xref: /freebsd/sys/dev/netmap/netmap.c (revision 58a08f9e9910ea986e0f1103f47274a781b11874)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi
5  * Copyright (C) 2011-2016 Luigi Rizzo
6  * Copyright (C) 2011-2016 Giuseppe Lettieri
7  * Copyright (C) 2011-2016 Vincenzo Maffione
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *   1. Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *   2. Redistributions in binary form must reproduce the above copyright
16  *      notice, this list of conditions and the following disclaimer in the
17  *      documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 
33 /*
34  * $FreeBSD$
35  *
36  * This module supports memory mapped access to network devices,
37  * see netmap(4).
38  *
39  * The module uses a large, memory pool allocated by the kernel
40  * and accessible as mmapped memory by multiple userspace threads/processes.
41  * The memory pool contains packet buffers and "netmap rings",
42  * i.e. user-accessible copies of the interface's queues.
43  *
44  * Access to the network card works like this:
45  * 1. a process/thread issues one or more open() on /dev/netmap, to create
46  *    select()able file descriptor on which events are reported.
47  * 2. on each descriptor, the process issues an ioctl() to identify
48  *    the interface that should report events to the file descriptor.
49  * 3. on each descriptor, the process issues an mmap() request to
50  *    map the shared memory region within the process' address space.
51  *    The list of interesting queues is indicated by a location in
52  *    the shared memory region.
53  * 4. using the functions in the netmap(4) userspace API, a process
54  *    can look up the occupation state of a queue, access memory buffers,
55  *    and retrieve received packets or enqueue packets to transmit.
56  * 5. using some ioctl()s the process can synchronize the userspace view
57  *    of the queue with the actual status in the kernel. This includes both
58  *    receiving the notification of new packets, and transmitting new
59  *    packets on the output interface.
60  * 6. select() or poll() can be used to wait for events on individual
61  *    transmit or receive queues (or all queues for a given interface).
62  *
63 
64 		SYNCHRONIZATION (USER)
65 
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73 
74 		LOCKING (INTERNAL)
75 
76 Within the kernel, access to the netmap rings is protected as follows:
77 
78 - a spinlock on each ring, to handle producer/consumer races on
79   RX rings attached to the host stack (against multiple host
80   threads writing from the host stack to the same ring),
81   and on 'destination' rings attached to a VALE switch
82   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83   protecting multiple active senders for the same destination)
84 
85 - an atomic variable to guarantee that there is at most one
86   instance of *_*xsync() on the ring at any time.
87   For rings connected to user file
88   descriptors, an atomic_test_and_set() protects this, and the
89   lock on the ring is not actually used.
90   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91   is also used to prevent multiple executions (the driver might indeed
92   already guarantee this).
93   For NIC TX rings connected to a VALE switch, the lock arbitrates
94   access to the queue (both when allocating buffers and when pushing
95   them out).
96 
97 - *xsync() should be protected against initializations of the card.
98   On FreeBSD most devices have the reset routine protected by
99   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100   the RING protection on rx_reset(), this should be added.
101 
102   On linux there is an external lock on the tx path, which probably
103   also arbitrates access to the reset routine. XXX to be revised
104 
105 - a per-interface core_lock protecting access from the host stack
106   while interfaces may be detached from netmap mode.
107   XXX there should be no need for this lock if we detach the interfaces
108   only while they are down.
109 
110 
111 --- VALE SWITCH ---
112 
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115 
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123 
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130 
131  */
132 
133 
134 /* --- internals ----
135  *
136  * Roadmap to the code that implements the above.
137  *
138  * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139  * >    select()able file descriptor on which events are reported.
140  *
141  *  	Internally, we allocate a netmap_priv_d structure, that will be
142  *  	initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143  *  	structure for each open().
144  *
145  *      os-specific:
146  *  	    FreeBSD: see netmap_open() (netmap_freebsd.c)
147  *  	    linux:   see linux_netmap_open() (netmap_linux.c)
148  *
149  * > 2. on each descriptor, the process issues an ioctl() to identify
150  * >    the interface that should report events to the file descriptor.
151  *
152  * 	Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153  * 	Most important things happen in netmap_get_na() and
154  * 	netmap_do_regif(), called from there. Additional details can be
155  * 	found in the comments above those functions.
156  *
157  * 	In all cases, this action creates/takes-a-reference-to a
158  * 	netmap_*_adapter describing the port, and allocates a netmap_if
159  * 	and all necessary netmap rings, filling them with netmap buffers.
160  *
161  *      In this phase, the sync callbacks for each ring are set (these are used
162  *      in steps 5 and 6 below).  The callbacks depend on the type of adapter.
163  *      The adapter creation/initialization code puts them in the
164  * 	netmap_adapter (fields na->nm_txsync and na->nm_rxsync).  Then, they
165  * 	are copied from there to the netmap_kring's during netmap_do_regif(), by
166  * 	the nm_krings_create() callback.  All the nm_krings_create callbacks
167  * 	actually call netmap_krings_create() to perform this and the other
168  * 	common stuff. netmap_krings_create() also takes care of the host rings,
169  * 	if needed, by setting their sync callbacks appropriately.
170  *
171  * 	Additional actions depend on the kind of netmap_adapter that has been
172  * 	registered:
173  *
174  * 	- netmap_hw_adapter:  	     [netmap.c]
175  * 	     This is a system netdev/ifp with native netmap support.
176  * 	     The ifp is detached from the host stack by redirecting:
177  * 	       - transmissions (from the network stack) to netmap_transmit()
178  * 	       - receive notifications to the nm_notify() callback for
179  * 	         this adapter. The callback is normally netmap_notify(), unless
180  * 	         the ifp is attached to a bridge using bwrap, in which case it
181  * 	         is netmap_bwrap_intr_notify().
182  *
183  * 	- netmap_generic_adapter:      [netmap_generic.c]
184  * 	      A system netdev/ifp without native netmap support.
185  *
186  * 	(the decision about native/non native support is taken in
187  * 	 netmap_get_hw_na(), called by netmap_get_na())
188  *
189  * 	- netmap_vp_adapter 		[netmap_vale.c]
190  * 	      Returned by netmap_get_bdg_na().
191  * 	      This is a persistent or ephemeral VALE port. Ephemeral ports
192  * 	      are created on the fly if they don't already exist, and are
193  * 	      always attached to a bridge.
194  * 	      Persistent VALE ports must must be created separately, and i
195  * 	      then attached like normal NICs. The NIOCREGIF we are examining
196  * 	      will find them only if they had previosly been created and
197  * 	      attached (see VALE_CTL below).
198  *
199  * 	- netmap_pipe_adapter 	      [netmap_pipe.c]
200  * 	      Returned by netmap_get_pipe_na().
201  * 	      Both pipe ends are created, if they didn't already exist.
202  *
203  * 	- netmap_monitor_adapter      [netmap_monitor.c]
204  * 	      Returned by netmap_get_monitor_na().
205  * 	      If successful, the nm_sync callbacks of the monitored adapter
206  * 	      will be intercepted by the returned monitor.
207  *
208  * 	- netmap_bwrap_adapter	      [netmap_vale.c]
209  * 	      Cannot be obtained in this way, see VALE_CTL below
210  *
211  *
212  * 	os-specific:
213  * 	    linux: we first go through linux_netmap_ioctl() to
214  * 	           adapt the FreeBSD interface to the linux one.
215  *
216  *
217  * > 3. on each descriptor, the process issues an mmap() request to
218  * >    map the shared memory region within the process' address space.
219  * >    The list of interesting queues is indicated by a location in
220  * >    the shared memory region.
221  *
222  *      os-specific:
223  *  	    FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224  *  	    linux:   linux_netmap_mmap (netmap_linux.c).
225  *
226  * > 4. using the functions in the netmap(4) userspace API, a process
227  * >    can look up the occupation state of a queue, access memory buffers,
228  * >    and retrieve received packets or enqueue packets to transmit.
229  *
230  * 	these actions do not involve the kernel.
231  *
232  * > 5. using some ioctl()s the process can synchronize the userspace view
233  * >    of the queue with the actual status in the kernel. This includes both
234  * >    receiving the notification of new packets, and transmitting new
235  * >    packets on the output interface.
236  *
237  * 	These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238  * 	cases. They invoke the nm_sync callbacks on the netmap_kring
239  * 	structures, as initialized in step 2 and maybe later modified
240  * 	by a monitor. Monitors, however, will always call the original
241  * 	callback before doing anything else.
242  *
243  *
244  * > 6. select() or poll() can be used to wait for events on individual
245  * >    transmit or receive queues (or all queues for a given interface).
246  *
247  * 	Implemented in netmap_poll(). This will call the same nm_sync()
248  * 	callbacks as in step 5 above.
249  *
250  * 	os-specific:
251  * 		linux: we first go through linux_netmap_poll() to adapt
252  * 		       the FreeBSD interface to the linux one.
253  *
254  *
255  *  ----  VALE_CTL -----
256  *
257  *  VALE switches are controlled by issuing a NIOCREGIF with a non-null
258  *  nr_cmd in the nmreq structure. These subcommands are handled by
259  *  netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260  *  and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261  *  subcommands, respectively.
262  *
263  *  Any network interface known to the system (including a persistent VALE
264  *  port) can be attached to a VALE switch by issuing the
265  *  NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266  *  look exactly like ephemeral VALE ports (as created in step 2 above).  The
267  *  attachment of other interfaces, instead, requires the creation of a
268  *  netmap_bwrap_adapter.  Moreover, the attached interface must be put in
269  *  netmap mode. This may require the creation of a netmap_generic_adapter if
270  *  we have no native support for the interface, or if generic adapters have
271  *  been forced by sysctl.
272  *
273  *  Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274  *  called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275  *  callback.  In the case of the bwrap, the callback creates the
276  *  netmap_bwrap_adapter.  The initialization of the bwrap is then
277  *  completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278  *  callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279  *  A generic adapter for the wrapped ifp will be created if needed, when
280  *  netmap_get_bdg_na() calls netmap_get_hw_na().
281  *
282  *
283  *  ---- DATAPATHS -----
284  *
285  *              -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286  *
287  *    na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288  *
289  *    - tx from netmap userspace:
290  *	 concurrently:
291  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292  *                kring->nm_sync() == DEVICE_netmap_txsync()
293  *           2) device interrupt handler
294  *                na->nm_notify()  == netmap_notify()
295  *    - rx from netmap userspace:
296  *       concurrently:
297  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298  *                kring->nm_sync() == DEVICE_netmap_rxsync()
299  *           2) device interrupt handler
300  *                na->nm_notify()  == netmap_notify()
301  *    - rx from host stack
302  *       concurrently:
303  *           1) host stack
304  *                netmap_transmit()
305  *                  na->nm_notify  == netmap_notify()
306  *           2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307  *                kring->nm_sync() == netmap_rxsync_from_host
308  *                  netmap_rxsync_from_host(na, NULL, NULL)
309  *    - tx to host stack
310  *           ioctl(NIOCTXSYNC)/netmap_poll() in process context
311  *             kring->nm_sync() == netmap_txsync_to_host
312  *               netmap_txsync_to_host(na)
313  *                 nm_os_send_up()
314  *                   FreeBSD: na->if_input() == ether_input()
315  *                   linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316  *
317  *
318  *               -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319  *
320  *    na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321  *
322  *    - tx from netmap userspace:
323  *       concurrently:
324  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325  *               kring->nm_sync() == generic_netmap_txsync()
326  *                   nm_os_generic_xmit_frame()
327  *                       linux:   dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328  *                           ifp->ndo_start_xmit == generic_ndo_start_xmit()
329  *                               gna->save_start_xmit == orig. dev. start_xmit
330  *                       FreeBSD: na->if_transmit() == orig. dev if_transmit
331  *           2) generic_mbuf_destructor()
332  *                   na->nm_notify() == netmap_notify()
333  *    - rx from netmap userspace:
334  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335  *               kring->nm_sync() == generic_netmap_rxsync()
336  *                   mbq_safe_dequeue()
337  *           2) device driver
338  *               generic_rx_handler()
339  *                   mbq_safe_enqueue()
340  *                   na->nm_notify() == netmap_notify()
341  *    - rx from host stack
342  *        FreeBSD: same as native
343  *        Linux: same as native except:
344  *           1) host stack
345  *               dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346  *                   ifp->ndo_start_xmit == generic_ndo_start_xmit()
347  *                       netmap_transmit()
348  *                           na->nm_notify() == netmap_notify()
349  *    - tx to host stack (same as native):
350  *
351  *
352  *                           -= VALE =-
353  *
354  *   INCOMING:
355  *
356  *      - VALE ports:
357  *          ioctl(NIOCTXSYNC)/netmap_poll() in process context
358  *              kring->nm_sync() == netmap_vp_txsync()
359  *
360  *      - system device with native support:
361  *         from cable:
362  *             interrupt
363  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
365  *                     netmap_vp_txsync()
366  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
367  *         from host stack:
368  *             netmap_transmit()
369  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370  *                     kring->nm_sync() == netmap_rxsync_from_host()
371  *                     netmap_vp_txsync()
372  *
373  *      - system device with generic support:
374  *         from device driver:
375  *            generic_rx_handler()
376  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377  *                     kring->nm_sync() == generic_netmap_rxsync()
378  *                     netmap_vp_txsync()
379  *                     kring->nm_sync() == generic_netmap_rxsync()
380  *         from host stack:
381  *            netmap_transmit()
382  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383  *                     kring->nm_sync() == netmap_rxsync_from_host()
384  *                     netmap_vp_txsync()
385  *
386  *   (all cases) --> nm_bdg_flush()
387  *                      dest_na->nm_notify() == (see below)
388  *
389  *   OUTGOING:
390  *
391  *      - VALE ports:
392  *         concurrently:
393  *             1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394  *                    kring->nm_sync() == netmap_vp_rxsync()
395  *             2) from nm_bdg_flush()
396  *                    na->nm_notify() == netmap_notify()
397  *
398  *      - system device with native support:
399  *          to cable:
400  *             na->nm_notify() == netmap_bwrap_notify()
401  *                 netmap_vp_rxsync()
402  *                 kring->nm_sync() == DEVICE_netmap_txsync()
403  *                 netmap_vp_rxsync()
404  *          to host stack:
405  *                 netmap_vp_rxsync()
406  *                 kring->nm_sync() == netmap_txsync_to_host
407  *                 netmap_vp_rxsync_locked()
408  *
409  *      - system device with generic adapter:
410  *          to device driver:
411  *             na->nm_notify() == netmap_bwrap_notify()
412  *                 netmap_vp_rxsync()
413  *                 kring->nm_sync() == generic_netmap_txsync()
414  *                 netmap_vp_rxsync()
415  *          to host stack:
416  *                 netmap_vp_rxsync()
417  *                 kring->nm_sync() == netmap_txsync_to_host
418  *                 netmap_vp_rxsync()
419  *
420  */
421 
422 /*
423  * OS-specific code that is used only within this file.
424  * Other OS-specific code that must be accessed by drivers
425  * is present in netmap_kern.h
426  */
427 
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h>	/* defines used in kernel.h */
433 #include <sys/kernel.h>	/* types used in module initialization */
434 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
435 #include <sys/filio.h>	/* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h>	/* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/proc.h>
441 #include <sys/rwlock.h>
442 #include <sys/socket.h> /* sockaddrs */
443 #include <sys/selinfo.h>
444 #include <sys/sysctl.h>
445 #include <sys/jail.h>
446 #include <sys/epoch.h>
447 #include <net/vnet.h>
448 #include <net/if.h>
449 #include <net/if_var.h>
450 #include <net/bpf.h>		/* BIOCIMMEDIATE */
451 #include <machine/bus.h>	/* bus_dmamap_* */
452 #include <sys/endian.h>
453 #include <sys/refcount.h>
454 #include <net/ethernet.h>	/* ETHER_BPF_MTAP */
455 
456 
457 #elif defined(linux)
458 
459 #include "bsd_glue.h"
460 
461 #elif defined(__APPLE__)
462 
463 #warning OSX support is only partial
464 #include "osx_glue.h"
465 
466 #elif defined (_WIN32)
467 
468 #include "win_glue.h"
469 
470 #else
471 
472 #error	Unsupported platform
473 
474 #endif /* unsupported */
475 
476 /*
477  * common headers
478  */
479 #include <net/netmap.h>
480 #include <dev/netmap/netmap_kern.h>
481 #include <dev/netmap/netmap_mem2.h>
482 
483 
484 /* user-controlled variables */
485 int netmap_verbose;
486 #ifdef CONFIG_NETMAP_DEBUG
487 int netmap_debug;
488 #endif /* CONFIG_NETMAP_DEBUG */
489 
490 static int netmap_no_timestamp; /* don't timestamp on rxsync */
491 int netmap_no_pendintr = 1;
492 int netmap_txsync_retry = 2;
493 static int netmap_fwd = 0;	/* force transparent forwarding */
494 
495 /*
496  * netmap_admode selects the netmap mode to use.
497  * Invalid values are reset to NETMAP_ADMODE_BEST
498  */
499 enum {	NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
500 	NETMAP_ADMODE_NATIVE,	/* either native or none */
501 	NETMAP_ADMODE_GENERIC,	/* force generic */
502 	NETMAP_ADMODE_LAST };
503 static int netmap_admode = NETMAP_ADMODE_BEST;
504 
505 /* netmap_generic_mit controls mitigation of RX notifications for
506  * the generic netmap adapter. The value is a time interval in
507  * nanoseconds. */
508 int netmap_generic_mit = 100*1000;
509 
510 /* We use by default netmap-aware qdiscs with generic netmap adapters,
511  * even if there can be a little performance hit with hardware NICs.
512  * However, using the qdisc is the safer approach, for two reasons:
513  * 1) it prevents non-fifo qdiscs to break the TX notification
514  *    scheme, which is based on mbuf destructors when txqdisc is
515  *    not used.
516  * 2) it makes it possible to transmit over software devices that
517  *    change skb->dev, like bridge, veth, ...
518  *
519  * Anyway users looking for the best performance should
520  * use native adapters.
521  */
522 #ifdef linux
523 int netmap_generic_txqdisc = 1;
524 #endif
525 
526 /* Default number of slots and queues for generic adapters. */
527 int netmap_generic_ringsize = 1024;
528 int netmap_generic_rings = 1;
529 
530 /* Non-zero to enable checksum offloading in NIC drivers */
531 int netmap_generic_hwcsum = 0;
532 
533 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
534 int ptnet_vnet_hdr = 1;
535 
536 /*
537  * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
538  * in some other operating systems
539  */
540 SYSBEGIN(main_init);
541 
542 SYSCTL_DECL(_dev_netmap);
543 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
544     "Netmap args");
545 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
546 		CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
547 #ifdef CONFIG_NETMAP_DEBUG
548 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
549 		CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
550 #endif /* CONFIG_NETMAP_DEBUG */
551 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
552 		CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
553 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
554 		0, "Always look for new received packets.");
555 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
556 		&netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
557 
558 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
559 		"Force NR_FORWARD mode");
560 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
561 		"Adapter mode. 0 selects the best option available,"
562 		"1 forces native adapter, 2 forces emulated adapter");
563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
564 		0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
565 		"1 to enable checksum generation by the NIC");
566 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
567 		0, "RX notification interval in nanoseconds");
568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
569 		&netmap_generic_ringsize, 0,
570 		"Number of per-ring slots for emulated netmap mode");
571 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
572 		&netmap_generic_rings, 0,
573 		"Number of TX/RX queues for emulated netmap adapters");
574 #ifdef linux
575 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
576 		&netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
577 #endif
578 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
579 		0, "Allow ptnet devices to use virtio-net headers");
580 
581 SYSEND;
582 
583 NMG_LOCK_T	netmap_global_lock;
584 
585 /*
586  * mark the ring as stopped, and run through the locks
587  * to make sure other users get to see it.
