1 /* 2 * Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 62 #ifdef __APPLE__ 63 #include "osx_glue.h" 64 #endif /* __APPLE__ */ 65 66 #ifdef __FreeBSD__ 67 #include <sys/cdefs.h> /* prerequisite */ 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/types.h> 71 #include <sys/module.h> 72 #include <sys/errno.h> 73 #include <sys/param.h> /* defines used in kernel.h */ 74 #include <sys/jail.h> 75 #include <sys/kernel.h> /* types used in module initialization */ 76 #include <sys/conf.h> /* cdevsw struct */ 77 #include <sys/uio.h> /* uio struct */ 78 #include <sys/sockio.h> 79 #include <sys/socketvar.h> /* struct socket */ 80 #include <sys/malloc.h> 81 #include <sys/mman.h> /* PROT_EXEC */ 82 #include <sys/poll.h> 83 #include <sys/proc.h> 84 #include <sys/rwlock.h> 85 #include <vm/vm.h> /* vtophys */ 86 #include <vm/pmap.h> /* vtophys */ 87 #include <sys/socket.h> /* sockaddrs */ 88 #include <machine/bus.h> 89 #include <sys/selinfo.h> 90 #include <sys/sysctl.h> 91 #include <net/if.h> 92 #include <net/bpf.h> /* BIOCIMMEDIATE */ 93 #include <net/vnet.h> 94 #include <machine/bus.h> /* bus_dmamap_* */ 95 96 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 97 #endif /* __FreeBSD__ */ 98 99 #include <net/netmap.h> 100 #include <dev/netmap/netmap_kern.h> 101 102 /* XXX the following variables must be deprecated and included in nm_mem */ 103 u_int netmap_total_buffers; 104 u_int netmap_buf_size; 105 char *netmap_buffer_base; /* address of an invalid buffer */ 106 107 /* user-controlled variables */ 108 int netmap_verbose; 109 110 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 111 112 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 113 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 114 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 115 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 116 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 117 int netmap_mitigate = 1; 118 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 119 int netmap_no_pendintr = 1; 120 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 121 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 122 int netmap_txsync_retry = 2; 123 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 124 &netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush."); 125 126 int netmap_drop = 0; /* debugging */ 127 int netmap_flags = 0; /* debug flags */ 128 int netmap_fwd = 0; /* force transparent mode */ 129 130 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 131 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 132 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , ""); 133 134 #ifdef NM_BRIDGE /* support for netmap virtual switch, called VALE */ 135 136 /* 137 * system parameters (most of them in netmap_kern.h) 138 * NM_NAME prefix for switch port names, default "vale" 139 * NM_MAXPORTS number of ports 140 * NM_BRIDGES max number of switches in the system. 141 * XXX should become a sysctl or tunable 142 * 143 * Switch ports are named valeX:Y where X is the switch name and Y 144 * is the port. If Y matches a physical interface name, the port is 145 * connected to a physical device. 146 * 147 * Unlike physical interfaces, switch ports use their own memory region 148 * for rings and buffers. 149 * The virtual interfaces use per-queue lock instead of core lock. 150 * In the tx loop, we aggregate traffic in batches to make all operations 151 * faster. The batch size is NM_BDG_BATCH 152 */ 153 #define NM_BDG_MAXRINGS 16 /* XXX unclear how many. */ 154 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 155 #define NM_BDG_HASH 1024 /* forwarding table entries */ 156 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 157 #define NM_BRIDGES 8 /* number of bridges */ 158 159 160 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 161 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 162 163 #ifdef linux 164 165 #define refcount_acquire(_a) atomic_add(1, (atomic_t *)_a) 166 #define refcount_release(_a) atomic_dec_and_test((atomic_t *)_a) 167 168 #else /* !linux */ 169 170 #ifdef __FreeBSD__ 171 #include <sys/endian.h> 172 #include <sys/refcount.h> 173 #endif /* __FreeBSD__ */ 174 175 #define prefetch(x) __builtin_prefetch(x) 176 177 #endif /* !linux */ 178 179 /* 180 * These are used to handle reference counters for bridge ports. 181 */ 182 #define ADD_BDG_REF(ifp) refcount_acquire(&NA(ifp)->na_bdg_refcount) 183 #define DROP_BDG_REF(ifp) refcount_release(&NA(ifp)->na_bdg_refcount) 184 185 static void bdg_netmap_attach(struct netmap_adapter *); 186 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 187 static int kern_netmap_regif(struct nmreq *nmr); 188 189 /* per-tx-queue entry */ 190 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 191 void *ft_buf; 192 uint16_t _ft_dst; /* dst port, unused */ 193 uint16_t ft_flags; /* flags, e.g. indirect */ 194 uint16_t ft_len; /* src len */ 195 uint16_t ft_next; /* next packet to same destination */ 196 }; 197 198 /* We need to build a list of buffers going to each destination. 199 * Each buffer is in one entry of struct nm_bdg_fwd, we use ft_next 200 * to build the list, and struct nm_bdg_q below for the queue. 201 * The structure should compact because potentially we have a lot 202 * of destinations. 203 */ 204 struct nm_bdg_q { 205 uint16_t bq_head; 206 uint16_t bq_tail; 207 }; 208 209 struct nm_hash_ent { 210 uint64_t mac; /* the top 2 bytes are the epoch */ 211 uint64_t ports; 212 }; 213 214 /* 215 * Interfaces for a bridge are all in bdg_ports[]. 216 * The array has fixed size, an empty entry does not terminate 217 * the search. But lookups only occur on attach/detach so we 218 * don't mind if they are slow. 219 * 220 * The bridge is non blocking on the transmit ports. 221 * 222 * bdg_lock protects accesses to the bdg_ports array. 223 * This is a rw lock (or equivalent). 224 */ 225 struct nm_bridge { 226 int namelen; /* 0 means free */ 227 228 /* XXX what is the proper alignment/layout ? */ 229 NM_RWLOCK_T bdg_lock; /* protects bdg_ports */ 230 struct netmap_adapter *bdg_ports[NM_BDG_MAXPORTS]; 231 232 char basename[IFNAMSIZ]; 233 /* 234 * The function to decide the destination port. 235 * It returns either of an index of the destination port, 236 * NM_BDG_BROADCAST to broadcast this packet, or NM_BDG_NOPORT not to 237 * forward this packet. ring_nr is the source ring index, and the 238 * function may overwrite this value to forward this packet to a 239 * different ring index. 240 * This function must be set by netmap_bdgctl(). 241 */ 242 bdg_lookup_fn_t nm_bdg_lookup; 243 244 /* the forwarding table, MAC+ports */ 245 struct nm_hash_ent ht[NM_BDG_HASH]; 246 }; 247 248 struct nm_bridge nm_bridges[NM_BRIDGES]; 249 NM_LOCK_T netmap_bridge_mutex; 250 251 /* other OS will have these macros defined in their own glue code. */ 252 253 #ifdef __FreeBSD__ 254 #define BDG_LOCK() mtx_lock(&netmap_bridge_mutex) 255 #define BDG_UNLOCK() mtx_unlock(&netmap_bridge_mutex) 256 #define BDG_WLOCK(b) rw_wlock(&(b)->bdg_lock) 257 #define BDG_WUNLOCK(b) rw_wunlock(&(b)->bdg_lock) 258 #define BDG_RLOCK(b) rw_rlock(&(b)->bdg_lock) 259 #define BDG_RUNLOCK(b) rw_runlock(&(b)->bdg_lock) 260 261 /* set/get variables. OS-specific macros may wrap these 262 * assignments into read/write lock or similar 263 */ 264 #define BDG_SET_VAR(lval, p) (lval = p) 265 #define BDG_GET_VAR(lval) (lval) 266 #define BDG_FREE(p) free(p, M_DEVBUF) 267 #endif /* __FreeBSD__ */ 268 269 static __inline int 270 nma_is_vp(struct netmap_adapter *na) 271 { 272 return na->nm_register == bdg_netmap_reg; 273 } 274 static __inline int 275 nma_is_host(struct netmap_adapter *na) 276 { 277 return na->nm_register == NULL; 278 } 279 static __inline int 280 nma_is_hw(struct netmap_adapter *na) 281 { 282 /* In case of sw adapter, nm_register is NULL */ 283 return !nma_is_vp(na) && !nma_is_host(na); 284 } 285 286 /* 287 * Regarding holding a NIC, if the NIC is owned by the kernel 288 * (i.e., bridge), neither another bridge nor user can use it; 289 * if the NIC is owned by a user, only users can share it. 290 * Evaluation must be done under NMA_LOCK(). 291 */ 292 #define NETMAP_OWNED_BY_KERN(ifp) (!nma_is_vp(NA(ifp)) && NA(ifp)->na_bdg) 293 #define NETMAP_OWNED_BY_ANY(ifp) \ 294 (NETMAP_OWNED_BY_KERN(ifp) || (NA(ifp)->refcount > 0)) 295 296 /* 297 * NA(ifp)->bdg_port port index 298 */ 299 300 // XXX only for multiples of 64 bytes, non overlapped. 301 static inline void 302 pkt_copy(void *_src, void *_dst, int l) 303 { 304 uint64_t *src = _src; 305 uint64_t *dst = _dst; 306 if (unlikely(l >= 1024)) { 307 bcopy(src, dst, l); 308 return; 309 } 310 for (; likely(l > 0); l-=64) { 311 *dst++ = *src++; 312 *dst++ = *src++; 313 *dst++ = *src++; 314 *dst++ = *src++; 315 *dst++ = *src++; 316 *dst++ = *src++; 317 *dst++ = *src++; 318 *dst++ = *src++; 319 } 320 } 321 322 323 /* 324 * locate a bridge among the existing ones. 325 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 326 * We assume that this is called with a name of at least NM_NAME chars. 327 */ 328 static struct nm_bridge * 329 nm_find_bridge(const char *name, int create) 330 { 331 int i, l, namelen; 332 struct nm_bridge *b = NULL; 333 334 namelen = strlen(NM_NAME); /* base length */ 335 l = strlen(name); /* actual length */ 336 for (i = namelen + 1; i < l; i++) { 337 if (name[i] == ':') { 338 namelen = i; 339 break; 340 } 341 } 342 if (namelen >= IFNAMSIZ) 343 namelen = IFNAMSIZ; 344 ND("--- prefix is '%.*s' ---", namelen, name); 345 346 BDG_LOCK(); 347 /* lookup the name, remember empty slot if there is one */ 348 for (i = 0; i < NM_BRIDGES; i++) { 349 struct nm_bridge *x = nm_bridges + i; 350 351 if (x->namelen == 0) { 352 if (create && b == NULL) 353 b = x; /* record empty slot */ 354 } else if (x->namelen != namelen) { 355 continue; 356 } else if (strncmp(name, x->basename, namelen) == 0) { 357 ND("found '%.*s' at %d", namelen, name, i); 358 b = x; 359 break; 360 } 361 } 362 if (i == NM_BRIDGES && b) { /* name not found, can create entry */ 363 strncpy(b->basename, name, namelen); 364 b->namelen = namelen; 365 /* set the default function */ 366 b->nm_bdg_lookup = netmap_bdg_learning; 367 /* reset the MAC address table */ 368 bzero(b->ht, sizeof(struct nm_hash_ent) * NM_BDG_HASH); 369 } 370 BDG_UNLOCK(); 371 return b; 372 } 373 374 375 /* 376 * Free the forwarding tables for rings attached to switch ports. 377 */ 378 static void 379 nm_free_bdgfwd(struct netmap_adapter *na) 380 { 381 int nrings, i; 382 struct netmap_kring *kring; 383 384 nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings; 385 kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings; 386 for (i = 0; i < nrings; i++) { 387 if (kring[i].nkr_ft) { 388 free(kring[i].nkr_ft, M_DEVBUF); 389 kring[i].nkr_ft = NULL; /* protect from freeing twice */ 390 } 391 } 392 if (nma_is_hw(na)) 393 nm_free_bdgfwd(SWNA(na->ifp)); 394 } 395 396 397 /* 398 * Allocate the forwarding tables for the rings attached to the bridge ports. 