1 /* 2 * Copyright (C) 2011-2012 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 62 #ifdef __APPLE__ 63 #include "osx_glue.h" 64 #endif /* __APPLE__ */ 65 66 #ifdef __FreeBSD__ 67 #include <sys/cdefs.h> /* prerequisite */ 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/types.h> 71 #include <sys/module.h> 72 #include <sys/errno.h> 73 #include <sys/param.h> /* defines used in kernel.h */ 74 #include <sys/jail.h> 75 #include <sys/kernel.h> /* types used in module initialization */ 76 #include <sys/conf.h> /* cdevsw struct */ 77 #include <sys/uio.h> /* uio struct */ 78 #include <sys/sockio.h> 79 #include <sys/socketvar.h> /* struct socket */ 80 #include <sys/malloc.h> 81 #include <sys/mman.h> /* PROT_EXEC */ 82 #include <sys/poll.h> 83 #include <sys/proc.h> 84 #include <vm/vm.h> /* vtophys */ 85 #include <vm/pmap.h> /* vtophys */ 86 #include <sys/socket.h> /* sockaddrs */ 87 #include <machine/bus.h> 88 #include <sys/selinfo.h> 89 #include <sys/sysctl.h> 90 #include <net/if.h> 91 #include <net/bpf.h> /* BIOCIMMEDIATE */ 92 #include <net/vnet.h> 93 #include <machine/bus.h> /* bus_dmamap_* */ 94 95 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 96 #endif /* __FreeBSD__ */ 97 98 #include <net/netmap.h> 99 #include <dev/netmap/netmap_kern.h> 100 101 u_int netmap_total_buffers; 102 u_int netmap_buf_size; 103 char *netmap_buffer_base; /* address of an invalid buffer */ 104 105 /* user-controlled variables */ 106 int netmap_verbose; 107 108 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 109 110 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 111 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 112 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 113 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 114 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 115 int netmap_mitigate = 1; 116 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 117 int netmap_no_pendintr = 1; 118 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 119 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 120 121 int netmap_drop = 0; /* debugging */ 122 int netmap_flags = 0; /* debug flags */ 123 int netmap_copy = 0; /* debugging, copy content */ 124 125 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 126 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 127 SYSCTL_INT(_dev_netmap, OID_AUTO, copy, CTLFLAG_RW, &netmap_copy, 0 , ""); 128 129 #ifdef NM_BRIDGE /* support for netmap bridge */ 130 131 /* 132 * system parameters. 133 * 134 * All switched ports have prefix NM_NAME. 135 * The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap, 136 * so a practical upper bound is 64). 137 * Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet). 138 * The virtual interfaces use per-queue lock instead of core lock. 139 * In the tx loop, we aggregate traffic in batches to make all operations 140 * faster. The batch size is NM_BDG_BATCH 141 */ 142 #define NM_NAME "vale" /* prefix for the interface */ 143 #define NM_BDG_MAXPORTS 16 /* up to 64 ? */ 144 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 145 #define NM_BDG_HASH 1024 /* forwarding table entries */ 146 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 147 #define NM_BRIDGES 4 /* number of bridges */ 148 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 149 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 150 151 #ifdef linux 152 #define ADD_BDG_REF(ifp) (NA(ifp)->if_refcount++) 153 #define DROP_BDG_REF(ifp) (NA(ifp)->if_refcount-- <= 1) 154 #else /* !linux */ 155 #define ADD_BDG_REF(ifp) (ifp)->if_refcount++ 156 #define DROP_BDG_REF(ifp) refcount_release(&(ifp)->if_refcount) 157 #ifdef __FreeBSD__ 158 #include <sys/endian.h> 159 #include <sys/refcount.h> 160 #endif /* __FreeBSD__ */ 161 #define prefetch(x) __builtin_prefetch(x) 162 #endif /* !linux */ 163 164 static void bdg_netmap_attach(struct ifnet *ifp); 165 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 166 /* per-tx-queue entry */ 167 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 168 void *buf; 169 uint64_t dst; /* dst mask */ 170 uint32_t src; /* src index ? */ 171 uint16_t len; /* src len */ 172 }; 173 174 struct nm_hash_ent { 175 uint64_t mac; /* the top 2 bytes are the epoch */ 176 uint64_t ports; 177 }; 178 179 /* 180 * Interfaces for a bridge are all in ports[]. 181 * The array has fixed size, an empty entry does not terminate 182 * the search. 183 */ 184 struct nm_bridge { 185 struct ifnet *bdg_ports[NM_BDG_MAXPORTS]; 186 int n_ports; 187 uint64_t act_ports; 188 int freelist; /* first buffer index */ 189 NM_SELINFO_T si; /* poll/select wait queue */ 190 NM_LOCK_T bdg_lock; /* protect the selinfo ? */ 191 192 /* the forwarding table, MAC+ports */ 193 struct nm_hash_ent ht[NM_BDG_HASH]; 194 195 int namelen; /* 0 means free */ 196 char basename[IFNAMSIZ]; 197 }; 198 199 struct nm_bridge nm_bridges[NM_BRIDGES]; 200 201 #define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock) 202 #define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock) 203 204 /* 205 * NA(ifp)->bdg_port port index 206 */ 207 208 // XXX only for multiples of 64 bytes, non overlapped. 209 static inline void 210 pkt_copy(void *_src, void *_dst, int l) 211 { 212 uint64_t *src = _src; 213 uint64_t *dst = _dst; 214 if (unlikely(l >= 1024)) { 215 bcopy(src, dst, l); 216 return; 217 } 218 for (; likely(l > 0); l-=64) { 219 *dst++ = *src++; 220 *dst++ = *src++; 221 *dst++ = *src++; 222 *dst++ = *src++; 223 *dst++ = *src++; 224 *dst++ = *src++; 225 *dst++ = *src++; 226 *dst++ = *src++; 227 } 228 } 229 230 /* 231 * locate a bridge among the existing ones. 232 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 233 * We assume that this is called with a name of at least NM_NAME chars. 234 */ 235 static struct nm_bridge * 236 nm_find_bridge(const char *name) 237 { 238 int i, l, namelen, e; 239 struct nm_bridge *b = NULL; 240 241 namelen = strlen(NM_NAME); /* base length */ 242 l = strlen(name); /* actual length */ 243 for (i = namelen + 1; i < l; i++) { 244 if (name[i] == ':') { 245 namelen = i; 246 break; 247 } 248 } 249 if (namelen >= IFNAMSIZ) 250 namelen = IFNAMSIZ; 251 ND("--- prefix is '%.*s' ---", namelen, name); 252 253 /* use the first entry for locking */ 254 BDG_LOCK(nm_bridges); // XXX do better 255 for (e = -1, i = 1; i < NM_BRIDGES; i++) { 256 b = nm_bridges + i; 257 if (b->namelen == 0) 258 e = i; /* record empty slot */ 259 else if (strncmp(name, b->basename, namelen) == 0) { 260 ND("found '%.*s' at %d", namelen, name, i); 261 break; 262 } 263 } 264 if (i == NM_BRIDGES) { /* all full */ 265 if (e == -1) { /* no empty slot */ 266 b = NULL; 267 } else { 268 b = nm_bridges + e; 269 strncpy(b->basename, name, namelen); 270 b->namelen = namelen; 271 } 272 } 273 BDG_UNLOCK(nm_bridges); 274 return b; 275 } 276 #endif /* NM_BRIDGE */ 277 278 /*------------- memory allocator -----------------*/ 279 #ifdef NETMAP_MEM2 280 #include "netmap_mem2.c" 281 #else /* !NETMAP_MEM2 */ 282 #include "netmap_mem1.c" 283 #endif /* !NETMAP_MEM2 */ 284 /*------------ end of memory allocator ----------*/ 285 286 287 /* Structure associated to each thread which registered an interface. 288 * 289 * The first 4 fields of this structure are written by NIOCREGIF and 290 * read by poll() and NIOC?XSYNC. 291 * There is low contention among writers (actually, a correct user program 292 * should have no contention among writers) and among writers and readers, 293 * so we use a single global lock to protect the structure initialization. 294 * Since initialization involves the allocation of memory, we reuse the memory 295 * allocator lock. 296 * Read access to the structure is lock free. Readers must check that 297 * np_nifp is not NULL before using the other fields. 298 * If np_nifp is NULL initialization has not been performed, so they should 299 * return an error to userlevel. 300 * 301 * The ref_done field is used to regulate access to the refcount in the 302 * memory allocator. The refcount must be incremented at most once for 303 * each open("/dev/netmap"). The increment is performed by the first 304 * function that calls netmap_get_memory() (currently called by 305 * mmap(), NIOCGINFO and NIOCREGIF). 306 * If the refcount is incremented, it is then decremented when the 307 * private structure is destroyed. 