588  * stopped must be either NR_KR_STOPPED (for unbounded stop)
589  * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
590  */
591 static void
592 netmap_disable_ring(struct netmap_kring *kr, int stopped)
593 {
594 	nm_kr_stop(kr, stopped);
595 	// XXX check if nm_kr_stop is sufficient
596 	mtx_lock(&kr->q_lock);
597 	mtx_unlock(&kr->q_lock);
598 	nm_kr_put(kr);
599 }
600 
601 /* stop or enable a single ring */
602 void
603 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
604 {
605 	if (stopped)
606 		netmap_disable_ring(NMR(na, t)[ring_id], stopped);
607 	else
608 		NMR(na, t)[ring_id]->nkr_stopped = 0;
609 }
610 
611 
612 /* stop or enable all the rings of na */
613 void
614 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
615 {
616 	int i;
617 	enum txrx t;
618 
619 	if (!nm_netmap_on(na))
620 		return;
621 
622 	if (netmap_verbose) {
623 		nm_prinf("%s: %sable all rings", na->name,
624 		    (stopped ? "dis" : "en"));
625 	}
626 	for_rx_tx(t) {
627 		for (i = 0; i < netmap_real_rings(na, t); i++) {
628 			netmap_set_ring(na, i, t, stopped);
629 		}
630 	}
631 }
632 
633 /*
634  * Convenience function used in drivers.  Waits for current txsync()s/rxsync()s
635  * to finish and prevents any new one from starting.  Call this before turning
636  * netmap mode off, or before removing the hardware rings (e.g., on module
637  * onload).
638  */
639 void
640 netmap_disable_all_rings(struct ifnet *ifp)
641 {
642 	if (NM_NA_VALID(ifp)) {
643 		netmap_set_all_rings(NA(ifp), NM_KR_LOCKED);
644 	}
645 }
646 
647 /*
648  * Convenience function used in drivers.  Re-enables rxsync and txsync on the
649  * adapter's rings In linux drivers, this should be placed near each
650  * napi_enable().
651  */
652 void
653 netmap_enable_all_rings(struct ifnet *ifp)
654 {
655 	if (NM_NA_VALID(ifp)) {
656 		netmap_set_all_rings(NA(ifp), 0 /* enabled */);
657 	}
658 }
659 
660 void
661 netmap_make_zombie(struct ifnet *ifp)
662 {
663 	if (NM_NA_VALID(ifp)) {
664 		struct netmap_adapter *na = NA(ifp);
665 		netmap_set_all_rings(na, NM_KR_LOCKED);
666 		na->na_flags |= NAF_ZOMBIE;
667 		netmap_set_all_rings(na, 0);
668 	}
669 }
670 
671 void
672 netmap_undo_zombie(struct ifnet *ifp)
673 {
674 	if (NM_NA_VALID(ifp)) {
675 		struct netmap_adapter *na = NA(ifp);
676 		if (na->na_flags & NAF_ZOMBIE) {
677 			netmap_set_all_rings(na, NM_KR_LOCKED);
678 			na->na_flags &= ~NAF_ZOMBIE;
679 			netmap_set_all_rings(na, 0);
680 		}
681 	}
682 }
683 
684 /*
685  * generic bound_checking function
686  */
687 u_int
688 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
689 {
690 	u_int oldv = *v;
691 	const char *op = NULL;
692 
693 	if (dflt < lo)
694 		dflt = lo;
695 	if (dflt > hi)
696 		dflt = hi;
697 	if (oldv < lo) {
698 		*v = dflt;
699 		op = "Bump";
700 	} else if (oldv > hi) {
701 		*v = hi;
702 		op = "Clamp";
703 	}
704 	if (op && msg)
705 		nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
706 	return *v;
707 }
708 
709 
710 /*
711  * packet-dump function, user-supplied or static buffer.
712  * The destination buffer must be at least 30+4*len
713  */
714 const char *
715 nm_dump_buf(char *p, int len, int lim, char *dst)
716 {
717 	static char _dst[8192];
718 	int i, j, i0;
719 	static char hex[] ="0123456789abcdef";
720 	char *o;	/* output position */
721 
722 #define P_HI(x)	hex[((x) & 0xf0)>>4]
723 #define P_LO(x)	hex[((x) & 0xf)]
724 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
725 	if (!dst)
726 		dst = _dst;
727 	if (lim <= 0 || lim > len)
728 		lim = len;
729 	o = dst;
730 	sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
731 	o += strlen(o);
732 	/* hexdump routine */
733 	for (i = 0; i < lim; ) {
734 		sprintf(o, "%5d: ", i);
735 		o += strlen(o);
736 		memset(o, ' ', 48);
737 		i0 = i;
738 		for (j=0; j < 16 && i < lim; i++, j++) {
739 			o[j*3] = P_HI(p[i]);
740 			o[j*3+1] = P_LO(p[i]);
741 		}
742 		i = i0;
743 		for (j=0; j < 16 && i < lim; i++, j++)
744 			o[j + 48] = P_C(p[i]);
745 		o[j+48] = '\n';
746 		o += j+49;
747 	}
748 	*o = '\0';
749 #undef P_HI
750 #undef P_LO
751 #undef P_C
752 	return dst;
753 }
754 
755 
756 /*
757  * Fetch configuration from the device, to cope with dynamic
758  * reconfigurations after loading the module.
759  */
760 /* call with NMG_LOCK held */
761 int
762 netmap_update_config(struct netmap_adapter *na)
763 {
764 	struct nm_config_info info;
765 
766 	bzero(&info, sizeof(info));
767 	if (na->nm_config == NULL ||
768 	    na->nm_config(na, &info)) {
769 		/* take whatever we had at init time */
770 		info.num_tx_rings = na->num_tx_rings;
771 		info.num_tx_descs = na->num_tx_desc;
772 		info.num_rx_rings = na->num_rx_rings;
773 		info.num_rx_descs = na->num_rx_desc;
774 		info.rx_buf_maxsize = na->rx_buf_maxsize;
775 	}
776 
777 	if (na->num_tx_rings == info.num_tx_rings &&
778 	    na->num_tx_desc == info.num_tx_descs &&
779 	    na->num_rx_rings == info.num_rx_rings &&
780 	    na->num_rx_desc == info.num_rx_descs &&
781 	    na->rx_buf_maxsize == info.rx_buf_maxsize)
782 		return 0; /* nothing changed */
783 	if (na->active_fds == 0) {
784 		na->num_tx_rings = info.num_tx_rings;
785 		na->num_tx_desc = info.num_tx_descs;
786 		na->num_rx_rings = info.num_rx_rings;
787 		na->num_rx_desc = info.num_rx_descs;
788 		na->rx_buf_maxsize = info.rx_buf_maxsize;
789 		if (netmap_verbose)
790 			nm_prinf("configuration changed for %s: txring %d x %d, "
791 				"rxring %d x %d, rxbufsz %d",
792 				na->name, na->num_tx_rings, na->num_tx_desc,
793 				na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
794 		return 0;
795 	}
796 	nm_prerr("WARNING: configuration changed for %s while active: "
797 		"txring %d x %d, rxring %d x %d, rxbufsz %d",
798 		na->name, info.num_tx_rings, info.num_tx_descs,
799 		info.num_rx_rings, info.num_rx_descs,
800 		info.rx_buf_maxsize);
801 	return 1;
802 }
803 
804 /* nm_sync callbacks for the host rings */
805 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
806 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
807 
808 /* create the krings array and initialize the fields common to all adapters.
809  * The array layout is this:
810  *
811  *                    +----------+
812  * na->tx_rings ----->|          | \
813  *                    |          |  } na->num_tx_ring
814  *                    |          | /
815  *                    +----------+
816  *                    |          |    host tx kring
817  * na->rx_rings ----> +----------+
818  *                    |          | \
819  *                    |          |  } na->num_rx_rings
820  *                    |          | /
821  *                    +----------+
822  *                    |          |    host rx kring
823  *                    +----------+
824  * na->tailroom ----->|          | \
825  *                    |          |  } tailroom bytes
826  *                    |          | /
827  *                    +----------+
828  *
829  * Note: for compatibility, host krings are created even when not needed.
830  * The tailroom space is currently used by vale ports for allocating leases.
831  */
832 /* call with NMG_LOCK held */
833 int
834 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
835 {
836 	u_int i, len, ndesc;
837 	struct netmap_kring *kring;
838 	u_int n[NR_TXRX];
839 	enum txrx t;
840 	int err = 0;
841 
842 	if (na->tx_rings != NULL) {
843 		if (netmap_debug & NM_DEBUG_ON)
844 			nm_prerr("warning: krings were already created");
845 		return 0;
846 	}
847 
848 	/* account for the (possibly fake) host rings */
849 	n[NR_TX] = netmap_all_rings(na, NR_TX);
850 	n[NR_RX] = netmap_all_rings(na, NR_RX);
851 
852 	len = (n[NR_TX] + n[NR_RX]) *
853 		(sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
854 		+ tailroom;
855 
856 	na->tx_rings = nm_os_malloc((size_t)len);
857 	if (na->tx_rings == NULL) {
858 		nm_prerr("Cannot allocate krings");
859 		return ENOMEM;
860 	}
861 	na->rx_rings = na->tx_rings + n[NR_TX];
862 	na->tailroom = na->rx_rings + n[NR_RX];
863 
864 	/* link the krings in the krings array */
865 	kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
866 	for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
867 		na->tx_rings[i] = kring;
868 		kring++;
869 	}
870 
871 	/*
872 	 * All fields in krings are 0 except the one initialized below.
873 	 * but better be explicit on important kring fields.
874 	 */
875 	for_rx_tx(t) {
876 		ndesc = nma_get_ndesc(na, t);
877 		for (i = 0; i < n[t]; i++) {
878 			kring = NMR(na, t)[i];
879 			bzero(kring, sizeof(*kring));
880 			kring->notify_na = na;
881 			kring->ring_id = i;
882 			kring->tx = t;
883 			kring->nkr_num_slots = ndesc;
884 			kring->nr_mode = NKR_NETMAP_OFF;
885 			kring->nr_pending_mode = NKR_NETMAP_OFF;
886 			if (i < nma_get_nrings(na, t)) {
887 				kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
888 			} else {
889 				if (!(na->na_flags & NAF_HOST_RINGS))
890 					kring->nr_kflags |= NKR_FAKERING;
891 				kring->nm_sync = (t == NR_TX ?
892 						netmap_txsync_to_host:
893 						netmap_rxsync_from_host);
894 			}
895 			kring->nm_notify = na->nm_notify;
896 			kring->rhead = kring->rcur = kring->nr_hwcur = 0;
897 			/*
898 			 * IMPORTANT: Always keep one slot empty.
899 			 */
900 			kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
901 			snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
902 					nm_txrx2str(t), i);
903 			nm_prdis("ktx %s h %d c %d t %d",
904 				kring->name, kring->rhead, kring->rcur, kring->rtail);
905 			err = nm_os_selinfo_init(&kring->si, kring->name);
906 			if (err) {
907 				netmap_krings_delete(na);
908 				return err;
909 			}
910 			mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
911 			kring->na = na;	/* setting this field marks the mutex as initialized */
912 		}
913 		err = nm_os_selinfo_init(&na->si[t], na->name);
914 		if (err) {
915 			netmap_krings_delete(na);
916 			return err;
917 		}
918 	}
919 
920 	return 0;
921 }
922 
923 
924 /* undo the actions performed by netmap_krings_create */
925 /* call with NMG_LOCK held */
926 void
927 netmap_krings_delete(struct netmap_adapter *na)
928 {
929 	struct netmap_kring **kring = na->tx_rings;
930 	enum txrx t;
931 
932 	if (na->tx_rings == NULL) {
933 		if (netmap_debug & NM_DEBUG_ON)
934 			nm_prerr("warning: krings were already deleted");
935 		return;
936 	}
937 
938 	for_rx_tx(t)
939 		nm_os_selinfo_uninit(&na->si[t]);
940 
941 	/* we rely on the krings layout described above */
942 	for ( ; kring != na->tailroom; kring++) {
943 		if ((*kring)->na != NULL)
944 			mtx_destroy(&(*kring)->q_lock);
945 		nm_os_selinfo_uninit(&(*kring)->si);
946 	}
947 	nm_os_free(na->tx_rings);
948 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
949 }
950 
951 
952 /*
953  * Destructor for NIC ports. They also have an mbuf queue
954  * on the rings connected to the host so we need to purge
955  * them first.
956  */
957 /* call with NMG_LOCK held */
958 void
959 netmap_hw_krings_delete(struct netmap_adapter *na)
960 {
961 	u_int lim = netmap_real_rings(na, NR_RX), i;
962 
963 	for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
964 		struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
965 		nm_prdis("destroy sw mbq with len %d", mbq_len(q));
966 		mbq_purge(q);
967 		mbq_safe_fini(q);
968 	}
969 	netmap_krings_delete(na);
970 }
971 
972 static void
973 netmap_mem_drop(struct netmap_adapter *na)
974 {
975 	int last = netmap_mem_deref(na->nm_mem, na);
976 	/* if the native allocator had been overrided on regif,
977 	 * restore it now and drop the temporary one
978 	 */
979 	if (last && na->nm_mem_prev) {
980 		netmap_mem_put(na->nm_mem);
981 		na->nm_mem = na->nm_mem_prev;
982 		na->nm_mem_prev = NULL;
983 	}
984 }
985 
986 /*
987  * Undo everything that was done in netmap_do_regif(). In particular,
988  * call nm_register(ifp,0) to stop netmap mode on the interface and
989  * revert to normal operation.
990  */
991 /* call with NMG_LOCK held */
992 static void netmap_unset_ringid(struct netmap_priv_d *);
993 static void netmap_krings_put(struct netmap_priv_d *);
994 void
995 netmap_do_unregif(struct netmap_priv_d *priv)
996 {
997 	struct netmap_adapter *na = priv->np_na;
998 
999 	NMG_LOCK_ASSERT();
1000 	na->active_fds--;
1001 	/* unset nr_pending_mode and possibly release exclusive mode */
1002 	netmap_krings_put(priv);
1003 
1004 #ifdef	WITH_MONITOR
1005 	/* XXX check whether we have to do something with monitor
1006 	 * when rings change nr_mode. */
1007 	if (na->active_fds <= 0) {
1008 		/* walk through all the rings and tell any monitor
1009 		 * that the port is going to exit netmap mode
1010 		 */
1011 		netmap_monitor_stop(na);
1012 	}
1013 #endif
1014 
1015 	if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1016 		na->nm_register(na, 0);
1017 	}
1018 
1019 	/* delete rings and buffers that are no longer needed */
1020 	netmap_mem_rings_delete(na);
1021 
1022 	if (na->active_fds <= 0) {	/* last instance */
1023 		/*
1024 		 * (TO CHECK) We enter here
1025 		 * when the last reference to this file descriptor goes
1026 		 * away. This means we cannot have any pending poll()
1027 		 * or interrupt routine operating on the structure.
1028 		 * XXX The file may be closed in a thread while
1029 		 * another thread is using it.
1030 		 * Linux keeps the file opened until the last reference
1031 		 * by any outstanding ioctl/poll or mmap is gone.
1032 		 * FreeBSD does not track mmap()s (but we do) and
1033 		 * wakes up any sleeping poll(). Need to check what
1034 		 * happens if the close() occurs while a concurrent
1035 		 * syscall is running.
1036 		 */
1037 		if (netmap_debug & NM_DEBUG_ON)
1038 			nm_prinf("deleting last instance for %s", na->name);
1039 
1040 		if (nm_netmap_on(na)) {
1041 			nm_prerr("BUG: netmap on while going to delete the krings");
1042 		}
1043 
1044 		na->nm_krings_delete(na);
1045 
1046 		/* restore the default number of host tx and rx rings */
1047 		if (na->na_flags & NAF_HOST_RINGS) {
1048 			na->num_host_tx_rings = 1;
1049 			na->num_host_rx_rings = 1;
1050 		} else {
1051 			na->num_host_tx_rings = 0;
1052 			na->num_host_rx_rings = 0;
1053 		}
1054 	}
1055 
1056 	/* possibily decrement counter of tx_si/rx_si users */
1057 	netmap_unset_ringid(priv);
1058 	/* delete the nifp */
1059 	netmap_mem_if_delete(na, priv->np_nifp);
1060 	/* drop the allocator */
1061 	netmap_mem_drop(na);
1062 	/* mark the priv as unregistered */
1063 	priv->np_na = NULL;
1064 	priv->np_nifp = NULL;
1065 }
1066 
1067 struct netmap_priv_d*
1068 netmap_priv_new(void)
1069 {
1070 	struct netmap_priv_d *priv;
1071 
1072 	priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1073 	if (priv == NULL)
1074 		return NULL;
1075 	priv->np_refs = 1;
1076 	nm_os_get_module();
1077 	return priv;
1078 }
1079 
1080 /*
1081  * Destructor of the netmap_priv_d, called when the fd is closed
1082  * Action: undo all the things done by NIOCREGIF,
1083  * On FreeBSD we need to track whether there are active mmap()s,
1084  * and we use np_active_mmaps for that. On linux, the field is always 0.
1085  * Return: 1 if we can free priv, 0 otherwise.
1086  *
1087  */
1088 /* call with NMG_LOCK held */
1089 void
1090 netmap_priv_delete(struct netmap_priv_d *priv)
1091 {
1092 	struct netmap_adapter *na = priv->np_na;
1093 
1094 	/* number of active references to this fd */
1095 	if (--priv->np_refs > 0) {
1096 		return;
1097 	}
1098 	nm_os_put_module();
1099 	if (na) {
1100 		netmap_do_unregif(priv);
1101 	}
1102 	netmap_unget_na(na, priv->np_ifp);
1103 	bzero(priv, sizeof(*priv));	/* for safety */
1104 	nm_os_free(priv);
1105 }
1106 
1107 
1108 /* call with NMG_LOCK *not* held */
1109 void
1110 netmap_dtor(void *data)
1111 {
1112 	struct netmap_priv_d *priv = data;
1113 
1114 	NMG_LOCK();
1115 	netmap_priv_delete(priv);
1116 	NMG_UNLOCK();
1117 }
1118 
1119 
1120 /*
1121  * Handlers for synchronization of the rings from/to the host stack.
