xref: /freebsd/sys/dev/netmap/netmap.c (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi
5  * Copyright (C) 2011-2016 Luigi Rizzo
6  * Copyright (C) 2011-2016 Giuseppe Lettieri
7  * Copyright (C) 2011-2016 Vincenzo Maffione
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *   1. Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *   2. Redistributions in binary form must reproduce the above copyright
16  *      notice, this list of conditions and the following disclaimer in the
17  *      documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 
33 /*
34  * $FreeBSD$
35  *
36  * This module supports memory mapped access to network devices,
37  * see netmap(4).
38  *
39  * The module uses a large, memory pool allocated by the kernel
40  * and accessible as mmapped memory by multiple userspace threads/processes.
41  * The memory pool contains packet buffers and "netmap rings",
42  * i.e. user-accessible copies of the interface's queues.
43  *
44  * Access to the network card works like this:
45  * 1. a process/thread issues one or more open() on /dev/netmap, to create
46  *    select()able file descriptor on which events are reported.
47  * 2. on each descriptor, the process issues an ioctl() to identify
48  *    the interface that should report events to the file descriptor.
49  * 3. on each descriptor, the process issues an mmap() request to
50  *    map the shared memory region within the process' address space.
51  *    The list of interesting queues is indicated by a location in
52  *    the shared memory region.
53  * 4. using the functions in the netmap(4) userspace API, a process
54  *    can look up the occupation state of a queue, access memory buffers,
55  *    and retrieve received packets or enqueue packets to transmit.
56  * 5. using some ioctl()s the process can synchronize the userspace view
57  *    of the queue with the actual status in the kernel. This includes both
58  *    receiving the notification of new packets, and transmitting new
59  *    packets on the output interface.
60  * 6. select() or poll() can be used to wait for events on individual
61  *    transmit or receive queues (or all queues for a given interface).
62  *
63 
64 		SYNCHRONIZATION (USER)
65 
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73 
74 		LOCKING (INTERNAL)
75 
76 Within the kernel, access to the netmap rings is protected as follows:
77 
78 - a spinlock on each ring, to handle producer/consumer races on
79   RX rings attached to the host stack (against multiple host
80   threads writing from the host stack to the same ring),
81   and on 'destination' rings attached to a VALE switch
82   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83   protecting multiple active senders for the same destination)
84 
85 - an atomic variable to guarantee that there is at most one
86   instance of *_*xsync() on the ring at any time.
87   For rings connected to user file
88   descriptors, an atomic_test_and_set() protects this, and the
89   lock on the ring is not actually used.
90   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91   is also used to prevent multiple executions (the driver might indeed
92   already guarantee this).
93   For NIC TX rings connected to a VALE switch, the lock arbitrates
94   access to the queue (both when allocating buffers and when pushing
95   them out).
96 
97 - *xsync() should be protected against initializations of the card.
98   On FreeBSD most devices have the reset routine protected by
99   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100   the RING protection on rx_reset(), this should be added.
101 
102   On linux there is an external lock on the tx path, which probably
103   also arbitrates access to the reset routine. XXX to be revised
104 
105 - a per-interface core_lock protecting access from the host stack
106   while interfaces may be detached from netmap mode.
107   XXX there should be no need for this lock if we detach the interfaces
108   only while they are down.
109 
110 
111 --- VALE SWITCH ---
112 
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115 
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123 
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130 
131  */
132 
133 
134 /* --- internals ----
135  *
136  * Roadmap to the code that implements the above.
137  *
138  * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139  * >    select()able file descriptor on which events are reported.
140  *
141  *  	Internally, we allocate a netmap_priv_d structure, that will be
142  *  	initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143  *  	structure for each open().
144  *
145  *      os-specific:
146  *  	    FreeBSD: see netmap_open() (netmap_freebsd.c)
147  *  	    linux:   see linux_netmap_open() (netmap_linux.c)
148  *
149  * > 2. on each descriptor, the process issues an ioctl() to identify
150  * >    the interface that should report events to the file descriptor.
151  *
152  * 	Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153  * 	Most important things happen in netmap_get_na() and
154  * 	netmap_do_regif(), called from there. Additional details can be
155  * 	found in the comments above those functions.
156  *
157  * 	In all cases, this action creates/takes-a-reference-to a
158  * 	netmap_*_adapter describing the port, and allocates a netmap_if
159  * 	and all necessary netmap rings, filling them with netmap buffers.
160  *
161  *      In this phase, the sync callbacks for each ring are set (these are used
162  *      in steps 5 and 6 below).  The callbacks depend on the type of adapter.
163  *      The adapter creation/initialization code puts them in the
164  * 	netmap_adapter (fields na->nm_txsync and na->nm_rxsync).  Then, they
165  * 	are copied from there to the netmap_kring's during netmap_do_regif(), by
166  * 	the nm_krings_create() callback.  All the nm_krings_create callbacks
167  * 	actually call netmap_krings_create() to perform this and the other
168  * 	common stuff. netmap_krings_create() also takes care of the host rings,
169  * 	if needed, by setting their sync callbacks appropriately.
170  *
171  * 	Additional actions depend on the kind of netmap_adapter that has been
172  * 	registered:
173  *
174  * 	- netmap_hw_adapter:  	     [netmap.c]
175  * 	     This is a system netdev/ifp with native netmap support.
176  * 	     The ifp is detached from the host stack by redirecting:
177  * 	       - transmissions (from the network stack) to netmap_transmit()
178  * 	       - receive notifications to the nm_notify() callback for
179  * 	         this adapter. The callback is normally netmap_notify(), unless
180  * 	         the ifp is attached to a bridge using bwrap, in which case it
181  * 	         is netmap_bwrap_intr_notify().
182  *
183  * 	- netmap_generic_adapter:      [netmap_generic.c]
184  * 	      A system netdev/ifp without native netmap support.
185  *
186  * 	(the decision about native/non native support is taken in
187  * 	 netmap_get_hw_na(), called by netmap_get_na())
188  *
189  * 	- netmap_vp_adapter 		[netmap_vale.c]
190  * 	      Returned by netmap_get_bdg_na().
191  * 	      This is a persistent or ephemeral VALE port. Ephemeral ports
192  * 	      are created on the fly if they don't already exist, and are
193  * 	      always attached to a bridge.
194  * 	      Persistent VALE ports must must be created separately, and i
195  * 	      then attached like normal NICs. The NIOCREGIF we are examining
196  * 	      will find them only if they had previosly been created and
197  * 	      attached (see VALE_CTL below).
198  *
199  * 	- netmap_pipe_adapter 	      [netmap_pipe.c]
200  * 	      Returned by netmap_get_pipe_na().
201  * 	      Both pipe ends are created, if they didn't already exist.
202  *
203  * 	- netmap_monitor_adapter      [netmap_monitor.c]
204  * 	      Returned by netmap_get_monitor_na().
205  * 	      If successful, the nm_sync callbacks of the monitored adapter
206  * 	      will be intercepted by the returned monitor.
207  *
208  * 	- netmap_bwrap_adapter	      [netmap_vale.c]
209  * 	      Cannot be obtained in this way, see VALE_CTL below
210  *
211  *
212  * 	os-specific:
213  * 	    linux: we first go through linux_netmap_ioctl() to
214  * 	           adapt the FreeBSD interface to the linux one.
215  *
216  *
217  * > 3. on each descriptor, the process issues an mmap() request to
218  * >    map the shared memory region within the process' address space.
219  * >    The list of interesting queues is indicated by a location in
220  * >    the shared memory region.
221  *
222  *      os-specific:
223  *  	    FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224  *  	    linux:   linux_netmap_mmap (netmap_linux.c).
225  *
226  * > 4. using the functions in the netmap(4) userspace API, a process
227  * >    can look up the occupation state of a queue, access memory buffers,
228  * >    and retrieve received packets or enqueue packets to transmit.
229  *
230  * 	these actions do not involve the kernel.
231  *
232  * > 5. using some ioctl()s the process can synchronize the userspace view
233  * >    of the queue with the actual status in the kernel. This includes both
234  * >    receiving the notification of new packets, and transmitting new
235  * >    packets on the output interface.
236  *
237  * 	These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238  * 	cases. They invoke the nm_sync callbacks on the netmap_kring
239  * 	structures, as initialized in step 2 and maybe later modified
240  * 	by a monitor. Monitors, however, will always call the original
241  * 	callback before doing anything else.
242  *
243  *
244  * > 6. select() or poll() can be used to wait for events on individual
245  * >    transmit or receive queues (or all queues for a given interface).
246  *
247  * 	Implemented in netmap_poll(). This will call the same nm_sync()
248  * 	callbacks as in step 5 above.
249  *
250  * 	os-specific:
251  * 		linux: we first go through linux_netmap_poll() to adapt
252  * 		       the FreeBSD interface to the linux one.
253  *
254  *
255  *  ----  VALE_CTL -----
256  *
257  *  VALE switches are controlled by issuing a NIOCREGIF with a non-null
258  *  nr_cmd in the nmreq structure. These subcommands are handled by
259  *  netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260  *  and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261  *  subcommands, respectively.
262  *
263  *  Any network interface known to the system (including a persistent VALE
264  *  port) can be attached to a VALE switch by issuing the
265  *  NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266  *  look exactly like ephemeral VALE ports (as created in step 2 above).  The
267  *  attachment of other interfaces, instead, requires the creation of a
268  *  netmap_bwrap_adapter.  Moreover, the attached interface must be put in
269  *  netmap mode. This may require the creation of a netmap_generic_adapter if
270  *  we have no native support for the interface, or if generic adapters have
271  *  been forced by sysctl.
272  *
273  *  Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274  *  called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275  *  callback.  In the case of the bwrap, the callback creates the
276  *  netmap_bwrap_adapter.  The initialization of the bwrap is then
277  *  completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278  *  callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279  *  A generic adapter for the wrapped ifp will be created if needed, when
280  *  netmap_get_bdg_na() calls netmap_get_hw_na().
281  *
282  *
283  *  ---- DATAPATHS -----
284  *
285  *              -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286  *
287  *    na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288  *
289  *    - tx from netmap userspace:
290  *	 concurrently:
291  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292  *                kring->nm_sync() == DEVICE_netmap_txsync()
293  *           2) device interrupt handler
294  *                na->nm_notify()  == netmap_notify()
295  *    - rx from netmap userspace:
296  *       concurrently:
297  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298  *                kring->nm_sync() == DEVICE_netmap_rxsync()
299  *           2) device interrupt handler
300  *                na->nm_notify()  == netmap_notify()
301  *    - rx from host stack
302  *       concurrently:
303  *           1) host stack
304  *                netmap_transmit()
305  *                  na->nm_notify  == netmap_notify()
306  *           2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307  *                kring->nm_sync() == netmap_rxsync_from_host
308  *                  netmap_rxsync_from_host(na, NULL, NULL)
309  *    - tx to host stack
310  *           ioctl(NIOCTXSYNC)/netmap_poll() in process context
311  *             kring->nm_sync() == netmap_txsync_to_host
312  *               netmap_txsync_to_host(na)
313  *                 nm_os_send_up()
314  *                   FreeBSD: na->if_input() == ether_input()
315  *                   linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316  *
317  *
318  *               -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319  *
320  *    na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321  *
322  *    - tx from netmap userspace:
323  *       concurrently:
324  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325  *               kring->nm_sync() == generic_netmap_txsync()
326  *                   nm_os_generic_xmit_frame()
327  *                       linux:   dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328  *                           ifp->ndo_start_xmit == generic_ndo_start_xmit()
329  *                               gna->save_start_xmit == orig. dev. start_xmit
330  *                       FreeBSD: na->if_transmit() == orig. dev if_transmit
331  *           2) generic_mbuf_destructor()
332  *                   na->nm_notify() == netmap_notify()
333  *    - rx from netmap userspace:
334  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335  *               kring->nm_sync() == generic_netmap_rxsync()
336  *                   mbq_safe_dequeue()
337  *           2) device driver
338  *               generic_rx_handler()
339  *                   mbq_safe_enqueue()
340  *                   na->nm_notify() == netmap_notify()
341  *    - rx from host stack
342  *        FreeBSD: same as native
343  *        Linux: same as native except:
344  *           1) host stack
345  *               dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346  *                   ifp->ndo_start_xmit == generic_ndo_start_xmit()
347  *                       netmap_transmit()
348  *                           na->nm_notify() == netmap_notify()
349  *    - tx to host stack (same as native):
350  *
351  *
352  *                           -= VALE =-
353  *
354  *   INCOMING:
355  *
356  *      - VALE ports:
357  *          ioctl(NIOCTXSYNC)/netmap_poll() in process context
358  *              kring->nm_sync() == netmap_vp_txsync()
359  *
360  *      - system device with native support:
361  *         from cable:
362  *             interrupt
363  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
365  *                     netmap_vp_txsync()
366  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
367  *         from host stack:
368  *             netmap_transmit()
369  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370  *                     kring->nm_sync() == netmap_rxsync_from_host()
371  *                     netmap_vp_txsync()
372  *
373  *      - system device with generic support:
374  *         from device driver:
375  *            generic_rx_handler()
376  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377  *                     kring->nm_sync() == generic_netmap_rxsync()
378  *                     netmap_vp_txsync()
379  *                     kring->nm_sync() == generic_netmap_rxsync()
380  *         from host stack:
381  *            netmap_transmit()
382  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383  *                     kring->nm_sync() == netmap_rxsync_from_host()
384  *                     netmap_vp_txsync()
385  *
386  *   (all cases) --> nm_bdg_flush()
387  *                      dest_na->nm_notify() == (see below)
388  *
389  *   OUTGOING:
390  *
391  *      - VALE ports:
392  *         concurrently:
393  *             1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394  *                    kring->nm_sync() == netmap_vp_rxsync()
395  *             2) from nm_bdg_flush()
396  *                    na->nm_notify() == netmap_notify()
397  *
398  *      - system device with native support:
399  *          to cable:
400  *             na->nm_notify() == netmap_bwrap_notify()
401  *                 netmap_vp_rxsync()
402  *                 kring->nm_sync() == DEVICE_netmap_txsync()
403  *                 netmap_vp_rxsync()
404  *          to host stack:
405  *                 netmap_vp_rxsync()
406  *                 kring->nm_sync() == netmap_txsync_to_host
407  *                 netmap_vp_rxsync_locked()
408  *
409  *      - system device with generic adapter:
410  *          to device driver:
411  *             na->nm_notify() == netmap_bwrap_notify()
412  *                 netmap_vp_rxsync()
413  *                 kring->nm_sync() == generic_netmap_txsync()
414  *                 netmap_vp_rxsync()
415  *          to host stack:
416  *                 netmap_vp_rxsync()
417  *                 kring->nm_sync() == netmap_txsync_to_host
418  *                 netmap_vp_rxsync()
419  *
420  */
421 
422 /*
423  * OS-specific code that is used only within this file.
424  * Other OS-specific code that must be accessed by drivers
425  * is present in netmap_kern.h
426  */
427 
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h>	/* defines used in kernel.h */
433 #include <sys/kernel.h>	/* types used in module initialization */
434 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
435 #include <sys/filio.h>	/* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h>	/* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/rwlock.h>
441 #include <sys/socket.h> /* sockaddrs */
442 #include <sys/selinfo.h>
443 #include <sys/sysctl.h>
444 #include <sys/jail.h>
445 #include <net/vnet.h>
446 #include <net/if.h>
447 #include <net/if_var.h>
448 #include <net/bpf.h>		/* BIOCIMMEDIATE */
449 #include <machine/bus.h>	/* bus_dmamap_* */
450 #include <sys/endian.h>
451 #include <sys/refcount.h>
452 #include <net/ethernet.h>	/* ETHER_BPF_MTAP */
453 
454 
455 #elif defined(linux)
456 
457 #include "bsd_glue.h"
458 
459 #elif defined(__APPLE__)
460 
461 #warning OSX support is only partial
462 #include "osx_glue.h"
463 
464 #elif defined (_WIN32)
465 
466 #include "win_glue.h"
467 
468 #else
469 
470 #error	Unsupported platform
471 
472 #endif /* unsupported */
473 
474 /*
475  * common headers
476  */
477 #include <net/netmap.h>
478 #include <dev/netmap/netmap_kern.h>
479 #include <dev/netmap/netmap_mem2.h>
480 
481 
482 /* user-controlled variables */
483 int netmap_verbose;
484 #ifdef CONFIG_NETMAP_DEBUG
485 int netmap_debug;
486 #endif /* CONFIG_NETMAP_DEBUG */
487 
488 static int netmap_no_timestamp; /* don't timestamp on rxsync */
489 int netmap_no_pendintr = 1;
490 int netmap_txsync_retry = 2;
491 static int netmap_fwd = 0;	/* force transparent forwarding */
492 
493 /*
494  * netmap_admode selects the netmap mode to use.
495  * Invalid values are reset to NETMAP_ADMODE_BEST
496  */
497 enum {	NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
498 	NETMAP_ADMODE_NATIVE,	/* either native or none */
499 	NETMAP_ADMODE_GENERIC,	/* force generic */
500 	NETMAP_ADMODE_LAST };
501 static int netmap_admode = NETMAP_ADMODE_BEST;
502 
503 /* netmap_generic_mit controls mitigation of RX notifications for
504  * the generic netmap adapter. The value is a time interval in
505  * nanoseconds. */
506 int netmap_generic_mit = 100*1000;
507 
508 /* We use by default netmap-aware qdiscs with generic netmap adapters,
509  * even if there can be a little performance hit with hardware NICs.
510  * However, using the qdisc is the safer approach, for two reasons:
511  * 1) it prevents non-fifo qdiscs to break the TX notification
512  *    scheme, which is based on mbuf destructors when txqdisc is
513  *    not used.
514  * 2) it makes it possible to transmit over software devices that
515  *    change skb->dev, like bridge, veth, ...
516  *
517  * Anyway users looking for the best performance should
518  * use native adapters.
519  */
520 #ifdef linux
521 int netmap_generic_txqdisc = 1;
522 #endif
523 
524 /* Default number of slots and queues for generic adapters. */
525 int netmap_generic_ringsize = 1024;
526 int netmap_generic_rings = 1;
527 
528 /* Non-zero to enable checksum offloading in NIC drivers */
529 int netmap_generic_hwcsum = 0;
530 
531 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
532 int ptnet_vnet_hdr = 1;
533 
534 /*
535  * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
536  * in some other operating systems
537  */
538 SYSBEGIN(main_init);
539 
540 SYSCTL_DECL(_dev_netmap);
541 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
542 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
543 		CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
544 #ifdef CONFIG_NETMAP_DEBUG
545 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
546 		CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
547 #endif /* CONFIG_NETMAP_DEBUG */
548 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
549 		CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
551 		0, "Always look for new received packets.");
552 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
553 		&netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
554 
555 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
556 		"Force NR_FORWARD mode");
557 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
558 		"Adapter mode. 0 selects the best option available,"
559 		"1 forces native adapter, 2 forces emulated adapter");
560 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
561 		0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
562 		"1 to enable checksum generation by the NIC");
563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
564 		0, "RX notification interval in nanoseconds");
565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
566 		&netmap_generic_ringsize, 0,
567 		"Number of per-ring slots for emulated netmap mode");
568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
569 		&netmap_generic_rings, 0,
570 		"Number of TX/RX queues for emulated netmap adapters");
571 #ifdef linux
572 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
573 		&netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
574 #endif
575 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
576 		0, "Allow ptnet devices to use virtio-net headers");
577 
578 SYSEND;
579 
580 NMG_LOCK_T	netmap_global_lock;
581 
582 /*
583  * mark the ring as stopped, and run through the locks
584  * to make sure other users get to see it.