308 */ 309 struct netmap_priv_d { 310 struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */ 311 312 struct ifnet *np_ifp; /* device for which we hold a reference */ 313 int np_ringid; /* from the ioctl */ 314 u_int np_qfirst, np_qlast; /* range of rings to scan */ 315 uint16_t np_txpoll; 316 317 unsigned long ref_done; /* use with NMA_LOCK held */ 318 }; 319 320 321 static int 322 netmap_get_memory(struct netmap_priv_d* p) 323 { 324 int error = 0; 325 NMA_LOCK(); 326 if (!p->ref_done) { 327 error = netmap_memory_finalize(); 328 if (!error) 329 p->ref_done = 1; 330 } 331 NMA_UNLOCK(); 332 return error; 333 } 334 335 /* 336 * File descriptor's private data destructor. 337 * 338 * Call nm_register(ifp,0) to stop netmap mode on the interface and 339 * revert to normal operation. We expect that np_ifp has not gone. 340 */ 341 /* call with NMA_LOCK held */ 342 static void 343 netmap_dtor_locked(void *data) 344 { 345 struct netmap_priv_d *priv = data; 346 struct ifnet *ifp = priv->np_ifp; 347 struct netmap_adapter *na = NA(ifp); 348 struct netmap_if *nifp = priv->np_nifp; 349 350 na->refcount--; 351 if (na->refcount <= 0) { /* last instance */ 352 u_int i, j, lim; 353 354 D("deleting last netmap instance for %s", ifp->if_xname); 355 /* 356 * there is a race here with *_netmap_task() and 357 * netmap_poll(), which don't run under NETMAP_REG_LOCK. 358 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 359 * (aka NETMAP_DELETING(na)) are a unique marker that the 360 * device is dying. 361 * Before destroying stuff we sleep a bit, and then complete 362 * the job. NIOCREG should realize the condition and 363 * loop until they can continue; the other routines 364 * should check the condition at entry and quit if 365 * they cannot run. 366 */ 367 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 368 tsleep(na, 0, "NIOCUNREG", 4); 369 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 370 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 371 /* Wake up any sleeping threads. netmap_poll will 372 * then return POLLERR 373 */ 374 for (i = 0; i < na->num_tx_rings + 1; i++) 375 selwakeuppri(&na->tx_rings[i].si, PI_NET); 376 for (i = 0; i < na->num_rx_rings + 1; i++) 377 selwakeuppri(&na->rx_rings[i].si, PI_NET); 378 selwakeuppri(&na->tx_si, PI_NET); 379 selwakeuppri(&na->rx_si, PI_NET); 380 /* release all buffers */ 381 for (i = 0; i < na->num_tx_rings + 1; i++) { 382 struct netmap_ring *ring = na->tx_rings[i].ring; 383 lim = na->tx_rings[i].nkr_num_slots; 384 for (j = 0; j < lim; j++) 385 netmap_free_buf(nifp, ring->slot[j].buf_idx); 386 /* knlist_destroy(&na->tx_rings[i].si.si_note); */ 387 mtx_destroy(&na->tx_rings[i].q_lock); 388 } 389 for (i = 0; i < na->num_rx_rings + 1; i++) { 390 struct netmap_ring *ring = na->rx_rings[i].ring; 391 lim = na->rx_rings[i].nkr_num_slots; 392 for (j = 0; j < lim; j++) 393 netmap_free_buf(nifp, ring->slot[j].buf_idx); 394 /* knlist_destroy(&na->rx_rings[i].si.si_note); */ 395 mtx_destroy(&na->rx_rings[i].q_lock); 396 } 397 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 398 /* knlist_destroy(&na->tx_si.si_note); */ 399 /* knlist_destroy(&na->rx_si.si_note); */ 400 netmap_free_rings(na); 401 wakeup(na); 402 } 403 netmap_if_free(nifp); 404 } 405 406 static void 407 nm_if_rele(struct ifnet *ifp) 408 { 409 #ifndef NM_BRIDGE 410 if_rele(ifp); 411 #else /* NM_BRIDGE */ 412 int i, full; 413 struct nm_bridge *b; 414 415 if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) { 416 if_rele(ifp); 417 return; 418 } 419 if (!DROP_BDG_REF(ifp)) 420 return; 421 b = ifp->if_bridge; 422 BDG_LOCK(nm_bridges); 423 BDG_LOCK(b); 424 ND("want to disconnect %s from the bridge", ifp->if_xname); 425 full = 0; 426 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 427 if (b->bdg_ports[i] == ifp) { 428 b->bdg_ports[i] = NULL; 429 bzero(ifp, sizeof(*ifp)); 430 free(ifp, M_DEVBUF); 431 break; 432 } 433 else if (b->bdg_ports[i] != NULL) 434 full = 1; 435 } 436 BDG_UNLOCK(b); 437 if (full == 0) { 438 ND("freeing bridge %d", b - nm_bridges); 439 b->namelen = 0; 440 } 441 BDG_UNLOCK(nm_bridges); 442 if (i == NM_BDG_MAXPORTS) 443 D("ouch, cannot find ifp to remove"); 444 #endif /* NM_BRIDGE */ 445 } 446 447 static void 448 netmap_dtor(void *data) 449 { 450 struct netmap_priv_d *priv = data; 451 struct ifnet *ifp = priv->np_ifp; 452 struct netmap_adapter *na; 453 454 NMA_LOCK(); 455 if (ifp) { 456 na = NA(ifp); 457 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 458 netmap_dtor_locked(data); 459 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 460 461 nm_if_rele(ifp); 462 } 463 if (priv->ref_done) { 464 netmap_memory_deref(); 465 } 466 NMA_UNLOCK(); 467 bzero(priv, sizeof(*priv)); /* XXX for safety */ 468 free(priv, M_DEVBUF); 469 } 470 471 #ifdef __FreeBSD__ 472 #include <vm/vm.h> 473 #include <vm/vm_param.h> 474 #include <vm/vm_object.h> 475 #include <vm/vm_page.h> 476 #include <vm/vm_pager.h> 477 #include <vm/uma.h> 478 479 static struct cdev_pager_ops saved_cdev_pager_ops; 480 481 static int 482 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 483 vm_ooffset_t foff, struct ucred *cred, u_short *color) 484 { 485 D("first mmap for %p", handle); 486 return saved_cdev_pager_ops.cdev_pg_ctor(handle, 487 size, prot, foff, cred, color); 488 } 489 490 static void 491 netmap_dev_pager_dtor(void *handle) 492 { 493 saved_cdev_pager_ops.cdev_pg_dtor(handle); 494 D("ready to release memory for %p", handle); 495 } 496 497 498 static struct cdev_pager_ops netmap_cdev_pager_ops = { 499 .cdev_pg_ctor = netmap_dev_pager_ctor, 500 .cdev_pg_dtor = netmap_dev_pager_dtor, 501 .cdev_pg_fault = NULL, 502 }; 503 504 static int 505 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 506 vm_size_t objsize, vm_object_t *objp, int prot) 507 { 508 vm_object_t obj; 509 510 D("cdev %p foff %jd size %jd objp %p prot %d", cdev, 511 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 512 obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, 513 curthread->td_ucred); 514 ND("returns obj %p", obj); 515 if (obj == NULL) 516 return EINVAL; 517 if (saved_cdev_pager_ops.cdev_pg_fault == NULL) { 518 D("initialize cdev_pager_ops"); 519 saved_cdev_pager_ops = *(obj->un_pager.devp.ops); 520 netmap_cdev_pager_ops.cdev_pg_fault = 521 saved_cdev_pager_ops.cdev_pg_fault; 522 }; 523 obj->un_pager.devp.ops = &netmap_cdev_pager_ops; 524 *objp = obj; 525 return 0; 526 } 527 #endif /* __FreeBSD__ */ 528 529 530 /* 531 * mmap(2) support for the "netmap" device. 532 * 533 * Expose all the memory previously allocated by our custom memory 534 * allocator: this way the user has only to issue a single mmap(2), and 535 * can work on all the data structures flawlessly. 536 * 537 * Return 0 on success, -1 otherwise. 538 */ 539 540 #ifdef __FreeBSD__ 541 static int 542 netmap_mmap(__unused struct cdev *dev, 543 #if __FreeBSD_version < 900000 544 vm_offset_t offset, vm_paddr_t *paddr, int nprot 545 #else 546 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 547 __unused vm_memattr_t *memattr 548 #endif 549 ) 550 { 551 int error = 0; 552 struct netmap_priv_d *priv; 553 554 if (nprot & PROT_EXEC) 555 return (-1); // XXX -1 or EINVAL ? 556 557 error = devfs_get_cdevpriv((void **)&priv); 558 if (error == EBADF) { /* called on fault, memory is initialized */ 559 ND(5, "handling fault at ofs 0x%x", offset); 560 error = 0; 561 } else if (error == 0) /* make sure memory is set */ 562 error = netmap_get_memory(priv); 563 if (error) 564 return (error); 565 566 ND("request for offset 0x%x", (uint32_t)offset); 567 *paddr = netmap_ofstophys(offset); 568 569 return (*paddr ? 0 : ENOMEM); 570 } 571 572 static int 573 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 574 { 575 D("dev %p fflag 0x%x devtype %d td %p", dev, fflag, devtype, td); 576 return 0; 577 } 578 579 static int 580 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 581 { 582 struct netmap_priv_d *priv; 583 int error; 584 585 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 586 M_NOWAIT | M_ZERO); 587 if (priv == NULL) 588 return ENOMEM; 589 590 error = devfs_set_cdevpriv(priv, netmap_dtor); 591 if (error) 592 return error; 593 594 return 0; 595 } 596 #endif /* __FreeBSD__ */ 597 598 599 /* 600 * Handlers for synchronization of the queues from/to the host. 601 * 602 * netmap_sync_to_host() passes packets up. We are called from a 603 * system call in user process context, and the only contention 604 * can be among multiple user threads erroneously calling 605 * this routine concurrently. In principle we should not even 606 * need to lock. 607 */ 608 static void 609 netmap_sync_to_host(struct netmap_adapter *na) 610 { 611 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 612 struct netmap_ring *ring = kring->ring; 613 struct mbuf *head = NULL, *tail = NULL, *m; 614 u_int k, n, lim = kring->nkr_num_slots - 1; 615 616 k = ring->cur; 617 if (k > lim) { 618 netmap_ring_reinit(kring); 619 return; 620 } 621 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 622 623 /* Take packets from hwcur to cur and pass them up. 624 * In case of no buffers we give up. At the end of the loop, 625 * the queue is drained in all cases. 