xref: /freebsd/sys/dev/netmap/netmap.c (revision 488ab515d6cc02f6f743f0badfc8e94eb553cd30)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi
5  * Copyright (C) 2011-2016 Luigi Rizzo
6  * Copyright (C) 2011-2016 Giuseppe Lettieri
7  * Copyright (C) 2011-2016 Vincenzo Maffione
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *   1. Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *   2. Redistributions in binary form must reproduce the above copyright
16  *      notice, this list of conditions and the following disclaimer in the
17  *      documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 
33 /*
34  * $FreeBSD$
35  *
36  * This module supports memory mapped access to network devices,
37  * see netmap(4).
38  *
39  * The module uses a large, memory pool allocated by the kernel
40  * and accessible as mmapped memory by multiple userspace threads/processes.
41  * The memory pool contains packet buffers and "netmap rings",
42  * i.e. user-accessible copies of the interface's queues.
43  *
44  * Access to the network card works like this:
45  * 1. a process/thread issues one or more open() on /dev/netmap, to create
46  *    select()able file descriptor on which events are reported.
47  * 2. on each descriptor, the process issues an ioctl() to identify
48  *    the interface that should report events to the file descriptor.
49  * 3. on each descriptor, the process issues an mmap() request to
50  *    map the shared memory region within the process' address space.
51  *    The list of interesting queues is indicated by a location in
52  *    the shared memory region.
53  * 4. using the functions in the netmap(4) userspace API, a process
54  *    can look up the occupation state of a queue, access memory buffers,
55  *    and retrieve received packets or enqueue packets to transmit.
56  * 5. using some ioctl()s the process can synchronize the userspace view
57  *    of the queue with the actual status in the kernel. This includes both
58  *    receiving the notification of new packets, and transmitting new
59  *    packets on the output interface.
60  * 6. select() or poll() can be used to wait for events on individual
61  *    transmit or receive queues (or all queues for a given interface).
62  *
63 
64 		SYNCHRONIZATION (USER)
65 
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73 
74 		LOCKING (INTERNAL)
75 
76 Within the kernel, access to the netmap rings is protected as follows:
77 
78 - a spinlock on each ring, to handle producer/consumer races on
79   RX rings attached to the host stack (against multiple host
80   threads writing from the host stack to the same ring),
81   and on 'destination' rings attached to a VALE switch
82   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83   protecting multiple active senders for the same destination)
84 
85 - an atomic variable to guarantee that there is at most one
86   instance of *_*xsync() on the ring at any time.
87   For rings connected to user file
88   descriptors, an atomic_test_and_set() protects this, and the
89   lock on the ring is not actually used.
90   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91   is also used to prevent multiple executions (the driver might indeed
92   already guarantee this).
93   For NIC TX rings connected to a VALE switch, the lock arbitrates
94   access to the queue (both when allocating buffers and when pushing
95   them out).
96 
97 - *xsync() should be protected against initializations of the card.
98   On FreeBSD most devices have the reset routine protected by
99   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100   the RING protection on rx_reset(), this should be added.
101 
102   On linux there is an external lock on the tx path, which probably
103   also arbitrates access to the reset routine. XXX to be revised
104 
105 - a per-interface core_lock protecting access from the host stack
106   while interfaces may be detached from netmap mode.
107   XXX there should be no need for this lock if we detach the interfaces
108   only while they are down.
109 
110 
111 --- VALE SWITCH ---
112 
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115 
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123 
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130 
131  */
132 
133 
134 /* --- internals ----
135  *
136  * Roadmap to the code that implements the above.
137  *
138  * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139  * >    select()able file descriptor on which events are reported.
140  *
141  *  	Internally, we allocate a netmap_priv_d structure, that will be
142  *  	initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143  *  	structure for each open().
144  *
145  *      os-specific:
146  *  	    FreeBSD: see netmap_open() (netmap_freebsd.c)
147  *  	    linux:   see linux_netmap_open() (netmap_linux.c)
148  *
149  * > 2. on each descriptor, the process issues an ioctl() to identify
150  * >    the interface that should report events to the file descriptor.
151  *
152  * 	Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153  * 	Most important things happen in netmap_get_na() and
154  * 	netmap_do_regif(), called from there. Additional details can be
155  * 	found in the comments above those functions.
156  *
157  * 	In all cases, this action creates/takes-a-reference-to a
158  * 	netmap_*_adapter describing the port, and allocates a netmap_if
159  * 	and all necessary netmap rings, filling them with netmap buffers.
160  *
161  *      In this phase, the sync callbacks for each ring are set (these are used
162  *      in steps 5 and 6 below).  The callbacks depend on the type of adapter.
163  *      The adapter creation/initialization code puts them in the
164  * 	netmap_adapter (fields na->nm_txsync and na->nm_rxsync).  Then, they
165  * 	are copied from there to the netmap_kring's during netmap_do_regif(), by
166  * 	the nm_krings_create() callback.  All the nm_krings_create callbacks
167  * 	actually call netmap_krings_create() to perform this and the other
168  * 	common stuff. netmap_krings_create() also takes care of the host rings,
169  * 	if needed, by setting their sync callbacks appropriately.
170  *
171  * 	Additional actions depend on the kind of netmap_adapter that has been
172  * 	registered:
173  *
174  * 	- netmap_hw_adapter:  	     [netmap.c]
175  * 	     This is a system netdev/ifp with native netmap support.
176  * 	     The ifp is detached from the host stack by redirecting:
177  * 	       - transmissions (from the network stack) to netmap_transmit()
178  * 	       - receive notifications to the nm_notify() callback for
179  * 	         this adapter. The callback is normally netmap_notify(), unless
180  * 	         the ifp is attached to a bridge using bwrap, in which case it
181  * 	         is netmap_bwrap_intr_notify().
182  *
183  * 	- netmap_generic_adapter:      [netmap_generic.c]
184  * 	      A system netdev/ifp without native netmap support.
185  *
186  * 	(the decision about native/non native support is taken in
187  * 	 netmap_get_hw_na(), called by netmap_get_na())
188  *
189  * 	- netmap_vp_adapter 		[netmap_vale.c]
190  * 	      Returned by netmap_get_bdg_na().
191  * 	      This is a persistent or ephemeral VALE port. Ephemeral ports
192  * 	      are created on the fly if they don't already exist, and are
193  * 	      always attached to a bridge.
194  * 	      Persistent VALE ports must must be created separately, and i
195  * 	      then attached like normal NICs. The NIOCREGIF we are examining
196  * 	      will find them only if they had previosly been created and
197  * 	      attached (see VALE_CTL below).
198  *
199  * 	- netmap_pipe_adapter 	      [netmap_pipe.c]
200  * 	      Returned by netmap_get_pipe_na().
201  * 	      Both pipe ends are created, if they didn't already exist.
202  *
203  * 	- netmap_monitor_adapter      [netmap_monitor.c]
204  * 	      Returned by netmap_get_monitor_na().
205  * 	      If successful, the nm_sync callbacks of the monitored adapter
206  * 	      will be intercepted by the returned monitor.
207  *
208  * 	- netmap_bwrap_adapter	      [netmap_vale.c]
209  * 	      Cannot be obtained in this way, see VALE_CTL below
210  *
211  *
212  * 	os-specific:
213  * 	    linux: we first go through linux_netmap_ioctl() to
214  * 	           adapt the FreeBSD interface to the linux one.
215  *
216  *
217  * > 3. on each descriptor, the process issues an mmap() request to
218  * >    map the shared memory region within the process' address space.
219  * >    The list of interesting queues is indicated by a location in
220  * >    the shared memory region.
221  *
222  *      os-specific:
223  *  	    FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224  *  	    linux:   linux_netmap_mmap (netmap_linux.c).
225  *
226  * > 4. using the functions in the netmap(4) userspace API, a process
227  * >    can look up the occupation state of a queue, access memory buffers,
228  * >    and retrieve received packets or enqueue packets to transmit.
229  *
230  * 	these actions do not involve the kernel.
231  *
232  * > 5. using some ioctl()s the process can synchronize the userspace view
233  * >    of the queue with the actual status in the kernel. This includes both
234  * >    receiving the notification of new packets, and transmitting new
235  * >    packets on the output interface.
236  *
237  * 	These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238  * 	cases. They invoke the nm_sync callbacks on the netmap_kring
239  * 	structures, as initialized in step 2 and maybe later modified
240  * 	by a monitor. Monitors, however, will always call the original
241  * 	callback before doing anything else.
242  *
243  *
244  * > 6. select() or poll() can be used to wait for events on individual
245  * >    transmit or receive queues (or all queues for a given interface).
246  *
247  * 	Implemented in netmap_poll(). This will call the same nm_sync()
248  * 	callbacks as in step 5 above.
249  *
250  * 	os-specific:
251  * 		linux: we first go through linux_netmap_poll() to adapt
252  * 		       the FreeBSD interface to the linux one.
253  *
254  *
255  *  ----  VALE_CTL -----
256  *
257  *  VALE switches are controlled by issuing a NIOCREGIF with a non-null
258  *  nr_cmd in the nmreq structure. These subcommands are handled by
259  *  netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260  *  and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261  *  subcommands, respectively.
262  *
263  *  Any network interface known to the system (including a persistent VALE
264  *  port) can be attached to a VALE switch by issuing the
265  *  NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266  *  look exactly like ephemeral VALE ports (as created in step 2 above).  The
267  *  attachment of other interfaces, instead, requires the creation of a
268  *  netmap_bwrap_adapter.  Moreover, the attached interface must be put in
269  *  netmap mode. This may require the creation of a netmap_generic_adapter if
270  *  we have no native support for the interface, or if generic adapters have
271  *  been forced by sysctl.
272  *
273  *  Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274  *  called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275  *  callback.  In the case of the bwrap, the callback creates the
276  *  netmap_bwrap_adapter.  The initialization of the bwrap is then
277  *  completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278  *  callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279  *  A generic adapter for the wrapped ifp will be created if needed, when
280  *  netmap_get_bdg_na() calls netmap_get_hw_na().
281  *
282  *
283  *  ---- DATAPATHS -----
284  *
285  *              -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286  *
287  *    na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288  *
289  *    - tx from netmap userspace:
290  *	 concurrently:
291  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292  *                kring->nm_sync() == DEVICE_netmap_txsync()
293  *           2) device interrupt handler
294  *                na->nm_notify()  == netmap_notify()
295  *    - rx from netmap userspace:
296  *       concurrently:
297  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298  *                kring->nm_sync() == DEVICE_netmap_rxsync()
299  *           2) device interrupt handler
300  *                na->nm_notify()  == netmap_notify()
301  *    - rx from host stack
302  *       concurrently:
303  *           1) host stack
304  *                netmap_transmit()
305  *                  na->nm_notify  == netmap_notify()
306  *           2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307  *                kring->nm_sync() == netmap_rxsync_from_host
308  *                  netmap_rxsync_from_host(na, NULL, NULL)
309  *    - tx to host stack
310  *           ioctl(NIOCTXSYNC)/netmap_poll() in process context
311  *             kring->nm_sync() == netmap_txsync_to_host
312  *               netmap_txsync_to_host(na)
313  *                 nm_os_send_up()
314  *                   FreeBSD: na->if_input() == ether_input()
315  *                   linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316  *
317  *
318  *               -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319  *
320  *    na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321  *
322  *    - tx from netmap userspace:
323  *       concurrently:
324  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325  *               kring->nm_sync() == generic_netmap_txsync()
326  *                   nm_os_generic_xmit_frame()
327  *                       linux:   dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328  *                           ifp->ndo_start_xmit == generic_ndo_start_xmit()
329  *                               gna->save_start_xmit == orig. dev. start_xmit
330  *                       FreeBSD: na->if_transmit() == orig. dev if_transmit
331  *           2) generic_mbuf_destructor()
332  *                   na->nm_notify() == netmap_notify()
333  *    - rx from netmap userspace:
334  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335  *               kring->nm_sync() == generic_netmap_rxsync()
336  *                   mbq_safe_dequeue()
337  *           2) device driver
338  *               generic_rx_handler()
339  *                   mbq_safe_enqueue()
340  *                   na->nm_notify() == netmap_notify()
341  *    - rx from host stack
342  *        FreeBSD: same as native
343  *        Linux: same as native except:
344  *           1) host stack
345  *               dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346  *                   ifp->ndo_start_xmit == generic_ndo_start_xmit()
347  *                       netmap_transmit()
348  *                           na->nm_notify() == netmap_notify()
349  *    - tx to host stack (same as native):
350  *
351  *
352  *                           -= VALE =-
353  *
354  *   INCOMING:
355  *
356  *      - VALE ports:
357  *          ioctl(NIOCTXSYNC)/netmap_poll() in process context
358  *              kring->nm_sync() == netmap_vp_txsync()
359  *
360  *      - system device with native support:
361  *         from cable:
362  *             interrupt
363  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
365  *                     netmap_vp_txsync()
366  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
367  *         from host stack:
368  *             netmap_transmit()
369  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370  *                     kring->nm_sync() == netmap_rxsync_from_host()
371  *                     netmap_vp_txsync()
372  *
373  *      - system device with generic support:
374  *         from device driver:
375  *            generic_rx_handler()
376  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377  *                     kring->nm_sync() == generic_netmap_rxsync()
378  *                     netmap_vp_txsync()
379  *                     kring->nm_sync() == generic_netmap_rxsync()
380  *         from host stack:
381  *            netmap_transmit()
382  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383  *                     kring->nm_sync() == netmap_rxsync_from_host()
384  *                     netmap_vp_txsync()
385  *
386  *   (all cases) --> nm_bdg_flush()
387  *                      dest_na->nm_notify() == (see below)
388  *
389  *   OUTGOING:
390  *
391  *      - VALE ports:
392  *         concurrently:
393  *             1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394  *                    kring->nm_sync() == netmap_vp_rxsync()
395  *             2) from nm_bdg_flush()
396  *                    na->nm_notify() == netmap_notify()
397  *
398  *      - system device with native support:
399  *          to cable:
400  *             na->nm_notify() == netmap_bwrap_notify()
401  *                 netmap_vp_rxsync()
402  *                 kring->nm_sync() == DEVICE_netmap_txsync()
403  *                 netmap_vp_rxsync()
404  *          to host stack:
405  *                 netmap_vp_rxsync()
406  *                 kring->nm_sync() == netmap_txsync_to_host
407  *                 netmap_vp_rxsync_locked()
408  *
409  *      - system device with generic adapter:
410  *          to device driver:
411  *             na->nm_notify() == netmap_bwrap_notify()
412  *                 netmap_vp_rxsync()
413  *                 kring->nm_sync() == generic_netmap_txsync()
414  *                 netmap_vp_rxsync()
415  *          to host stack:
416  *                 netmap_vp_rxsync()
417  *                 kring->nm_sync() == netmap_txsync_to_host
418  *                 netmap_vp_rxsync()
419  *
420  */
421 
422 /*
423  * OS-specific code that is used only within this file.
424  * Other OS-specific code that must be accessed by drivers
425  * is present in netmap_kern.h
426  */
427 
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h>	/* defines used in kernel.h */
433 #include <sys/kernel.h>	/* types used in module initialization */
434 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
435 #include <sys/filio.h>	/* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h>	/* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/rwlock.h>
441 #include <sys/socket.h> /* sockaddrs */
442 #include <sys/selinfo.h>
443 #include <sys/sysctl.h>
444 #include <sys/jail.h>
445 #include <net/vnet.h>
446 #include <net/if.h>
447 #include <net/if_var.h>
448 #include <net/bpf.h>		/* BIOCIMMEDIATE */
449 #include <machine/bus.h>	/* bus_dmamap_* */
450 #include <sys/endian.h>
451 #include <sys/refcount.h>
452 
453 
454 #elif defined(linux)
455 
456 #include "bsd_glue.h"
457 
458 #elif defined(__APPLE__)
459 
460 #warning OSX support is only partial
461 #include "osx_glue.h"
462 
463 #elif defined (_WIN32)
464 
465 #include "win_glue.h"
466 
467 #else
468 
469 #error	Unsupported platform
470 
471 #endif /* unsupported */
472 
473 /*
474  * common headers
475  */
476 #include <net/netmap.h>
477 #include <dev/netmap/netmap_kern.h>
478 #include <dev/netmap/netmap_mem2.h>
479 
480 
481 /* user-controlled variables */
482 int netmap_verbose;
483 
484 static int netmap_no_timestamp; /* don't timestamp on rxsync */
485 int netmap_no_pendintr = 1;
486 int netmap_txsync_retry = 2;
487 static int netmap_fwd = 0;	/* force transparent forwarding */
488 
489 /*
490  * netmap_admode selects the netmap mode to use.
491  * Invalid values are reset to NETMAP_ADMODE_BEST
492  */
493 enum {	NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
494 	NETMAP_ADMODE_NATIVE,	/* either native or none */
495 	NETMAP_ADMODE_GENERIC,	/* force generic */
496 	NETMAP_ADMODE_LAST };
497 static int netmap_admode = NETMAP_ADMODE_BEST;
498 
499 /* netmap_generic_mit controls mitigation of RX notifications for
500  * the generic netmap adapter. The value is a time interval in
501  * nanoseconds. */
502 int netmap_generic_mit = 100*1000;
503 
504 /* We use by default netmap-aware qdiscs with generic netmap adapters,
505  * even if there can be a little performance hit with hardware NICs.