585  * stopped must be either NR_KR_STOPPED (for unbounded stop)
586  * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
587  */
588 static void
589 netmap_disable_ring(struct netmap_kring *kr, int stopped)
590 {
591 	nm_kr_stop(kr, stopped);
592 	// XXX check if nm_kr_stop is sufficient
593 	mtx_lock(&kr->q_lock);
594 	mtx_unlock(&kr->q_lock);
595 	nm_kr_put(kr);
596 }
597 
598 /* stop or enable a single ring */
599 void
600 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
601 {
602 	if (stopped)
603 		netmap_disable_ring(NMR(na, t)[ring_id], stopped);
604 	else
605 		NMR(na, t)[ring_id]->nkr_stopped = 0;
606 }
607 
608 
609 /* stop or enable all the rings of na */
610 void
611 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
612 {
613 	int i;
614 	enum txrx t;
615 
616 	if (!nm_netmap_on(na))
617 		return;
618 
619 	for_rx_tx(t) {
620 		for (i = 0; i < netmap_real_rings(na, t); i++) {
621 			netmap_set_ring(na, i, t, stopped);
622 		}
623 	}
624 }
625 
626 /*
627  * Convenience function used in drivers.  Waits for current txsync()s/rxsync()s
628  * to finish and prevents any new one from starting.  Call this before turning
629  * netmap mode off, or before removing the hardware rings (e.g., on module
630  * onload).
631  */
632 void
633 netmap_disable_all_rings(struct ifnet *ifp)
634 {
635 	if (NM_NA_VALID(ifp)) {
636 		netmap_set_all_rings(NA(ifp), NM_KR_STOPPED);
637 	}
638 }
639 
640 /*
641  * Convenience function used in drivers.  Re-enables rxsync and txsync on the
642  * adapter's rings In linux drivers, this should be placed near each
643  * napi_enable().
644  */
645 void
646 netmap_enable_all_rings(struct ifnet *ifp)
647 {
648 	if (NM_NA_VALID(ifp)) {
649 		netmap_set_all_rings(NA(ifp), 0 /* enabled */);
650 	}
651 }
652 
653 void
654 netmap_make_zombie(struct ifnet *ifp)
655 {
656 	if (NM_NA_VALID(ifp)) {
657 		struct netmap_adapter *na = NA(ifp);
658 		netmap_set_all_rings(na, NM_KR_LOCKED);
659 		na->na_flags |= NAF_ZOMBIE;
660 		netmap_set_all_rings(na, 0);
661 	}
662 }
663 
664 void
665 netmap_undo_zombie(struct ifnet *ifp)
666 {
667 	if (NM_NA_VALID(ifp)) {
668 		struct netmap_adapter *na = NA(ifp);
669 		if (na->na_flags & NAF_ZOMBIE) {
670 			netmap_set_all_rings(na, NM_KR_LOCKED);
671 			na->na_flags &= ~NAF_ZOMBIE;
672 			netmap_set_all_rings(na, 0);
673 		}
674 	}
675 }
676 
677 /*
678  * generic bound_checking function
679  */
680 u_int
681 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
682 {
683 	u_int oldv = *v;
684 	const char *op = NULL;
685 
686 	if (dflt < lo)
687 		dflt = lo;
688 	if (dflt > hi)
689 		dflt = hi;
690 	if (oldv < lo) {
691 		*v = dflt;
692 		op = "Bump";
693 	} else if (oldv > hi) {
694 		*v = hi;
695 		op = "Clamp";
696 	}
697 	if (op && msg)
698 		nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
699 	return *v;
700 }
701 
702 
703 /*
704  * packet-dump function, user-supplied or static buffer.
705  * The destination buffer must be at least 30+4*len
706  */
707 const char *
708 nm_dump_buf(char *p, int len, int lim, char *dst)
709 {
710 	static char _dst[8192];
711 	int i, j, i0;
712 	static char hex[] ="0123456789abcdef";
713 	char *o;	/* output position */
714 
715 #define P_HI(x)	hex[((x) & 0xf0)>>4]
716 #define P_LO(x)	hex[((x) & 0xf)]
717 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
718 	if (!dst)
719 		dst = _dst;
720 	if (lim <= 0 || lim > len)
721 		lim = len;
722 	o = dst;
723 	sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
724 	o += strlen(o);
725 	/* hexdump routine */
726 	for (i = 0; i < lim; ) {
727 		sprintf(o, "%5d: ", i);
728 		o += strlen(o);
729 		memset(o, ' ', 48);
730 		i0 = i;
731 		for (j=0; j < 16 && i < lim; i++, j++) {
732 			o[j*3] = P_HI(p[i]);
733 			o[j*3+1] = P_LO(p[i]);
734 		}
735 		i = i0;
736 		for (j=0; j < 16 && i < lim; i++, j++)
737 			o[j + 48] = P_C(p[i]);
738 		o[j+48] = '\n';
739 		o += j+49;
740 	}
741 	*o = '\0';
742 #undef P_HI
743 #undef P_LO
744 #undef P_C
745 	return dst;
746 }
747 
748 
749 /*
750  * Fetch configuration from the device, to cope with dynamic
751  * reconfigurations after loading the module.
752  */
753 /* call with NMG_LOCK held */
754 int
755 netmap_update_config(struct netmap_adapter *na)
756 {
757 	struct nm_config_info info;
758 
759 	bzero(&info, sizeof(info));
760 	if (na->nm_config == NULL ||
761 	    na->nm_config(na, &info)) {
762 		/* take whatever we had at init time */
763 		info.num_tx_rings = na->num_tx_rings;
764 		info.num_tx_descs = na->num_tx_desc;
765 		info.num_rx_rings = na->num_rx_rings;
766 		info.num_rx_descs = na->num_rx_desc;
767 		info.rx_buf_maxsize = na->rx_buf_maxsize;
768 	}
769 
770 	if (na->num_tx_rings == info.num_tx_rings &&
771 	    na->num_tx_desc == info.num_tx_descs &&
772 	    na->num_rx_rings == info.num_rx_rings &&
773 	    na->num_rx_desc == info.num_rx_descs &&
774 	    na->rx_buf_maxsize == info.rx_buf_maxsize)
775 		return 0; /* nothing changed */
776 	if (na->active_fds == 0) {
777 		na->num_tx_rings = info.num_tx_rings;
778 		na->num_tx_desc = info.num_tx_descs;
779 		na->num_rx_rings = info.num_rx_rings;
780 		na->num_rx_desc = info.num_rx_descs;
781 		na->rx_buf_maxsize = info.rx_buf_maxsize;
782 		if (netmap_verbose)
783 			nm_prinf("configuration changed for %s: txring %d x %d, "
784 				"rxring %d x %d, rxbufsz %d",
785 				na->name, na->num_tx_rings, na->num_tx_desc,
786 				na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
787 		return 0;
788 	}
789 	nm_prerr("WARNING: configuration changed for %s while active: "
790 		"txring %d x %d, rxring %d x %d, rxbufsz %d",
791 		na->name, info.num_tx_rings, info.num_tx_descs,
792 		info.num_rx_rings, info.num_rx_descs,
793 		info.rx_buf_maxsize);
794 	return 1;
795 }
796 
797 /* nm_sync callbacks for the host rings */
798 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
799 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
800 
801 /* create the krings array and initialize the fields common to all adapters.
802  * The array layout is this:
803  *
804  *                    +----------+
805  * na->tx_rings ----->|          | \
806  *                    |          |  } na->num_tx_ring
807  *                    |          | /
808  *                    +----------+
809  *                    |          |    host tx kring
810  * na->rx_rings ----> +----------+
811  *                    |          | \
812  *                    |          |  } na->num_rx_rings
813  *                    |          | /
814  *                    +----------+
815  *                    |          |    host rx kring
816  *                    +----------+
817  * na->tailroom ----->|          | \
818  *                    |          |  } tailroom bytes
819  *                    |          | /
820  *                    +----------+
821  *
822  * Note: for compatibility, host krings are created even when not needed.
823  * The tailroom space is currently used by vale ports for allocating leases.
824  */
825 /* call with NMG_LOCK held */
826 int
827 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
828 {
829 	u_int i, len, ndesc;
830 	struct netmap_kring *kring;
831 	u_int n[NR_TXRX];
832 	enum txrx t;
833 	int err = 0;
834 
835 	if (na->tx_rings != NULL) {
836 		if (netmap_debug & NM_DEBUG_ON)
837 			nm_prerr("warning: krings were already created");
838 		return 0;
839 	}
840 
841 	/* account for the (possibly fake) host rings */
842 	n[NR_TX] = netmap_all_rings(na, NR_TX);
843 	n[NR_RX] = netmap_all_rings(na, NR_RX);
844 
845 	len = (n[NR_TX] + n[NR_RX]) *
846 		(sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
847 		+ tailroom;
848 
849 	na->tx_rings = nm_os_malloc((size_t)len);
850 	if (na->tx_rings == NULL) {
851 		nm_prerr("Cannot allocate krings");
852 		return ENOMEM;
853 	}
854 	na->rx_rings = na->tx_rings + n[NR_TX];
855 	na->tailroom = na->rx_rings + n[NR_RX];
856 
857 	/* link the krings in the krings array */
858 	kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
859 	for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
860 		na->tx_rings[i] = kring;
861 		kring++;
862 	}
863 
864 	/*
865 	 * All fields in krings are 0 except the one initialized below.
866 	 * but better be explicit on important kring fields.
867 	 */
868 	for_rx_tx(t) {
869 		ndesc = nma_get_ndesc(na, t);
870 		for (i = 0; i < n[t]; i++) {
871 			kring = NMR(na, t)[i];
872 			bzero(kring, sizeof(*kring));
873 			kring->notify_na = na;
874 			kring->ring_id = i;
875 			kring->tx = t;
876 			kring->nkr_num_slots = ndesc;
877 			kring->nr_mode = NKR_NETMAP_OFF;
878 			kring->nr_pending_mode = NKR_NETMAP_OFF;
879 			if (i < nma_get_nrings(na, t)) {
880 				kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
881 			} else {
882 				if (!(na->na_flags & NAF_HOST_RINGS))
883 					kring->nr_kflags |= NKR_FAKERING;
884 				kring->nm_sync = (t == NR_TX ?
885 						netmap_txsync_to_host:
886 						netmap_rxsync_from_host);
887 			}
888 			kring->nm_notify = na->nm_notify;
889 			kring->rhead = kring->rcur = kring->nr_hwcur = 0;
890 			/*
891 			 * IMPORTANT: Always keep one slot empty.
892 			 */
893 			kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
894 			snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
895 					nm_txrx2str(t), i);
896 			nm_prdis("ktx %s h %d c %d t %d",
897 				kring->name, kring->rhead, kring->rcur, kring->rtail);
898 			err = nm_os_selinfo_init(&kring->si, kring->name);
899 			if (err) {
900 				netmap_krings_delete(na);
901 				return err;
902 			}
903 			mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
904 			kring->na = na;	/* setting this field marks the mutex as initialized */
905 		}
906 		err = nm_os_selinfo_init(&na->si[t], na->name);
907 		if (err) {
908 			netmap_krings_delete(na);
909 			return err;
910 		}
911 	}
912 
913 	return 0;
914 }
915 
916 
917 /* undo the actions performed by netmap_krings_create */
918 /* call with NMG_LOCK held */
919 void
920 netmap_krings_delete(struct netmap_adapter *na)
921 {
922 	struct netmap_kring **kring = na->tx_rings;
923 	enum txrx t;
924 
925 	if (na->tx_rings == NULL) {
926 		if (netmap_debug & NM_DEBUG_ON)
927 			nm_prerr("warning: krings were already deleted");
928 		return;
929 	}
930 
931 	for_rx_tx(t)
932 		nm_os_selinfo_uninit(&na->si[t]);
933 
934 	/* we rely on the krings layout described above */
935 	for ( ; kring != na->tailroom; kring++) {
936 		if ((*kring)->na != NULL)
937 			mtx_destroy(&(*kring)->q_lock);
938 		nm_os_selinfo_uninit(&(*kring)->si);
939 	}
940 	nm_os_free(na->tx_rings);
941 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
942 }
943 
944 
945 /*
946  * Destructor for NIC ports. They also have an mbuf queue
947  * on the rings connected to the host so we need to purge
948  * them first.
949  */
950 /* call with NMG_LOCK held */
951 void
952 netmap_hw_krings_delete(struct netmap_adapter *na)
953 {
954 	u_int lim = netmap_real_rings(na, NR_RX), i;
955 
956 	for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
957 		struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
958 		nm_prdis("destroy sw mbq with len %d", mbq_len(q));
959 		mbq_purge(q);
960 		mbq_safe_fini(q);
961 	}
962 	netmap_krings_delete(na);
963 }
964 
965 static void
966 netmap_mem_drop(struct netmap_adapter *na)
967 {
968 	int last = netmap_mem_deref(na->nm_mem, na);
969 	/* if the native allocator had been overrided on regif,
970 	 * restore it now and drop the temporary one
971 	 */
972 	if (last && na->nm_mem_prev) {
973 		netmap_mem_put(na->nm_mem);
974 		na->nm_mem = na->nm_mem_prev;
975 		na->nm_mem_prev = NULL;
976 	}
977 }
978 
979 /*
980  * Undo everything that was done in netmap_do_regif(). In particular,
981  * call nm_register(ifp,0) to stop netmap mode on the interface and
982  * revert to normal operation.
983  */
984 /* call with NMG_LOCK held */
985 static void netmap_unset_ringid(struct netmap_priv_d *);
986 static void netmap_krings_put(struct netmap_priv_d *);
987 void
988 netmap_do_unregif(struct netmap_priv_d *priv)
989 {
990 	struct netmap_adapter *na = priv->np_na;
991 
992 	NMG_LOCK_ASSERT();
993 	na->active_fds--;
994 	/* unset nr_pending_mode and possibly release exclusive mode */
995 	netmap_krings_put(priv);
996 
997 #ifdef	WITH_MONITOR
998 	/* XXX check whether we have to do something with monitor
999 	 * when rings change nr_mode. */
1000 	if (na->active_fds <= 0) {
1001 		/* walk through all the rings and tell any monitor
1002 		 * that the port is going to exit netmap mode
1003 		 */
1004 		netmap_monitor_stop(na);
1005 	}
1006 #endif
1007 
1008 	if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1009 		na->nm_register(na, 0);
1010 	}
1011 
1012 	/* delete rings and buffers that are no longer needed */
1013 	netmap_mem_rings_delete(na);
1014 
1015 	if (na->active_fds <= 0) {	/* last instance */
1016 		/*
1017 		 * (TO CHECK) We enter here
1018 		 * when the last reference to this file descriptor goes
1019 		 * away. This means we cannot have any pending poll()
1020 		 * or interrupt routine operating on the structure.
1021 		 * XXX The file may be closed in a thread while
1022 		 * another thread is using it.
1023 		 * Linux keeps the file opened until the last reference
1024 		 * by any outstanding ioctl/poll or mmap is gone.
1025 		 * FreeBSD does not track mmap()s (but we do) and
1026 		 * wakes up any sleeping poll(). Need to check what
1027 		 * happens if the close() occurs while a concurrent
1028 		 * syscall is running.
1029 		 */
1030 		if (netmap_debug & NM_DEBUG_ON)
1031 			nm_prinf("deleting last instance for %s", na->name);
1032 
1033 		if (nm_netmap_on(na)) {
1034 			nm_prerr("BUG: netmap on while going to delete the krings");
1035 		}
1036 
1037 		na->nm_krings_delete(na);
1038 
1039 		/* restore the default number of host tx and rx rings */
1040 		if (na->na_flags & NAF_HOST_RINGS) {
1041 			na->num_host_tx_rings = 1;
1042 			na->num_host_rx_rings = 1;
1043 		} else {
1044 			na->num_host_tx_rings = 0;
1045 			na->num_host_rx_rings = 0;
1046 		}
1047 	}
1048 
1049 	/* possibily decrement counter of tx_si/rx_si users */
1050 	netmap_unset_ringid(priv);
1051 	/* delete the nifp */
1052 	netmap_mem_if_delete(na, priv->np_nifp);
1053 	/* drop the allocator */
1054 	netmap_mem_drop(na);
1055 	/* mark the priv as unregistered */
1056 	priv->np_na = NULL;
1057 	priv->np_nifp = NULL;
1058 }
1059 
1060 struct netmap_priv_d*
1061 netmap_priv_new(void)
1062 {
1063 	struct netmap_priv_d *priv;
1064 
1065 	priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1066 	if (priv == NULL)
1067 		return NULL;
1068 	priv->np_refs = 1;
1069 	nm_os_get_module();
1070 	return priv;
1071 }
1072 
1073 /*
1074  * Destructor of the netmap_priv_d, called when the fd is closed
1075  * Action: undo all the things done by NIOCREGIF,
1076  * On FreeBSD we need to track whether there are active mmap()s,
1077  * and we use np_active_mmaps for that. On linux, the field is always 0.
1078  * Return: 1 if we can free priv, 0 otherwise.
1079  *
1080  */
1081 /* call with NMG_LOCK held */
1082 void
1083 netmap_priv_delete(struct netmap_priv_d *priv)
1084 {
1085 	struct netmap_adapter *na = priv->np_na;
1086 
1087 	/* number of active references to this fd */
1088 	if (--priv->np_refs > 0) {
1089 		return;
1090 	}
1091 	nm_os_put_module();
1092 	if (na) {
1093 		netmap_do_unregif(priv);
1094 	}
1095 	netmap_unget_na(na, priv->np_ifp);
1096 	bzero(priv, sizeof(*priv));	/* for safety */
1097 	nm_os_free(priv);
1098 }
1099 
1100 
1101 /* call with NMG_LOCK *not* held */
1102 void
1103 netmap_dtor(void *data)
1104 {
1105 	struct netmap_priv_d *priv = data;
1106 
1107 	NMG_LOCK();
1108 	netmap_priv_delete(priv);
1109 	NMG_UNLOCK();
1110 }
1111 
1112 
1113 /*
1114  * Handlers for synchronization of the rings from/to the host stack.