399 */ 400 static int 401 nm_alloc_bdgfwd(struct netmap_adapter *na) 402 { 403 int nrings, l, i, num_dstq; 404 struct netmap_kring *kring; 405 406 /* all port:rings + broadcast */ 407 num_dstq = NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1; 408 l = sizeof(struct nm_bdg_fwd) * NM_BDG_BATCH; 409 l += sizeof(struct nm_bdg_q) * num_dstq; 410 l += sizeof(uint16_t) * NM_BDG_BATCH; 411 412 nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings; 413 kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings; 414 for (i = 0; i < nrings; i++) { 415 struct nm_bdg_fwd *ft; 416 struct nm_bdg_q *dstq; 417 int j; 418 419 ft = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 420 if (!ft) { 421 nm_free_bdgfwd(na); 422 return ENOMEM; 423 } 424 dstq = (struct nm_bdg_q *)(ft + NM_BDG_BATCH); 425 for (j = 0; j < num_dstq; j++) 426 dstq[j].bq_head = dstq[j].bq_tail = NM_BDG_BATCH; 427 kring[i].nkr_ft = ft; 428 } 429 if (nma_is_hw(na)) 430 nm_alloc_bdgfwd(SWNA(na->ifp)); 431 return 0; 432 } 433 434 #endif /* NM_BRIDGE */ 435 436 437 /* 438 * Fetch configuration from the device, to cope with dynamic 439 * reconfigurations after loading the module. 440 */ 441 static int 442 netmap_update_config(struct netmap_adapter *na) 443 { 444 struct ifnet *ifp = na->ifp; 445 u_int txr, txd, rxr, rxd; 446 447 txr = txd = rxr = rxd = 0; 448 if (na->nm_config) { 449 na->nm_config(ifp, &txr, &txd, &rxr, &rxd); 450 } else { 451 /* take whatever we had at init time */ 452 txr = na->num_tx_rings; 453 txd = na->num_tx_desc; 454 rxr = na->num_rx_rings; 455 rxd = na->num_rx_desc; 456 } 457 458 if (na->num_tx_rings == txr && na->num_tx_desc == txd && 459 na->num_rx_rings == rxr && na->num_rx_desc == rxd) 460 return 0; /* nothing changed */ 461 if (netmap_verbose || na->refcount > 0) { 462 D("stored config %s: txring %d x %d, rxring %d x %d", 463 ifp->if_xname, 464 na->num_tx_rings, na->num_tx_desc, 465 na->num_rx_rings, na->num_rx_desc); 466 D("new config %s: txring %d x %d, rxring %d x %d", 467 ifp->if_xname, txr, txd, rxr, rxd); 468 } 469 if (na->refcount == 0) { 470 D("configuration changed (but fine)"); 471 na->num_tx_rings = txr; 472 na->num_tx_desc = txd; 473 na->num_rx_rings = rxr; 474 na->num_rx_desc = rxd; 475 return 0; 476 } 477 D("configuration changed while active, this is bad..."); 478 return 1; 479 } 480 481 /*------------- memory allocator -----------------*/ 482 #include "netmap_mem2.c" 483 /*------------ end of memory allocator ----------*/ 484 485 486 /* Structure associated to each thread which registered an interface. 487 * 488 * The first 4 fields of this structure are written by NIOCREGIF and 489 * read by poll() and NIOC?XSYNC. 490 * There is low contention among writers (actually, a correct user program 491 * should have no contention among writers) and among writers and readers, 492 * so we use a single global lock to protect the structure initialization. 493 * Since initialization involves the allocation of memory, we reuse the memory 494 * allocator lock. 495 * Read access to the structure is lock free. Readers must check that 496 * np_nifp is not NULL before using the other fields. 497 * If np_nifp is NULL initialization has not been performed, so they should 498 * return an error to userlevel. 499 * 500 * The ref_done field is used to regulate access to the refcount in the 501 * memory allocator. The refcount must be incremented at most once for 502 * each open("/dev/netmap"). The increment is performed by the first 503 * function that calls netmap_get_memory() (currently called by 504 * mmap(), NIOCGINFO and NIOCREGIF). 505 * If the refcount is incremented, it is then decremented when the 506 * private structure is destroyed. 507 */ 508 struct netmap_priv_d { 509 struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */ 510 511 struct ifnet *np_ifp; /* device for which we hold a reference */ 512 int np_ringid; /* from the ioctl */ 513 u_int np_qfirst, np_qlast; /* range of rings to scan */ 514 uint16_t np_txpoll; 515 516 unsigned long ref_done; /* use with NMA_LOCK held */ 517 }; 518 519 520 static int 521 netmap_get_memory(struct netmap_priv_d* p) 522 { 523 int error = 0; 524 NMA_LOCK(); 525 if (!p->ref_done) { 526 error = netmap_memory_finalize(); 527 if (!error) 528 p->ref_done = 1; 529 } 530 NMA_UNLOCK(); 531 return error; 532 } 533 534 /* 535 * File descriptor's private data destructor. 536 * 537 * Call nm_register(ifp,0) to stop netmap mode on the interface and 538 * revert to normal operation. We expect that np_ifp has not gone. 539 */ 540 /* call with NMA_LOCK held */ 541 static void 542 netmap_dtor_locked(void *data) 543 { 544 struct netmap_priv_d *priv = data; 545 struct ifnet *ifp = priv->np_ifp; 546 struct netmap_adapter *na = NA(ifp); 547 struct netmap_if *nifp = priv->np_nifp; 548 549 na->refcount--; 550 if (na->refcount <= 0) { /* last instance */ 551 u_int i, j, lim; 552 553 if (netmap_verbose) 554 D("deleting last instance for %s", ifp->if_xname); 555 /* 556 * (TO CHECK) This function is only called 557 * when the last reference to this file descriptor goes 558 * away. This means we cannot have any pending poll() 559 * or interrupt routine operating on the structure. 560 */ 561 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 562 /* Wake up any sleeping threads. netmap_poll will 563 * then return POLLERR 564 */ 565 for (i = 0; i < na->num_tx_rings + 1; i++) 566 selwakeuppri(&na->tx_rings[i].si, PI_NET); 567 for (i = 0; i < na->num_rx_rings + 1; i++) 568 selwakeuppri(&na->rx_rings[i].si, PI_NET); 569 selwakeuppri(&na->tx_si, PI_NET); 570 selwakeuppri(&na->rx_si, PI_NET); 571 #ifdef NM_BRIDGE 572 nm_free_bdgfwd(na); 573 #endif /* NM_BRIDGE */ 574 /* release all buffers */ 575 for (i = 0; i < na->num_tx_rings + 1; i++) { 576 struct netmap_ring *ring = na->tx_rings[i].ring; 577 lim = na->tx_rings[i].nkr_num_slots; 578 for (j = 0; j < lim; j++) 579 netmap_free_buf(nifp, ring->slot[j].buf_idx); 580 /* knlist_destroy(&na->tx_rings[i].si.si_note); */ 581 mtx_destroy(&na->tx_rings[i].q_lock); 582 } 583 for (i = 0; i < na->num_rx_rings + 1; i++) { 584 struct netmap_ring *ring = na->rx_rings[i].ring; 585 lim = na->rx_rings[i].nkr_num_slots; 586 for (j = 0; j < lim; j++) 587 netmap_free_buf(nifp, ring->slot[j].buf_idx); 588 /* knlist_destroy(&na->rx_rings[i].si.si_note); */ 589 mtx_destroy(&na->rx_rings[i].q_lock); 590 } 591 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 592 /* knlist_destroy(&na->tx_si.si_note); */ 593 /* knlist_destroy(&na->rx_si.si_note); */ 594 netmap_free_rings(na); 595 if (nma_is_hw(na)) 596 SWNA(ifp)->tx_rings = SWNA(ifp)->rx_rings = NULL; 597 } 598 netmap_if_free(nifp); 599 } 600 601 602 /* we assume netmap adapter exists */ 603 static void 604 nm_if_rele(struct ifnet *ifp) 605 { 606 #ifndef NM_BRIDGE 607 if_rele(ifp); 608 #else /* NM_BRIDGE */ 609 int i, full = 0, is_hw; 610 struct nm_bridge *b; 611 struct netmap_adapter *na; 612 613 /* I can be called not only for get_ifp()-ed references where netmap's 614 * capability is guaranteed, but also for non-netmap-capable NICs. 615 */ 616 if (!NETMAP_CAPABLE(ifp) || !NA(ifp)->na_bdg) { 617 if_rele(ifp); 618 return; 619 } 620 if (!DROP_BDG_REF(ifp)) 621 return; 622 623 na = NA(ifp); 624 b = na->na_bdg; 625 is_hw = nma_is_hw(na); 626 627 BDG_WLOCK(b); 628 ND("want to disconnect %s from the bridge", ifp->if_xname); 629 full = 0; 630 /* remove the entry from the bridge, also check 631 * if there are any leftover interfaces 632 * XXX we should optimize this code, e.g. going directly 633 * to na->bdg_port, and having a counter of ports that 634 * are connected. But it is not in a critical path. 635 * In NIC's case, index of sw na is always higher than hw na 636 */ 637 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 638 struct netmap_adapter *tmp = BDG_GET_VAR(b->bdg_ports[i]); 639 640 if (tmp == na) { 641 /* disconnect from bridge */ 642 BDG_SET_VAR(b->bdg_ports[i], NULL); 643 na->na_bdg = NULL; 644 if (is_hw && SWNA(ifp)->na_bdg) { 645 /* disconnect sw adapter too */ 646 int j = SWNA(ifp)->bdg_port; 647 BDG_SET_VAR(b->bdg_ports[j], NULL); 648 SWNA(ifp)->na_bdg = NULL; 649 } 650 } else if (tmp != NULL) { 651 full = 1; 652 } 653 } 654 BDG_WUNLOCK(b); 655 if (full == 0) { 656 ND("marking bridge %d as free", b - nm_bridges); 657 b->namelen = 0; 658 b->nm_bdg_lookup = NULL; 659 } 660 if (na->na_bdg) { /* still attached to the bridge */ 661 D("ouch, cannot find ifp to remove"); 662 } else if (is_hw) { 663 if_rele(ifp); 664 } else { 665 bzero(na, sizeof(*na)); 666 free(na, M_DEVBUF); 667 bzero(ifp, sizeof(*ifp)); 668 free(ifp, M_DEVBUF); 669 } 670 #endif /* NM_BRIDGE */ 671 } 672 673 static void 674 netmap_dtor(void *data) 675 { 676 struct netmap_priv_d *priv = data; 677 struct ifnet *ifp = priv->np_ifp; 678 679 NMA_LOCK(); 680 if (ifp) { 681 struct netmap_adapter *na = NA(ifp); 682 683 if (na->na_bdg) 684 BDG_WLOCK(na->na_bdg); 685 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 686 netmap_dtor_locked(data); 687 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 688 if (na->na_bdg) 689 BDG_WUNLOCK(na->na_bdg); 690 691 nm_if_rele(ifp); /* might also destroy *na */ 692 } 693 if (priv->ref_done) { 694 netmap_memory_deref(); 695 } 696 NMA_UNLOCK(); 697 bzero(priv, sizeof(*priv)); /* XXX for safety */ 698 free(priv, M_DEVBUF); 699 } 700 701 702 #ifdef __FreeBSD__ 703 #include <vm/vm.h> 704 #include <vm/vm_param.h> 705 #include <vm/vm_object.h> 706 #include <vm/vm_page.h> 707 #include <vm/vm_pager.h> 708 #include <vm/uma.h> 709 710 /* 711 * In order to track whether pages are still mapped, we hook into 712 * the standard cdev_pager and intercept the constructor and 713 * destructor. 714 * XXX but then ? Do we really use the information ? 715 * Need to investigate. 716 */ 717 static struct cdev_pager_ops saved_cdev_pager_ops; 718 719 720 static int 721 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 722 vm_ooffset_t foff, struct ucred *cred, u_short *color) 723 { 724 if (netmap_verbose) 725 D("first mmap for %p", handle); 726 return saved_cdev_pager_ops.cdev_pg_ctor(handle, 727 size, prot, foff, cred, color); 728 } 729 730 731 static void 732 netmap_dev_pager_dtor(void *handle) 733 { 734 saved_cdev_pager_ops.cdev_pg_dtor(handle); 735 ND("ready to release memory for %p", handle); 736 } 737 738 739 static struct cdev_pager_ops netmap_cdev_pager_ops = { 740 .cdev_pg_ctor = netmap_dev_pager_ctor, 741 .cdev_pg_dtor = netmap_dev_pager_dtor, 742 .cdev_pg_fault = NULL, 743 }; 744 745 746 // XXX check whether we need netmap_mmap_single _and_ netmap_mmap 747 static int 748 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 749 vm_size_t objsize, vm_object_t *objp, int prot) 750 { 751 vm_object_t obj; 752 753 ND("cdev %p foff %jd size %jd objp %p prot %d", cdev, 754 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 755 obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, 756 curthread->td_ucred); 757 ND("returns obj %p", obj); 758 if (obj == NULL) 759 return EINVAL; 760 if (saved_cdev_pager_ops.cdev_pg_fault == NULL) { 761 ND("initialize cdev_pager_ops"); 762 saved_cdev_pager_ops = *(obj->un_pager.devp.ops); 763 netmap_cdev_pager_ops.cdev_pg_fault = 764 saved_cdev_pager_ops.cdev_pg_fault; 765 }; 766 obj->un_pager.devp.ops = &netmap_cdev_pager_ops; 767 *objp = obj; 768 return 0; 769 } 770 #endif /* __FreeBSD__ */ 771 772 773 /* 774 * mmap(2) support for the "netmap" device. 