506  * However, using the qdisc is the safer approach, for two reasons:
507  * 1) it prevents non-fifo qdiscs to break the TX notification
508  *    scheme, which is based on mbuf destructors when txqdisc is
509  *    not used.
510  * 2) it makes it possible to transmit over software devices that
511  *    change skb->dev, like bridge, veth, ...
512  *
513  * Anyway users looking for the best performance should
514  * use native adapters.
515  */
516 #ifdef linux
517 int netmap_generic_txqdisc = 1;
518 #endif
519 
520 /* Default number of slots and queues for generic adapters. */
521 int netmap_generic_ringsize = 1024;
522 int netmap_generic_rings = 1;
523 
524 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
525 int ptnet_vnet_hdr = 1;
526 
527 /* 0 if ptnetmap should not use worker threads for TX processing */
528 int ptnetmap_tx_workers = 1;
529 
530 /*
531  * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
532  * in some other operating systems
533  */
534 SYSBEGIN(main_init);
535 
536 SYSCTL_DECL(_dev_netmap);
537 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
538 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
539     CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
540 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
541     CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
542 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
543     0, "Always look for new received packets.");
544 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
545     &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
546 
547 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
548     "Force NR_FORWARD mode");
549 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
550     "Adapter mode. 0 selects the best option available,"
551     "1 forces native adapter, 2 forces emulated adapter");
552 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
553     0, "RX notification interval in nanoseconds");
554 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
555     &netmap_generic_ringsize, 0,
556     "Number of per-ring slots for emulated netmap mode");
557 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
558     &netmap_generic_rings, 0,
559     "Number of TX/RX queues for emulated netmap adapters");
560 #ifdef linux
561 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
562     &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
563 #endif
564 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
565     0, "Allow ptnet devices to use virtio-net headers");
566 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnetmap_tx_workers, CTLFLAG_RW,
567     &ptnetmap_tx_workers, 0, "Use worker threads for pnetmap TX processing");
568 
569 SYSEND;
570 
571 NMG_LOCK_T	netmap_global_lock;
572 
573 /*
574  * mark the ring as stopped, and run through the locks
575  * to make sure other users get to see it.
576  * stopped must be either NR_KR_STOPPED (for unbounded stop)
577  * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
578  */
579 static void
580 netmap_disable_ring(struct netmap_kring *kr, int stopped)
581 {
582 	nm_kr_stop(kr, stopped);
583 	// XXX check if nm_kr_stop is sufficient
584 	mtx_lock(&kr->q_lock);
585 	mtx_unlock(&kr->q_lock);
586 	nm_kr_put(kr);
587 }
588 
589 /* stop or enable a single ring */
590 void
591 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
592 {
593 	if (stopped)
594 		netmap_disable_ring(NMR(na, t)[ring_id], stopped);
595 	else
596 		NMR(na, t)[ring_id]->nkr_stopped = 0;
597 }
598 
599 
600 /* stop or enable all the rings of na */
601 void
602 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
603 {
604 	int i;
605 	enum txrx t;
606 
607 	if (!nm_netmap_on(na))
608 		return;
609 
610 	for_rx_tx(t) {
611 		for (i = 0; i < netmap_real_rings(na, t); i++) {
612 			netmap_set_ring(na, i, t, stopped);
613 		}
614 	}
615 }
616 
617 /*
618  * Convenience function used in drivers.  Waits for current txsync()s/rxsync()s
619  * to finish and prevents any new one from starting.  Call this before turning
620  * netmap mode off, or before removing the hardware rings (e.g., on module
621  * onload).
622  */
623 void
624 netmap_disable_all_rings(struct ifnet *ifp)
625 {
626 	if (NM_NA_VALID(ifp)) {
627 		netmap_set_all_rings(NA(ifp), NM_KR_STOPPED);
628 	}
629 }
630 
631 /*
632  * Convenience function used in drivers.  Re-enables rxsync and txsync on the
633  * adapter's rings In linux drivers, this should be placed near each
634  * napi_enable().
635  */
636 void
637 netmap_enable_all_rings(struct ifnet *ifp)
638 {
639 	if (NM_NA_VALID(ifp)) {
640 		netmap_set_all_rings(NA(ifp), 0 /* enabled */);
641 	}
642 }
643 
644 void
645 netmap_make_zombie(struct ifnet *ifp)
646 {
647 	if (NM_NA_VALID(ifp)) {
648 		struct netmap_adapter *na = NA(ifp);
649 		netmap_set_all_rings(na, NM_KR_LOCKED);
650 		na->na_flags |= NAF_ZOMBIE;
651 		netmap_set_all_rings(na, 0);
652 	}
653 }
654 
655 void
656 netmap_undo_zombie(struct ifnet *ifp)
657 {
658 	if (NM_NA_VALID(ifp)) {
659 		struct netmap_adapter *na = NA(ifp);
660 		if (na->na_flags & NAF_ZOMBIE) {
661 			netmap_set_all_rings(na, NM_KR_LOCKED);
662 			na->na_flags &= ~NAF_ZOMBIE;
663 			netmap_set_all_rings(na, 0);
664 		}
665 	}
666 }
667 
668 /*
669  * generic bound_checking function
670  */
671 u_int
672 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
673 {
674 	u_int oldv = *v;
675 	const char *op = NULL;
676 
677 	if (dflt < lo)
678 		dflt = lo;
679 	if (dflt > hi)
680 		dflt = hi;
681 	if (oldv < lo) {
682 		*v = dflt;
683 		op = "Bump";
684 	} else if (oldv > hi) {
685 		*v = hi;
686 		op = "Clamp";
687 	}
688 	if (op && msg)
689 		nm_prinf("%s %s to %d (was %d)\n", op, msg, *v, oldv);
690 	return *v;
691 }
692 
693 
694 /*
695  * packet-dump function, user-supplied or static buffer.
696  * The destination buffer must be at least 30+4*len
697  */
698 const char *
699 nm_dump_buf(char *p, int len, int lim, char *dst)
700 {
701 	static char _dst[8192];
702 	int i, j, i0;
703 	static char hex[] ="0123456789abcdef";
704 	char *o;	/* output position */
705 
706 #define P_HI(x)	hex[((x) & 0xf0)>>4]
707 #define P_LO(x)	hex[((x) & 0xf)]
708 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
709 	if (!dst)
710 		dst = _dst;
711 	if (lim <= 0 || lim > len)
712 		lim = len;
713 	o = dst;
714 	sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
715 	o += strlen(o);
716 	/* hexdump routine */
717 	for (i = 0; i < lim; ) {
718 		sprintf(o, "%5d: ", i);
719 		o += strlen(o);
720 		memset(o, ' ', 48);
721 		i0 = i;
722 		for (j=0; j < 16 && i < lim; i++, j++) {
723 			o[j*3] = P_HI(p[i]);
724 			o[j*3+1] = P_LO(p[i]);
725 		}
726 		i = i0;
727 		for (j=0; j < 16 && i < lim; i++, j++)
728 			o[j + 48] = P_C(p[i]);
729 		o[j+48] = '\n';
730 		o += j+49;
731 	}
732 	*o = '\0';
733 #undef P_HI
734 #undef P_LO
735 #undef P_C
736 	return dst;
737 }
738 
739 
740 /*
741  * Fetch configuration from the device, to cope with dynamic
742  * reconfigurations after loading the module.
743  */
744 /* call with NMG_LOCK held */
745 int
746 netmap_update_config(struct netmap_adapter *na)
747 {
748 	struct nm_config_info info;
749 
750 	bzero(&info, sizeof(info));
751 	if (na->nm_config == NULL ||
752 	    na->nm_config(na, &info)) {
753 		/* take whatever we had at init time */
754 		info.num_tx_rings = na->num_tx_rings;
755 		info.num_tx_descs = na->num_tx_desc;
756 		info.num_rx_rings = na->num_rx_rings;
757 		info.num_rx_descs = na->num_rx_desc;
758 		info.rx_buf_maxsize = na->rx_buf_maxsize;
759 	}
760 
761 	if (na->num_tx_rings == info.num_tx_rings &&
762 	    na->num_tx_desc == info.num_tx_descs &&
763 	    na->num_rx_rings == info.num_rx_rings &&
764 	    na->num_rx_desc == info.num_rx_descs &&
765 	    na->rx_buf_maxsize == info.rx_buf_maxsize)
766 		return 0; /* nothing changed */
767 	if (na->active_fds == 0) {
768 		D("configuration changed for %s: txring %d x %d, "
769 			"rxring %d x %d, rxbufsz %d",
770 			na->name, na->num_tx_rings, na->num_tx_desc,
771 			na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
772 		na->num_tx_rings = info.num_tx_rings;
773 		na->num_tx_desc = info.num_tx_descs;
774 		na->num_rx_rings = info.num_rx_rings;
775 		na->num_rx_desc = info.num_rx_descs;
776 		na->rx_buf_maxsize = info.rx_buf_maxsize;
777 		return 0;
778 	}
779 	D("WARNING: configuration changed for %s while active: "
780 		"txring %d x %d, rxring %d x %d, rxbufsz %d",
781 		na->name, info.num_tx_rings, info.num_tx_descs,
782 		info.num_rx_rings, info.num_rx_descs,
783 		info.rx_buf_maxsize);
784 	return 1;
785 }
786 
787 /* nm_sync callbacks for the host rings */
788 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
789 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
790 
791 /* create the krings array and initialize the fields common to all adapters.
792  * The array layout is this:
793  *
794  *                    +----------+
795  * na->tx_rings ----->|          | \
796  *                    |          |  } na->num_tx_ring
797  *                    |          | /
798  *                    +----------+
799  *                    |          |    host tx kring
800  * na->rx_rings ----> +----------+
801  *                    |          | \
802  *                    |          |  } na->num_rx_rings
803  *                    |          | /
804  *                    +----------+
805  *                    |          |    host rx kring
806  *                    +----------+
807  * na->tailroom ----->|          | \
808  *                    |          |  } tailroom bytes
809  *                    |          | /
810  *                    +----------+
811  *
812  * Note: for compatibility, host krings are created even when not needed.
813  * The tailroom space is currently used by vale ports for allocating leases.
814  */
815 /* call with NMG_LOCK held */
816 int
817 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
818 {
819 	u_int i, len, ndesc;
820 	struct netmap_kring *kring;
821 	u_int n[NR_TXRX];
822 	enum txrx t;
823 
824 	if (na->tx_rings != NULL) {
825 		D("warning: krings were already created");
826 		return 0;
827 	}
828 
829 	/* account for the (possibly fake) host rings */
830 	n[NR_TX] = na->num_tx_rings + 1;
831 	n[NR_RX] = na->num_rx_rings + 1;
832 
833 	len = (n[NR_TX] + n[NR_RX]) *
834 		(sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
835 		+ tailroom;
836 
837 	na->tx_rings = nm_os_malloc((size_t)len);
838 	if (na->tx_rings == NULL) {
839 		D("Cannot allocate krings");
840 		return ENOMEM;
841 	}
842 	na->rx_rings = na->tx_rings + n[NR_TX];
843 	na->tailroom = na->rx_rings + n[NR_RX];
844 
845 	/* link the krings in the krings array */
846 	kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
847 	for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
848 		na->tx_rings[i] = kring;
849 		kring++;
850 	}
851 
852 	/*
853 	 * All fields in krings are 0 except the one initialized below.
854 	 * but better be explicit on important kring fields.
855 	 */
856 	for_rx_tx(t) {
857 		ndesc = nma_get_ndesc(na, t);
858 		for (i = 0; i < n[t]; i++) {
859 			kring = NMR(na, t)[i];
860 			bzero(kring, sizeof(*kring));
861 			kring->na = na;
862 			kring->notify_na = na;
863 			kring->ring_id = i;
864 			kring->tx = t;
865 			kring->nkr_num_slots = ndesc;
866 			kring->nr_mode = NKR_NETMAP_OFF;
867 			kring->nr_pending_mode = NKR_NETMAP_OFF;
868 			if (i < nma_get_nrings(na, t)) {
869 				kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
870 			} else {
871 				if (!(na->na_flags & NAF_HOST_RINGS))
872 					kring->nr_kflags |= NKR_FAKERING;
873 				kring->nm_sync = (t == NR_TX ?
874 						netmap_txsync_to_host:
875 						netmap_rxsync_from_host);
876 			}
877 			kring->nm_notify = na->nm_notify;
878 			kring->rhead = kring->rcur = kring->nr_hwcur = 0;
879 			/*
880 			 * IMPORTANT: Always keep one slot empty.
881 			 */
882 			kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
883 			snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
884 					nm_txrx2str(t), i);
885 			ND("ktx %s h %d c %d t %d",
886 				kring->name, kring->rhead, kring->rcur, kring->rtail);
887 			mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
888 			nm_os_selinfo_init(&kring->si);
889 		}
890 		nm_os_selinfo_init(&na->si[t]);
891 	}
892 
893 
894 	return 0;
895 }
896 
897 
898 /* undo the actions performed by netmap_krings_create */
899 /* call with NMG_LOCK held */
900 void
901 netmap_krings_delete(struct netmap_adapter *na)
902 {
903 	struct netmap_kring **kring = na->tx_rings;
904 	enum txrx t;
905 
906 	if (na->tx_rings == NULL) {
907 		D("warning: krings were already deleted");
908 		return;
909 	}
910 
911 	for_rx_tx(t)
912 		nm_os_selinfo_uninit(&na->si[t]);
913 
914 	/* we rely on the krings layout described above */
915 	for ( ; kring != na->tailroom; kring++) {
916 		mtx_destroy(&(*kring)->q_lock);
917 		nm_os_selinfo_uninit(&(*kring)->si);
918 	}
919 	nm_os_free(na->tx_rings);
920 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
921 }
922 
923 
924 /*
925  * Destructor for NIC ports. They also have an mbuf queue
926  * on the rings connected to the host so we need to purge
927  * them first.
928  */
929 /* call with NMG_LOCK held */
930 void
931 netmap_hw_krings_delete(struct netmap_adapter *na)
932 {
933 	struct mbq *q = &na->rx_rings[na->num_rx_rings]->rx_queue;
934 
935 	ND("destroy sw mbq with len %d", mbq_len(q));
936 	mbq_purge(q);
937 	mbq_safe_fini(q);
938 	netmap_krings_delete(na);
939 }
940 
941 static void
942 netmap_mem_drop(struct netmap_adapter *na)
943 {
944 	int last = netmap_mem_deref(na->nm_mem, na);
945 	/* if the native allocator had been overrided on regif,
946 	 * restore it now and drop the temporary one
947 	 */
948 	if (last && na->nm_mem_prev) {
949 		netmap_mem_put(na->nm_mem);
950 		na->nm_mem = na->nm_mem_prev;
951 		na->nm_mem_prev = NULL;
952 	}
953 }
954 
955 /*
956  * Undo everything that was done in netmap_do_regif(). In particular,
957  * call nm_register(ifp,0) to stop netmap mode on the interface and
958  * revert to normal operation.
959  */
960 /* call with NMG_LOCK held */
961 static void netmap_unset_ringid(struct netmap_priv_d *);
962 static void netmap_krings_put(struct netmap_priv_d *);
963 void
964 netmap_do_unregif(struct netmap_priv_d *priv)
965 {
966 	struct netmap_adapter *na = priv->np_na;
967 
968 	NMG_LOCK_ASSERT();
969 	na->active_fds--;
970 	/* unset nr_pending_mode and possibly release exclusive mode */
971 	netmap_krings_put(priv);
972 
973 #ifdef	WITH_MONITOR
974 	/* XXX check whether we have to do something with monitor
975 	 * when rings change nr_mode. */
976 	if (na->active_fds <= 0) {
977 		/* walk through all the rings and tell any monitor
978 		 * that the port is going to exit netmap mode
979 		 */
980 		netmap_monitor_stop(na);
981 	}
982 #endif
983 
984 	if (na->active_fds <= 0 || nm_kring_pending(priv)) {
985 		na->nm_register(na, 0);
986 	}
987 
988 	/* delete rings and buffers that are no longer needed */
989 	netmap_mem_rings_delete(na);
990 
991 	if (na->active_fds <= 0) {	/* last instance */
992 		/*
993 		 * (TO CHECK) We enter here
994 		 * when the last reference to this file descriptor goes
995 		 * away. This means we cannot have any pending poll()
996 		 * or interrupt routine operating on the structure.
997 		 * XXX The file may be closed in a thread while
998 		 * another thread is using it.
999 		 * Linux keeps the file opened until the last reference
1000 		 * by any outstanding ioctl/poll or mmap is gone.
1001 		 * FreeBSD does not track mmap()s (but we do) and
1002 		 * wakes up any sleeping poll(). Need to check what
1003 		 * happens if the close() occurs while a concurrent
1004 		 * syscall is running.
