, sync_flags, 1); 2170 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur); 2171 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail); 2172 CSB_WRITE(csb_ktoa, kern_need_kick, 1); 2173 2174 nm_prinf("csb_init for kring %s: head %u, cur %u, " 2175 "hwcur %u, hwtail %u", kring->name, 2176 kring->rhead, kring->rcur, kring->nr_hwcur, 2177 kring->nr_hwtail); 2178 } 2179 } 2180 2181 return 0; 2182 } 2183 2184 /* Ensure that the netmap adapter can support the given MTU. 2185 * @return EINVAL if the na cannot be set to mtu, 0 otherwise. 2186 */ 2187 int 2188 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) { 2189 unsigned nbs = NETMAP_BUF_SIZE(na); 2190 2191 if (mtu <= na->rx_buf_maxsize) { 2192 /* The MTU fits a single NIC slot. We only 2193 * Need to check that netmap buffers are 2194 * large enough to hold an MTU. NS_MOREFRAG 2195 * cannot be used in this case. */ 2196 if (nbs < mtu) { 2197 nm_prerr("error: netmap buf size (%u) " 2198 "< device MTU (%u)", nbs, mtu); 2199 return EINVAL; 2200 } 2201 } else { 2202 /* More NIC slots may be needed to receive 2203 * or transmit a single packet. Check that 2204 * the adapter supports NS_MOREFRAG and that 2205 * netmap buffers are large enough to hold 2206 * the maximum per-slot size. */ 2207 if (!(na->na_flags & NAF_MOREFRAG)) { 2208 nm_prerr("error: large MTU (%d) needed " 2209 "but %s does not support " 2210 "NS_MOREFRAG", mtu, 2211 na->ifp->if_xname); 2212 return EINVAL; 2213 } else if (nbs < na->rx_buf_maxsize) { 2214 nm_prerr("error: using NS_MOREFRAG on " 2215 "%s requires netmap buf size " 2216 ">= %u", na->ifp->if_xname, 2217 na->rx_buf_maxsize); 2218 return EINVAL; 2219 } else { 2220 nm_prinf("info: netmap application on " 2221 "%s needs to support " 2222 "NS_MOREFRAG " 2223 "(MTU=%u,netmap_buf_size=%u)", 2224 na->ifp->if_xname, mtu, nbs); 2225 } 2226 } 2227 return 0; 2228 } 2229 2230 2231 /* 2232 * possibly move the interface to netmap-mode. 2233 * If success it returns a pointer to netmap_if, otherwise NULL. 2234 * This must be called with NMG_LOCK held. 2235 * 2236 * The following na callbacks are called in the process: 2237 * 2238 * na->nm_config() [by netmap_update_config] 2239 * (get current number and size of rings) 2240 * 2241 * We have a generic one for linux (netmap_linux_config). 2242 * The bwrap has to override this, since it has to forward 2243 * the request to the wrapped adapter (netmap_bwrap_config). 2244 * 2245 * 2246 * na->nm_krings_create() 2247 * (create and init the krings array) 2248 * 2249 * One of the following: 2250 * 2251 * * netmap_hw_krings_create, (hw ports) 2252 * creates the standard layout for the krings 2253 * and adds the mbq (used for the host rings). 2254 * 2255 * * netmap_vp_krings_create (VALE ports) 2256 * add leases and scratchpads 2257 * 2258 * * netmap_pipe_krings_create (pipes) 2259 * create the krings and rings of both ends and 2260 * cross-link them 2261 * 2262 * * netmap_monitor_krings_create (monitors) 2263 * avoid allocating the mbq 2264 * 2265 * * netmap_bwrap_krings_create (bwraps) 2266 * create both the brap krings array, 2267 * the krings array of the wrapped adapter, and 2268 * (if needed) the fake array for the host adapter 2269 * 2270 * na->nm_register(, 1) 2271 * (put the adapter in netmap mode) 2272 * 2273 * This may be one of the following: 2274 * 2275 * * netmap_hw_reg (hw ports) 2276 * checks that the ifp is still there, then calls 2277 * the hardware specific callback; 2278 * 2279 * * netmap_vp_reg (VALE ports) 2280 * If the port is connected to a bridge, 2281 * set the NAF_NETMAP_ON flag under the 2282 * bridge write lock. 2283 * 2284 * * netmap_pipe_reg (pipes) 2285 * inform the other pipe end that it is no 2286 * longer responsible for the lifetime of this 2287 * pipe end 2288 * 2289 * * netmap_monitor_reg (monitors) 2290 * intercept the sync callbacks of the monitored 2291 * rings 2292 * 2293 * * netmap_bwrap_reg (bwraps) 2294 * cross-link the bwrap and hwna rings, 2295 * forward the request to the hwna, override 2296 * the hwna notify callback (to get the frames 2297 * coming from outside go through the bridge). 2298 * 2299 * 2300 */ 2301 int 2302 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 2303 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags) 2304 { 2305 struct netmap_if *nifp = NULL; 2306 int error; 2307 2308 NMG_LOCK_ASSERT(); 2309 priv->np_na = na; /* store the reference */ 2310 error = netmap_mem_finalize(na->nm_mem, na); 2311 if (error) 2312 goto err; 2313 2314 if (na->active_fds == 0) { 2315 2316 /* cache the allocator info in the na */ 2317 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut); 2318 if (error) 2319 goto err_drop_mem; 2320 nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal, 2321 na->na_lut.objsize); 2322 2323 /* ring configuration may have changed, fetch from the card */ 2324 netmap_update_config(na); 2325 } 2326 2327 /* compute the range of tx and rx rings to monitor */ 2328 error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags); 2329 if (error) 2330 goto err_put_lut; 2331 2332 if (na->active_fds == 0) { 2333 /* 2334 * If this is the first registration of the adapter, 2335 * perform sanity checks and create the in-kernel view 2336 * of the netmap rings (the netmap krings). 2337 */ 2338 if (na->ifp && nm_priv_rx_enabled(priv)) { 2339 /* This netmap adapter is attached to an ifnet. */ 2340 unsigned mtu = nm_os_ifnet_mtu(na->ifp); 2341 2342 nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d", 2343 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na)); 2344 2345 if (na->rx_buf_maxsize == 0) { 2346 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name); 2347 error = EIO; 2348 goto err_drop_mem; 2349 } 2350 2351 error = netmap_buf_size_validate(na, mtu); 2352 if (error) 2353 goto err_drop_mem; 2354 } 2355 2356 /* 2357 * Depending on the adapter, this may also create 2358 * the netmap rings themselves 2359 */ 2360 error = na->nm_krings_create(na); 2361 if (error) 2362 goto err_put_lut; 2363 2364 } 2365 2366 /* now the krings must exist and we can check whether some 2367 * previous bind has exclusive ownership on them, and set 2368 * nr_pending_mode 2369 */ 2370 error = netmap_krings_get(priv); 2371 if (error) 2372 goto err_del_krings; 2373 2374 /* create all needed missing netmap rings */ 2375 error = netmap_mem_rings_create(na); 2376 if (error) 2377 goto err_rel_excl; 2378 2379 /* in all cases, create a new netmap if */ 2380 nifp = netmap_mem_if_new(na, priv); 2381 if (nifp == NULL) { 2382 error = ENOMEM; 2383 goto err_rel_excl; 2384 } 2385 2386 if (nm_kring_pending(priv)) { 2387 /* Some kring is switching mode, tell the adapter to 2388 * react on this. */ 2389 error = na->nm_register(na, 1); 2390 if (error) 2391 goto err_del_if; 2392 } 2393 2394 /* Commit the reference. */ 2395 na->active_fds++; 2396 2397 /* 2398 * advertise that the interface is ready by setting np_nifp. 2399 * The barrier is needed because readers (poll, *SYNC and mmap) 2400 * check for priv->np_nifp != NULL without locking 2401 */ 2402 mb(); /* make sure previous writes are visible to all CPUs */ 2403 priv->np_nifp = nifp; 2404 2405 return 0; 2406 2407 err_del_if: 2408 netmap_mem_if_delete(na, nifp); 2409 err_rel_excl: 2410 netmap_krings_put(priv); 2411 netmap_mem_rings_delete(na); 2412 err_del_krings: 2413 if (na->active_fds == 0) 2414 na->nm_krings_delete(na); 2415 err_put_lut: 2416 if (na->active_fds == 0) 2417 memset(&na->na_lut, 0, sizeof(na->na_lut)); 2418 err_drop_mem: 2419 netmap_mem_drop(na); 2420 err: 2421 priv->np_na = NULL; 2422 return error; 2423 } 2424 2425 2426 /* 2427 * update kring and ring at the end of rxsync/txsync. 2428 */ 2429 static inline void 2430 nm_sync_finalize(struct netmap_kring *kring) 2431 { 2432 /* 2433 * Update ring tail to what the kernel knows 2434 * After txsync: head/rhead/hwcur might be behind cur/rcur 2435 * if no carrier. 