775 * 776 * Expose all the memory previously allocated by our custom memory 777 * allocator: this way the user has only to issue a single mmap(2), and 778 * can work on all the data structures flawlessly. 779 * 780 * Return 0 on success, -1 otherwise. 781 */ 782 783 #ifdef __FreeBSD__ 784 static int 785 netmap_mmap(__unused struct cdev *dev, 786 #if __FreeBSD_version < 900000 787 vm_offset_t offset, vm_paddr_t *paddr, int nprot 788 #else 789 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 790 __unused vm_memattr_t *memattr 791 #endif 792 ) 793 { 794 int error = 0; 795 struct netmap_priv_d *priv; 796 797 if (nprot & PROT_EXEC) 798 return (-1); // XXX -1 or EINVAL ? 799 800 error = devfs_get_cdevpriv((void **)&priv); 801 if (error == EBADF) { /* called on fault, memory is initialized */ 802 ND(5, "handling fault at ofs 0x%x", offset); 803 error = 0; 804 } else if (error == 0) /* make sure memory is set */ 805 error = netmap_get_memory(priv); 806 if (error) 807 return (error); 808 809 ND("request for offset 0x%x", (uint32_t)offset); 810 *paddr = netmap_ofstophys(offset); 811 812 return (*paddr ? 0 : ENOMEM); 813 } 814 815 816 static int 817 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 818 { 819 if (netmap_verbose) 820 D("dev %p fflag 0x%x devtype %d td %p", 821 dev, fflag, devtype, td); 822 return 0; 823 } 824 825 826 static int 827 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 828 { 829 struct netmap_priv_d *priv; 830 int error; 831 832 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 833 M_NOWAIT | M_ZERO); 834 if (priv == NULL) 835 return ENOMEM; 836 837 error = devfs_set_cdevpriv(priv, netmap_dtor); 838 if (error) 839 return error; 840 841 return 0; 842 } 843 #endif /* __FreeBSD__ */ 844 845 846 /* 847 * Handlers for synchronization of the queues from/to the host. 848 * Netmap has two operating modes: 849 * - in the default mode, the rings connected to the host stack are 850 * just another ring pair managed by userspace; 851 * - in transparent mode (XXX to be defined) incoming packets 852 * (from the host or the NIC) are marked as NS_FORWARD upon 853 * arrival, and the user application has a chance to reset the 854 * flag for packets that should be dropped. 855 * On the RXSYNC or poll(), packets in RX rings between 856 * kring->nr_kcur and ring->cur with NS_FORWARD still set are moved 857 * to the other side. 858 * The transfer NIC --> host is relatively easy, just encapsulate 859 * into mbufs and we are done. The host --> NIC side is slightly 860 * harder because there might not be room in the tx ring so it 861 * might take a while before releasing the buffer. 862 */ 863 864 865 /* 866 * pass a chain of buffers to the host stack as coming from 'dst' 867 */ 868 static void 869 netmap_send_up(struct ifnet *dst, struct mbuf *head) 870 { 871 struct mbuf *m; 872 873 /* send packets up, outside the lock */ 874 while ((m = head) != NULL) { 875 head = head->m_nextpkt; 876 m->m_nextpkt = NULL; 877 if (netmap_verbose & NM_VERB_HOST) 878 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 879 NM_SEND_UP(dst, m); 880 } 881 } 882 883 struct mbq { 884 struct mbuf *head; 885 struct mbuf *tail; 886 int count; 887 }; 888 889 890 /* 891 * put a copy of the buffers marked NS_FORWARD into an mbuf chain. 892 * Run from hwcur to cur - reserved 893 */ 894 static void 895 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 896 { 897 /* Take packets from hwcur to cur-reserved and pass them up. 898 * In case of no buffers we give up. At the end of the loop, 899 * the queue is drained in all cases. 900 * XXX handle reserved 901 */ 902 int k = kring->ring->cur - kring->ring->reserved; 903 u_int n, lim = kring->nkr_num_slots - 1; 904 struct mbuf *m, *tail = q->tail; 905 906 if (k < 0) 907 k = k + kring->nkr_num_slots; 908 for (n = kring->nr_hwcur; n != k;) { 909 struct netmap_slot *slot = &kring->ring->slot[n]; 910 911 n = (n == lim) ? 0 : n + 1; 912 if ((slot->flags & NS_FORWARD) == 0 && !force) 913 continue; 914 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 915 D("bad pkt at %d len %d", n, slot->len); 916 continue; 917 } 918 slot->flags &= ~NS_FORWARD; // XXX needed ? 919 m = m_devget(NMB(slot), slot->len, 0, kring->na->ifp, NULL); 920 921 if (m == NULL) 922 break; 923 if (tail) 924 tail->m_nextpkt = m; 925 else 926 q->head = m; 927 tail = m; 928 q->count++; 929 m->m_nextpkt = NULL; 930 } 931 q->tail = tail; 932 } 933 934 935 /* 936 * called under main lock to send packets from the host to the NIC 937 * The host ring has packets from nr_hwcur to (cur - reserved) 938 * to be sent down. We scan the tx rings, which have just been 939 * flushed so nr_hwcur == cur. Pushing packets down means 940 * increment cur and decrement avail. 941 * XXX to be verified 942 */ 943 static void 944 netmap_sw_to_nic(struct netmap_adapter *na) 945 { 946 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 947 struct netmap_kring *k1 = &na->tx_rings[0]; 948 int i, howmany, src_lim, dst_lim; 949 950 howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */ 951 952 src_lim = kring->nkr_num_slots; 953 for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) { 954 ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail); 955 dst_lim = k1->nkr_num_slots; 956 while (howmany > 0 && k1->ring->avail > 0) { 957 struct netmap_slot *src, *dst, tmp; 958 src = &kring->ring->slot[kring->nr_hwcur]; 959 dst = &k1->ring->slot[k1->ring->cur]; 960 tmp = *src; 961 src->buf_idx = dst->buf_idx; 962 src->flags = NS_BUF_CHANGED; 963 964 dst->buf_idx = tmp.buf_idx; 965 dst->len = tmp.len; 966 dst->flags = NS_BUF_CHANGED; 967 ND("out len %d buf %d from %d to %d", 968 dst->len, dst->buf_idx, 969 kring->nr_hwcur, k1->ring->cur); 970 971 if (++kring->nr_hwcur >= src_lim) 972 kring->nr_hwcur = 0; 973 howmany--; 974 kring->nr_hwavail--; 975 if (++k1->ring->cur >= dst_lim) 976 k1->ring->cur = 0; 977 k1->ring->avail--; 978 } 979 kring->ring->cur = kring->nr_hwcur; // XXX 980 k1++; 981 } 982 } 983 984 985 /* 986 * netmap_sync_to_host() passes packets up. We are called from a 987 * system call in user process context, and the only contention 988 * can be among multiple user threads erroneously calling 989 * this routine concurrently. 990 */ 991 static void 992 netmap_sync_to_host(struct netmap_adapter *na) 993 { 994 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 995 struct netmap_ring *ring = kring->ring; 996 u_int k, lim = kring->nkr_num_slots - 1; 997 struct mbq q = { NULL, NULL }; 998 999 k = ring->cur; 1000 if (k > lim) { 1001 netmap_ring_reinit(kring); 1002 return; 1003 } 1004 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 1005 1006 /* Take packets from hwcur to cur and pass them up. 1007 * In case of no buffers we give up. At the end of the loop, 1008 * the queue is drained in all cases. 1009 */ 1010 netmap_grab_packets(kring, &q, 1); 1011 kring->nr_hwcur = k; 1012 kring->nr_hwavail = ring->avail = lim; 1013 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 1014 1015 netmap_send_up(na->ifp, q.head); 1016 } 1017 1018 1019 /* SWNA(ifp)->txrings[0] is always NA(ifp)->txrings[NA(ifp)->num_txrings] */ 1020 static int 1021 netmap_bdg_to_host(struct ifnet *ifp, u_int ring_nr, int do_lock) 1022 { 1023 (void)ring_nr; 1024 (void)do_lock; 1025 netmap_sync_to_host(NA(ifp)); 1026 return 0; 1027 } 1028 1029 1030 /* 1031 * rxsync backend for packets coming from the host stack. 1032 * They have been put in the queue by netmap_start() so we 1033 * need to protect access to the kring using a lock. 1034 * 1035 * This routine also does the selrecord if called from the poll handler 1036 * (we know because td != NULL). 1037 * 1038 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 1039 * as an additional hidden argument. 1040 */ 1041 static void 1042 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 1043 { 1044 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1045 struct netmap_ring *ring = kring->ring; 1046 u_int j, n, lim = kring->nkr_num_slots; 1047 u_int k = ring->cur, resvd = ring->reserved; 1048 1049 (void)pwait; /* disable unused warnings */ 1050 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 1051 if (k >= lim) { 1052 netmap_ring_reinit(kring); 1053 return; 1054 } 1055 /* new packets are already set in nr_hwavail */ 1056 /* skip past packets that userspace has released */ 1057 j = kring->nr_hwcur; 1058 if (resvd > 0) { 1059 if (resvd + ring->avail >= lim + 1) { 1060 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 1061 ring->reserved = resvd = 0; // XXX panic... 1062 } 1063 k = (k >= resvd) ? k - resvd : k + lim - resvd; 1064 } 1065 if (j != k) { 1066 n = k >= j ? k - j : k + lim - j; 1067 kring->nr_hwavail -= n; 1068 kring->nr_hwcur = k; 1069 } 1070 k = ring->avail = kring->nr_hwavail - resvd; 1071 if (k == 0 && td) 1072 selrecord(td, &kring->si); 1073 if (k && (netmap_verbose & NM_VERB_HOST)) 1074 D("%d pkts from stack", k); 1075 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 1076 } 1077 1078 1079 /* 1080 * get a refcounted reference to an interface. 1081 * Return ENXIO if the interface does not exist, EINVAL if netmap 1082 * is not supported by the interface. 1083 * If successful, hold a reference. 1084 * 1085 * During the NIC is attached to a bridge, reference is managed 1086 * at na->na_bdg_refcount using ADD/DROP_BDG_REF() as well as 1087 * virtual ports. Hence, on the final DROP_BDG_REF(), the NIC 1088 * is detached from the bridge, then ifp's refcount is dropped (this 1089 * is equivalent to that ifp is destroyed in case of virtual ports. 1090 * 1091 * This function uses if_rele() when we want to prevent the NIC from 1092 * being detached from the bridge in error handling. But once refcount 1093 * is acquired by this function, it must be released using nm_if_rele(). 1094 */ 1095 static int 1096 get_ifp(struct nmreq *nmr, struct ifnet **ifp) 1097 { 1098 const char *name = nmr->nr_name; 1099 int namelen = strlen(name); 1100 #ifdef NM_BRIDGE 1101 struct ifnet *iter = NULL; 1102 int no_prefix = 0; 1103 1104 do { 1105 struct nm_bridge *b; 1106 struct netmap_adapter *na; 1107 int i, cand = -1, cand2 = -1; 1108 1109 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) { 1110 no_prefix = 1; 1111 break; 1112 } 1113 b = nm_find_bridge(name, 1 /* create a new one if no exist */ ); 1114 if (b == NULL) { 1115 D("no bridges available for '%s'", name); 1116 return (ENXIO); 1117 } 1118 /* Now we are sure that name starts with the bridge's name */ 1119 BDG_WLOCK(b); 1120 /* lookup in the local list of ports */ 1121 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 1122 na = BDG_GET_VAR(b->bdg_ports[i]); 1123 if (na == NULL) { 1124 if (cand == -1) 1125 cand = i; /* potential insert point */ 1126 else if (cand2 == -1) 1127 cand2 = i; /* for host stack */ 1128 continue; 1129 } 1130 iter = na->ifp; 1131 /* XXX make sure the name only contains one : */ 1132 if (!strcmp(iter->if_xname, name) /* virtual port */ || 1133 (namelen > b->namelen && !strcmp(iter->if_xname, 1134 name + b->namelen + 1)) /* NIC */) { 1135 ADD_BDG_REF(iter); 1136 ND("found existing interface"); 1137 BDG_WUNLOCK(b); 1138 break; 1139 } 1140 } 1141 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 1142 break; 1143 if (cand == -1) { 1144 D("bridge full, cannot create new port"); 1145 no_port: 1146 BDG_WUNLOCK(b); 1147 *ifp = NULL; 1148 return EINVAL; 1149 } 1150 ND("create new bridge port %s", name); 1151 /* 1152 * create a struct ifnet for the new port. 1153 * The forwarding table is attached to the kring(s). 