1005 		 */
1006 		if (netmap_verbose)
1007 			D("deleting last instance for %s", na->name);
1008 
1009                 if (nm_netmap_on(na)) {
1010                     D("BUG: netmap on while going to delete the krings");
1011                 }
1012 
1013 		na->nm_krings_delete(na);
1014 	}
1015 
1016 	/* possibily decrement counter of tx_si/rx_si users */
1017 	netmap_unset_ringid(priv);
1018 	/* delete the nifp */
1019 	netmap_mem_if_delete(na, priv->np_nifp);
1020 	/* drop the allocator */
1021 	netmap_mem_drop(na);
1022 	/* mark the priv as unregistered */
1023 	priv->np_na = NULL;
1024 	priv->np_nifp = NULL;
1025 }
1026 
1027 /* call with NMG_LOCK held */
1028 static __inline int
1029 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
1030 {
1031 	return (priv->np_na != NULL &&
1032 		(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
1033 }
1034 
1035 struct netmap_priv_d*
1036 netmap_priv_new(void)
1037 {
1038 	struct netmap_priv_d *priv;
1039 
1040 	priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1041 	if (priv == NULL)
1042 		return NULL;
1043 	priv->np_refs = 1;
1044 	nm_os_get_module();
1045 	return priv;
1046 }
1047 
1048 /*
1049  * Destructor of the netmap_priv_d, called when the fd is closed
1050  * Action: undo all the things done by NIOCREGIF,
1051  * On FreeBSD we need to track whether there are active mmap()s,
1052  * and we use np_active_mmaps for that. On linux, the field is always 0.
1053  * Return: 1 if we can free priv, 0 otherwise.
1054  *
1055  */
1056 /* call with NMG_LOCK held */
1057 void
1058 netmap_priv_delete(struct netmap_priv_d *priv)
1059 {
1060 	struct netmap_adapter *na = priv->np_na;
1061 
1062 	/* number of active references to this fd */
1063 	if (--priv->np_refs > 0) {
1064 		return;
1065 	}
1066 	nm_os_put_module();
1067 	if (na) {
1068 		netmap_do_unregif(priv);
1069 	}
1070 	netmap_unget_na(na, priv->np_ifp);
1071 	bzero(priv, sizeof(*priv));	/* for safety */
1072 	nm_os_free(priv);
1073 }
1074 
1075 
1076 /* call with NMG_LOCK *not* held */
1077 void
1078 netmap_dtor(void *data)
1079 {
1080 	struct netmap_priv_d *priv = data;
1081 
1082 	NMG_LOCK();
1083 	netmap_priv_delete(priv);
1084 	NMG_UNLOCK();
1085 }
1086 
1087 
1088 /*
1089  * Handlers for synchronization of the rings from/to the host stack.
1090  * These are associated to a network interface and are just another
1091  * ring pair managed by userspace.
1092  *
1093  * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1094  * flags):
1095  *
1096  * - Before releasing buffers on hw RX rings, the application can mark
1097  *   them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1098  *   will be forwarded to the host stack, similarly to what happened if
1099  *   the application moved them to the host TX ring.
1100  *
1101  * - Before releasing buffers on the host RX ring, the application can
1102  *   mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1103  *   they will be forwarded to the hw TX rings, saving the application
1104  *   from doing the same task in user-space.
1105  *
1106  * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD
1107  * flag, or globally with the netmap_fwd sysctl.
1108  *
1109  * The transfer NIC --> host is relatively easy, just encapsulate
1110  * into mbufs and we are done. The host --> NIC side is slightly
1111  * harder because there might not be room in the tx ring so it
1112  * might take a while before releasing the buffer.
1113  */
1114 
1115 
1116 /*
1117  * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1118  * We do not need to lock because the queue is private.
1119  * After this call the queue is empty.
1120  */
1121 static void
1122 netmap_send_up(struct ifnet *dst, struct mbq *q)
1123 {
1124 	struct mbuf *m;
1125 	struct mbuf *head = NULL, *prev = NULL;
1126 
1127 	/* Send packets up, outside the lock; head/prev machinery
1128 	 * is only useful for Windows. */
1129 	while ((m = mbq_dequeue(q)) != NULL) {
1130 		if (netmap_verbose & NM_VERB_HOST)
1131 			D("sending up pkt %p size %d", m, MBUF_LEN(m));
1132 		prev = nm_os_send_up(dst, m, prev);
1133 		if (head == NULL)
1134 			head = prev;
1135 	}
1136 	if (head)
1137 		nm_os_send_up(dst, NULL, head);
1138 	mbq_fini(q);
1139 }
1140 
1141 
1142 /*
1143  * Scan the buffers from hwcur to ring->head, and put a copy of those
1144  * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1145  * Drop remaining packets in the unlikely event
1146  * of an mbuf shortage.
1147  */
1148 static void
1149 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1150 {
1151 	u_int const lim = kring->nkr_num_slots - 1;
1152 	u_int const head = kring->rhead;
1153 	u_int n;
1154 	struct netmap_adapter *na = kring->na;
1155 
1156 	for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1157 		struct mbuf *m;
1158 		struct netmap_slot *slot = &kring->ring->slot[n];
1159 
1160 		if ((slot->flags & NS_FORWARD) == 0 && !force)
1161 			continue;
1162 		if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1163 			RD(5, "bad pkt at %d len %d", n, slot->len);
1164 			continue;
1165 		}
1166 		slot->flags &= ~NS_FORWARD; // XXX needed ?
1167 		/* XXX TODO: adapt to the case of a multisegment packet */
1168 		m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1169 
1170 		if (m == NULL)
1171 			break;
1172 		mbq_enqueue(q, m);
1173 	}
1174 }
1175 
1176 static inline int
1177 _nm_may_forward(struct netmap_kring *kring)
1178 {
1179 	return	((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1180 		 kring->na->na_flags & NAF_HOST_RINGS &&
1181 		 kring->tx == NR_RX);
1182 }
1183 
1184 static inline int
1185 nm_may_forward_up(struct netmap_kring *kring)
1186 {
1187 	return	_nm_may_forward(kring) &&
1188 		 kring->ring_id != kring->na->num_rx_rings;
1189 }
1190 
1191 static inline int
1192 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1193 {
1194 	return	_nm_may_forward(kring) &&
1195 		 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1196 		 kring->ring_id == kring->na->num_rx_rings;
1197 }
1198 
1199 /*
1200  * Send to the NIC rings packets marked NS_FORWARD between
1201  * kring->nr_hwcur and kring->rhead.
1202  * Called under kring->rx_queue.lock on the sw rx ring.
1203  *
1204  * It can only be called if the user opened all the TX hw rings,
1205  * see NAF_CAN_FORWARD_DOWN flag.
1206  * We can touch the TX netmap rings (slots, head and cur) since
1207  * we are in poll/ioctl system call context, and the application
1208  * is not supposed to touch the ring (using a different thread)
1209  * during the execution of the system call.
1210  */
1211 static u_int
1212 netmap_sw_to_nic(struct netmap_adapter *na)
1213 {
1214 	struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1215 	struct netmap_slot *rxslot = kring->ring->slot;
1216 	u_int i, rxcur = kring->nr_hwcur;
1217 	u_int const head = kring->rhead;
1218 	u_int const src_lim = kring->nkr_num_slots - 1;
1219 	u_int sent = 0;
1220 
1221 	/* scan rings to find space, then fill as much as possible */
1222 	for (i = 0; i < na->num_tx_rings; i++) {
1223 		struct netmap_kring *kdst = na->tx_rings[i];
1224 		struct netmap_ring *rdst = kdst->ring;
1225 		u_int const dst_lim = kdst->nkr_num_slots - 1;
1226 
1227 		/* XXX do we trust ring or kring->rcur,rtail ? */
1228 		for (; rxcur != head && !nm_ring_empty(rdst);
1229 		     rxcur = nm_next(rxcur, src_lim) ) {
1230 			struct netmap_slot *src, *dst, tmp;
1231 			u_int dst_head = rdst->head;
1232 
1233 			src = &rxslot[rxcur];
1234 			if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1235 				continue;
1236 
1237 			sent++;
1238 
1239 			dst = &rdst->slot[dst_head];
1240 
1241 			tmp = *src;
1242 
1243 			src->buf_idx = dst->buf_idx;
1244 			src->flags = NS_BUF_CHANGED;
1245 
1246 			dst->buf_idx = tmp.buf_idx;
1247 			dst->len = tmp.len;
1248 			dst->flags = NS_BUF_CHANGED;
1249 
1250 			rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1251 		}
1252 		/* if (sent) XXX txsync ? it would be just an optimization */
1253 	}
1254 	return sent;
1255 }
1256 
1257 
1258 /*
1259  * netmap_txsync_to_host() passes packets up. We are called from a
1260  * system call in user process context, and the only contention
1261  * can be among multiple user threads erroneously calling
1262  * this routine concurrently.
1263  */
1264 static int
1265 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1266 {
1267 	struct netmap_adapter *na = kring->na;
1268 	u_int const lim = kring->nkr_num_slots - 1;
1269 	u_int const head = kring->rhead;
1270 	struct mbq q;
1271 
1272 	/* Take packets from hwcur to head and pass them up.
1273 	 * Force hwcur = head since netmap_grab_packets() stops at head
1274 	 */
1275 	mbq_init(&q);
1276 	netmap_grab_packets(kring, &q, 1 /* force */);
1277 	ND("have %d pkts in queue", mbq_len(&q));
1278 	kring->nr_hwcur = head;
1279 	kring->nr_hwtail = head + lim;
1280 	if (kring->nr_hwtail > lim)
1281 		kring->nr_hwtail -= lim + 1;
1282 
1283 	netmap_send_up(na->ifp, &q);
1284 	return 0;
1285 }
1286 
1287 
1288 /*
1289  * rxsync backend for packets coming from the host stack.
1290  * They have been put in kring->rx_queue by netmap_transmit().
1291  * We protect access to the kring using kring->rx_queue.lock
1292  *
1293  * also moves to the nic hw rings any packet the user has marked
1294  * for transparent-mode forwarding, then sets the NR_FORWARD
1295  * flag in the kring to let the caller push them out
1296  */
1297 static int
1298 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1299 {
1300 	struct netmap_adapter *na = kring->na;
1301 	struct netmap_ring *ring = kring->ring;
1302 	u_int nm_i, n;
1303 	u_int const lim = kring->nkr_num_slots - 1;
1304 	u_int const head = kring->rhead;
1305 	int ret = 0;
1306 	struct mbq *q = &kring->rx_queue, fq;
1307 
1308 	mbq_init(&fq); /* fq holds packets to be freed */
1309 
1310 	mbq_lock(q);
1311 
1312 	/* First part: import newly received packets */
1313 	n = mbq_len(q);
1314 	if (n) { /* grab packets from the queue */
1315 		struct mbuf *m;
1316 		uint32_t stop_i;
1317 
1318 		nm_i = kring->nr_hwtail;
1319 		stop_i = nm_prev(kring->nr_hwcur, lim);
1320 		while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1321 			int len = MBUF_LEN(m);
1322 			struct netmap_slot *slot = &ring->slot[nm_i];
1323 
1324 			m_copydata(m, 0, len, NMB(na, slot));
1325 			ND("nm %d len %d", nm_i, len);
1326 			if (netmap_verbose)
1327                                 D("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1328 
1329 			slot->len = len;
1330 			slot->flags = 0;
1331 			nm_i = nm_next(nm_i, lim);
1332 			mbq_enqueue(&fq, m);
1333 		}
1334 		kring->nr_hwtail = nm_i;
1335 	}
1336 
1337 	/*
1338 	 * Second part: skip past packets that userspace has released.
1339 	 */
1340 	nm_i = kring->nr_hwcur;
1341 	if (nm_i != head) { /* something was released */
1342 		if (nm_may_forward_down(kring, flags)) {
1343 			ret = netmap_sw_to_nic(na);
1344 			if (ret > 0) {
1345 				kring->nr_kflags |= NR_FORWARD;
1346 				ret = 0;
1347 			}
1348 		}
1349 		kring->nr_hwcur = head;
1350 	}
1351 
1352 	mbq_unlock(q);
1353 
1354 	mbq_purge(&fq);
1355 	mbq_fini(&fq);
1356 
1357 	return ret;
1358 }
1359 
1360 
1361 /* Get a netmap adapter for the port.
1362  *
1363  * If it is possible to satisfy the request, return 0
1364  * with *na containing the netmap adapter found.
1365  * Otherwise return an error code, with *na containing NULL.
1366  *
1367  * When the port is attached to a bridge, we always return
1368  * EBUSY.
1369  * Otherwise, if the port is already bound to a file descriptor,
1370  * then we unconditionally return the existing adapter into *na.
1371  * In all the other cases, we return (into *na) either native,
1372  * generic or NULL, according to the following table:
1373  *
1374  *					native_support
1375  * active_fds   dev.netmap.admode         YES     NO
1376  * -------------------------------------------------------
1377  *    >0              *                 NA(ifp) NA(ifp)
1378  *
1379  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
1380  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
1381  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
1382  *
1383  */
1384 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1385 int
1386 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1387 {
1388 	/* generic support */
1389 	int i = netmap_admode;	/* Take a snapshot. */
1390 	struct netmap_adapter *prev_na;
1391 	int error = 0;
1392 
1393 	*na = NULL; /* default */
1394 
1395 	/* reset in case of invalid value */
1396 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1397 		i = netmap_admode = NETMAP_ADMODE_BEST;
1398 
1399 	if (NM_NA_VALID(ifp)) {
1400 		prev_na = NA(ifp);
1401 		/* If an adapter already exists, return it if
1402 		 * there are active file descriptors or if
1403 		 * netmap is not forced to use generic
1404 		 * adapters.
1405 		 */
1406 		if (NETMAP_OWNED_BY_ANY(prev_na)
1407 			|| i != NETMAP_ADMODE_GENERIC
1408 			|| prev_na->na_flags & NAF_FORCE_NATIVE
1409 #ifdef WITH_PIPES
1410 			/* ugly, but we cannot allow an adapter switch
1411 			 * if some pipe is referring to this one
1412 			 */
1413 			|| prev_na->na_next_pipe > 0
1414 #endif
1415 		) {
1416 			*na = prev_na;
1417 			goto assign_mem;
1418 		}
1419 	}
1420 
1421 	/* If there isn't native support and netmap is not allowed
1422 	 * to use generic adapters, we cannot satisfy the request.
1423 	 */
1424 	if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1425 		return EOPNOTSUPP;
1426 
1427 	/* Otherwise, create a generic adapter and return it,
1428 	 * saving the previously used netmap adapter, if any.
1429 	 *
1430 	 * Note that here 'prev_na', if not NULL, MUST be a
1431 	 * native adapter, and CANNOT be a generic one. This is
1432 	 * true because generic adapters are created on demand, and
1433 	 * destroyed when not used anymore. Therefore, if the adapter
1434 	 * currently attached to an interface 'ifp' is generic, it
1435 	 * must be that
1436 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1437 	 * Consequently, if NA(ifp) is generic, we will enter one of
1438 	 * the branches above. This ensures that we never override
1439 	 * a generic adapter with another generic adapter.
1440 	 */
1441 	error = generic_netmap_attach(ifp);
1442 	if (error)
1443 		return error;
1444 
1445 	*na = NA(ifp);
1446 
1447 assign_mem:
1448 	if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1449 	    (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1450 		(*na)->nm_mem_prev = (*na)->nm_mem;
1451 		(*na)->nm_mem = netmap_mem_get(nmd);
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 /*
1458  * MUST BE CALLED UNDER NMG_LOCK()
1459  *
1460  * Get a refcounted reference to a netmap adapter attached
1461  * to the interface specified by req.
1462  * This is always called in the execution of an ioctl().
1463  *
1464  * Return ENXIO if the interface specified by the request does
1465  * not exist, ENOTSUP if netmap is not supported by the interface,
1466  * EBUSY if the interface is already attached to a bridge,
1467  * EINVAL if parameters are invalid, ENOMEM if needed resources
1468  * could not be allocated.
1469  * If successful, hold a reference to the netmap adapter.
1470  *
1471  * If the interface specified by req is a system one, also keep
1472  * a reference to it and return a valid *ifp.
1473  */
1474 int
1475 netmap_get_na(struct nmreq_header *hdr,
1476 	      struct netmap_adapter **na, struct ifnet **ifp,
1477 	      struct netmap_mem_d *nmd, int create)
1478 {
1479 	struct nmreq_register *req = (struct nmreq_register *)hdr->nr_body;
1480 	int error = 0;
1481 	struct netmap_adapter *ret = NULL;
1482 	int nmd_ref = 0;
1483 
1484 	*na = NULL;     /* default return value */
1485 	*ifp = NULL;
1486 
1487 	if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1488 		return EINVAL;
1489 	}
1490 
1491 	if (req->nr_mode == NR_REG_PIPE_MASTER ||
1492 			req->nr_mode == NR_REG_PIPE_SLAVE) {
1493 		/* Do not accept deprecated pipe modes. */
1494 		D("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1495 		return EINVAL;
1496 	}
1497 
1498 	NMG_LOCK_ASSERT();
1499 
1500 	/* if the request contain a memid, try to find the
1501 	 * corresponding memory region
1502 	 */
1503 	if (nmd == NULL && req->nr_mem_id) {
1504 		nmd = netmap_mem_find(req->nr_mem_id);
1505 		if (nmd == NULL)
1506 			return EINVAL;
1507 		/* keep the rereference */
1508 		nmd_ref = 1;
1509 	}
1510 
1511 	/* We cascade through all possible types of netmap adapter.