2436 */ 2437 kring->ring->tail = kring->rtail = kring->nr_hwtail; 2438 2439 nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 2440 kring->name, kring->nr_hwcur, kring->nr_hwtail, 2441 kring->rhead, kring->rcur, kring->rtail); 2442 } 2443 2444 /* set ring timestamp */ 2445 static inline void 2446 ring_timestamp_set(struct netmap_ring *ring) 2447 { 2448 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) { 2449 microtime(&ring->ts); 2450 } 2451 } 2452 2453 static int nmreq_copyin(struct nmreq_header *, int); 2454 static int nmreq_copyout(struct nmreq_header *, int); 2455 static int nmreq_checkoptions(struct nmreq_header *); 2456 2457 /* 2458 * ioctl(2) support for the "netmap" device. 2459 * 2460 * Following a list of accepted commands: 2461 * - NIOCCTRL device control API 2462 * - NIOCTXSYNC sync TX rings 2463 * - NIOCRXSYNC sync RX rings 2464 * - SIOCGIFADDR just for convenience 2465 * - NIOCGINFO deprecated (legacy API) 2466 * - NIOCREGIF deprecated (legacy API) 2467 * 2468 * Return 0 on success, errno otherwise. 2469 */ 2470 int 2471 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 2472 struct thread *td, int nr_body_is_user) 2473 { 2474 struct mbq q; /* packets from RX hw queues to host stack */ 2475 struct netmap_adapter *na = NULL; 2476 struct netmap_mem_d *nmd = NULL; 2477 struct ifnet *ifp = NULL; 2478 int error = 0; 2479 u_int i, qfirst, qlast; 2480 struct netmap_kring **krings; 2481 int sync_flags; 2482 enum txrx t; 2483 2484 switch (cmd) { 2485 case NIOCCTRL: { 2486 struct nmreq_header *hdr = (struct nmreq_header *)data; 2487 2488 if (hdr->nr_version < NETMAP_MIN_API || 2489 hdr->nr_version > NETMAP_MAX_API) { 2490 nm_prerr("API mismatch: got %d need %d", 2491 hdr->nr_version, NETMAP_API); 2492 return EINVAL; 2493 } 2494 2495 /* Make a kernel-space copy of the user-space nr_body. 2496 * For convenince, the nr_body pointer and the pointers 2497 * in the options list will be replaced with their 2498 * kernel-space counterparts. The original pointers are 2499 * saved internally and later restored by nmreq_copyout 2500 */ 2501 error = nmreq_copyin(hdr, nr_body_is_user); 2502 if (error) { 2503 return error; 2504 } 2505 2506 /* Sanitize hdr->nr_name. */ 2507 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0'; 2508 2509 switch (hdr->nr_reqtype) { 2510 case NETMAP_REQ_REGISTER: { 2511 struct nmreq_register *req = 2512 (struct nmreq_register *)(uintptr_t)hdr->nr_body; 2513 struct netmap_if *nifp; 2514 2515 /* Protect access to priv from concurrent requests. */ 2516 NMG_LOCK(); 2517 do { 2518 struct nmreq_option *opt; 2519 u_int memflags; 2520 2521 if (priv->np_nifp != NULL) { /* thread already registered */ 2522 error = EBUSY; 2523 break; 2524 } 2525 2526 #ifdef WITH_EXTMEM 2527 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM); 2528 if (opt != NULL) { 2529 struct nmreq_opt_extmem *e = 2530 (struct nmreq_opt_extmem *)opt; 2531 2532 nmd = netmap_mem_ext_create(e->nro_usrptr, 2533 &e->nro_info, &error); 2534 opt->nro_status = error; 2535 if (nmd == NULL) 2536 break; 2537 } 2538 #endif /* WITH_EXTMEM */ 2539 2540 if (nmd == NULL && req->nr_mem_id) { 2541 /* find the allocator and get a reference */ 2542 nmd = netmap_mem_find(req->nr_mem_id); 2543 if (nmd == NULL) { 2544 if (netmap_verbose) { 2545 nm_prerr("%s: failed to find mem_id %u", 2546 hdr->nr_name, req->nr_mem_id); 2547 } 2548 error = EINVAL; 2549 break; 2550 } 2551 } 2552 /* find the interface and a reference */ 2553 error = netmap_get_na(hdr, &na, &ifp, nmd, 2554 1 /* create */); /* keep reference */ 2555 if (error) 2556 break; 2557 if (NETMAP_OWNED_BY_KERN(na)) { 2558 error = EBUSY; 2559 break; 2560 } 2561 2562 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) { 2563 nm_prerr("virt_hdr_len=%d, but application does " 2564 "not accept it", na->virt_hdr_len); 2565 error = EIO; 2566 break; 2567 } 2568 2569 error = netmap_do_regif(priv, na, req->nr_mode, 2570 req->nr_ringid, req->nr_flags); 2571 if (error) { /* reg. failed, release priv and ref */ 2572 break; 2573 } 2574 2575 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 2576 if (opt != NULL) { 2577 struct nmreq_opt_csb *csbo = 2578 (struct nmreq_opt_csb *)opt; 2579 error = netmap_csb_validate(priv, csbo); 2580 opt->nro_status = error; 2581 if (error) { 2582 netmap_do_unregif(priv); 2583 break; 2584 } 2585 } 2586 2587 nifp = priv->np_nifp; 2588 2589 /* return the offset of the netmap_if object */ 2590 req->nr_rx_rings = na->num_rx_rings; 2591 req->nr_tx_rings = na->num_tx_rings; 2592 req->nr_rx_slots = na->num_rx_desc; 2593 req->nr_tx_slots = na->num_tx_desc; 2594 req->nr_host_tx_rings = na->num_host_tx_rings; 2595 req->nr_host_rx_rings = na->num_host_rx_rings; 2596 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags, 2597 &req->nr_mem_id); 2598 if (error) { 2599 netmap_do_unregif(priv); 2600 break; 2601 } 2602 if (memflags & NETMAP_MEM_PRIVATE) { 2603 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 2604 } 2605 for_rx_tx(t) { 2606 priv->np_si[t] = nm_si_user(priv, t) ? 2607 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si; 2608 } 2609 2610 if (req->nr_extra_bufs) { 2611 if (netmap_verbose) 2612 nm_prinf("requested %d extra buffers", 2613 req->nr_extra_bufs); 2614 req->nr_extra_bufs = netmap_extra_alloc(na, 2615 &nifp->ni_bufs_head, req->nr_extra_bufs); 2616 if (netmap_verbose) 2617 nm_prinf("got %d extra buffers", req->nr_extra_bufs); 2618 } 2619 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 2620 2621 error = nmreq_checkoptions(hdr); 2622 if (error) { 2623 netmap_do_unregif(priv); 2624 break; 2625 } 2626 2627 /* store ifp reference so that priv destructor may release it */ 2628 priv->np_ifp = ifp; 2629 } while (0); 2630 if (error) { 2631 netmap_unget_na(na, ifp); 2632 } 2633 /* release the reference from netmap_mem_find() or 2634 * netmap_mem_ext_create() 2635 */ 2636 if (nmd) 2637 netmap_mem_put(nmd); 2638 NMG_UNLOCK(); 2639 break; 2640 } 2641 2642 case NETMAP_REQ_PORT_INFO_GET: { 2643 struct nmreq_port_info_get *req = 2644 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body; 2645 2646 NMG_LOCK(); 2647 do { 2648 u_int memflags; 2649 2650 if (hdr->nr_name[0] != '\0') { 2651 /* Build a nmreq_register out of the nmreq_port_info_get, 2652 * so that we can call netmap_get_na(). */ 2653 struct nmreq_register regreq; 2654 bzero(®req, sizeof(regreq)); 2655 regreq.nr_mode = NR_REG_ALL_NIC; 2656 regreq.nr_tx_slots = req->nr_tx_slots; 2657 regreq.nr_rx_slots = req->nr_rx_slots; 2658 regreq.nr_tx_rings = req->nr_tx_rings; 2659 regreq.nr_rx_rings = req->nr_rx_rings; 2660 regreq.nr_host_tx_rings = req->nr_host_tx_rings; 2661 regreq.nr_host_rx_rings = req->nr_host_rx_rings; 2662 regreq.nr_mem_id = req->nr_mem_id; 2663 2664 /* get a refcount */ 2665 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2666 hdr->nr_body = (uintptr_t)®req; 2667 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2668 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */ 2669 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2670 if (error) { 2671 na = NULL; 2672 ifp = NULL; 2673 break; 2674 } 2675 nmd = na->nm_mem; /* get memory allocator */ 2676 } else { 2677 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1); 2678 if (nmd == NULL) { 2679 if (netmap_verbose) 2680 nm_prerr("%s: failed to find mem_id %u", 2681 hdr->nr_name, 2682 req->nr_mem_id ? req->nr_mem_id : 1); 2683 error = EINVAL; 2684 break; 2685 } 2686 } 2687 2688 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags, 2689 &req->nr_mem_id); 2690 if (error) 2691 break; 2692 if (na == NULL) /* only memory info */ 2693 break; 2694 netmap_update_config(na); 2695 req->nr_rx_rings = na->num_rx_rings; 2696 req->nr_tx_rings = na->num_tx_rings; 2697 req->nr_rx_slots = na->num_rx_desc; 2698 req->nr_tx_slots = na->num_tx_desc; 2699 