1154 */ 1155 /* 1156 * try see if there is a matching NIC with this name 1157 * (after the bridge's name) 1158 */ 1159 iter = ifunit_ref(name + b->namelen + 1); 1160 if (!iter) { /* this is a virtual port */ 1161 /* Create a temporary NA with arguments, then 1162 * bdg_netmap_attach() will allocate the real one 1163 * and attach it to the ifp 1164 */ 1165 struct netmap_adapter tmp_na; 1166 1167 if (nmr->nr_cmd) /* nr_cmd must be for a NIC */ 1168 goto no_port; 1169 bzero(&tmp_na, sizeof(tmp_na)); 1170 /* bound checking */ 1171 if (nmr->nr_tx_rings < 1) 1172 nmr->nr_tx_rings = 1; 1173 if (nmr->nr_tx_rings > NM_BDG_MAXRINGS) 1174 nmr->nr_tx_rings = NM_BDG_MAXRINGS; 1175 tmp_na.num_tx_rings = nmr->nr_tx_rings; 1176 if (nmr->nr_rx_rings < 1) 1177 nmr->nr_rx_rings = 1; 1178 if (nmr->nr_rx_rings > NM_BDG_MAXRINGS) 1179 nmr->nr_rx_rings = NM_BDG_MAXRINGS; 1180 tmp_na.num_rx_rings = nmr->nr_rx_rings; 1181 1182 iter = malloc(sizeof(*iter), M_DEVBUF, M_NOWAIT | M_ZERO); 1183 if (!iter) 1184 goto no_port; 1185 strcpy(iter->if_xname, name); 1186 tmp_na.ifp = iter; 1187 /* bdg_netmap_attach creates a struct netmap_adapter */ 1188 bdg_netmap_attach(&tmp_na); 1189 } else if (NETMAP_CAPABLE(iter)) { /* this is a NIC */ 1190 /* cannot attach the NIC that any user or another 1191 * bridge already holds. 1192 */ 1193 if (NETMAP_OWNED_BY_ANY(iter) || cand2 == -1) { 1194 ifunit_rele: 1195 if_rele(iter); /* don't detach from bridge */ 1196 goto no_port; 1197 } 1198 /* bind the host stack to the bridge */ 1199 if (nmr->nr_arg1 == NETMAP_BDG_HOST) { 1200 BDG_SET_VAR(b->bdg_ports[cand2], SWNA(iter)); 1201 SWNA(iter)->bdg_port = cand2; 1202 SWNA(iter)->na_bdg = b; 1203 } 1204 } else /* not a netmap-capable NIC */ 1205 goto ifunit_rele; 1206 na = NA(iter); 1207 na->bdg_port = cand; 1208 /* bind the port to the bridge (virtual ports are not active) */ 1209 BDG_SET_VAR(b->bdg_ports[cand], na); 1210 na->na_bdg = b; 1211 ADD_BDG_REF(iter); 1212 BDG_WUNLOCK(b); 1213 ND("attaching virtual bridge %p", b); 1214 } while (0); 1215 *ifp = iter; 1216 if (! *ifp) 1217 #endif /* NM_BRIDGE */ 1218 *ifp = ifunit_ref(name); 1219 if (*ifp == NULL) 1220 return (ENXIO); 1221 /* can do this if the capability exists and if_pspare[0] 1222 * points to the netmap descriptor. 1223 */ 1224 if (NETMAP_CAPABLE(*ifp)) { 1225 #ifdef NM_BRIDGE 1226 /* Users cannot use the NIC attached to a bridge directly */ 1227 if (no_prefix && NETMAP_OWNED_BY_KERN(*ifp)) { 1228 if_rele(*ifp); /* don't detach from bridge */ 1229 return EINVAL; 1230 } else 1231 #endif /* NM_BRIDGE */ 1232 return 0; /* valid pointer, we hold the refcount */ 1233 } 1234 nm_if_rele(*ifp); 1235 return EINVAL; // not NETMAP capable 1236 } 1237 1238 1239 /* 1240 * Error routine called when txsync/rxsync detects an error. 1241 * Can't do much more than resetting cur = hwcur, avail = hwavail. 1242 * Return 1 on reinit. 1243 * 1244 * This routine is only called by the upper half of the kernel. 1245 * It only reads hwcur (which is changed only by the upper half, too) 1246 * and hwavail (which may be changed by the lower half, but only on 1247 * a tx ring and only to increase it, so any error will be recovered 1248 * on the next call). For the above, we don't strictly need to call 1249 * it under lock. 1250 */ 1251 int 1252 netmap_ring_reinit(struct netmap_kring *kring) 1253 { 1254 struct netmap_ring *ring = kring->ring; 1255 u_int i, lim = kring->nkr_num_slots - 1; 1256 int errors = 0; 1257 1258 RD(10, "called for %s", kring->na->ifp->if_xname); 1259 if (ring->cur > lim) 1260 errors++; 1261 for (i = 0; i <= lim; i++) { 1262 u_int idx = ring->slot[i].buf_idx; 1263 u_int len = ring->slot[i].len; 1264 if (idx < 2 || idx >= netmap_total_buffers) { 1265 if (!errors++) 1266 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 1267 ring->slot[i].buf_idx = 0; 1268 ring->slot[i].len = 0; 1269 } else if (len > NETMAP_BUF_SIZE) { 1270 ring->slot[i].len = 0; 1271 if (!errors++) 1272 D("bad len %d at slot %d idx %d", 1273 len, i, idx); 1274 } 1275 } 1276 if (errors) { 1277 int pos = kring - kring->na->tx_rings; 1278 int n = kring->na->num_tx_rings + 1; 1279 1280 RD(10, "total %d errors", errors); 1281 errors++; 1282 RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 1283 kring->na->ifp->if_xname, 1284 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 1285 ring->cur, kring->nr_hwcur, 1286 ring->avail, kring->nr_hwavail); 1287 ring->cur = kring->nr_hwcur; 1288 ring->avail = kring->nr_hwavail; 1289 } 1290 return (errors ? 1 : 0); 1291 } 1292 1293 1294 /* 1295 * Set the ring ID. For devices with a single queue, a request 1296 * for all rings is the same as a single ring. 1297 */ 1298 static int 1299 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 1300 { 1301 struct ifnet *ifp = priv->np_ifp; 1302 struct netmap_adapter *na = NA(ifp); 1303 u_int i = ringid & NETMAP_RING_MASK; 1304 /* initially (np_qfirst == np_qlast) we don't want to lock */ 1305 int need_lock = (priv->np_qfirst != priv->np_qlast); 1306 int lim = na->num_rx_rings; 1307 1308 if (na->num_tx_rings > lim) 1309 lim = na->num_tx_rings; 1310 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 1311 D("invalid ring id %d", i); 1312 return (EINVAL); 1313 } 1314 if (need_lock) 1315 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1316 priv->np_ringid = ringid; 1317 if (ringid & NETMAP_SW_RING) { 1318 priv->np_qfirst = NETMAP_SW_RING; 1319 priv->np_qlast = 0; 1320 } else if (ringid & NETMAP_HW_RING) { 1321 priv->np_qfirst = i; 1322 priv->np_qlast = i + 1; 1323 } else { 1324 priv->np_qfirst = 0; 1325 priv->np_qlast = NETMAP_HW_RING ; 1326 } 1327 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 1328 if (need_lock) 1329 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1330 if (netmap_verbose) { 1331 if (ringid & NETMAP_SW_RING) 1332 D("ringid %s set to SW RING", ifp->if_xname); 1333 else if (ringid & NETMAP_HW_RING) 1334 D("ringid %s set to HW RING %d", ifp->if_xname, 1335 priv->np_qfirst); 1336 else 1337 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 1338 } 1339 return 0; 1340 } 1341 1342 1343 /* 1344 * possibly move the interface to netmap-mode. 1345 * If success it returns a pointer to netmap_if, otherwise NULL. 1346 * This must be called with NMA_LOCK held. 1347 */ 1348 static struct netmap_if * 1349 netmap_do_regif(struct netmap_priv_d *priv, struct ifnet *ifp, 1350 uint16_t ringid, int *err) 1351 { 1352 struct netmap_adapter *na = NA(ifp); 1353 struct netmap_if *nifp = NULL; 1354 int i, error; 1355 1356 if (na->na_bdg) 1357 BDG_WLOCK(na->na_bdg); 1358 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 1359 1360 /* ring configuration may have changed, fetch from the card */ 1361 netmap_update_config(na); 1362 priv->np_ifp = ifp; /* store the reference */ 1363 error = netmap_set_ringid(priv, ringid); 1364 if (error) 1365 goto out; 1366 nifp = netmap_if_new(ifp->if_xname, na); 1367 if (nifp == NULL) { /* allocation failed */ 1368 error = ENOMEM; 1369 } else if (ifp->if_capenable & IFCAP_NETMAP) { 1370 /* was already set */ 1371 } else { 1372 /* Otherwise set the card in netmap mode 1373 * and make it use the shared buffers. 1374 */ 1375 for (i = 0 ; i < na->num_tx_rings + 1; i++) 1376 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", 1377 MTX_NETWORK_LOCK, MTX_DEF); 1378 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 1379 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", 1380 MTX_NETWORK_LOCK, MTX_DEF); 1381 } 1382 if (nma_is_hw(na)) { 1383 SWNA(ifp)->tx_rings = &na->tx_rings[na->num_tx_rings]; 1384 SWNA(ifp)->rx_rings = &na->rx_rings[na->num_rx_rings]; 1385 } 1386 error = na->nm_register(ifp, 1); /* mode on */ 1387 #ifdef NM_BRIDGE 1388 if (!error) 1389 error = nm_alloc_bdgfwd(na); 1390 #endif /* NM_BRIDGE */ 1391 if (error) { 1392 netmap_dtor_locked(priv); 1393 /* nifp is not yet in priv, so free it separately */ 1394 netmap_if_free(nifp); 1395 nifp = NULL; 1396 } 1397 1398 } 1399 out: 1400 *err = error; 1401 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1402 if (na->na_bdg) 1403 BDG_WUNLOCK(na->na_bdg); 1404 return nifp; 1405 } 1406 1407 1408 /* Process NETMAP_BDG_ATTACH and NETMAP_BDG_DETACH */ 1409 static int 1410 kern_netmap_regif(struct nmreq *nmr) 1411 { 1412 struct ifnet *ifp; 1413 struct netmap_if *nifp; 1414 struct netmap_priv_d *npriv; 1415 int error; 1416 1417 npriv = malloc(sizeof(*npriv), M_DEVBUF, M_NOWAIT|M_ZERO); 1418 if (npriv == NULL) 1419 return ENOMEM; 1420 error = netmap_get_memory(npriv); 1421 if (error) { 1422 free_exit: 1423 bzero(npriv, sizeof(*npriv)); 1424 free(npriv, M_DEVBUF); 1425 return error; 1426 } 1427 1428 NMA_LOCK(); 1429 error = get_ifp(nmr, &ifp); 1430 if (error) { /* no device, or another bridge or user owns the device */ 1431 NMA_UNLOCK(); 1432 goto free_exit; 1433 } else if (!NETMAP_OWNED_BY_KERN(ifp)) { 1434 /* got reference to a virtual port or direct access to a NIC. 1435 * perhaps specified no bridge's prefix or wrong NIC's name 1436 */ 1437 error = EINVAL; 1438 unref_exit: 1439 nm_if_rele(ifp); 1440 NMA_UNLOCK(); 1441 goto free_exit; 1442 } 1443 1444 if (nmr->nr_cmd == NETMAP_BDG_DETACH) { 1445 if (NA(ifp)->refcount == 0) { /* not registered */ 1446 error = EINVAL; 1447 goto unref_exit; 1448 } 1449 NMA_UNLOCK(); 1450 1451 netmap_dtor(NA(ifp)->na_kpriv); /* unregister */ 1452 NA(ifp)->na_kpriv = NULL; 1453 nm_if_rele(ifp); /* detach from the bridge */ 1454 goto free_exit; 1455 } else if (NA(ifp)->refcount > 0) { /* already registered */ 1456 error = EINVAL; 1457 goto unref_exit; 1458 } 1459 1460 nifp = netmap_do_regif(npriv, ifp, nmr->nr_ringid, &error); 1461 if (!nifp) 1462 goto unref_exit; 1463 wmb(); // XXX do we need it ? 1464 npriv->np_nifp = nifp; 1465 NA(ifp)->na_kpriv = npriv; 1466 NMA_UNLOCK(); 1467 D("registered %s to netmap-mode", ifp->if_xname); 1468 return 0; 1469 } 1470 1471 1472 /* CORE_LOCK is not necessary */ 1473 static void 1474 netmap_swlock_wrapper(struct ifnet *dev, int what, u_int queueid) 1475 { 1476 struct netmap_adapter *na = SWNA(dev); 1477 1478 switch (what) { 1479 case NETMAP_TX_LOCK: 1480 mtx_lock(&na->tx_rings[queueid].q_lock); 1481 break; 1482 1483 case NETMAP_TX_UNLOCK: 1484 mtx_unlock(&na->tx_rings[queueid].q_lock); 1485 break; 1486 1487 case NETMAP_RX_LOCK: 1488 mtx_lock(&na->rx_rings[queueid].q_lock); 1489 break; 1490 1491 case NETMAP_RX_UNLOCK: 1492 mtx_unlock(&na->rx_rings[queueid].q_lock); 1493 break; 1494 } 1495 } 1496 1497 1498 /* Initialize necessary fields of sw adapter located in right after hw's 1499 * one. sw adapter attaches a pair of sw rings of the netmap-mode NIC. 1500 * It is always activated and deactivated at the same tie with the hw's one. 1501 * Thus we don't need refcounting on the sw adapter. 