1512 	 * All netmap_get_*_na() functions return an error and an na,
1513 	 * with the following combinations:
1514 	 *
1515 	 * error    na
1516 	 *   0	   NULL		type doesn't match
1517 	 *  !0	   NULL		type matches, but na creation/lookup failed
1518 	 *   0	  !NULL		type matches and na created/found
1519 	 *  !0    !NULL		impossible
1520 	 */
1521 
1522 	/* try to see if this is a ptnetmap port */
1523 	error = netmap_get_pt_host_na(hdr, na, nmd, create);
1524 	if (error || *na != NULL)
1525 		goto out;
1526 
1527 	/* try to see if this is a monitor port */
1528 	error = netmap_get_monitor_na(hdr, na, nmd, create);
1529 	if (error || *na != NULL)
1530 		goto out;
1531 
1532 	/* try to see if this is a pipe port */
1533 	error = netmap_get_pipe_na(hdr, na, nmd, create);
1534 	if (error || *na != NULL)
1535 		goto out;
1536 
1537 	/* try to see if this is a bridge port */
1538 	error = netmap_get_bdg_na(hdr, na, nmd, create);
1539 	if (error)
1540 		goto out;
1541 
1542 	if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1543 		goto out;
1544 
1545 	/*
1546 	 * This must be a hardware na, lookup the name in the system.
1547 	 * Note that by hardware we actually mean "it shows up in ifconfig".
1548 	 * This may still be a tap, a veth/epair, or even a
1549 	 * persistent VALE port.
1550 	 */
1551 	*ifp = ifunit_ref(hdr->nr_name);
1552 	if (*ifp == NULL) {
1553 		error = ENXIO;
1554 		goto out;
1555 	}
1556 
1557 	error = netmap_get_hw_na(*ifp, nmd, &ret);
1558 	if (error)
1559 		goto out;
1560 
1561 	*na = ret;
1562 	netmap_adapter_get(ret);
1563 
1564 out:
1565 	if (error) {
1566 		if (ret)
1567 			netmap_adapter_put(ret);
1568 		if (*ifp) {
1569 			if_rele(*ifp);
1570 			*ifp = NULL;
1571 		}
1572 	}
1573 	if (nmd_ref)
1574 		netmap_mem_put(nmd);
1575 
1576 	return error;
1577 }
1578 
1579 /* undo netmap_get_na() */
1580 void
1581 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1582 {
1583 	if (ifp)
1584 		if_rele(ifp);
1585 	if (na)
1586 		netmap_adapter_put(na);
1587 }
1588 
1589 
1590 #define NM_FAIL_ON(t) do {						\
1591 	if (unlikely(t)) {						\
1592 		RD(5, "%s: fail '" #t "' "				\
1593 			"h %d c %d t %d "				\
1594 			"rh %d rc %d rt %d "				\
1595 			"hc %d ht %d",					\
1596 			kring->name,					\
1597 			head, cur, ring->tail,				\
1598 			kring->rhead, kring->rcur, kring->rtail,	\
1599 			kring->nr_hwcur, kring->nr_hwtail);		\
1600 		return kring->nkr_num_slots;				\
1601 	}								\
1602 } while (0)
1603 
1604 /*
1605  * validate parameters on entry for *_txsync()
1606  * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1607  * in case of error.
1608  *
1609  * rhead, rcur and rtail=hwtail are stored from previous round.
1610  * hwcur is the next packet to send to the ring.
1611  *
1612  * We want
1613  *    hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1614  *
1615  * hwcur, rhead, rtail and hwtail are reliable
1616  */
1617 u_int
1618 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1619 {
1620 	u_int head = ring->head; /* read only once */
1621 	u_int cur = ring->cur; /* read only once */
1622 	u_int n = kring->nkr_num_slots;
1623 
1624 	ND(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1625 		kring->name,
1626 		kring->nr_hwcur, kring->nr_hwtail,
1627 		ring->head, ring->cur, ring->tail);
1628 #if 1 /* kernel sanity checks; but we can trust the kring. */
1629 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1630 	    kring->rtail >= n ||  kring->nr_hwtail >= n);
1631 #endif /* kernel sanity checks */
1632 	/*
1633 	 * user sanity checks. We only use head,
1634 	 * A, B, ... are possible positions for head:
1635 	 *
1636 	 *  0    A  rhead   B  rtail   C  n-1
1637 	 *  0    D  rtail   E  rhead   F  n-1
1638 	 *
1639 	 * B, F, D are valid. A, C, E are wrong
1640 	 */
1641 	if (kring->rtail >= kring->rhead) {
1642 		/* want rhead <= head <= rtail */
1643 		NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1644 		/* and also head <= cur <= rtail */
1645 		NM_FAIL_ON(cur < head || cur > kring->rtail);
1646 	} else { /* here rtail < rhead */
1647 		/* we need head outside rtail .. rhead */
1648 		NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1649 
1650 		/* two cases now: head <= rtail or head >= rhead  */
1651 		if (head <= kring->rtail) {
1652 			/* want head <= cur <= rtail */
1653 			NM_FAIL_ON(cur < head || cur > kring->rtail);
1654 		} else { /* head >= rhead */
1655 			/* cur must be outside rtail..head */
1656 			NM_FAIL_ON(cur > kring->rtail && cur < head);
1657 		}
1658 	}
1659 	if (ring->tail != kring->rtail) {
1660 		RD(5, "%s tail overwritten was %d need %d", kring->name,
1661 			ring->tail, kring->rtail);
1662 		ring->tail = kring->rtail;
1663 	}
1664 	kring->rhead = head;
1665 	kring->rcur = cur;
1666 	return head;
1667 }
1668 
1669 
1670 /*
1671  * validate parameters on entry for *_rxsync()
1672  * Returns ring->head if ok, kring->nkr_num_slots on error.
1673  *
1674  * For a valid configuration,
1675  * hwcur <= head <= cur <= tail <= hwtail
1676  *
1677  * We only consider head and cur.
1678  * hwcur and hwtail are reliable.
1679  *
1680  */
1681 u_int
1682 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1683 {
1684 	uint32_t const n = kring->nkr_num_slots;
1685 	uint32_t head, cur;
1686 
1687 	ND(5,"%s kc %d kt %d h %d c %d t %d",
1688 		kring->name,
1689 		kring->nr_hwcur, kring->nr_hwtail,
1690 		ring->head, ring->cur, ring->tail);
1691 	/*
1692 	 * Before storing the new values, we should check they do not
1693 	 * move backwards. However:
1694 	 * - head is not an issue because the previous value is hwcur;
1695 	 * - cur could in principle go back, however it does not matter
1696 	 *   because we are processing a brand new rxsync()
1697 	 */
1698 	cur = kring->rcur = ring->cur;	/* read only once */
1699 	head = kring->rhead = ring->head;	/* read only once */
1700 #if 1 /* kernel sanity checks */
1701 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1702 #endif /* kernel sanity checks */
1703 	/* user sanity checks */
1704 	if (kring->nr_hwtail >= kring->nr_hwcur) {
1705 		/* want hwcur <= rhead <= hwtail */
1706 		NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1707 		/* and also rhead <= rcur <= hwtail */
1708 		NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1709 	} else {
1710 		/* we need rhead outside hwtail..hwcur */
1711 		NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1712 		/* two cases now: head <= hwtail or head >= hwcur  */
1713 		if (head <= kring->nr_hwtail) {
1714 			/* want head <= cur <= hwtail */
1715 			NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1716 		} else {
1717 			/* cur must be outside hwtail..head */
1718 			NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1719 		}
1720 	}
1721 	if (ring->tail != kring->rtail) {
1722 		RD(5, "%s tail overwritten was %d need %d",
1723 			kring->name,
1724 			ring->tail, kring->rtail);
1725 		ring->tail = kring->rtail;
1726 	}
1727 	return head;
1728 }
1729 
1730 
1731 /*
1732  * Error routine called when txsync/rxsync detects an error.
1733  * Can't do much more than resetting head =cur = hwcur, tail = hwtail
1734  * Return 1 on reinit.
1735  *
1736  * This routine is only called by the upper half of the kernel.
1737  * It only reads hwcur (which is changed only by the upper half, too)
1738  * and hwtail (which may be changed by the lower half, but only on
1739  * a tx ring and only to increase it, so any error will be recovered
1740  * on the next call). For the above, we don't strictly need to call
1741  * it under lock.
1742  */
1743 int
1744 netmap_ring_reinit(struct netmap_kring *kring)
1745 {
1746 	struct netmap_ring *ring = kring->ring;
1747 	u_int i, lim = kring->nkr_num_slots - 1;
1748 	int errors = 0;
1749 
1750 	// XXX KASSERT nm_kr_tryget
1751 	RD(10, "called for %s", kring->name);
1752 	// XXX probably wrong to trust userspace
1753 	kring->rhead = ring->head;
1754 	kring->rcur  = ring->cur;
1755 	kring->rtail = ring->tail;
1756 
1757 	if (ring->cur > lim)
1758 		errors++;
1759 	if (ring->head > lim)
1760 		errors++;
1761 	if (ring->tail > lim)
1762 		errors++;
1763 	for (i = 0; i <= lim; i++) {
1764 		u_int idx = ring->slot[i].buf_idx;
1765 		u_int len = ring->slot[i].len;
1766 		if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1767 			RD(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1768 			ring->slot[i].buf_idx = 0;
1769 			ring->slot[i].len = 0;
1770 		} else if (len > NETMAP_BUF_SIZE(kring->na)) {
1771 			ring->slot[i].len = 0;
1772 			RD(5, "bad len at slot %d idx %d len %d", i, idx, len);
1773 		}
1774 	}
1775 	if (errors) {
1776 		RD(10, "total %d errors", errors);
1777 		RD(10, "%s reinit, cur %d -> %d tail %d -> %d",
1778 			kring->name,
1779 			ring->cur, kring->nr_hwcur,
1780 			ring->tail, kring->nr_hwtail);
1781 		ring->head = kring->rhead = kring->nr_hwcur;
1782 		ring->cur  = kring->rcur  = kring->nr_hwcur;
1783 		ring->tail = kring->rtail = kring->nr_hwtail;
1784 	}
1785 	return (errors ? 1 : 0);
1786 }
1787 
1788 /* interpret the ringid and flags fields of an nmreq, by translating them
1789  * into a pair of intervals of ring indices:
1790  *
1791  * [priv->np_txqfirst, priv->np_txqlast) and
1792  * [priv->np_rxqfirst, priv->np_rxqlast)
1793  *
1794  */
1795 int
1796 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1797 			uint16_t nr_ringid, uint64_t nr_flags)
1798 {
1799 	struct netmap_adapter *na = priv->np_na;
1800 	int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1801 	enum txrx t;
1802 	u_int j;
1803 
1804 	if ((nr_flags & NR_PTNETMAP_HOST) && ((nr_mode != NR_REG_ALL_NIC) ||
1805 			nr_flags & (NR_RX_RINGS_ONLY|NR_TX_RINGS_ONLY))) {
1806 		D("Error: only NR_REG_ALL_NIC supported with netmap passthrough");
1807 		return EINVAL;
1808 	}
1809 
1810 	for_rx_tx(t) {
1811 		if (nr_flags & excluded_direction[t]) {
1812 			priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1813 			continue;
1814 		}
1815 		switch (nr_mode) {
1816 		case NR_REG_ALL_NIC:
1817 			priv->np_qfirst[t] = 0;
1818 			priv->np_qlast[t] = nma_get_nrings(na, t);
1819 			ND("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1820 				priv->np_qfirst[t], priv->np_qlast[t]);
1821 			break;
1822 		case NR_REG_SW:
1823 		case NR_REG_NIC_SW:
1824 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1825 				D("host rings not supported");
1826 				return EINVAL;
1827 			}
1828 			priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1829 				nma_get_nrings(na, t) : 0);
1830 			priv->np_qlast[t] = nma_get_nrings(na, t) + 1;
1831 			ND("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1832 				nm_txrx2str(t),
1833 				priv->np_qfirst[t], priv->np_qlast[t]);
1834 			break;
1835 		case NR_REG_ONE_NIC:
1836 			if (nr_ringid >= na->num_tx_rings &&
1837 					nr_ringid >= na->num_rx_rings) {
1838 				D("invalid ring id %d", nr_ringid);
1839 				return EINVAL;
1840 			}
1841 			/* if not enough rings, use the first one */
1842 			j = nr_ringid;
1843 			if (j >= nma_get_nrings(na, t))
1844 				j = 0;
1845 			priv->np_qfirst[t] = j;
1846 			priv->np_qlast[t] = j + 1;
1847 			ND("ONE_NIC: %s %d %d", nm_txrx2str(t),
1848 				priv->np_qfirst[t], priv->np_qlast[t]);
1849 			break;
1850 		default:
1851 			D("invalid regif type %d", nr_mode);
1852 			return EINVAL;
1853 		}
1854 	}
1855 	priv->np_flags = nr_flags | nr_mode; // TODO
1856 
1857 	/* Allow transparent forwarding mode in the host --> nic
1858 	 * direction only if all the TX hw rings have been opened. */
1859 	if (priv->np_qfirst[NR_TX] == 0 &&
1860 			priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1861 		priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1862 	}
1863 
1864 	if (netmap_verbose) {
1865 		D("%s: tx [%d,%d) rx [%d,%d) id %d",
1866 			na->name,
1867 			priv->np_qfirst[NR_TX],
1868 			priv->np_qlast[NR_TX],
1869 			priv->np_qfirst[NR_RX],
1870 			priv->np_qlast[NR_RX],
1871 			nr_ringid);
1872 	}
1873 	return 0;
1874 }
1875 
1876 
1877 /*
1878  * Set the ring ID. For devices with a single queue, a request
1879  * for all rings is the same as a single ring.
1880  */
1881 static int
1882 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1883 		uint16_t nr_ringid, uint64_t nr_flags)
1884 {
1885 	struct netmap_adapter *na = priv->np_na;
1886 	int error;
1887 	enum txrx t;
1888 
1889 	error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags);
1890 	if (error) {
1891 		return error;
1892 	}
1893 
1894 	priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1;
1895 
1896 	/* optimization: count the users registered for more than
1897 	 * one ring, which are the ones sleeping on the global queue.
1898 	 * The default netmap_notify() callback will then
1899 	 * avoid signaling the global queue if nobody is using it
1900 	 */
1901 	for_rx_tx(t) {
1902 		if (nm_si_user(priv, t))
1903 			na->si_users[t]++;
1904 	}
1905 	return 0;
1906 }
1907 
1908 static void
1909 netmap_unset_ringid(struct netmap_priv_d *priv)
1910 {
1911 	struct netmap_adapter *na = priv->np_na;
1912 	enum txrx t;
1913 
1914 	for_rx_tx(t) {
1915 		if (nm_si_user(priv, t))
1916 			na->si_users[t]--;
1917 		priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1918 	}
1919 	priv->np_flags = 0;
1920 	priv->np_txpoll = 0;
1921 }
1922 
1923 
1924 /* Set the nr_pending_mode for the requested rings.
1925  * If requested, also try to get exclusive access to the rings, provided
1926  * the rings we want to bind are not exclusively owned by a previous bind.
1927  */
1928 static int
1929 netmap_krings_get(struct netmap_priv_d *priv)
1930 {
1931 	struct netmap_adapter *na = priv->np_na;
1932 	u_int i;
1933 	struct netmap_kring *kring;
1934 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1935 	enum txrx t;
1936 
1937 	if (netmap_verbose)
1938 		D("%s: grabbing tx [%d, %d) rx [%d, %d)",
1939 			na->name,
1940 			priv->np_qfirst[NR_TX],
1941 			priv->np_qlast[NR_TX],
1942 			priv->np_qfirst[NR_RX],
1943 			priv->np_qlast[NR_RX]);
1944 
1945 	/* first round: check that all the requested rings
1946 	 * are neither alread exclusively owned, nor we
1947 	 * want exclusive ownership when they are already in use
1948 	 */
1949 	for_rx_tx(t) {
1950 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1951 			kring = NMR(na, t)[i];
1952 			if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
1953 			    (kring->users && excl))
1954 			{
1955 				ND("ring %s busy", kring->name);
1956 				return EBUSY;
1957 			}
1958 		}
1959 	}
1960 
1961 	/* second round: increment usage count (possibly marking them
1962 	 * as exclusive) and set the nr_pending_mode
1963 	 */
1964 	for_rx_tx(t) {
1965 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1966 			kring = NMR(na, t)[i];
1967 			kring->users++;
1968 			if (excl)
1969 				kring->nr_kflags |= NKR_EXCLUSIVE;
1970 	                kring->nr_pending_mode = NKR_NETMAP_ON;
1971 		}
1972 	}
1973 
1974 	return 0;
1975 
1976 }
1977 
1978 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
1979  * if was asked on regif, and unset the nr_pending_mode if we are the
1980  * last users of the involved rings. */
1981 static void
1982 netmap_krings_put(struct netmap_priv_d *priv)
1983 {
1984 	struct netmap_adapter *na = priv->np_na;
1985 	u_int i;
1986 	struct netmap_kring *kring;
1987 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1988 	enum txrx t;
1989 
1990 	ND("%s: releasing tx [%d, %d) rx [%d, %d)",
1991 			na->name,
1992 			priv->np_qfirst[NR_TX],
1993 			priv->np_qlast[NR_TX],
1994 			priv->np_qfirst[NR_RX],
1995 			priv->np_qlast[MR_RX]);
1996 
1997 	for_rx_tx(t) {
1998 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1999 			kring = NMR(na, t)[i];
2000 			if (excl)
2001 				kring->nr_kflags &= ~NKR_EXCLUSIVE;
2002 			kring->users--;
2003 			if (kring->users == 0)
2004 				kring->nr_pending_mode = NKR_NETMAP_OFF;
2005 		}
2006 	}
2007 }
2008 
2009 static int
2010 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2011 {
2012 	return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2013 }
2014 
2015 /*
2016  * possibly move the interface to netmap-mode.