626 */ 627 for (n = kring->nr_hwcur; n != k;) { 628 struct netmap_slot *slot = &ring->slot[n]; 629 630 n = (n == lim) ? 0 : n + 1; 631 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 632 D("bad pkt at %d len %d", n, slot->len); 633 continue; 634 } 635 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 636 637 if (m == NULL) 638 break; 639 if (tail) 640 tail->m_nextpkt = m; 641 else 642 head = m; 643 tail = m; 644 m->m_nextpkt = NULL; 645 } 646 kring->nr_hwcur = k; 647 kring->nr_hwavail = ring->avail = lim; 648 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 649 650 /* send packets up, outside the lock */ 651 while ((m = head) != NULL) { 652 head = head->m_nextpkt; 653 m->m_nextpkt = NULL; 654 if (netmap_verbose & NM_VERB_HOST) 655 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 656 NM_SEND_UP(na->ifp, m); 657 } 658 } 659 660 /* 661 * rxsync backend for packets coming from the host stack. 662 * They have been put in the queue by netmap_start() so we 663 * need to protect access to the kring using a lock. 664 * 665 * This routine also does the selrecord if called from the poll handler 666 * (we know because td != NULL). 667 * 668 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 669 * as an additional hidden argument. 670 */ 671 static void 672 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 673 { 674 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 675 struct netmap_ring *ring = kring->ring; 676 u_int j, n, lim = kring->nkr_num_slots; 677 u_int k = ring->cur, resvd = ring->reserved; 678 679 (void)pwait; /* disable unused warnings */ 680 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 681 if (k >= lim) { 682 netmap_ring_reinit(kring); 683 return; 684 } 685 /* new packets are already set in nr_hwavail */ 686 /* skip past packets that userspace has released */ 687 j = kring->nr_hwcur; 688 if (resvd > 0) { 689 if (resvd + ring->avail >= lim + 1) { 690 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 691 ring->reserved = resvd = 0; // XXX panic... 692 } 693 k = (k >= resvd) ? k - resvd : k + lim - resvd; 694 } 695 if (j != k) { 696 n = k >= j ? k - j : k + lim - j; 697 kring->nr_hwavail -= n; 698 kring->nr_hwcur = k; 699 } 700 k = ring->avail = kring->nr_hwavail - resvd; 701 if (k == 0 && td) 702 selrecord(td, &kring->si); 703 if (k && (netmap_verbose & NM_VERB_HOST)) 704 D("%d pkts from stack", k); 705 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 706 } 707 708 709 /* 710 * get a refcounted reference to an interface. 711 * Return ENXIO if the interface does not exist, EINVAL if netmap 712 * is not supported by the interface. 713 * If successful, hold a reference. 714 */ 715 static int 716 get_ifp(const char *name, struct ifnet **ifp) 717 { 718 #ifdef NM_BRIDGE 719 struct ifnet *iter = NULL; 720 721 do { 722 struct nm_bridge *b; 723 int i, l, cand = -1; 724 725 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) 726 break; 727 b = nm_find_bridge(name); 728 if (b == NULL) { 729 D("no bridges available for '%s'", name); 730 return (ENXIO); 731 } 732 /* XXX locking */ 733 BDG_LOCK(b); 734 /* lookup in the local list of ports */ 735 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 736 iter = b->bdg_ports[i]; 737 if (iter == NULL) { 738 if (cand == -1) 739 cand = i; /* potential insert point */ 740 continue; 741 } 742 if (!strcmp(iter->if_xname, name)) { 743 ADD_BDG_REF(iter); 744 ND("found existing interface"); 745 BDG_UNLOCK(b); 746 break; 747 } 748 } 749 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 750 break; 751 if (cand == -1) { 752 D("bridge full, cannot create new port"); 753 no_port: 754 BDG_UNLOCK(b); 755 *ifp = NULL; 756 return EINVAL; 757 } 758 ND("create new bridge port %s", name); 759 /* space for forwarding list after the ifnet */ 760 l = sizeof(*iter) + 761 sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ; 762 iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 763 if (!iter) 764 goto no_port; 765 strcpy(iter->if_xname, name); 766 bdg_netmap_attach(iter); 767 b->bdg_ports[cand] = iter; 768 iter->if_bridge = b; 769 ADD_BDG_REF(iter); 770 BDG_UNLOCK(b); 771 ND("attaching virtual bridge %p", b); 772 } while (0); 773 *ifp = iter; 774 if (! *ifp) 775 #endif /* NM_BRIDGE */ 776 *ifp = ifunit_ref(name); 777 if (*ifp == NULL) 778 return (ENXIO); 779 /* can do this if the capability exists and if_pspare[0] 780 * points to the netmap descriptor. 781 */ 782 if (NETMAP_CAPABLE(*ifp)) 783 return 0; /* valid pointer, we hold the refcount */ 784 nm_if_rele(*ifp); 785 return EINVAL; // not NETMAP capable 786 } 787 788 789 /* 790 * Error routine called when txsync/rxsync detects an error. 791 * Can't do much more than resetting cur = hwcur, avail = hwavail. 792 * Return 1 on reinit. 793 * 794 * This routine is only called by the upper half of the kernel. 795 * It only reads hwcur (which is changed only by the upper half, too) 796 * and hwavail (which may be changed by the lower half, but only on 797 * a tx ring and only to increase it, so any error will be recovered 798 * on the next call). For the above, we don't strictly need to call 799 * it under lock. 800 */ 801 int 802 netmap_ring_reinit(struct netmap_kring *kring) 803 { 804 struct netmap_ring *ring = kring->ring; 805 u_int i, lim = kring->nkr_num_slots - 1; 806 int errors = 0; 807 808 RD(10, "called for %s", kring->na->ifp->if_xname); 809 if (ring->cur > lim) 810 errors++; 811 for (i = 0; i <= lim; i++) { 812 u_int idx = ring->slot[i].buf_idx; 813 u_int len = ring->slot[i].len; 814 if (idx < 2 || idx >= netmap_total_buffers) { 815 if (!errors++) 816 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 817 ring->slot[i].buf_idx = 0; 818 ring->slot[i].len = 0; 819 } else if (len > NETMAP_BUF_SIZE) { 820 ring->slot[i].len = 0; 821 if (!errors++) 822 D("bad len %d at slot %d idx %d", 823 len, i, idx); 824 } 825 } 826 if (errors) { 827 int pos = kring - kring->na->tx_rings; 828 int n = kring->na->num_tx_rings + 1; 829 830 RD(10, "total %d errors", errors); 831 errors++; 832 RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 833 kring->na->ifp->if_xname, 834 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 835 ring->cur, kring->nr_hwcur, 836 ring->avail, kring->nr_hwavail); 837 ring->cur = kring->nr_hwcur; 838 ring->avail = kring->nr_hwavail; 839 } 840 return (errors ? 1 : 0); 841 } 842 843 844 /* 845 * Set the ring ID. For devices with a single queue, a request 846 * for all rings is the same as a single ring. 847 */ 848 static int 849 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 850 { 851 struct ifnet *ifp = priv->np_ifp; 852 struct netmap_adapter *na = NA(ifp); 853 u_int i = ringid & NETMAP_RING_MASK; 854 /* initially (np_qfirst == np_qlast) we don't want to lock */ 855 int need_lock = (priv->np_qfirst != priv->np_qlast); 856 int lim = na->num_rx_rings; 857 858 if (na->num_tx_rings > lim) 859 lim = na->num_tx_rings; 860 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 861 D("invalid ring id %d", i); 862 return (EINVAL); 863 } 864 if (need_lock) 865 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 866 priv->np_ringid = ringid; 867 if (ringid & NETMAP_SW_RING) { 868 priv->np_qfirst = NETMAP_SW_RING; 869 priv->np_qlast = 0; 870 } else if (ringid & NETMAP_HW_RING) { 871 priv->np_qfirst = i; 872 priv->np_qlast = i + 1; 873 } else { 874 priv->np_qfirst = 0; 875 priv->np_qlast = NETMAP_HW_RING ; 876 } 877 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 878 if (need_lock) 879 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 880 if (ringid & NETMAP_SW_RING) 881 D("ringid %s set to SW RING", ifp->if_xname); 882 else if (ringid & NETMAP_HW_RING) 883 D("ringid %s set to HW RING %d", ifp->if_xname, 884 priv->np_qfirst); 885 else 886 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 887 return 0; 888 } 889 890 /* 891 * ioctl(2) support for the "netmap" device. 