1502 * Regardless of NIC's feature we use separate lock so that anybody can lock 1503 * me independently from the hw adapter. 1504 * Make sure nm_register is NULL to be handled as FALSE in nma_is_hw 1505 */ 1506 static void 1507 netmap_attach_sw(struct ifnet *ifp) 1508 { 1509 struct netmap_adapter *hw_na = NA(ifp); 1510 struct netmap_adapter *na = SWNA(ifp); 1511 1512 na->ifp = ifp; 1513 na->separate_locks = 1; 1514 na->nm_lock = netmap_swlock_wrapper; 1515 na->num_rx_rings = na->num_tx_rings = 1; 1516 na->num_tx_desc = hw_na->num_tx_desc; 1517 na->num_rx_desc = hw_na->num_rx_desc; 1518 na->nm_txsync = netmap_bdg_to_host; 1519 } 1520 1521 1522 /* exported to kernel callers */ 1523 int 1524 netmap_bdg_ctl(struct nmreq *nmr, bdg_lookup_fn_t func) 1525 { 1526 struct nm_bridge *b; 1527 struct netmap_adapter *na; 1528 struct ifnet *iter; 1529 char *name = nmr->nr_name; 1530 int cmd = nmr->nr_cmd, namelen = strlen(name); 1531 int error = 0, i, j; 1532 1533 switch (cmd) { 1534 case NETMAP_BDG_ATTACH: 1535 case NETMAP_BDG_DETACH: 1536 error = kern_netmap_regif(nmr); 1537 break; 1538 1539 case NETMAP_BDG_LIST: 1540 /* this is used to enumerate bridges and ports */ 1541 if (namelen) { /* look up indexes of bridge and port */ 1542 if (strncmp(name, NM_NAME, strlen(NM_NAME))) { 1543 error = EINVAL; 1544 break; 1545 } 1546 b = nm_find_bridge(name, 0 /* don't create */); 1547 if (!b) { 1548 error = ENOENT; 1549 break; 1550 } 1551 1552 BDG_RLOCK(b); 1553 error = ENOENT; 1554 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 1555 na = BDG_GET_VAR(b->bdg_ports[i]); 1556 if (na == NULL) 1557 continue; 1558 iter = na->ifp; 1559 /* the former and the latter identify a 1560 * virtual port and a NIC, respectively 1561 */ 1562 if (!strcmp(iter->if_xname, name) || 1563 (namelen > b->namelen && 1564 !strcmp(iter->if_xname, 1565 name + b->namelen + 1))) { 1566 /* bridge index */ 1567 nmr->nr_arg1 = b - nm_bridges; 1568 nmr->nr_arg2 = i; /* port index */ 1569 error = 0; 1570 break; 1571 } 1572 } 1573 BDG_RUNLOCK(b); 1574 } else { 1575 /* return the first non-empty entry starting from 1576 * bridge nr_arg1 and port nr_arg2. 1577 * 1578 * Users can detect the end of the same bridge by 1579 * seeing the new and old value of nr_arg1, and can 1580 * detect the end of all the bridge by error != 0 1581 */ 1582 i = nmr->nr_arg1; 1583 j = nmr->nr_arg2; 1584 1585 for (error = ENOENT; error && i < NM_BRIDGES; i++) { 1586 b = nm_bridges + i; 1587 BDG_RLOCK(b); 1588 for (; j < NM_BDG_MAXPORTS; j++) { 1589 na = BDG_GET_VAR(b->bdg_ports[j]); 1590 if (na == NULL) 1591 continue; 1592 iter = na->ifp; 1593 nmr->nr_arg1 = i; 1594 nmr->nr_arg2 = j; 1595 strncpy(name, iter->if_xname, IFNAMSIZ); 1596 error = 0; 1597 break; 1598 } 1599 BDG_RUNLOCK(b); 1600 j = 0; /* following bridges scan from 0 */ 1601 } 1602 } 1603 break; 1604 1605 case NETMAP_BDG_LOOKUP_REG: 1606 /* register a lookup function to the given bridge. 1607 * nmr->nr_name may be just bridge's name (including ':' 1608 * if it is not just NM_NAME). 1609 */ 1610 if (!func) { 1611 error = EINVAL; 1612 break; 1613 } 1614 b = nm_find_bridge(name, 0 /* don't create */); 1615 if (!b) { 1616 error = EINVAL; 1617 break; 1618 } 1619 BDG_WLOCK(b); 1620 b->nm_bdg_lookup = func; 1621 BDG_WUNLOCK(b); 1622 break; 1623 default: 1624 D("invalid cmd (nmr->nr_cmd) (0x%x)", cmd); 1625 error = EINVAL; 1626 break; 1627 } 1628 return error; 1629 } 1630 1631 1632 /* 1633 * ioctl(2) support for the "netmap" device. 1634 * 1635 * Following a list of accepted commands: 1636 * - NIOCGINFO 1637 * - SIOCGIFADDR just for convenience 1638 * - NIOCREGIF 1639 * - NIOCUNREGIF 1640 * - NIOCTXSYNC 1641 * - NIOCRXSYNC 1642 * 1643 * Return 0 on success, errno otherwise. 1644 */ 1645 static int 1646 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 1647 int fflag, struct thread *td) 1648 { 1649 struct netmap_priv_d *priv = NULL; 1650 struct ifnet *ifp; 1651 struct nmreq *nmr = (struct nmreq *) data; 1652 struct netmap_adapter *na; 1653 int error; 1654 u_int i, lim; 1655 struct netmap_if *nifp; 1656 1657 (void)dev; /* UNUSED */ 1658 (void)fflag; /* UNUSED */ 1659 #ifdef linux 1660 #define devfs_get_cdevpriv(pp) \ 1661 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 1662 (*pp ? 0 : ENOENT); }) 1663 1664 /* devfs_set_cdevpriv cannot fail on linux */ 1665 #define devfs_set_cdevpriv(p, fn) \ 1666 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 1667 1668 1669 #define devfs_clear_cdevpriv() do { \ 1670 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 1671 } while (0) 1672 #endif /* linux */ 1673 1674 CURVNET_SET(TD_TO_VNET(td)); 1675 1676 error = devfs_get_cdevpriv((void **)&priv); 1677 if (error) { 1678 CURVNET_RESTORE(); 1679 /* XXX ENOENT should be impossible, since the priv 1680 * is now created in the open */ 1681 return (error == ENOENT ? ENXIO : error); 1682 } 1683 1684 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 1685 switch (cmd) { 1686 case NIOCGINFO: /* return capabilities etc */ 1687 if (nmr->nr_version != NETMAP_API) { 1688 D("API mismatch got %d have %d", 1689 nmr->nr_version, NETMAP_API); 1690 nmr->nr_version = NETMAP_API; 1691 error = EINVAL; 1692 break; 1693 } 1694 if (nmr->nr_cmd == NETMAP_BDG_LIST) { 1695 error = netmap_bdg_ctl(nmr, NULL); 1696 break; 1697 } 1698 /* update configuration */ 1699 error = netmap_get_memory(priv); 1700 ND("get_memory returned %d", error); 1701 if (error) 1702 break; 1703 /* memsize is always valid */ 1704 nmr->nr_memsize = nm_mem.nm_totalsize; 1705 nmr->nr_offset = 0; 1706 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 1707 if (nmr->nr_name[0] == '\0') /* just get memory info */ 1708 break; 1709 /* lock because get_ifp and update_config see na->refcount */ 1710 NMA_LOCK(); 1711 error = get_ifp(nmr, &ifp); /* get a refcount */ 1712 if (error) { 1713 NMA_UNLOCK(); 1714 break; 1715 } 1716 na = NA(ifp); /* retrieve netmap_adapter */ 1717 netmap_update_config(na); 1718 NMA_UNLOCK(); 1719 nmr->nr_rx_rings = na->num_rx_rings; 1720 nmr->nr_tx_rings = na->num_tx_rings; 1721 nmr->nr_rx_slots = na->num_rx_desc; 1722 nmr->nr_tx_slots = na->num_tx_desc; 1723 nm_if_rele(ifp); /* return the refcount */ 1724 break; 1725 1726 case NIOCREGIF: 1727 if (nmr->nr_version != NETMAP_API) { 1728 nmr->nr_version = NETMAP_API; 1729 error = EINVAL; 1730 break; 1731 } 1732 /* possibly attach/detach NIC and VALE switch */ 1733 i = nmr->nr_cmd; 1734 if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH) { 1735 error = netmap_bdg_ctl(nmr, NULL); 1736 break; 1737 } else if (i != 0) { 1738 D("nr_cmd must be 0 not %d", i); 1739 error = EINVAL; 1740 break; 1741 } 1742 1743 /* ensure allocators are ready */ 1744 error = netmap_get_memory(priv); 1745 ND("get_memory returned %d", error); 1746 if (error) 1747 break; 1748 1749 /* protect access to priv from concurrent NIOCREGIF */ 1750 NMA_LOCK(); 1751 if (priv->np_ifp != NULL) { /* thread already registered */ 1752 error = netmap_set_ringid(priv, nmr->nr_ringid); 1753 unlock_out: 1754 NMA_UNLOCK(); 1755 break; 1756 } 1757 /* find the interface and a reference */ 1758 error = get_ifp(nmr, &ifp); /* keep reference */ 1759 if (error) 1760 goto unlock_out; 1761 else if (NETMAP_OWNED_BY_KERN(ifp)) { 1762 nm_if_rele(ifp); 1763 goto unlock_out; 1764 } 1765 nifp = netmap_do_regif(priv, ifp, nmr->nr_ringid, &error); 1766 if (!nifp) { /* reg. failed, release priv and ref */ 1767 nm_if_rele(ifp); /* return the refcount */ 1768 priv->np_ifp = NULL; 1769 priv->np_nifp = NULL; 1770 goto unlock_out; 1771 } 1772 1773 /* the following assignment is a commitment. 1774 * Readers (i.e., poll and *SYNC) check for 1775 * np_nifp != NULL without locking 1776 */ 1777 wmb(); /* make sure previous writes are visible to all CPUs */ 1778 priv->np_nifp = nifp; 1779 NMA_UNLOCK(); 1780 1781 /* return the offset of the netmap_if object */ 1782 na = NA(ifp); /* retrieve netmap adapter */ 1783 nmr->nr_rx_rings = na->num_rx_rings; 1784 nmr->nr_tx_rings = na->num_tx_rings; 1785 nmr->nr_rx_slots = na->num_rx_desc; 1786 nmr->nr_tx_slots = na->num_tx_desc; 1787 nmr->nr_memsize = nm_mem.nm_totalsize; 1788 nmr->nr_offset = netmap_if_offset(nifp); 1789 break; 1790 1791 case NIOCUNREGIF: 1792 // XXX we have no data here ? 1793 D("deprecated, data is %p", nmr); 1794 error = EINVAL; 1795 break; 1796 1797 case NIOCTXSYNC: 1798 case NIOCRXSYNC: 1799 nifp = priv->np_nifp; 1800 1801 if (nifp == NULL) { 1802 error = ENXIO; 1803 break; 1804 } 1805 rmb(); /* make sure following reads are not from cache */ 1806 1807 1808 ifp = priv->np_ifp; /* we have a reference */ 1809 1810 if (ifp == NULL) { 1811 D("Internal error: nifp != NULL && ifp == NULL"); 1812 error = ENXIO; 1813 break; 1814 } 1815 1816 na = NA(ifp); /* retrieve netmap adapter */ 1817 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 1818 if (cmd == NIOCTXSYNC) 1819 netmap_sync_to_host(na); 1820 else 1821 netmap_sync_from_host(na, NULL, NULL); 1822 break; 1823 } 1824 /* find the last ring to scan */ 1825 lim = priv->np_qlast; 1826 if (lim == NETMAP_HW_RING) 1827 lim = (cmd == NIOCTXSYNC) ? 1828 na->num_tx_rings : na->num_rx_rings; 1829 1830 for (i = priv->np_qfirst; i < lim; i++) { 1831 if (cmd == NIOCTXSYNC) { 1832 struct netmap_kring *kring = &na->tx_rings[i]; 1833 if (netmap_verbose & NM_VERB_TXSYNC) 1834 D("pre txsync ring %d cur %d hwcur %d", 1835 i, kring->ring->cur, 1836 kring->nr_hwcur); 1837 na->nm_txsync(ifp, i, 1 /* do lock */); 1838 if (netmap_verbose & NM_VERB_TXSYNC) 1839 D("post txsync ring %d cur %d hwcur %d", 1840 i, kring->ring->cur, 1841 kring->nr_hwcur); 1842 } else { 1843 na->nm_rxsync(ifp, i, 1 /* do lock */); 1844 microtime(&na->rx_rings[i].ring->ts); 1845 } 1846 } 1847 1848 break; 1849 1850 #ifdef __FreeBSD__ 1851 case BIOCIMMEDIATE: 1852 case BIOCGHDRCMPLT: 1853 case BIOCSHDRCMPLT: 1854 case BIOCSSEESENT: 1855 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1856 break; 1857 1858 default: /* allow device-specific ioctls */ 1859 { 1860 struct socket so; 1861 bzero(&so, sizeof(so)); 1862 error = get_ifp(nmr, &ifp); /* keep reference */ 1863 if (error) 1864 break; 1865 so.so_vnet = ifp->if_vnet; 1866 // so->so_proto not null. 1867 error = ifioctl(&so, cmd, data, td); 1868 nm_if_rele(ifp); 1869 break; 1870 } 1871 1872 #else /* linux */ 1873 default: 1874 error = EOPNOTSUPP; 1875 #endif /* linux */ 1876 } 1877 1878 CURVNET_RESTORE(); 1879 return (error); 1880 } 1881 1882 1883 /* 1884 * select(2) and poll(2) handlers for the "netmap" device. 1885 * 1886 * Can be called for one or more queues. 1887 * Return true the event mask corresponding to ready events. 1888 * If there are no ready events, do a selrecord on either individual 1889 * selfd or on the global one. 1890 * Device-dependent parts (locking and sync of tx/rx rings) 1891 * are done through callbacks. 1892 * 1893 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1894 * The first one is remapped to pwait as selrecord() uses the name as an 1895 * hidden argument. 