2017  * If success it returns a pointer to netmap_if, otherwise NULL.
2018  * This must be called with NMG_LOCK held.
2019  *
2020  * The following na callbacks are called in the process:
2021  *
2022  * na->nm_config()			[by netmap_update_config]
2023  * (get current number and size of rings)
2024  *
2025  *  	We have a generic one for linux (netmap_linux_config).
2026  *  	The bwrap has to override this, since it has to forward
2027  *  	the request to the wrapped adapter (netmap_bwrap_config).
2028  *
2029  *
2030  * na->nm_krings_create()
2031  * (create and init the krings array)
2032  *
2033  * 	One of the following:
2034  *
2035  *	* netmap_hw_krings_create, 			(hw ports)
2036  *		creates the standard layout for the krings
2037  * 		and adds the mbq (used for the host rings).
2038  *
2039  * 	* netmap_vp_krings_create			(VALE ports)
2040  * 		add leases and scratchpads
2041  *
2042  * 	* netmap_pipe_krings_create			(pipes)
2043  * 		create the krings and rings of both ends and
2044  * 		cross-link them
2045  *
2046  *      * netmap_monitor_krings_create 			(monitors)
2047  *      	avoid allocating the mbq
2048  *
2049  *      * netmap_bwrap_krings_create			(bwraps)
2050  *      	create both the brap krings array,
2051  *      	the krings array of the wrapped adapter, and
2052  *      	(if needed) the fake array for the host adapter
2053  *
2054  * na->nm_register(, 1)
2055  * (put the adapter in netmap mode)
2056  *
2057  * 	This may be one of the following:
2058  *
2059  * 	* netmap_hw_reg				        (hw ports)
2060  * 		checks that the ifp is still there, then calls
2061  * 		the hardware specific callback;
2062  *
2063  * 	* netmap_vp_reg					(VALE ports)
2064  *		If the port is connected to a bridge,
2065  *		set the NAF_NETMAP_ON flag under the
2066  *		bridge write lock.
2067  *
2068  *	* netmap_pipe_reg				(pipes)
2069  *		inform the other pipe end that it is no
2070  *		longer responsible for the lifetime of this
2071  *		pipe end
2072  *
2073  *	* netmap_monitor_reg				(monitors)
2074  *		intercept the sync callbacks of the monitored
2075  *		rings
2076  *
2077  *	* netmap_bwrap_reg				(bwraps)
2078  *		cross-link the bwrap and hwna rings,
2079  *		forward the request to the hwna, override
2080  *		the hwna notify callback (to get the frames
2081  *		coming from outside go through the bridge).
2082  *
2083  *
2084  */
2085 int
2086 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2087 	uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags)
2088 {
2089 	struct netmap_if *nifp = NULL;
2090 	int error;
2091 
2092 	NMG_LOCK_ASSERT();
2093 	priv->np_na = na;     /* store the reference */
2094 	error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags);
2095 	if (error)
2096 		goto err;
2097 	error = netmap_mem_finalize(na->nm_mem, na);
2098 	if (error)
2099 		goto err;
2100 
2101 	if (na->active_fds == 0) {
2102 
2103 		/* cache the allocator info in the na */
2104 		error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2105 		if (error)
2106 			goto err_drop_mem;
2107 		ND("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2108 					    na->na_lut.objsize);
2109 
2110 		/* ring configuration may have changed, fetch from the card */
2111 		netmap_update_config(na);
2112 
2113 		/*
2114 		 * If this is the first registration of the adapter,
2115 		 * perform sanity checks and create the in-kernel view
2116 		 * of the netmap rings (the netmap krings).
2117 		 */
2118 		if (na->ifp && nm_priv_rx_enabled(priv)) {
2119 			/* This netmap adapter is attached to an ifnet. */
2120 			unsigned nbs = netmap_mem_bufsize(na->nm_mem);
2121 			unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2122 
2123 			ND("mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2124 					mtu, na->rx_buf_maxsize, nbs);
2125 
2126 			if (mtu <= na->rx_buf_maxsize) {
2127 				/* The MTU fits a single NIC slot. We only
2128 				 * Need to check that netmap buffers are
2129 				 * large enough to hold an MTU. NS_MOREFRAG
2130 				 * cannot be used in this case. */
2131 				if (nbs < mtu) {
2132 					nm_prerr("error: netmap buf size (%u) "
2133 						"< device MTU (%u)\n", nbs, mtu);
2134 					error = EINVAL;
2135 					goto err_drop_mem;
2136 				}
2137 			} else {
2138 				/* More NIC slots may be needed to receive
2139 				 * or transmit a single packet. Check that
2140 				 * the adapter supports NS_MOREFRAG and that
2141 				 * netmap buffers are large enough to hold
2142 				 * the maximum per-slot size. */
2143 				if (!(na->na_flags & NAF_MOREFRAG)) {
2144 					nm_prerr("error: large MTU (%d) needed "
2145 						"but %s does not support "
2146 						"NS_MOREFRAG\n", mtu,
2147 						na->ifp->if_xname);
2148 					error = EINVAL;
2149 					goto err_drop_mem;
2150 				} else if (nbs < na->rx_buf_maxsize) {
2151 					nm_prerr("error: using NS_MOREFRAG on "
2152 						"%s requires netmap buf size "
2153 						">= %u\n", na->ifp->if_xname,
2154 						na->rx_buf_maxsize);
2155 					error = EINVAL;
2156 					goto err_drop_mem;
2157 				} else {
2158 					nm_prinf("info: netmap application on "
2159 						"%s needs to support "
2160 						"NS_MOREFRAG "
2161 						"(MTU=%u,netmap_buf_size=%u)\n",
2162 						na->ifp->if_xname, mtu, nbs);
2163 				}
2164 			}
2165 		}
2166 
2167 		/*
2168 		 * Depending on the adapter, this may also create
2169 		 * the netmap rings themselves
2170 		 */
2171 		error = na->nm_krings_create(na);
2172 		if (error)
2173 			goto err_put_lut;
2174 
2175 	}
2176 
2177 	/* now the krings must exist and we can check whether some
2178 	 * previous bind has exclusive ownership on them, and set
2179 	 * nr_pending_mode
2180 	 */
2181 	error = netmap_krings_get(priv);
2182 	if (error)
2183 		goto err_del_krings;
2184 
2185 	/* create all needed missing netmap rings */
2186 	error = netmap_mem_rings_create(na);
2187 	if (error)
2188 		goto err_rel_excl;
2189 
2190 	/* in all cases, create a new netmap if */
2191 	nifp = netmap_mem_if_new(na, priv);
2192 	if (nifp == NULL) {
2193 		error = ENOMEM;
2194 		goto err_del_rings;
2195 	}
2196 
2197 	if (nm_kring_pending(priv)) {
2198 		/* Some kring is switching mode, tell the adapter to
2199 		 * react on this. */
2200 		error = na->nm_register(na, 1);
2201 		if (error)
2202 			goto err_del_if;
2203 	}
2204 
2205 	/* Commit the reference. */
2206 	na->active_fds++;
2207 
2208 	/*
2209 	 * advertise that the interface is ready by setting np_nifp.
2210 	 * The barrier is needed because readers (poll, *SYNC and mmap)
2211 	 * check for priv->np_nifp != NULL without locking
2212 	 */
2213 	mb(); /* make sure previous writes are visible to all CPUs */
2214 	priv->np_nifp = nifp;
2215 
2216 	return 0;
2217 
2218 err_del_if:
2219 	netmap_mem_if_delete(na, nifp);
2220 err_del_rings:
2221 	netmap_mem_rings_delete(na);
2222 err_rel_excl:
2223 	netmap_krings_put(priv);
2224 err_del_krings:
2225 	if (na->active_fds == 0)
2226 		na->nm_krings_delete(na);
2227 err_put_lut:
2228 	if (na->active_fds == 0)
2229 		memset(&na->na_lut, 0, sizeof(na->na_lut));
2230 err_drop_mem:
2231 	netmap_mem_drop(na);
2232 err:
2233 	priv->np_na = NULL;
2234 	return error;
2235 }
2236 
2237 
2238 /*
2239  * update kring and ring at the end of rxsync/txsync.
2240  */
2241 static inline void
2242 nm_sync_finalize(struct netmap_kring *kring)
2243 {
2244 	/*
2245 	 * Update ring tail to what the kernel knows
2246 	 * After txsync: head/rhead/hwcur might be behind cur/rcur
2247 	 * if no carrier.
2248 	 */
2249 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
2250 
2251 	ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2252 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
2253 		kring->rhead, kring->rcur, kring->rtail);
2254 }
2255 
2256 /* set ring timestamp */
2257 static inline void
2258 ring_timestamp_set(struct netmap_ring *ring)
2259 {
2260 	if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2261 		microtime(&ring->ts);
2262 	}
2263 }
2264 
2265 static int nmreq_copyin(struct nmreq_header *, int);
2266 static int nmreq_copyout(struct nmreq_header *, int);
2267 static int nmreq_checkoptions(struct nmreq_header *);
2268 
2269 /*
2270  * ioctl(2) support for the "netmap" device.
2271  *
2272  * Following a list of accepted commands:
2273  * - NIOCCTRL		device control API
2274  * - NIOCTXSYNC		sync TX rings
2275  * - NIOCRXSYNC		sync RX rings
2276  * - SIOCGIFADDR	just for convenience
2277  * - NIOCGINFO		deprecated (legacy API)
2278  * - NIOCREGIF		deprecated (legacy API)
2279  *
2280  * Return 0 on success, errno otherwise.
2281  */
2282 int
2283 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2284 		struct thread *td, int nr_body_is_user)
2285 {
2286 	struct mbq q;	/* packets from RX hw queues to host stack */
2287 	struct netmap_adapter *na = NULL;
2288 	struct netmap_mem_d *nmd = NULL;
2289 	struct ifnet *ifp = NULL;
2290 	int error = 0;
2291 	u_int i, qfirst, qlast;
2292 	struct netmap_if *nifp;
2293 	struct netmap_kring **krings;
2294 	int sync_flags;
2295 	enum txrx t;
2296 
2297 	switch (cmd) {
2298 	case NIOCCTRL: {
2299 		struct nmreq_header *hdr = (struct nmreq_header *)data;
2300 
2301 		if (hdr->nr_version != NETMAP_API) {
2302 			D("API mismatch for reqtype %d: got %d need %d",
2303 				hdr->nr_version,
2304 				hdr->nr_version, NETMAP_API);
2305 			hdr->nr_version = NETMAP_API;
2306 		}
2307 		if (hdr->nr_version < NETMAP_MIN_API ||
2308 		    hdr->nr_version > NETMAP_MAX_API) {
2309 			return EINVAL;
2310 		}
2311 
2312 		/* Make a kernel-space copy of the user-space nr_body.
2313 		 * For convenince, the nr_body pointer and the pointers
2314 		 * in the options list will be replaced with their
2315 		 * kernel-space counterparts. The original pointers are
2316                 * saved internally and later restored by nmreq_copyout
2317                 */
2318 		error = nmreq_copyin(hdr, nr_body_is_user);
2319 		if (error) {
2320 			return error;
2321 		}
2322 
2323 		/* Sanitize hdr->nr_name. */
2324 		hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2325 
2326 		switch (hdr->nr_reqtype) {
2327 		case NETMAP_REQ_REGISTER: {
2328 			struct nmreq_register *req =
2329 				(struct nmreq_register *)hdr->nr_body;
2330 			/* Protect access to priv from concurrent requests. */
2331 			NMG_LOCK();
2332 			do {
2333 				u_int memflags;
2334 #ifdef WITH_EXTMEM
2335 				struct nmreq_option *opt;
2336 #endif /* WITH_EXTMEM */
2337 
2338 				if (priv->np_nifp != NULL) {	/* thread already registered */
2339 					error = EBUSY;
2340 					break;
2341 				}
2342 
2343 #ifdef WITH_EXTMEM
2344 				opt = nmreq_findoption((struct nmreq_option *)hdr->nr_options,
2345 						NETMAP_REQ_OPT_EXTMEM);
2346 				if (opt != NULL) {
2347 					struct nmreq_opt_extmem *e =
2348 						(struct nmreq_opt_extmem *)opt;
2349 
2350 					error = nmreq_checkduplicate(opt);
2351 					if (error) {
2352 						opt->nro_status = error;
2353 						break;
2354 					}
2355 					nmd = netmap_mem_ext_create(e->nro_usrptr,
2356 							&e->nro_info, &error);
2357 					opt->nro_status = error;
2358 					if (nmd == NULL)
2359 						break;
2360 				}
2361 #endif /* WITH_EXTMEM */
2362 
2363 				if (nmd == NULL && req->nr_mem_id) {
2364 					/* find the allocator and get a reference */
2365 					nmd = netmap_mem_find(req->nr_mem_id);
2366 					if (nmd == NULL) {
2367 						error = EINVAL;
2368 						break;
2369 					}
2370 				}
2371 				/* find the interface and a reference */
2372 				error = netmap_get_na(hdr, &na, &ifp, nmd,
2373 						      1 /* create */); /* keep reference */
2374 				if (error)
2375 					break;
2376 				if (NETMAP_OWNED_BY_KERN(na)) {
2377 					error = EBUSY;
2378 					break;
2379 				}
2380 
2381 				if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2382 					error = EIO;
2383 					break;
2384 				}
2385 
2386 				error = netmap_do_regif(priv, na, req->nr_mode,
2387 							req->nr_ringid, req->nr_flags);
2388 				if (error) {    /* reg. failed, release priv and ref */
2389 					break;
2390 				}
2391 				nifp = priv->np_nifp;
2392 				priv->np_td = td; /* for debugging purposes */
2393 
2394 				/* return the offset of the netmap_if object */
2395 				req->nr_rx_rings = na->num_rx_rings;
2396 				req->nr_tx_rings = na->num_tx_rings;
2397 				req->nr_rx_slots = na->num_rx_desc;
2398 				req->nr_tx_slots = na->num_tx_desc;
2399 				error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2400 					&req->nr_mem_id);
2401 				if (error) {
2402 					netmap_do_unregif(priv);
2403 					break;
2404 				}
2405 				if (memflags & NETMAP_MEM_PRIVATE) {
2406 					*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2407 				}
2408 				for_rx_tx(t) {
2409 					priv->np_si[t] = nm_si_user(priv, t) ?