1115  * These are associated to a network interface and are just another
1116  * ring pair managed by userspace.
1117  *
1118  * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1119  * flags):
1120  *
1121  * - Before releasing buffers on hw RX rings, the application can mark
1122  *   them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1123  *   will be forwarded to the host stack, similarly to what happened if
1124  *   the application moved them to the host TX ring.
1125  *
1126  * - Before releasing buffers on the host RX ring, the application can
1127  *   mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1128  *   they will be forwarded to the hw TX rings, saving the application
1129  *   from doing the same task in user-space.
1130  *
1131  * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD
1132  * flag, or globally with the netmap_fwd sysctl.
1133  *
1134  * The transfer NIC --> host is relatively easy, just encapsulate
1135  * into mbufs and we are done. The host --> NIC side is slightly
1136  * harder because there might not be room in the tx ring so it
1137  * might take a while before releasing the buffer.
1138  */
1139 
1140 
1141 /*
1142  * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1143  * We do not need to lock because the queue is private.
1144  * After this call the queue is empty.
1145  */
1146 static void
1147 netmap_send_up(struct ifnet *dst, struct mbq *q)
1148 {
1149 	struct mbuf *m;
1150 	struct mbuf *head = NULL, *prev = NULL;
1151 
1152 	/* Send packets up, outside the lock; head/prev machinery
1153 	 * is only useful for Windows. */
1154 	while ((m = mbq_dequeue(q)) != NULL) {
1155 		if (netmap_debug & NM_DEBUG_HOST)
1156 			nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1157 		prev = nm_os_send_up(dst, m, prev);
1158 		if (head == NULL)
1159 			head = prev;
1160 	}
1161 	if (head)
1162 		nm_os_send_up(dst, NULL, head);
1163 	mbq_fini(q);
1164 }
1165 
1166 
1167 /*
1168  * Scan the buffers from hwcur to ring->head, and put a copy of those
1169  * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1170  * Drop remaining packets in the unlikely event
1171  * of an mbuf shortage.
1172  */
1173 static void
1174 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1175 {
1176 	u_int const lim = kring->nkr_num_slots - 1;
1177 	u_int const head = kring->rhead;
1178 	u_int n;
1179 	struct netmap_adapter *na = kring->na;
1180 
1181 	for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1182 		struct mbuf *m;
1183 		struct netmap_slot *slot = &kring->ring->slot[n];
1184 
1185 		if ((slot->flags & NS_FORWARD) == 0 && !force)
1186 			continue;
1187 		if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1188 			nm_prlim(5, "bad pkt at %d len %d", n, slot->len);
1189 			continue;
1190 		}
1191 		slot->flags &= ~NS_FORWARD; // XXX needed ?
1192 		/* XXX TODO: adapt to the case of a multisegment packet */
1193 		m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1194 
1195 		if (m == NULL)
1196 			break;
1197 		mbq_enqueue(q, m);
1198 	}
1199 }
1200 
1201 static inline int
1202 _nm_may_forward(struct netmap_kring *kring)
1203 {
1204 	return	((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1205 		 kring->na->na_flags & NAF_HOST_RINGS &&
1206 		 kring->tx == NR_RX);
1207 }
1208 
1209 static inline int
1210 nm_may_forward_up(struct netmap_kring *kring)
1211 {
1212 	return	_nm_may_forward(kring) &&
1213 		 kring->ring_id != kring->na->num_rx_rings;
1214 }
1215 
1216 static inline int
1217 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1218 {
1219 	return	_nm_may_forward(kring) &&
1220 		 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1221 		 kring->ring_id == kring->na->num_rx_rings;
1222 }
1223 
1224 /*
1225  * Send to the NIC rings packets marked NS_FORWARD between
1226  * kring->nr_hwcur and kring->rhead.
1227  * Called under kring->rx_queue.lock on the sw rx ring.
1228  *
1229  * It can only be called if the user opened all the TX hw rings,
1230  * see NAF_CAN_FORWARD_DOWN flag.
1231  * We can touch the TX netmap rings (slots, head and cur) since
1232  * we are in poll/ioctl system call context, and the application
1233  * is not supposed to touch the ring (using a different thread)
1234  * during the execution of the system call.
1235  */
1236 static u_int
1237 netmap_sw_to_nic(struct netmap_adapter *na)
1238 {
1239 	struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1240 	struct netmap_slot *rxslot = kring->ring->slot;
1241 	u_int i, rxcur = kring->nr_hwcur;
1242 	u_int const head = kring->rhead;
1243 	u_int const src_lim = kring->nkr_num_slots - 1;
1244 	u_int sent = 0;
1245 
1246 	/* scan rings to find space, then fill as much as possible */
1247 	for (i = 0; i < na->num_tx_rings; i++) {
1248 		struct netmap_kring *kdst = na->tx_rings[i];
1249 		struct netmap_ring *rdst = kdst->ring;
1250 		u_int const dst_lim = kdst->nkr_num_slots - 1;
1251 
1252 		/* XXX do we trust ring or kring->rcur,rtail ? */
1253 		for (; rxcur != head && !nm_ring_empty(rdst);
1254 		     rxcur = nm_next(rxcur, src_lim) ) {
1255 			struct netmap_slot *src, *dst, tmp;
1256 			u_int dst_head = rdst->head;
1257 
1258 			src = &rxslot[rxcur];
1259 			if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1260 				continue;
1261 
1262 			sent++;
1263 
1264 			dst = &rdst->slot[dst_head];
1265 
1266 			tmp = *src;
1267 
1268 			src->buf_idx = dst->buf_idx;
1269 			src->flags = NS_BUF_CHANGED;
1270 
1271 			dst->buf_idx = tmp.buf_idx;
1272 			dst->len = tmp.len;
1273 			dst->flags = NS_BUF_CHANGED;
1274 
1275 			rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1276 		}
1277 		/* if (sent) XXX txsync ? it would be just an optimization */
1278 	}
1279 	return sent;
1280 }
1281 
1282 
1283 /*
1284  * netmap_txsync_to_host() passes packets up. We are called from a
1285  * system call in user process context, and the only contention
1286  * can be among multiple user threads erroneously calling
1287  * this routine concurrently.
1288  */
1289 static int
1290 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1291 {
1292 	struct netmap_adapter *na = kring->na;
1293 	u_int const lim = kring->nkr_num_slots - 1;
1294 	u_int const head = kring->rhead;
1295 	struct mbq q;
1296 
1297 	/* Take packets from hwcur to head and pass them up.
1298 	 * Force hwcur = head since netmap_grab_packets() stops at head
1299 	 */
1300 	mbq_init(&q);
1301 	netmap_grab_packets(kring, &q, 1 /* force */);
1302 	nm_prdis("have %d pkts in queue", mbq_len(&q));
1303 	kring->nr_hwcur = head;
1304 	kring->nr_hwtail = head + lim;
1305 	if (kring->nr_hwtail > lim)
1306 		kring->nr_hwtail -= lim + 1;
1307 
1308 	netmap_send_up(na->ifp, &q);
1309 	return 0;
1310 }
1311 
1312 
1313 /*
1314  * rxsync backend for packets coming from the host stack.
1315  * They have been put in kring->rx_queue by netmap_transmit().
1316  * We protect access to the kring using kring->rx_queue.lock
1317  *
1318  * also moves to the nic hw rings any packet the user has marked
1319  * for transparent-mode forwarding, then sets the NR_FORWARD
1320  * flag in the kring to let the caller push them out
1321  */
1322 static int
1323 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1324 {
1325 	struct netmap_adapter *na = kring->na;
1326 	struct netmap_ring *ring = kring->ring;
1327 	u_int nm_i, n;
1328 	u_int const lim = kring->nkr_num_slots - 1;
1329 	u_int const head = kring->rhead;
1330 	int ret = 0;
1331 	struct mbq *q = &kring->rx_queue, fq;
1332 
1333 	mbq_init(&fq); /* fq holds packets to be freed */
1334 
1335 	mbq_lock(q);
1336 
1337 	/* First part: import newly received packets */
1338 	n = mbq_len(q);
1339 	if (n) { /* grab packets from the queue */
1340 		struct mbuf *m;
1341 		uint32_t stop_i;
1342 
1343 		nm_i = kring->nr_hwtail;
1344 		stop_i = nm_prev(kring->nr_hwcur, lim);
1345 		while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1346 			int len = MBUF_LEN(m);
1347 			struct netmap_slot *slot = &ring->slot[nm_i];
1348 
1349 			m_copydata(m, 0, len, NMB(na, slot));
1350 			nm_prdis("nm %d len %d", nm_i, len);
1351 			if (netmap_debug & NM_DEBUG_HOST)
1352 				nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1353 
1354 			slot->len = len;
1355 			slot->flags = 0;
1356 			nm_i = nm_next(nm_i, lim);
1357 			mbq_enqueue(&fq, m);
1358 		}
1359 		kring->nr_hwtail = nm_i;
1360 	}
1361 
1362 	/*
1363 	 * Second part: skip past packets that userspace has released.
1364 	 */
1365 	nm_i = kring->nr_hwcur;
1366 	if (nm_i != head) { /* something was released */
1367 		if (nm_may_forward_down(kring, flags)) {
1368 			ret = netmap_sw_to_nic(na);
1369 			if (ret > 0) {
1370 				kring->nr_kflags |= NR_FORWARD;
1371 				ret = 0;
1372 			}
1373 		}
1374 		kring->nr_hwcur = head;
1375 	}
1376 
1377 	mbq_unlock(q);
1378 
1379 	mbq_purge(&fq);
1380 	mbq_fini(&fq);
1381 
1382 	return ret;
1383 }
1384 
1385 
1386 /* Get a netmap adapter for the port.
1387  *
1388  * If it is possible to satisfy the request, return 0
1389  * with *na containing the netmap adapter found.
1390  * Otherwise return an error code, with *na containing NULL.
1391  *
1392  * When the port is attached to a bridge, we always return
1393  * EBUSY.
1394  * Otherwise, if the port is already bound to a file descriptor,
1395  * then we unconditionally return the existing adapter into *na.
1396  * In all the other cases, we return (into *na) either native,
1397  * generic or NULL, according to the following table:
1398  *
1399  *					native_support
1400  * active_fds   dev.netmap.admode         YES     NO
1401  * -------------------------------------------------------
1402  *    >0              *                 NA(ifp) NA(ifp)
1403  *
1404  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
1405  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
1406  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
1407  *
1408  */
1409 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1410 int
1411 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1412 {
1413 	/* generic support */
1414 	int i = netmap_admode;	/* Take a snapshot. */
1415 	struct netmap_adapter *prev_na;
1416 	int error = 0;
1417 
1418 	*na = NULL; /* default */
1419 
1420 	/* reset in case of invalid value */
1421 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1422 		i = netmap_admode = NETMAP_ADMODE_BEST;
1423 
1424 	if (NM_NA_VALID(ifp)) {
1425 		prev_na = NA(ifp);
1426 		/* If an adapter already exists, return it if
1427 		 * there are active file descriptors or if
1428 		 * netmap is not forced to use generic
1429 		 * adapters.
1430 		 */
1431 		if (NETMAP_OWNED_BY_ANY(prev_na)
1432 			|| i != NETMAP_ADMODE_GENERIC
1433 			|| prev_na->na_flags & NAF_FORCE_NATIVE
1434 #ifdef WITH_PIPES
1435 			/* ugly, but we cannot allow an adapter switch
1436 			 * if some pipe is referring to this one
1437 			 */
1438 			|| prev_na->na_next_pipe > 0
1439 #endif
1440 		) {
1441 			*na = prev_na;
1442 			goto assign_mem;
1443 		}
1444 	}
1445 
1446 	/* If there isn't native support and netmap is not allowed
1447 	 * to use generic adapters, we cannot satisfy the request.
1448 	 */
1449 	if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1450 		return EOPNOTSUPP;
1451 
1452 	/* Otherwise, create a generic adapter and return it,
1453 	 * saving the previously used netmap adapter, if any.
1454 	 *
1455 	 * Note that here 'prev_na', if not NULL, MUST be a
1456 	 * native adapter, and CANNOT be a generic one. This is
1457 	 * true because generic adapters are created on demand, and
1458 	 * destroyed when not used anymore. Therefore, if the adapter
1459 	 * currently attached to an interface 'ifp' is generic, it
1460 	 * must be that
1461 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1462 	 * Consequently, if NA(ifp) is generic, we will enter one of
1463 	 * the branches above. This ensures that we never override
1464 	 * a generic adapter with another generic adapter.
1465 	 */
1466 	error = generic_netmap_attach(ifp);
1467 	if (error)
1468 		return error;
1469 
1470 	*na = NA(ifp);
1471 
1472 assign_mem:
1473 	if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1474 	    (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1475 		(*na)->nm_mem_prev = (*na)->nm_mem;
1476 		(*na)->nm_mem = netmap_mem_get(nmd);
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 /*
1483  * MUST BE CALLED UNDER NMG_LOCK()
1484  *
1485  * Get a refcounted reference to a netmap adapter attached
1486  * to the interface specified by req.
1487  * This is always called in the execution of an ioctl().
1488  *
1489  * Return ENXIO if the interface specified by the request does
1490  * not exist, ENOTSUP if netmap is not supported by the interface,
1491  * EBUSY if the interface is already attached to a bridge,
1492  * EINVAL if parameters are invalid, ENOMEM if needed resources
1493  * could not be allocated.
1494  * If successful, hold a reference to the netmap adapter.
1495  *
1496  * If the interface specified by req is a system one, also keep
1497  * a reference to it and return a valid *ifp.
1498  */
1499 int
1500 netmap_get_na(struct nmreq_header *hdr,
1501 	      struct netmap_adapter **na, struct ifnet **ifp,
1502 	      struct netmap_mem_d *nmd, int create)
1503 {
1504 	struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1505 	int error = 0;
1506 	struct netmap_adapter *ret = NULL;
1507 	int nmd_ref = 0;
1508 
1509 	*na = NULL;     /* default return value */
1510 	*ifp = NULL;
1511 
1512 	if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1513 		return EINVAL;
1514 	}
1515 
1516 	if (req->nr_mode == NR_REG_PIPE_MASTER ||
1517 			req->nr_mode == NR_REG_PIPE_SLAVE) {
1518 		/* Do not accept deprecated pipe modes. */
1519 		nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1520 		return EINVAL;
1521 	}
1522 
1523 	NMG_LOCK_ASSERT();
1524 
1525 	/* if the request contain a memid, try to find the
1526 	 * corresponding memory region
1527 	 */
1528 	if (nmd == NULL && req->nr_mem_id) {
1529 		nmd = netmap_mem_find(req->nr_mem_id);
1530 		if (nmd == NULL)
1531 			return EINVAL;
1532 		/* keep the rereference */
1533 		nmd_ref = 1;
1534 	}
1535 
1536 	/* We cascade through all possible types of netmap adapter.
1537 	 * All netmap_get_*_na() functions return an error and an na,
1538 	 * with the following combinations:
1539 	 *
1540 	 * error    na
1541 	 *   0	   NULL		type doesn't match
1542 	 *  !0	   NULL		type matches, but na creation/lookup failed
1543 	 *   0	  !NULL		type matches and na created/found
1544 	 *  !0    !NULL		impossible
1545 	 */
1546 	error = netmap_get_null_na(hdr, na, nmd, create);
1547 	if (error || *na != NULL)
1548 		goto out;
1549 
1550 	/* try to see if this is a monitor port */
1551 	error = netmap_get_monitor_na(hdr, na, nmd, create);
1552 	if (error || *na != NULL)
1553 		goto out;
1554 
1555 	/* try to see if this is a pipe port */
1556 	error = netmap_get_pipe_na(hdr, na, nmd, create);
1557 	if (error || *na != NULL)
1558 		goto out;
1559 
1560 	/* try to see if this is a bridge port */
1561 	error = netmap_get_vale_na(hdr, na, nmd, create);
1562 	if (error)
1563 		goto out;
1564 
1565 	if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1566 		goto out;
1567 
1568 	/*
1569 	 * This must be a hardware na, lookup the name in the system.
1570 	 * Note that by hardware we actually mean "it shows up in ifconfig".
1571 	 * This may still be a tap, a veth/epair, or even a
1572 	 * persistent VALE port.
1573 	 */
1574 	*ifp = ifunit_ref(hdr->nr_name);
1575 	if (*ifp == NULL) {
1576 		error = ENXIO;
1577 		goto out;
1578 	}
1579 
1580 	error = netmap_get_hw_na(*ifp, nmd, &ret);
1581 	if (error)
1582 		goto out;
1583 
1584 	*na = ret;
1585 	netmap_adapter_get(ret);
1586 
1587 	/*
1588 	 * if the adapter supports the host rings and it is not alread open,
1589 	 * try to set the number of host rings as requested by the user
1590 	 */
1591 	if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) {
1592 		if (req->nr_host_tx_rings)
1593 			(*na)->num_host_tx_rings = req->nr_host_tx_rings;
1594 		if (req->nr_host_rx_rings)
1595 			(*na)->num_host_rx_rings = req->nr_host_rx_rings;
1596 	}
1597 	nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings,
1598 			(*na)->num_host_rx_rings);
1599 
1600 out:
1601 	if (error) {
1602 		if (ret)
1603 			netmap_adapter_put(ret);
1604 		if (*ifp) {
1605 			if_rele(*ifp);
1606 			*ifp = NULL;
1607 		}
1608 	}
1609 	if (nmd_ref)
1610 		netmap_mem_put(nmd);
1611 
1612 	return error;
1613 }
1614 
1615 /* undo netmap_get_na() */
1616 void
1617 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1618 {
1619 	if (ifp)
1620 		if_rele(ifp);
1621 	if (na)
1622 		netmap_adapter_put(na);
1623 }
1624 
1625 
1626 #define NM_FAIL_ON(t) do {						\
1627 	if (unlikely(t)) {						\
1628 		nm_prlim(5, "%s: fail '" #t "' "				\
1629 			"h %d c %d t %d "				\
1630 			"rh %d rc %d rt %d "				\
1631 			"hc %d ht %d",					\
1632 			kring->name,					\
1633 			head, cur, ring->tail,				\
1634 			kring->rhead, kring->rcur, kring->rtail,	\
1635 			kring->nr_hwcur, kring->nr_hwtail);		\
1636 		return kring->nkr_num_slots;				\
1637 	}								\
1638 } while (0)
1639 
1640 /*
1641  * validate parameters on entry for *_txsync()
1642  * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1643  * in case of error.
1644  *
1645  * rhead, rcur and rtail=hwtail are stored from previous round.
1646  * hwcur is the next packet to send to the ring.