1896 */ 1897 static int 1898 netmap_poll(struct cdev *dev, int events, struct thread *td) 1899 { 1900 struct netmap_priv_d *priv = NULL; 1901 struct netmap_adapter *na; 1902 struct ifnet *ifp; 1903 struct netmap_kring *kring; 1904 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1905 u_int lim_tx, lim_rx, host_forwarded = 0; 1906 struct mbq q = { NULL, NULL, 0 }; 1907 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1908 void *pwait = dev; /* linux compatibility */ 1909 1910 (void)pwait; 1911 1912 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1913 return POLLERR; 1914 1915 if (priv->np_nifp == NULL) { 1916 D("No if registered"); 1917 return POLLERR; 1918 } 1919 rmb(); /* make sure following reads are not from cache */ 1920 1921 ifp = priv->np_ifp; 1922 // XXX check for deleting() ? 1923 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1924 return POLLERR; 1925 1926 if (netmap_verbose & 0x8000) 1927 D("device %s events 0x%x", ifp->if_xname, events); 1928 want_tx = events & (POLLOUT | POLLWRNORM); 1929 want_rx = events & (POLLIN | POLLRDNORM); 1930 1931 na = NA(ifp); /* retrieve netmap adapter */ 1932 1933 lim_tx = na->num_tx_rings; 1934 lim_rx = na->num_rx_rings; 1935 /* how many queues we are scanning */ 1936 if (priv->np_qfirst == NETMAP_SW_RING) { 1937 if (priv->np_txpoll || want_tx) { 1938 /* push any packets up, then we are always ready */ 1939 netmap_sync_to_host(na); 1940 revents |= want_tx; 1941 } 1942 if (want_rx) { 1943 kring = &na->rx_rings[lim_rx]; 1944 if (kring->ring->avail == 0) 1945 netmap_sync_from_host(na, td, dev); 1946 if (kring->ring->avail > 0) { 1947 revents |= want_rx; 1948 } 1949 } 1950 return (revents); 1951 } 1952 1953 /* if we are in transparent mode, check also the host rx ring */ 1954 kring = &na->rx_rings[lim_rx]; 1955 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1956 && want_rx 1957 && (netmap_fwd || kring->ring->flags & NR_FORWARD) ) { 1958 if (kring->ring->avail == 0) 1959 netmap_sync_from_host(na, td, dev); 1960 if (kring->ring->avail > 0) 1961 revents |= want_rx; 1962 } 1963 1964 /* 1965 * check_all is set if the card has more than one queue and 1966 * the client is polling all of them. If true, we sleep on 1967 * the "global" selfd, otherwise we sleep on individual selfd 1968 * (we can only sleep on one of them per direction). 1969 * The interrupt routine in the driver should always wake on 1970 * the individual selfd, and also on the global one if the card 1971 * has more than one ring. 1972 * 1973 * If the card has only one lock, we just use that. 1974 * If the card has separate ring locks, we just use those 1975 * unless we are doing check_all, in which case the whole 1976 * loop is wrapped by the global lock. 1977 * We acquire locks only when necessary: if poll is called 1978 * when buffers are available, we can just return without locks. 1979 * 1980 * rxsync() is only called if we run out of buffers on a POLLIN. 1981 * txsync() is called if we run out of buffers on POLLOUT, or 1982 * there are pending packets to send. The latter can be disabled 1983 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1984 */ 1985 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1986 1987 /* 1988 * core_lock indicates what to do with the core lock. 1989 * The core lock is used when either the card has no individual 1990 * locks, or it has individual locks but we are cheking all 1991 * rings so we need the core lock to avoid missing wakeup events. 1992 * 1993 * It has three possible states: 1994 * NO_CL we don't need to use the core lock, e.g. 1995 * because we are protected by individual locks. 1996 * NEED_CL we need the core lock. In this case, when we 1997 * call the lock routine, move to LOCKED_CL 1998 * to remember to release the lock once done. 1999 * LOCKED_CL core lock is set, so we need to release it. 2000 */ 2001 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 2002 #ifdef NM_BRIDGE 2003 /* the bridge uses separate locks */ 2004 if (na->nm_register == bdg_netmap_reg) { 2005 ND("not using core lock for %s", ifp->if_xname); 2006 core_lock = NO_CL; 2007 } 2008 #endif /* NM_BRIDGE */ 2009 if (priv->np_qlast != NETMAP_HW_RING) { 2010 lim_tx = lim_rx = priv->np_qlast; 2011 } 2012 2013 /* 2014 * We start with a lock free round which is good if we have 2015 * data available. If this fails, then lock and call the sync 2016 * routines. 2017 */ 2018 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 2019 kring = &na->rx_rings[i]; 2020 if (kring->ring->avail > 0) { 2021 revents |= want_rx; 2022 want_rx = 0; /* also breaks the loop */ 2023 } 2024 } 2025 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 2026 kring = &na->tx_rings[i]; 2027 if (kring->ring->avail > 0) { 2028 revents |= want_tx; 2029 want_tx = 0; /* also breaks the loop */ 2030 } 2031 } 2032 2033 /* 2034 * If we to push packets out (priv->np_txpoll) or want_tx is 2035 * still set, we do need to run the txsync calls (on all rings, 2036 * to avoid that the tx rings stall). 2037 */ 2038 if (priv->np_txpoll || want_tx) { 2039 flush_tx: 2040 for (i = priv->np_qfirst; i < lim_tx; i++) { 2041 kring = &na->tx_rings[i]; 2042 /* 2043 * Skip the current ring if want_tx == 0 2044 * (we have already done a successful sync on 2045 * a previous ring) AND kring->cur == kring->hwcur 2046 * (there are no pending transmissions for this ring). 2047 */ 2048 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 2049 continue; 2050 if (core_lock == NEED_CL) { 2051 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2052 core_lock = LOCKED_CL; 2053 } 2054 if (na->separate_locks) 2055 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 2056 if (netmap_verbose & NM_VERB_TXSYNC) 2057 D("send %d on %s %d", 2058 kring->ring->cur, 2059 ifp->if_xname, i); 2060 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 2061 revents |= POLLERR; 2062 2063 /* Check avail/call selrecord only if called with POLLOUT */ 2064 if (want_tx) { 2065 if (kring->ring->avail > 0) { 2066 /* stop at the first ring. We don't risk 2067 * starvation. 2068 */ 2069 revents |= want_tx; 2070 want_tx = 0; 2071 } else if (!check_all) 2072 selrecord(td, &kring->si); 2073 } 2074 if (na->separate_locks) 2075 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 2076 } 2077 } 2078 2079 /* 2080 * now if want_rx is still set we need to lock and rxsync. 2081 * Do it on all rings because otherwise we starve. 2082 */ 2083 if (want_rx) { 2084 for (i = priv->np_qfirst; i < lim_rx; i++) { 2085 kring = &na->rx_rings[i]; 2086 if (core_lock == NEED_CL) { 2087 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2088 core_lock = LOCKED_CL; 2089 } 2090 if (na->separate_locks) 2091 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 2092 if (netmap_fwd ||kring->ring->flags & NR_FORWARD) { 2093 ND(10, "forwarding some buffers up %d to %d", 2094 kring->nr_hwcur, kring->ring->cur); 2095 netmap_grab_packets(kring, &q, netmap_fwd); 2096 } 2097 2098 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 2099 revents |= POLLERR; 2100 if (netmap_no_timestamp == 0 || 2101 kring->ring->flags & NR_TIMESTAMP) { 2102 microtime(&kring->ring->ts); 2103 } 2104 2105 if (kring->ring->avail > 0) 2106 revents |= want_rx; 2107 else if (!check_all) 2108 selrecord(td, &kring->si); 2109 if (na->separate_locks) 2110 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 2111 } 2112 } 2113 if (check_all && revents == 0) { /* signal on the global queue */ 2114 if (want_tx) 2115 selrecord(td, &na->tx_si); 2116 if (want_rx) 2117 selrecord(td, &na->rx_si); 2118 } 2119 2120 /* forward host to the netmap ring */ 2121 kring = &na->rx_rings[lim_rx]; 2122 if (kring->nr_hwavail > 0) 2123 ND("host rx %d has %d packets", lim_rx, kring->nr_hwavail); 2124 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 2125 && (netmap_fwd || kring->ring->flags & NR_FORWARD) 2126 && kring->nr_hwavail > 0 && !host_forwarded) { 2127 if (core_lock == NEED_CL) { 2128 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2129 core_lock = LOCKED_CL; 2130 } 2131 netmap_sw_to_nic(na); 2132 host_forwarded = 1; /* prevent another pass */ 2133 want_rx = 0; 2134 goto flush_tx; 2135 } 2136 2137 if (core_lock == LOCKED_CL) 2138 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 2139 if (q.head) 2140 netmap_send_up(na->ifp, q.head); 2141 2142 return (revents); 2143 } 2144 2145 /*------- driver support routines ------*/ 2146 2147 2148 /* 2149 * default lock wrapper. 2150 */ 2151 static void 2152 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 2153 { 2154 struct netmap_adapter *na = NA(dev); 2155 2156 switch (what) { 2157 #ifdef linux /* some system do not need lock on register */ 2158 case NETMAP_REG_LOCK: 2159 case NETMAP_REG_UNLOCK: 2160 break; 2161 #endif /* linux */ 2162 2163 case NETMAP_CORE_LOCK: 2164 mtx_lock(&na->core_lock); 2165 break; 2166 2167 case NETMAP_CORE_UNLOCK: 2168 mtx_unlock(&na->core_lock); 2169 break; 2170 2171 case NETMAP_TX_LOCK: 2172 mtx_lock(&na->tx_rings[queueid].q_lock); 2173 break; 2174 2175 case NETMAP_TX_UNLOCK: 2176 mtx_unlock(&na->tx_rings[queueid].q_lock); 2177 break; 2178 2179 case NETMAP_RX_LOCK: 2180 mtx_lock(&na->rx_rings[queueid].q_lock); 2181 break; 2182 2183 case NETMAP_RX_UNLOCK: 2184 mtx_unlock(&na->rx_rings[queueid].q_lock); 2185 break; 2186 } 2187 } 2188 2189 2190 /* 2191 * Initialize a ``netmap_adapter`` object created by driver on attach. 2192 * We allocate a block of memory with room for a struct netmap_adapter 2193 * plus two sets of N+2 struct netmap_kring (where N is the number 2194 * of hardware rings): 2195 * krings 0..N-1 are for the hardware queues. 2196 * kring N is for the host stack queue 2197 * kring N+1 is only used for the selinfo for all queues. 2198 * Return 0 on success, ENOMEM otherwise. 2199 * 2200 * By default the receive and transmit adapter ring counts are both initialized 2201 * to num_queues. na->num_tx_rings can be set for cards with different tx/rx 2202 * setups. 2203 */ 2204 int 2205 netmap_attach(struct netmap_adapter *arg, int num_queues) 2206 { 2207 struct netmap_adapter *na = NULL; 2208 struct ifnet *ifp = arg ? arg->ifp : NULL; 2209 int len; 2210 2211 if (arg == NULL || ifp == NULL) 2212 goto fail; 2213 len = nma_is_vp(arg) ? sizeof(*na) : sizeof(*na) * 2; 2214 na = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2215 if (na == NULL) 2216 goto fail; 2217 WNA(ifp) = na; 2218 *na = *arg; /* copy everything, trust the driver to not pass junk */ 2219 NETMAP_SET_CAPABLE(ifp); 2220 if (na->num_tx_rings == 0) 2221 na->num_tx_rings = num_queues; 2222 na->num_rx_rings = num_queues; 2223 na->refcount = na->na_single = na->na_multi = 0; 2224 /* Core lock initialized here, others after netmap_if_new. */ 2225 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF); 2226 if (na->nm_lock == NULL) { 2227 ND("using default locks for %s", ifp->if_xname); 2228 na->nm_lock = netmap_lock_wrapper; 2229 } 2230 #ifdef linux 2231 if (ifp->netdev_ops) { 2232 ND("netdev_ops %p", ifp->netdev_ops); 2233 /* prepare a clone of the netdev ops */ 2234 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28) 2235 na->nm_ndo.ndo_start_xmit = ifp->netdev_ops; 2236 #else 2237 na->nm_ndo = *ifp->netdev_ops; 2238 #endif 2239 } 2240 na->nm_ndo.ndo_start_xmit = linux_netmap_start; 2241 #endif 2242 if (!nma_is_vp(arg)) 2243 netmap_attach_sw(ifp); 2244 D("success for %s", ifp->if_xname); 2245 return 0; 2246 2247 fail: 2248 D("fail, arg %p ifp %p na %p", arg, ifp, na); 2249 netmap_detach(ifp); 2250 return (na ? EINVAL : ENOMEM); 2251 } 2252 2253 2254 /* 2255 * Free the allocated memory linked to the given ``netmap_adapter`` 2256 * object. 