892 * 893 * Following a list of accepted commands: 894 * - NIOCGINFO 895 * - SIOCGIFADDR just for convenience 896 * - NIOCREGIF 897 * - NIOCUNREGIF 898 * - NIOCTXSYNC 899 * - NIOCRXSYNC 900 * 901 * Return 0 on success, errno otherwise. 902 */ 903 static int 904 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 905 int fflag, struct thread *td) 906 { 907 struct netmap_priv_d *priv = NULL; 908 struct ifnet *ifp; 909 struct nmreq *nmr = (struct nmreq *) data; 910 struct netmap_adapter *na; 911 int error; 912 u_int i, lim; 913 struct netmap_if *nifp; 914 915 (void)dev; /* UNUSED */ 916 (void)fflag; /* UNUSED */ 917 #ifdef linux 918 #define devfs_get_cdevpriv(pp) \ 919 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 920 (*pp ? 0 : ENOENT); }) 921 922 /* devfs_set_cdevpriv cannot fail on linux */ 923 #define devfs_set_cdevpriv(p, fn) \ 924 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 925 926 927 #define devfs_clear_cdevpriv() do { \ 928 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 929 } while (0) 930 #endif /* linux */ 931 932 CURVNET_SET(TD_TO_VNET(td)); 933 934 error = devfs_get_cdevpriv((void **)&priv); 935 if (error) { 936 CURVNET_RESTORE(); 937 /* XXX ENOENT should be impossible, since the priv 938 * is now created in the open */ 939 return (error == ENOENT ? ENXIO : error); 940 } 941 942 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 943 switch (cmd) { 944 case NIOCGINFO: /* return capabilities etc */ 945 if (nmr->nr_version != NETMAP_API) { 946 D("API mismatch got %d have %d", 947 nmr->nr_version, NETMAP_API); 948 nmr->nr_version = NETMAP_API; 949 error = EINVAL; 950 break; 951 } 952 /* update configuration */ 953 error = netmap_get_memory(priv); 954 ND("get_memory returned %d", error); 955 if (error) 956 break; 957 /* memsize is always valid */ 958 nmr->nr_memsize = nm_mem.nm_totalsize; 959 nmr->nr_offset = 0; 960 nmr->nr_rx_rings = nmr->nr_tx_rings = 0; 961 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 962 if (nmr->nr_name[0] == '\0') /* just get memory info */ 963 break; 964 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 965 if (error) 966 break; 967 na = NA(ifp); /* retrieve netmap_adapter */ 968 nmr->nr_rx_rings = na->num_rx_rings; 969 nmr->nr_tx_rings = na->num_tx_rings; 970 nmr->nr_rx_slots = na->num_rx_desc; 971 nmr->nr_tx_slots = na->num_tx_desc; 972 nm_if_rele(ifp); /* return the refcount */ 973 break; 974 975 case NIOCREGIF: 976 if (nmr->nr_version != NETMAP_API) { 977 nmr->nr_version = NETMAP_API; 978 error = EINVAL; 979 break; 980 } 981 /* ensure allocators are ready */ 982 error = netmap_get_memory(priv); 983 ND("get_memory returned %d", error); 984 if (error) 985 break; 986 987 /* protect access to priv from concurrent NIOCREGIF */ 988 NMA_LOCK(); 989 if (priv->np_ifp != NULL) { /* thread already registered */ 990 error = netmap_set_ringid(priv, nmr->nr_ringid); 991 NMA_UNLOCK(); 992 break; 993 } 994 /* find the interface and a reference */ 995 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 996 if (error) { 997 NMA_UNLOCK(); 998 break; 999 } 1000 na = NA(ifp); /* retrieve netmap adapter */ 1001 1002 for (i = 10; i > 0; i--) { 1003 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 1004 if (!NETMAP_DELETING(na)) 1005 break; 1006 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1007 tsleep(na, 0, "NIOCREGIF", hz/10); 1008 } 1009 if (i == 0) { 1010 D("too many NIOCREGIF attempts, give up"); 1011 error = EINVAL; 1012 nm_if_rele(ifp); /* return the refcount */ 1013 NMA_UNLOCK(); 1014 break; 1015 } 1016 1017 priv->np_ifp = ifp; /* store the reference */ 1018 error = netmap_set_ringid(priv, nmr->nr_ringid); 1019 if (error) 1020 goto error; 1021 nifp = netmap_if_new(nmr->nr_name, na); 1022 if (nifp == NULL) { /* allocation failed */ 1023 error = ENOMEM; 1024 } else if (ifp->if_capenable & IFCAP_NETMAP) { 1025 /* was already set */ 1026 } else { 1027 /* Otherwise set the card in netmap mode 1028 * and make it use the shared buffers. 1029 */ 1030 for (i = 0 ; i < na->num_tx_rings + 1; i++) 1031 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1032 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 1033 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1034 } 1035 error = na->nm_register(ifp, 1); /* mode on */ 1036 if (error) { 1037 netmap_dtor_locked(priv); 1038 netmap_if_free(nifp); 1039 } 1040 } 1041 1042 if (error) { /* reg. failed, release priv and ref */ 1043 error: 1044 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1045 nm_if_rele(ifp); /* return the refcount */ 1046 priv->np_ifp = NULL; 1047 priv->np_nifp = NULL; 1048 NMA_UNLOCK(); 1049 break; 1050 } 1051 1052 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1053 1054 /* the following assignment is a commitment. 1055 * Readers (i.e., poll and *SYNC) check for 1056 * np_nifp != NULL without locking 1057 */ 1058 wmb(); /* make sure previous writes are visible to all CPUs */ 1059 priv->np_nifp = nifp; 1060 NMA_UNLOCK(); 1061 1062 /* return the offset of the netmap_if object */ 1063 nmr->nr_rx_rings = na->num_rx_rings; 1064 nmr->nr_tx_rings = na->num_tx_rings; 1065 nmr->nr_rx_slots = na->num_rx_desc; 1066 nmr->nr_tx_slots = na->num_tx_desc; 1067 nmr->nr_memsize = nm_mem.nm_totalsize; 1068 nmr->nr_offset = netmap_if_offset(nifp); 1069 break; 1070 1071 case NIOCUNREGIF: 1072 // XXX we have no data here ? 1073 D("deprecated, data is %p", nmr); 1074 error = EINVAL; 1075 break; 1076 1077 case NIOCTXSYNC: 1078 case NIOCRXSYNC: 1079 nifp = priv->np_nifp; 1080 1081 if (nifp == NULL) { 1082 error = ENXIO; 1083 break; 1084 } 1085 rmb(); /* make sure following reads are not from cache */ 1086 1087 1088 ifp = priv->np_ifp; /* we have a reference */ 1089 1090 if (ifp == NULL) { 1091 D("Internal error: nifp != NULL && ifp == NULL"); 1092 error = ENXIO; 1093 break; 1094 } 1095 1096 na = NA(ifp); /* retrieve netmap adapter */ 1097 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 1098 if (cmd == NIOCTXSYNC) 1099 netmap_sync_to_host(na); 1100 else 1101 netmap_sync_from_host(na, NULL, NULL); 1102 break; 1103 } 1104 /* find the last ring to scan */ 1105 lim = priv->np_qlast; 1106 if (lim == NETMAP_HW_RING) 1107 lim = (cmd == NIOCTXSYNC) ? 1108 na->num_tx_rings : na->num_rx_rings; 1109 1110 for (i = priv->np_qfirst; i < lim; i++) { 1111 if (cmd == NIOCTXSYNC) { 1112 struct netmap_kring *kring = &na->tx_rings[i]; 1113 if (netmap_verbose & NM_VERB_TXSYNC) 1114 D("pre txsync ring %d cur %d hwcur %d", 1115 i, kring->ring->cur, 1116 kring->nr_hwcur); 1117 na->nm_txsync(ifp, i, 1 /* do lock */); 1118 if (netmap_verbose & NM_VERB_TXSYNC) 1119 D("post txsync ring %d cur %d hwcur %d", 1120 i, kring->ring->cur, 1121 kring->nr_hwcur); 1122 } else { 1123 na->nm_rxsync(ifp, i, 1 /* do lock */); 1124 microtime(&na->rx_rings[i].ring->ts); 1125 } 1126 } 1127 1128 break; 1129 1130 #ifdef __FreeBSD__ 1131 case BIOCIMMEDIATE: 1132 case BIOCGHDRCMPLT: 1133 case BIOCSHDRCMPLT: 1134 case BIOCSSEESENT: 1135 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1136 break; 1137 1138 default: /* allow device-specific ioctls */ 1139 { 1140 struct socket so; 1141 bzero(&so, sizeof(so)); 1142 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1143 if (error) 1144 break; 1145 so.so_vnet = ifp->if_vnet; 1146 // so->so_proto not null. 1147 error = ifioctl(&so, cmd, data, td); 1148 nm_if_rele(ifp); 1149 break; 1150 } 1151 1152 #else /* linux */ 1153 default: 1154 error = EOPNOTSUPP; 1155 #endif /* linux */ 1156 } 1157 1158 CURVNET_RESTORE(); 1159 return (error); 1160 } 1161 1162 1163 /* 1164 * select(2) and poll(2) handlers for the "netmap" device. 1165 * 1166 * Can be called for one or more queues. 1167 * Return true the event mask corresponding to ready events. 1168 * If there are no ready events, do a selrecord on either individual 1169 * selfd or on the global one. 1170 * Device-dependent parts (locking and sync of tx/rx rings) 1171 * are done through callbacks. 1172 * 1173 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1174 * The first one is remapped to pwait as selrecord() uses the name as an 1175 * hidden argument. 