1647  *
1648  * We want
1649  *    hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1650  *
1651  * hwcur, rhead, rtail and hwtail are reliable
1652  */
1653 u_int
1654 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1655 {
1656 	u_int head = ring->head; /* read only once */
1657 	u_int cur = ring->cur; /* read only once */
1658 	u_int n = kring->nkr_num_slots;
1659 
1660 	nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1661 		kring->name,
1662 		kring->nr_hwcur, kring->nr_hwtail,
1663 		ring->head, ring->cur, ring->tail);
1664 #if 1 /* kernel sanity checks; but we can trust the kring. */
1665 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1666 	    kring->rtail >= n ||  kring->nr_hwtail >= n);
1667 #endif /* kernel sanity checks */
1668 	/*
1669 	 * user sanity checks. We only use head,
1670 	 * A, B, ... are possible positions for head:
1671 	 *
1672 	 *  0    A  rhead   B  rtail   C  n-1
1673 	 *  0    D  rtail   E  rhead   F  n-1
1674 	 *
1675 	 * B, F, D are valid. A, C, E are wrong
1676 	 */
1677 	if (kring->rtail >= kring->rhead) {
1678 		/* want rhead <= head <= rtail */
1679 		NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1680 		/* and also head <= cur <= rtail */
1681 		NM_FAIL_ON(cur < head || cur > kring->rtail);
1682 	} else { /* here rtail < rhead */
1683 		/* we need head outside rtail .. rhead */
1684 		NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1685 
1686 		/* two cases now: head <= rtail or head >= rhead  */
1687 		if (head <= kring->rtail) {
1688 			/* want head <= cur <= rtail */
1689 			NM_FAIL_ON(cur < head || cur > kring->rtail);
1690 		} else { /* head >= rhead */
1691 			/* cur must be outside rtail..head */
1692 			NM_FAIL_ON(cur > kring->rtail && cur < head);
1693 		}
1694 	}
1695 	if (ring->tail != kring->rtail) {
1696 		nm_prlim(5, "%s tail overwritten was %d need %d", kring->name,
1697 			ring->tail, kring->rtail);
1698 		ring->tail = kring->rtail;
1699 	}
1700 	kring->rhead = head;
1701 	kring->rcur = cur;
1702 	return head;
1703 }
1704 
1705 
1706 /*
1707  * validate parameters on entry for *_rxsync()
1708  * Returns ring->head if ok, kring->nkr_num_slots on error.
1709  *
1710  * For a valid configuration,
1711  * hwcur <= head <= cur <= tail <= hwtail
1712  *
1713  * We only consider head and cur.
1714  * hwcur and hwtail are reliable.
1715  *
1716  */
1717 u_int
1718 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1719 {
1720 	uint32_t const n = kring->nkr_num_slots;
1721 	uint32_t head, cur;
1722 
1723 	nm_prdis(5,"%s kc %d kt %d h %d c %d t %d",
1724 		kring->name,
1725 		kring->nr_hwcur, kring->nr_hwtail,
1726 		ring->head, ring->cur, ring->tail);
1727 	/*
1728 	 * Before storing the new values, we should check they do not
1729 	 * move backwards. However:
1730 	 * - head is not an issue because the previous value is hwcur;
1731 	 * - cur could in principle go back, however it does not matter
1732 	 *   because we are processing a brand new rxsync()
1733 	 */
1734 	cur = kring->rcur = ring->cur;	/* read only once */
1735 	head = kring->rhead = ring->head;	/* read only once */
1736 #if 1 /* kernel sanity checks */
1737 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1738 #endif /* kernel sanity checks */
1739 	/* user sanity checks */
1740 	if (kring->nr_hwtail >= kring->nr_hwcur) {
1741 		/* want hwcur <= rhead <= hwtail */
1742 		NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1743 		/* and also rhead <= rcur <= hwtail */
1744 		NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1745 	} else {
1746 		/* we need rhead outside hwtail..hwcur */
1747 		NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1748 		/* two cases now: head <= hwtail or head >= hwcur  */
1749 		if (head <= kring->nr_hwtail) {
1750 			/* want head <= cur <= hwtail */
1751 			NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1752 		} else {
1753 			/* cur must be outside hwtail..head */
1754 			NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1755 		}
1756 	}
1757 	if (ring->tail != kring->rtail) {
1758 		nm_prlim(5, "%s tail overwritten was %d need %d",
1759 			kring->name,
1760 			ring->tail, kring->rtail);
1761 		ring->tail = kring->rtail;
1762 	}
1763 	return head;
1764 }
1765 
1766 
1767 /*
1768  * Error routine called when txsync/rxsync detects an error.
1769  * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1770  * Return 1 on reinit.
1771  *
1772  * This routine is only called by the upper half of the kernel.
1773  * It only reads hwcur (which is changed only by the upper half, too)
1774  * and hwtail (which may be changed by the lower half, but only on
1775  * a tx ring and only to increase it, so any error will be recovered
1776  * on the next call). For the above, we don't strictly need to call
1777  * it under lock.
1778  */
1779 int
1780 netmap_ring_reinit(struct netmap_kring *kring)
1781 {
1782 	struct netmap_ring *ring = kring->ring;
1783 	u_int i, lim = kring->nkr_num_slots - 1;
1784 	int errors = 0;
1785 
1786 	// XXX KASSERT nm_kr_tryget
1787 	nm_prlim(10, "called for %s", kring->name);
1788 	// XXX probably wrong to trust userspace
1789 	kring->rhead = ring->head;
1790 	kring->rcur  = ring->cur;
1791 	kring->rtail = ring->tail;
1792 
1793 	if (ring->cur > lim)
1794 		errors++;
1795 	if (ring->head > lim)
1796 		errors++;
1797 	if (ring->tail > lim)
1798 		errors++;
1799 	for (i = 0; i <= lim; i++) {
1800 		u_int idx = ring->slot[i].buf_idx;
1801 		u_int len = ring->slot[i].len;
1802 		if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1803 			nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1804 			ring->slot[i].buf_idx = 0;
1805 			ring->slot[i].len = 0;
1806 		} else if (len > NETMAP_BUF_SIZE(kring->na)) {
1807 			ring->slot[i].len = 0;
1808 			nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len);
1809 		}
1810 	}
1811 	if (errors) {
1812 		nm_prlim(10, "total %d errors", errors);
1813 		nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d",
1814 			kring->name,
1815 			ring->cur, kring->nr_hwcur,
1816 			ring->tail, kring->nr_hwtail);
1817 		ring->head = kring->rhead = kring->nr_hwcur;
1818 		ring->cur  = kring->rcur  = kring->nr_hwcur;
1819 		ring->tail = kring->rtail = kring->nr_hwtail;
1820 	}
1821 	return (errors ? 1 : 0);
1822 }
1823 
1824 /* interpret the ringid and flags fields of an nmreq, by translating them
1825  * into a pair of intervals of ring indices:
1826  *
1827  * [priv->np_txqfirst, priv->np_txqlast) and
1828  * [priv->np_rxqfirst, priv->np_rxqlast)
1829  *
1830  */
1831 int
1832 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1833 			uint16_t nr_ringid, uint64_t nr_flags)
1834 {
1835 	struct netmap_adapter *na = priv->np_na;
1836 	int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1837 	enum txrx t;
1838 	u_int j;
1839 
1840 	for_rx_tx(t) {
1841 		if (nr_flags & excluded_direction[t]) {
1842 			priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1843 			continue;
1844 		}
1845 		switch (nr_mode) {
1846 		case NR_REG_ALL_NIC:
1847 		case NR_REG_NULL:
1848 			priv->np_qfirst[t] = 0;
1849 			priv->np_qlast[t] = nma_get_nrings(na, t);
1850 			nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1851 				priv->np_qfirst[t], priv->np_qlast[t]);
1852 			break;
1853 		case NR_REG_SW:
1854 		case NR_REG_NIC_SW:
1855 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1856 				nm_prerr("host rings not supported");
1857 				return EINVAL;
1858 			}
1859 			priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1860 				nma_get_nrings(na, t) : 0);
1861 			priv->np_qlast[t] = netmap_all_rings(na, t);
1862 			nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1863 				nm_txrx2str(t),
1864 				priv->np_qfirst[t], priv->np_qlast[t]);
1865 			break;
1866 		case NR_REG_ONE_NIC:
1867 			if (nr_ringid >= na->num_tx_rings &&
1868 					nr_ringid >= na->num_rx_rings) {
1869 				nm_prerr("invalid ring id %d", nr_ringid);
1870 				return EINVAL;
1871 			}
1872 			/* if not enough rings, use the first one */
1873 			j = nr_ringid;
1874 			if (j >= nma_get_nrings(na, t))
1875 				j = 0;
1876 			priv->np_qfirst[t] = j;
1877 			priv->np_qlast[t] = j + 1;
1878 			nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t),
1879 				priv->np_qfirst[t], priv->np_qlast[t]);
1880 			break;
1881 		case NR_REG_ONE_SW:
1882 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1883 				nm_prerr("host rings not supported");
1884 				return EINVAL;
1885 			}
1886 			if (nr_ringid >= na->num_host_tx_rings &&
1887 					nr_ringid >= na->num_host_rx_rings) {
1888 				nm_prerr("invalid ring id %d", nr_ringid);
1889 				return EINVAL;
1890 			}
1891 			/* if not enough rings, use the first one */
1892 			j = nr_ringid;
1893 			if (j >= nma_get_host_nrings(na, t))
1894 				j = 0;
1895 			priv->np_qfirst[t] = nma_get_nrings(na, t) + j;
1896 			priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1;
1897 			nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t),
1898 				priv->np_qfirst[t], priv->np_qlast[t]);
1899 			break;
1900 		default:
1901 			nm_prerr("invalid regif type %d", nr_mode);
1902 			return EINVAL;
1903 		}
1904 	}
1905 	priv->np_flags = nr_flags;
1906 
1907 	/* Allow transparent forwarding mode in the host --> nic
1908 	 * direction only if all the TX hw rings have been opened. */
1909 	if (priv->np_qfirst[NR_TX] == 0 &&
1910 			priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1911 		priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1912 	}
1913 
1914 	if (netmap_verbose) {
1915 		nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1916 			na->name,
1917 			priv->np_qfirst[NR_TX],
1918 			priv->np_qlast[NR_TX],
1919 			priv->np_qfirst[NR_RX],
1920 			priv->np_qlast[NR_RX],
1921 			nr_ringid);
1922 	}
1923 	return 0;
1924 }
1925 
1926 
1927 /*
1928  * Set the ring ID. For devices with a single queue, a request
1929  * for all rings is the same as a single ring.
1930  */
1931 static int
1932 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1933 		uint16_t nr_ringid, uint64_t nr_flags)
1934 {
1935 	struct netmap_adapter *na = priv->np_na;
1936 	int error;
1937 	enum txrx t;
1938 
1939 	error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags);
1940 	if (error) {
1941 		return error;
1942 	}
1943 
1944 	priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1;
1945 
1946 	/* optimization: count the users registered for more than
1947 	 * one ring, which are the ones sleeping on the global queue.
1948 	 * The default netmap_notify() callback will then
1949 	 * avoid signaling the global queue if nobody is using it
1950 	 */
1951 	for_rx_tx(t) {
1952 		if (nm_si_user(priv, t))
1953 			na->si_users[t]++;
1954 	}
1955 	return 0;
1956 }
1957 
1958 static void
1959 netmap_unset_ringid(struct netmap_priv_d *priv)
1960 {
1961 	struct netmap_adapter *na = priv->np_na;
1962 	enum txrx t;
1963 
1964 	for_rx_tx(t) {
1965 		if (nm_si_user(priv, t))
1966 			na->si_users[t]--;
1967 		priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1968 	}
1969 	priv->np_flags = 0;
1970 	priv->np_txpoll = 0;
1971 	priv->np_kloop_state = 0;
1972 }
1973 
1974 
1975 /* Set the nr_pending_mode for the requested rings.
1976  * If requested, also try to get exclusive access to the rings, provided
1977  * the rings we want to bind are not exclusively owned by a previous bind.
1978  */
1979 static int
1980 netmap_krings_get(struct netmap_priv_d *priv)
1981 {
1982 	struct netmap_adapter *na = priv->np_na;
1983 	u_int i;
1984 	struct netmap_kring *kring;
1985 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1986 	enum txrx t;
1987 
1988 	if (netmap_debug & NM_DEBUG_ON)
1989 		nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
1990 			na->name,
1991 			priv->np_qfirst[NR_TX],
1992 			priv->np_qlast[NR_TX],
1993 			priv->np_qfirst[NR_RX],
1994 			priv->np_qlast[NR_RX]);
1995 
1996 	/* first round: check that all the requested rings
1997 	 * are neither alread exclusively owned, nor we
1998 	 * want exclusive ownership when they are already in use
1999 	 */
2000 	for_rx_tx(t) {
2001 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2002 			kring = NMR(na, t)[i];
2003 			if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
2004 			    (kring->users && excl))
2005 			{
2006 				nm_prdis("ring %s busy", kring->name);
2007 				return EBUSY;
2008 			}
2009 		}
2010 	}
2011 
2012 	/* second round: increment usage count (possibly marking them
2013 	 * as exclusive) and set the nr_pending_mode
2014 	 */
2015 	for_rx_tx(t) {
2016 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2017 			kring = NMR(na, t)[i];
2018 			kring->users++;
2019 			if (excl)
2020 				kring->nr_kflags |= NKR_EXCLUSIVE;
2021 	                kring->nr_pending_mode = NKR_NETMAP_ON;
2022 		}
2023 	}
2024 
2025 	return 0;
2026 
2027 }
2028 
2029 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
2030  * if was asked on regif, and unset the nr_pending_mode if we are the
2031  * last users of the involved rings. */
2032 static void
2033 netmap_krings_put(struct netmap_priv_d *priv)
2034 {
2035 	struct netmap_adapter *na = priv->np_na;
2036 	u_int i;
2037 	struct netmap_kring *kring;
2038 	int excl = (priv->np_flags & NR_EXCLUSIVE);
2039 	enum txrx t;
2040 
2041 	nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)",
2042 			na->name,
2043 			priv->np_qfirst[NR_TX],
2044 			priv->np_qlast[NR_TX],
2045 			priv->np_qfirst[NR_RX],
2046 			priv->np_qlast[MR_RX]);
2047 
2048 	for_rx_tx(t) {
2049 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2050 			kring = NMR(na, t)[i];
2051 			if (excl)
2052 				kring->nr_kflags &= ~NKR_EXCLUSIVE;
2053 			kring->users--;
2054 			if (kring->users == 0)
2055 				kring->nr_pending_mode = NKR_NETMAP_OFF;
2056 		}
2057 	}
2058 }
2059 
2060 static int
2061 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2062 {
2063 	return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2064 }
2065 
2066 /* Validate the CSB entries for both directions (atok and ktoa).
2067  * To be called under NMG_LOCK(). */
2068 static int
2069 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2070 {
2071 	struct nm_csb_atok *csb_atok_base =
2072 		(struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2073 	struct nm_csb_ktoa *csb_ktoa_base =
2074 		(struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2075 	enum txrx t;
2076 	int num_rings[NR_TXRX], tot_rings;
2077 	size_t entry_size[2];
2078 	void *csb_start[2];
2079 	int i;
2080 
2081 	if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2082 		nm_prerr("Cannot update CSB while kloop is running");
2083 		return EBUSY;
2084 	}
2085 
2086 	tot_rings = 0;
2087 	for_rx_tx(t) {
2088 		num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2089 		tot_rings += num_rings[t];
2090 	}
2091 	if (tot_rings <= 0)
2092 		return 0;
2093 
2094 	if (!(priv->np_flags & NR_EXCLUSIVE)) {
2095 		nm_prerr("CSB mode requires NR_EXCLUSIVE");
2096 		return EINVAL;
2097 	}
2098 
2099 	entry_size[0] = sizeof(*csb_atok_base);
2100 	entry_size[1] = sizeof(*csb_ktoa_base);
2101 	csb_start[0] = (void *)csb_atok_base;
2102 	csb_start[1] = (void *)csb_ktoa_base;
2103 
2104 	for (i = 0; i < 2; i++) {
2105 		/* On Linux we could use access_ok() to simplify
2106 		 * the validation. However, the advantage of
2107 		 * this approach is that it works also on
2108 		 * FreeBSD. */
2109 		size_t csb_size = tot_rings * entry_size[i];
2110 		void *tmp;
2111 		int err;
2112 
2113 		if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2114 			nm_prerr("Unaligned CSB address");
2115 			return EINVAL;
2116 		}
2117 
2118 		tmp = nm_os_malloc(csb_size);
2119 		if (!tmp)
2120 			return ENOMEM;
2121 		if (i == 0) {
2122 			/* Application --> kernel direction. */
2123 			err = copyin(csb_start[i], tmp, csb_size);
2124 		} else {
2125 			/* Kernel --> application direction. */
2126 			memset(tmp, 0, csb_size);
2127 			err = copyout(tmp, csb_start[i], csb_size);
2128 		}
2129 		nm_os_free(tmp);
2130 		if (err) {
2131 			nm_prerr("Invalid CSB address");
2132 			return err;
2133 		}
2134 	}
2135 
2136 	priv->np_csb_atok_base = csb_atok_base;
2137 	priv->np_csb_ktoa_base = csb_ktoa_base;
2138 
2139 	/* Initialize the CSB. */
2140 	for_rx_tx(t) {
2141 		for (i = 0; i < num_rings[t]; i++) {
2142 			struct netmap_kring *kring =
2143 				NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2144 			struct nm_csb_atok *csb_atok = csb_atok_base + i;
2145 			struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2146 
2147 			if (t == NR_RX) {
2148 				csb_atok += num_rings[NR_TX];
2149 				csb_ktoa += num_rings[NR_TX];
2150 			}
2151 
2152 			CSB_WRITE(csb_atok, head, kring->rhead);
2153 			CSB_WRITE(csb_atok, cur, kring->rcur);
2154 			CSB_WRITE(csb_atok, appl_need_kick, 1);
2155 			CSB_WRITE(csb_atok, sync_flags, 1);
2156 			CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2157 			CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2158 			CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2159 
2160 			nm_prinf("csb_init for kring %s: head %u, cur %u, "
2161 				"hwcur %u, hwtail %u", kring->name,
2162 				kring->rhead, kring->rcur, kring->nr_hwcur,
2163 				kring->nr_hwtail);
2164 		}
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 /* Ensure that the netmap adapter can support the given MTU.
2171  * @return EINVAL if the na cannot be set to mtu, 0 otherwise.