1122  * These are associated to a network interface and are just another
1123  * ring pair managed by userspace.
1124  *
1125  * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1126  * flags):
1127  *
1128  * - Before releasing buffers on hw RX rings, the application can mark
1129  *   them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1130  *   will be forwarded to the host stack, similarly to what happened if
1131  *   the application moved them to the host TX ring.
1132  *
1133  * - Before releasing buffers on the host RX ring, the application can
1134  *   mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1135  *   they will be forwarded to the hw TX rings, saving the application
1136  *   from doing the same task in user-space.
1137  *
1138  * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD
1139  * flag, or globally with the netmap_fwd sysctl.
1140  *
1141  * The transfer NIC --> host is relatively easy, just encapsulate
1142  * into mbufs and we are done. The host --> NIC side is slightly
1143  * harder because there might not be room in the tx ring so it
1144  * might take a while before releasing the buffer.
1145  */
1146 
1147 
1148 /*
1149  * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1150  * We do not need to lock because the queue is private.
1151  * After this call the queue is empty.
1152  */
1153 static void
1154 netmap_send_up(struct ifnet *dst, struct mbq *q)
1155 {
1156 	struct mbuf *m;
1157 	struct mbuf *head = NULL, *prev = NULL;
1158 #ifdef __FreeBSD__
1159 	struct epoch_tracker et;
1160 
1161 	NET_EPOCH_ENTER(et);
1162 #endif /* __FreeBSD__ */
1163 	/* Send packets up, outside the lock; head/prev machinery
1164 	 * is only useful for Windows. */
1165 	while ((m = mbq_dequeue(q)) != NULL) {
1166 		if (netmap_debug & NM_DEBUG_HOST)
1167 			nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1168 		prev = nm_os_send_up(dst, m, prev);
1169 		if (head == NULL)
1170 			head = prev;
1171 	}
1172 	if (head)
1173 		nm_os_send_up(dst, NULL, head);
1174 #ifdef __FreeBSD__
1175 	NET_EPOCH_EXIT(et);
1176 #endif /* __FreeBSD__ */
1177 	mbq_fini(q);
1178 }
1179 
1180 
1181 /*
1182  * Scan the buffers from hwcur to ring->head, and put a copy of those
1183  * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1184  * Drop remaining packets in the unlikely event
1185  * of an mbuf shortage.
1186  */
1187 static void
1188 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1189 {
1190 	u_int const lim = kring->nkr_num_slots - 1;
1191 	u_int const head = kring->rhead;
1192 	u_int n;
1193 	struct netmap_adapter *na = kring->na;
1194 
1195 	for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1196 		struct mbuf *m;
1197 		struct netmap_slot *slot = &kring->ring->slot[n];
1198 
1199 		if ((slot->flags & NS_FORWARD) == 0 && !force)
1200 			continue;
1201 		if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1202 			nm_prlim(5, "bad pkt at %d len %d", n, slot->len);
1203 			continue;
1204 		}
1205 		slot->flags &= ~NS_FORWARD; // XXX needed ?
1206 		/* XXX TODO: adapt to the case of a multisegment packet */
1207 		m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1208 
1209 		if (m == NULL)
1210 			break;
1211 		mbq_enqueue(q, m);
1212 	}
1213 }
1214 
1215 static inline int
1216 _nm_may_forward(struct netmap_kring *kring)
1217 {
1218 	return	((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1219 		 kring->na->na_flags & NAF_HOST_RINGS &&
1220 		 kring->tx == NR_RX);
1221 }
1222 
1223 static inline int
1224 nm_may_forward_up(struct netmap_kring *kring)
1225 {
1226 	return	_nm_may_forward(kring) &&
1227 		 kring->ring_id != kring->na->num_rx_rings;
1228 }
1229 
1230 static inline int
1231 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1232 {
1233 	return	_nm_may_forward(kring) &&
1234 		 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1235 		 kring->ring_id == kring->na->num_rx_rings;
1236 }
1237 
1238 /*
1239  * Send to the NIC rings packets marked NS_FORWARD between
1240  * kring->nr_hwcur and kring->rhead.
1241  * Called under kring->rx_queue.lock on the sw rx ring.
1242  *
1243  * It can only be called if the user opened all the TX hw rings,
1244  * see NAF_CAN_FORWARD_DOWN flag.
1245  * We can touch the TX netmap rings (slots, head and cur) since
1246  * we are in poll/ioctl system call context, and the application
1247  * is not supposed to touch the ring (using a different thread)
1248  * during the execution of the system call.
1249  */
1250 static u_int
1251 netmap_sw_to_nic(struct netmap_adapter *na)
1252 {
1253 	struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1254 	struct netmap_slot *rxslot = kring->ring->slot;
1255 	u_int i, rxcur = kring->nr_hwcur;
1256 	u_int const head = kring->rhead;
1257 	u_int const src_lim = kring->nkr_num_slots - 1;
1258 	u_int sent = 0;
1259 
1260 	/* scan rings to find space, then fill as much as possible */
1261 	for (i = 0; i < na->num_tx_rings; i++) {
1262 		struct netmap_kring *kdst = na->tx_rings[i];
1263 		struct netmap_ring *rdst = kdst->ring;
1264 		u_int const dst_lim = kdst->nkr_num_slots - 1;
1265 
1266 		/* XXX do we trust ring or kring->rcur,rtail ? */
1267 		for (; rxcur != head && !nm_ring_empty(rdst);
1268 		     rxcur = nm_next(rxcur, src_lim) ) {
1269 			struct netmap_slot *src, *dst, tmp;
1270 			u_int dst_head = rdst->head;
1271 
1272 			src = &rxslot[rxcur];
1273 			if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1274 				continue;
1275 
1276 			sent++;
1277 
1278 			dst = &rdst->slot[dst_head];
1279 
1280 			tmp = *src;
1281 
1282 			src->buf_idx = dst->buf_idx;
1283 			src->flags = NS_BUF_CHANGED;
1284 
1285 			dst->buf_idx = tmp.buf_idx;
1286 			dst->len = tmp.len;
1287 			dst->flags = NS_BUF_CHANGED;
1288 
1289 			rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1290 		}
1291 		/* if (sent) XXX txsync ? it would be just an optimization */
1292 	}
1293 	return sent;
1294 }
1295 
1296 
1297 /*
1298  * netmap_txsync_to_host() passes packets up. We are called from a
1299  * system call in user process context, and the only contention
1300  * can be among multiple user threads erroneously calling
1301  * this routine concurrently.
1302  */
1303 static int
1304 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1305 {
1306 	struct netmap_adapter *na = kring->na;
1307 	u_int const lim = kring->nkr_num_slots - 1;
1308 	u_int const head = kring->rhead;
1309 	struct mbq q;
1310 
1311 	/* Take packets from hwcur to head and pass them up.
1312 	 * Force hwcur = head since netmap_grab_packets() stops at head
1313 	 */
1314 	mbq_init(&q);
1315 	netmap_grab_packets(kring, &q, 1 /* force */);
1316 	nm_prdis("have %d pkts in queue", mbq_len(&q));
1317 	kring->nr_hwcur = head;
1318 	kring->nr_hwtail = head + lim;
1319 	if (kring->nr_hwtail > lim)
1320 		kring->nr_hwtail -= lim + 1;
1321 
1322 	netmap_send_up(na->ifp, &q);
1323 	return 0;
1324 }
1325 
1326 
1327 /*
1328  * rxsync backend for packets coming from the host stack.
1329  * They have been put in kring->rx_queue by netmap_transmit().
1330  * We protect access to the kring using kring->rx_queue.lock
1331  *
1332  * also moves to the nic hw rings any packet the user has marked
1333  * for transparent-mode forwarding, then sets the NR_FORWARD
1334  * flag in the kring to let the caller push them out
1335  */
1336 static int
1337 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1338 {
1339 	struct netmap_adapter *na = kring->na;
1340 	struct netmap_ring *ring = kring->ring;
1341 	u_int nm_i, n;
1342 	u_int const lim = kring->nkr_num_slots - 1;
1343 	u_int const head = kring->rhead;
1344 	int ret = 0;
1345 	struct mbq *q = &kring->rx_queue, fq;
1346 
1347 	mbq_init(&fq); /* fq holds packets to be freed */
1348 
1349 	mbq_lock(q);
1350 
1351 	/* First part: import newly received packets */
1352 	n = mbq_len(q);
1353 	if (n) { /* grab packets from the queue */
1354 		struct mbuf *m;
1355 		uint32_t stop_i;
1356 
1357 		nm_i = kring->nr_hwtail;
1358 		stop_i = nm_prev(kring->nr_hwcur, lim);
1359 		while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1360 			int len = MBUF_LEN(m);
1361 			struct netmap_slot *slot = &ring->slot[nm_i];
1362 
1363 			m_copydata(m, 0, len, NMB(na, slot));
1364 			nm_prdis("nm %d len %d", nm_i, len);
1365 			if (netmap_debug & NM_DEBUG_HOST)
1366 				nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1367 
1368 			slot->len = len;
1369 			slot->flags = 0;
1370 			nm_i = nm_next(nm_i, lim);
1371 			mbq_enqueue(&fq, m);
1372 		}
1373 		kring->nr_hwtail = nm_i;
1374 	}
1375 
1376 	/*
1377 	 * Second part: skip past packets that userspace has released.
1378 	 */
1379 	nm_i = kring->nr_hwcur;
1380 	if (nm_i != head) { /* something was released */
1381 		if (nm_may_forward_down(kring, flags)) {
1382 			ret = netmap_sw_to_nic(na);
1383 			if (ret > 0) {
1384 				kring->nr_kflags |= NR_FORWARD;
1385 				ret = 0;
1386 			}
1387 		}
1388 		kring->nr_hwcur = head;
1389 	}
1390 
1391 	mbq_unlock(q);
1392 
1393 	mbq_purge(&fq);
1394 	mbq_fini(&fq);
1395 
1396 	return ret;
1397 }
1398 
1399 
1400 /* Get a netmap adapter for the port.
1401  *
1402  * If it is possible to satisfy the request, return 0
1403  * with *na containing the netmap adapter found.
1404  * Otherwise return an error code, with *na containing NULL.
1405  *
1406  * When the port is attached to a bridge, we always return
1407  * EBUSY.
1408  * Otherwise, if the port is already bound to a file descriptor,
1409  * then we unconditionally return the existing adapter into *na.
1410  * In all the other cases, we return (into *na) either native,
1411  * generic or NULL, according to the following table:
1412  *
1413  *					native_support
1414  * active_fds   dev.netmap.admode         YES     NO
1415  * -------------------------------------------------------
1416  *    >0              *                 NA(ifp) NA(ifp)
1417  *
1418  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
1419  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
1420  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
1421  *
1422  */
1423 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1424 int
1425 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1426 {
1427 	/* generic support */
1428 	int i = netmap_admode;	/* Take a snapshot. */
1429 	struct netmap_adapter *prev_na;
1430 	int error = 0;
1431 
1432 	*na = NULL; /* default */
1433 
1434 	/* reset in case of invalid value */
1435 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1436 		i = netmap_admode = NETMAP_ADMODE_BEST;
1437 
1438 	if (NM_NA_VALID(ifp)) {
1439 		prev_na = NA(ifp);
1440 		/* If an adapter already exists, return it if
1441 		 * there are active file descriptors or if
1442 		 * netmap is not forced to use generic
1443 		 * adapters.
1444 		 */
1445 		if (NETMAP_OWNED_BY_ANY(prev_na)
1446 			|| i != NETMAP_ADMODE_GENERIC
1447 			|| prev_na->na_flags & NAF_FORCE_NATIVE
1448 #ifdef WITH_PIPES
1449 			/* ugly, but we cannot allow an adapter switch
1450 			 * if some pipe is referring to this one
1451 			 */
1452 			|| prev_na->na_next_pipe > 0
1453 #endif
1454 		) {
1455 			*na = prev_na;
1456 			goto assign_mem;
1457 		}
1458 	}
1459 
1460 	/* If there isn't native support and netmap is not allowed
1461 	 * to use generic adapters, we cannot satisfy the request.
1462 	 */
1463 	if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1464 		return EOPNOTSUPP;
1465 
1466 	/* Otherwise, create a generic adapter and return it,
1467 	 * saving the previously used netmap adapter, if any.
1468 	 *
1469 	 * Note that here 'prev_na', if not NULL, MUST be a
1470 	 * native adapter, and CANNOT be a generic one. This is
1471 	 * true because generic adapters are created on demand, and
1472 	 * destroyed when not used anymore. Therefore, if the adapter
1473 	 * currently attached to an interface 'ifp' is generic, it
1474 	 * must be that
1475 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1476 	 * Consequently, if NA(ifp) is generic, we will enter one of
1477 	 * the branches above. This ensures that we never override
1478 	 * a generic adapter with another generic adapter.
1479 	 */
1480 	error = generic_netmap_attach(ifp);
1481 	if (error)
1482 		return error;
1483 
1484 	*na = NA(ifp);
1485 
1486 assign_mem:
1487 	if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1488 	    (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1489 		(*na)->nm_mem_prev = (*na)->nm_mem;
1490 		(*na)->nm_mem = netmap_mem_get(nmd);
1491 	}
1492 
1493 	return 0;
1494 }
1495 
1496 /*
1497  * MUST BE CALLED UNDER NMG_LOCK()
1498  *
1499  * Get a refcounted reference to a netmap adapter attached
1500  * to the interface specified by req.
1501  * This is always called in the execution of an ioctl().
1502  *
1503  * Return ENXIO if the interface specified by the request does
1504  * not exist, ENOTSUP if netmap is not supported by the interface,
1505  * EBUSY if the interface is already attached to a bridge,
1506  * EINVAL if parameters are invalid, ENOMEM if needed resources
1507  * could not be allocated.
1508  * If successful, hold a reference to the netmap adapter.
1509  *
1510  * If the interface specified by req is a system one, also keep
1511  * a reference to it and return a valid *ifp.
1512  */
1513 int
1514 netmap_get_na(struct nmreq_header *hdr,
1515 	      struct netmap_adapter **na, struct ifnet **ifp,
1516 	      struct netmap_mem_d *nmd, int create)
1517 {
1518 	struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1519 	int error = 0;
1520 	struct netmap_adapter *ret = NULL;
1521 	int nmd_ref = 0;
1522 
1523 	*na = NULL;     /* default return value */
1524 	*ifp = NULL;
1525 
1526 	if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1527 		return EINVAL;
1528 	}
1529 
1530 	if (req->nr_mode == NR_REG_PIPE_MASTER ||
1531 			req->nr_mode == NR_REG_PIPE_SLAVE) {
1532 		/* Do not accept deprecated pipe modes. */
1533 		nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1534 		return EINVAL;
1535 	}
1536 
1537 	NMG_LOCK_ASSERT();
1538 
1539 	/* if the request contain a memid, try to find the
1540 	 * corresponding memory region
1541 	 */
1542 	if (nmd == NULL && req->nr_mem_id) {
1543 		nmd = netmap_mem_find(req->nr_mem_id);
1544 		if (nmd == NULL)
1545 			return EINVAL;
1546 		/* keep the rereference */
1547 		nmd_ref = 1;
1548 	}
1549 
1550 	/* We cascade through all possible types of netmap adapter.
1551 	 * All netmap_get_*_na() functions return an error and an na,
1552 	 * with the following combinations:
1553 	 *
1554 	 * error    na
1555 	 *   0	   NULL		type doesn't match
1556 	 *  !0	   NULL		type matches, but na creation/lookup failed
1557 	 *   0	  !NULL		type matches and na created/found
1558 	 *  !0    !NULL		impossible
1559 	 */
1560 	error = netmap_get_null_na(hdr, na, nmd, create);
1561 	if (error || *na != NULL)
1562 		goto out;
1563 
1564 	/* try to see if this is a monitor port */
1565 	error = netmap_get_monitor_na(hdr, na, nmd, create);
1566 	if (error || *na != NULL)
1567 		goto out;
1568 
1569 	/* try to see if this is a pipe port */
1570 	error = netmap_get_pipe_na(hdr, na, nmd, create);
1571 	if (error || *na != NULL)
1572 		goto out;
1573 
1574 	/* try to see if this is a bridge port */
1575 	error = netmap_get_vale_na(hdr, na, nmd, create);
1576 	if (error)
1577 		goto out;
1578 
1579 	if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1580 		goto out;
1581 
1582 	/*
1583 	 * This must be a hardware na, lookup the name in the system.
1584 	 * Note that by hardware we actually mean "it shows up in ifconfig".
1585 	 * This may still be a tap, a veth/epair, or even a
1586 	 * persistent VALE port.
1587 	 */
1588 	*ifp = ifunit_ref(hdr->nr_name);
1589 	if (*ifp == NULL) {
1590 		error = ENXIO;
1591 		goto out;
1592 	}
1593 
1594 	error = netmap_get_hw_na(*ifp, nmd, &ret);
1595 	if (error)
1596 		goto out;
1597 
1598 	*na = ret;
1599 	netmap_adapter_get(ret);
1600 
1601 	/*
1602 	 * if the adapter supports the host rings and it is not alread open,
1603 	 * try to set the number of host rings as requested by the user
1604 	 */
1605 	if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) {
1606 		if (req->nr_host_tx_rings)
1607 			(*na)->num_host_tx_rings = req->nr_host_tx_rings;
1608 		if (req->nr_host_rx_rings)
1609 			(*na)->num_host_rx_rings = req->nr_host_rx_rings;
1610 	}
1611 	nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings,
1612 			(*na)->num_host_rx_rings);
1613 
1614 out:
1615 	if (error) {
1616 		if (ret)
1617 			netmap_adapter_put(ret);
1618 		if (*ifp) {
1619 			if_rele(*ifp);
1620 			*ifp = NULL;
1621 		}
1622 	}
1623 	if (nmd_ref)
1624 		netmap_mem_put(nmd);
1625 
1626 	return error;
1627 }
1628 
1629 /* undo netmap_get_na() */
1630 void
1631 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1632 {
1633 	if (ifp)
1634 		if_rele(ifp);
1635 	if (na)
1636 		netmap_adapter_put(na);
1637 }
1638 
1639 
1640 #define NM_FAIL_ON(t) do {						\
1641 	if (unlikely(t)) {						\
1642 		nm_prlim(5, "%s: fail '" #t "' "				\
1643 			"h %d c %d t %d "				\
1644 			"rh %d rc %d rt %d "				\
1645 			"hc %d ht %d",					\
1646 			kring->name,					\
1647 			head, cur, ring->tail,				\
1648 			kring->rhead, kring->rcur, kring->rtail,	\
1649 			kring->nr_hwcur, kring->nr_hwtail);		\
1650 		return kring->nkr_num_slots;				\
1651 	}								\
1652 } while (0)
1653 
1654 /*
1655  * validate parameters on entry for *_txsync()
1656  * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1657  * in case of error.