2410 						&na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2411 				}
2412 
2413 				if (req->nr_extra_bufs) {
2414 					if (netmap_verbose)
2415 						D("requested %d extra buffers",
2416 							req->nr_extra_bufs);
2417 					req->nr_extra_bufs = netmap_extra_alloc(na,
2418 						&nifp->ni_bufs_head, req->nr_extra_bufs);
2419 					if (netmap_verbose)
2420 						D("got %d extra buffers", req->nr_extra_bufs);
2421 				}
2422 				req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2423 
2424 				error = nmreq_checkoptions(hdr);
2425 				if (error) {
2426 					netmap_do_unregif(priv);
2427 					break;
2428 				}
2429 
2430 				/* store ifp reference so that priv destructor may release it */
2431 				priv->np_ifp = ifp;
2432 			} while (0);
2433 			if (error) {
2434 				netmap_unget_na(na, ifp);
2435 			}
2436 			/* release the reference from netmap_mem_find() or
2437 			 * netmap_mem_ext_create()
2438 			 */
2439 			if (nmd)
2440 				netmap_mem_put(nmd);
2441 			NMG_UNLOCK();
2442 			break;
2443 		}
2444 
2445 		case NETMAP_REQ_PORT_INFO_GET: {
2446 			struct nmreq_port_info_get *req =
2447 				(struct nmreq_port_info_get *)hdr->nr_body;
2448 
2449 			NMG_LOCK();
2450 			do {
2451 				u_int memflags;
2452 
2453 				if (hdr->nr_name[0] != '\0') {
2454 					/* Build a nmreq_register out of the nmreq_port_info_get,
2455 					 * so that we can call netmap_get_na(). */
2456 					struct nmreq_register regreq;
2457 					bzero(&regreq, sizeof(regreq));
2458 					regreq.nr_tx_slots = req->nr_tx_slots;
2459 					regreq.nr_rx_slots = req->nr_rx_slots;
2460 					regreq.nr_tx_rings = req->nr_tx_rings;
2461 					regreq.nr_rx_rings = req->nr_rx_rings;
2462 					regreq.nr_mem_id = req->nr_mem_id;
2463 
2464 					/* get a refcount */
2465 					hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2466 					hdr->nr_body = (uint64_t)&regreq;
2467 					error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2468 					hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2469 					hdr->nr_body = (uint64_t)req; /* reset nr_body */
2470 					if (error) {
2471 						na = NULL;
2472 						ifp = NULL;
2473 						break;
2474 					}
2475 					nmd = na->nm_mem; /* get memory allocator */
2476 				} else {
2477 					nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2478 					if (nmd == NULL) {
2479 						error = EINVAL;
2480 						break;
2481 					}
2482 				}
2483 
2484 				error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2485 					&req->nr_mem_id);
2486 				if (error)
2487 					break;
2488 				if (na == NULL) /* only memory info */
2489 					break;
2490 				req->nr_offset = 0;
2491 				req->nr_rx_slots = req->nr_tx_slots = 0;
2492 				netmap_update_config(na);
2493 				req->nr_rx_rings = na->num_rx_rings;
2494 				req->nr_tx_rings = na->num_tx_rings;
2495 				req->nr_rx_slots = na->num_rx_desc;
2496 				req->nr_tx_slots = na->num_tx_desc;
2497 			} while (0);
2498 			netmap_unget_na(na, ifp);
2499 			NMG_UNLOCK();
2500 			break;
2501 		}
2502 #ifdef WITH_VALE
2503 		case NETMAP_REQ_VALE_ATTACH: {
2504 			error = nm_bdg_ctl_attach(hdr, NULL /* userspace request */);
2505 			break;
2506 		}
2507 
2508 		case NETMAP_REQ_VALE_DETACH: {
2509 			error = nm_bdg_ctl_detach(hdr, NULL /* userspace request */);
2510 			break;
2511 		}
2512 
2513 		case NETMAP_REQ_VALE_LIST: {
2514 			error = netmap_bdg_list(hdr);
2515 			break;
2516 		}
2517 
2518 		case NETMAP_REQ_PORT_HDR_SET: {
2519 			struct nmreq_port_hdr *req =
2520 				(struct nmreq_port_hdr *)hdr->nr_body;
2521 			/* Build a nmreq_register out of the nmreq_port_hdr,
2522 			 * so that we can call netmap_get_bdg_na(). */
2523 			struct nmreq_register regreq;
2524 			bzero(&regreq, sizeof(regreq));
2525 			/* For now we only support virtio-net headers, and only for
2526 			 * VALE ports, but this may change in future. Valid lengths
2527 			 * for the virtio-net header are 0 (no header), 10 and 12. */
2528 			if (req->nr_hdr_len != 0 &&
2529 				req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
2530 					req->nr_hdr_len != 12) {
2531 				error = EINVAL;
2532 				break;
2533 			}
2534 			NMG_LOCK();
2535 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2536 			hdr->nr_body = (uint64_t)&regreq;
2537 			error = netmap_get_bdg_na(hdr, &na, NULL, 0);
2538 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
2539 			hdr->nr_body = (uint64_t)req;
2540 			if (na && !error) {
2541 				struct netmap_vp_adapter *vpna =
2542 					(struct netmap_vp_adapter *)na;
2543 				na->virt_hdr_len = req->nr_hdr_len;
2544 				if (na->virt_hdr_len) {
2545 					vpna->mfs = NETMAP_BUF_SIZE(na);
2546 				}
2547 				D("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
2548 				netmap_adapter_put(na);
2549 			} else if (!na) {
2550 				error = ENXIO;
2551 			}
2552 			NMG_UNLOCK();
2553 			break;
2554 		}
2555 
2556 		case NETMAP_REQ_PORT_HDR_GET: {
2557 			/* Get vnet-header length for this netmap port */
2558 			struct nmreq_port_hdr *req =
2559 				(struct nmreq_port_hdr *)hdr->nr_body;
2560 			/* Build a nmreq_register out of the nmreq_port_hdr,
2561 			 * so that we can call netmap_get_bdg_na(). */
2562 			struct nmreq_register regreq;
2563 			struct ifnet *ifp;
2564 
2565 			bzero(&regreq, sizeof(regreq));
2566 			NMG_LOCK();
2567 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2568 			hdr->nr_body = (uint64_t)&regreq;
2569 			error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
2570 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
2571 			hdr->nr_body = (uint64_t)req;
2572 			if (na && !error) {
2573 				req->nr_hdr_len = na->virt_hdr_len;
2574 			}
2575 			netmap_unget_na(na, ifp);
2576 			NMG_UNLOCK();
2577 			break;
2578 		}
2579 
2580 		case NETMAP_REQ_VALE_NEWIF: {
2581 			error = nm_vi_create(hdr);
2582 			break;
2583 		}
2584 
2585 		case NETMAP_REQ_VALE_DELIF: {
2586 			error = nm_vi_destroy(hdr->nr_name);
2587 			break;
2588 		}
2589 
2590 		case NETMAP_REQ_VALE_POLLING_ENABLE:
2591 		case NETMAP_REQ_VALE_POLLING_DISABLE: {
2592 			error = nm_bdg_polling(hdr);
2593 			break;
2594 		}
2595 #endif  /* WITH_VALE */
2596 		case NETMAP_REQ_POOLS_INFO_GET: {
2597 			struct nmreq_pools_info *req =
2598 				(struct nmreq_pools_info *)hdr->nr_body;
2599 			/* Get information from the memory allocator. This
2600 			 * netmap device must already be bound to a port.
2601 			 * Note that hdr->nr_name is ignored. */
2602 			NMG_LOCK();
2603 			if (priv->np_na && priv->np_na->nm_mem) {
2604 				struct netmap_mem_d *nmd = priv->np_na->nm_mem;
2605 				error = netmap_mem_pools_info_get(req, nmd);
2606 			} else {
2607 				error = EINVAL;
2608 			}
2609 			NMG_UNLOCK();
2610 			break;
2611 		}
2612 
2613 		default: {
2614 			error = EINVAL;
2615 			break;
2616 		}
2617 		}
2618 		/* Write back request body to userspace and reset the
2619 		 * user-space pointer. */
2620 		error = nmreq_copyout(hdr, error);
2621 		break;
2622 	}
2623 
2624 	case NIOCTXSYNC:
2625 	case NIOCRXSYNC: {
2626 		nifp = priv->np_nifp;
2627 
2628 		if (nifp == NULL) {
2629 			error = ENXIO;
2630 			break;
2631 		}
2632 		mb(); /* make sure following reads are not from cache */
2633 
2634 		na = priv->np_na;      /* we have a reference */
2635 
2636 		if (na == NULL) {
2637 			D("Internal error: nifp != NULL && na == NULL");
2638 			error = ENXIO;
2639 			break;
2640 		}
2641 
2642 		mbq_init(&q);
2643 		t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
2644 		krings = NMR(na, t);
2645 		qfirst = priv->np_qfirst[t];
2646 		qlast = priv->np_qlast[t];
2647 		sync_flags = priv->np_sync_flags;
2648 
2649 		for (i = qfirst; i < qlast; i++) {
2650 			struct netmap_kring *kring = krings[i];
2651 			struct netmap_ring *ring = kring->ring;
2652 
2653 			if (unlikely(nm_kr_tryget(kring, 1, &error))) {
2654 				error = (error ? EIO : 0);
2655 				continue;
2656 			}
2657 
2658 			if (cmd == NIOCTXSYNC) {
2659 				if (netmap_verbose & NM_VERB_TXSYNC)
2660 					D("pre txsync ring %d cur %d hwcur %d",
2661 					    i, ring->cur,
2662 					    kring->nr_hwcur);
2663 				if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2664 					netmap_ring_reinit(kring);
2665 				} else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
2666 					nm_sync_finalize(kring);
2667 				}
2668 				if (netmap_verbose & NM_VERB_TXSYNC)
2669 					D("post txsync ring %d cur %d hwcur %d",
2670 					    i, ring->cur,
2671 					    kring->nr_hwcur);
2672 			} else {
2673 				if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2674 					netmap_ring_reinit(kring);
2675 				}
2676 				if (nm_may_forward_up(kring)) {
2677 					/* transparent forwarding, see netmap_poll() */
2678 					netmap_grab_packets(kring, &q, netmap_fwd);
2679 				}
2680 				if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
2681 					nm_sync_finalize(kring);
2682 				}
2683 				ring_timestamp_set(ring);
2684 			}
2685 			nm_kr_put(kring);
2686 		}
2687 
2688 		if (mbq_peek(&q)) {
2689 			netmap_send_up(na->ifp, &q);
2690 		}
2691 
2692 		break;
2693 	}
2694 
2695 	default: {
2696 		return netmap_ioctl_legacy(priv, cmd, data, td);
2697 		break;
2698 	}
2699 	}
2700 
2701 	return (error);
2702 }
2703 
2704 size_t
2705 nmreq_size_by_type(uint16_t nr_reqtype)
2706 {
2707 	switch (nr_reqtype) {
2708 	case NETMAP_REQ_REGISTER:
2709 		return sizeof(struct nmreq_register);
2710 	case NETMAP_REQ_PORT_INFO_GET:
2711 		return sizeof(struct nmreq_port_info_get);
2712 	case NETMAP_REQ_VALE_ATTACH:
2713 		return sizeof(struct nmreq_vale_attach);
2714 	case NETMAP_REQ_VALE_DETACH:
2715 		return sizeof(struct nmreq_vale_detach);
2716 	case NETMAP_REQ_VALE_LIST:
2717 		return sizeof(struct nmreq_vale_list);
2718 	case NETMAP_REQ_PORT_HDR_SET:
2719 	case NETMAP_REQ_PORT_HDR_GET:
2720 		return sizeof(struct nmreq_port_hdr);
2721 	case NETMAP_REQ_VALE_NEWIF:
2722 		return sizeof(struct nmreq_vale_newif);
2723 	case NETMAP_REQ_VALE_DELIF:
2724 		return 0;
2725 	case NETMAP_REQ_VALE_POLLING_ENABLE:
2726 	case NETMAP_REQ_VALE_POLLING_DISABLE:
2727 		return sizeof(struct nmreq_vale_polling);
2728 	case NETMAP_REQ_POOLS_INFO_GET:
2729 		return sizeof(struct nmreq_pools_info);
2730 	}
2731 	return 0;
2732 }
2733 
2734 static size_t
2735 nmreq_opt_size_by_type(uint16_t nro_reqtype)
2736 {
2737 	size_t rv = sizeof(struct nmreq_option);
2738 #ifdef NETMAP_REQ_OPT_DEBUG
2739 	if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
2740 		return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
2741 #endif /* NETMAP_REQ_OPT_DEBUG */
2742 	switch (nro_reqtype) {
2743 #ifdef WITH_EXTMEM
2744 	case NETMAP_REQ_OPT_EXTMEM:
2745 		rv = sizeof(struct nmreq_opt_extmem);
2746 		break;
2747 #endif /* WITH_EXTMEM */
2748 	}
2749 	/* subtract the common header */
2750 	return rv - sizeof(struct nmreq_option);
2751 }
2752 
2753 int
2754 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
2755 {
2756 	size_t rqsz, optsz, bufsz;
2757 	int error;
2758 	char *ker = NULL, *p;
2759 	struct nmreq_option **next, *src;
2760 	struct nmreq_option buf;
2761 	uint64_t *ptrs;
2762 
2763 	if (hdr->nr_reserved)
2764 		return EINVAL;
2765 
2766 	if (!nr_body_is_user)
2767 		return 0;
2768 
2769 	hdr->nr_reserved = nr_body_is_user;
2770 
2771 	/* compute the total size of the buffer */
2772 	rqsz = nmreq_size_by_type(hdr->nr_reqtype);
2773 	if (rqsz > NETMAP_REQ_MAXSIZE) {
2774 		error = EMSGSIZE;
2775 		goto out_err;
2776 	}
2777 	if ((rqsz && hdr->nr_body == (uint64_t)NULL) ||
2778 		(!rqsz && hdr->nr_body != (uint64_t)NULL)) {
2779 		/* Request body expected, but not found; or
2780 		 * request body found but unexpected. */
2781 		error = EINVAL;
2782 		goto out_err;
2783 	}
2784 
2785 	bufsz = 2 * sizeof(void *) + rqsz;
2786 	optsz = 0;
2787 	for (src = (struct nmreq_option *)hdr->nr_options; src;
2788 	     src = (struct nmreq_option *)buf.nro_next)
2789 	{
2790 		error = copyin(src, &buf, sizeof(*src));
2791 		if (error)
2792 			goto out_err;
2793 		optsz += sizeof(*src);
2794 		optsz += nmreq_opt_size_by_type(buf.nro_reqtype);
2795 		if (rqsz + optsz > NETMAP_REQ_MAXSIZE) {
2796 			error = EMSGSIZE;
2797 			goto out_err;
2798 		}
2799 		bufsz += optsz + sizeof(void *);
2800 	}
2801 
2802 	ker = nm_os_malloc(bufsz);
2803 	if (ker == NULL) {
2804 		error = ENOMEM;
2805 		goto out_err;
2806 	}
2807 	p = ker;
2808 
2809 	/* make a copy of the user pointers */
2810 	ptrs = (uint64_t*)p;
2811 	*ptrs++ = hdr->nr_body;
2812 	*ptrs++ = hdr->nr_options;
2813 	p = (char *)ptrs;
2814 
2815 	/* copy the body */
2816 	error = copyin((void *)hdr->nr_body, p, rqsz);
2817 	if (error)
2818 		goto out_restore;
2819 	/* overwrite the user pointer with the in-kernel one */
2820 	hdr->nr_body = (uint64_t)p;
2821 	p += rqsz;
2822 
2823 	/* copy the options */
2824 	next = (struct nmreq_option **)&hdr->nr_options;
2825 	src = *next;
2826 	while (src) {
2827 		struct nmreq_option *opt;
2828 
2829 		/* copy the option header */
2830 		ptrs = (uint64_t *)p;
2831 		opt = (struct nmreq_option *)(ptrs + 1);
2832 		error = copyin(src, opt, sizeof(*src));
2833 		if (error)
2834 			goto out_restore;
2835 		/* make a copy of the user next pointer */
2836 		*ptrs = opt->nro_next;
2837 		/* overwrite the user pointer with the in-kernel one */
2838 		*next = opt;
2839 
2840 		/* initialize the option as not supported.
2841 		 * Recognized options will update this field.
2842 		 */
2843 		opt->nro_status = EOPNOTSUPP;
2844 
2845 		p = (char *)(opt + 1);
2846 
2847 		/* copy the option body */
2848 		optsz = nmreq_opt_size_by_type(opt->nro_reqtype);
2849 		if (optsz) {
2850 			/* the option body follows the option header */
2851 			error = copyin(src + 1, p, optsz);
2852 			if (error)
2853 				goto out_restore;
2854 			p += optsz;
2855 		}
2856 
2857 		/* move to next option */
2858 		next = (struct nmreq_option **)&opt->nro_next;
2859 		src = *next;
2860 	}
2861 	return 0;
2862 
2863 out_restore:
2864 	ptrs = (uint64_t *)ker;
2865 	hdr->nr_body = *ptrs++;
2866 	hdr->nr_options = *ptrs++;
2867 	hdr->nr_reserved = 0;
2868 	nm_os_free(ker);
2869 out_err:
2870 	return error;
2871 }
2872 
2873 static int
2874 nmreq_copyout(struct nmreq_header *hdr, int rerror)
2875 {
2876 	struct nmreq_option *src, *dst;
2877 	void *ker = (void *)hdr->nr_body, *bufstart;
2878 	uint64_t *ptrs;
2879 	size_t bodysz;
2880 	int error;
2881 
2882 	if (!hdr->nr_reserved)
2883 		return rerror;
2884 
2885 	/* restore the user pointers in the header */
2886 	ptrs = (uint64_t *)ker - 2;
2887 	bufstart = ptrs;
2888 	hdr->nr_body = *ptrs++;
2889 	src = (struct nmreq_option *)hdr->nr_options;
2890 	hdr->nr_options = *ptrs;
2891 
2892 	if (!rerror) {
2893 		/* copy the body */
2894 		bodysz = nmreq_size_by_type(hdr->nr_reqtype);
2895 		error = copyout(ker, (void *)hdr->nr_body, bodysz);
2896 		if (error) {
2897 			rerror = error;
2898 			goto out;
2899 		}
2900 	}
2901 
2902 	/* copy the options */
2903 	dst = (struct nmreq_option *)hdr->nr_options;
2904 	while (src) {
2905 		size_t optsz;
2906 		uint64_t next;
2907 
2908 		/* restore the user pointer */
2909 		next = src->nro_next;
2910 		ptrs = (uint64_t *)src - 1;
2911 		src->nro_next = *ptrs;
2912 
2913 		/* always copy the option header */
2914 		error = copyout(src, dst, sizeof(*src));
2915 		if (error) {
2916 			rerror = error;
2917 			goto out;
2918 		}
2919 
2920 		/* copy the option body only if there was no error */
2921 		if (!rerror && !src->nro_status) {
2922 			optsz = nmreq_opt_size_by_type(src->nro_reqtype);
2923 			if (optsz) {
2924 				error = copyout(src + 1, dst + 1, optsz);
2925 				if (error) {
2926 					rerror = error;
2927 					goto out;
2928 				}
2929 			}
2930 		}
2931 		src = (struct nmreq_option *)next;
2932 		dst = (struct nmreq_option *)*ptrs;
2933 	}
2934 
2935 
2936 out:
2937 	hdr->nr_reserved = 0;
2938 	nm_os_free(bufstart);
2939 	return rerror;
2940 }
2941 
2942 struct nmreq_option *
2943 nmreq_findoption(struct nmreq_option *opt, uint16_t reqtype)
2944 {
2945 	for ( ; opt; opt = (struct nmreq_option *)opt->nro_next)
2946 		if (opt->nro_reqtype == reqtype)
2947 			return opt;
2948 	return NULL;
2949 }
2950 
2951 int
2952 nmreq_checkduplicate(struct nmreq_option *opt) {
2953 	uint16_t type = opt->nro_reqtype;
2954 	int dup = 0;
2955 
2956 	while ((opt = nmreq_findoption((struct nmreq_option *)opt->nro_next,
2957 			type))) {
2958 		dup++;
2959 		opt->nro_status = EINVAL;
2960 	}
2961 	return (dup ? EINVAL : 0);
2962 }
2963 
2964 static int
2965 nmreq_checkoptions(struct nmreq_header *hdr)
2966 {
2967 	struct nmreq_option *opt;
2968 	/* return error if there is still any option
2969 	 * marked as not supported
2970 	 */
2971 
2972 	for (opt = (struct nmreq_option *)hdr->nr_options; opt;
2973 	     opt = (struct nmreq_option *)opt->nro_next)
2974 		if (opt->nro_status == EOPNOTSUPP)
2975 			return EOPNOTSUPP;
2976 
2977 	return 0;
2978 }
2979 
2980 /*
2981  * select(2) and poll(2) handlers for the "netmap" device.