2172  */
2173 int
2174 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) {
2175 	unsigned nbs = NETMAP_BUF_SIZE(na);
2176 
2177 	if (mtu <= na->rx_buf_maxsize) {
2178 		/* The MTU fits a single NIC slot. We only
2179 		 * Need to check that netmap buffers are
2180 		 * large enough to hold an MTU. NS_MOREFRAG
2181 		 * cannot be used in this case. */
2182 		if (nbs < mtu) {
2183 			nm_prerr("error: netmap buf size (%u) "
2184 				 "< device MTU (%u)", nbs, mtu);
2185 			return EINVAL;
2186 		}
2187 	} else {
2188 		/* More NIC slots may be needed to receive
2189 		 * or transmit a single packet. Check that
2190 		 * the adapter supports NS_MOREFRAG and that
2191 		 * netmap buffers are large enough to hold
2192 		 * the maximum per-slot size. */
2193 		if (!(na->na_flags & NAF_MOREFRAG)) {
2194 			nm_prerr("error: large MTU (%d) needed "
2195 				 "but %s does not support "
2196 				 "NS_MOREFRAG", mtu,
2197 				 na->ifp->if_xname);
2198 			return EINVAL;
2199 		} else if (nbs < na->rx_buf_maxsize) {
2200 			nm_prerr("error: using NS_MOREFRAG on "
2201 				 "%s requires netmap buf size "
2202 				 ">= %u", na->ifp->if_xname,
2203 				 na->rx_buf_maxsize);
2204 			return EINVAL;
2205 		} else {
2206 			nm_prinf("info: netmap application on "
2207 				 "%s needs to support "
2208 				 "NS_MOREFRAG "
2209 				 "(MTU=%u,netmap_buf_size=%u)",
2210 				 na->ifp->if_xname, mtu, nbs);
2211 		}
2212 	}
2213 	return 0;
2214 }
2215 
2216 
2217 /*
2218  * possibly move the interface to netmap-mode.
2219  * If success it returns a pointer to netmap_if, otherwise NULL.
2220  * This must be called with NMG_LOCK held.
2221  *
2222  * The following na callbacks are called in the process:
2223  *
2224  * na->nm_config()			[by netmap_update_config]
2225  * (get current number and size of rings)
2226  *
2227  *  	We have a generic one for linux (netmap_linux_config).
2228  *  	The bwrap has to override this, since it has to forward
2229  *  	the request to the wrapped adapter (netmap_bwrap_config).
2230  *
2231  *
2232  * na->nm_krings_create()
2233  * (create and init the krings array)
2234  *
2235  * 	One of the following:
2236  *
2237  *	* netmap_hw_krings_create, 			(hw ports)
2238  *		creates the standard layout for the krings
2239  * 		and adds the mbq (used for the host rings).
2240  *
2241  * 	* netmap_vp_krings_create			(VALE ports)
2242  * 		add leases and scratchpads
2243  *
2244  * 	* netmap_pipe_krings_create			(pipes)
2245  * 		create the krings and rings of both ends and
2246  * 		cross-link them
2247  *
2248  *      * netmap_monitor_krings_create 			(monitors)
2249  *      	avoid allocating the mbq
2250  *
2251  *      * netmap_bwrap_krings_create			(bwraps)
2252  *      	create both the brap krings array,
2253  *      	the krings array of the wrapped adapter, and
2254  *      	(if needed) the fake array for the host adapter
2255  *
2256  * na->nm_register(, 1)
2257  * (put the adapter in netmap mode)
2258  *
2259  * 	This may be one of the following:
2260  *
2261  * 	* netmap_hw_reg				        (hw ports)
2262  * 		checks that the ifp is still there, then calls
2263  * 		the hardware specific callback;
2264  *
2265  * 	* netmap_vp_reg					(VALE ports)
2266  *		If the port is connected to a bridge,
2267  *		set the NAF_NETMAP_ON flag under the
2268  *		bridge write lock.
2269  *
2270  *	* netmap_pipe_reg				(pipes)
2271  *		inform the other pipe end that it is no
2272  *		longer responsible for the lifetime of this
2273  *		pipe end
2274  *
2275  *	* netmap_monitor_reg				(monitors)
2276  *		intercept the sync callbacks of the monitored
2277  *		rings
2278  *
2279  *	* netmap_bwrap_reg				(bwraps)
2280  *		cross-link the bwrap and hwna rings,
2281  *		forward the request to the hwna, override
2282  *		the hwna notify callback (to get the frames
2283  *		coming from outside go through the bridge).
2284  *
2285  *
2286  */
2287 int
2288 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2289 	uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags)
2290 {
2291 	struct netmap_if *nifp = NULL;
2292 	int error;
2293 
2294 	NMG_LOCK_ASSERT();
2295 	priv->np_na = na;     /* store the reference */
2296 	error = netmap_mem_finalize(na->nm_mem, na);
2297 	if (error)
2298 		goto err;
2299 
2300 	if (na->active_fds == 0) {
2301 
2302 		/* cache the allocator info in the na */
2303 		error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2304 		if (error)
2305 			goto err_drop_mem;
2306 		nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2307 					    na->na_lut.objsize);
2308 
2309 		/* ring configuration may have changed, fetch from the card */
2310 		netmap_update_config(na);
2311 	}
2312 
2313 	/* compute the range of tx and rx rings to monitor */
2314 	error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags);
2315 	if (error)
2316 		goto err_put_lut;
2317 
2318 	if (na->active_fds == 0) {
2319 		/*
2320 		 * If this is the first registration of the adapter,
2321 		 * perform sanity checks and create the in-kernel view
2322 		 * of the netmap rings (the netmap krings).
2323 		 */
2324 		if (na->ifp && nm_priv_rx_enabled(priv)) {
2325 			/* This netmap adapter is attached to an ifnet. */
2326 			unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2327 
2328 			nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2329 				na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na));
2330 
2331 			if (na->rx_buf_maxsize == 0) {
2332 				nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2333 				error = EIO;
2334 				goto err_drop_mem;
2335 			}
2336 
2337 			error = netmap_buf_size_validate(na, mtu);
2338 			if (error)
2339 				goto err_drop_mem;
2340 		}
2341 
2342 		/*
2343 		 * Depending on the adapter, this may also create
2344 		 * the netmap rings themselves
2345 		 */
2346 		error = na->nm_krings_create(na);
2347 		if (error)
2348 			goto err_put_lut;
2349 
2350 	}
2351 
2352 	/* now the krings must exist and we can check whether some
2353 	 * previous bind has exclusive ownership on them, and set
2354 	 * nr_pending_mode
2355 	 */
2356 	error = netmap_krings_get(priv);
2357 	if (error)
2358 		goto err_del_krings;
2359 
2360 	/* create all needed missing netmap rings */
2361 	error = netmap_mem_rings_create(na);
2362 	if (error)
2363 		goto err_rel_excl;
2364 
2365 	/* in all cases, create a new netmap if */
2366 	nifp = netmap_mem_if_new(na, priv);
2367 	if (nifp == NULL) {
2368 		error = ENOMEM;
2369 		goto err_rel_excl;
2370 	}
2371 
2372 	if (nm_kring_pending(priv)) {
2373 		/* Some kring is switching mode, tell the adapter to
2374 		 * react on this. */
2375 		error = na->nm_register(na, 1);
2376 		if (error)
2377 			goto err_del_if;
2378 	}
2379 
2380 	/* Commit the reference. */
2381 	na->active_fds++;
2382 
2383 	/*
2384 	 * advertise that the interface is ready by setting np_nifp.
2385 	 * The barrier is needed because readers (poll, *SYNC and mmap)
2386 	 * check for priv->np_nifp != NULL without locking
2387 	 */
2388 	mb(); /* make sure previous writes are visible to all CPUs */
2389 	priv->np_nifp = nifp;
2390 
2391 	return 0;
2392 
2393 err_del_if:
2394 	netmap_mem_if_delete(na, nifp);
2395 err_rel_excl:
2396 	netmap_krings_put(priv);
2397 	netmap_mem_rings_delete(na);
2398 err_del_krings:
2399 	if (na->active_fds == 0)
2400 		na->nm_krings_delete(na);
2401 err_put_lut:
2402 	if (na->active_fds == 0)
2403 		memset(&na->na_lut, 0, sizeof(na->na_lut));
2404 err_drop_mem:
2405 	netmap_mem_drop(na);
2406 err:
2407 	priv->np_na = NULL;
2408 	return error;
2409 }
2410 
2411 
2412 /*
2413  * update kring and ring at the end of rxsync/txsync.
2414  */
2415 static inline void
2416 nm_sync_finalize(struct netmap_kring *kring)
2417 {
2418 	/*
2419 	 * Update ring tail to what the kernel knows
2420 	 * After txsync: head/rhead/hwcur might be behind cur/rcur
2421 	 * if no carrier.
2422 	 */
2423 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
2424 
2425 	nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2426 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
2427 		kring->rhead, kring->rcur, kring->rtail);
2428 }
2429 
2430 /* set ring timestamp */
2431 static inline void
2432 ring_timestamp_set(struct netmap_ring *ring)
2433 {
2434 	if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2435 		microtime(&ring->ts);
2436 	}
2437 }
2438 
2439 static int nmreq_copyin(struct nmreq_header *, int);
2440 static int nmreq_copyout(struct nmreq_header *, int);
2441 static int nmreq_checkoptions(struct nmreq_header *);
2442 
2443 /*
2444  * ioctl(2) support for the "netmap" device.
2445  *
2446  * Following a list of accepted commands:
2447  * - NIOCCTRL		device control API
2448  * - NIOCTXSYNC		sync TX rings
2449  * - NIOCRXSYNC		sync RX rings
2450  * - SIOCGIFADDR	just for convenience
2451  * - NIOCGINFO		deprecated (legacy API)
2452  * - NIOCREGIF		deprecated (legacy API)
2453  *
2454  * Return 0 on success, errno otherwise.
2455  */
2456 int
2457 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2458 		struct thread *td, int nr_body_is_user)
2459 {
2460 	struct mbq q;	/* packets from RX hw queues to host stack */
2461 	struct netmap_adapter *na = NULL;
2462 	struct netmap_mem_d *nmd = NULL;
2463 	struct ifnet *ifp = NULL;
2464 	int error = 0;
2465 	u_int i, qfirst, qlast;
2466 	struct netmap_kring **krings;
2467 	int sync_flags;
2468 	enum txrx t;
2469 
2470 	switch (cmd) {
2471 	case NIOCCTRL: {
2472 		struct nmreq_header *hdr = (struct nmreq_header *)data;
2473 
2474 		if (hdr->nr_version < NETMAP_MIN_API ||
2475 		    hdr->nr_version > NETMAP_MAX_API) {
2476 			nm_prerr("API mismatch: got %d need %d",
2477 				hdr->nr_version, NETMAP_API);
2478 			return EINVAL;
2479 		}
2480 
2481 		/* Make a kernel-space copy of the user-space nr_body.
2482 		 * For convenince, the nr_body pointer and the pointers
2483 		 * in the options list will be replaced with their
2484 		 * kernel-space counterparts. The original pointers are
2485 		 * saved internally and later restored by nmreq_copyout
2486 		 */
2487 		error = nmreq_copyin(hdr, nr_body_is_user);
2488 		if (error) {
2489 			return error;
2490 		}
2491 
2492 		/* Sanitize hdr->nr_name. */
2493 		hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2494 
2495 		switch (hdr->nr_reqtype) {
2496 		case NETMAP_REQ_REGISTER: {
2497 			struct nmreq_register *req =
2498 				(struct nmreq_register *)(uintptr_t)hdr->nr_body;
2499 			struct netmap_if *nifp;
2500 
2501 			/* Protect access to priv from concurrent requests. */
2502 			NMG_LOCK();
2503 			do {
2504 				struct nmreq_option *opt;
2505 				u_int memflags;
2506 
2507 				if (priv->np_nifp != NULL) {	/* thread already registered */
2508 					error = EBUSY;
2509 					break;
2510 				}
2511 
2512 #ifdef WITH_EXTMEM
2513 				opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM);
2514 				if (opt != NULL) {
2515 					struct nmreq_opt_extmem *e =
2516 						(struct nmreq_opt_extmem *)opt;
2517 
2518 					nmd = netmap_mem_ext_create(e->nro_usrptr,
2519 							&e->nro_info, &error);
2520 					opt->nro_status = error;
2521 					if (nmd == NULL)
2522 						break;
2523 				}
2524 #endif /* WITH_EXTMEM */
2525 
2526 				if (nmd == NULL && req->nr_mem_id) {
2527 					/* find the allocator and get a reference */
2528 					nmd = netmap_mem_find(req->nr_mem_id);
2529 					if (nmd == NULL) {
2530 						if (netmap_verbose) {
2531 							nm_prerr("%s: failed to find mem_id %u",
2532 									hdr->nr_name, req->nr_mem_id);
2533 						}
2534 						error = EINVAL;
2535 						break;
2536 					}
2537 				}
2538 				/* find the interface and a reference */
2539 				error = netmap_get_na(hdr, &na, &ifp, nmd,
2540 						      1 /* create */); /* keep reference */
2541 				if (error)
2542 					break;
2543 				if (NETMAP_OWNED_BY_KERN(na)) {
2544 					error = EBUSY;
2545 					break;
2546 				}
2547 
2548 				if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2549 					nm_prerr("virt_hdr_len=%d, but application does "
2550 						"not accept it", na->virt_hdr_len);
2551 					error = EIO;
2552 					break;
2553 				}
2554 
2555 				error = netmap_do_regif(priv, na, req->nr_mode,
2556 							req->nr_ringid, req->nr_flags);
2557 				if (error) {    /* reg. failed, release priv and ref */
2558 					break;
2559 				}
2560 
2561 				opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2562 				if (opt != NULL) {
2563 					struct nmreq_opt_csb *csbo =
2564 						(struct nmreq_opt_csb *)opt;
2565 					error = netmap_csb_validate(priv, csbo);
2566 					opt->nro_status = error;
2567 					if (error) {
2568 						netmap_do_unregif(priv);
2569 						break;
2570 					}
2571 				}
2572 
2573 				nifp = priv->np_nifp;
2574 
2575 				/* return the offset of the netmap_if object */
2576 				req->nr_rx_rings = na->num_rx_rings;
2577 				req->nr_tx_rings = na->num_tx_rings;
2578 				req->nr_rx_slots = na->num_rx_desc;
2579 				req->nr_tx_slots = na->num_tx_desc;
2580 				req->nr_host_tx_rings = na->num_host_tx_rings;
2581 				req->nr_host_rx_rings = na->num_host_rx_rings;
2582 				error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2583 					&req->nr_mem_id);
2584 				if (error) {
2585 					netmap_do_unregif(priv);
2586 					break;
2587 				}
2588 				if (memflags & NETMAP_MEM_PRIVATE) {
2589 					*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2590 				}
2591 				for_rx_tx(t) {
2592 					priv->np_si[t] = nm_si_user(priv, t) ?