1658  *
1659  * rhead, rcur and rtail=hwtail are stored from previous round.
1660  * hwcur is the next packet to send to the ring.
1661  *
1662  * We want
1663  *    hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1664  *
1665  * hwcur, rhead, rtail and hwtail are reliable
1666  */
1667 u_int
1668 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1669 {
1670 	u_int head = ring->head; /* read only once */
1671 	u_int cur = ring->cur; /* read only once */
1672 	u_int n = kring->nkr_num_slots;
1673 
1674 	nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1675 		kring->name,
1676 		kring->nr_hwcur, kring->nr_hwtail,
1677 		ring->head, ring->cur, ring->tail);
1678 #if 1 /* kernel sanity checks; but we can trust the kring. */
1679 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1680 	    kring->rtail >= n ||  kring->nr_hwtail >= n);
1681 #endif /* kernel sanity checks */
1682 	/*
1683 	 * user sanity checks. We only use head,
1684 	 * A, B, ... are possible positions for head:
1685 	 *
1686 	 *  0    A  rhead   B  rtail   C  n-1
1687 	 *  0    D  rtail   E  rhead   F  n-1
1688 	 *
1689 	 * B, F, D are valid. A, C, E are wrong
1690 	 */
1691 	if (kring->rtail >= kring->rhead) {
1692 		/* want rhead <= head <= rtail */
1693 		NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1694 		/* and also head <= cur <= rtail */
1695 		NM_FAIL_ON(cur < head || cur > kring->rtail);
1696 	} else { /* here rtail < rhead */
1697 		/* we need head outside rtail .. rhead */
1698 		NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1699 
1700 		/* two cases now: head <= rtail or head >= rhead  */
1701 		if (head <= kring->rtail) {
1702 			/* want head <= cur <= rtail */
1703 			NM_FAIL_ON(cur < head || cur > kring->rtail);
1704 		} else { /* head >= rhead */
1705 			/* cur must be outside rtail..head */
1706 			NM_FAIL_ON(cur > kring->rtail && cur < head);
1707 		}
1708 	}
1709 	if (ring->tail != kring->rtail) {
1710 		nm_prlim(5, "%s tail overwritten was %d need %d", kring->name,
1711 			ring->tail, kring->rtail);
1712 		ring->tail = kring->rtail;
1713 	}
1714 	kring->rhead = head;
1715 	kring->rcur = cur;
1716 	return head;
1717 }
1718 
1719 
1720 /*
1721  * validate parameters on entry for *_rxsync()
1722  * Returns ring->head if ok, kring->nkr_num_slots on error.
1723  *
1724  * For a valid configuration,
1725  * hwcur <= head <= cur <= tail <= hwtail
1726  *
1727  * We only consider head and cur.
1728  * hwcur and hwtail are reliable.
1729  *
1730  */
1731 u_int
1732 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1733 {
1734 	uint32_t const n = kring->nkr_num_slots;
1735 	uint32_t head, cur;
1736 
1737 	nm_prdis(5,"%s kc %d kt %d h %d c %d t %d",
1738 		kring->name,
1739 		kring->nr_hwcur, kring->nr_hwtail,
1740 		ring->head, ring->cur, ring->tail);
1741 	/*
1742 	 * Before storing the new values, we should check they do not
1743 	 * move backwards. However:
1744 	 * - head is not an issue because the previous value is hwcur;
1745 	 * - cur could in principle go back, however it does not matter
1746 	 *   because we are processing a brand new rxsync()
1747 	 */
1748 	cur = kring->rcur = ring->cur;	/* read only once */
1749 	head = kring->rhead = ring->head;	/* read only once */
1750 #if 1 /* kernel sanity checks */
1751 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1752 #endif /* kernel sanity checks */
1753 	/* user sanity checks */
1754 	if (kring->nr_hwtail >= kring->nr_hwcur) {
1755 		/* want hwcur <= rhead <= hwtail */
1756 		NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1757 		/* and also rhead <= rcur <= hwtail */
1758 		NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1759 	} else {
1760 		/* we need rhead outside hwtail..hwcur */
1761 		NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1762 		/* two cases now: head <= hwtail or head >= hwcur  */
1763 		if (head <= kring->nr_hwtail) {
1764 			/* want head <= cur <= hwtail */
1765 			NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1766 		} else {
1767 			/* cur must be outside hwtail..head */
1768 			NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1769 		}
1770 	}
1771 	if (ring->tail != kring->rtail) {
1772 		nm_prlim(5, "%s tail overwritten was %d need %d",
1773 			kring->name,
1774 			ring->tail, kring->rtail);
1775 		ring->tail = kring->rtail;
1776 	}
1777 	return head;
1778 }
1779 
1780 
1781 /*
1782  * Error routine called when txsync/rxsync detects an error.
1783  * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1784  * Return 1 on reinit.
1785  *
1786  * This routine is only called by the upper half of the kernel.
1787  * It only reads hwcur (which is changed only by the upper half, too)
1788  * and hwtail (which may be changed by the lower half, but only on
1789  * a tx ring and only to increase it, so any error will be recovered
1790  * on the next call). For the above, we don't strictly need to call
1791  * it under lock.
1792  */
1793 int
1794 netmap_ring_reinit(struct netmap_kring *kring)
1795 {
1796 	struct netmap_ring *ring = kring->ring;
1797 	u_int i, lim = kring->nkr_num_slots - 1;
1798 	int errors = 0;
1799 
1800 	// XXX KASSERT nm_kr_tryget
1801 	nm_prlim(10, "called for %s", kring->name);
1802 	// XXX probably wrong to trust userspace
1803 	kring->rhead = ring->head;
1804 	kring->rcur  = ring->cur;
1805 	kring->rtail = ring->tail;
1806 
1807 	if (ring->cur > lim)
1808 		errors++;
1809 	if (ring->head > lim)
1810 		errors++;
1811 	if (ring->tail > lim)
1812 		errors++;
1813 	for (i = 0; i <= lim; i++) {
1814 		u_int idx = ring->slot[i].buf_idx;
1815 		u_int len = ring->slot[i].len;
1816 		if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1817 			nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1818 			ring->slot[i].buf_idx = 0;
1819 			ring->slot[i].len = 0;
1820 		} else if (len > NETMAP_BUF_SIZE(kring->na)) {
1821 			ring->slot[i].len = 0;
1822 			nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len);
1823 		}
1824 	}
1825 	if (errors) {
1826 		nm_prlim(10, "total %d errors", errors);
1827 		nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d",
1828 			kring->name,
1829 			ring->cur, kring->nr_hwcur,
1830 			ring->tail, kring->nr_hwtail);
1831 		ring->head = kring->rhead = kring->nr_hwcur;
1832 		ring->cur  = kring->rcur  = kring->nr_hwcur;
1833 		ring->tail = kring->rtail = kring->nr_hwtail;
1834 	}
1835 	return (errors ? 1 : 0);
1836 }
1837 
1838 /* interpret the ringid and flags fields of an nmreq, by translating them
1839  * into a pair of intervals of ring indices:
1840  *
1841  * [priv->np_txqfirst, priv->np_txqlast) and
1842  * [priv->np_rxqfirst, priv->np_rxqlast)
1843  *
1844  */
1845 int
1846 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1847 			uint16_t nr_ringid, uint64_t nr_flags)
1848 {
1849 	struct netmap_adapter *na = priv->np_na;
1850 	int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1851 	enum txrx t;
1852 	u_int j;
1853 
1854 	for_rx_tx(t) {
1855 		if (nr_flags & excluded_direction[t]) {
1856 			priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1857 			continue;
1858 		}
1859 		switch (nr_mode) {
1860 		case NR_REG_ALL_NIC:
1861 		case NR_REG_NULL:
1862 			priv->np_qfirst[t] = 0;
1863 			priv->np_qlast[t] = nma_get_nrings(na, t);
1864 			nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1865 				priv->np_qfirst[t], priv->np_qlast[t]);
1866 			break;
1867 		case NR_REG_SW:
1868 		case NR_REG_NIC_SW:
1869 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1870 				nm_prerr("host rings not supported");
1871 				return EINVAL;
1872 			}
1873 			priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1874 				nma_get_nrings(na, t) : 0);
1875 			priv->np_qlast[t] = netmap_all_rings(na, t);
1876 			nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1877 				nm_txrx2str(t),
1878 				priv->np_qfirst[t], priv->np_qlast[t]);
1879 			break;
1880 		case NR_REG_ONE_NIC:
1881 			if (nr_ringid >= na->num_tx_rings &&
1882 					nr_ringid >= na->num_rx_rings) {
1883 				nm_prerr("invalid ring id %d", nr_ringid);
1884 				return EINVAL;
1885 			}
1886 			/* if not enough rings, use the first one */
1887 			j = nr_ringid;
1888 			if (j >= nma_get_nrings(na, t))
1889 				j = 0;
1890 			priv->np_qfirst[t] = j;
1891 			priv->np_qlast[t] = j + 1;
1892 			nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t),
1893 				priv->np_qfirst[t], priv->np_qlast[t]);
1894 			break;
1895 		case NR_REG_ONE_SW:
1896 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1897 				nm_prerr("host rings not supported");
1898 				return EINVAL;
1899 			}
1900 			if (nr_ringid >= na->num_host_tx_rings &&
1901 					nr_ringid >= na->num_host_rx_rings) {
1902 				nm_prerr("invalid ring id %d", nr_ringid);
1903 				return EINVAL;
1904 			}
1905 			/* if not enough rings, use the first one */
1906 			j = nr_ringid;
1907 			if (j >= nma_get_host_nrings(na, t))
1908 				j = 0;
1909 			priv->np_qfirst[t] = nma_get_nrings(na, t) + j;
1910 			priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1;
1911 			nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t),
1912 				priv->np_qfirst[t], priv->np_qlast[t]);
1913 			break;
1914 		default:
1915 			nm_prerr("invalid regif type %d", nr_mode);
1916 			return EINVAL;
1917 		}
1918 	}
1919 	priv->np_flags = nr_flags;
1920 
1921 	/* Allow transparent forwarding mode in the host --> nic
1922 	 * direction only if all the TX hw rings have been opened. */
1923 	if (priv->np_qfirst[NR_TX] == 0 &&
1924 			priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1925 		priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1926 	}
1927 
1928 	if (netmap_verbose) {
1929 		nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1930 			na->name,
1931 			priv->np_qfirst[NR_TX],
1932 			priv->np_qlast[NR_TX],
1933 			priv->np_qfirst[NR_RX],
1934 			priv->np_qlast[NR_RX],
1935 			nr_ringid);
1936 	}
1937 	return 0;
1938 }
1939 
1940 
1941 /*
1942  * Set the ring ID. For devices with a single queue, a request
1943  * for all rings is the same as a single ring.
1944  */
1945 static int
1946 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1947 		uint16_t nr_ringid, uint64_t nr_flags)
1948 {
1949 	struct netmap_adapter *na = priv->np_na;
1950 	int error;
1951 	enum txrx t;
1952 
1953 	error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags);
1954 	if (error) {
1955 		return error;
1956 	}
1957 
1958 	priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1;
1959 
1960 	/* optimization: count the users registered for more than
1961 	 * one ring, which are the ones sleeping on the global queue.
1962 	 * The default netmap_notify() callback will then
1963 	 * avoid signaling the global queue if nobody is using it
1964 	 */
1965 	for_rx_tx(t) {
1966 		if (nm_si_user(priv, t))
1967 			na->si_users[t]++;
1968 	}
1969 	return 0;
1970 }
1971 
1972 static void
1973 netmap_unset_ringid(struct netmap_priv_d *priv)
1974 {
1975 	struct netmap_adapter *na = priv->np_na;
1976 	enum txrx t;
1977 
1978 	for_rx_tx(t) {
1979 		if (nm_si_user(priv, t))
1980 			na->si_users[t]--;
1981 		priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1982 	}
1983 	priv->np_flags = 0;
1984 	priv->np_txpoll = 0;
1985 	priv->np_kloop_state = 0;
1986 }
1987 
1988 
1989 /* Set the nr_pending_mode for the requested rings.
1990  * If requested, also try to get exclusive access to the rings, provided
1991  * the rings we want to bind are not exclusively owned by a previous bind.
1992  */
1993 static int
1994 netmap_krings_get(struct netmap_priv_d *priv)
1995 {
1996 	struct netmap_adapter *na = priv->np_na;
1997 	u_int i;
1998 	struct netmap_kring *kring;
1999 	int excl = (priv->np_flags & NR_EXCLUSIVE);
2000 	enum txrx t;
2001 
2002 	if (netmap_debug & NM_DEBUG_ON)
2003 		nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
2004 			na->name,
2005 			priv->np_qfirst[NR_TX],
2006 			priv->np_qlast[NR_TX],
2007 			priv->np_qfirst[NR_RX],
2008 			priv->np_qlast[NR_RX]);
2009 
2010 	/* first round: check that all the requested rings
2011 	 * are neither alread exclusively owned, nor we
2012 	 * want exclusive ownership when they are already in use
2013 	 */
2014 	for_rx_tx(t) {
2015 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2016 			kring = NMR(na, t)[i];
2017 			if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
2018 			    (kring->users && excl))
2019 			{
2020 				nm_prdis("ring %s busy", kring->name);
2021 				return EBUSY;
2022 			}
2023 		}
2024 	}
2025 
2026 	/* second round: increment usage count (possibly marking them
2027 	 * as exclusive) and set the nr_pending_mode
2028 	 */
2029 	for_rx_tx(t) {
2030 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2031 			kring = NMR(na, t)[i];
2032 			kring->users++;
2033 			if (excl)
2034 				kring->nr_kflags |= NKR_EXCLUSIVE;
2035 	                kring->nr_pending_mode = NKR_NETMAP_ON;
2036 		}
2037 	}
2038 
2039 	return 0;
2040 
2041 }
2042 
2043 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
2044  * if was asked on regif, and unset the nr_pending_mode if we are the
2045  * last users of the involved rings. */
2046 static void
2047 netmap_krings_put(struct netmap_priv_d *priv)
2048 {
2049 	struct netmap_adapter *na = priv->np_na;
2050 	u_int i;
2051 	struct netmap_kring *kring;
2052 	int excl = (priv->np_flags & NR_EXCLUSIVE);
2053 	enum txrx t;
2054 
2055 	nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)",
2056 			na->name,
2057 			priv->np_qfirst[NR_TX],
2058 			priv->np_qlast[NR_TX],
2059 			priv->np_qfirst[NR_RX],
2060 			priv->np_qlast[MR_RX]);
2061 
2062 	for_rx_tx(t) {
2063 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2064 			kring = NMR(na, t)[i];
2065 			if (excl)
2066 				kring->nr_kflags &= ~NKR_EXCLUSIVE;
2067 			kring->users--;
2068 			if (kring->users == 0)
2069 				kring->nr_pending_mode = NKR_NETMAP_OFF;
2070 		}
2071 	}
2072 }
2073 
2074 static int
2075 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2076 {
2077 	return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2078 }
2079 
2080 /* Validate the CSB entries for both directions (atok and ktoa).
2081  * To be called under NMG_LOCK(). */
2082 static int
2083 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2084 {
2085 	struct nm_csb_atok *csb_atok_base =
2086 		(struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2087 	struct nm_csb_ktoa *csb_ktoa_base =
2088 		(struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2089 	enum txrx t;
2090 	int num_rings[NR_TXRX], tot_rings;
2091 	size_t entry_size[2];
2092 	void *csb_start[2];
2093 	int i;
2094 
2095 	if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2096 		nm_prerr("Cannot update CSB while kloop is running");
2097 		return EBUSY;
2098 	}
2099 
2100 	tot_rings = 0;
2101 	for_rx_tx(t) {
2102 		num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2103 		tot_rings += num_rings[t];
2104 	}
2105 	if (tot_rings <= 0)
2106 		return 0;
2107 
2108 	if (!(priv->np_flags & NR_EXCLUSIVE)) {
2109 		nm_prerr("CSB mode requires NR_EXCLUSIVE");
2110 		return EINVAL;
2111 	}
2112 
2113 	entry_size[0] = sizeof(*csb_atok_base);
2114 	entry_size[1] = sizeof(*csb_ktoa_base);
2115 	csb_start[0] = (void *)csb_atok_base;
2116 	csb_start[1] = (void *)csb_ktoa_base;
2117 
2118 	for (i = 0; i < 2; i++) {
2119 		/* On Linux we could use access_ok() to simplify
2120 		 * the validation. However, the advantage of
2121 		 * this approach is that it works also on
2122 		 * FreeBSD. */
2123 		size_t csb_size = tot_rings * entry_size[i];
2124 		void *tmp;
2125 		int err;
2126 
2127 		if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2128 			nm_prerr("Unaligned CSB address");
2129 			return EINVAL;
2130 		}
2131 
2132 		tmp = nm_os_malloc(csb_size);
2133 		if (!tmp)
2134 			return ENOMEM;
2135 		if (i == 0) {
2136 			/* Application --> kernel direction. */
2137 			err = copyin(csb_start[i], tmp, csb_size);
2138 		} else {
2139 			/* Kernel --> application direction. */
2140 			memset(tmp, 0, csb_size);
2141 			err = copyout(tmp, csb_start[i], csb_size);
2142 		}
2143 		nm_os_free(tmp);
2144 		if (err) {
2145 			nm_prerr("Invalid CSB address");
2146 			return err;
2147 		}
2148 	}
2149 
2150 	priv->np_csb_atok_base = csb_atok_base;
2151 	priv->np_csb_ktoa_base = csb_ktoa_base;
2152 
2153 	/* Initialize the CSB. */
2154 	for_rx_tx(t) {
2155 		for (i = 0; i < num_rings[t]; i++) {
2156 			struct netmap_kring *kring =
2157 				NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2158 			struct nm_csb_atok *csb_atok = csb_atok_base + i;
2159 			struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2160 
2161 			if (t == NR_RX) {
2162 				csb_atok += num_rings[NR_TX];
2163 				csb_ktoa += num_rings[NR_TX];
2164 			}
2165 
2166 			CSB_WRITE(csb_atok, head, kring->rhead);
2167 			CSB_WRITE(csb_atok, cur, kring->rcur);
2168 			CSB_WRITE(csb_atok, appl_need_kick, 1);
2169 			CSB_WRITE(csb_atok, sync_flags, 1);
2170 			CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2171 			CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2172 			CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2173 
2174 			nm_prinf("csb_init for kring %s: head %u, cur %u, "
2175 				"hwcur %u, hwtail %u", kring->name,
2176 				kring->rhead, kring->rcur, kring->nr_hwcur,
2177 				kring->nr_hwtail);
2178 		}
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 /* Ensure that the netmap adapter can support the given MTU.
2185  * @return EINVAL if the na cannot be set to mtu, 0 otherwise.