req->nr_host_tx_rings = na->num_host_tx_rings; 2700 req->nr_host_rx_rings = na->num_host_rx_rings; 2701 } while (0); 2702 netmap_unget_na(na, ifp); 2703 NMG_UNLOCK(); 2704 break; 2705 } 2706 #ifdef WITH_VALE 2707 case NETMAP_REQ_VALE_ATTACH: { 2708 error = netmap_vale_attach(hdr, NULL /* userspace request */); 2709 break; 2710 } 2711 2712 case NETMAP_REQ_VALE_DETACH: { 2713 error = netmap_vale_detach(hdr, NULL /* userspace request */); 2714 break; 2715 } 2716 2717 case NETMAP_REQ_VALE_LIST: { 2718 error = netmap_vale_list(hdr); 2719 break; 2720 } 2721 2722 case NETMAP_REQ_PORT_HDR_SET: { 2723 struct nmreq_port_hdr *req = 2724 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2725 /* Build a nmreq_register out of the nmreq_port_hdr, 2726 * so that we can call netmap_get_bdg_na(). */ 2727 struct nmreq_register regreq; 2728 bzero(®req, sizeof(regreq)); 2729 regreq.nr_mode = NR_REG_ALL_NIC; 2730 2731 /* For now we only support virtio-net headers, and only for 2732 * VALE ports, but this may change in future. Valid lengths 2733 * for the virtio-net header are 0 (no header), 10 and 12. */ 2734 if (req->nr_hdr_len != 0 && 2735 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) && 2736 req->nr_hdr_len != 12) { 2737 if (netmap_verbose) 2738 nm_prerr("invalid hdr_len %u", req->nr_hdr_len); 2739 error = EINVAL; 2740 break; 2741 } 2742 NMG_LOCK(); 2743 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2744 hdr->nr_body = (uintptr_t)®req; 2745 error = netmap_get_vale_na(hdr, &na, NULL, 0); 2746 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET; 2747 hdr->nr_body = (uintptr_t)req; 2748 if (na && !error) { 2749 struct netmap_vp_adapter *vpna = 2750 (struct netmap_vp_adapter *)na; 2751 na->virt_hdr_len = req->nr_hdr_len; 2752 if (na->virt_hdr_len) { 2753 vpna->mfs = NETMAP_BUF_SIZE(na); 2754 } 2755 if (netmap_verbose) 2756 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na); 2757 netmap_adapter_put(na); 2758 } else if (!na) { 2759 error = ENXIO; 2760 } 2761 NMG_UNLOCK(); 2762 break; 2763 } 2764 2765 case NETMAP_REQ_PORT_HDR_GET: { 2766 /* Get vnet-header length for this netmap port */ 2767 struct nmreq_port_hdr *req = 2768 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2769 /* Build a nmreq_register out of the nmreq_port_hdr, 2770 * so that we can call netmap_get_bdg_na(). */ 2771 struct nmreq_register regreq; 2772 struct ifnet *ifp; 2773 2774 bzero(®req, sizeof(regreq)); 2775 regreq.nr_mode = NR_REG_ALL_NIC; 2776 NMG_LOCK(); 2777 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2778 hdr->nr_body = (uintptr_t)®req; 2779 error = netmap_get_na(hdr, &na, &ifp, NULL, 0); 2780 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET; 2781 hdr->nr_body = (uintptr_t)req; 2782 if (na && !error) { 2783 req->nr_hdr_len = na->virt_hdr_len; 2784 } 2785 netmap_unget_na(na, ifp); 2786 NMG_UNLOCK(); 2787 break; 2788 } 2789 2790 case NETMAP_REQ_VALE_NEWIF: { 2791 error = nm_vi_create(hdr); 2792 break; 2793 } 2794 2795 case NETMAP_REQ_VALE_DELIF: { 2796 error = nm_vi_destroy(hdr->nr_name); 2797 break; 2798 } 2799 2800 case NETMAP_REQ_VALE_POLLING_ENABLE: 2801 case NETMAP_REQ_VALE_POLLING_DISABLE: { 2802 error = nm_bdg_polling(hdr); 2803 break; 2804 } 2805 #endif /* WITH_VALE */ 2806 case NETMAP_REQ_POOLS_INFO_GET: { 2807 /* Get information from the memory allocator used for 2808 * hdr->nr_name. */ 2809 struct nmreq_pools_info *req = 2810 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body; 2811 NMG_LOCK(); 2812 do { 2813 /* Build a nmreq_register out of the nmreq_pools_info, 2814 * so that we can call netmap_get_na(). */ 2815 struct nmreq_register regreq; 2816 bzero(®req, sizeof(regreq)); 2817 regreq.nr_mem_id = req->nr_mem_id; 2818 regreq.nr_mode = NR_REG_ALL_NIC; 2819 2820 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2821 hdr->nr_body = (uintptr_t)®req; 2822 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2823 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */ 2824 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2825 if (error) { 2826 na = NULL; 2827 ifp = NULL; 2828 break; 2829 } 2830 nmd = na->nm_mem; /* grab the memory allocator */ 2831 if (nmd == NULL) { 2832 error = EINVAL; 2833 break; 2834 } 2835 2836 /* Finalize the memory allocator, get the pools 2837 * information and release the allocator. */ 2838 error = netmap_mem_finalize(nmd, na); 2839 if (error) { 2840 break; 2841 } 2842 error = netmap_mem_pools_info_get(req, nmd); 2843 netmap_mem_drop(na); 2844 } while (0); 2845 netmap_unget_na(na, ifp); 2846 NMG_UNLOCK(); 2847 break; 2848 } 2849 2850 case NETMAP_REQ_CSB_ENABLE: { 2851 struct nmreq_option *opt; 2852 2853 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB); 2854 if (opt == NULL) { 2855 error = EINVAL; 2856 } else { 2857 struct nmreq_opt_csb *csbo = 2858 (struct nmreq_opt_csb *)opt; 2859 NMG_LOCK(); 2860 error = netmap_csb_validate(priv, csbo); 2861 NMG_UNLOCK(); 2862 opt->nro_status = error; 2863 } 2864 break; 2865 } 2866 2867 case NETMAP_REQ_SYNC_KLOOP_START: { 2868 error = netmap_sync_kloop(priv, hdr); 2869 break; 2870 } 2871 2872 case NETMAP_REQ_SYNC_KLOOP_STOP: { 2873 error = netmap_sync_kloop_stop(priv); 2874 break; 2875 } 2876 2877 default: { 2878 error = EINVAL; 2879 break; 2880 } 2881 } 2882 /* Write back request body to userspace and reset the 2883 * user-space pointer. */ 2884 error = nmreq_copyout(hdr, error); 2885 break; 2886 } 2887 2888 case NIOCTXSYNC: 2889 case NIOCRXSYNC: { 2890 if (unlikely(priv->np_nifp == NULL)) { 2891 error = ENXIO; 2892 break; 2893 } 2894 mb(); /* make sure following reads are not from cache */ 2895 2896 if (unlikely(priv->np_csb_atok_base)) { 2897 nm_prerr("Invalid sync in CSB mode"); 2898 error = EBUSY; 2899 break; 2900 } 2901 2902 na = priv->np_na; /* we have a reference */ 2903 2904 mbq_init(&q); 2905 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX); 2906 krings = NMR(na, t); 2907 qfirst = priv->np_qfirst[t]; 2908 qlast = priv->np_qlast[t]; 2909 sync_flags = priv->np_sync_flags; 2910 2911 for (i = qfirst; i < qlast; i++) { 2912 struct netmap_kring *kring = krings[i]; 2913 struct netmap_ring *ring = kring->ring; 2914 2915 if (unlikely(nm_kr_tryget(kring, 1, &error))) { 2916 error = (error ? EIO : 0); 2917 continue; 2918 } 2919 2920 if (cmd == NIOCTXSYNC) { 2921 if (netmap_debug & NM_DEBUG_TXSYNC) 2922 nm_prinf("pre txsync ring %d cur %d hwcur %d", 2923 i, ring->cur, 2924 kring->nr_hwcur); 2925 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2926 netmap_ring_reinit(kring); 2927 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) { 2928 nm_sync_finalize(kring); 2929 } 2930 if (netmap_debug & NM_DEBUG_TXSYNC) 2931 nm_prinf("post txsync ring %d cur %d hwcur %d", 2932 i, ring->cur, 2933 kring->nr_hwcur); 2934 } else { 2935 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2936 netmap_ring_reinit(kring); 2937 } 2938 if (nm_may_forward_up(kring)) { 2939 /* transparent forwarding, see netmap_poll() */ 2940 netmap_grab_packets(kring, &q, netmap_fwd); 2941 } 2942 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) { 2943 nm_sync_finalize(kring); 2944 } 2945 ring_timestamp_set(ring); 2946 } 2947 nm_kr_put(kring); 2948 } 2949 2950 if (mbq_peek(&q)) { 2951 netmap_send_up(na->ifp, &q); 2952 } 2953 2954 break; 2955 } 2956 2957 default: { 2958 return netmap_ioctl_legacy(priv, cmd, data, td); 2959 break; 2960 } 2961 } 2962 2963 return (error); 2964 } 2965 2966 size_t 2967 nmreq_size_by_type(uint16_t nr_reqtype) 2968 { 2969 switch (nr_reqtype) { 2970 case NETMAP_REQ_REGISTER: 2971 return sizeof(struct nmreq_register); 2972 case NETMAP_REQ_PORT_INFO_GET: 2973 return sizeof(struct nmreq_port_info_get); 2974 case NETMAP_REQ_VALE_ATTACH: 2975 return sizeof(struct nmreq_vale_attach); 2976 case NETMAP_REQ_VALE_DETACH: 2977 return sizeof(struct nmreq_vale_detach); 2978 case NETMAP_REQ_VALE_LIST: 2979 return