2593 						&na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2594 				}
2595 
2596 				if (req->nr_extra_bufs) {
2597 					if (netmap_verbose)
2598 						nm_prinf("requested %d extra buffers",
2599 							req->nr_extra_bufs);
2600 					req->nr_extra_bufs = netmap_extra_alloc(na,
2601 						&nifp->ni_bufs_head, req->nr_extra_bufs);
2602 					if (netmap_verbose)
2603 						nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2604 				}
2605 				req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2606 
2607 				error = nmreq_checkoptions(hdr);
2608 				if (error) {
2609 					netmap_do_unregif(priv);
2610 					break;
2611 				}
2612 
2613 				/* store ifp reference so that priv destructor may release it */
2614 				priv->np_ifp = ifp;
2615 			} while (0);
2616 			if (error) {
2617 				netmap_unget_na(na, ifp);
2618 			}
2619 			/* release the reference from netmap_mem_find() or
2620 			 * netmap_mem_ext_create()
2621 			 */
2622 			if (nmd)
2623 				netmap_mem_put(nmd);
2624 			NMG_UNLOCK();
2625 			break;
2626 		}
2627 
2628 		case NETMAP_REQ_PORT_INFO_GET: {
2629 			struct nmreq_port_info_get *req =
2630 				(struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2631 
2632 			NMG_LOCK();
2633 			do {
2634 				u_int memflags;
2635 
2636 				if (hdr->nr_name[0] != '\0') {
2637 					/* Build a nmreq_register out of the nmreq_port_info_get,
2638 					 * so that we can call netmap_get_na(). */
2639 					struct nmreq_register regreq;
2640 					bzero(&regreq, sizeof(regreq));
2641 					regreq.nr_mode = NR_REG_ALL_NIC;
2642 					regreq.nr_tx_slots = req->nr_tx_slots;
2643 					regreq.nr_rx_slots = req->nr_rx_slots;
2644 					regreq.nr_tx_rings = req->nr_tx_rings;
2645 					regreq.nr_rx_rings = req->nr_rx_rings;
2646 					regreq.nr_host_tx_rings = req->nr_host_tx_rings;
2647 					regreq.nr_host_rx_rings = req->nr_host_rx_rings;
2648 					regreq.nr_mem_id = req->nr_mem_id;
2649 
2650 					/* get a refcount */
2651 					hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2652 					hdr->nr_body = (uintptr_t)&regreq;
2653 					error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2654 					hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2655 					hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2656 					if (error) {
2657 						na = NULL;
2658 						ifp = NULL;
2659 						break;
2660 					}
2661 					nmd = na->nm_mem; /* get memory allocator */
2662 				} else {
2663 					nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2664 					if (nmd == NULL) {
2665 						if (netmap_verbose)
2666 							nm_prerr("%s: failed to find mem_id %u",
2667 									hdr->nr_name,
2668 									req->nr_mem_id ? req->nr_mem_id : 1);
2669 						error = EINVAL;
2670 						break;
2671 					}
2672 				}
2673 
2674 				error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2675 					&req->nr_mem_id);
2676 				if (error)
2677 					break;
2678 				if (na == NULL) /* only memory info */
2679 					break;
2680 				netmap_update_config(na);
2681 				req->nr_rx_rings = na->num_rx_rings;
2682 				req->nr_tx_rings = na->num_tx_rings;
2683 				req->nr_rx_slots = na->num_rx_desc;
2684 				req->nr_tx_slots = na->num_tx_desc;
2685 				req->nr_host_tx_rings = na->num_host_tx_rings;
2686 				req->nr_host_rx_rings = na->num_host_rx_rings;
2687 			} while (0);
2688 			netmap_unget_na(na, ifp);
2689 			NMG_UNLOCK();
2690 			break;
2691 		}
2692 #ifdef WITH_VALE
2693 		case NETMAP_REQ_VALE_ATTACH: {
2694 			error = netmap_vale_attach(hdr, NULL /* userspace request */);
2695 			break;
2696 		}
2697 
2698 		case NETMAP_REQ_VALE_DETACH: {
2699 			error = netmap_vale_detach(hdr, NULL /* userspace request */);
2700 			break;
2701 		}
2702 
2703 		case NETMAP_REQ_VALE_LIST: {
2704 			error = netmap_vale_list(hdr);
2705 			break;
2706 		}
2707 
2708 		case NETMAP_REQ_PORT_HDR_SET: {
2709 			struct nmreq_port_hdr *req =
2710 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2711 			/* Build a nmreq_register out of the nmreq_port_hdr,
2712 			 * so that we can call netmap_get_bdg_na(). */
2713 			struct nmreq_register regreq;
2714 			bzero(&regreq, sizeof(regreq));
2715 			regreq.nr_mode = NR_REG_ALL_NIC;
2716 
2717 			/* For now we only support virtio-net headers, and only for
2718 			 * VALE ports, but this may change in future. Valid lengths
2719 			 * for the virtio-net header are 0 (no header), 10 and 12. */
2720 			if (req->nr_hdr_len != 0 &&
2721 				req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
2722 					req->nr_hdr_len != 12) {
2723 				if (netmap_verbose)
2724 					nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
2725 				error = EINVAL;
2726 				break;
2727 			}
2728 			NMG_LOCK();
2729 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2730 			hdr->nr_body = (uintptr_t)&regreq;
2731 			error = netmap_get_vale_na(hdr, &na, NULL, 0);
2732 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
2733 			hdr->nr_body = (uintptr_t)req;
2734 			if (na && !error) {
2735 				struct netmap_vp_adapter *vpna =
2736 					(struct netmap_vp_adapter *)na;
2737 				na->virt_hdr_len = req->nr_hdr_len;
2738 				if (na->virt_hdr_len) {
2739 					vpna->mfs = NETMAP_BUF_SIZE(na);
2740 				}
2741 				if (netmap_verbose)
2742 					nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
2743 				netmap_adapter_put(na);
2744 			} else if (!na) {
2745 				error = ENXIO;
2746 			}
2747 			NMG_UNLOCK();
2748 			break;
2749 		}
2750 
2751 		case NETMAP_REQ_PORT_HDR_GET: {
2752 			/* Get vnet-header length for this netmap port */
2753 			struct nmreq_port_hdr *req =
2754 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2755 			/* Build a nmreq_register out of the nmreq_port_hdr,
2756 			 * so that we can call netmap_get_bdg_na(). */
2757 			struct nmreq_register regreq;
2758 			struct ifnet *ifp;
2759 
2760 			bzero(&regreq, sizeof(regreq));
2761 			regreq.nr_mode = NR_REG_ALL_NIC;
2762 			NMG_LOCK();
2763 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2764 			hdr->nr_body = (uintptr_t)&regreq;
2765 			error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
2766 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
2767 			hdr->nr_body = (uintptr_t)req;
2768 			if (na && !error) {
2769 				req->nr_hdr_len = na->virt_hdr_len;
2770 			}
2771 			netmap_unget_na(na, ifp);
2772 			NMG_UNLOCK();
2773 			break;
2774 		}
2775 
2776 		case NETMAP_REQ_VALE_NEWIF: {
2777 			error = nm_vi_create(hdr);
2778 			break;
2779 		}
2780 
2781 		case NETMAP_REQ_VALE_DELIF: {
2782 			error = nm_vi_destroy(hdr->nr_name);
2783 			break;
2784 		}
2785 
2786 		case NETMAP_REQ_VALE_POLLING_ENABLE:
2787 		case NETMAP_REQ_VALE_POLLING_DISABLE: {
2788 			error = nm_bdg_polling(hdr);
2789 			break;
2790 		}
2791 #endif  /* WITH_VALE */
2792 		case NETMAP_REQ_POOLS_INFO_GET: {
2793 			/* Get information from the memory allocator used for
2794 			 * hdr->nr_name. */
2795 			struct nmreq_pools_info *req =
2796 				(struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
2797 			NMG_LOCK();
2798 			do {
2799 				/* Build a nmreq_register out of the nmreq_pools_info,
2800 				 * so that we can call netmap_get_na(). */
2801 				struct nmreq_register regreq;
2802 				bzero(&regreq, sizeof(regreq));
2803 				regreq.nr_mem_id = req->nr_mem_id;
2804 				regreq.nr_mode = NR_REG_ALL_NIC;
2805 
2806 				hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2807 				hdr->nr_body = (uintptr_t)&regreq;
2808 				error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2809 				hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
2810 				hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2811 				if (error) {
2812 					na = NULL;
2813 					ifp = NULL;
2814 					break;
2815 				}
2816 				nmd = na->nm_mem; /* grab the memory allocator */
2817 				if (nmd == NULL) {
2818 					error = EINVAL;
2819 					break;
2820 				}
2821 
2822 				/* Finalize the memory allocator, get the pools
2823 				 * information and release the allocator. */
2824 				error = netmap_mem_finalize(nmd, na);
2825 				if (error) {
2826 					break;
2827 				}
2828 				error = netmap_mem_pools_info_get(req, nmd);
2829 				netmap_mem_drop(na);
2830 			} while (0);
2831 			netmap_unget_na(na, ifp);
2832 			NMG_UNLOCK();
2833 			break;
2834 		}
2835 
2836 		case NETMAP_REQ_CSB_ENABLE: {
2837 			struct nmreq_option *opt;
2838 
2839 			opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2840 			if (opt == NULL) {
2841 				error = EINVAL;
2842 			} else {
2843 				struct nmreq_opt_csb *csbo =
2844 					(struct nmreq_opt_csb *)opt;
2845 				NMG_LOCK();
2846 				error = netmap_csb_validate(priv, csbo);
2847 				NMG_UNLOCK();
2848 				opt->nro_status = error;
2849 			}
2850 			break;
2851 		}
2852 
2853 		case NETMAP_REQ_SYNC_KLOOP_START: {
2854 			error = netmap_sync_kloop(priv, hdr);
2855 			break;
2856 		}
2857 
2858 		case NETMAP_REQ_SYNC_KLOOP_STOP: {
2859 			error = netmap_sync_kloop_stop(priv);
2860 			break;
2861 		}
2862 
2863 		default: {
2864 			error = EINVAL;
2865 			break;
2866 		}
2867 		}
2868 		/* Write back request body to userspace and reset the
2869 		 * user-space pointer. */
2870 		error = nmreq_copyout(hdr, error);
2871 		break;
2872 	}
2873 
2874 	case NIOCTXSYNC:
2875 	case NIOCRXSYNC: {
2876 		if (unlikely(priv->np_nifp == NULL)) {
2877 			error = ENXIO;
2878 			break;
2879 		}
2880 		mb(); /* make sure following reads are not from cache */
2881 
2882 		if (unlikely(priv->np_csb_atok_base)) {
2883 			nm_prerr("Invalid sync in CSB mode");
2884 			error = EBUSY;
2885 			break;
2886 		}
2887 
2888 		na = priv->np_na;      /* we have a reference */
2889 
2890 		mbq_init(&q);
2891 		t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
2892 		krings = NMR(na, t);
2893 		qfirst = priv->np_qfirst[t];
2894 		qlast = priv->np_qlast[t];
2895 		sync_flags = priv->np_sync_flags;
2896 
2897 		for (i = qfirst; i < qlast; i++) {
2898 			struct netmap_kring *kring = krings[i];
2899 			struct netmap_ring *ring = kring->ring;
2900 
2901 			if (unlikely(nm_kr_tryget(kring, 1, &error))) {
2902 				error = (error ? EIO : 0);
2903 				continue;
2904 			}
2905 
2906 			if (cmd == NIOCTXSYNC) {
2907 				if (netmap_debug & NM_DEBUG_TXSYNC)
2908 					nm_prinf("pre txsync ring %d cur %d hwcur %d",
2909 					    i, ring->cur,
2910 					    kring->nr_hwcur);
2911 				if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2912 					netmap_ring_reinit(kring);
2913 				} else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
2914 					nm_sync_finalize(kring);
2915 				}
2916 				if (netmap_debug & NM_DEBUG_TXSYNC)
2917 					nm_prinf("post txsync ring %d cur %d hwcur %d",
2918 					    i, ring->cur,
2919 					    kring->nr_hwcur);
2920 			} else {
2921 				if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2922 					netmap_ring_reinit(kring);
2923 				}
2924 				if (nm_may_forward_up(kring)) {
2925 					/* transparent forwarding, see netmap_poll() */
2926 					netmap_grab_packets(kring, &q, netmap_fwd);
2927 				}
2928 				if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
2929 					nm_sync_finalize(kring);
2930 				}
2931 				ring_timestamp_set(ring);
2932 			}
2933 			nm_kr_put(kring);
2934 		}
2935 
2936 		if (mbq_peek(&q)) {
2937 			netmap_send_up(na->ifp, &q);
2938 		}
2939 
2940 		break;
2941 	}
2942 
2943 	default: {
2944 		return netmap_ioctl_legacy(priv, cmd, data, td);
2945 		break;
2946 	}
2947 	}
2948 
2949 	return (error);
2950 }
2951 
2952 size_t
2953 nmreq_size_by_type(uint16_t nr_reqtype)
2954 {
2955 	switch (nr_reqtype) {
2956 	case NETMAP_REQ_REGISTER:
2957 		return sizeof(struct nmreq_register);
2958 	case NETMAP_REQ_PORT_INFO_GET:
2959 		return sizeof(struct nmreq_port_info_get);
2960 	case NETMAP_REQ_VALE_ATTACH:
2961 		return sizeof(struct nmreq_vale_attach);
2962 	case NETMAP_REQ_VALE_DETACH:
2963 		return sizeof(struct nmreq_vale_detach);
2964 	case NETMAP_REQ_VALE_LIST:
2965 		return sizeof(struct nmreq_vale_list);
2966 	case NETMAP_REQ_PORT_HDR_SET:
2967 	case NETMAP_REQ_PORT_HDR_GET:
2968 		return sizeof(struct nmreq_port_hdr);
2969 	case NETMAP_REQ_VALE_NEWIF:
2970 		return sizeof(struct nmreq_vale_newif);
2971 	case NETMAP_REQ_VALE_DELIF:
2972 	case NETMAP_REQ_SYNC_KLOOP_STOP:
2973 	case NETMAP_REQ_CSB_ENABLE:
2974 		return 0;
2975 	case NETMAP_REQ_VALE_POLLING_ENABLE:
2976 	case NETMAP_REQ_VALE_POLLING_DISABLE:
2977 		return sizeof(struct nmreq_vale_polling);
2978 	case NETMAP_REQ_POOLS_INFO_GET:
2979 		return sizeof(struct nmreq_pools_info);
2980 	case NETMAP_REQ_SYNC_KLOOP_START:
2981 		return sizeof(struct nmreq_sync_kloop_start);
2982 	}
2983 	return 0;
2984 }
2985 
2986 static size_t
2987 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
2988 {
2989 	size_t rv = sizeof(struct nmreq_option);
2990 #ifdef NETMAP_REQ_OPT_DEBUG
2991 	if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
2992 		return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
2993 #endif /* NETMAP_REQ_OPT_DEBUG */
2994 	switch (nro_reqtype) {
2995 #ifdef WITH_EXTMEM
2996 	case NETMAP_REQ_OPT_EXTMEM:
2997 		rv = sizeof(struct nmreq_opt_extmem);
2998 		break;
2999 #endif /* WITH_EXTMEM */
3000 	case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
3001 		if (nro_size >= rv)
3002 			rv = nro_size;
3003 		break;
3004 	case NETMAP_REQ_OPT_CSB:
3005 		rv = sizeof(struct nmreq_opt_csb);
3006 		break;
3007 	case NETMAP_REQ_OPT_SYNC_KLOOP_MODE:
3008 		rv = sizeof(struct nmreq_opt_sync_kloop_mode);
3009 		break;
3010 	}
3011 	/* subtract the common header */
3012 	return rv - sizeof(struct nmreq_option);
3013 }
3014 
3015 /*
3016  * nmreq_copyin: create an in-kernel version of the request.
3017  *
3018  * We build the following data structure:
3019  *
3020  * hdr -> +-------+                buf
3021  *        |       |          +---------------+
3022  *        +-------+          |usr body ptr   |
3023  *        |options|-.        +---------------+
3024  *        +-------+ |        |usr options ptr|
3025  *        |body   |--------->+---------------+
3026  *        +-------+ |        |               |
3027  *                  |        |  copy of body |
3028  *                  |        |               |
3029  *                  |        +---------------+
3030  *                  |        |    NULL       |
3031  *                  |        +---------------+
3032  *                  |    .---|               |\
3033  *                  |    |   +---------------+ |
3034  *                  | .------|               | |
3035  *                  | |  |   +---------------+  \ option table
3036  *                  | |  |   |      ...      |  / indexed by option
3037  *                  | |  |   +---------------+ |  type
3038  *                  | |  |   |               | |
3039  *                  | |  |   +---------------+/
3040  *                  | |  |   |usr next ptr 1 |
3041  *                  `-|----->+---------------+
3042  *                    |  |   | copy of opt 1 |
3043  *                    |  |   |               |
3044  *                    |  | .-| nro_next      |
3045  *                    |  | | +---------------+
3046  *                    |  | | |usr next ptr 2 |
3047  *                    |  `-`>+---------------+
3048  *                    |      | copy of opt 2 |
3049  *                    |      |               |
3050  *                    |    .-| nro_next      |
3051  *                    |    | +---------------+
3052  *                    |    | |               |
3053  *                    ~    ~ ~      ...      ~
3054  *                    |    .-|               |
3055  *                    `----->+---------------+
3056  *                         | |usr next ptr n |
3057  *                         `>+---------------+
3058  *                           | copy of opt n |
3059  *                           |               |
3060  *                           | nro_next(NULL)|
3061  *                           +---------------+
3062  *
3063  * The options and body fields of the hdr structure are overwritten
3064  * with in-kernel valid pointers inside the buf. The original user
3065  * pointers are saved in the buf and restored on copyout.
3066  * The list of options is copied and the pointers adjusted. The
3067  * original pointers are saved before the option they belonged.
3068  *
3069  * The option table has an entry for every availabe option.  Entries
3070  * for options that have not been passed contain NULL.
3071  *
3072  */
3073 
3074 int
3075 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
3076 {
3077 	size_t rqsz, optsz, bufsz;
3078 	int error = 0;
3079 	char *ker = NULL, *p;
3080 	struct nmreq_option **next, *src, **opt_tab;
3081 	struct nmreq_option buf;
3082 	uint64_t *ptrs;
3083 
3084 	if (hdr->nr_reserved) {
3085 		if (netmap_verbose)
3086 			nm_prerr("nr_reserved must be zero");
3087 		return EINVAL;
3088 	}
3089 
3090 	if (!nr_body_is_user)
3091 		return 0;
3092 
3093 	hdr->nr_reserved = nr_body_is_user;
3094 
3095 	/* compute the total size of the buffer */
3096 	rqsz = nmreq_size_by_type(hdr->nr_reqtype);
3097 	if (rqsz > NETMAP_REQ_MAXSIZE) {
3098 		error = EMSGSIZE;
3099 		goto out_err;
3100 	}
3101 	if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
3102 		(!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
3103 		/* Request body expected, but not found; or
3104 		 * request body found but unexpected. */
3105 		if (netmap_verbose)
3106 			nm_prerr("nr_body expected but not found, or vice versa");
3107 		error = EINVAL;
3108 		goto out_err;
3109 	}
3110 
3111 	bufsz = 2 * sizeof(void *) + rqsz +
3112 		NETMAP_REQ_OPT_MAX * sizeof(opt_tab);
3113 	/* compute the size of the buf below the option table.
3114 	 * It must contain a copy of every received option structure.
3115 	 * For every option we also need to store a copy of the user
3116 	 * list pointer.
3117 	 */
3118 	optsz = 0;
3119 	for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src;
3120 	     src = (struct nmreq_option *)(uintptr_t)buf.nro_next)
3121 	{
3122 		error = copyin(src, &buf, sizeof(*src));
3123 		if (error)
3124 			goto out_err;
3125 		optsz += sizeof(*src);
3126 		optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size);
3127 		if (rqsz + optsz > NETMAP_REQ_MAXSIZE) {
3128 			error = EMSGSIZE;
3129 			goto out_err;
3130 		}
3131 		bufsz += sizeof(void *);
3132 	}
3133 	bufsz += optsz;
3134 
3135 	ker = nm_os_malloc(bufsz);
3136 	if (ker == NULL) {
3137 		error = ENOMEM;
3138 		goto out_err;
3139 	}
3140 	p = ker;	/* write pointer into the buffer */
3141 
3142 	/* make a copy of the user pointers */
3143 	ptrs = (uint64_t*)p;
3144 	*ptrs++ = hdr->nr_body;
3145 	*ptrs++ = hdr->nr_options;
3146 	p = (char *)ptrs;
3147 
3148 	/* copy the body */
3149 	error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz);
3150 	if (error)
3151 		goto out_restore;
3152 	/* overwrite the user pointer with the in-kernel one */
3153 	hdr->nr_body = (uintptr_t)p;
3154 	p += rqsz;
3155 	/* start of the options table */
3156 	opt_tab = (struct nmreq_option **)p;
3157 	p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX;
3158 
3159 	/* copy the options */
3160 	next = (struct nmreq_option **)&hdr->nr_options;
3161 	src = *next;
3162 	while (src) {
3163 		struct nmreq_option *opt;
3164 
3165 		/* copy the option header */
3166 		ptrs = (uint64_t *)p;
3167 		opt = (struct nmreq_option *)(ptrs + 1);
3168 		error = copyin(src, opt, sizeof(*src));
3169 		if (error)
3170 			goto out_restore;
3171 		/* make a copy of the user next pointer */
3172 		*ptrs = opt->nro_next;
3173 		/* overwrite the user pointer with the in-kernel one */
3174 		*next = opt;
3175 
3176 		/* initialize the option as not supported.
3177 		 * Recognized options will update this field.
3178 		 */
3179 		opt->nro_status = EOPNOTSUPP;
3180 
3181 		/* check for invalid types */
3182 		if (opt->nro_reqtype < 1) {
3183 			if (netmap_verbose)
3184 				nm_prinf("invalid option type: %u", opt->nro_reqtype);
3185 			opt->nro_status = EINVAL;
3186 			error = EINVAL;
3187 			goto next;
3188 		}
3189 
3190 		if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) {
3191 			/* opt->nro_status is already EOPNOTSUPP */
3192 			error = EOPNOTSUPP;
3193 			goto next;
3194 		}
3195 
3196 		/* if the type is valid, index the option in the table
3197 		 * unless it is a duplicate.