2257 */ 2258 void 2259 netmap_detach(struct ifnet *ifp) 2260 { 2261 struct netmap_adapter *na = NA(ifp); 2262 2263 if (!na) 2264 return; 2265 2266 mtx_destroy(&na->core_lock); 2267 2268 if (na->tx_rings) { /* XXX should not happen */ 2269 D("freeing leftover tx_rings"); 2270 free(na->tx_rings, M_DEVBUF); 2271 } 2272 bzero(na, sizeof(*na)); 2273 WNA(ifp) = NULL; 2274 free(na, M_DEVBUF); 2275 } 2276 2277 2278 int 2279 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na, u_int ring_nr); 2280 2281 /* we don't need to lock myself */ 2282 static int 2283 bdg_netmap_start(struct ifnet *ifp, struct mbuf *m) 2284 { 2285 struct netmap_adapter *na = SWNA(ifp); 2286 struct nm_bdg_fwd *ft = na->rx_rings[0].nkr_ft; 2287 char *buf = NMB(&na->rx_rings[0].ring->slot[0]); 2288 u_int len = MBUF_LEN(m); 2289 2290 if (!na->na_bdg) /* SWNA is not configured to be attached */ 2291 return EBUSY; 2292 m_copydata(m, 0, len, buf); 2293 ft->ft_flags = 0; // XXX could be indirect ? 2294 ft->ft_len = len; 2295 ft->ft_buf = buf; 2296 ft->ft_next = NM_BDG_BATCH; // XXX is it needed ? 2297 nm_bdg_flush(ft, 1, na, 0); 2298 2299 /* release the mbuf in either cases of success or failure. As an 2300 * alternative, put the mbuf in a free list and free the list 2301 * only when really necessary. 2302 */ 2303 m_freem(m); 2304 2305 return (0); 2306 } 2307 2308 2309 /* 2310 * Intercept packets from the network stack and pass them 2311 * to netmap as incoming packets on the 'software' ring. 2312 * We are not locked when called. 2313 */ 2314 int 2315 netmap_start(struct ifnet *ifp, struct mbuf *m) 2316 { 2317 struct netmap_adapter *na = NA(ifp); 2318 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 2319 u_int i, len = MBUF_LEN(m); 2320 u_int error = EBUSY, lim = kring->nkr_num_slots - 1; 2321 struct netmap_slot *slot; 2322 2323 if (netmap_verbose & NM_VERB_HOST) 2324 D("%s packet %d len %d from the stack", ifp->if_xname, 2325 kring->nr_hwcur + kring->nr_hwavail, len); 2326 if (len > NETMAP_BUF_SIZE) { /* too long for us */ 2327 D("%s from_host, drop packet size %d > %d", ifp->if_xname, 2328 len, NETMAP_BUF_SIZE); 2329 m_freem(m); 2330 return EINVAL; 2331 } 2332 if (na->na_bdg) 2333 return bdg_netmap_start(ifp, m); 2334 2335 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2336 if (kring->nr_hwavail >= lim) { 2337 if (netmap_verbose) 2338 D("stack ring %s full\n", ifp->if_xname); 2339 goto done; /* no space */ 2340 } 2341 2342 /* compute the insert position */ 2343 i = kring->nr_hwcur + kring->nr_hwavail; 2344 if (i > lim) 2345 i -= lim + 1; 2346 slot = &kring->ring->slot[i]; 2347 m_copydata(m, 0, len, NMB(slot)); 2348 slot->len = len; 2349 slot->flags = kring->nkr_slot_flags; 2350 kring->nr_hwavail++; 2351 if (netmap_verbose & NM_VERB_HOST) 2352 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 2353 selwakeuppri(&kring->si, PI_NET); 2354 error = 0; 2355 done: 2356 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 2357 2358 /* release the mbuf in either cases of success or failure. As an 2359 * alternative, put the mbuf in a free list and free the list 2360 * only when really necessary. 2361 */ 2362 m_freem(m); 2363 2364 return (error); 2365 } 2366 2367 2368 /* 2369 * netmap_reset() is called by the driver routines when reinitializing 2370 * a ring. The driver is in charge of locking to protect the kring. 2371 * If netmap mode is not set just return NULL. 2372 */ 2373 struct netmap_slot * 2374 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 2375 u_int new_cur) 2376 { 2377 struct netmap_kring *kring; 2378 int new_hwofs, lim; 2379 2380 if (na == NULL) 2381 return NULL; /* no netmap support here */ 2382 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 2383 return NULL; /* nothing to reinitialize */ 2384 2385 if (tx == NR_TX) { 2386 if (n >= na->num_tx_rings) 2387 return NULL; 2388 kring = na->tx_rings + n; 2389 new_hwofs = kring->nr_hwcur - new_cur; 2390 } else { 2391 if (n >= na->num_rx_rings) 2392 return NULL; 2393 kring = na->rx_rings + n; 2394 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 2395 } 2396 lim = kring->nkr_num_slots - 1; 2397 if (new_hwofs > lim) 2398 new_hwofs -= lim + 1; 2399 2400 /* Alwayws set the new offset value and realign the ring. */ 2401 kring->nkr_hwofs = new_hwofs; 2402 if (tx == NR_TX) 2403 kring->nr_hwavail = kring->nkr_num_slots - 1; 2404 ND(10, "new hwofs %d on %s %s[%d]", 2405 kring->nkr_hwofs, na->ifp->if_xname, 2406 tx == NR_TX ? "TX" : "RX", n); 2407 2408 #if 0 // def linux 2409 /* XXX check that the mappings are correct */ 2410 /* need ring_nr, adapter->pdev, direction */ 2411 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 2412 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 2413 D("error mapping rx netmap buffer %d", i); 2414 // XXX fix error handling 2415 } 2416 2417 #endif /* linux */ 2418 /* 2419 * Wakeup on the individual and global lock 2420 * We do the wakeup here, but the ring is not yet reconfigured. 2421 * However, we are under lock so there are no races. 2422 */ 2423 selwakeuppri(&kring->si, PI_NET); 2424 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 2425 return kring->ring->slot; 2426 } 2427 2428 2429 /* returns the next position in the ring */ 2430 static int 2431 nm_bdg_preflush(struct netmap_adapter *na, u_int ring_nr, 2432 struct netmap_kring *kring, u_int end) 2433 { 2434 struct netmap_ring *ring = kring->ring; 2435 struct nm_bdg_fwd *ft = kring->nkr_ft; 2436 u_int j = kring->nr_hwcur, lim = kring->nkr_num_slots - 1; 2437 u_int ft_i = 0; /* start from 0 */ 2438 2439 for (; likely(j != end); j = unlikely(j == lim) ? 0 : j+1) { 2440 struct netmap_slot *slot = &ring->slot[j]; 2441 char *buf = NMB(slot); 2442 int len = ft[ft_i].ft_len = slot->len; 2443 2444 ft[ft_i].ft_flags = slot->flags; 2445 2446 ND("flags is 0x%x", slot->flags); 2447 /* this slot goes into a list so initialize the link field */ 2448 ft[ft_i].ft_next = NM_BDG_BATCH; /* equivalent to NULL */ 2449 if (unlikely(len < 14)) 2450 continue; 2451 buf = ft[ft_i].ft_buf = (slot->flags & NS_INDIRECT) ? 2452 *((void **)buf) : buf; 2453 prefetch(buf); 2454 if (unlikely(++ft_i == netmap_bridge)) 2455 ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr); 2456 } 2457 if (ft_i) 2458 ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr); 2459 return j; 2460 } 2461 2462 2463 /* 2464 * Pass packets from nic to the bridge. Must be called with 2465 * proper locks on the source interface. 2466 * Note, no user process can access this NIC so we can ignore 2467 * the info in the 'ring'. 2468 */ 2469 static void 2470 netmap_nic_to_bdg(struct ifnet *ifp, u_int ring_nr) 2471 { 2472 struct netmap_adapter *na = NA(ifp); 2473 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 2474 struct netmap_ring *ring = kring->ring; 2475 int j, k, lim = kring->nkr_num_slots - 1; 2476 2477 /* fetch packets that have arrived */ 2478 na->nm_rxsync(ifp, ring_nr, 0); 2479 /* XXX we don't count reserved, but it should be 0 */ 2480 j = kring->nr_hwcur; 2481 k = j + kring->nr_hwavail; 2482 if (k > lim) 2483 k -= lim + 1; 2484 if (k == j && netmap_verbose) { 2485 D("how strange, interrupt with no packets on %s", 2486 ifp->if_xname); 2487 return; 2488 } 2489 2490 j = nm_bdg_preflush(na, ring_nr, kring, k); 2491 2492 /* we consume everything, but we cannot update kring directly 2493 * because the nic may have destroyed the info in the NIC ring. 2494 * So we need to call rxsync again to restore it. 2495 */ 2496 ring->cur = j; 2497 ring->avail = 0; 2498 na->nm_rxsync(ifp, ring_nr, 0); 2499 return; 2500 } 2501 2502 2503 /* 2504 * Default functions to handle rx/tx interrupts 2505 * we have 4 cases: 2506 * 1 ring, single lock: 2507 * lock(core); wake(i=0); unlock(core) 2508 * N rings, single lock: 2509 * lock(core); wake(i); wake(N+1) unlock(core) 2510 * 1 ring, separate locks: (i=0) 2511 * lock(i); wake(i); unlock(i) 2512 * N rings, separate locks: 2513 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 2514 * work_done is non-null on the RX path. 2515 * 2516 * The 'q' argument also includes flag to tell whether the queue is 2517 * already locked on enter, and whether it should remain locked on exit. 2518 * This helps adapting to different defaults in drivers and OSes. 2519 */ 2520 int 2521 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 2522 { 2523 struct netmap_adapter *na; 2524 struct netmap_kring *r; 2525 NM_SELINFO_T *main_wq; 2526 int locktype, unlocktype, nic_to_bridge, lock; 2527 2528 if (!(ifp->if_capenable & IFCAP_NETMAP)) 2529 return 0; 2530 2531 lock = q & (NETMAP_LOCKED_ENTER | NETMAP_LOCKED_EXIT); 2532 q = q & NETMAP_RING_MASK; 2533 2534 ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 2535 na = NA(ifp); 2536 if (na->na_flags & NAF_SKIP_INTR) { 2537 ND("use regular interrupt"); 2538 return 0; 2539 } 2540 2541 if (work_done) { /* RX path */ 2542 if (q >= na->num_rx_rings) 2543 return 0; // not a physical queue 2544 r = na->rx_rings + q; 2545 r->nr_kflags |= NKR_PENDINTR; 2546 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 2547 /* set a flag if the NIC is attached to a VALE switch */ 2548 nic_to_bridge = (na->na_bdg != NULL); 2549 locktype = NETMAP_RX_LOCK; 2550 unlocktype = NETMAP_RX_UNLOCK; 2551 } else { /* TX path */ 2552 if (q >= na->num_tx_rings) 2553 return 0; // not a physical queue 2554 r = na->tx_rings + q; 2555 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 2556 work_done = &q; /* dummy */ 2557 nic_to_bridge = 0; 2558 locktype = NETMAP_TX_LOCK; 2559 unlocktype = NETMAP_TX_UNLOCK; 2560 } 2561 if (na->separate_locks) { 2562 if (!(lock & NETMAP_LOCKED_ENTER)) 2563 na->nm_lock(ifp, locktype, q); 2564 /* If a NIC is attached to a bridge, flush packets 2565 * (and no need to wakeup anyone). Otherwise, wakeup 2566 * possible processes waiting for packets. 2567 */ 2568 if (nic_to_bridge) 2569 netmap_nic_to_bdg(ifp, q); 2570 else 2571 selwakeuppri(&r->si, PI_NET); 2572 na->nm_lock(ifp, unlocktype, q); 2573 if (main_wq && !nic_to_bridge) { 2574 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2575 selwakeuppri(main_wq, PI_NET); 2576 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 2577 } 2578 /* lock the queue again if requested */ 2579 if (lock & NETMAP_LOCKED_EXIT) 2580 na->nm_lock(ifp, locktype, q); 2581 } else { 2582 if (!(lock & NETMAP_LOCKED_ENTER)) 2583 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 2584 if (nic_to_bridge) 2585 netmap_nic_to_bdg(ifp, q); 2586 else { 2587 selwakeuppri(&r->si, PI_NET); 2588 if (main_wq) 2589 selwakeuppri(main_wq, PI_NET); 2590 } 2591 if (!(lock & NETMAP_LOCKED_EXIT)) 2592 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 2593 } 2594 *work_done = 1; /* do not fire napi again */ 2595 return 1; 2596 } 2597 2598 2599 #ifdef linux /* linux-specific routines */ 2600 2601 2602 /* 2603 * Remap linux arguments into the FreeBSD call. 2604 * - pwait is the poll table, passed as 'dev'; 2605 * If pwait == NULL someone else already woke up before. We can report 2606 * events but they are filtered upstream. 