1176 */ 1177 static int 1178 netmap_poll(struct cdev *dev, int events, struct thread *td) 1179 { 1180 struct netmap_priv_d *priv = NULL; 1181 struct netmap_adapter *na; 1182 struct ifnet *ifp; 1183 struct netmap_kring *kring; 1184 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1185 u_int lim_tx, lim_rx; 1186 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1187 void *pwait = dev; /* linux compatibility */ 1188 1189 (void)pwait; 1190 1191 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1192 return POLLERR; 1193 1194 if (priv->np_nifp == NULL) { 1195 D("No if registered"); 1196 return POLLERR; 1197 } 1198 rmb(); /* make sure following reads are not from cache */ 1199 1200 ifp = priv->np_ifp; 1201 // XXX check for deleting() ? 1202 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1203 return POLLERR; 1204 1205 if (netmap_verbose & 0x8000) 1206 D("device %s events 0x%x", ifp->if_xname, events); 1207 want_tx = events & (POLLOUT | POLLWRNORM); 1208 want_rx = events & (POLLIN | POLLRDNORM); 1209 1210 na = NA(ifp); /* retrieve netmap adapter */ 1211 1212 lim_tx = na->num_tx_rings; 1213 lim_rx = na->num_rx_rings; 1214 /* how many queues we are scanning */ 1215 if (priv->np_qfirst == NETMAP_SW_RING) { 1216 if (priv->np_txpoll || want_tx) { 1217 /* push any packets up, then we are always ready */ 1218 kring = &na->tx_rings[lim_tx]; 1219 netmap_sync_to_host(na); 1220 revents |= want_tx; 1221 } 1222 if (want_rx) { 1223 kring = &na->rx_rings[lim_rx]; 1224 if (kring->ring->avail == 0) 1225 netmap_sync_from_host(na, td, dev); 1226 if (kring->ring->avail > 0) { 1227 revents |= want_rx; 1228 } 1229 } 1230 return (revents); 1231 } 1232 1233 /* 1234 * check_all is set if the card has more than one queue and 1235 * the client is polling all of them. If true, we sleep on 1236 * the "global" selfd, otherwise we sleep on individual selfd 1237 * (we can only sleep on one of them per direction). 1238 * The interrupt routine in the driver should always wake on 1239 * the individual selfd, and also on the global one if the card 1240 * has more than one ring. 1241 * 1242 * If the card has only one lock, we just use that. 1243 * If the card has separate ring locks, we just use those 1244 * unless we are doing check_all, in which case the whole 1245 * loop is wrapped by the global lock. 1246 * We acquire locks only when necessary: if poll is called 1247 * when buffers are available, we can just return without locks. 1248 * 1249 * rxsync() is only called if we run out of buffers on a POLLIN. 1250 * txsync() is called if we run out of buffers on POLLOUT, or 1251 * there are pending packets to send. The latter can be disabled 1252 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1253 */ 1254 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1255 1256 /* 1257 * core_lock indicates what to do with the core lock. 1258 * The core lock is used when either the card has no individual 1259 * locks, or it has individual locks but we are cheking all 1260 * rings so we need the core lock to avoid missing wakeup events. 1261 * 1262 * It has three possible states: 1263 * NO_CL we don't need to use the core lock, e.g. 1264 * because we are protected by individual locks. 1265 * NEED_CL we need the core lock. In this case, when we 1266 * call the lock routine, move to LOCKED_CL 1267 * to remember to release the lock once done. 1268 * LOCKED_CL core lock is set, so we need to release it. 1269 */ 1270 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1271 #ifdef NM_BRIDGE 1272 /* the bridge uses separate locks */ 1273 if (na->nm_register == bdg_netmap_reg) { 1274 ND("not using core lock for %s", ifp->if_xname); 1275 core_lock = NO_CL; 1276 } 1277 #endif /* NM_BRIDGE */ 1278 if (priv->np_qlast != NETMAP_HW_RING) { 1279 lim_tx = lim_rx = priv->np_qlast; 1280 } 1281 1282 /* 1283 * We start with a lock free round which is good if we have 1284 * data available. If this fails, then lock and call the sync 1285 * routines. 1286 */ 1287 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1288 kring = &na->rx_rings[i]; 1289 if (kring->ring->avail > 0) { 1290 revents |= want_rx; 1291 want_rx = 0; /* also breaks the loop */ 1292 } 1293 } 1294 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1295 kring = &na->tx_rings[i]; 1296 if (kring->ring->avail > 0) { 1297 revents |= want_tx; 1298 want_tx = 0; /* also breaks the loop */ 1299 } 1300 } 1301 1302 /* 1303 * If we to push packets out (priv->np_txpoll) or want_tx is 1304 * still set, we do need to run the txsync calls (on all rings, 1305 * to avoid that the tx rings stall). 1306 */ 1307 if (priv->np_txpoll || want_tx) { 1308 for (i = priv->np_qfirst; i < lim_tx; i++) { 1309 kring = &na->tx_rings[i]; 1310 /* 1311 * Skip the current ring if want_tx == 0 1312 * (we have already done a successful sync on 1313 * a previous ring) AND kring->cur == kring->hwcur 1314 * (there are no pending transmissions for this ring). 1315 */ 1316 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1317 continue; 1318 if (core_lock == NEED_CL) { 1319 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1320 core_lock = LOCKED_CL; 1321 } 1322 if (na->separate_locks) 1323 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 1324 if (netmap_verbose & NM_VERB_TXSYNC) 1325 D("send %d on %s %d", 1326 kring->ring->cur, 1327 ifp->if_xname, i); 1328 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 1329 revents |= POLLERR; 1330 1331 /* Check avail/call selrecord only if called with POLLOUT */ 1332 if (want_tx) { 1333 if (kring->ring->avail > 0) { 1334 /* stop at the first ring. We don't risk 1335 * starvation. 1336 */ 1337 revents |= want_tx; 1338 want_tx = 0; 1339 } else if (!check_all) 1340 selrecord(td, &kring->si); 1341 } 1342 if (na->separate_locks) 1343 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 1344 } 1345 } 1346 1347 /* 1348 * now if want_rx is still set we need to lock and rxsync. 1349 * Do it on all rings because otherwise we starve. 1350 */ 1351 if (want_rx) { 1352 for (i = priv->np_qfirst; i < lim_rx; i++) { 1353 kring = &na->rx_rings[i]; 1354 if (core_lock == NEED_CL) { 1355 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1356 core_lock = LOCKED_CL; 1357 } 1358 if (na->separate_locks) 1359 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 1360 1361 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 1362 revents |= POLLERR; 1363 if (netmap_no_timestamp == 0 || 1364 kring->ring->flags & NR_TIMESTAMP) { 1365 microtime(&kring->ring->ts); 1366 } 1367 1368 if (kring->ring->avail > 0) 1369 revents |= want_rx; 1370 else if (!check_all) 1371 selrecord(td, &kring->si); 1372 if (na->separate_locks) 1373 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 1374 } 1375 } 1376 if (check_all && revents == 0) { /* signal on the global queue */ 1377 if (want_tx) 1378 selrecord(td, &na->tx_si); 1379 if (want_rx) 1380 selrecord(td, &na->rx_si); 1381 } 1382 if (core_lock == LOCKED_CL) 1383 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1384 1385 return (revents); 1386 } 1387 1388 /*------- driver support routines ------*/ 1389 1390 /* 1391 * default lock wrapper. 1392 */ 1393 static void 1394 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 1395 { 1396 struct netmap_adapter *na = NA(dev); 1397 1398 switch (what) { 1399 #ifdef linux /* some system do not need lock on register */ 1400 case NETMAP_REG_LOCK: 1401 case NETMAP_REG_UNLOCK: 1402 break; 1403 #endif /* linux */ 1404 1405 case NETMAP_CORE_LOCK: 1406 mtx_lock(&na->core_lock); 1407 break; 1408 1409 case NETMAP_CORE_UNLOCK: 1410 mtx_unlock(&na->core_lock); 1411 break; 1412 1413 case NETMAP_TX_LOCK: 1414 mtx_lock(&na->tx_rings[queueid].q_lock); 1415 break; 1416 1417 case NETMAP_TX_UNLOCK: 1418 mtx_unlock(&na->tx_rings[queueid].q_lock); 1419 break; 1420 1421 case NETMAP_RX_LOCK: 1422 mtx_lock(&na->rx_rings[queueid].q_lock); 1423 break; 1424 1425 case NETMAP_RX_UNLOCK: 1426 mtx_unlock(&na->rx_rings[queueid].q_lock); 1427 break; 1428 } 1429 } 1430 1431 1432 /* 1433 * Initialize a ``netmap_adapter`` object created by driver on attach. 1434 * We allocate a block of memory with room for a struct netmap_adapter 1435 * plus two sets of N+2 struct netmap_kring (where N is the number 1436 * of hardware rings): 1437 * krings 0..N-1 are for the hardware queues. 1438 * kring N is for the host stack queue 1439 * kring N+1 is only used for the selinfo for all queues. 1440 * Return 0 on success, ENOMEM otherwise. 1441 * 1442 * By default the receive and transmit adapter ring counts are both initialized 1443 * to num_queues. na->num_tx_rings can be set for cards with different tx/rx 1444 * setups. 