3198 		 */
3199 		if (opt_tab[opt->nro_reqtype] != NULL) {
3200 			if (netmap_verbose)
3201 				nm_prinf("duplicate option: %u", opt->nro_reqtype);
3202 			opt->nro_status = EINVAL;
3203 			opt_tab[opt->nro_reqtype]->nro_status = EINVAL;
3204 			error = EINVAL;
3205 			goto next;
3206 		}
3207 		opt_tab[opt->nro_reqtype] = opt;
3208 
3209 		p = (char *)(opt + 1);
3210 
3211 		/* copy the option body */
3212 		optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3213 						opt->nro_size);
3214 		if (optsz) {
3215 			/* the option body follows the option header */
3216 			error = copyin(src + 1, p, optsz);
3217 			if (error)
3218 				goto out_restore;
3219 			p += optsz;
3220 		}
3221 
3222 	next:
3223 		/* move to next option */
3224 		next = (struct nmreq_option **)&opt->nro_next;
3225 		src = *next;
3226 	}
3227 	if (error)
3228 		nmreq_copyout(hdr, error);
3229 	return error;
3230 
3231 out_restore:
3232 	ptrs = (uint64_t *)ker;
3233 	hdr->nr_body = *ptrs++;
3234 	hdr->nr_options = *ptrs++;
3235 	hdr->nr_reserved = 0;
3236 	nm_os_free(ker);
3237 out_err:
3238 	return error;
3239 }
3240 
3241 static int
3242 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3243 {
3244 	struct nmreq_option *src, *dst;
3245 	void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3246 	uint64_t *ptrs;
3247 	size_t bodysz;
3248 	int error;
3249 
3250 	if (!hdr->nr_reserved)
3251 		return rerror;
3252 
3253 	/* restore the user pointers in the header */
3254 	ptrs = (uint64_t *)ker - 2;
3255 	bufstart = ptrs;
3256 	hdr->nr_body = *ptrs++;
3257 	src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3258 	hdr->nr_options = *ptrs;
3259 
3260 	if (!rerror) {
3261 		/* copy the body */
3262 		bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3263 		error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3264 		if (error) {
3265 			rerror = error;
3266 			goto out;
3267 		}
3268 	}
3269 
3270 	/* copy the options */
3271 	dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3272 	while (src) {
3273 		size_t optsz;
3274 		uint64_t next;
3275 
3276 		/* restore the user pointer */
3277 		next = src->nro_next;
3278 		ptrs = (uint64_t *)src - 1;
3279 		src->nro_next = *ptrs;
3280 
3281 		/* always copy the option header */
3282 		error = copyout(src, dst, sizeof(*src));
3283 		if (error) {
3284 			rerror = error;
3285 			goto out;
3286 		}
3287 
3288 		/* copy the option body only if there was no error */
3289 		if (!rerror && !src->nro_status) {
3290 			optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3291 							src->nro_size);
3292 			if (optsz) {
3293 				error = copyout(src + 1, dst + 1, optsz);
3294 				if (error) {
3295 					rerror = error;
3296 					goto out;
3297 				}
3298 			}
3299 		}
3300 		src = (struct nmreq_option *)(uintptr_t)next;
3301 		dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3302 	}
3303 
3304 
3305 out:
3306 	hdr->nr_reserved = 0;
3307 	nm_os_free(bufstart);
3308 	return rerror;
3309 }
3310 
3311 struct nmreq_option *
3312 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype)
3313 {
3314 	struct nmreq_option **opt_tab;
3315 
3316 	if (!hdr->nr_options)
3317 		return NULL;
3318 
3319 	opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) -
3320 	    (NETMAP_REQ_OPT_MAX + 1);
3321 	return opt_tab[reqtype];
3322 }
3323 
3324 static int
3325 nmreq_checkoptions(struct nmreq_header *hdr)
3326 {
3327 	struct nmreq_option *opt;
3328 	/* return error if there is still any option
3329 	 * marked as not supported
3330 	 */
3331 
3332 	for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3333 	     opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3334 		if (opt->nro_status == EOPNOTSUPP)
3335 			return EOPNOTSUPP;
3336 
3337 	return 0;
3338 }
3339 
3340 /*
3341  * select(2) and poll(2) handlers for the "netmap" device.
3342  *
3343  * Can be called for one or more queues.
3344  * Return true the event mask corresponding to ready events.
3345  * If there are no ready events (and 'sr' is not NULL), do a
3346  * selrecord on either individual selinfo or on the global one.
3347  * Device-dependent parts (locking and sync of tx/rx rings)
3348  * are done through callbacks.
3349  *
3350  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3351  * The first one is remapped to pwait as selrecord() uses the name as an
3352  * hidden argument.
3353  */
3354 int
3355 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3356 {
3357 	struct netmap_adapter *na;
3358 	struct netmap_kring *kring;
3359 	struct netmap_ring *ring;
3360 	u_int i, want[NR_TXRX], revents = 0;
3361 	NM_SELINFO_T *si[NR_TXRX];
3362 #define want_tx want[NR_TX]
3363 #define want_rx want[NR_RX]
3364 	struct mbq q;	/* packets from RX hw queues to host stack */
3365 
3366 	/*
3367 	 * In order to avoid nested locks, we need to "double check"
3368 	 * txsync and rxsync if we decide to do a selrecord().
3369 	 * retry_tx (and retry_rx, later) prevent looping forever.
3370 	 */
3371 	int retry_tx = 1, retry_rx = 1;
3372 
3373 	/* Transparent mode: send_down is 1 if we have found some
3374 	 * packets to forward (host RX ring --> NIC) during the rx
3375 	 * scan and we have not sent them down to the NIC yet.
3376 	 * Transparent mode requires to bind all rings to a single
3377 	 * file descriptor.
3378 	 */
3379 	int send_down = 0;
3380 	int sync_flags = priv->np_sync_flags;
3381 
3382 	mbq_init(&q);
3383 
3384 	if (unlikely(priv->np_nifp == NULL)) {
3385 		return POLLERR;
3386 	}
3387 	mb(); /* make sure following reads are not from cache */
3388 
3389 	na = priv->np_na;
3390 
3391 	if (unlikely(!nm_netmap_on(na)))
3392 		return POLLERR;
3393 
3394 	if (unlikely(priv->np_csb_atok_base)) {
3395 		nm_prerr("Invalid poll in CSB mode");
3396 		return POLLERR;
3397 	}
3398 
3399 	if (netmap_debug & NM_DEBUG_ON)
3400 		nm_prinf("device %s events 0x%x", na->name, events);
3401 	want_tx = events & (POLLOUT | POLLWRNORM);
3402 	want_rx = events & (POLLIN | POLLRDNORM);
3403 
3404 	/*
3405 	 * If the card has more than one queue AND the file descriptor is
3406 	 * bound to all of them, we sleep on the "global" selinfo, otherwise
3407 	 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3408 	 * per file descriptor).
3409 	 * The interrupt routine in the driver wake one or the other
3410 	 * (or both) depending on which clients are active.
3411 	 *
3412 	 * rxsync() is only called if we run out of buffers on a POLLIN.
3413 	 * txsync() is called if we run out of buffers on POLLOUT, or
3414 	 * there are pending packets to send. The latter can be disabled
3415 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3416 	 */
3417 	si[NR_RX] = priv->np_si[NR_RX];
3418 	si[NR_TX] = priv->np_si[NR_TX];
3419 
3420 #ifdef __FreeBSD__
3421 	/*
3422 	 * We start with a lock free round which is cheap if we have
3423 	 * slots available. If this fails, then lock and call the sync
3424 	 * routines. We can't do this on Linux, as the contract says
3425 	 * that we must call nm_os_selrecord() unconditionally.
3426 	 */
3427 	if (want_tx) {
3428 		const enum txrx t = NR_TX;
3429 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3430 			kring = NMR(na, t)[i];
3431 			if (kring->ring->cur != kring->ring->tail) {
3432 				/* Some unseen TX space is available, so what
3433 				 * we don't need to run txsync. */
3434 				revents |= want[t];
3435 				want[t] = 0;
3436 				break;
3437 			}
3438 		}
3439 	}
3440 	if (want_rx) {
3441 		const enum txrx t = NR_RX;
3442 		int rxsync_needed = 0;
3443 
3444 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3445 			kring = NMR(na, t)[i];
3446 			if (kring->ring->cur == kring->ring->tail
3447 				|| kring->rhead != kring->ring->head) {
3448 				/* There are no unseen packets on this ring,
3449 				 * or there are some buffers to be returned
3450 				 * to the netmap port. We therefore go ahead
3451 				 * and run rxsync. */
3452 				rxsync_needed = 1;
3453 				break;
3454 			}
3455 		}
3456 		if (!rxsync_needed) {
3457 			revents |= want_rx;
3458 			want_rx = 0;
3459 		}
3460 	}
3461 #endif
3462 
3463 #ifdef linux
3464 	/* The selrecord must be unconditional on linux. */
3465 	nm_os_selrecord(sr, si[NR_RX]);
3466 	nm_os_selrecord(sr, si[NR_TX]);
3467 #endif /* linux */
3468 
3469 	/*
3470 	 * If we want to push packets out (priv->np_txpoll) or
3471 	 * want_tx is still set, we must issue txsync calls
3472 	 * (on all rings, to avoid that the tx rings stall).
3473 	 * Fortunately, normal tx mode has np_txpoll set.
3474 	 */
3475 	if (priv->np_txpoll || want_tx) {
3476 		/*
3477 		 * The first round checks if anyone is ready, if not
3478 		 * do a selrecord and another round to handle races.
3479 		 * want_tx goes to 0 if any space is found, and is
3480 		 * used to skip rings with no pending transmissions.
3481 		 */
3482 flush_tx:
3483 		for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3484 			int found = 0;
3485 
3486 			kring = na->tx_rings[i];
3487 			ring = kring->ring;
3488 
3489 			/*
3490 			 * Don't try to txsync this TX ring if we already found some
3491 			 * space in some of the TX rings (want_tx == 0) and there are no
3492 			 * TX slots in this ring that need to be flushed to the NIC
3493 			 * (head == hwcur).
3494 			 */
3495 			if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3496 				continue;
3497 
3498 			if (nm_kr_tryget(kring, 1, &revents))
3499 				continue;
3500 
3501 			if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3502 				netmap_ring_reinit(kring);
3503 				revents |= POLLERR;
3504 			} else {
3505 				if (kring->nm_sync(kring, sync_flags))
3506 					revents |= POLLERR;
3507 				else
3508 					nm_sync_finalize(kring);
3509 			}
3510 
3511 			/*
3512 			 * If we found new slots, notify potential
3513 			 * listeners on the same ring.
3514 			 * Since we just did a txsync, look at the copies
3515 			 * of cur,tail in the kring.
3516 			 */
3517 			found = kring->rcur != kring->rtail;
3518 			nm_kr_put(kring);
3519 			if (found) { /* notify other listeners */
3520 				revents |= want_tx;
3521 				want_tx = 0;
3522 #ifndef linux
3523 				kring->nm_notify(kring, 0);
3524 #endif /* linux */
3525 			}
3526 		}
3527 		/* if there were any packet to forward we must have handled them by now */
3528 		send_down = 0;
3529 		if (want_tx && retry_tx && sr) {
3530 #ifndef linux
3531 			nm_os_selrecord(sr, si[NR_TX]);
3532 #endif /* !linux */
3533 			retry_tx = 0;
3534 			goto flush_tx;
3535 		}
3536 	}
3537 
3538 	/*
3539 	 * If want_rx is still set scan receive rings.
3540 	 * Do it on all rings because otherwise we starve.
3541 	 */
3542 	if (want_rx) {
3543 		/* two rounds here for race avoidance */
3544 do_retry_rx:
3545 		for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3546 			int found = 0;
3547 
3548 			kring = na->rx_rings[i];
3549 			ring = kring->ring;
3550 
3551 			if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3552 				continue;
3553 
3554 			if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3555 				netmap_ring_reinit(kring);
3556 				revents |= POLLERR;
3557 			}
3558 			/* now we can use kring->rcur, rtail */
3559 
3560 			/*
3561 			 * transparent mode support: collect packets from
3562 			 * hw rxring(s) that have been released by the user
3563 			 */
3564 			if (nm_may_forward_up(kring)) {
3565 				netmap_grab_packets(kring, &q, netmap_fwd);
3566 			}
3567 
3568 			/* Clear the NR_FORWARD flag anyway, it may be set by
3569 			 * the nm_sync() below only on for the host RX ring (see
3570 			 * netmap_rxsync_from_host()). */
3571 			kring->nr_kflags &= ~NR_FORWARD;
3572 			if (kring->nm_sync(kring, sync_flags))
3573 				revents |= POLLERR;
3574 			else
3575 				nm_sync_finalize(kring);
3576 			send_down |= (kring->nr_kflags & NR_FORWARD);
3577 			ring_timestamp_set(ring);
3578 			found = kring->rcur != kring->rtail;
3579 			nm_kr_put(kring);
3580 			if (found) {
3581 				revents |= want_rx;
3582 				retry_rx = 0;
3583 #ifndef linux
3584 				kring->nm_notify(kring, 0);
3585 #endif /* linux */
3586 			}
3587 		}
3588 
3589 #ifndef linux
3590 		if (retry_rx && sr) {
3591 			nm_os_selrecord(sr, si[NR_RX]);
3592 		}
3593 #endif /* !linux */
3594 		if (send_down || retry_rx) {
3595 			retry_rx = 0;
3596 			if (send_down)
3597 				goto flush_tx; /* and retry_rx */
3598 			else
3599 				goto do_retry_rx;
3600 		}
3601 	}
3602 
3603 	/*
3604 	 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3605 	 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3606 	 * to the host stack.
3607 	 */
3608 
3609 	if (mbq_peek(&q)) {
3610 		netmap_send_up(na->ifp, &q);
3611 	}
3612 
3613 	return (revents);
3614 #undef want_tx
3615 #undef want_rx
3616 }
3617 
3618 int
3619 nma_intr_enable(struct netmap_adapter *na, int onoff)
3620 {
3621 	bool changed = false;
3622 	enum txrx t;
3623 	int i;
3624 
3625 	for_rx_tx(t) {
3626 		for (i = 0; i < nma_get_nrings(na, t); i++) {
3627 			struct netmap_kring *kring = NMR(na, t)[i];
3628 			int on = !(kring->nr_kflags & NKR_NOINTR);
3629 
3630 			if (!!onoff != !!on) {
3631 				changed = true;
3632 			}
3633 			if (onoff) {
3634 				kring->nr_kflags &= ~NKR_NOINTR;
3635 			} else {
3636 				kring->nr_kflags |= NKR_NOINTR;
3637 			}
3638 		}
3639 	}
3640 
3641 	if (!changed) {
3642 		return 0; /* nothing to do */
3643 	}
3644 
3645 	if (!na->nm_intr) {
3646 		nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3647 		  na->name);
3648 		return -1;
3649 	}
3650 
3651 	na->nm_intr(na, onoff);
3652 
3653 	return 0;
3654 }
3655 
3656 
3657 /*-------------------- driver support routines -------------------*/
3658 
3659 /* default notify callback */
3660 static int
3661 netmap_notify(struct netmap_kring *kring, int flags)
3662 {
3663 	struct netmap_adapter *na = kring->notify_na;
3664 	enum txrx t = kring->tx;
3665 
3666 	nm_os_selwakeup(&kring->si);
3667 	/* optimization: avoid a wake up on the global
3668 	 * queue if nobody has registered for more
3669 	 * than one ring
3670 	 */
3671 	if (na->si_users[t] > 0)
3672 		nm_os_selwakeup(&na->si[t]);
3673 
3674 	return NM_IRQ_COMPLETED;
3675 }
3676 
3677 /* called by all routines that create netmap_adapters.
3678  * provide some defaults and get a reference to the
3679  * memory allocator
3680  */
3681 int
3682 netmap_attach_common(struct netmap_adapter *na)
3683 {
3684 	if (!na->rx_buf_maxsize) {
3685 		/* Set a conservative default (larger is safer). */
3686 		na->rx_buf_maxsize = PAGE_SIZE;
3687 	}
3688 
3689 #ifdef __FreeBSD__
3690 	if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3691 		na->if_input = na->ifp->if_input; /* for netmap_send_up */
3692 	}
3693 	na->pdev = na; /* make sure netmap_mem_map() is called */
3694 #endif /* __FreeBSD__ */
3695 	if (na->na_flags & NAF_HOST_RINGS) {
3696 		if (na->num_host_rx_rings == 0)
3697 			na->num_host_rx_rings = 1;
3698 		if (na->num_host_tx_rings == 0)
3699 			na->num_host_tx_rings = 1;
3700 	}
3701 	if (na->nm_krings_create == NULL) {
3702 		/* we assume that we have been called by a driver,
3703 		 * since other port types all provide their own
3704 		 * nm_krings_create
3705 		 */
3706 		na->nm_krings_create = netmap_hw_krings_create;
3707 		na->nm_krings_delete = netmap_hw_krings_delete;
3708 	}
3709 	if (na->nm_notify == NULL)
3710 		na->nm_notify = netmap_notify;
3711 	na->active_fds = 0;
3712 
3713 	if (na->nm_mem == NULL) {
3714 		/* use the global allocator */
3715 		na->nm_mem = netmap_mem_get(&nm_mem);
3716 	}
3717 #ifdef WITH_VALE
3718 	if (na->nm_bdg_attach == NULL)
3719 		/* no special nm_bdg_attach callback. On VALE
3720 		 * attach, we need to interpose a bwrap
3721 		 */
3722 		na->nm_bdg_attach = netmap_default_bdg_attach;
3723 #endif
3724 
3725 	return 0;
3726 }
3727 
3728 /* Wrapper for the register callback provided netmap-enabled
3729  * hardware drivers.
3730  * nm_iszombie(na) means that the driver module has been
3731  * unloaded, so we cannot call into it.
3732  * nm_os_ifnet_lock() must guarantee mutual exclusion with
3733  * module unloading.
3734  */
3735 static int
3736 netmap_hw_reg(struct netmap_adapter *na, int onoff)
3737 {
3738 	struct netmap_hw_adapter *hwna =
3739 		(struct netmap_hw_adapter*)na;
3740 	int error = 0;
3741 
3742 	nm_os_ifnet_lock();
3743 
3744 	if (nm_iszombie(na)) {
3745 		if (onoff) {
3746 			error = ENXIO;
3747 		} else if (na != NULL) {
3748 			na->na_flags &= ~NAF_NETMAP_ON;
3749 		}
3750 		goto out;
3751 	}
3752 
3753 	error = hwna->nm_hw_register(na, onoff);
3754 
3755 out:
3756 	nm_os_ifnet_unlock();
3757 
3758 	return error;
3759 }
3760 
3761 static void
3762 netmap_hw_dtor(struct netmap_adapter *na)
3763 {
3764 	if (na->ifp == NULL)
3765 		return;
3766 
3767 	NM_DETACH_NA(na->ifp);
3768 }
3769 
3770 
3771 /*
3772  * Allocate a netmap_adapter object, and initialize it from the
3773  * 'arg' passed by the driver on attach.
3774  * We allocate a block of memory of 'size' bytes, which has room
3775  * for struct netmap_adapter plus additional room private to
3776  * the caller.
3777  * Return 0 on success, ENOMEM otherwise.