2186  */
2187 int
2188 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) {
2189 	unsigned nbs = NETMAP_BUF_SIZE(na);
2190 
2191 	if (mtu <= na->rx_buf_maxsize) {
2192 		/* The MTU fits a single NIC slot. We only
2193 		 * Need to check that netmap buffers are
2194 		 * large enough to hold an MTU. NS_MOREFRAG
2195 		 * cannot be used in this case. */
2196 		if (nbs < mtu) {
2197 			nm_prerr("error: netmap buf size (%u) "
2198 				 "< device MTU (%u)", nbs, mtu);
2199 			return EINVAL;
2200 		}
2201 	} else {
2202 		/* More NIC slots may be needed to receive
2203 		 * or transmit a single packet. Check that
2204 		 * the adapter supports NS_MOREFRAG and that
2205 		 * netmap buffers are large enough to hold
2206 		 * the maximum per-slot size. */
2207 		if (!(na->na_flags & NAF_MOREFRAG)) {
2208 			nm_prerr("error: large MTU (%d) needed "
2209 				 "but %s does not support "
2210 				 "NS_MOREFRAG", mtu,
2211 				 na->ifp->if_xname);
2212 			return EINVAL;
2213 		} else if (nbs < na->rx_buf_maxsize) {
2214 			nm_prerr("error: using NS_MOREFRAG on "
2215 				 "%s requires netmap buf size "
2216 				 ">= %u", na->ifp->if_xname,
2217 				 na->rx_buf_maxsize);
2218 			return EINVAL;
2219 		} else {
2220 			nm_prinf("info: netmap application on "
2221 				 "%s needs to support "
2222 				 "NS_MOREFRAG "
2223 				 "(MTU=%u,netmap_buf_size=%u)",
2224 				 na->ifp->if_xname, mtu, nbs);
2225 		}
2226 	}
2227 	return 0;
2228 }
2229 
2230 
2231 /*
2232  * possibly move the interface to netmap-mode.
2233  * If success it returns a pointer to netmap_if, otherwise NULL.
2234  * This must be called with NMG_LOCK held.
2235  *
2236  * The following na callbacks are called in the process:
2237  *
2238  * na->nm_config()			[by netmap_update_config]
2239  * (get current number and size of rings)
2240  *
2241  *  	We have a generic one for linux (netmap_linux_config).
2242  *  	The bwrap has to override this, since it has to forward
2243  *  	the request to the wrapped adapter (netmap_bwrap_config).
2244  *
2245  *
2246  * na->nm_krings_create()
2247  * (create and init the krings array)
2248  *
2249  * 	One of the following:
2250  *
2251  *	* netmap_hw_krings_create, 			(hw ports)
2252  *		creates the standard layout for the krings
2253  * 		and adds the mbq (used for the host rings).
2254  *
2255  * 	* netmap_vp_krings_create			(VALE ports)
2256  * 		add leases and scratchpads
2257  *
2258  * 	* netmap_pipe_krings_create			(pipes)
2259  * 		create the krings and rings of both ends and
2260  * 		cross-link them
2261  *
2262  *      * netmap_monitor_krings_create 			(monitors)
2263  *      	avoid allocating the mbq
2264  *
2265  *      * netmap_bwrap_krings_create			(bwraps)
2266  *      	create both the brap krings array,
2267  *      	the krings array of the wrapped adapter, and
2268  *      	(if needed) the fake array for the host adapter
2269  *
2270  * na->nm_register(, 1)
2271  * (put the adapter in netmap mode)
2272  *
2273  * 	This may be one of the following:
2274  *
2275  * 	* netmap_hw_reg				        (hw ports)
2276  * 		checks that the ifp is still there, then calls
2277  * 		the hardware specific callback;
2278  *
2279  * 	* netmap_vp_reg					(VALE ports)
2280  *		If the port is connected to a bridge,
2281  *		set the NAF_NETMAP_ON flag under the
2282  *		bridge write lock.
2283  *
2284  *	* netmap_pipe_reg				(pipes)
2285  *		inform the other pipe end that it is no
2286  *		longer responsible for the lifetime of this
2287  *		pipe end
2288  *
2289  *	* netmap_monitor_reg				(monitors)
2290  *		intercept the sync callbacks of the monitored
2291  *		rings
2292  *
2293  *	* netmap_bwrap_reg				(bwraps)
2294  *		cross-link the bwrap and hwna rings,
2295  *		forward the request to the hwna, override
2296  *		the hwna notify callback (to get the frames
2297  *		coming from outside go through the bridge).
2298  *
2299  *
2300  */
2301 int
2302 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2303 	uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags)
2304 {
2305 	struct netmap_if *nifp = NULL;
2306 	int error;
2307 
2308 	NMG_LOCK_ASSERT();
2309 	priv->np_na = na;     /* store the reference */
2310 	error = netmap_mem_finalize(na->nm_mem, na);
2311 	if (error)
2312 		goto err;
2313 
2314 	if (na->active_fds == 0) {
2315 
2316 		/* cache the allocator info in the na */
2317 		error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2318 		if (error)
2319 			goto err_drop_mem;
2320 		nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2321 					    na->na_lut.objsize);
2322 
2323 		/* ring configuration may have changed, fetch from the card */
2324 		netmap_update_config(na);
2325 	}
2326 
2327 	/* compute the range of tx and rx rings to monitor */
2328 	error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags);
2329 	if (error)
2330 		goto err_put_lut;
2331 
2332 	if (na->active_fds == 0) {
2333 		/*
2334 		 * If this is the first registration of the adapter,
2335 		 * perform sanity checks and create the in-kernel view
2336 		 * of the netmap rings (the netmap krings).
2337 		 */
2338 		if (na->ifp && nm_priv_rx_enabled(priv)) {
2339 			/* This netmap adapter is attached to an ifnet. */
2340 			unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2341 
2342 			nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2343 				na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na));
2344 
2345 			if (na->rx_buf_maxsize == 0) {
2346 				nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2347 				error = EIO;
2348 				goto err_drop_mem;
2349 			}
2350 
2351 			error = netmap_buf_size_validate(na, mtu);
2352 			if (error)
2353 				goto err_drop_mem;
2354 		}
2355 
2356 		/*
2357 		 * Depending on the adapter, this may also create
2358 		 * the netmap rings themselves
2359 		 */
2360 		error = na->nm_krings_create(na);
2361 		if (error)
2362 			goto err_put_lut;
2363 
2364 	}
2365 
2366 	/* now the krings must exist and we can check whether some
2367 	 * previous bind has exclusive ownership on them, and set
2368 	 * nr_pending_mode
2369 	 */
2370 	error = netmap_krings_get(priv);
2371 	if (error)
2372 		goto err_del_krings;
2373 
2374 	/* create all needed missing netmap rings */
2375 	error = netmap_mem_rings_create(na);
2376 	if (error)
2377 		goto err_rel_excl;
2378 
2379 	/* in all cases, create a new netmap if */
2380 	nifp = netmap_mem_if_new(na, priv);
2381 	if (nifp == NULL) {
2382 		error = ENOMEM;
2383 		goto err_rel_excl;
2384 	}
2385 
2386 	if (nm_kring_pending(priv)) {
2387 		/* Some kring is switching mode, tell the adapter to
2388 		 * react on this. */
2389 		error = na->nm_register(na, 1);
2390 		if (error)
2391 			goto err_del_if;
2392 	}
2393 
2394 	/* Commit the reference. */
2395 	na->active_fds++;
2396 
2397 	/*
2398 	 * advertise that the interface is ready by setting np_nifp.
2399 	 * The barrier is needed because readers (poll, *SYNC and mmap)
2400 	 * check for priv->np_nifp != NULL without locking
2401 	 */
2402 	mb(); /* make sure previous writes are visible to all CPUs */
2403 	priv->np_nifp = nifp;
2404 
2405 	return 0;
2406 
2407 err_del_if:
2408 	netmap_mem_if_delete(na, nifp);
2409 err_rel_excl:
2410 	netmap_krings_put(priv);
2411 	netmap_mem_rings_delete(na);
2412 err_del_krings:
2413 	if (na->active_fds == 0)
2414 		na->nm_krings_delete(na);
2415 err_put_lut:
2416 	if (na->active_fds == 0)
2417 		memset(&na->na_lut, 0, sizeof(na->na_lut));
2418 err_drop_mem:
2419 	netmap_mem_drop(na);
2420 err:
2421 	priv->np_na = NULL;
2422 	return error;
2423 }
2424 
2425 
2426 /*
2427  * update kring and ring at the end of rxsync/txsync.
2428  */
2429 static inline void
2430 nm_sync_finalize(struct netmap_kring *kring)
2431 {
2432 	/*
2433 	 * Update ring tail to what the kernel knows
2434 	 * After txsync: head/rhead/hwcur might be behind cur/rcur
2435 	 * if no carrier.
2436 	 */
2437 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
2438 
2439 	nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2440 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
2441 		kring->rhead, kring->rcur, kring->rtail);
2442 }
2443 
2444 /* set ring timestamp */
2445 static inline void
2446 ring_timestamp_set(struct netmap_ring *ring)
2447 {
2448 	if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2449 		microtime(&ring->ts);
2450 	}
2451 }
2452 
2453 static int nmreq_copyin(struct nmreq_header *, int);
2454 static int nmreq_copyout(struct nmreq_header *, int);
2455 static int nmreq_checkoptions(struct nmreq_header *);
2456 
2457 /*
2458  * ioctl(2) support for the "netmap" device.
2459  *
2460  * Following a list of accepted commands:
2461  * - NIOCCTRL		device control API
2462  * - NIOCTXSYNC		sync TX rings
2463  * - NIOCRXSYNC		sync RX rings
2464  * - SIOCGIFADDR	just for convenience
2465  * - NIOCGINFO		deprecated (legacy API)
2466  * - NIOCREGIF		deprecated (legacy API)
2467  *
2468  * Return 0 on success, errno otherwise.
2469  */
2470 int
2471 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2472 		struct thread *td, int nr_body_is_user)
2473 {
2474 	struct mbq q;	/* packets from RX hw queues to host stack */
2475 	struct netmap_adapter *na = NULL;
2476 	struct netmap_mem_d *nmd = NULL;
2477 	struct ifnet *ifp = NULL;
2478 	int error = 0;
2479 	u_int i, qfirst, qlast;
2480 	struct netmap_kring **krings;
2481 	int sync_flags;
2482 	enum txrx t;
2483 
2484 	switch (cmd) {
2485 	case NIOCCTRL: {
2486 		struct nmreq_header *hdr = (struct nmreq_header *)data;
2487 
2488 		if (hdr->nr_version < NETMAP_MIN_API ||
2489 		    hdr->nr_version > NETMAP_MAX_API) {
2490 			nm_prerr("API mismatch: got %d need %d",
2491 				hdr->nr_version, NETMAP_API);
2492 			return EINVAL;
2493 		}
2494 
2495 		/* Make a kernel-space copy of the user-space nr_body.
2496 		 * For convenince, the nr_body pointer and the pointers
2497 		 * in the options list will be replaced with their
2498 		 * kernel-space counterparts. The original pointers are
2499 		 * saved internally and later restored by nmreq_copyout
2500 		 */
2501 		error = nmreq_copyin(hdr, nr_body_is_user);
2502 		if (error) {
2503 			return error;
2504 		}
2505 
2506 		/* Sanitize hdr->nr_name. */
2507 		hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2508 
2509 		switch (hdr->nr_reqtype) {
2510 		case NETMAP_REQ_REGISTER: {
2511 			struct nmreq_register *req =
2512 				(struct nmreq_register *)(uintptr_t)hdr->nr_body;
2513 			struct netmap_if *nifp;
2514 
2515 			/* Protect access to priv from concurrent requests. */
2516 			NMG_LOCK();
2517 			do {
2518 				struct nmreq_option *opt;
2519 				u_int memflags;
2520 
2521 				if (priv->np_nifp != NULL) {	/* thread already registered */
2522 					error = EBUSY;
2523 					break;
2524 				}
2525 
2526 #ifdef WITH_EXTMEM
2527 				opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM);
2528 				if (opt != NULL) {
2529 					struct nmreq_opt_extmem *e =
2530 						(struct nmreq_opt_extmem *)opt;
2531 
2532 					nmd = netmap_mem_ext_create(e->nro_usrptr,
2533 							&e->nro_info, &error);
2534 					opt->nro_status = error;
2535 					if (nmd == NULL)
2536 						break;
2537 				}
2538 #endif /* WITH_EXTMEM */
2539 
2540 				if (nmd == NULL && req->nr_mem_id) {
2541 					/* find the allocator and get a reference */
2542 					nmd = netmap_mem_find(req->nr_mem_id);
2543 					if (nmd == NULL) {
2544 						if (netmap_verbose) {
2545 							nm_prerr("%s: failed to find mem_id %u",
2546 									hdr->nr_name, req->nr_mem_id);
2547 						}
2548 						error = EINVAL;
2549 						break;
2550 					}
2551 				}
2552 				/* find the interface and a reference */
2553 				error = netmap_get_na(hdr, &na, &ifp, nmd,
2554 						      1 /* create */); /* keep reference */
2555 				if (error)
2556 					break;
2557 				if (NETMAP_OWNED_BY_KERN(na)) {
2558 					error = EBUSY;
2559 					break;
2560 				}
2561 
2562 				if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2563 					nm_prerr("virt_hdr_len=%d, but application does "
2564 						"not accept it", na->virt_hdr_len);
2565 					error = EIO;
2566 					break;
2567 				}
2568 
2569 				error = netmap_do_regif(priv, na, req->nr_mode,
2570 							req->nr_ringid, req->nr_flags);
2571 				if (error) {    /* reg. failed, release priv and ref */
2572 					break;
2573 				}
2574 
2575 				opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2576 				if (opt != NULL) {
2577 					struct nmreq_opt_csb *csbo =
2578 						(struct nmreq_opt_csb *)opt;
2579 					error = netmap_csb_validate(priv, csbo);
2580 					opt->nro_status = error;
2581 					if (error) {
2582 						netmap_do_unregif(priv);
2583 						break;
2584 					}
2585 				}
2586 
2587 				nifp = priv->np_nifp;
2588 
2589 				/* return the offset of the netmap_if object */
2590 				req->nr_rx_rings = na->num_rx_rings;
2591 				req->nr_tx_rings = na->num_tx_rings;
2592 				req->nr_rx_slots = na->num_rx_desc;
2593 				req->nr_tx_slots = na->num_tx_desc;
2594 				req->nr_host_tx_rings = na->num_host_tx_rings;
2595 				req->nr_host_rx_rings = na->num_host_rx_rings;
2596 				error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2597 					&req->nr_mem_id);
2598 				if (error) {
2599 					netmap_do_unregif(priv);
2600 					break;
2601 				}
2602 				if (memflags & NETMAP_MEM_PRIVATE) {
2603 					*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2604 				}
2605 				for_rx_tx(t) {
2606 					priv->np_si[t] = nm_si_user(priv, t) ?