sizeof(struct nmreq_vale_list); 2980 case NETMAP_REQ_PORT_HDR_SET: 2981 case NETMAP_REQ_PORT_HDR_GET: 2982 return sizeof(struct nmreq_port_hdr); 2983 case NETMAP_REQ_VALE_NEWIF: 2984 return sizeof(struct nmreq_vale_newif); 2985 case NETMAP_REQ_VALE_DELIF: 2986 case NETMAP_REQ_SYNC_KLOOP_STOP: 2987 case NETMAP_REQ_CSB_ENABLE: 2988 return 0; 2989 case NETMAP_REQ_VALE_POLLING_ENABLE: 2990 case NETMAP_REQ_VALE_POLLING_DISABLE: 2991 return sizeof(struct nmreq_vale_polling); 2992 case NETMAP_REQ_POOLS_INFO_GET: 2993 return sizeof(struct nmreq_pools_info); 2994 case NETMAP_REQ_SYNC_KLOOP_START: 2995 return sizeof(struct nmreq_sync_kloop_start); 2996 } 2997 return 0; 2998 } 2999 3000 static size_t 3001 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size) 3002 { 3003 size_t rv = sizeof(struct nmreq_option); 3004 #ifdef NETMAP_REQ_OPT_DEBUG 3005 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG) 3006 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG); 3007 #endif /* NETMAP_REQ_OPT_DEBUG */ 3008 switch (nro_reqtype) { 3009 #ifdef WITH_EXTMEM 3010 case NETMAP_REQ_OPT_EXTMEM: 3011 rv = sizeof(struct nmreq_opt_extmem); 3012 break; 3013 #endif /* WITH_EXTMEM */ 3014 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS: 3015 if (nro_size >= rv) 3016 rv = nro_size; 3017 break; 3018 case NETMAP_REQ_OPT_CSB: 3019 rv = sizeof(struct nmreq_opt_csb); 3020 break; 3021 case NETMAP_REQ_OPT_SYNC_KLOOP_MODE: 3022 rv = sizeof(struct nmreq_opt_sync_kloop_mode); 3023 break; 3024 } 3025 /* subtract the common header */ 3026 return rv - sizeof(struct nmreq_option); 3027 } 3028 3029 /* 3030 * nmreq_copyin: create an in-kernel version of the request. 3031 * 3032 * We build the following data structure: 3033 * 3034 * hdr -> +-------+ buf 3035 * | | +---------------+ 3036 * +-------+ |usr body ptr | 3037 * |options|-. +---------------+ 3038 * +-------+ | |usr options ptr| 3039 * |body |--------->+---------------+ 3040 * +-------+ | | | 3041 * | | copy of body | 3042 * | | | 3043 * | +---------------+ 3044 * | | NULL | 3045 * | +---------------+ 3046 * | .---| |\ 3047 * | | +---------------+ | 3048 * | .------| | | 3049 * | | | +---------------+ \ option table 3050 * | | | | ... | / indexed by option 3051 * | | | +---------------+ | type 3052 * | | | | | | 3053 * | | | +---------------+/ 3054 * | | | |usr next ptr 1 | 3055 * `-|----->+---------------+ 3056 * | | | copy of opt 1 | 3057 * | | | | 3058 * | | .-| nro_next | 3059 * | | | +---------------+ 3060 * | | | |usr next ptr 2 | 3061 * | `-`>+---------------+ 3062 * | | copy of opt 2 | 3063 * | | | 3064 * | .-| nro_next | 3065 * | | +---------------+ 3066 * | | | | 3067 * ~ ~ ~ ... ~ 3068 * | .-| | 3069 * `----->+---------------+ 3070 * | |usr next ptr n | 3071 * `>+---------------+ 3072 * | copy of opt n | 3073 * | | 3074 * | nro_next(NULL)| 3075 * +---------------+ 3076 * 3077 * The options and body fields of the hdr structure are overwritten 3078 * with in-kernel valid pointers inside the buf. The original user 3079 * pointers are saved in the buf and restored on copyout. 3080 * The list of options is copied and the pointers adjusted. The 3081 * original pointers are saved before the option they belonged. 3082 * 3083 * The option table has an entry for every availabe option. Entries 3084 * for options that have not been passed contain NULL. 3085 * 3086 */ 3087 3088 int 3089 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user) 3090 { 3091 size_t rqsz, optsz, bufsz; 3092 int error = 0; 3093 char *ker = NULL, *p; 3094 struct nmreq_option **next, *src, **opt_tab; 3095 struct nmreq_option buf; 3096 uint64_t *ptrs; 3097 3098 if (hdr->nr_reserved) { 3099 if (netmap_verbose) 3100 nm_prerr("nr_reserved must be zero"); 3101 return EINVAL; 3102 } 3103 3104 if (!nr_body_is_user) 3105 return 0; 3106 3107 hdr->nr_reserved = nr_body_is_user; 3108 3109 /* compute the total size of the buffer */ 3110 rqsz = nmreq_size_by_type(hdr->nr_reqtype); 3111 if (rqsz > NETMAP_REQ_MAXSIZE) { 3112 error = EMSGSIZE; 3113 goto out_err; 3114 } 3115 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) || 3116 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) { 3117 /* Request body expected, but not found; or 3118 * request body found but unexpected. */ 3119 if (netmap_verbose) 3120 nm_prerr("nr_body expected but not found, or vice versa"); 3121 error = EINVAL; 3122 goto out_err; 3123 } 3124 3125 bufsz = 2 * sizeof(void *) + rqsz + 3126 NETMAP_REQ_OPT_MAX * sizeof(opt_tab); 3127 /* compute the size of the buf below the option table. 3128 * It must contain a copy of every received option structure. 3129 * For every option we also need to store a copy of the user 3130 * list pointer. 3131 */ 3132 optsz = 0; 3133 for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src; 3134 src = (struct nmreq_option *)(uintptr_t)buf.nro_next) 3135 { 3136 error = copyin(src, &buf, sizeof(*src)); 3137 if (error) 3138 goto out_err; 3139 optsz += sizeof(*src); 3140 optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size); 3141 if (rqsz + optsz > NETMAP_REQ_MAXSIZE) { 3142 error = EMSGSIZE; 3143 goto out_err; 3144 } 3145 bufsz += sizeof(void *); 3146 } 3147 bufsz += optsz; 3148 3149 ker = nm_os_malloc(bufsz); 3150 if (ker == NULL) { 3151 error = ENOMEM; 3152 goto out_err; 3153 } 3154 p = ker; /* write pointer into the buffer */ 3155 3156 /* make a copy of the user pointers */ 3157 ptrs = (uint64_t*)p; 3158 *ptrs++ = hdr->nr_body; 3159 *ptrs++ = hdr->nr_options; 3160 p = (char *)ptrs; 3161 3162 /* copy the body */ 3163 error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz); 3164 if (error) 3165 goto out_restore; 3166 /* overwrite the user pointer with the in-kernel one */ 3167 hdr->nr_body = (uintptr_t)p; 3168 p += rqsz; 3169 /* start of the options table */ 3170 opt_tab = (struct nmreq_option **)p; 3171 p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX; 3172 3173 /* copy the options */ 3174 next = (struct nmreq_option **)&hdr->nr_options; 3175 src = *next; 3176 while (src) { 3177 struct nmreq_option *opt; 3178 3179 /* copy the option header */ 3180 ptrs = (uint64_t *)p; 3181 opt = (struct nmreq_option *)(ptrs + 1); 3182 error = copyin(src, opt, sizeof(*src)); 3183 if (error) 3184 goto out_restore; 3185 /* make a copy of the user next pointer */ 3186 *ptrs = opt->nro_next; 3187 /* overwrite the user pointer with the in-kernel one */ 3188 *next = opt; 3189 3190 /* initialize the option as not supported. 3191 * Recognized options will update this field. 3192 */ 3193 opt->nro_status = EOPNOTSUPP; 3194 3195 /* check for invalid types */ 3196 if (opt->nro_reqtype < 1) { 3197 if (netmap_verbose) 3198 nm_prinf("invalid option type: %u", opt->nro_reqtype); 3199 opt->nro_status = EINVAL; 3200 error = EINVAL; 3201 goto next; 3202 } 3203 3204 if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) { 3205 /* opt->nro_status is already EOPNOTSUPP */ 3206 error = EOPNOTSUPP; 3207 goto next; 3208 } 3209 3210 /* if the type is valid, index the option in the table 3211 * unless it is a duplicate. 