1445 */ 1446 int 1447 netmap_attach(struct netmap_adapter *na, int num_queues) 1448 { 1449 int n, size; 1450 void *buf; 1451 struct ifnet *ifp = na->ifp; 1452 1453 if (ifp == NULL) { 1454 D("ifp not set, giving up"); 1455 return EINVAL; 1456 } 1457 /* clear other fields ? */ 1458 na->refcount = 0; 1459 if (na->num_tx_rings == 0) 1460 na->num_tx_rings = num_queues; 1461 na->num_rx_rings = num_queues; 1462 /* on each direction we have N+1 resources 1463 * 0..n-1 are the hardware rings 1464 * n is the ring attached to the stack. 1465 */ 1466 n = na->num_rx_rings + na->num_tx_rings + 2; 1467 size = sizeof(*na) + n * sizeof(struct netmap_kring); 1468 1469 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1470 if (buf) { 1471 WNA(ifp) = buf; 1472 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1473 na->rx_rings = na->tx_rings + na->num_tx_rings + 1; 1474 bcopy(na, buf, sizeof(*na)); 1475 NETMAP_SET_CAPABLE(ifp); 1476 1477 na = buf; 1478 /* Core lock initialized here. Others are initialized after 1479 * netmap_if_new. 1480 */ 1481 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, 1482 MTX_DEF); 1483 if (na->nm_lock == NULL) { 1484 ND("using default locks for %s", ifp->if_xname); 1485 na->nm_lock = netmap_lock_wrapper; 1486 } 1487 } 1488 #ifdef linux 1489 if (ifp->netdev_ops) { 1490 ND("netdev_ops %p", ifp->netdev_ops); 1491 /* prepare a clone of the netdev ops */ 1492 na->nm_ndo = *ifp->netdev_ops; 1493 } 1494 na->nm_ndo.ndo_start_xmit = linux_netmap_start; 1495 #endif 1496 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1497 1498 return (buf ? 0 : ENOMEM); 1499 } 1500 1501 1502 /* 1503 * Free the allocated memory linked to the given ``netmap_adapter`` 1504 * object. 1505 */ 1506 void 1507 netmap_detach(struct ifnet *ifp) 1508 { 1509 struct netmap_adapter *na = NA(ifp); 1510 1511 if (!na) 1512 return; 1513 1514 mtx_destroy(&na->core_lock); 1515 1516 bzero(na, sizeof(*na)); 1517 WNA(ifp) = NULL; 1518 free(na, M_DEVBUF); 1519 } 1520 1521 1522 /* 1523 * Intercept packets from the network stack and pass them 1524 * to netmap as incoming packets on the 'software' ring. 1525 * We are not locked when called. 1526 */ 1527 int 1528 netmap_start(struct ifnet *ifp, struct mbuf *m) 1529 { 1530 struct netmap_adapter *na = NA(ifp); 1531 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1532 u_int i, len = MBUF_LEN(m); 1533 u_int error = EBUSY, lim = kring->nkr_num_slots - 1; 1534 struct netmap_slot *slot; 1535 1536 if (netmap_verbose & NM_VERB_HOST) 1537 D("%s packet %d len %d from the stack", ifp->if_xname, 1538 kring->nr_hwcur + kring->nr_hwavail, len); 1539 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1540 if (kring->nr_hwavail >= lim) { 1541 if (netmap_verbose) 1542 D("stack ring %s full\n", ifp->if_xname); 1543 goto done; /* no space */ 1544 } 1545 if (len > NETMAP_BUF_SIZE) { 1546 D("drop packet size %d > %d", len, NETMAP_BUF_SIZE); 1547 goto done; /* too long for us */ 1548 } 1549 1550 /* compute the insert position */ 1551 i = kring->nr_hwcur + kring->nr_hwavail; 1552 if (i > lim) 1553 i -= lim + 1; 1554 slot = &kring->ring->slot[i]; 1555 m_copydata(m, 0, len, NMB(slot)); 1556 slot->len = len; 1557 kring->nr_hwavail++; 1558 if (netmap_verbose & NM_VERB_HOST) 1559 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 1560 selwakeuppri(&kring->si, PI_NET); 1561 error = 0; 1562 done: 1563 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1564 1565 /* release the mbuf in either cases of success or failure. As an 1566 * alternative, put the mbuf in a free list and free the list 1567 * only when really necessary. 1568 */ 1569 m_freem(m); 1570 1571 return (error); 1572 } 1573 1574 1575 /* 1576 * netmap_reset() is called by the driver routines when reinitializing 1577 * a ring. The driver is in charge of locking to protect the kring. 1578 * If netmap mode is not set just return NULL. 1579 */ 1580 struct netmap_slot * 1581 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1582 u_int new_cur) 1583 { 1584 struct netmap_kring *kring; 1585 int new_hwofs, lim; 1586 1587 if (na == NULL) 1588 return NULL; /* no netmap support here */ 1589 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1590 return NULL; /* nothing to reinitialize */ 1591 1592 if (tx == NR_TX) { 1593 if (n >= na->num_tx_rings) 1594 return NULL; 1595 kring = na->tx_rings + n; 1596 new_hwofs = kring->nr_hwcur - new_cur; 1597 } else { 1598 if (n >= na->num_rx_rings) 1599 return NULL; 1600 kring = na->rx_rings + n; 1601 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1602 } 1603 lim = kring->nkr_num_slots - 1; 1604 if (new_hwofs > lim) 1605 new_hwofs -= lim + 1; 1606 1607 /* Alwayws set the new offset value and realign the ring. */ 1608 kring->nkr_hwofs = new_hwofs; 1609 if (tx == NR_TX) 1610 kring->nr_hwavail = kring->nkr_num_slots - 1; 1611 ND(10, "new hwofs %d on %s %s[%d]", 1612 kring->nkr_hwofs, na->ifp->if_xname, 1613 tx == NR_TX ? "TX" : "RX", n); 1614 1615 #if 0 // def linux 1616 /* XXX check that the mappings are correct */ 1617 /* need ring_nr, adapter->pdev, direction */ 1618 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 1619 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1620 D("error mapping rx netmap buffer %d", i); 1621 // XXX fix error handling 1622 } 1623 1624 #endif /* linux */ 1625 /* 1626 * Wakeup on the individual and global lock 1627 * We do the wakeup here, but the ring is not yet reconfigured. 1628 * However, we are under lock so there are no races. 1629 */ 1630 selwakeuppri(&kring->si, PI_NET); 1631 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 1632 return kring->ring->slot; 1633 } 1634 1635 1636 /* 1637 * Default functions to handle rx/tx interrupts 1638 * we have 4 cases: 1639 * 1 ring, single lock: 1640 * lock(core); wake(i=0); unlock(core) 1641 * N rings, single lock: 1642 * lock(core); wake(i); wake(N+1) unlock(core) 1643 * 1 ring, separate locks: (i=0) 1644 * lock(i); wake(i); unlock(i) 1645 * N rings, separate locks: 1646 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 1647 * work_done is non-null on the RX path. 1648 */ 1649 int 1650 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 1651 { 1652 struct netmap_adapter *na; 1653 struct netmap_kring *r; 1654 NM_SELINFO_T *main_wq; 1655 1656 if (!(ifp->if_capenable & IFCAP_NETMAP)) 1657 return 0; 1658 ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 1659 na = NA(ifp); 1660 if (na->na_flags & NAF_SKIP_INTR) { 1661 ND("use regular interrupt"); 1662 return 0; 1663 } 1664 1665 if (work_done) { /* RX path */ 1666 if (q >= na->num_rx_rings) 1667 return 0; // regular queue 1668 r = na->rx_rings + q; 1669 r->nr_kflags |= NKR_PENDINTR; 1670 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 1671 } else { /* tx path */ 1672 if (q >= na->num_tx_rings) 1673 return 0; // regular queue 1674 r = na->tx_rings + q; 1675 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 1676 work_done = &q; /* dummy */ 1677 } 1678 if (na->separate_locks) { 1679 mtx_lock(&r->q_lock); 1680 selwakeuppri(&r->si, PI_NET); 1681 mtx_unlock(&r->q_lock); 1682 if (main_wq) { 1683 mtx_lock(&na->core_lock); 1684 selwakeuppri(main_wq, PI_NET); 1685 mtx_unlock(&na->core_lock); 1686 } 1687 } else { 1688 mtx_lock(&na->core_lock); 1689 selwakeuppri(&r->si, PI_NET); 1690 if (main_wq) 1691 selwakeuppri(main_wq, PI_NET); 1692 mtx_unlock(&na->core_lock); 1693 } 1694 *work_done = 1; /* do not fire napi again */ 1695 return 1; 1696 } 1697 1698 1699 #ifdef linux /* linux-specific routines */ 1700 1701 /* 1702 * Remap linux arguments into the FreeBSD call. 1703 * - pwait is the poll table, passed as 'dev'; 1704 * If pwait == NULL someone else already woke up before. We can report 1705 * events but they are filtered upstream. 1706 * If pwait != NULL, then pwait->key contains the list of events. 1707 * - events is computed from pwait as above. 