2607 						&na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2608 				}
2609 
2610 				if (req->nr_extra_bufs) {
2611 					if (netmap_verbose)
2612 						nm_prinf("requested %d extra buffers",
2613 							req->nr_extra_bufs);
2614 					req->nr_extra_bufs = netmap_extra_alloc(na,
2615 						&nifp->ni_bufs_head, req->nr_extra_bufs);
2616 					if (netmap_verbose)
2617 						nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2618 				}
2619 				req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2620 
2621 				error = nmreq_checkoptions(hdr);
2622 				if (error) {
2623 					netmap_do_unregif(priv);
2624 					break;
2625 				}
2626 
2627 				/* store ifp reference so that priv destructor may release it */
2628 				priv->np_ifp = ifp;
2629 			} while (0);
2630 			if (error) {
2631 				netmap_unget_na(na, ifp);
2632 			}
2633 			/* release the reference from netmap_mem_find() or
2634 			 * netmap_mem_ext_create()
2635 			 */
2636 			if (nmd)
2637 				netmap_mem_put(nmd);
2638 			NMG_UNLOCK();
2639 			break;
2640 		}
2641 
2642 		case NETMAP_REQ_PORT_INFO_GET: {
2643 			struct nmreq_port_info_get *req =
2644 				(struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2645 
2646 			NMG_LOCK();
2647 			do {
2648 				u_int memflags;
2649 
2650 				if (hdr->nr_name[0] != '\0') {
2651 					/* Build a nmreq_register out of the nmreq_port_info_get,
2652 					 * so that we can call netmap_get_na(). */
2653 					struct nmreq_register regreq;
2654 					bzero(&regreq, sizeof(regreq));
2655 					regreq.nr_mode = NR_REG_ALL_NIC;
2656 					regreq.nr_tx_slots = req->nr_tx_slots;
2657 					regreq.nr_rx_slots = req->nr_rx_slots;
2658 					regreq.nr_tx_rings = req->nr_tx_rings;
2659 					regreq.nr_rx_rings = req->nr_rx_rings;
2660 					regreq.nr_host_tx_rings = req->nr_host_tx_rings;
2661 					regreq.nr_host_rx_rings = req->nr_host_rx_rings;
2662 					regreq.nr_mem_id = req->nr_mem_id;
2663 
2664 					/* get a refcount */
2665 					hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2666 					hdr->nr_body = (uintptr_t)&regreq;
2667 					error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2668 					hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2669 					hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2670 					if (error) {
2671 						na = NULL;
2672 						ifp = NULL;
2673 						break;
2674 					}
2675 					nmd = na->nm_mem; /* get memory allocator */
2676 				} else {
2677 					nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2678 					if (nmd == NULL) {
2679 						if (netmap_verbose)
2680 							nm_prerr("%s: failed to find mem_id %u",
2681 									hdr->nr_name,
2682 									req->nr_mem_id ? req->nr_mem_id : 1);
2683 						error = EINVAL;
2684 						break;
2685 					}
2686 				}
2687 
2688 				error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2689 					&req->nr_mem_id);
2690 				if (error)
2691 					break;
2692 				if (na == NULL) /* only memory info */
2693 					break;
2694 				netmap_update_config(na);
2695 				req->nr_rx_rings = na->num_rx_rings;
2696 				req->nr_tx_rings = na->num_tx_rings;
2697 				req->nr_rx_slots = na->num_rx_desc;
2698 				req->nr_tx_slots = na->num_tx_desc;
2699 				req->nr_host_tx_rings = na->num_host_tx_rings;
2700 				req->nr_host_rx_rings = na->num_host_rx_rings;
2701 			} while (0);
2702 			netmap_unget_na(na, ifp);
2703 			NMG_UNLOCK();
2704 			break;
2705 		}
2706 #ifdef WITH_VALE
2707 		case NETMAP_REQ_VALE_ATTACH: {
2708 			error = netmap_vale_attach(hdr, NULL /* userspace request */);
2709 			break;
2710 		}
2711 
2712 		case NETMAP_REQ_VALE_DETACH: {
2713 			error = netmap_vale_detach(hdr, NULL /* userspace request */);
2714 			break;
2715 		}
2716 
2717 		case NETMAP_REQ_VALE_LIST: {
2718 			error = netmap_vale_list(hdr);
2719 			break;
2720 		}
2721 
2722 		case NETMAP_REQ_PORT_HDR_SET: {
2723 			struct nmreq_port_hdr *req =
2724 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2725 			/* Build a nmreq_register out of the nmreq_port_hdr,
2726 			 * so that we can call netmap_get_bdg_na(). */
2727 			struct nmreq_register regreq;
2728 			bzero(&regreq, sizeof(regreq));
2729 			regreq.nr_mode = NR_REG_ALL_NIC;
2730 
2731 			/* For now we only support virtio-net headers, and only for
2732 			 * VALE ports, but this may change in future. Valid lengths
2733 			 * for the virtio-net header are 0 (no header), 10 and 12. */
2734 			if (req->nr_hdr_len != 0 &&
2735 				req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
2736 					req->nr_hdr_len != 12) {
2737 				if (netmap_verbose)
2738 					nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
2739 				error = EINVAL;
2740 				break;
2741 			}
2742 			NMG_LOCK();
2743 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2744 			hdr->nr_body = (uintptr_t)&regreq;
2745 			error = netmap_get_vale_na(hdr, &na, NULL, 0);
2746 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
2747 			hdr->nr_body = (uintptr_t)req;
2748 			if (na && !error) {
2749 				struct netmap_vp_adapter *vpna =
2750 					(struct netmap_vp_adapter *)na;
2751 				na->virt_hdr_len = req->nr_hdr_len;
2752 				if (na->virt_hdr_len) {
2753 					vpna->mfs = NETMAP_BUF_SIZE(na);
2754 				}
2755 				if (netmap_verbose)
2756 					nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
2757 				netmap_adapter_put(na);
2758 			} else if (!na) {
2759 				error = ENXIO;
2760 			}
2761 			NMG_UNLOCK();
2762 			break;
2763 		}
2764 
2765 		case NETMAP_REQ_PORT_HDR_GET: {
2766 			/* Get vnet-header length for this netmap port */
2767 			struct nmreq_port_hdr *req =
2768 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2769 			/* Build a nmreq_register out of the nmreq_port_hdr,
2770 			 * so that we can call netmap_get_bdg_na(). */
2771 			struct nmreq_register regreq;
2772 			struct ifnet *ifp;
2773 
2774 			bzero(&regreq, sizeof(regreq));
2775 			regreq.nr_mode = NR_REG_ALL_NIC;
2776 			NMG_LOCK();
2777 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2778 			hdr->nr_body = (uintptr_t)&regreq;
2779 			error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
2780 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
2781 			hdr->nr_body = (uintptr_t)req;
2782 			if (na && !error) {
2783 				req->nr_hdr_len = na->virt_hdr_len;
2784 			}
2785 			netmap_unget_na(na, ifp);
2786 			NMG_UNLOCK();
2787 			break;
2788 		}
2789 
2790 		case NETMAP_REQ_VALE_NEWIF: {
2791 			error = nm_vi_create(hdr);
2792 			break;
2793 		}
2794 
2795 		case NETMAP_REQ_VALE_DELIF: {
2796 			error = nm_vi_destroy(hdr->nr_name);
2797 			break;
2798 		}
2799 
2800 		case NETMAP_REQ_VALE_POLLING_ENABLE:
2801 		case NETMAP_REQ_VALE_POLLING_DISABLE: {
2802 			error = nm_bdg_polling(hdr);
2803 			break;
2804 		}
2805 #endif  /* WITH_VALE */
2806 		case NETMAP_REQ_POOLS_INFO_GET: {
2807 			/* Get information from the memory allocator used for
2808 			 * hdr->nr_name. */
2809 			struct nmreq_pools_info *req =
2810 				(struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
2811 			NMG_LOCK();
2812 			do {
2813 				/* Build a nmreq_register out of the nmreq_pools_info,
2814 				 * so that we can call netmap_get_na(). */
2815 				struct nmreq_register regreq;
2816 				bzero(&regreq, sizeof(regreq));
2817 				regreq.nr_mem_id = req->nr_mem_id;
2818 				regreq.nr_mode = NR_REG_ALL_NIC;
2819 
2820 				hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2821 				hdr->nr_body = (uintptr_t)&regreq;
2822 				error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2823 				hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
2824 				hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2825 				if (error) {
2826 					na = NULL;
2827 					ifp = NULL;
2828 					break;
2829 				}
2830 				nmd = na->nm_mem; /* grab the memory allocator */
2831 				if (nmd == NULL) {
2832 					error = EINVAL;
2833 					break;
2834 				}
2835 
2836 				/* Finalize the memory allocator, get the pools
2837 				 * information and release the allocator. */
2838 				error = netmap_mem_finalize(nmd, na);
2839 				if (error) {
2840 					break;
2841 				}
2842 				error = netmap_mem_pools_info_get(req, nmd);
2843 				netmap_mem_drop(na);
2844 			} while (0);
2845 			netmap_unget_na(na, ifp);
2846 			NMG_UNLOCK();
2847 			break;
2848 		}
2849 
2850 		case NETMAP_REQ_CSB_ENABLE: {
2851 			struct nmreq_option *opt;
2852 
2853 			opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2854 			if (opt == NULL) {
2855 				error = EINVAL;
2856 			} else {
2857 				struct nmreq_opt_csb *csbo =
2858 					(struct nmreq_opt_csb *)opt;
2859 				NMG_LOCK();
2860 				error = netmap_csb_validate(priv, csbo);
2861 				NMG_UNLOCK();
2862 				opt->nro_status = error;
2863 			}
2864 			break;
2865 		}
2866 
2867 		case NETMAP_REQ_SYNC_KLOOP_START: {
2868 			error = netmap_sync_kloop(priv, hdr);
2869 			break;
2870 		}
2871 
2872 		case NETMAP_REQ_SYNC_KLOOP_STOP: {
2873 			error = netmap_sync_kloop_stop(priv);
2874 			break;
2875 		}
2876 
2877 		default: {
2878 			error = EINVAL;
2879 			break;
2880 		}
2881 		}
2882 		/* Write back request body to userspace and reset the
2883 		 * user-space pointer. */
2884 		error = nmreq_copyout(hdr, error);
2885 		break;
2886 	}
2887 
2888 	case NIOCTXSYNC:
2889 	case NIOCRXSYNC: {
2890 		if (unlikely(priv->np_nifp == NULL)) {
2891 			error = ENXIO;
2892 			break;
2893 		}
2894 		mb(); /* make sure following reads are not from cache */
2895 
2896 		if (unlikely(priv->np_csb_atok_base)) {
2897 			nm_prerr("Invalid sync in CSB mode");
2898 			error = EBUSY;
2899 			break;
2900 		}
2901 
2902 		na = priv->np_na;      /* we have a reference */
2903 
2904 		mbq_init(&q);
2905 		t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
2906 		krings = NMR(na, t);
2907 		qfirst = priv->np_qfirst[t];
2908 		qlast = priv->np_qlast[t];
2909 		sync_flags = priv->np_sync_flags;
2910 
2911 		for (i = qfirst; i < qlast; i++) {
2912 			struct netmap_kring *kring = krings[i];
2913 			struct netmap_ring *ring = kring->ring;
2914 
2915 			if (unlikely(nm_kr_tryget(kring, 1, &error))) {
2916 				error = (error ? EIO : 0);
2917 				continue;
2918 			}
2919 
2920 			if (cmd == NIOCTXSYNC) {
2921 				if (netmap_debug & NM_DEBUG_TXSYNC)
2922 					nm_prinf("pre txsync ring %d cur %d hwcur %d",
2923 					    i, ring->cur,
2924 					    kring->nr_hwcur);
2925 				if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2926 					netmap_ring_reinit(kring);
2927 				} else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
2928 					nm_sync_finalize(kring);
2929 				}
2930 				if (netmap_debug & NM_DEBUG_TXSYNC)
2931 					nm_prinf("post txsync ring %d cur %d hwcur %d",
2932 					    i, ring->cur,
2933 					    kring->nr_hwcur);
2934 			} else {
2935 				if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2936 					netmap_ring_reinit(kring);
2937 				}
2938 				if (nm_may_forward_up(kring)) {
2939 					/* transparent forwarding, see netmap_poll() */
2940 					netmap_grab_packets(kring, &q, netmap_fwd);
2941 				}
2942 				if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
2943 					nm_sync_finalize(kring);
2944 				}
2945 				ring_timestamp_set(ring);
2946 			}
2947 			nm_kr_put(kring);
2948 		}
2949 
2950 		if (mbq_peek(&q)) {
2951 			netmap_send_up(na->ifp, &q);
2952 		}
2953 
2954 		break;
2955 	}
2956 
2957 	default: {
2958 		return netmap_ioctl_legacy(priv, cmd, data, td);
2959 		break;
2960 	}
2961 	}
2962 
2963 	return (error);
2964 }
2965 
2966 size_t
2967 nmreq_size_by_type(uint16_t nr_reqtype)
2968 {
2969 	switch (nr_reqtype) {
2970 	case NETMAP_REQ_REGISTER:
2971 		return sizeof(struct nmreq_register);
2972 	case NETMAP_REQ_PORT_INFO_GET:
2973 		return sizeof(struct nmreq_port_info_get);
2974 	case NETMAP_REQ_VALE_ATTACH:
2975 		return sizeof(struct nmreq_vale_attach);
2976 	case NETMAP_REQ_VALE_DETACH:
2977 		return sizeof(struct nmreq_vale_detach);
2978 	case NETMAP_REQ_VALE_LIST:
2979 		return sizeof(struct nmreq_vale_list);
2980 	case NETMAP_REQ_PORT_HDR_SET:
2981 	case NETMAP_REQ_PORT_HDR_GET:
2982 		return sizeof(struct nmreq_port_hdr);
2983 	case NETMAP_REQ_VALE_NEWIF:
2984 		return sizeof(struct nmreq_vale_newif);
2985 	case NETMAP_REQ_VALE_DELIF:
2986 	case NETMAP_REQ_SYNC_KLOOP_STOP:
2987 	case NETMAP_REQ_CSB_ENABLE:
2988 		return 0;
2989 	case NETMAP_REQ_VALE_POLLING_ENABLE:
2990 	case NETMAP_REQ_VALE_POLLING_DISABLE:
2991 		return sizeof(struct nmreq_vale_polling);
2992 	case NETMAP_REQ_POOLS_INFO_GET:
2993 		return sizeof(struct nmreq_pools_info);
2994 	case NETMAP_REQ_SYNC_KLOOP_START:
2995 		return sizeof(struct nmreq_sync_kloop_start);
2996 	}
2997 	return 0;
2998 }
2999 
3000 static size_t
3001 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
3002 {
3003 	size_t rv = sizeof(struct nmreq_option);
3004 #ifdef NETMAP_REQ_OPT_DEBUG
3005 	if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
3006 		return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
3007 #endif /* NETMAP_REQ_OPT_DEBUG */
3008 	switch (nro_reqtype) {
3009 #ifdef WITH_EXTMEM
3010 	case NETMAP_REQ_OPT_EXTMEM:
3011 		rv = sizeof(struct nmreq_opt_extmem);
3012 		break;
3013 #endif /* WITH_EXTMEM */
3014 	case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
3015 		if (nro_size >= rv)
3016 			rv = nro_size;
3017 		break;
3018 	case NETMAP_REQ_OPT_CSB:
3019 		rv = sizeof(struct nmreq_opt_csb);
3020 		break;
3021 	case NETMAP_REQ_OPT_SYNC_KLOOP_MODE:
3022 		rv = sizeof(struct nmreq_opt_sync_kloop_mode);
3023 		break;
3024 	}
3025 	/* subtract the common header */
3026 	return rv - sizeof(struct nmreq_option);
3027 }
3028 
3029 /*
3030  * nmreq_copyin: create an in-kernel version of the request.
3031  *
3032  * We build the following data structure:
3033  *
3034  * hdr -> +-------+                buf
3035  *        |       |          +---------------+
3036  *        +-------+          |usr body ptr   |
3037  *        |options|-.        +---------------+
3038  *        +-------+ |        |usr options ptr|
3039  *        |body   |--------->+---------------+
3040  *        +-------+ |        |               |
3041  *                  |        |  copy of body |
3042  *                  |        |               |
3043  *                  |        +---------------+
3044  *                  |        |    NULL       |
3045  *                  |        +---------------+
3046  *                  |    .---|               |\
3047  *                  |    |   +---------------+ |
3048  *                  | .------|               | |
3049  *                  | |  |   +---------------+  \ option table
3050  *                  | |  |   |      ...      |  / indexed by option
3051  *                  | |  |   +---------------+ |  type
3052  *                  | |  |   |               | |
3053  *                  | |  |   +---------------+/
3054  *                  | |  |   |usr next ptr 1 |
3055  *                  `-|----->+---------------+
3056  *                    |  |   | copy of opt 1 |
3057  *                    |  |   |               |
3058  *                    |  | .-| nro_next      |
3059  *                    |  | | +---------------+
3060  *                    |  | | |usr next ptr 2 |
3061  *                    |  `-`>+---------------+
3062  *                    |      | copy of opt 2 |
3063  *                    |      |               |
3064  *                    |    .-| nro_next      |
3065  *                    |    | +---------------+
3066  *                    |    | |               |
3067  *                    ~    ~ ~      ...      ~
3068  *                    |    .-|               |
3069  *                    `----->+---------------+
3070  *                         | |usr next ptr n |
3071  *                         `>+---------------+
3072  *                           | copy of opt n |
3073  *                           |               |
3074  *                           | nro_next(NULL)|
3075  *                           +---------------+
3076  *
3077  * The options and body fields of the hdr structure are overwritten
3078  * with in-kernel valid pointers inside the buf. The original user
3079  * pointers are saved in the buf and restored on copyout.
3080  * The list of options is copied and the pointers adjusted. The
3081  * original pointers are saved before the option they belonged.
3082  *
3083  * The option table has an entry for every availabe option.  Entries
3084  * for options that have not been passed contain NULL.
3085  *
3086  */
3087 
3088 int
3089 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
3090 {
3091 	size_t rqsz, optsz, bufsz;
3092 	int error = 0;
3093 	char *ker = NULL, *p;
3094 	struct nmreq_option **next, *src, **opt_tab;
3095 	struct nmreq_option buf;
3096 	uint64_t *ptrs;
3097 
3098 	if (hdr->nr_reserved) {
3099 		if (netmap_verbose)
3100 			nm_prerr("nr_reserved must be zero");
3101 		return EINVAL;
3102 	}
3103 
3104 	if (!nr_body_is_user)
3105 		return 0;
3106 
3107 	hdr->nr_reserved = nr_body_is_user;
3108 
3109 	/* compute the total size of the buffer */
3110 	rqsz = nmreq_size_by_type(hdr->nr_reqtype);
3111 	if (rqsz > NETMAP_REQ_MAXSIZE) {
3112 		error = EMSGSIZE;
3113 		goto out_err;
3114 	}
3115 	if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
3116 		(!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
3117 		/* Request body expected, but not found; or
3118 		 * request body found but unexpected. */
3119 		if (netmap_verbose)
3120 			nm_prerr("nr_body expected but not found, or vice versa");
3121 		error = EINVAL;
3122 		goto out_err;
3123 	}
3124 
3125 	bufsz = 2 * sizeof(void *) + rqsz +
3126 		NETMAP_REQ_OPT_MAX * sizeof(opt_tab);
3127 	/* compute the size of the buf below the option table.
3128 	 * It must contain a copy of every received option structure.
3129 	 * For every option we also need to store a copy of the user
3130 	 * list pointer.
3131 	 */
3132 	optsz = 0;
3133 	for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src;
3134 	     src = (struct nmreq_option *)(uintptr_t)buf.nro_next)
3135 	{
3136 		error = copyin(src, &buf, sizeof(*src));
3137 		if (error)
3138 			goto out_err;
3139 		optsz += sizeof(*src);
3140 		optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size);
3141 		if (rqsz + optsz > NETMAP_REQ_MAXSIZE) {
3142 			error = EMSGSIZE;
3143 			goto out_err;
3144 		}
3145 		bufsz += sizeof(void *);
3146 	}
3147 	bufsz += optsz;
3148 
3149 	ker = nm_os_malloc(bufsz);
3150 	if (ker == NULL) {
3151 		error = ENOMEM;
3152 		goto out_err;
3153 	}
3154 	p = ker;	/* write pointer into the buffer */
3155 
3156 	/* make a copy of the user pointers */
3157 	ptrs = (uint64_t*)p;
3158 	*ptrs++ = hdr->nr_body;
3159 	*ptrs++ = hdr->nr_options;
3160 	p = (char *)ptrs;
3161 
3162 	/* copy the body */
3163 	error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz);
3164 	if (error)
3165 		goto out_restore;
3166 	/* overwrite the user pointer with the in-kernel one */
3167 	hdr->nr_body = (uintptr_t)p;
3168 	p += rqsz;
3169 	/* start of the options table */
3170 	opt_tab = (struct nmreq_option **)p;
3171 	p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX;
3172 
3173 	/* copy the options */
3174 	next = (struct nmreq_option **)&hdr->nr_options;
3175 	src = *next;
3176 	while (src) {
3177 		struct nmreq_option *opt;
3178 
3179 		/* copy the option header */
3180 		ptrs = (uint64_t *)p;
3181 		opt = (struct nmreq_option *)(ptrs + 1);
3182 		error = copyin(src, opt, sizeof(*src));
3183 		if (error)
3184 			goto out_restore;
3185 		/* make a copy of the user next pointer */
3186 		*ptrs = opt->nro_next;
3187 		/* overwrite the user pointer with the in-kernel one */
3188 		*next = opt;
3189 
3190 		/* initialize the option as not supported.
3191 		 * Recognized options will update this field.
3192 		 */
3193 		opt->nro_status = EOPNOTSUPP;
3194 
3195 		/* check for invalid types */
3196 		if (opt->nro_reqtype < 1) {
3197 			if (netmap_verbose)
3198 				nm_prinf("invalid option type: %u", opt->nro_reqtype);
3199 			opt->nro_status = EINVAL;
3200 			error = EINVAL;
3201 			goto next;
3202 		}
3203 
3204 		if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) {
3205 			/* opt->nro_status is already EOPNOTSUPP */
3206 			error = EOPNOTSUPP;
3207 			goto next;
3208 		}
3209 
3210 		/* if the type is valid, index the option in the table
3211 		 * unless it is a duplicate.