3212 */ 3213 if (opt_tab[opt->nro_reqtype] != NULL) { 3214 if (netmap_verbose) 3215 nm_prinf("duplicate option: %u", opt->nro_reqtype); 3216 opt->nro_status = EINVAL; 3217 opt_tab[opt->nro_reqtype]->nro_status = EINVAL; 3218 error = EINVAL; 3219 goto next; 3220 } 3221 opt_tab[opt->nro_reqtype] = opt; 3222 3223 p = (char *)(opt + 1); 3224 3225 /* copy the option body */ 3226 optsz = nmreq_opt_size_by_type(opt->nro_reqtype, 3227 opt->nro_size); 3228 if (optsz) { 3229 /* the option body follows the option header */ 3230 error = copyin(src + 1, p, optsz); 3231 if (error) 3232 goto out_restore; 3233 p += optsz; 3234 } 3235 3236 next: 3237 /* move to next option */ 3238 next = (struct nmreq_option **)&opt->nro_next; 3239 src = *next; 3240 } 3241 if (error) 3242 nmreq_copyout(hdr, error); 3243 return error; 3244 3245 out_restore: 3246 ptrs = (uint64_t *)ker; 3247 hdr->nr_body = *ptrs++; 3248 hdr->nr_options = *ptrs++; 3249 hdr->nr_reserved = 0; 3250 nm_os_free(ker); 3251 out_err: 3252 return error; 3253 } 3254 3255 static int 3256 nmreq_copyout(struct nmreq_header *hdr, int rerror) 3257 { 3258 struct nmreq_option *src, *dst; 3259 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart; 3260 uint64_t *ptrs; 3261 size_t bodysz; 3262 int error; 3263 3264 if (!hdr->nr_reserved) 3265 return rerror; 3266 3267 /* restore the user pointers in the header */ 3268 ptrs = (uint64_t *)ker - 2; 3269 bufstart = ptrs; 3270 hdr->nr_body = *ptrs++; 3271 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3272 hdr->nr_options = *ptrs; 3273 3274 if (!rerror) { 3275 /* copy the body */ 3276 bodysz = nmreq_size_by_type(hdr->nr_reqtype); 3277 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz); 3278 if (error) { 3279 rerror = error; 3280 goto out; 3281 } 3282 } 3283 3284 /* copy the options */ 3285 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3286 while (src) { 3287 size_t optsz; 3288 uint64_t next; 3289 3290 /* restore the user pointer */ 3291 next = src->nro_next; 3292 ptrs = (uint64_t *)src - 1; 3293 src->nro_next = *ptrs; 3294 3295 /* always copy the option header */ 3296 error = copyout(src, dst, sizeof(*src)); 3297 if (error) { 3298 rerror = error; 3299 goto out; 3300 } 3301 3302 /* copy the option body only if there was no error */ 3303 if (!rerror && !src->nro_status) { 3304 optsz = nmreq_opt_size_by_type(src->nro_reqtype, 3305 src->nro_size); 3306 if (optsz) { 3307 error = copyout(src + 1, dst + 1, optsz); 3308 if (error) { 3309 rerror = error; 3310 goto out; 3311 } 3312 } 3313 } 3314 src = (struct nmreq_option *)(uintptr_t)next; 3315 dst = (struct nmreq_option *)(uintptr_t)*ptrs; 3316 } 3317 3318 3319 out: 3320 hdr->nr_reserved = 0; 3321 nm_os_free(bufstart); 3322 return rerror; 3323 } 3324 3325 struct nmreq_option * 3326 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype) 3327 { 3328 struct nmreq_option **opt_tab; 3329 3330 if (!hdr->nr_options) 3331 return NULL; 3332 3333 opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) - 3334 (NETMAP_REQ_OPT_MAX + 1); 3335 return opt_tab[reqtype]; 3336 } 3337 3338 static int 3339 nmreq_checkoptions(struct nmreq_header *hdr) 3340 { 3341 struct nmreq_option *opt; 3342 /* return error if there is still any option 3343 * marked as not supported 3344 */ 3345 3346 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt; 3347 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3348 if (opt->nro_status == EOPNOTSUPP) 3349 return EOPNOTSUPP; 3350 3351 return 0; 3352 } 3353 3354 /* 3355 * select(2) and poll(2) handlers for the "netmap" device. 3356 * 3357 * Can be called for one or more queues. 3358 * Return true the event mask corresponding to ready events. 3359 * If there are no ready events (and 'sr' is not NULL), do a 3360 * selrecord on either individual selinfo or on the global one. 3361 * Device-dependent parts (locking and sync of tx/rx rings) 3362 * are done through callbacks. 3363 * 3364 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 3365 * The first one is remapped to pwait as selrecord() uses the name as an 3366 * hidden argument. 3367 */ 3368 int 3369 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr) 3370 { 3371 struct netmap_adapter *na; 3372 struct netmap_kring *kring; 3373 struct netmap_ring *ring; 3374 u_int i, want[NR_TXRX], revents = 0; 3375 NM_SELINFO_T *si[NR_TXRX]; 3376 #define want_tx want[NR_TX] 3377 #define want_rx want[NR_RX] 3378 struct mbq q; /* packets from RX hw queues to host stack */ 3379 3380 /* 3381 * In order to avoid nested locks, we need to "double check" 3382 * txsync and rxsync if we decide to do a selrecord(). 3383 * retry_tx (and retry_rx, later) prevent looping forever. 3384 */ 3385 int retry_tx = 1, retry_rx = 1; 3386 3387 /* Transparent mode: send_down is 1 if we have found some 3388 * packets to forward (host RX ring --> NIC) during the rx 3389 * scan and we have not sent them down to the NIC yet. 3390 * Transparent mode requires to bind all rings to a single 3391 * file descriptor. 3392 */ 3393 int send_down = 0; 3394 int sync_flags = priv->np_sync_flags; 3395 3396 mbq_init(&q); 3397 3398 if (unlikely(priv->np_nifp == NULL)) { 3399 return POLLERR; 3400 } 3401 mb(); /* make sure following reads are not from cache */ 3402 3403 na = priv->np_na; 3404 3405 if (unlikely(!nm_netmap_on(na))) 3406 return POLLERR; 3407 3408 if (unlikely(priv->np_csb_atok_base)) { 3409 nm_prerr("Invalid poll in CSB mode"); 3410 return POLLERR; 3411 } 3412 3413 if (netmap_debug & NM_DEBUG_ON) 3414 nm_prinf("device %s events 0x%x", na->name, events); 3415 want_tx = events & (POLLOUT | POLLWRNORM); 3416 want_rx = events & (POLLIN | POLLRDNORM); 3417 3418 /* 3419 * If the card has more than one queue AND the file descriptor is 3420 * bound to all of them, we sleep on the "global" selinfo, otherwise 3421 * we sleep on individual selinfo (FreeBSD only allows two selinfo's 3422 * per file descriptor). 3423 * The interrupt routine in the driver wake one or the other 3424 * (or both) depending on which clients are active. 3425 * 3426 * rxsync() is only called if we run out of buffers on a POLLIN. 3427 * txsync() is called if we run out of buffers on POLLOUT, or 3428 * there are pending packets to send. The latter can be disabled 3429 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 3430 */ 3431 si[NR_RX] = priv->np_si[NR_RX]; 3432 si[NR_TX] = priv->np_si[NR_TX]; 3433 3434 #ifdef __FreeBSD__ 3435 /* 3436 * We start with a lock free round which is cheap if we have 3437 * slots available. If this fails, then lock and call the sync 3438 * routines. We can't do this on Linux, as the contract says 3439 * that we must call nm_os_selrecord() unconditionally. 3440 */ 3441 if (want_tx) { 3442 const enum txrx t = NR_TX; 3443 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3444 kring = NMR(na, t)[i]; 3445 if (kring->ring->cur != kring->ring->tail) { 3446 /* Some unseen TX space is available, so what 3447 * we don't need to run txsync. */ 3448 revents |= want[t]; 3449 want[t] = 0; 3450 break; 3451 } 3452 } 3453 } 3454 if (want_rx) { 3455 const enum txrx t = NR_RX; 3456 int rxsync_needed = 0; 3457 3458 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3459 kring = NMR(na, t)[i]; 3460 if (kring->ring->cur == kring->ring->tail 3461 || kring->rhead != kring->ring->head) { 3462 /* There are no unseen packets on this ring, 3463 * or there are some buffers to be returned 3464 * to the netmap port. We therefore go ahead 3465 * and run rxsync. */ 3466 rxsync_needed = 1; 3467 break; 3468 } 3469 } 3470 if (!rxsync_needed) { 3471 revents |= want_rx; 3472 want_rx = 0; 3473 } 3474 } 3475 #endif 3476 3477 #ifdef linux 3478 /* The selrecord must be unconditional on linux. */ 3479 nm_os_selrecord(sr, si[NR_RX]); 3480 nm_os_selrecord(sr, si[NR_TX]); 3481 #endif /* linux */ 3482 3483 /* 3484 * If we want to push packets out (priv->np_txpoll) or 3485 * want_tx is still set, we must issue txsync calls 3486 * (on all rings, to avoid that the tx rings stall). 3487 * Fortunately, normal tx mode has np_txpoll set. 3488 */ 3489 if (priv->np_txpoll || want_tx) { 3490 /* 3491 * The first round checks if anyone is ready, if not 3492 * do a selrecord and another round to handle races. 3493 * want_tx goes to 0 if any space is found, and is 3494 * used to skip rings with no pending transmissions. 3495 */ 3496 flush_tx: 3497 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) { 3498 int found = 0; 3499 3500 kring = na->tx_rings[i]; 3501 ring = kring->ring; 3502 3503 /* 3504 * Don't try to txsync this TX ring if we already found some 3505 * space in some of the TX rings (want_tx == 0) and there are no 3506 * TX slots in this ring that need to be flushed to the NIC 3507 * (head == hwcur). 