1708 * - file is passed as 'td'; 1709 */ 1710 static u_int 1711 linux_netmap_poll(struct file * file, struct poll_table_struct *pwait) 1712 { 1713 #if LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0) 1714 int events = pwait ? pwait->key : POLLIN | POLLOUT; 1715 #else /* in 3.4.0 field 'key' was renamed to '_key' */ 1716 int events = pwait ? pwait->_key : POLLIN | POLLOUT; 1717 #endif 1718 return netmap_poll((void *)pwait, events, (void *)file); 1719 } 1720 1721 static int 1722 linux_netmap_mmap(struct file *f, struct vm_area_struct *vma) 1723 { 1724 int lut_skip, i, j; 1725 int user_skip = 0; 1726 struct lut_entry *l_entry; 1727 int error = 0; 1728 unsigned long off, tomap; 1729 /* 1730 * vma->vm_start: start of mapping user address space 1731 * vma->vm_end: end of the mapping user address space 1732 * vma->vm_pfoff: offset of first page in the device 1733 */ 1734 1735 // XXX security checks 1736 1737 error = netmap_get_memory(f->private_data); 1738 ND("get_memory returned %d", error); 1739 if (error) 1740 return -error; 1741 1742 off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */ 1743 tomap = vma->vm_end - vma->vm_start; 1744 for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */ 1745 const struct netmap_obj_pool *p = &nm_mem.pools[i]; 1746 /* 1747 * In each pool memory is allocated in clusters 1748 * of size _clustsize, each containing clustentries 1749 * entries. For each object k we already store the 1750 * vtophys mapping in lut[k] so we use that, scanning 1751 * the lut[] array in steps of clustentries, 1752 * and we map each cluster (not individual pages, 1753 * it would be overkill). 1754 */ 1755 1756 /* 1757 * We interpret vm_pgoff as an offset into the whole 1758 * netmap memory, as if all clusters where contiguous. 1759 */ 1760 for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) { 1761 unsigned long paddr, mapsize; 1762 if (p->_clustsize <= off) { 1763 off -= p->_clustsize; 1764 continue; 1765 } 1766 l_entry = &p->lut[lut_skip]; /* first obj in the cluster */ 1767 paddr = l_entry->paddr + off; 1768 mapsize = p->_clustsize - off; 1769 off = 0; 1770 if (mapsize > tomap) 1771 mapsize = tomap; 1772 ND("remap_pfn_range(%lx, %lx, %lx)", 1773 vma->vm_start + user_skip, 1774 paddr >> PAGE_SHIFT, mapsize); 1775 if (remap_pfn_range(vma, vma->vm_start + user_skip, 1776 paddr >> PAGE_SHIFT, mapsize, 1777 vma->vm_page_prot)) 1778 return -EAGAIN; // XXX check return value 1779 user_skip += mapsize; 1780 tomap -= mapsize; 1781 if (tomap == 0) 1782 goto done; 1783 } 1784 } 1785 done: 1786 1787 return 0; 1788 } 1789 1790 static netdev_tx_t 1791 linux_netmap_start(struct sk_buff *skb, struct net_device *dev) 1792 { 1793 netmap_start(dev, skb); 1794 return (NETDEV_TX_OK); 1795 } 1796 1797 1798 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38 1799 #define LIN_IOCTL_NAME .ioctl 1800 int 1801 linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */) 1802 #else 1803 #define LIN_IOCTL_NAME .unlocked_ioctl 1804 long 1805 linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */) 1806 #endif 1807 { 1808 int ret; 1809 struct nmreq nmr; 1810 bzero(&nmr, sizeof(nmr)); 1811 1812 if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0) 1813 return -EFAULT; 1814 ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file); 1815 if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0) 1816 return -EFAULT; 1817 return -ret; 1818 } 1819 1820 1821 static int 1822 netmap_release(struct inode *inode, struct file *file) 1823 { 1824 (void)inode; /* UNUSED */ 1825 if (file->private_data) 1826 netmap_dtor(file->private_data); 1827 return (0); 1828 } 1829 1830 static int 1831 linux_netmap_open(struct inode *inode, struct file *file) 1832 { 1833 struct netmap_priv_d *priv; 1834 (void)inode; /* UNUSED */ 1835 1836 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 1837 M_NOWAIT | M_ZERO); 1838 if (priv == NULL) 1839 return -ENOMEM; 1840 1841 file->private_data = priv; 1842 1843 return (0); 1844 } 1845 1846 static struct file_operations netmap_fops = { 1847 .open = linux_netmap_open, 1848 .mmap = linux_netmap_mmap, 1849 LIN_IOCTL_NAME = linux_netmap_ioctl, 1850 .poll = linux_netmap_poll, 1851 .release = netmap_release, 1852 }; 1853 1854 static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */ 1855 MISC_DYNAMIC_MINOR, 1856 "netmap", 1857 &netmap_fops, 1858 }; 1859 1860 static int netmap_init(void); 1861 static void netmap_fini(void); 1862 1863 /* Errors have negative values on linux */ 1864 static int linux_netmap_init(void) 1865 { 1866 return -netmap_init(); 1867 } 1868 1869 module_init(linux_netmap_init); 1870 module_exit(netmap_fini); 1871 /* export certain symbols to other modules */ 1872 EXPORT_SYMBOL(netmap_attach); // driver attach routines 1873 EXPORT_SYMBOL(netmap_detach); // driver detach routines 1874 EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error 1875 EXPORT_SYMBOL(netmap_buffer_lut); 1876 EXPORT_SYMBOL(netmap_total_buffers); // index check 1877 EXPORT_SYMBOL(netmap_buffer_base); 1878 EXPORT_SYMBOL(netmap_reset); // ring init routines 1879 EXPORT_SYMBOL(netmap_buf_size); 1880 EXPORT_SYMBOL(netmap_rx_irq); // default irq handler 1881 EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away 1882 1883 1884 MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/"); 1885 MODULE_DESCRIPTION("The netmap packet I/O framework"); 1886 MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */ 1887 1888 #else /* __FreeBSD__ */ 1889 1890 static struct cdevsw netmap_cdevsw = { 1891 .d_version = D_VERSION, 1892 .d_name = "netmap", 1893 .d_open = netmap_open, 1894 .d_mmap = netmap_mmap, 1895 .d_mmap_single = netmap_mmap_single, 1896 .d_ioctl = netmap_ioctl, 1897 .d_poll = netmap_poll, 1898 .d_close = netmap_close, 1899 }; 1900 #endif /* __FreeBSD__ */ 1901 1902 #ifdef NM_BRIDGE 1903 /* 1904 *---- support for virtual bridge ----- 1905 */ 1906 1907 /* ----- FreeBSD if_bridge hash function ------- */ 1908 1909 /* 1910 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1911 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1912 * 1913 * http://www.burtleburtle.net/bob/hash/spooky.html 1914 */ 1915 #define mix(a, b, c) \ 1916 do { \ 1917 a -= b; a -= c; a ^= (c >> 13); \ 1918 b -= c; b -= a; b ^= (a << 8); \ 1919 c -= a; c -= b; c ^= (b >> 13); \ 1920 a -= b; a -= c; a ^= (c >> 12); \ 1921 b -= c; b -= a; b ^= (a << 16); \ 1922 c -= a; c -= b; c ^= (b >> 5); \ 1923 a -= b; a -= c; a ^= (c >> 3); \ 1924 b -= c; b -= a; b ^= (a << 10); \ 1925 c -= a; c -= b; c ^= (b >> 15); \ 1926 } while (/*CONSTCOND*/0) 1927 1928 static __inline uint32_t 1929 nm_bridge_rthash(const uint8_t *addr) 1930 { 1931 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 1932 1933 b += addr[5] << 8; 1934 b += addr[4]; 1935 a += addr[3] << 24; 1936 a += addr[2] << 16; 1937 a += addr[1] << 8; 1938 a += addr[0]; 1939 1940 mix(a, b, c); 1941 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 1942 return (c & BRIDGE_RTHASH_MASK); 1943 } 1944 1945 #undef mix 1946 1947 1948 static int 1949 bdg_netmap_reg(struct ifnet *ifp, int onoff) 1950 { 1951 int i, err = 0; 1952 struct nm_bridge *b = ifp->if_bridge; 1953 1954 BDG_LOCK(b); 1955 if (onoff) { 1956 /* the interface must be already in the list. 1957 * only need to mark the port as active 1958 */ 1959 ND("should attach %s to the bridge", ifp->if_xname); 1960 for (i=0; i < NM_BDG_MAXPORTS; i++) 1961 if (b->bdg_ports[i] == ifp) 1962 break; 1963 if (i == NM_BDG_MAXPORTS) { 1964 D("no more ports available"); 1965 err = EINVAL; 1966 goto done; 1967 } 1968 ND("setting %s in netmap mode", ifp->if_xname); 1969 ifp->if_capenable |= IFCAP_NETMAP; 1970 NA(ifp)->bdg_port = i; 1971 b->act_ports |= (1<<i); 1972 b->bdg_ports[i] = ifp; 1973 } else { 1974 /* should be in the list, too -- remove from the mask */ 1975 ND("removing %s from netmap mode", ifp->if_xname); 1976 ifp->if_capenable &= ~IFCAP_NETMAP; 1977 i = NA(ifp)->bdg_port; 1978 b->act_ports &= ~(1<<i); 1979 } 1980 done: 1981 BDG_UNLOCK(b); 1982 return err; 1983 } 1984 1985 1986 static int 1987 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp) 1988 { 1989 int i, ifn; 1990 uint64_t all_dst, dst; 1991 uint32_t sh, dh; 1992 uint64_t mysrc = 1 << NA(ifp)->bdg_port; 1993 uint64_t smac, dmac; 1994 struct netmap_slot *slot; 1995 struct nm_bridge *b = ifp->if_bridge; 1996 1997 ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports); 1998 /* only consider valid destinations */ 1999 all_dst = (b->act_ports & ~mysrc); 2000 /* first pass: hash and find destinations */ 2001 for (i = 0; likely(i < n); i++) { 2002 uint8_t *buf = ft[i].buf; 2003 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 2004 smac = le64toh(*(uint64_t *)(buf + 4)); 2005 smac >>= 16; 2006 if (unlikely(netmap_verbose)) { 2007 uint8_t *s = buf+6, *d = buf; 2008 D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x", 2009 i, 2010 ft[i].len, 2011 s[0], s[1], s[2], s[3], s[4], s[5], 2012 d[0], d[1], d[2], d[3], d[4], d[5]); 2013 } 2014 /* 2015 * The hash is somewhat expensive, there might be some 2016 * worthwhile optimizations here. 2017 */ 2018 if ((buf[6] & 