3212 		 */
3213 		if (opt_tab[opt->nro_reqtype] != NULL) {
3214 			if (netmap_verbose)
3215 				nm_prinf("duplicate option: %u", opt->nro_reqtype);
3216 			opt->nro_status = EINVAL;
3217 			opt_tab[opt->nro_reqtype]->nro_status = EINVAL;
3218 			error = EINVAL;
3219 			goto next;
3220 		}
3221 		opt_tab[opt->nro_reqtype] = opt;
3222 
3223 		p = (char *)(opt + 1);
3224 
3225 		/* copy the option body */
3226 		optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3227 						opt->nro_size);
3228 		if (optsz) {
3229 			/* the option body follows the option header */
3230 			error = copyin(src + 1, p, optsz);
3231 			if (error)
3232 				goto out_restore;
3233 			p += optsz;
3234 		}
3235 
3236 	next:
3237 		/* move to next option */
3238 		next = (struct nmreq_option **)&opt->nro_next;
3239 		src = *next;
3240 	}
3241 	if (error)
3242 		nmreq_copyout(hdr, error);
3243 	return error;
3244 
3245 out_restore:
3246 	ptrs = (uint64_t *)ker;
3247 	hdr->nr_body = *ptrs++;
3248 	hdr->nr_options = *ptrs++;
3249 	hdr->nr_reserved = 0;
3250 	nm_os_free(ker);
3251 out_err:
3252 	return error;
3253 }
3254 
3255 static int
3256 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3257 {
3258 	struct nmreq_option *src, *dst;
3259 	void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3260 	uint64_t *ptrs;
3261 	size_t bodysz;
3262 	int error;
3263 
3264 	if (!hdr->nr_reserved)
3265 		return rerror;
3266 
3267 	/* restore the user pointers in the header */
3268 	ptrs = (uint64_t *)ker - 2;
3269 	bufstart = ptrs;
3270 	hdr->nr_body = *ptrs++;
3271 	src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3272 	hdr->nr_options = *ptrs;
3273 
3274 	if (!rerror) {
3275 		/* copy the body */
3276 		bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3277 		error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3278 		if (error) {
3279 			rerror = error;
3280 			goto out;
3281 		}
3282 	}
3283 
3284 	/* copy the options */
3285 	dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3286 	while (src) {
3287 		size_t optsz;
3288 		uint64_t next;
3289 
3290 		/* restore the user pointer */
3291 		next = src->nro_next;
3292 		ptrs = (uint64_t *)src - 1;
3293 		src->nro_next = *ptrs;
3294 
3295 		/* always copy the option header */
3296 		error = copyout(src, dst, sizeof(*src));
3297 		if (error) {
3298 			rerror = error;
3299 			goto out;
3300 		}
3301 
3302 		/* copy the option body only if there was no error */
3303 		if (!rerror && !src->nro_status) {
3304 			optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3305 							src->nro_size);
3306 			if (optsz) {
3307 				error = copyout(src + 1, dst + 1, optsz);
3308 				if (error) {
3309 					rerror = error;
3310 					goto out;
3311 				}
3312 			}
3313 		}
3314 		src = (struct nmreq_option *)(uintptr_t)next;
3315 		dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3316 	}
3317 
3318 
3319 out:
3320 	hdr->nr_reserved = 0;
3321 	nm_os_free(bufstart);
3322 	return rerror;
3323 }
3324 
3325 struct nmreq_option *
3326 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype)
3327 {
3328 	struct nmreq_option **opt_tab;
3329 
3330 	if (!hdr->nr_options)
3331 		return NULL;
3332 
3333 	opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) -
3334 	    (NETMAP_REQ_OPT_MAX + 1);
3335 	return opt_tab[reqtype];
3336 }
3337 
3338 static int
3339 nmreq_checkoptions(struct nmreq_header *hdr)
3340 {
3341 	struct nmreq_option *opt;
3342 	/* return error if there is still any option
3343 	 * marked as not supported
3344 	 */
3345 
3346 	for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3347 	     opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3348 		if (opt->nro_status == EOPNOTSUPP)
3349 			return EOPNOTSUPP;
3350 
3351 	return 0;
3352 }
3353 
3354 /*
3355  * select(2) and poll(2) handlers for the "netmap" device.
3356  *
3357  * Can be called for one or more queues.
3358  * Return true the event mask corresponding to ready events.
3359  * If there are no ready events (and 'sr' is not NULL), do a
3360  * selrecord on either individual selinfo or on the global one.
3361  * Device-dependent parts (locking and sync of tx/rx rings)
3362  * are done through callbacks.
3363  *
3364  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3365  * The first one is remapped to pwait as selrecord() uses the name as an
3366  * hidden argument.
3367  */
3368 int
3369 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3370 {
3371 	struct netmap_adapter *na;
3372 	struct netmap_kring *kring;
3373 	struct netmap_ring *ring;
3374 	u_int i, want[NR_TXRX], revents = 0;
3375 	NM_SELINFO_T *si[NR_TXRX];
3376 #define want_tx want[NR_TX]
3377 #define want_rx want[NR_RX]
3378 	struct mbq q;	/* packets from RX hw queues to host stack */
3379 
3380 	/*
3381 	 * In order to avoid nested locks, we need to "double check"
3382 	 * txsync and rxsync if we decide to do a selrecord().
3383 	 * retry_tx (and retry_rx, later) prevent looping forever.
3384 	 */
3385 	int retry_tx = 1, retry_rx = 1;
3386 
3387 	/* Transparent mode: send_down is 1 if we have found some
3388 	 * packets to forward (host RX ring --> NIC) during the rx
3389 	 * scan and we have not sent them down to the NIC yet.
3390 	 * Transparent mode requires to bind all rings to a single
3391 	 * file descriptor.
3392 	 */
3393 	int send_down = 0;
3394 	int sync_flags = priv->np_sync_flags;
3395 
3396 	mbq_init(&q);
3397 
3398 	if (unlikely(priv->np_nifp == NULL)) {
3399 		return POLLERR;
3400 	}
3401 	mb(); /* make sure following reads are not from cache */
3402 
3403 	na = priv->np_na;
3404 
3405 	if (unlikely(!nm_netmap_on(na)))
3406 		return POLLERR;
3407 
3408 	if (unlikely(priv->np_csb_atok_base)) {
3409 		nm_prerr("Invalid poll in CSB mode");
3410 		return POLLERR;
3411 	}
3412 
3413 	if (netmap_debug & NM_DEBUG_ON)
3414 		nm_prinf("device %s events 0x%x", na->name, events);
3415 	want_tx = events & (POLLOUT | POLLWRNORM);
3416 	want_rx = events & (POLLIN | POLLRDNORM);
3417 
3418 	/*
3419 	 * If the card has more than one queue AND the file descriptor is
3420 	 * bound to all of them, we sleep on the "global" selinfo, otherwise
3421 	 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3422 	 * per file descriptor).
3423 	 * The interrupt routine in the driver wake one or the other
3424 	 * (or both) depending on which clients are active.
3425 	 *
3426 	 * rxsync() is only called if we run out of buffers on a POLLIN.
3427 	 * txsync() is called if we run out of buffers on POLLOUT, or
3428 	 * there are pending packets to send. The latter can be disabled
3429 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3430 	 */
3431 	si[NR_RX] = priv->np_si[NR_RX];
3432 	si[NR_TX] = priv->np_si[NR_TX];
3433 
3434 #ifdef __FreeBSD__
3435 	/*
3436 	 * We start with a lock free round which is cheap if we have
3437 	 * slots available. If this fails, then lock and call the sync
3438 	 * routines. We can't do this on Linux, as the contract says
3439 	 * that we must call nm_os_selrecord() unconditionally.
3440 	 */
3441 	if (want_tx) {
3442 		const enum txrx t = NR_TX;
3443 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3444 			kring = NMR(na, t)[i];
3445 			if (kring->ring->cur != kring->ring->tail) {
3446 				/* Some unseen TX space is available, so what
3447 				 * we don't need to run txsync. */
3448 				revents |= want[t];
3449 				want[t] = 0;
3450 				break;
3451 			}
3452 		}
3453 	}
3454 	if (want_rx) {
3455 		const enum txrx t = NR_RX;
3456 		int rxsync_needed = 0;
3457 
3458 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3459 			kring = NMR(na, t)[i];
3460 			if (kring->ring->cur == kring->ring->tail
3461 				|| kring->rhead != kring->ring->head) {
3462 				/* There are no unseen packets on this ring,
3463 				 * or there are some buffers to be returned
3464 				 * to the netmap port. We therefore go ahead
3465 				 * and run rxsync. */
3466 				rxsync_needed = 1;
3467 				break;
3468 			}
3469 		}
3470 		if (!rxsync_needed) {
3471 			revents |= want_rx;
3472 			want_rx = 0;
3473 		}
3474 	}
3475 #endif
3476 
3477 #ifdef linux
3478 	/* The selrecord must be unconditional on linux. */
3479 	nm_os_selrecord(sr, si[NR_RX]);
3480 	nm_os_selrecord(sr, si[NR_TX]);
3481 #endif /* linux */
3482 
3483 	/*
3484 	 * If we want to push packets out (priv->np_txpoll) or
3485 	 * want_tx is still set, we must issue txsync calls
3486 	 * (on all rings, to avoid that the tx rings stall).
3487 	 * Fortunately, normal tx mode has np_txpoll set.
3488 	 */
3489 	if (priv->np_txpoll || want_tx) {
3490 		/*
3491 		 * The first round checks if anyone is ready, if not
3492 		 * do a selrecord and another round to handle races.
3493 		 * want_tx goes to 0 if any space is found, and is
3494 		 * used to skip rings with no pending transmissions.
3495 		 */
3496 flush_tx:
3497 		for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3498 			int found = 0;
3499 
3500 			kring = na->tx_rings[i];
3501 			ring = kring->ring;
3502 
3503 			/*
3504 			 * Don't try to txsync this TX ring if we already found some
3505 			 * space in some of the TX rings (want_tx == 0) and there are no
3506 			 * TX slots in this ring that need to be flushed to the NIC
3507 			 * (head == hwcur).
3508 			 */
3509 			if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3510 				continue;
3511 
3512 			if (nm_kr_tryget(kring, 1, &revents))
3513 				continue;
3514 
3515 			if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3516 				netmap_ring_reinit(kring);
3517 				revents |= POLLERR;
3518 			} else {
3519 				if (kring->nm_sync(kring, sync_flags))
3520 					revents |= POLLERR;
3521 				else
3522 					nm_sync_finalize(kring);
3523 			}
3524 
3525 			/*
3526 			 * If we found new slots, notify potential
3527 			 * listeners on the same ring.
3528 			 * Since we just did a txsync, look at the copies
3529 			 * of cur,tail in the kring.
3530 			 */
3531 			found = kring->rcur != kring->rtail;
3532 			nm_kr_put(kring);
3533 			if (found) { /* notify other listeners */
3534 				revents |= want_tx;
3535 				want_tx = 0;
3536 #ifndef linux
3537 				kring->nm_notify(kring, 0);
3538 #endif /* linux */
3539 			}
3540 		}
3541 		/* if there were any packet to forward we must have handled them by now */
3542 		send_down = 0;
3543 		if (want_tx && retry_tx && sr) {
3544 #ifndef linux
3545 			nm_os_selrecord(sr, si[NR_TX]);
3546 #endif /* !linux */
3547 			retry_tx = 0;
3548 			goto flush_tx;
3549 		}
3550 	}
3551 
3552 	/*
3553 	 * If want_rx is still set scan receive rings.
3554 	 * Do it on all rings because otherwise we starve.
3555 	 */
3556 	if (want_rx) {
3557 		/* two rounds here for race avoidance */
3558 do_retry_rx:
3559 		for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3560 			int found = 0;
3561 
3562 			kring = na->rx_rings[i];
3563 			ring = kring->ring;
3564 
3565 			if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3566 				continue;
3567 
3568 			if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3569 				netmap_ring_reinit(kring);
3570 				revents |= POLLERR;
3571 			}
3572 			/* now we can use kring->rcur, rtail */
3573 
3574 			/*
3575 			 * transparent mode support: collect packets from
3576 			 * hw rxring(s) that have been released by the user
3577 			 */
3578 			if (nm_may_forward_up(kring)) {
3579 				netmap_grab_packets(kring, &q, netmap_fwd);
3580 			}
3581 
3582 			/* Clear the NR_FORWARD flag anyway, it may be set by
3583 			 * the nm_sync() below only on for the host RX ring (see
3584 			 * netmap_rxsync_from_host()). */
3585 			kring->nr_kflags &= ~NR_FORWARD;
3586 			if (kring->nm_sync(kring, sync_flags))
3587 				revents |= POLLERR;
3588 			else
3589 				nm_sync_finalize(kring);
3590 			send_down |= (kring->nr_kflags & NR_FORWARD);
3591 			ring_timestamp_set(ring);
3592 			found = kring->rcur != kring->rtail;
3593 			nm_kr_put(kring);
3594 			if (found) {
3595 				revents |= want_rx;
3596 				retry_rx = 0;
3597 #ifndef linux
3598 				kring->nm_notify(kring, 0);
3599 #endif /* linux */
3600 			}
3601 		}
3602 
3603 #ifndef linux
3604 		if (retry_rx && sr) {
3605 			nm_os_selrecord(sr, si[NR_RX]);
3606 		}
3607 #endif /* !linux */
3608 		if (send_down || retry_rx) {
3609 			retry_rx = 0;
3610 			if (send_down)
3611 				goto flush_tx; /* and retry_rx */
3612 			else
3613 				goto do_retry_rx;
3614 		}
3615 	}
3616 
3617 	/*
3618 	 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3619 	 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3620 	 * to the host stack.
3621 	 */
3622 
3623 	if (mbq_peek(&q)) {
3624 		netmap_send_up(na->ifp, &q);
3625 	}
3626 
3627 	return (revents);
3628 #undef want_tx
3629 #undef want_rx
3630 }
3631 
3632 int
3633 nma_intr_enable(struct netmap_adapter *na, int onoff)
3634 {
3635 	bool changed = false;
3636 	enum txrx t;
3637 	int i;
3638 
3639 	for_rx_tx(t) {
3640 		for (i = 0; i < nma_get_nrings(na, t); i++) {
3641 			struct netmap_kring *kring = NMR(na, t)[i];
3642 			int on = !(kring->nr_kflags & NKR_NOINTR);
3643 
3644 			if (!!onoff != !!on) {
3645 				changed = true;
3646 			}
3647 			if (onoff) {
3648 				kring->nr_kflags &= ~NKR_NOINTR;
3649 			} else {
3650 				kring->nr_kflags |= NKR_NOINTR;
3651 			}
3652 		}
3653 	}
3654 
3655 	if (!changed) {
3656 		return 0; /* nothing to do */
3657 	}
3658 
3659 	if (!na->nm_intr) {
3660 		nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3661 		  na->name);
3662 		return -1;
3663 	}
3664 
3665 	na->nm_intr(na, onoff);
3666 
3667 	return 0;
3668 }
3669 
3670 
3671 /*-------------------- driver support routines -------------------*/
3672 
3673 /* default notify callback */
3674 static int
3675 netmap_notify(struct netmap_kring *kring, int flags)
3676 {
3677 	struct netmap_adapter *na = kring->notify_na;
3678 	enum txrx t = kring->tx;
3679 
3680 	nm_os_selwakeup(&kring->si);
3681 	/* optimization: avoid a wake up on the global
3682 	 * queue if nobody has registered for more
3683 	 * than one ring
3684 	 */
3685 	if (na->si_users[t] > 0)
3686 		nm_os_selwakeup(&na->si[t]);
3687 
3688 	return NM_IRQ_COMPLETED;
3689 }
3690 
3691 /* called by all routines that create netmap_adapters.
3692  * provide some defaults and get a reference to the
3693  * memory allocator
3694  */
3695 int
3696 netmap_attach_common(struct netmap_adapter *na)
3697 {
3698 	if (!na->rx_buf_maxsize) {
3699 		/* Set a conservative default (larger is safer). */
3700 		na->rx_buf_maxsize = PAGE_SIZE;
3701 	}
3702 
3703 #ifdef __FreeBSD__
3704 	if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3705 		na->if_input = na->ifp->if_input; /* for netmap_send_up */
3706 	}
3707 	na->pdev = na; /* make sure netmap_mem_map() is called */
3708 #endif /* __FreeBSD__ */
3709 	if (na->na_flags & NAF_HOST_RINGS) {
3710 		if (na->num_host_rx_rings == 0)
3711 			na->num_host_rx_rings = 1;
3712 		if (na->num_host_tx_rings == 0)
3713 			na->num_host_tx_rings = 1;
3714 	}
3715 	if (na->nm_krings_create == NULL) {
3716 		/* we assume that we have been called by a driver,
3717 		 * since other port types all provide their own
3718 		 * nm_krings_create
3719 		 */
3720 		na->nm_krings_create = netmap_hw_krings_create;
3721 		na->nm_krings_delete = netmap_hw_krings_delete;
3722 	}
3723 	if (na->nm_notify == NULL)
3724 		na->nm_notify = netmap_notify;
3725 	na->active_fds = 0;
3726 
3727 	if (na->nm_mem == NULL) {
3728 		/* use the global allocator */
3729 		na->nm_mem = netmap_mem_get(&nm_mem);
3730 	}
3731 #ifdef WITH_VALE
3732 	if (na->nm_bdg_attach == NULL)
3733 		/* no special nm_bdg_attach callback. On VALE
3734 		 * attach, we need to interpose a bwrap
3735 		 */
3736 		na->nm_bdg_attach = netmap_default_bdg_attach;
3737 #endif
3738 
3739 	return 0;
3740 }
3741 
3742 /* Wrapper for the register callback provided netmap-enabled
3743  * hardware drivers.
3744  * nm_iszombie(na) means that the driver module has been
3745  * unloaded, so we cannot call into it.
3746  * nm_os_ifnet_lock() must guarantee mutual exclusion with
3747  * module unloading.
3748  */
3749 static int
3750 netmap_hw_reg(struct netmap_adapter *na, int onoff)
3751 {
3752 	struct netmap_hw_adapter *hwna =
3753 		(struct netmap_hw_adapter*)na;
3754 	int error = 0;
3755 
3756 	nm_os_ifnet_lock();
3757 
3758 	if (nm_iszombie(na)) {
3759 		if (onoff) {
3760 			error = ENXIO;
3761 		} else if (na != NULL) {
3762 			na->na_flags &= ~NAF_NETMAP_ON;
3763 		}
3764 		goto out;
3765 	}
3766 
3767 	error = hwna->nm_hw_register(na, onoff);
3768 
3769 out:
3770 	nm_os_ifnet_unlock();
3771 
3772 	return error;
3773 }
3774 
3775 static void
3776 netmap_hw_dtor(struct netmap_adapter *na)
3777 {
3778 	if (na->ifp == NULL)
3779 		return;
3780 
3781 	NM_DETACH_NA(na->ifp);
3782 }
3783 
3784 
3785 /*
3786  * Allocate a netmap_adapter object, and initialize it from the
3787  * 'arg' passed by the driver on attach.
3788  * We allocate a block of memory of 'size' bytes, which has room
3789  * for struct netmap_adapter plus additional room private to
3790  * the caller.
3791  * Return 0 on success, ENOMEM otherwise.