3508 */ 3509 if (!send_down && !want_tx && ring->head == kring->nr_hwcur) 3510 continue; 3511 3512 if (nm_kr_tryget(kring, 1, &revents)) 3513 continue; 3514 3515 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3516 netmap_ring_reinit(kring); 3517 revents |= POLLERR; 3518 } else { 3519 if (kring->nm_sync(kring, sync_flags)) 3520 revents |= POLLERR; 3521 else 3522 nm_sync_finalize(kring); 3523 } 3524 3525 /* 3526 * If we found new slots, notify potential 3527 * listeners on the same ring. 3528 * Since we just did a txsync, look at the copies 3529 * of cur,tail in the kring. 3530 */ 3531 found = kring->rcur != kring->rtail; 3532 nm_kr_put(kring); 3533 if (found) { /* notify other listeners */ 3534 revents |= want_tx; 3535 want_tx = 0; 3536 #ifndef linux 3537 kring->nm_notify(kring, 0); 3538 #endif /* linux */ 3539 } 3540 } 3541 /* if there were any packet to forward we must have handled them by now */ 3542 send_down = 0; 3543 if (want_tx && retry_tx && sr) { 3544 #ifndef linux 3545 nm_os_selrecord(sr, si[NR_TX]); 3546 #endif /* !linux */ 3547 retry_tx = 0; 3548 goto flush_tx; 3549 } 3550 } 3551 3552 /* 3553 * If want_rx is still set scan receive rings. 3554 * Do it on all rings because otherwise we starve. 3555 */ 3556 if (want_rx) { 3557 /* two rounds here for race avoidance */ 3558 do_retry_rx: 3559 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) { 3560 int found = 0; 3561 3562 kring = na->rx_rings[i]; 3563 ring = kring->ring; 3564 3565 if (unlikely(nm_kr_tryget(kring, 1, &revents))) 3566 continue; 3567 3568 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3569 netmap_ring_reinit(kring); 3570 revents |= POLLERR; 3571 } 3572 /* now we can use kring->rcur, rtail */ 3573 3574 /* 3575 * transparent mode support: collect packets from 3576 * hw rxring(s) that have been released by the user 3577 */ 3578 if (nm_may_forward_up(kring)) { 3579 netmap_grab_packets(kring, &q, netmap_fwd); 3580 } 3581 3582 /* Clear the NR_FORWARD flag anyway, it may be set by 3583 * the nm_sync() below only on for the host RX ring (see 3584 * netmap_rxsync_from_host()). */ 3585 kring->nr_kflags &= ~NR_FORWARD; 3586 if (kring->nm_sync(kring, sync_flags)) 3587 revents |= POLLERR; 3588 else 3589 nm_sync_finalize(kring); 3590 send_down |= (kring->nr_kflags & NR_FORWARD); 3591 ring_timestamp_set(ring); 3592 found = kring->rcur != kring->rtail; 3593 nm_kr_put(kring); 3594 if (found) { 3595 revents |= want_rx; 3596 retry_rx = 0; 3597 #ifndef linux 3598 kring->nm_notify(kring, 0); 3599 #endif /* linux */ 3600 } 3601 } 3602 3603 #ifndef linux 3604 if (retry_rx && sr) { 3605 nm_os_selrecord(sr, si[NR_RX]); 3606 } 3607 #endif /* !linux */ 3608 if (send_down || retry_rx) { 3609 retry_rx = 0; 3610 if (send_down) 3611 goto flush_tx; /* and retry_rx */ 3612 else 3613 goto do_retry_rx; 3614 } 3615 } 3616 3617 /* 3618 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and 3619 * ring->head) marked with NS_FORWARD on hw rx rings are passed up 3620 * to the host stack. 3621 */ 3622 3623 if (mbq_peek(&q)) { 3624 netmap_send_up(na->ifp, &q); 3625 } 3626 3627 return (revents); 3628 #undef want_tx 3629 #undef want_rx 3630 } 3631 3632 int 3633 nma_intr_enable(struct netmap_adapter *na, int onoff) 3634 { 3635 bool changed = false; 3636 enum txrx t; 3637 int i; 3638 3639 for_rx_tx(t) { 3640 for (i = 0; i < nma_get_nrings(na, t); i++) { 3641 struct netmap_kring *kring = NMR(na, t)[i]; 3642 int on = !(kring->nr_kflags & NKR_NOINTR); 3643 3644 if (!!onoff != !!on) { 3645 changed = true; 3646 } 3647 if (onoff) { 3648 kring->nr_kflags &= ~NKR_NOINTR; 3649 } else { 3650 kring->nr_kflags |= NKR_NOINTR; 3651 } 3652 } 3653 } 3654 3655 if (!changed) { 3656 return 0; /* nothing to do */ 3657 } 3658 3659 if (!na->nm_intr) { 3660 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable", 3661 na->name); 3662 return -1; 3663 } 3664 3665 na->nm_intr(na, onoff); 3666 3667 return 0; 3668 } 3669 3670 3671 /*-------------------- driver support routines -------------------*/ 3672 3673 /* default notify callback */ 3674 static int 3675 netmap_notify(struct netmap_kring *kring, int flags) 3676 { 3677 struct netmap_adapter *na = kring->notify_na; 3678 enum txrx t = kring->tx; 3679 3680 nm_os_selwakeup(&kring->si); 3681 /* optimization: avoid a wake up on the global 3682 * queue if nobody has registered for more 3683 * than one ring 3684 */ 3685 if (na->si_users[t] > 0) 3686 nm_os_selwakeup(&na->si[t]); 3687 3688 return NM_IRQ_COMPLETED; 3689 } 3690 3691 /* called by all routines that create netmap_adapters. 3692 * provide some defaults and get a reference to the 3693 * memory allocator 3694 */ 3695 int 3696 netmap_attach_common(struct netmap_adapter *na) 3697 { 3698 if (!na->rx_buf_maxsize) { 3699 /* Set a conservative default (larger is safer). */ 3700 na->rx_buf_maxsize = PAGE_SIZE; 3701 } 3702 3703 #ifdef __FreeBSD__ 3704 if (na->na_flags & NAF_HOST_RINGS && na->ifp) { 3705 na->if_input = na->ifp->if_input; /* for netmap_send_up */ 3706 } 3707 na->pdev = na; /* make sure netmap_mem_map() is called */ 3708 #endif /* __FreeBSD__ */ 3709 if (na->na_flags & NAF_HOST_RINGS) { 3710 if (na->num_host_rx_rings == 0) 3711 na->num_host_rx_rings = 1; 3712 if (na->num_host_tx_rings == 0) 3713 na->num_host_tx_rings = 1; 3714 } 3715 if (na->nm_krings_create == NULL) { 3716 /* we assume that we have been called by a driver, 3717 * since other port types all provide their own 3718 * nm_krings_create 3719 */ 3720 na->nm_krings_create = netmap_hw_krings_create; 3721 na->nm_krings_delete = netmap_hw_krings_delete; 3722 } 3723 if (na->nm_notify == NULL) 3724 na->nm_notify = netmap_notify; 3725 na->active_fds = 0; 3726 3727 if (na->nm_mem == NULL) { 3728 /* use the global allocator */ 3729 na->nm_mem = netmap_mem_get(&nm_mem); 3730 } 3731 #ifdef WITH_VALE 3732 if (na->nm_bdg_attach == NULL) 3733 /* no special nm_bdg_attach callback. On VALE 3734 * attach, we need to interpose a bwrap 3735 */ 3736 na->nm_bdg_attach = netmap_default_bdg_attach; 3737 #endif 3738 3739 return 0; 3740 } 3741 3742 /* Wrapper for the register callback provided netmap-enabled 3743 * hardware drivers. 3744 * nm_iszombie(na) means that the driver module has been 3745 * unloaded, so we cannot call into it. 3746 * nm_os_ifnet_lock() must guarantee mutual exclusion with 3747 * module unloading. 3748 */ 3749 static int 3750 netmap_hw_reg(struct netmap_adapter *na, int onoff) 3751 { 3752 struct netmap_hw_adapter *hwna = 3753 (struct netmap_hw_adapter*)na; 3754 int error = 0; 3755 3756 nm_os_ifnet_lock(); 3757 3758 if (nm_iszombie(na)) { 3759 if (onoff) { 3760 error = ENXIO; 3761 } else if (na != NULL) { 3762 na->na_flags &= ~NAF_NETMAP_ON; 3763 } 3764 goto out; 3765 } 3766 3767 error = hwna->nm_hw_register(na, onoff); 3768 3769 out: 3770 nm_os_ifnet_unlock(); 3771 3772 return error; 3773 } 3774 3775 static void 3776 netmap_hw_dtor(struct netmap_adapter *na) 3777 { 3778 if (na->ifp == NULL) 3779 return; 3780 3781 NM_DETACH_NA(na->ifp); 3782 } 3783 3784 3785 /* 3786 * Allocate a netmap_adapter object, and initialize it from the 3787 * 'arg' passed by the driver on attach. 3788 * We allocate a block of memory of 'size' bytes, which has room 3789 * for struct netmap_adapter plus additional room private to 3790 * the caller. 3791 * Return 0 on success, ENOMEM otherwise. 