2982  *
2983  * Can be called for one or more queues.
2984  * Return true the event mask corresponding to ready events.
2985  * If there are no ready events, do a selrecord on either individual
2986  * selinfo or on the global one.
2987  * Device-dependent parts (locking and sync of tx/rx rings)
2988  * are done through callbacks.
2989  *
2990  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
2991  * The first one is remapped to pwait as selrecord() uses the name as an
2992  * hidden argument.
2993  */
2994 int
2995 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
2996 {
2997 	struct netmap_adapter *na;
2998 	struct netmap_kring *kring;
2999 	struct netmap_ring *ring;
3000 	u_int i, check_all_tx, check_all_rx, want[NR_TXRX], revents = 0;
3001 #define want_tx want[NR_TX]
3002 #define want_rx want[NR_RX]
3003 	struct mbq q;	/* packets from RX hw queues to host stack */
3004 
3005 	/*
3006 	 * In order to avoid nested locks, we need to "double check"
3007 	 * txsync and rxsync if we decide to do a selrecord().
3008 	 * retry_tx (and retry_rx, later) prevent looping forever.
3009 	 */
3010 	int retry_tx = 1, retry_rx = 1;
3011 
3012 	/* Transparent mode: send_down is 1 if we have found some
3013 	 * packets to forward (host RX ring --> NIC) during the rx
3014 	 * scan and we have not sent them down to the NIC yet.
3015 	 * Transparent mode requires to bind all rings to a single
3016 	 * file descriptor.
3017 	 */
3018 	int send_down = 0;
3019 	int sync_flags = priv->np_sync_flags;
3020 
3021 	mbq_init(&q);
3022 
3023 	if (priv->np_nifp == NULL) {
3024 		D("No if registered");
3025 		return POLLERR;
3026 	}
3027 	mb(); /* make sure following reads are not from cache */
3028 
3029 	na = priv->np_na;
3030 
3031 	if (!nm_netmap_on(na))
3032 		return POLLERR;
3033 
3034 	if (netmap_verbose & 0x8000)
3035 		D("device %s events 0x%x", na->name, events);
3036 	want_tx = events & (POLLOUT | POLLWRNORM);
3037 	want_rx = events & (POLLIN | POLLRDNORM);
3038 
3039 	/*
3040 	 * check_all_{tx|rx} are set if the card has more than one queue AND
3041 	 * the file descriptor is bound to all of them. If so, we sleep on
3042 	 * the "global" selinfo, otherwise we sleep on individual selinfo
3043 	 * (FreeBSD only allows two selinfo's per file descriptor).
3044 	 * The interrupt routine in the driver wake one or the other
3045 	 * (or both) depending on which clients are active.
3046 	 *
3047 	 * rxsync() is only called if we run out of buffers on a POLLIN.
3048 	 * txsync() is called if we run out of buffers on POLLOUT, or
3049 	 * there are pending packets to send. The latter can be disabled
3050 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3051 	 */
3052 	check_all_tx = nm_si_user(priv, NR_TX);
3053 	check_all_rx = nm_si_user(priv, NR_RX);
3054 
3055 #ifdef __FreeBSD__
3056 	/*
3057 	 * We start with a lock free round which is cheap if we have
3058 	 * slots available. If this fails, then lock and call the sync
3059 	 * routines. We can't do this on Linux, as the contract says
3060 	 * that we must call nm_os_selrecord() unconditionally.
3061 	 */
3062 	if (want_tx) {
3063 		enum txrx t = NR_TX;
3064 		for (i = priv->np_qfirst[t]; want[t] && i < priv->np_qlast[t]; i++) {
3065 			kring = NMR(na, t)[i];
3066 			/* XXX compare ring->cur and kring->tail */
3067 			if (!nm_ring_empty(kring->ring)) {
3068 				revents |= want[t];
3069 				want[t] = 0;	/* also breaks the loop */
3070 			}
3071 		}
3072 	}
3073 	if (want_rx) {
3074 		enum txrx t = NR_RX;
3075 		want_rx = 0; /* look for a reason to run the handlers */
3076 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3077 			kring = NMR(na, t)[i];
3078 			if (kring->ring->cur == kring->ring->tail /* try fetch new buffers */
3079 			    || kring->rhead != kring->ring->head /* release buffers */) {
3080 				want_rx = 1;
3081 			}
3082 		}
3083 		if (!want_rx)
3084 			revents |= events & (POLLIN | POLLRDNORM); /* we have data */
3085 	}
3086 #endif
3087 
3088 #ifdef linux
3089 	/* The selrecord must be unconditional on linux. */
3090 	nm_os_selrecord(sr, check_all_tx ?
3091 	    &na->si[NR_TX] : &na->tx_rings[priv->np_qfirst[NR_TX]]->si);
3092 	nm_os_selrecord(sr, check_all_rx ?
3093 		&na->si[NR_RX] : &na->rx_rings[priv->np_qfirst[NR_RX]]->si);
3094 #endif /* linux */
3095 
3096 	/*
3097 	 * If we want to push packets out (priv->np_txpoll) or
3098 	 * want_tx is still set, we must issue txsync calls
3099 	 * (on all rings, to avoid that the tx rings stall).
3100 	 * Fortunately, normal tx mode has np_txpoll set.
3101 	 */
3102 	if (priv->np_txpoll || want_tx) {
3103 		/*
3104 		 * The first round checks if anyone is ready, if not
3105 		 * do a selrecord and another round to handle races.
3106 		 * want_tx goes to 0 if any space is found, and is
3107 		 * used to skip rings with no pending transmissions.
3108 		 */
3109 flush_tx:
3110 		for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3111 			int found = 0;
3112 
3113 			kring = na->tx_rings[i];
3114 			ring = kring->ring;
3115 
3116 			/*
3117 			 * Don't try to txsync this TX ring if we already found some
3118 			 * space in some of the TX rings (want_tx == 0) and there are no
3119 			 * TX slots in this ring that need to be flushed to the NIC
3120 			 * (head == hwcur).
3121 			 */
3122 			if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3123 				continue;
3124 
3125 			if (nm_kr_tryget(kring, 1, &revents))
3126 				continue;
3127 
3128 			if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3129 				netmap_ring_reinit(kring);
3130 				revents |= POLLERR;
3131 			} else {
3132 				if (kring->nm_sync(kring, sync_flags))
3133 					revents |= POLLERR;
3134 				else
3135 					nm_sync_finalize(kring);
3136 			}
3137 
3138 			/*
3139 			 * If we found new slots, notify potential
3140 			 * listeners on the same ring.
3141 			 * Since we just did a txsync, look at the copies
3142 			 * of cur,tail in the kring.
3143 			 */
3144 			found = kring->rcur != kring->rtail;
3145 			nm_kr_put(kring);
3146 			if (found) { /* notify other listeners */
3147 				revents |= want_tx;
3148 				want_tx = 0;
3149 #ifndef linux
3150 				kring->nm_notify(kring, 0);
3151 #endif /* linux */
3152 			}
3153 		}
3154 		/* if there were any packet to forward we must have handled them by now */
3155 		send_down = 0;
3156 		if (want_tx && retry_tx && sr) {
3157 #ifndef linux
3158 			nm_os_selrecord(sr, check_all_tx ?
3159 			    &na->si[NR_TX] : &na->tx_rings[priv->np_qfirst[NR_TX]]->si);
3160 #endif /* !linux */
3161 			retry_tx = 0;
3162 			goto flush_tx;
3163 		}
3164 	}
3165 
3166 	/*
3167 	 * If want_rx is still set scan receive rings.
3168 	 * Do it on all rings because otherwise we starve.
3169 	 */
3170 	if (want_rx) {
3171 		/* two rounds here for race avoidance */
3172 do_retry_rx:
3173 		for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3174 			int found = 0;
3175 
3176 			kring = na->rx_rings[i];
3177 			ring = kring->ring;
3178 
3179 			if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3180 				continue;
3181 
3182 			if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3183 				netmap_ring_reinit(kring);
3184 				revents |= POLLERR;
3185 			}
3186 			/* now we can use kring->rcur, rtail */
3187 
3188 			/*
3189 			 * transparent mode support: collect packets from
3190 			 * hw rxring(s) that have been released by the user
3191 			 */
3192 			if (nm_may_forward_up(kring)) {
3193 				netmap_grab_packets(kring, &q, netmap_fwd);
3194 			}
3195 
3196 			/* Clear the NR_FORWARD flag anyway, it may be set by
3197 			 * the nm_sync() below only on for the host RX ring (see
3198 			 * netmap_rxsync_from_host()). */
3199 			kring->nr_kflags &= ~NR_FORWARD;
3200 			if (kring->nm_sync(kring, sync_flags))
3201 				revents |= POLLERR;
3202 			else
3203 				nm_sync_finalize(kring);
3204 			send_down |= (kring->nr_kflags & NR_FORWARD);
3205 			ring_timestamp_set(ring);
3206 			found = kring->rcur != kring->rtail;
3207 			nm_kr_put(kring);
3208 			if (found) {
3209 				revents |= want_rx;
3210 				retry_rx = 0;
3211 #ifndef linux
3212 				kring->nm_notify(kring, 0);
3213 #endif /* linux */
3214 			}
3215 		}
3216 
3217 #ifndef linux
3218 		if (retry_rx && sr) {
3219 			nm_os_selrecord(sr, check_all_rx ?
3220 			    &na->si[NR_RX] : &na->rx_rings[priv->np_qfirst[NR_RX]]->si);
3221 		}
3222 #endif /* !linux */
3223 		if (send_down || retry_rx) {
3224 			retry_rx = 0;
3225 			if (send_down)
3226 				goto flush_tx; /* and retry_rx */
3227 			else
3228 				goto do_retry_rx;
3229 		}
3230 	}
3231 
3232 	/*
3233 	 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3234 	 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3235 	 * to the host stack.
3236 	 */
3237 
3238 	if (mbq_peek(&q)) {
3239 		netmap_send_up(na->ifp, &q);
3240 	}
3241 
3242 	return (revents);
3243 #undef want_tx
3244 #undef want_rx
3245 }
3246 
3247 int
3248 nma_intr_enable(struct netmap_adapter *na, int onoff)
3249 {
3250 	bool changed = false;
3251 	enum txrx t;
3252 	int i;
3253 
3254 	for_rx_tx(t) {
3255 		for (i = 0; i < nma_get_nrings(na, t); i++) {
3256 			struct netmap_kring *kring = NMR(na, t)[i];
3257 			int on = !(kring->nr_kflags & NKR_NOINTR);
3258 
3259 			if (!!onoff != !!on) {
3260 				changed = true;
3261 			}
3262 			if (onoff) {
3263 				kring->nr_kflags &= ~NKR_NOINTR;
3264 			} else {
3265 				kring->nr_kflags |= NKR_NOINTR;
3266 			}
3267 		}
3268 	}
3269 
3270 	if (!changed) {
3271 		return 0; /* nothing to do */
3272 	}
3273 
3274 	if (!na->nm_intr) {
3275 		D("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3276 		  na->name);
3277 		return -1;
3278 	}
3279 
3280 	na->nm_intr(na, onoff);
3281 
3282 	return 0;
3283 }
3284 
3285 
3286 /*-------------------- driver support routines -------------------*/
3287 
3288 /* default notify callback */
3289 static int
3290 netmap_notify(struct netmap_kring *kring, int flags)
3291 {
3292 	struct netmap_adapter *na = kring->notify_na;
3293 	enum txrx t = kring->tx;
3294 
3295 	nm_os_selwakeup(&kring->si);
3296 	/* optimization: avoid a wake up on the global
3297 	 * queue if nobody has registered for more
3298 	 * than one ring
3299 	 */
3300 	if (na->si_users[t] > 0)
3301 		nm_os_selwakeup(&na->si[t]);
3302 
3303 	return NM_IRQ_COMPLETED;
3304 }
3305 
3306 /* called by all routines that create netmap_adapters.
3307  * provide some defaults and get a reference to the
3308  * memory allocator
3309  */
3310 int
3311 netmap_attach_common(struct netmap_adapter *na)
3312 {
3313 	if (na->num_tx_rings == 0 || na->num_rx_rings == 0) {
3314 		D("%s: invalid rings tx %d rx %d",
3315 			na->name, na->num_tx_rings, na->num_rx_rings);
3316 		return EINVAL;
3317 	}
3318 
3319 	if (!na->rx_buf_maxsize) {
3320 		/* Set a conservative default (larger is safer). */
3321 		na->rx_buf_maxsize = PAGE_SIZE;
3322 	}
3323 
3324 #ifdef __FreeBSD__
3325 	if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3326 		na->if_input = na->ifp->if_input; /* for netmap_send_up */
3327 	}
3328 	na->pdev = na; /* make sure netmap_mem_map() is called */
3329 #endif /* __FreeBSD__ */
3330 	if (na->nm_krings_create == NULL) {
3331 		/* we assume that we have been called by a driver,
3332 		 * since other port types all provide their own
3333 		 * nm_krings_create
3334 		 */
3335 		na->nm_krings_create = netmap_hw_krings_create;
3336 		na->nm_krings_delete = netmap_hw_krings_delete;
3337 	}
3338 	if (na->nm_notify == NULL)
3339 		na->nm_notify = netmap_notify;
3340 	na->active_fds = 0;
3341 
3342 	if (na->nm_mem == NULL) {
3343 		/* use the global allocator */
3344 		na->nm_mem = netmap_mem_get(&nm_mem);
3345 	}
3346 #ifdef WITH_VALE
3347 	if (na->nm_bdg_attach == NULL)
3348 		/* no special nm_bdg_attach callback. On VALE
3349 		 * attach, we need to interpose a bwrap
3350 		 */
3351 		na->nm_bdg_attach = netmap_bwrap_attach;
3352 #endif
3353 
3354 	return 0;
3355 }
3356 
3357 /* Wrapper for the register callback provided netmap-enabled
3358  * hardware drivers.
3359  * nm_iszombie(na) means that the driver module has been
3360  * unloaded, so we cannot call into it.
3361  * nm_os_ifnet_lock() must guarantee mutual exclusion with
3362  * module unloading.
3363  */
3364 static int
3365 netmap_hw_reg(struct netmap_adapter *na, int onoff)
3366 {
3367 	struct netmap_hw_adapter *hwna =
3368 		(struct netmap_hw_adapter*)na;
3369 	int error = 0;
3370 
3371 	nm_os_ifnet_lock();
3372 
3373 	if (nm_iszombie(na)) {
3374 		if (onoff) {
3375 			error = ENXIO;
3376 		} else if (na != NULL) {
3377 			na->na_flags &= ~NAF_NETMAP_ON;
3378 		}
3379 		goto out;
3380 	}
3381 
3382 	error = hwna->nm_hw_register(na, onoff);
3383 
3384 out:
3385 	nm_os_ifnet_unlock();
3386 
3387 	return error;
3388 }
3389 
3390 static void
3391 netmap_hw_dtor(struct netmap_adapter *na)
3392 {
3393 	if (nm_iszombie(na) || na->ifp == NULL)
3394 		return;
3395 
3396 	WNA(na->ifp) = NULL;
3397 }
3398 
3399 
3400 /*
3401  * Allocate a netmap_adapter object, and initialize it from the
3402  * 'arg' passed by the driver on attach.
3403  * We allocate a block of memory of 'size' bytes, which has room
3404  * for struct netmap_adapter plus additional room private to
3405  * the caller.
3406  * Return 0 on success, ENOMEM otherwise.