3778  */
3779 int
3780 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
3781 {
3782 	struct netmap_hw_adapter *hwna = NULL;
3783 	struct ifnet *ifp = NULL;
3784 
3785 	if (size < sizeof(struct netmap_hw_adapter)) {
3786 		if (netmap_debug & NM_DEBUG_ON)
3787 			nm_prerr("Invalid netmap adapter size %d", (int)size);
3788 		return EINVAL;
3789 	}
3790 
3791 	if (arg == NULL || arg->ifp == NULL) {
3792 		if (netmap_debug & NM_DEBUG_ON)
3793 			nm_prerr("either arg or arg->ifp is NULL");
3794 		return EINVAL;
3795 	}
3796 
3797 	if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
3798 		if (netmap_debug & NM_DEBUG_ON)
3799 			nm_prerr("%s: invalid rings tx %d rx %d",
3800 				arg->name, arg->num_tx_rings, arg->num_rx_rings);
3801 		return EINVAL;
3802 	}
3803 
3804 	ifp = arg->ifp;
3805 	if (NM_NA_CLASH(ifp)) {
3806 		/* If NA(ifp) is not null but there is no valid netmap
3807 		 * adapter it means that someone else is using the same
3808 		 * pointer (e.g. ax25_ptr on linux). This happens for
3809 		 * instance when also PF_RING is in use. */
3810 		nm_prerr("Error: netmap adapter hook is busy");
3811 		return EBUSY;
3812 	}
3813 
3814 	hwna = nm_os_malloc(size);
3815 	if (hwna == NULL)
3816 		goto fail;
3817 	hwna->up = *arg;
3818 	hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
3819 	strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
3820 	if (override_reg) {
3821 		hwna->nm_hw_register = hwna->up.nm_register;
3822 		hwna->up.nm_register = netmap_hw_reg;
3823 	}
3824 	if (netmap_attach_common(&hwna->up)) {
3825 		nm_os_free(hwna);
3826 		goto fail;
3827 	}
3828 	netmap_adapter_get(&hwna->up);
3829 
3830 	NM_ATTACH_NA(ifp, &hwna->up);
3831 
3832 	nm_os_onattach(ifp);
3833 
3834 	if (arg->nm_dtor == NULL) {
3835 		hwna->up.nm_dtor = netmap_hw_dtor;
3836 	}
3837 
3838 	if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
3839 	    hwna->up.num_tx_rings, hwna->up.num_tx_desc,
3840 	    hwna->up.num_rx_rings, hwna->up.num_rx_desc);
3841 	return 0;
3842 
3843 fail:
3844 	nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
3845 	return (hwna ? EINVAL : ENOMEM);
3846 }
3847 
3848 
3849 int
3850 netmap_attach(struct netmap_adapter *arg)
3851 {
3852 	return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
3853 			1 /* override nm_reg */);
3854 }
3855 
3856 
3857 void
3858 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
3859 {
3860 	if (!na) {
3861 		return;
3862 	}
3863 
3864 	refcount_acquire(&na->na_refcount);
3865 }
3866 
3867 
3868 /* returns 1 iff the netmap_adapter is destroyed */
3869 int
3870 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
3871 {
3872 	if (!na)
3873 		return 1;
3874 
3875 	if (!refcount_release(&na->na_refcount))
3876 		return 0;
3877 
3878 	if (na->nm_dtor)
3879 		na->nm_dtor(na);
3880 
3881 	if (na->tx_rings) { /* XXX should not happen */
3882 		if (netmap_debug & NM_DEBUG_ON)
3883 			nm_prerr("freeing leftover tx_rings");
3884 		na->nm_krings_delete(na);
3885 	}
3886 	netmap_pipe_dealloc(na);
3887 	if (na->nm_mem)
3888 		netmap_mem_put(na->nm_mem);
3889 	bzero(na, sizeof(*na));
3890 	nm_os_free(na);
3891 
3892 	return 1;
3893 }
3894 
3895 /* nm_krings_create callback for all hardware native adapters */
3896 int
3897 netmap_hw_krings_create(struct netmap_adapter *na)
3898 {
3899 	int ret = netmap_krings_create(na, 0);
3900 	if (ret == 0) {
3901 		/* initialize the mbq for the sw rx ring */
3902 		u_int lim = netmap_real_rings(na, NR_RX), i;
3903 		for (i = na->num_rx_rings; i < lim; i++) {
3904 			mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
3905 		}
3906 		nm_prdis("initialized sw rx queue %d", na->num_rx_rings);
3907 	}
3908 	return ret;
3909 }
3910 
3911 
3912 
3913 /*
3914  * Called on module unload by the netmap-enabled drivers
3915  */
3916 void
3917 netmap_detach(struct ifnet *ifp)
3918 {
3919 	struct netmap_adapter *na = NA(ifp);
3920 
3921 	if (!na)
3922 		return;
3923 
3924 	NMG_LOCK();
3925 	netmap_set_all_rings(na, NM_KR_LOCKED);
3926 	/*
3927 	 * if the netmap adapter is not native, somebody
3928 	 * changed it, so we can not release it here.
3929 	 * The NAF_ZOMBIE flag will notify the new owner that
3930 	 * the driver is gone.
3931 	 */
3932 	if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
3933 		na->na_flags |= NAF_ZOMBIE;
3934 	}
3935 	/* give active users a chance to notice that NAF_ZOMBIE has been
3936 	 * turned on, so that they can stop and return an error to userspace.
3937 	 * Note that this becomes a NOP if there are no active users and,
3938 	 * therefore, the put() above has deleted the na, since now NA(ifp) is
3939 	 * NULL.
3940 	 */
3941 	netmap_enable_all_rings(ifp);
3942 	NMG_UNLOCK();
3943 }
3944 
3945 
3946 /*
3947  * Intercept packets from the network stack and pass them
3948  * to netmap as incoming packets on the 'software' ring.
3949  *
3950  * We only store packets in a bounded mbq and then copy them
3951  * in the relevant rxsync routine.
3952  *
3953  * We rely on the OS to make sure that the ifp and na do not go
3954  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
3955  * In nm_register() or whenever there is a reinitialization,
3956  * we make sure to make the mode change visible here.
3957  */
3958 int
3959 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
3960 {
3961 	struct netmap_adapter *na = NA(ifp);
3962 	struct netmap_kring *kring, *tx_kring;
3963 	u_int len = MBUF_LEN(m);
3964 	u_int error = ENOBUFS;
3965 	unsigned int txr;
3966 	struct mbq *q;
3967 	int busy;
3968 	u_int i;
3969 
3970 	i = MBUF_TXQ(m);
3971 	if (i >= na->num_host_rx_rings) {
3972 		i = i % na->num_host_rx_rings;
3973 	}
3974 	kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
3975 
3976 	// XXX [Linux] we do not need this lock
3977 	// if we follow the down/configure/up protocol -gl
3978 	// mtx_lock(&na->core_lock);
3979 
3980 	if (!nm_netmap_on(na)) {
3981 		nm_prerr("%s not in netmap mode anymore", na->name);
3982 		error = ENXIO;
3983 		goto done;
3984 	}
3985 
3986 	txr = MBUF_TXQ(m);
3987 	if (txr >= na->num_tx_rings) {
3988 		txr %= na->num_tx_rings;
3989 	}
3990 	tx_kring = NMR(na, NR_TX)[txr];
3991 
3992 	if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
3993 		return MBUF_TRANSMIT(na, ifp, m);
3994 	}
3995 
3996 	q = &kring->rx_queue;
3997 
3998 	// XXX reconsider long packets if we handle fragments
3999 	if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
4000 		nm_prerr("%s from_host, drop packet size %d > %d", na->name,
4001 			len, NETMAP_BUF_SIZE(na));
4002 		goto done;
4003 	}
4004 
4005 	if (!netmap_generic_hwcsum) {
4006 		if (nm_os_mbuf_has_csum_offld(m)) {
4007 			nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name);
4008 			goto done;
4009 		}
4010 	}
4011 
4012 	if (nm_os_mbuf_has_seg_offld(m)) {
4013 		nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name);
4014 		goto done;
4015 	}
4016 
4017 #ifdef __FreeBSD__
4018 	ETHER_BPF_MTAP(ifp, m);
4019 #endif /* __FreeBSD__ */
4020 
4021 	/* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
4022 	 * and maybe other instances of netmap_transmit (the latter
4023 	 * not possible on Linux).
4024 	 * We enqueue the mbuf only if we are sure there is going to be
4025 	 * enough room in the host RX ring, otherwise we drop it.
4026 	 */
4027 	mbq_lock(q);
4028 
4029 	busy = kring->nr_hwtail - kring->nr_hwcur;
4030 	if (busy < 0)
4031 		busy += kring->nkr_num_slots;
4032 	if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
4033 		nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
4034 			kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
4035 	} else {
4036 		mbq_enqueue(q, m);
4037 		nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q));
4038 		/* notify outside the lock */
4039 		m = NULL;
4040 		error = 0;
4041 	}
4042 	mbq_unlock(q);
4043 
4044 done:
4045 	if (m)
4046 		m_freem(m);
4047 	/* unconditionally wake up listeners */
4048 	kring->nm_notify(kring, 0);
4049 	/* this is normally netmap_notify(), but for nics
4050 	 * connected to a bridge it is netmap_bwrap_intr_notify(),
4051 	 * that possibly forwards the frames through the switch
4052 	 */
4053 
4054 	return (error);
4055 }
4056 
4057 
4058 /*
4059  * netmap_reset() is called by the driver routines when reinitializing
4060  * a ring. The driver is in charge of locking to protect the kring.
4061  * If native netmap mode is not set just return NULL.
4062  * If native netmap mode is set, in particular, we have to set nr_mode to
4063  * NKR_NETMAP_ON.
4064  */
4065 struct netmap_slot *
4066 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
4067 	u_int new_cur)
4068 {
4069 	struct netmap_kring *kring;
4070 	int new_hwofs, lim;
4071 
4072 	if (!nm_native_on(na)) {
4073 		nm_prdis("interface not in native netmap mode");
4074 		return NULL;	/* nothing to reinitialize */
4075 	}
4076 
4077 	/* XXX note- in the new scheme, we are not guaranteed to be
4078 	 * under lock (e.g. when called on a device reset).
4079 	 * In this case, we should set a flag and do not trust too
4080 	 * much the values. In practice: TODO
4081 	 * - set a RESET flag somewhere in the kring
4082 	 * - do the processing in a conservative way
4083 	 * - let the *sync() fixup at the end.
4084 	 */
4085 	if (tx == NR_TX) {
4086 		if (n >= na->num_tx_rings)
4087 			return NULL;
4088 
4089 		kring = na->tx_rings[n];
4090 
4091 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4092 			kring->nr_mode = NKR_NETMAP_OFF;
4093 			return NULL;
4094 		}
4095 
4096 		// XXX check whether we should use hwcur or rcur
4097 		new_hwofs = kring->nr_hwcur - new_cur;
4098 	} else {
4099 		if (n >= na->num_rx_rings)
4100 			return NULL;
4101 		kring = na->rx_rings[n];
4102 
4103 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4104 			kring->nr_mode = NKR_NETMAP_OFF;
4105 			return NULL;
4106 		}
4107 
4108 		new_hwofs = kring->nr_hwtail - new_cur;
4109 	}
4110 	lim = kring->nkr_num_slots - 1;
4111 	if (new_hwofs > lim)
4112 		new_hwofs -= lim + 1;
4113 
4114 	/* Always set the new offset value and realign the ring. */
4115 	if (netmap_debug & NM_DEBUG_ON)
4116 	    nm_prinf("%s %s%d hwofs %d -> %d, hwtail %d -> %d",
4117 		na->name,
4118 		tx == NR_TX ? "TX" : "RX", n,
4119 		kring->nkr_hwofs, new_hwofs,
4120 		kring->nr_hwtail,
4121 		tx == NR_TX ? lim : kring->nr_hwtail);
4122 	kring->nkr_hwofs = new_hwofs;
4123 	if (tx == NR_TX) {
4124 		kring->nr_hwtail = kring->nr_hwcur + lim;
4125 		if (kring->nr_hwtail > lim)
4126 			kring->nr_hwtail -= lim + 1;
4127 	}
4128 
4129 	/*
4130 	 * Wakeup on the individual and global selwait
4131 	 * We do the wakeup here, but the ring is not yet reconfigured.
4132 	 * However, we are under lock so there are no races.
4133 	 */
4134 	kring->nr_mode = NKR_NETMAP_ON;
4135 	kring->nm_notify(kring, 0);
4136 	return kring->ring->slot;
4137 }
4138 
4139 
4140 /*
4141  * Dispatch rx/tx interrupts to the netmap rings.
4142  *
4143  * "work_done" is non-null on the RX path, NULL for the TX path.
4144  * We rely on the OS to make sure that there is only one active
4145  * instance per queue, and that there is appropriate locking.
4146  *
4147  * The 'notify' routine depends on what the ring is attached to.
4148  * - for a netmap file descriptor, do a selwakeup on the individual
4149  *   waitqueue, plus one on the global one if needed
4150  *   (see netmap_notify)
4151  * - for a nic connected to a switch, call the proper forwarding routine
4152  *   (see netmap_bwrap_intr_notify)
4153  */
4154 int
4155 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4156 {
4157 	struct netmap_kring *kring;
4158 	enum txrx t = (work_done ? NR_RX : NR_TX);
4159 
4160 	q &= NETMAP_RING_MASK;
4161 
4162 	if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4163 	        nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4164 	}
4165 
4166 	if (q >= nma_get_nrings(na, t))
4167 		return NM_IRQ_PASS; // not a physical queue
4168 
4169 	kring = NMR(na, t)[q];
4170 
4171 	if (kring->nr_mode == NKR_NETMAP_OFF) {
4172 		return NM_IRQ_PASS;
4173 	}
4174 
4175 	if (t == NR_RX) {
4176 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
4177 		*work_done = 1; /* do not fire napi again */
4178 	}
4179 
4180 	return kring->nm_notify(kring, 0);
4181 }
4182 
4183 
4184 /*
4185  * Default functions to handle rx/tx interrupts from a physical device.
4186  * "work_done" is non-null on the RX path, NULL for the TX path.
4187  *
4188  * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4189  * so that the caller proceeds with regular processing.
4190  * Otherwise call netmap_common_irq().
4191  *
4192  * If the card is connected to a netmap file descriptor,
4193  * do a selwakeup on the individual queue, plus one on the global one
4194  * if needed (multiqueue card _and_ there are multiqueue listeners),
4195  * and return NR_IRQ_COMPLETED.
4196  *
4197  * Finally, if called on rx from an interface connected to a switch,
4198  * calls the proper forwarding routine.
4199  */
4200 int
4201 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
4202 {
4203 	struct netmap_adapter *na = NA(ifp);
4204 
4205 	/*
4206 	 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4207 	 * we still use the regular driver even though the previous
4208 	 * check fails. It is unclear whether we should use
4209 	 * nm_native_on() here.
4210 	 */
4211 	if (!nm_netmap_on(na))
4212 		return NM_IRQ_PASS;
4213 
4214 	if (na->na_flags & NAF_SKIP_INTR) {
4215 		nm_prdis("use regular interrupt");
4216 		return NM_IRQ_PASS;
4217 	}
4218 
4219 	return netmap_common_irq(na, q, work_done);
4220 }
4221 
4222 /* set/clear native flags and if_transmit/netdev_ops */
4223 void
4224 nm_set_native_flags(struct netmap_adapter *na)
4225 {
4226 	struct ifnet *ifp = na->ifp;
4227 
4228 	/* We do the setup for intercepting packets only if we are the
4229 	 * first user of this adapapter. */
4230 	if (na->active_fds > 0) {
4231 		return;
4232 	}
4233 
4234 	na->na_flags |= NAF_NETMAP_ON;
4235 	nm_os_onenter(ifp);
4236 	nm_update_hostrings_mode(na);
4237 }
4238 
4239 void
4240 nm_clear_native_flags(struct netmap_adapter *na)
4241 {
4242 	struct ifnet *ifp = na->ifp;
4243 
4244 	/* We undo the setup for intercepting packets only if we are the
4245 	 * last user of this adapter. */
4246 	if (na->active_fds > 0) {
4247 		return;
4248 	}
4249 
4250 	nm_update_hostrings_mode(na);
4251 	nm_os_onexit(ifp);
4252 
4253 	na->na_flags &= ~NAF_NETMAP_ON;
4254 }
4255 
4256 void
4257 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff)
4258 {
4259 	enum txrx t;
4260 
4261 	for_rx_tx(t) {
4262 		int i;
4263 
4264 		for (i = 0; i < netmap_real_rings(na, t); i++) {
4265 			struct netmap_kring *kring = NMR(na, t)[i];
4266 
4267 			if (onoff && nm_kring_pending_on(kring))
4268 				kring->nr_mode = NKR_NETMAP_ON;
4269 			else if (!onoff && nm_kring_pending_off(kring))
4270 				kring->nr_mode = NKR_NETMAP_OFF;
4271 		}
4272 	}
4273 }
4274 
4275 /*
4276  * Module loader and unloader
4277  *
4278  * netmap_init() creates the /dev/netmap device and initializes
4279  * all global variables. Returns 0 on success, errno on failure
4280  * (but there is no chance)
4281  *
4282  * netmap_fini() destroys everything.
4283  */
4284 
4285 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4286 extern struct cdevsw netmap_cdevsw;
4287 
4288 
4289 void
4290 netmap_fini(void)
4291 {
4292 	if (netmap_dev)
4293 		destroy_dev(netmap_dev);
4294 	/* we assume that there are no longer netmap users */
4295 	nm_os_ifnet_fini();
4296 	netmap_uninit_bridges();
4297 	netmap_mem_fini();
4298 	NMG_LOCK_DESTROY();
4299 	nm_prinf("netmap: unloaded module.");
4300 }
4301 
4302 
4303 int
4304 netmap_init(void)
4305 {
4306 	int error;
4307 
4308 	NMG_LOCK_INIT();
4309 
4310 	error = netmap_mem_init();
4311 	if (error != 0)
4312 		goto fail;
4313 	/*
4314 	 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4315 	 * when the module is compiled in.
4316 	 * XXX could use make_dev_credv() to get error number
4317 	 */
4318 	netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4319 		&netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4320 			      "netmap");
4321 	if (!netmap_dev)
4322 		goto fail;
4323 
4324 	error = netmap_init_bridges();
4325 	if (error)
4326 		goto fail;
4327 
4328 #ifdef __FreeBSD__
4329 	nm_os_vi_init_index();
4330 #endif
4331 
4332 	error = nm_os_ifnet_init();
4333 	if (error)
4334 		goto fail;
4335 
4336 	nm_prinf("netmap: loaded module");
4337 	return (0);
4338 fail:
4339 	netmap_fini();
4340 	return (EINVAL); /* may be incorrect */
4341 }
4342