3792 */ 3793 int 3794 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg) 3795 { 3796 struct netmap_hw_adapter *hwna = NULL; 3797 struct ifnet *ifp = NULL; 3798 3799 if (size < sizeof(struct netmap_hw_adapter)) { 3800 if (netmap_debug & NM_DEBUG_ON) 3801 nm_prerr("Invalid netmap adapter size %d", (int)size); 3802 return EINVAL; 3803 } 3804 3805 if (arg == NULL || arg->ifp == NULL) { 3806 if (netmap_debug & NM_DEBUG_ON) 3807 nm_prerr("either arg or arg->ifp is NULL"); 3808 return EINVAL; 3809 } 3810 3811 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) { 3812 if (netmap_debug & NM_DEBUG_ON) 3813 nm_prerr("%s: invalid rings tx %d rx %d", 3814 arg->name, arg->num_tx_rings, arg->num_rx_rings); 3815 return EINVAL; 3816 } 3817 3818 ifp = arg->ifp; 3819 if (NM_NA_CLASH(ifp)) { 3820 /* If NA(ifp) is not null but there is no valid netmap 3821 * adapter it means that someone else is using the same 3822 * pointer (e.g. ax25_ptr on linux). This happens for 3823 * instance when also PF_RING is in use. */ 3824 nm_prerr("Error: netmap adapter hook is busy"); 3825 return EBUSY; 3826 } 3827 3828 hwna = nm_os_malloc(size); 3829 if (hwna == NULL) 3830 goto fail; 3831 hwna->up = *arg; 3832 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE; 3833 strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name)); 3834 if (override_reg) { 3835 hwna->nm_hw_register = hwna->up.nm_register; 3836 hwna->up.nm_register = netmap_hw_reg; 3837 } 3838 if (netmap_attach_common(&hwna->up)) { 3839 nm_os_free(hwna); 3840 goto fail; 3841 } 3842 netmap_adapter_get(&hwna->up); 3843 3844 NM_ATTACH_NA(ifp, &hwna->up); 3845 3846 nm_os_onattach(ifp); 3847 3848 if (arg->nm_dtor == NULL) { 3849 hwna->up.nm_dtor = netmap_hw_dtor; 3850 } 3851 3852 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n", 3853 hwna->up.num_tx_rings, hwna->up.num_tx_desc, 3854 hwna->up.num_rx_rings, hwna->up.num_rx_desc); 3855 return 0; 3856 3857 fail: 3858 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna); 3859 return (hwna ? EINVAL : ENOMEM); 3860 } 3861 3862 3863 int 3864 netmap_attach(struct netmap_adapter *arg) 3865 { 3866 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter), 3867 1 /* override nm_reg */); 3868 } 3869 3870 3871 void 3872 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 3873 { 3874 if (!na) { 3875 return; 3876 } 3877 3878 refcount_acquire(&na->na_refcount); 3879 } 3880 3881 3882 /* returns 1 iff the netmap_adapter is destroyed */ 3883 int 3884 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 3885 { 3886 if (!na) 3887 return 1; 3888 3889 if (!refcount_release(&na->na_refcount)) 3890 return 0; 3891 3892 if (na->nm_dtor) 3893 na->nm_dtor(na); 3894 3895 if (na->tx_rings) { /* XXX should not happen */ 3896 if (netmap_debug & NM_DEBUG_ON) 3897 nm_prerr("freeing leftover tx_rings"); 3898 na->nm_krings_delete(na); 3899 } 3900 netmap_pipe_dealloc(na); 3901 if (na->nm_mem) 3902 netmap_mem_put(na->nm_mem); 3903 bzero(na, sizeof(*na)); 3904 nm_os_free(na); 3905 3906 return 1; 3907 } 3908 3909 /* nm_krings_create callback for all hardware native adapters */ 3910 int 3911 netmap_hw_krings_create(struct netmap_adapter *na) 3912 { 3913 int ret = netmap_krings_create(na, 0); 3914 if (ret == 0) { 3915 /* initialize the mbq for the sw rx ring */ 3916 u_int lim = netmap_real_rings(na, NR_RX), i; 3917 for (i = na->num_rx_rings; i < lim; i++) { 3918 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue); 3919 } 3920 nm_prdis("initialized sw rx queue %d", na->num_rx_rings); 3921 } 3922 return ret; 3923 } 3924 3925 3926 3927 /* 3928 * Called on module unload by the netmap-enabled drivers 3929 */ 3930 void 3931 netmap_detach(struct ifnet *ifp) 3932 { 3933 struct netmap_adapter *na = NA(ifp); 3934 3935 if (!na) 3936 return; 3937 3938 NMG_LOCK(); 3939 netmap_set_all_rings(na, NM_KR_LOCKED); 3940 /* 3941 * if the netmap adapter is not native, somebody 3942 * changed it, so we can not release it here. 3943 * The NAF_ZOMBIE flag will notify the new owner that 3944 * the driver is gone. 3945 */ 3946 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) { 3947 na->na_flags |= NAF_ZOMBIE; 3948 } 3949 /* give active users a chance to notice that NAF_ZOMBIE has been 3950 * turned on, so that they can stop and return an error to userspace. 3951 * Note that this becomes a NOP if there are no active users and, 3952 * therefore, the put() above has deleted the na, since now NA(ifp) is 3953 * NULL. 3954 */ 3955 netmap_enable_all_rings(ifp); 3956 NMG_UNLOCK(); 3957 } 3958 3959 3960 /* 3961 * Intercept packets from the network stack and pass them 3962 * to netmap as incoming packets on the 'software' ring. 3963 * 3964 * We only store packets in a bounded mbq and then copy them 3965 * in the relevant rxsync routine. 3966 * 3967 * We rely on the OS to make sure that the ifp and na do not go 3968 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 3969 * In nm_register() or whenever there is a reinitialization, 3970 * we make sure to make the mode change visible here. 3971 */ 3972 int 3973 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 3974 { 3975 struct netmap_adapter *na = NA(ifp); 3976 struct netmap_kring *kring, *tx_kring; 3977 u_int len = MBUF_LEN(m); 3978 u_int error = ENOBUFS; 3979 unsigned int txr; 3980 struct mbq *q; 3981 int busy; 3982 u_int i; 3983 3984 i = MBUF_TXQ(m); 3985 if (i >= na->num_host_rx_rings) { 3986 i = i % na->num_host_rx_rings; 3987 } 3988 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i]; 3989 3990 // XXX [Linux] we do not need this lock 3991 // if we follow the down/configure/up protocol -gl 3992 // mtx_lock(&na->core_lock); 3993 3994 if (!nm_netmap_on(na)) { 3995 nm_prerr("%s not in netmap mode anymore", na->name); 3996 error = ENXIO; 3997 goto done; 3998 } 3999 4000 txr = MBUF_TXQ(m); 4001 if (txr >= na->num_tx_rings) { 4002 txr %= na->num_tx_rings; 4003 } 4004 tx_kring = NMR(na, NR_TX)[txr]; 4005 4006 if (tx_kring->nr_mode == NKR_NETMAP_OFF) { 4007 return MBUF_TRANSMIT(na, ifp, m); 4008 } 4009 4010 q = &kring->rx_queue; 4011 4012 // XXX reconsider long packets if we handle fragments 4013 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */ 4014 nm_prerr("%s from_host, drop packet size %d > %d", na->name, 4015 len, NETMAP_BUF_SIZE(na)); 4016 goto done; 4017 } 4018 4019 if (!netmap_generic_hwcsum) { 4020 if (nm_os_mbuf_has_csum_offld(m)) { 4021 nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name); 4022 goto done; 4023 } 4024 } 4025 4026 if (nm_os_mbuf_has_seg_offld(m)) { 4027 nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name); 4028 goto done; 4029 } 4030 4031 #ifdef __FreeBSD__ 4032 ETHER_BPF_MTAP(ifp, m); 4033 #endif /* __FreeBSD__ */ 4034 4035 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic() 4036 * and maybe other instances of netmap_transmit (the latter 4037 * not possible on Linux). 4038 * We enqueue the mbuf only if we are sure there is going to be 4039 * enough room in the host RX ring, otherwise we drop it. 4040 */ 4041 mbq_lock(q); 4042 4043 busy = kring->nr_hwtail - kring->nr_hwcur; 4044 if (busy < 0) 4045 busy += kring->nkr_num_slots; 4046 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) { 4047 nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name, 4048 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q)); 4049 } else { 4050 mbq_enqueue(q, m); 4051 nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q)); 4052 /* notify outside the lock */ 4053 m = NULL; 4054 error = 0; 4055 } 4056 mbq_unlock(q); 4057 4058 done: 4059 if (m) 4060 m_freem(m); 4061 /* unconditionally wake up listeners */ 4062 kring->nm_notify(kring, 0); 4063 /* this is normally netmap_notify(), but for nics 4064 * connected to a bridge it is netmap_bwrap_intr_notify(), 4065 * that possibly forwards the frames through the switch 4066 */ 4067 4068 return (error); 4069 } 4070 4071 4072 /* 4073 * Reset function to be called by the driver routines when reinitializing 4074 * a hardware ring. The driver is in charge of locking to protect the kring 4075 * while this operation is being performed. This is normally achieved by 4076 * calling netmap_disable_all_rings() before triggering a reset. 4077 * If the kring is not in netmap mode, return NULL to inform the caller 4078 * that this is the case. 4079 * If the kring is in netmap mode, set hwofs so that the netmap indices 4080 * seen by userspace (head/cut/tail) do not change, although the internal 4081 * NIC indices have been reset to 0. 