3407  */
3408 int
3409 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
3410 {
3411 	struct netmap_hw_adapter *hwna = NULL;
3412 	struct ifnet *ifp = NULL;
3413 
3414 	if (size < sizeof(struct netmap_hw_adapter)) {
3415 		D("Invalid netmap adapter size %d", (int)size);
3416 		return EINVAL;
3417 	}
3418 
3419 	if (arg == NULL || arg->ifp == NULL)
3420 		goto fail;
3421 
3422 	ifp = arg->ifp;
3423 	if (NA(ifp) && !NM_NA_VALID(ifp)) {
3424 		/* If NA(ifp) is not null but there is no valid netmap
3425 		 * adapter it means that someone else is using the same
3426 		 * pointer (e.g. ax25_ptr on linux). This happens for
3427 		 * instance when also PF_RING is in use. */
3428 		D("Error: netmap adapter hook is busy");
3429 		return EBUSY;
3430 	}
3431 
3432 	hwna = nm_os_malloc(size);
3433 	if (hwna == NULL)
3434 		goto fail;
3435 	hwna->up = *arg;
3436 	hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
3437 	strncpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
3438 	if (override_reg) {
3439 		hwna->nm_hw_register = hwna->up.nm_register;
3440 		hwna->up.nm_register = netmap_hw_reg;
3441 	}
3442 	if (netmap_attach_common(&hwna->up)) {
3443 		nm_os_free(hwna);
3444 		goto fail;
3445 	}
3446 	netmap_adapter_get(&hwna->up);
3447 
3448 	NM_ATTACH_NA(ifp, &hwna->up);
3449 
3450 #ifdef linux
3451 	if (ifp->netdev_ops) {
3452 		/* prepare a clone of the netdev ops */
3453 #ifndef NETMAP_LINUX_HAVE_NETDEV_OPS
3454 		hwna->nm_ndo.ndo_start_xmit = ifp->netdev_ops;
3455 #else
3456 		hwna->nm_ndo = *ifp->netdev_ops;
3457 #endif /* NETMAP_LINUX_HAVE_NETDEV_OPS */
3458 	}
3459 	hwna->nm_ndo.ndo_start_xmit = linux_netmap_start_xmit;
3460 	hwna->nm_ndo.ndo_change_mtu = linux_netmap_change_mtu;
3461 	if (ifp->ethtool_ops) {
3462 		hwna->nm_eto = *ifp->ethtool_ops;
3463 	}
3464 	hwna->nm_eto.set_ringparam = linux_netmap_set_ringparam;
3465 #ifdef NETMAP_LINUX_HAVE_SET_CHANNELS
3466 	hwna->nm_eto.set_channels = linux_netmap_set_channels;
3467 #endif /* NETMAP_LINUX_HAVE_SET_CHANNELS */
3468 	if (arg->nm_config == NULL) {
3469 		hwna->up.nm_config = netmap_linux_config;
3470 	}
3471 #endif /* linux */
3472 	if (arg->nm_dtor == NULL) {
3473 		hwna->up.nm_dtor = netmap_hw_dtor;
3474 	}
3475 
3476 	if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
3477 	    hwna->up.num_tx_rings, hwna->up.num_tx_desc,
3478 	    hwna->up.num_rx_rings, hwna->up.num_rx_desc);
3479 	return 0;
3480 
3481 fail:
3482 	D("fail, arg %p ifp %p na %p", arg, ifp, hwna);
3483 	return (hwna ? EINVAL : ENOMEM);
3484 }
3485 
3486 
3487 int
3488 netmap_attach(struct netmap_adapter *arg)
3489 {
3490 	return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
3491 			1 /* override nm_reg */);
3492 }
3493 
3494 
3495 void
3496 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
3497 {
3498 	if (!na) {
3499 		return;
3500 	}
3501 
3502 	refcount_acquire(&na->na_refcount);
3503 }
3504 
3505 
3506 /* returns 1 iff the netmap_adapter is destroyed */
3507 int
3508 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
3509 {
3510 	if (!na)
3511 		return 1;
3512 
3513 	if (!refcount_release(&na->na_refcount))
3514 		return 0;
3515 
3516 	if (na->nm_dtor)
3517 		na->nm_dtor(na);
3518 
3519 	if (na->tx_rings) { /* XXX should not happen */
3520 		D("freeing leftover tx_rings");
3521 		na->nm_krings_delete(na);
3522 	}
3523 	netmap_pipe_dealloc(na);
3524 	if (na->nm_mem)
3525 		netmap_mem_put(na->nm_mem);
3526 	bzero(na, sizeof(*na));
3527 	nm_os_free(na);
3528 
3529 	return 1;
3530 }
3531 
3532 /* nm_krings_create callback for all hardware native adapters */
3533 int
3534 netmap_hw_krings_create(struct netmap_adapter *na)
3535 {
3536 	int ret = netmap_krings_create(na, 0);
3537 	if (ret == 0) {
3538 		/* initialize the mbq for the sw rx ring */
3539 		mbq_safe_init(&na->rx_rings[na->num_rx_rings]->rx_queue);
3540 		ND("initialized sw rx queue %d", na->num_rx_rings);
3541 	}
3542 	return ret;
3543 }
3544 
3545 
3546 
3547 /*
3548  * Called on module unload by the netmap-enabled drivers
3549  */
3550 void
3551 netmap_detach(struct ifnet *ifp)
3552 {
3553 	struct netmap_adapter *na = NA(ifp);
3554 
3555 	if (!na)
3556 		return;
3557 
3558 	NMG_LOCK();
3559 	netmap_set_all_rings(na, NM_KR_LOCKED);
3560 	/*
3561 	 * if the netmap adapter is not native, somebody
3562 	 * changed it, so we can not release it here.
3563 	 * The NAF_ZOMBIE flag will notify the new owner that
3564 	 * the driver is gone.
3565 	 */
3566 	if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
3567 		na->na_flags |= NAF_ZOMBIE;
3568 	}
3569 	/* give active users a chance to notice that NAF_ZOMBIE has been
3570 	 * turned on, so that they can stop and return an error to userspace.
3571 	 * Note that this becomes a NOP if there are no active users and,
3572 	 * therefore, the put() above has deleted the na, since now NA(ifp) is
3573 	 * NULL.
3574 	 */
3575 	netmap_enable_all_rings(ifp);
3576 	NMG_UNLOCK();
3577 }
3578 
3579 
3580 /*
3581  * Intercept packets from the network stack and pass them
3582  * to netmap as incoming packets on the 'software' ring.
3583  *
3584  * We only store packets in a bounded mbq and then copy them
3585  * in the relevant rxsync routine.
3586  *
3587  * We rely on the OS to make sure that the ifp and na do not go
3588  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
3589  * In nm_register() or whenever there is a reinitialization,
3590  * we make sure to make the mode change visible here.
3591  */
3592 int
3593 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
3594 {
3595 	struct netmap_adapter *na = NA(ifp);
3596 	struct netmap_kring *kring, *tx_kring;
3597 	u_int len = MBUF_LEN(m);
3598 	u_int error = ENOBUFS;
3599 	unsigned int txr;
3600 	struct mbq *q;
3601 	int busy;
3602 
3603 	kring = na->rx_rings[na->num_rx_rings];
3604 	// XXX [Linux] we do not need this lock
3605 	// if we follow the down/configure/up protocol -gl
3606 	// mtx_lock(&na->core_lock);
3607 
3608 	if (!nm_netmap_on(na)) {
3609 		D("%s not in netmap mode anymore", na->name);
3610 		error = ENXIO;
3611 		goto done;
3612 	}
3613 
3614 	txr = MBUF_TXQ(m);
3615 	if (txr >= na->num_tx_rings) {
3616 		txr %= na->num_tx_rings;
3617 	}
3618 	tx_kring = NMR(na, NR_TX)[txr];
3619 
3620 	if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
3621 		return MBUF_TRANSMIT(na, ifp, m);
3622 	}
3623 
3624 	q = &kring->rx_queue;
3625 
3626 	// XXX reconsider long packets if we handle fragments
3627 	if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
3628 		D("%s from_host, drop packet size %d > %d", na->name,
3629 			len, NETMAP_BUF_SIZE(na));
3630 		goto done;
3631 	}
3632 
3633 	if (nm_os_mbuf_has_offld(m)) {
3634 		RD(1, "%s drop mbuf that needs offloadings", na->name);
3635 		goto done;
3636 	}
3637 
3638 	/* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
3639 	 * and maybe other instances of netmap_transmit (the latter
3640 	 * not possible on Linux).
3641 	 * We enqueue the mbuf only if we are sure there is going to be
3642 	 * enough room in the host RX ring, otherwise we drop it.
3643 	 */
3644 	mbq_lock(q);
3645 
3646         busy = kring->nr_hwtail - kring->nr_hwcur;
3647         if (busy < 0)
3648                 busy += kring->nkr_num_slots;
3649 	if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
3650 		RD(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
3651 			kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
3652 	} else {
3653 		mbq_enqueue(q, m);
3654 		ND(2, "%s %d bufs in queue", na->name, mbq_len(q));
3655 		/* notify outside the lock */
3656 		m = NULL;
3657 		error = 0;
3658 	}
3659 	mbq_unlock(q);
3660 
3661 done:
3662 	if (m)
3663 		m_freem(m);
3664 	/* unconditionally wake up listeners */
3665 	kring->nm_notify(kring, 0);
3666 	/* this is normally netmap_notify(), but for nics
3667 	 * connected to a bridge it is netmap_bwrap_intr_notify(),
3668 	 * that possibly forwards the frames through the switch
3669 	 */
3670 
3671 	return (error);
3672 }
3673 
3674 
3675 /*
3676  * netmap_reset() is called by the driver routines when reinitializing
3677  * a ring. The driver is in charge of locking to protect the kring.
3678  * If native netmap mode is not set just return NULL.
3679  * If native netmap mode is set, in particular, we have to set nr_mode to
3680  * NKR_NETMAP_ON.
3681  */
3682 struct netmap_slot *
3683 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
3684 	u_int new_cur)
3685 {
3686 	struct netmap_kring *kring;
3687 	int new_hwofs, lim;
3688 
3689 	if (!nm_native_on(na)) {
3690 		ND("interface not in native netmap mode");
3691 		return NULL;	/* nothing to reinitialize */
3692 	}
3693 
3694 	/* XXX note- in the new scheme, we are not guaranteed to be
3695 	 * under lock (e.g. when called on a device reset).
3696 	 * In this case, we should set a flag and do not trust too
3697 	 * much the values. In practice: TODO
3698 	 * - set a RESET flag somewhere in the kring
3699 	 * - do the processing in a conservative way
3700 	 * - let the *sync() fixup at the end.
3701 	 */
3702 	if (tx == NR_TX) {
3703 		if (n >= na->num_tx_rings)
3704 			return NULL;
3705 
3706 		kring = na->tx_rings[n];
3707 
3708 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
3709 			kring->nr_mode = NKR_NETMAP_OFF;
3710 			return NULL;
3711 		}
3712 
3713 		// XXX check whether we should use hwcur or rcur
3714 		new_hwofs = kring->nr_hwcur - new_cur;
3715 	} else {
3716 		if (n >= na->num_rx_rings)
3717 			return NULL;
3718 		kring = na->rx_rings[n];
3719 
3720 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
3721 			kring->nr_mode = NKR_NETMAP_OFF;
3722 			return NULL;
3723 		}
3724 
3725 		new_hwofs = kring->nr_hwtail - new_cur;
3726 	}
3727 	lim = kring->nkr_num_slots - 1;
3728 	if (new_hwofs > lim)
3729 		new_hwofs -= lim + 1;
3730 
3731 	/* Always set the new offset value and realign the ring. */
3732 	if (netmap_verbose)
3733 	    D("%s %s%d hwofs %d -> %d, hwtail %d -> %d",
3734 		na->name,
3735 		tx == NR_TX ? "TX" : "RX", n,
3736 		kring->nkr_hwofs, new_hwofs,
3737 		kring->nr_hwtail,
3738 		tx == NR_TX ? lim : kring->nr_hwtail);
3739 	kring->nkr_hwofs = new_hwofs;
3740 	if (tx == NR_TX) {
3741 		kring->nr_hwtail = kring->nr_hwcur + lim;
3742 		if (kring->nr_hwtail > lim)
3743 			kring->nr_hwtail -= lim + 1;
3744 	}
3745 
3746 	/*
3747 	 * Wakeup on the individual and global selwait
3748 	 * We do the wakeup here, but the ring is not yet reconfigured.
3749 	 * However, we are under lock so there are no races.
3750 	 */
3751 	kring->nr_mode = NKR_NETMAP_ON;
3752 	kring->nm_notify(kring, 0);
3753 	return kring->ring->slot;
3754 }
3755 
3756 
3757 /*
3758  * Dispatch rx/tx interrupts to the netmap rings.
3759  *
3760  * "work_done" is non-null on the RX path, NULL for the TX path.
3761  * We rely on the OS to make sure that there is only one active
3762  * instance per queue, and that there is appropriate locking.
3763  *
3764  * The 'notify' routine depends on what the ring is attached to.
3765  * - for a netmap file descriptor, do a selwakeup on the individual
3766  *   waitqueue, plus one on the global one if needed
3767  *   (see netmap_notify)
3768  * - for a nic connected to a switch, call the proper forwarding routine
3769  *   (see netmap_bwrap_intr_notify)
3770  */
3771 int
3772 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
3773 {
3774 	struct netmap_kring *kring;
3775 	enum txrx t = (work_done ? NR_RX : NR_TX);
3776 
3777 	q &= NETMAP_RING_MASK;
3778 
3779 	if (netmap_verbose) {
3780 	        RD(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
3781 	}
3782 
3783 	if (q >= nma_get_nrings(na, t))
3784 		return NM_IRQ_PASS; // not a physical queue
3785 
3786 	kring = NMR(na, t)[q];
3787 
3788 	if (kring->nr_mode == NKR_NETMAP_OFF) {
3789 		return NM_IRQ_PASS;
3790 	}
3791 
3792 	if (t == NR_RX) {
3793 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
3794 		*work_done = 1; /* do not fire napi again */
3795 	}
3796 
3797 	return kring->nm_notify(kring, 0);
3798 }
3799 
3800 
3801 /*
3802  * Default functions to handle rx/tx interrupts from a physical device.
3803  * "work_done" is non-null on the RX path, NULL for the TX path.
3804  *
3805  * If the card is not in netmap mode, simply return NM_IRQ_PASS,
3806  * so that the caller proceeds with regular processing.
3807  * Otherwise call netmap_common_irq().
3808  *
3809  * If the card is connected to a netmap file descriptor,
3810  * do a selwakeup on the individual queue, plus one on the global one
3811  * if needed (multiqueue card _and_ there are multiqueue listeners),
3812  * and return NR_IRQ_COMPLETED.
3813  *
3814  * Finally, if called on rx from an interface connected to a switch,
3815  * calls the proper forwarding routine.
3816  */
3817 int
3818 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
3819 {
3820 	struct netmap_adapter *na = NA(ifp);
3821 
3822 	/*
3823 	 * XXX emulated netmap mode sets NAF_SKIP_INTR so
3824 	 * we still use the regular driver even though the previous
3825 	 * check fails. It is unclear whether we should use
3826 	 * nm_native_on() here.
3827 	 */
3828 	if (!nm_netmap_on(na))
3829 		return NM_IRQ_PASS;
3830 
3831 	if (na->na_flags & NAF_SKIP_INTR) {
3832 		ND("use regular interrupt");
3833 		return NM_IRQ_PASS;
3834 	}
3835 
3836 	return netmap_common_irq(na, q, work_done);
3837 }
3838 
3839 
3840 /*
3841  * Module loader and unloader
3842  *
3843  * netmap_init() creates the /dev/netmap device and initializes
3844  * all global variables. Returns 0 on success, errno on failure
3845  * (but there is no chance)
3846  *
3847  * netmap_fini() destroys everything.
3848  */
3849 
3850 static struct cdev *netmap_dev; /* /dev/netmap character device. */
3851 extern struct cdevsw netmap_cdevsw;
3852 
3853 
3854 void
3855 netmap_fini(void)
3856 {
3857 	if (netmap_dev)
3858 		destroy_dev(netmap_dev);
3859 	/* we assume that there are no longer netmap users */
3860 	nm_os_ifnet_fini();
3861 	netmap_uninit_bridges();
3862 	netmap_mem_fini();
3863 	NMG_LOCK_DESTROY();
3864 	nm_prinf("netmap: unloaded module.\n");
3865 }
3866 
3867 
3868 int
3869 netmap_init(void)
3870 {
3871 	int error;
3872 
3873 	NMG_LOCK_INIT();
3874 
3875 	error = netmap_mem_init();
3876 	if (error != 0)
3877 		goto fail;
3878 	/*
3879 	 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
3880 	 * when the module is compiled in.
3881 	 * XXX could use make_dev_credv() to get error number
3882 	 */
3883 	netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
3884 		&netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
3885 			      "netmap");
3886 	if (!netmap_dev)
3887 		goto fail;
3888 
3889 	error = netmap_init_bridges();
3890 	if (error)
3891 		goto fail;
3892 
3893 #ifdef __FreeBSD__
3894 	nm_os_vi_init_index();
3895 #endif
3896 
3897 	error = nm_os_ifnet_init();
3898 	if (error)
3899 		goto fail;
3900 
3901 	nm_prinf("netmap: loaded module\n");
3902 	return (0);
3903 fail:
3904 	netmap_fini();
3905 	return (EINVAL); /* may be incorrect */
3906 }
3907