1) == 0) { /* valid src */ 2019 uint8_t *s = buf+6; 2020 sh = nm_bridge_rthash(buf+6); // XXX hash of source 2021 /* update source port forwarding entry */ 2022 b->ht[sh].mac = smac; /* XXX expire ? */ 2023 b->ht[sh].ports = mysrc; 2024 if (netmap_verbose) 2025 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 2026 s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port); 2027 } 2028 dst = 0; 2029 if ( (buf[0] & 1) == 0) { /* unicast */ 2030 uint8_t *d = buf; 2031 dh = nm_bridge_rthash(buf); // XXX hash of dst 2032 if (b->ht[dh].mac == dmac) { /* found dst */ 2033 dst = b->ht[dh].ports; 2034 if (netmap_verbose) 2035 D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x", 2036 d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16)); 2037 } 2038 } 2039 if (dst == 0) 2040 dst = all_dst; 2041 dst &= all_dst; /* only consider valid ports */ 2042 if (unlikely(netmap_verbose)) 2043 D("pkt goes to ports 0x%x", (uint32_t)dst); 2044 ft[i].dst = dst; 2045 } 2046 2047 /* second pass, scan interfaces and forward */ 2048 all_dst = (b->act_ports & ~mysrc); 2049 for (ifn = 0; all_dst; ifn++) { 2050 struct ifnet *dst_ifp = b->bdg_ports[ifn]; 2051 struct netmap_adapter *na; 2052 struct netmap_kring *kring; 2053 struct netmap_ring *ring; 2054 int j, lim, sent, locked; 2055 2056 if (!dst_ifp) 2057 continue; 2058 ND("scan port %d %s", ifn, dst_ifp->if_xname); 2059 dst = 1 << ifn; 2060 if ((dst & all_dst) == 0) /* skip if not set */ 2061 continue; 2062 all_dst &= ~dst; /* clear current node */ 2063 na = NA(dst_ifp); 2064 2065 ring = NULL; 2066 kring = NULL; 2067 lim = sent = locked = 0; 2068 /* inside, scan slots */ 2069 for (i = 0; likely(i < n); i++) { 2070 if ((ft[i].dst & dst) == 0) 2071 continue; /* not here */ 2072 if (!locked) { 2073 kring = &na->rx_rings[0]; 2074 ring = kring->ring; 2075 lim = kring->nkr_num_slots - 1; 2076 na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0); 2077 locked = 1; 2078 } 2079 if (unlikely(kring->nr_hwavail >= lim)) { 2080 if (netmap_verbose) 2081 D("rx ring full on %s", ifp->if_xname); 2082 break; 2083 } 2084 j = kring->nr_hwcur + kring->nr_hwavail; 2085 if (j > lim) 2086 j -= kring->nkr_num_slots; 2087 slot = &ring->slot[j]; 2088 ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j); 2089 pkt_copy(ft[i].buf, NMB(slot), ft[i].len); 2090 slot->len = ft[i].len; 2091 kring->nr_hwavail++; 2092 sent++; 2093 } 2094 if (locked) { 2095 ND("sent %d on %s", sent, dst_ifp->if_xname); 2096 if (sent) 2097 selwakeuppri(&kring->si, PI_NET); 2098 na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0); 2099 } 2100 } 2101 return 0; 2102 } 2103 2104 /* 2105 * main dispatch routine 2106 */ 2107 static int 2108 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2109 { 2110 struct netmap_adapter *na = NA(ifp); 2111 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 2112 struct netmap_ring *ring = kring->ring; 2113 int i, j, k, lim = kring->nkr_num_slots - 1; 2114 struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1); 2115 int ft_i; /* position in the forwarding table */ 2116 2117 k = ring->cur; 2118 if (k > lim) 2119 return netmap_ring_reinit(kring); 2120 if (do_lock) 2121 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 2122 2123 if (netmap_bridge <= 0) { /* testing only */ 2124 j = k; // used all 2125 goto done; 2126 } 2127 if (netmap_bridge > NM_BDG_BATCH) 2128 netmap_bridge = NM_BDG_BATCH; 2129 2130 ft_i = 0; /* start from 0 */ 2131 for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) { 2132 struct netmap_slot *slot = &ring->slot[j]; 2133 int len = ft[ft_i].len = slot->len; 2134 char *buf = ft[ft_i].buf = NMB(slot); 2135 2136 prefetch(buf); 2137 if (unlikely(len < 14)) 2138 continue; 2139 if (unlikely(++ft_i == netmap_bridge)) 2140 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2141 } 2142 if (ft_i) 2143 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2144 /* count how many packets we sent */ 2145 i = k - j; 2146 if (i < 0) 2147 i += kring->nkr_num_slots; 2148 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 2149 if (j != k) 2150 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 2151 2152 done: 2153 kring->nr_hwcur = j; 2154 ring->avail = kring->nr_hwavail; 2155 if (do_lock) 2156 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 2157 2158 if (netmap_verbose) 2159 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 2160 return 0; 2161 } 2162 2163 static int 2164 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2165 { 2166 struct netmap_adapter *na = NA(ifp); 2167 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 2168 struct netmap_ring *ring = kring->ring; 2169 u_int j, n, lim = kring->nkr_num_slots - 1; 2170 u_int k = ring->cur, resvd = ring->reserved; 2171 2172 ND("%s ring %d lock %d avail %d", 2173 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 2174 2175 if (k > lim) 2176 return netmap_ring_reinit(kring); 2177 if (do_lock) 2178 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 2179 2180 /* skip past packets that userspace has released */ 2181 j = kring->nr_hwcur; /* netmap ring index */ 2182 if (resvd > 0) { 2183 if (resvd + ring->avail >= lim + 1) { 2184 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 2185 ring->reserved = resvd = 0; // XXX panic... 2186 } 2187 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 2188 } 2189 2190 if (j != k) { /* userspace has released some packets. */ 2191 n = k - j; 2192 if (n < 0) 2193 n += kring->nkr_num_slots; 2194 ND("userspace releases %d packets", n); 2195 for (n = 0; likely(j != k); n++) { 2196 struct netmap_slot *slot = &ring->slot[j]; 2197 void *addr = NMB(slot); 2198 2199 if (addr == netmap_buffer_base) { /* bad buf */ 2200 if (do_lock) 2201 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2202 return netmap_ring_reinit(kring); 2203 } 2204 /* decrease refcount for buffer */ 2205 2206 slot->flags &= ~NS_BUF_CHANGED; 2207 j = unlikely(j == lim) ? 0 : j + 1; 2208 } 2209 kring->nr_hwavail -= n; 2210 kring->nr_hwcur = k; 2211 } 2212 /* tell userspace that there are new packets */ 2213 ring->avail = kring->nr_hwavail - resvd; 2214 2215 if (do_lock) 2216 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2217 return 0; 2218 } 2219 2220 static void 2221 bdg_netmap_attach(struct ifnet *ifp) 2222 { 2223 struct netmap_adapter na; 2224 2225 ND("attaching virtual bridge"); 2226 bzero(&na, sizeof(na)); 2227 2228 na.ifp = ifp; 2229 na.separate_locks = 1; 2230 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 2231 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 2232 na.nm_txsync = bdg_netmap_txsync; 2233 na.nm_rxsync = bdg_netmap_rxsync; 2234 na.nm_register = bdg_netmap_reg; 2235 netmap_attach(&na, 1); 2236 } 2237 2238 #endif /* NM_BRIDGE */ 2239 2240 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 2241 2242 2243 /* 2244 * Module loader. 2245 * 2246 * Create the /dev/netmap device and initialize all global 2247 * variables. 2248 * 2249 * Return 0 on success, errno on failure. 2250 */ 2251 static int 2252 netmap_init(void) 2253 { 2254 int error; 2255 2256 error = netmap_memory_init(); 2257 if (error != 0) { 2258 printf("netmap: unable to initialize the memory allocator.\n"); 2259 return (error); 2260 } 2261 printf("netmap: loaded module\n"); 2262 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 2263 "netmap"); 2264 2265 #ifdef NM_BRIDGE 2266 { 2267 int i; 2268 for (i = 0; i < NM_BRIDGES; i++) 2269 mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF); 2270 } 2271 #endif 2272 return (error); 2273 } 2274 2275 2276 /* 2277 * Module unloader. 2278 * 2279 * Free all the memory, and destroy the ``/dev/netmap`` device. 2280 */ 2281 static void 2282 netmap_fini(void) 2283 { 2284 destroy_dev(netmap_dev); 2285 netmap_memory_fini(); 2286 printf("netmap: unloaded module.\n"); 2287 } 2288 2289 2290 #ifdef __FreeBSD__ 2291 /* 2292 * Kernel entry point. 2293 * 2294 * Initialize/finalize the module and return. 2295 * 2296 * Return 0 on success, errno on failure. 2297 */ 2298 static int 2299 netmap_loader(__unused struct module *module, int event, __unused void *arg) 2300 { 2301 int error = 0; 2302 2303 switch (event) { 2304 case MOD_LOAD: 2305 error = netmap_init(); 2306 break; 2307 2308 case MOD_UNLOAD: 2309 netmap_fini(); 2310 break; 2311 2312 default: 2313 error = EOPNOTSUPP; 2314 break; 2315 } 2316 2317 return (error); 2318 } 2319 2320 2321 DEV_MODULE(netmap, netmap_loader, NULL); 2322 #endif /* __FreeBSD__ */ 2323