4082 * In any case, adjust kring->nr_mode. 4083 */ 4084 struct netmap_slot * 4085 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 4086 u_int new_cur) 4087 { 4088 struct netmap_kring *kring; 4089 u_int new_hwtail, new_hwofs; 4090 4091 if (!nm_native_on(na)) { 4092 nm_prdis("interface not in native netmap mode"); 4093 return NULL; /* nothing to reinitialize */ 4094 } 4095 4096 if (tx == NR_TX) { 4097 if (n >= na->num_tx_rings) 4098 return NULL; 4099 kring = na->tx_rings[n]; 4100 /* 4101 * Set hwofs to rhead, so that slots[rhead] is mapped to 4102 * the NIC internal slot 0, and thus the netmap buffer 4103 * at rhead is the next to be transmitted. Transmissions 4104 * that were pending before the reset are considered as 4105 * sent, so that we can have hwcur = rhead. All the slots 4106 * are now owned by the user, so we can also reinit hwtail. 4107 */ 4108 new_hwofs = kring->rhead; 4109 new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1); 4110 } else { 4111 if (n >= na->num_rx_rings) 4112 return NULL; 4113 kring = na->rx_rings[n]; 4114 /* 4115 * Set hwofs to hwtail, so that slots[hwtail] is mapped to 4116 * the NIC internal slot 0, and thus the netmap buffer 4117 * at hwtail is the next to be given to the NIC. 4118 * Unread slots (the ones in [rhead,hwtail[) are owned by 4119 * the user, and thus the caller cannot give them 4120 * to the NIC right now. 4121 */ 4122 new_hwofs = kring->nr_hwtail; 4123 new_hwtail = kring->nr_hwtail; 4124 } 4125 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 4126 kring->nr_mode = NKR_NETMAP_OFF; 4127 return NULL; 4128 } 4129 if (netmap_verbose) { 4130 nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name, 4131 kring->nr_hwcur, kring->rhead, 4132 kring->nr_hwtail, new_hwtail, 4133 kring->nkr_hwofs, new_hwofs); 4134 } 4135 kring->nr_hwcur = kring->rhead; 4136 kring->nr_hwtail = new_hwtail; 4137 kring->nkr_hwofs = new_hwofs; 4138 4139 /* 4140 * Wakeup on the individual and global selwait 4141 * We do the wakeup here, but the ring is not yet reconfigured. 4142 * However, we are under lock so there are no races. 4143 */ 4144 kring->nr_mode = NKR_NETMAP_ON; 4145 kring->nm_notify(kring, 0); 4146 return kring->ring->slot; 4147 } 4148 4149 4150 /* 4151 * Dispatch rx/tx interrupts to the netmap rings. 4152 * 4153 * "work_done" is non-null on the RX path, NULL for the TX path. 4154 * We rely on the OS to make sure that there is only one active 4155 * instance per queue, and that there is appropriate locking. 4156 * 4157 * The 'notify' routine depends on what the ring is attached to. 4158 * - for a netmap file descriptor, do a selwakeup on the individual 4159 * waitqueue, plus one on the global one if needed 4160 * (see netmap_notify) 4161 * - for a nic connected to a switch, call the proper forwarding routine 4162 * (see netmap_bwrap_intr_notify) 4163 */ 4164 int 4165 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 4166 { 4167 struct netmap_kring *kring; 4168 enum txrx t = (work_done ? NR_RX : NR_TX); 4169 4170 q &= NETMAP_RING_MASK; 4171 4172 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) { 4173 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 4174 } 4175 4176 if (q >= nma_get_nrings(na, t)) 4177 return NM_IRQ_PASS; // not a physical queue 4178 4179 kring = NMR(na, t)[q]; 4180 4181 if (kring->nr_mode == NKR_NETMAP_OFF) { 4182 return NM_IRQ_PASS; 4183 } 4184 4185 if (t == NR_RX) { 4186 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 4187 *work_done = 1; /* do not fire napi again */ 4188 } 4189 4190 return kring->nm_notify(kring, 0); 4191 } 4192 4193 4194 /* 4195 * Default functions to handle rx/tx interrupts from a physical device. 4196 * "work_done" is non-null on the RX path, NULL for the TX path. 4197 * 4198 * If the card is not in netmap mode, simply return NM_IRQ_PASS, 4199 * so that the caller proceeds with regular processing. 4200 * Otherwise call netmap_common_irq(). 4201 * 4202 * If the card is connected to a netmap file descriptor, 4203 * do a selwakeup on the individual queue, plus one on the global one 4204 * if needed (multiqueue card _and_ there are multiqueue listeners), 4205 * and return NR_IRQ_COMPLETED. 4206 * 4207 * Finally, if called on rx from an interface connected to a switch, 4208 * calls the proper forwarding routine. 4209 */ 4210 int 4211 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 4212 { 4213 struct netmap_adapter *na = NA(ifp); 4214 4215 /* 4216 * XXX emulated netmap mode sets NAF_SKIP_INTR so 4217 * we still use the regular driver even though the previous 4218 * check fails. It is unclear whether we should use 4219 * nm_native_on() here. 4220 */ 4221 if (!nm_netmap_on(na)) 4222 return NM_IRQ_PASS; 4223 4224 if (na->na_flags & NAF_SKIP_INTR) { 4225 nm_prdis("use regular interrupt"); 4226 return NM_IRQ_PASS; 4227 } 4228 4229 return netmap_common_irq(na, q, work_done); 4230 } 4231 4232 /* set/clear native flags and if_transmit/netdev_ops */ 4233 void 4234 nm_set_native_flags(struct netmap_adapter *na) 4235 { 4236 struct ifnet *ifp = na->ifp; 4237 4238 /* We do the setup for intercepting packets only if we are the 4239 * first user of this adapter. */ 4240 if (na->active_fds > 0) { 4241 return; 4242 } 4243 4244 na->na_flags |= NAF_NETMAP_ON; 4245 nm_os_onenter(ifp); 4246 nm_update_hostrings_mode(na); 4247 } 4248 4249 void 4250 nm_clear_native_flags(struct netmap_adapter *na) 4251 { 4252 struct ifnet *ifp = na->ifp; 4253 4254 /* We undo the setup for intercepting packets only if we are the 4255 * last user of this adapter. */ 4256 if (na->active_fds > 0) { 4257 return; 4258 } 4259 4260 nm_update_hostrings_mode(na); 4261 nm_os_onexit(ifp); 4262 4263 na->na_flags &= ~NAF_NETMAP_ON; 4264 } 4265 4266 void 4267 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff) 4268 { 4269 enum txrx t; 4270 4271 for_rx_tx(t) { 4272 int i; 4273 4274 for (i = 0; i < netmap_real_rings(na, t); i++) { 4275 struct netmap_kring *kring = NMR(na, t)[i]; 4276 4277 if (onoff && nm_kring_pending_on(kring)) 4278 kring->nr_mode = NKR_NETMAP_ON; 4279 else if (!onoff && nm_kring_pending_off(kring)) 4280 kring->nr_mode = NKR_NETMAP_OFF; 4281 } 4282 } 4283 } 4284 4285 /* 4286 * Module loader and unloader 4287 * 4288 * netmap_init() creates the /dev/netmap device and initializes 4289 * all global variables. Returns 0 on success, errno on failure 4290 * (but there is no chance) 4291 * 4292 * netmap_fini() destroys everything. 4293 */ 4294 4295 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 4296 extern struct cdevsw netmap_cdevsw; 4297 4298 4299 void 4300 netmap_fini(void) 4301 { 4302 if (netmap_dev) 4303 destroy_dev(netmap_dev); 4304 /* we assume that there are no longer netmap users */ 4305 nm_os_ifnet_fini(); 4306 netmap_uninit_bridges(); 4307 netmap_mem_fini(); 4308 NMG_LOCK_DESTROY(); 4309 nm_prinf("netmap: unloaded module."); 4310 } 4311 4312 4313 int 4314 netmap_init(void) 4315 { 4316 int error; 4317 4318 NMG_LOCK_INIT(); 4319 4320 error = netmap_mem_init(); 4321 if (error != 0) 4322 goto fail; 4323 /* 4324 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls 4325 * when the module is compiled in. 4326 * XXX could use make_dev_credv() to get error number 4327 */ 4328 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD, 4329 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, 4330 "netmap"); 4331 if (!netmap_dev) 4332 goto fail; 4333 4334 error = netmap_init_bridges(); 4335 if (error) 4336 goto fail; 4337 4338 #ifdef __FreeBSD__ 4339 nm_os_vi_init_index(); 4340 #endif 4341 4342 error = nm_os_ifnet_init(); 4343 if (error) 4344 goto fail; 4345 4346 nm_prinf("netmap: loaded module"); 4347 return (0); 4348 fail: 4349 netmap_fini(); 4350 return (EINVAL); /* may be incorrect */ 4351 } 4352