3792  */
3793 int
3794 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
3795 {
3796 	struct netmap_hw_adapter *hwna = NULL;
3797 	struct ifnet *ifp = NULL;
3798 
3799 	if (size < sizeof(struct netmap_hw_adapter)) {
3800 		if (netmap_debug & NM_DEBUG_ON)
3801 			nm_prerr("Invalid netmap adapter size %d", (int)size);
3802 		return EINVAL;
3803 	}
3804 
3805 	if (arg == NULL || arg->ifp == NULL) {
3806 		if (netmap_debug & NM_DEBUG_ON)
3807 			nm_prerr("either arg or arg->ifp is NULL");
3808 		return EINVAL;
3809 	}
3810 
3811 	if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
3812 		if (netmap_debug & NM_DEBUG_ON)
3813 			nm_prerr("%s: invalid rings tx %d rx %d",
3814 				arg->name, arg->num_tx_rings, arg->num_rx_rings);
3815 		return EINVAL;
3816 	}
3817 
3818 	ifp = arg->ifp;
3819 	if (NM_NA_CLASH(ifp)) {
3820 		/* If NA(ifp) is not null but there is no valid netmap
3821 		 * adapter it means that someone else is using the same
3822 		 * pointer (e.g. ax25_ptr on linux). This happens for
3823 		 * instance when also PF_RING is in use. */
3824 		nm_prerr("Error: netmap adapter hook is busy");
3825 		return EBUSY;
3826 	}
3827 
3828 	hwna = nm_os_malloc(size);
3829 	if (hwna == NULL)
3830 		goto fail;
3831 	hwna->up = *arg;
3832 	hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
3833 	strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
3834 	if (override_reg) {
3835 		hwna->nm_hw_register = hwna->up.nm_register;
3836 		hwna->up.nm_register = netmap_hw_reg;
3837 	}
3838 	if (netmap_attach_common(&hwna->up)) {
3839 		nm_os_free(hwna);
3840 		goto fail;
3841 	}
3842 	netmap_adapter_get(&hwna->up);
3843 
3844 	NM_ATTACH_NA(ifp, &hwna->up);
3845 
3846 	nm_os_onattach(ifp);
3847 
3848 	if (arg->nm_dtor == NULL) {
3849 		hwna->up.nm_dtor = netmap_hw_dtor;
3850 	}
3851 
3852 	if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
3853 	    hwna->up.num_tx_rings, hwna->up.num_tx_desc,
3854 	    hwna->up.num_rx_rings, hwna->up.num_rx_desc);
3855 	return 0;
3856 
3857 fail:
3858 	nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
3859 	return (hwna ? EINVAL : ENOMEM);
3860 }
3861 
3862 
3863 int
3864 netmap_attach(struct netmap_adapter *arg)
3865 {
3866 	return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
3867 			1 /* override nm_reg */);
3868 }
3869 
3870 
3871 void
3872 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
3873 {
3874 	if (!na) {
3875 		return;
3876 	}
3877 
3878 	refcount_acquire(&na->na_refcount);
3879 }
3880 
3881 
3882 /* returns 1 iff the netmap_adapter is destroyed */
3883 int
3884 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
3885 {
3886 	if (!na)
3887 		return 1;
3888 
3889 	if (!refcount_release(&na->na_refcount))
3890 		return 0;
3891 
3892 	if (na->nm_dtor)
3893 		na->nm_dtor(na);
3894 
3895 	if (na->tx_rings) { /* XXX should not happen */
3896 		if (netmap_debug & NM_DEBUG_ON)
3897 			nm_prerr("freeing leftover tx_rings");
3898 		na->nm_krings_delete(na);
3899 	}
3900 	netmap_pipe_dealloc(na);
3901 	if (na->nm_mem)
3902 		netmap_mem_put(na->nm_mem);
3903 	bzero(na, sizeof(*na));
3904 	nm_os_free(na);
3905 
3906 	return 1;
3907 }
3908 
3909 /* nm_krings_create callback for all hardware native adapters */
3910 int
3911 netmap_hw_krings_create(struct netmap_adapter *na)
3912 {
3913 	int ret = netmap_krings_create(na, 0);
3914 	if (ret == 0) {
3915 		/* initialize the mbq for the sw rx ring */
3916 		u_int lim = netmap_real_rings(na, NR_RX), i;
3917 		for (i = na->num_rx_rings; i < lim; i++) {
3918 			mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
3919 		}
3920 		nm_prdis("initialized sw rx queue %d", na->num_rx_rings);
3921 	}
3922 	return ret;
3923 }
3924 
3925 
3926 
3927 /*
3928  * Called on module unload by the netmap-enabled drivers
3929  */
3930 void
3931 netmap_detach(struct ifnet *ifp)
3932 {
3933 	struct netmap_adapter *na = NA(ifp);
3934 
3935 	if (!na)
3936 		return;
3937 
3938 	NMG_LOCK();
3939 	netmap_set_all_rings(na, NM_KR_LOCKED);
3940 	/*
3941 	 * if the netmap adapter is not native, somebody
3942 	 * changed it, so we can not release it here.
3943 	 * The NAF_ZOMBIE flag will notify the new owner that
3944 	 * the driver is gone.
3945 	 */
3946 	if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
3947 		na->na_flags |= NAF_ZOMBIE;
3948 	}
3949 	/* give active users a chance to notice that NAF_ZOMBIE has been
3950 	 * turned on, so that they can stop and return an error to userspace.
3951 	 * Note that this becomes a NOP if there are no active users and,
3952 	 * therefore, the put() above has deleted the na, since now NA(ifp) is
3953 	 * NULL.
3954 	 */
3955 	netmap_enable_all_rings(ifp);
3956 	NMG_UNLOCK();
3957 }
3958 
3959 
3960 /*
3961  * Intercept packets from the network stack and pass them
3962  * to netmap as incoming packets on the 'software' ring.
3963  *
3964  * We only store packets in a bounded mbq and then copy them
3965  * in the relevant rxsync routine.
3966  *
3967  * We rely on the OS to make sure that the ifp and na do not go
3968  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
3969  * In nm_register() or whenever there is a reinitialization,
3970  * we make sure to make the mode change visible here.
3971  */
3972 int
3973 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
3974 {
3975 	struct netmap_adapter *na = NA(ifp);
3976 	struct netmap_kring *kring, *tx_kring;
3977 	u_int len = MBUF_LEN(m);
3978 	u_int error = ENOBUFS;
3979 	unsigned int txr;
3980 	struct mbq *q;
3981 	int busy;
3982 	u_int i;
3983 
3984 	i = MBUF_TXQ(m);
3985 	if (i >= na->num_host_rx_rings) {
3986 		i = i % na->num_host_rx_rings;
3987 	}
3988 	kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
3989 
3990 	// XXX [Linux] we do not need this lock
3991 	// if we follow the down/configure/up protocol -gl
3992 	// mtx_lock(&na->core_lock);
3993 
3994 	if (!nm_netmap_on(na)) {
3995 		nm_prerr("%s not in netmap mode anymore", na->name);
3996 		error = ENXIO;
3997 		goto done;
3998 	}
3999 
4000 	txr = MBUF_TXQ(m);
4001 	if (txr >= na->num_tx_rings) {
4002 		txr %= na->num_tx_rings;
4003 	}
4004 	tx_kring = NMR(na, NR_TX)[txr];
4005 
4006 	if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
4007 		return MBUF_TRANSMIT(na, ifp, m);
4008 	}
4009 
4010 	q = &kring->rx_queue;
4011 
4012 	// XXX reconsider long packets if we handle fragments
4013 	if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
4014 		nm_prerr("%s from_host, drop packet size %d > %d", na->name,
4015 			len, NETMAP_BUF_SIZE(na));
4016 		goto done;
4017 	}
4018 
4019 	if (!netmap_generic_hwcsum) {
4020 		if (nm_os_mbuf_has_csum_offld(m)) {
4021 			nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name);
4022 			goto done;
4023 		}
4024 	}
4025 
4026 	if (nm_os_mbuf_has_seg_offld(m)) {
4027 		nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name);
4028 		goto done;
4029 	}
4030 
4031 #ifdef __FreeBSD__
4032 	ETHER_BPF_MTAP(ifp, m);
4033 #endif /* __FreeBSD__ */
4034 
4035 	/* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
4036 	 * and maybe other instances of netmap_transmit (the latter
4037 	 * not possible on Linux).
4038 	 * We enqueue the mbuf only if we are sure there is going to be
4039 	 * enough room in the host RX ring, otherwise we drop it.
4040 	 */
4041 	mbq_lock(q);
4042 
4043 	busy = kring->nr_hwtail - kring->nr_hwcur;
4044 	if (busy < 0)
4045 		busy += kring->nkr_num_slots;
4046 	if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
4047 		nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
4048 			kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
4049 	} else {
4050 		mbq_enqueue(q, m);
4051 		nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q));
4052 		/* notify outside the lock */
4053 		m = NULL;
4054 		error = 0;
4055 	}
4056 	mbq_unlock(q);
4057 
4058 done:
4059 	if (m)
4060 		m_freem(m);
4061 	/* unconditionally wake up listeners */
4062 	kring->nm_notify(kring, 0);
4063 	/* this is normally netmap_notify(), but for nics
4064 	 * connected to a bridge it is netmap_bwrap_intr_notify(),
4065 	 * that possibly forwards the frames through the switch
4066 	 */
4067 
4068 	return (error);
4069 }
4070 
4071 
4072 /*
4073  * Reset function to be called by the driver routines when reinitializing
4074  * a hardware ring. The driver is in charge of locking to protect the kring
4075  * while this operation is being performed. This is normally achieved by
4076  * calling netmap_disable_all_rings() before triggering a reset.
4077  * If the kring is not in netmap mode, return NULL to inform the caller
4078  * that this is the case.
4079  * If the kring is in netmap mode, set hwofs so that the netmap indices
4080  * seen by userspace (head/cut/tail) do not change, although the internal
4081  * NIC indices have been reset to 0.
4082  * In any case, adjust kring->nr_mode.
4083  */
4084 struct netmap_slot *
4085 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
4086 	u_int new_cur)
4087 {
4088 	struct netmap_kring *kring;
4089 	u_int new_hwtail, new_hwofs;
4090 
4091 	if (!nm_native_on(na)) {
4092 		nm_prdis("interface not in native netmap mode");
4093 		return NULL;	/* nothing to reinitialize */
4094 	}
4095 
4096 	if (tx == NR_TX) {
4097 		if (n >= na->num_tx_rings)
4098 			return NULL;
4099 		kring = na->tx_rings[n];
4100 		/*
4101 		 * Set hwofs to rhead, so that slots[rhead] is mapped to
4102 		 * the NIC internal slot 0, and thus the netmap buffer
4103 		 * at rhead is the next to be transmitted. Transmissions
4104 		 * that were pending before the reset are considered as
4105 		 * sent, so that we can have hwcur = rhead. All the slots
4106 		 * are now owned by the user, so we can also reinit hwtail.
4107 		 */
4108 		new_hwofs = kring->rhead;
4109 		new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1);
4110 	} else {
4111 		if (n >= na->num_rx_rings)
4112 			return NULL;
4113 		kring = na->rx_rings[n];
4114 		/*
4115 		 * Set hwofs to hwtail, so that slots[hwtail] is mapped to
4116 		 * the NIC internal slot 0, and thus the netmap buffer
4117 		 * at hwtail is the next to be given to the NIC.
4118 		 * Unread slots (the ones in [rhead,hwtail[) are owned by
4119 		 * the user, and thus the caller cannot give them
4120 		 * to the NIC right now.
4121 		 */
4122 		new_hwofs = kring->nr_hwtail;
4123 		new_hwtail = kring->nr_hwtail;
4124 	}
4125 	if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4126 		kring->nr_mode = NKR_NETMAP_OFF;
4127 		return NULL;
4128 	}
4129 	if (netmap_verbose) {
4130 	    nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name,
4131 	        kring->nr_hwcur, kring->rhead,
4132 	        kring->nr_hwtail, new_hwtail,
4133 		kring->nkr_hwofs, new_hwofs);
4134 	}
4135 	kring->nr_hwcur = kring->rhead;
4136 	kring->nr_hwtail = new_hwtail;
4137 	kring->nkr_hwofs = new_hwofs;
4138 
4139 	/*
4140 	 * Wakeup on the individual and global selwait
4141 	 * We do the wakeup here, but the ring is not yet reconfigured.
4142 	 * However, we are under lock so there are no races.
4143 	 */
4144 	kring->nr_mode = NKR_NETMAP_ON;
4145 	kring->nm_notify(kring, 0);
4146 	return kring->ring->slot;
4147 }
4148 
4149 
4150 /*
4151  * Dispatch rx/tx interrupts to the netmap rings.
4152  *
4153  * "work_done" is non-null on the RX path, NULL for the TX path.
4154  * We rely on the OS to make sure that there is only one active
4155  * instance per queue, and that there is appropriate locking.
4156  *
4157  * The 'notify' routine depends on what the ring is attached to.
4158  * - for a netmap file descriptor, do a selwakeup on the individual
4159  *   waitqueue, plus one on the global one if needed
4160  *   (see netmap_notify)
4161  * - for a nic connected to a switch, call the proper forwarding routine
4162  *   (see netmap_bwrap_intr_notify)
4163  */
4164 int
4165 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4166 {
4167 	struct netmap_kring *kring;
4168 	enum txrx t = (work_done ? NR_RX : NR_TX);
4169 
4170 	q &= NETMAP_RING_MASK;
4171 
4172 	if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4173 	        nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4174 	}
4175 
4176 	if (q >= nma_get_nrings(na, t))
4177 		return NM_IRQ_PASS; // not a physical queue
4178 
4179 	kring = NMR(na, t)[q];
4180 
4181 	if (kring->nr_mode == NKR_NETMAP_OFF) {
4182 		return NM_IRQ_PASS;
4183 	}
4184 
4185 	if (t == NR_RX) {
4186 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
4187 		*work_done = 1; /* do not fire napi again */
4188 	}
4189 
4190 	return kring->nm_notify(kring, 0);
4191 }
4192 
4193 
4194 /*
4195  * Default functions to handle rx/tx interrupts from a physical device.
4196  * "work_done" is non-null on the RX path, NULL for the TX path.
4197  *
4198  * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4199  * so that the caller proceeds with regular processing.
4200  * Otherwise call netmap_common_irq().
4201  *
4202  * If the card is connected to a netmap file descriptor,
4203  * do a selwakeup on the individual queue, plus one on the global one
4204  * if needed (multiqueue card _and_ there are multiqueue listeners),
4205  * and return NR_IRQ_COMPLETED.
4206  *
4207  * Finally, if called on rx from an interface connected to a switch,
4208  * calls the proper forwarding routine.
4209  */
4210 int
4211 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
4212 {
4213 	struct netmap_adapter *na = NA(ifp);
4214 
4215 	/*
4216 	 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4217 	 * we still use the regular driver even though the previous
4218 	 * check fails. It is unclear whether we should use
4219 	 * nm_native_on() here.
4220 	 */
4221 	if (!nm_netmap_on(na))
4222 		return NM_IRQ_PASS;
4223 
4224 	if (na->na_flags & NAF_SKIP_INTR) {
4225 		nm_prdis("use regular interrupt");
4226 		return NM_IRQ_PASS;
4227 	}
4228 
4229 	return netmap_common_irq(na, q, work_done);
4230 }
4231 
4232 /* set/clear native flags and if_transmit/netdev_ops */
4233 void
4234 nm_set_native_flags(struct netmap_adapter *na)
4235 {
4236 	struct ifnet *ifp = na->ifp;
4237 
4238 	/* We do the setup for intercepting packets only if we are the
4239 	 * first user of this adapter. */
4240 	if (na->active_fds > 0) {
4241 		return;
4242 	}
4243 
4244 	na->na_flags |= NAF_NETMAP_ON;
4245 	nm_os_onenter(ifp);
4246 	nm_update_hostrings_mode(na);
4247 }
4248 
4249 void
4250 nm_clear_native_flags(struct netmap_adapter *na)
4251 {
4252 	struct ifnet *ifp = na->ifp;
4253 
4254 	/* We undo the setup for intercepting packets only if we are the
4255 	 * last user of this adapter. */
4256 	if (na->active_fds > 0) {
4257 		return;
4258 	}
4259 
4260 	nm_update_hostrings_mode(na);
4261 	nm_os_onexit(ifp);
4262 
4263 	na->na_flags &= ~NAF_NETMAP_ON;
4264 }
4265 
4266 void
4267 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff)
4268 {
4269 	enum txrx t;
4270 
4271 	for_rx_tx(t) {
4272 		int i;
4273 
4274 		for (i = 0; i < netmap_real_rings(na, t); i++) {
4275 			struct netmap_kring *kring = NMR(na, t)[i];
4276 
4277 			if (onoff && nm_kring_pending_on(kring))
4278 				kring->nr_mode = NKR_NETMAP_ON;
4279 			else if (!onoff && nm_kring_pending_off(kring))
4280 				kring->nr_mode = NKR_NETMAP_OFF;
4281 		}
4282 	}
4283 }
4284 
4285 /*
4286  * Module loader and unloader
4287  *
4288  * netmap_init() creates the /dev/netmap device and initializes
4289  * all global variables. Returns 0 on success, errno on failure
4290  * (but there is no chance)
4291  *
4292  * netmap_fini() destroys everything.
4293  */
4294 
4295 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4296 extern struct cdevsw netmap_cdevsw;
4297 
4298 
4299 void
4300 netmap_fini(void)
4301 {
4302 	if (netmap_dev)
4303 		destroy_dev(netmap_dev);
4304 	/* we assume that there are no longer netmap users */
4305 	nm_os_ifnet_fini();
4306 	netmap_uninit_bridges();
4307 	netmap_mem_fini();
4308 	NMG_LOCK_DESTROY();
4309 	nm_prinf("netmap: unloaded module.");
4310 }
4311 
4312 
4313 int
4314 netmap_init(void)
4315 {
4316 	int error;
4317 
4318 	NMG_LOCK_INIT();
4319 
4320 	error = netmap_mem_init();
4321 	if (error != 0)
4322 		goto fail;
4323 	/*
4324 	 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4325 	 * when the module is compiled in.
4326 	 * XXX could use make_dev_credv() to get error number
4327 	 */
4328 	netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4329 		&netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4330 			      "netmap");
4331 	if (!netmap_dev)
4332 		goto fail;
4333 
4334 	error = netmap_init_bridges();
4335 	if (error)
4336 		goto fail;
4337 
4338 #ifdef __FreeBSD__
4339 	nm_os_vi_init_index();
4340 #endif
4341 
4342 	error = nm_os_ifnet_init();
4343 	if (error)
4344 		goto fail;
4345 
4346 	nm_prinf("netmap: loaded module");
4347 	return (0);
4348 fail:
4349 	netmap_fini();
4350 	return (EINVAL); /* may be incorrect */
4351 }
4352