2607 * If pwait != NULL, then pwait->key contains the list of events. 2608 * - events is computed from pwait as above. 2609 * - file is passed as 'td'; 2610 */ 2611 static u_int 2612 linux_netmap_poll(struct file * file, struct poll_table_struct *pwait) 2613 { 2614 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28) 2615 int events = POLLIN | POLLOUT; /* XXX maybe... */ 2616 #elif LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0) 2617 int events = pwait ? pwait->key : POLLIN | POLLOUT; 2618 #else /* in 3.4.0 field 'key' was renamed to '_key' */ 2619 int events = pwait ? pwait->_key : POLLIN | POLLOUT; 2620 #endif 2621 return netmap_poll((void *)pwait, events, (void *)file); 2622 } 2623 2624 2625 static int 2626 linux_netmap_mmap(struct file *f, struct vm_area_struct *vma) 2627 { 2628 int lut_skip, i, j; 2629 int user_skip = 0; 2630 struct lut_entry *l_entry; 2631 int error = 0; 2632 unsigned long off, tomap; 2633 /* 2634 * vma->vm_start: start of mapping user address space 2635 * vma->vm_end: end of the mapping user address space 2636 * vma->vm_pfoff: offset of first page in the device 2637 */ 2638 2639 // XXX security checks 2640 2641 error = netmap_get_memory(f->private_data); 2642 ND("get_memory returned %d", error); 2643 if (error) 2644 return -error; 2645 2646 off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */ 2647 tomap = vma->vm_end - vma->vm_start; 2648 for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */ 2649 const struct netmap_obj_pool *p = &nm_mem.pools[i]; 2650 /* 2651 * In each pool memory is allocated in clusters 2652 * of size _clustsize, each containing clustentries 2653 * entries. For each object k we already store the 2654 * vtophys mapping in lut[k] so we use that, scanning 2655 * the lut[] array in steps of clustentries, 2656 * and we map each cluster (not individual pages, 2657 * it would be overkill -- XXX slow ? 20130415). 2658 */ 2659 2660 /* 2661 * We interpret vm_pgoff as an offset into the whole 2662 * netmap memory, as if all clusters where contiguous. 2663 */ 2664 for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) { 2665 unsigned long paddr, mapsize; 2666 if (p->_clustsize <= off) { 2667 off -= p->_clustsize; 2668 continue; 2669 } 2670 l_entry = &p->lut[lut_skip]; /* first obj in the cluster */ 2671 paddr = l_entry->paddr + off; 2672 mapsize = p->_clustsize - off; 2673 off = 0; 2674 if (mapsize > tomap) 2675 mapsize = tomap; 2676 ND("remap_pfn_range(%lx, %lx, %lx)", 2677 vma->vm_start + user_skip, 2678 paddr >> PAGE_SHIFT, mapsize); 2679 if (remap_pfn_range(vma, vma->vm_start + user_skip, 2680 paddr >> PAGE_SHIFT, mapsize, 2681 vma->vm_page_prot)) 2682 return -EAGAIN; // XXX check return value 2683 user_skip += mapsize; 2684 tomap -= mapsize; 2685 if (tomap == 0) 2686 goto done; 2687 } 2688 } 2689 done: 2690 2691 return 0; 2692 } 2693 2694 2695 static netdev_tx_t 2696 linux_netmap_start(struct sk_buff *skb, struct net_device *dev) 2697 { 2698 netmap_start(dev, skb); 2699 return (NETDEV_TX_OK); 2700 } 2701 2702 2703 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38 2704 #define LIN_IOCTL_NAME .ioctl 2705 int 2706 linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */) 2707 #else 2708 #define LIN_IOCTL_NAME .unlocked_ioctl 2709 long 2710 linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */) 2711 #endif 2712 { 2713 int ret; 2714 struct nmreq nmr; 2715 bzero(&nmr, sizeof(nmr)); 2716 2717 if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0) 2718 return -EFAULT; 2719 ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file); 2720 if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0) 2721 return -EFAULT; 2722 return -ret; 2723 } 2724 2725 2726 static int 2727 netmap_release(struct inode *inode, struct file *file) 2728 { 2729 (void)inode; /* UNUSED */ 2730 if (file->private_data) 2731 netmap_dtor(file->private_data); 2732 return (0); 2733 } 2734 2735 2736 static int 2737 linux_netmap_open(struct inode *inode, struct file *file) 2738 { 2739 struct netmap_priv_d *priv; 2740 (void)inode; /* UNUSED */ 2741 2742 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 2743 M_NOWAIT | M_ZERO); 2744 if (priv == NULL) 2745 return -ENOMEM; 2746 2747 file->private_data = priv; 2748 2749 return (0); 2750 } 2751 2752 2753 static struct file_operations netmap_fops = { 2754 .owner = THIS_MODULE, 2755 .open = linux_netmap_open, 2756 .mmap = linux_netmap_mmap, 2757 LIN_IOCTL_NAME = linux_netmap_ioctl, 2758 .poll = linux_netmap_poll, 2759 .release = netmap_release, 2760 }; 2761 2762 2763 static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */ 2764 MISC_DYNAMIC_MINOR, 2765 "netmap", 2766 &netmap_fops, 2767 }; 2768 2769 static int netmap_init(void); 2770 static void netmap_fini(void); 2771 2772 2773 /* Errors have negative values on linux */ 2774 static int linux_netmap_init(void) 2775 { 2776 return -netmap_init(); 2777 } 2778 2779 module_init(linux_netmap_init); 2780 module_exit(netmap_fini); 2781 /* export certain symbols to other modules */ 2782 EXPORT_SYMBOL(netmap_attach); // driver attach routines 2783 EXPORT_SYMBOL(netmap_detach); // driver detach routines 2784 EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error 2785 EXPORT_SYMBOL(netmap_buffer_lut); 2786 EXPORT_SYMBOL(netmap_total_buffers); // index check 2787 EXPORT_SYMBOL(netmap_buffer_base); 2788 EXPORT_SYMBOL(netmap_reset); // ring init routines 2789 EXPORT_SYMBOL(netmap_buf_size); 2790 EXPORT_SYMBOL(netmap_rx_irq); // default irq handler 2791 EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away 2792 EXPORT_SYMBOL(netmap_bdg_ctl); // bridge configuration routine 2793 EXPORT_SYMBOL(netmap_bdg_learning); // the default lookup function 2794 2795 2796 MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/"); 2797 MODULE_DESCRIPTION("The netmap packet I/O framework"); 2798 MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */ 2799 2800 #else /* __FreeBSD__ */ 2801 2802 2803 static struct cdevsw netmap_cdevsw = { 2804 .d_version = D_VERSION, 2805 .d_name = "netmap", 2806 .d_open = netmap_open, 2807 .d_mmap = netmap_mmap, 2808 .d_mmap_single = netmap_mmap_single, 2809 .d_ioctl = netmap_ioctl, 2810 .d_poll = netmap_poll, 2811 .d_close = netmap_close, 2812 }; 2813 #endif /* __FreeBSD__ */ 2814 2815 #ifdef NM_BRIDGE 2816 /* 2817 *---- support for virtual bridge ----- 2818 */ 2819 2820 /* ----- FreeBSD if_bridge hash function ------- */ 2821 2822 /* 2823 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2824 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2825 * 2826 * http://www.burtleburtle.net/bob/hash/spooky.html 2827 */ 2828 #define mix(a, b, c) \ 2829 do { \ 2830 a -= b; a -= c; a ^= (c >> 13); \ 2831 b -= c; b -= a; b ^= (a << 8); \ 2832 c -= a; c -= b; c ^= (b >> 13); \ 2833 a -= b; a -= c; a ^= (c >> 12); \ 2834 b -= c; b -= a; b ^= (a << 16); \ 2835 c -= a; c -= b; c ^= (b >> 5); \ 2836 a -= b; a -= c; a ^= (c >> 3); \ 2837 b -= c; b -= a; b ^= (a << 10); \ 2838 c -= a; c -= b; c ^= (b >> 15); \ 2839 } while (/*CONSTCOND*/0) 2840 2841 static __inline uint32_t 2842 nm_bridge_rthash(const uint8_t *addr) 2843 { 2844 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 2845 2846 b += addr[5] << 8; 2847 b += addr[4]; 2848 a += addr[3] << 24; 2849 a += addr[2] << 16; 2850 a += addr[1] << 8; 2851 a += addr[0]; 2852 2853 mix(a, b, c); 2854 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 2855 return (c & BRIDGE_RTHASH_MASK); 2856 } 2857 2858 #undef mix 2859 2860 2861 static int 2862 bdg_netmap_reg(struct ifnet *ifp, int onoff) 2863 { 2864 // struct nm_bridge *b = NA(ifp)->na_bdg; 2865 2866 /* the interface is already attached to the bridge, 2867 * so we only need to toggle IFCAP_NETMAP. 2868 * Locking is not necessary (we are already under 2869 * NMA_LOCK, and the port is not in use during this call). 2870 */ 2871 /* BDG_WLOCK(b); */ 2872 if (onoff) { 2873 ifp->if_capenable |= IFCAP_NETMAP; 2874 } else { 2875 ifp->if_capenable &= ~IFCAP_NETMAP; 2876 } 2877 /* BDG_WUNLOCK(b); */ 2878 return 0; 2879 } 2880 2881 2882 /* 2883 * Lookup function for a learning bridge. 2884 * Update the hash table with the source address, 2885 * and then returns the destination port index, and the 2886 * ring in *dst_ring (at the moment, always use ring 0) 2887 */ 2888 u_int 2889 netmap_bdg_learning(char *buf, u_int len, uint8_t *dst_ring, 2890 struct netmap_adapter *na) 2891 { 2892 struct nm_hash_ent *ht = na->na_bdg->ht; 2893 uint32_t sh, dh; 2894 u_int dst, mysrc = na->bdg_port; 2895 uint64_t smac, dmac; 2896 2897 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 2898 smac = le64toh(*(uint64_t *)(buf + 4)); 2899 smac >>= 16; 2900 2901 /* 2902 * The hash is somewhat expensive, there might be some 2903 * worthwhile optimizations here. 2904 */ 2905 if ((buf[6] & 1) == 0) { /* valid src */ 2906 uint8_t *s = buf+6; 2907 sh = nm_bridge_rthash(buf+6); // XXX hash of source 2908 /* update source port forwarding entry */ 2909 ht[sh].mac = smac; /* XXX expire ? */ 2910 ht[sh].ports = mysrc; 2911 if (netmap_verbose) 2912 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 2913 s[0], s[1], s[2], s[3], s[4], s[5], mysrc); 2914 } 2915 dst = NM_BDG_BROADCAST; 2916 if ((buf[0] & 1) == 0) { /* unicast */ 2917 dh = nm_bridge_rthash(buf); // XXX hash of dst 2918 if (ht[dh].mac == dmac) { /* found dst */ 2919 dst = ht[dh].ports; 2920 } 2921 /* XXX otherwise return NM_BDG_UNKNOWN ? */ 2922 } 2923 *dst_ring = 0; 2924 return dst; 2925 } 2926 2927 2928 /* 2929 * This flush routine supports only unicast and broadcast but a large 2930 * number of ports, and lets us replace the learn and dispatch functions. 2931 */ 2932 int 2933 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na, 2934 u_int ring_nr) 2935 { 2936 struct nm_bdg_q *dst_ents, *brddst; 2937 uint16_t num_dsts = 0, *dsts; 2938 struct nm_bridge *b = na->na_bdg; 2939 u_int i, me = na->bdg_port; 2940 2941 dst_ents = (struct nm_bdg_q *)(ft + NM_BDG_BATCH); 2942 dsts = (uint16_t *)(dst_ents + NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1); 2943 2944 BDG_RLOCK(b); 2945 2946 /* first pass: find a destination */ 2947 for (i = 0; likely(i < n); i++) { 2948 uint8_t *buf = ft[i].ft_buf; 2949 uint8_t dst_ring = ring_nr; 2950 uint16_t dst_port, d_i; 2951 struct nm_bdg_q *d; 2952 2953 dst_port = b->nm_bdg_lookup(buf, ft[i].ft_len, &dst_ring, na); 2954 if (dst_port == NM_BDG_NOPORT) { 2955 continue; /* this packet is identified to be dropped */ 2956 } else if (unlikely(dst_port > NM_BDG_MAXPORTS)) { 2957 continue; 2958 } else if (dst_port == NM_BDG_BROADCAST) { 2959 dst_ring = 0; /* broadcasts always go to ring 0 */ 2960 } else if (unlikely(dst_port == me || 2961 !BDG_GET_VAR(b->bdg_ports[dst_port]))) { 2962 continue; 2963 } 2964 2965 /* get a position in the scratch pad */ 2966 d_i = dst_port * NM_BDG_MAXRINGS + dst_ring; 2967 d = dst_ents + d_i; 2968 if (d->bq_head == NM_BDG_BATCH) { /* new destination */ 2969 d->bq_head = d->bq_tail = i; 2970 /* remember this position to be scanned later */ 2971 if (dst_port != NM_BDG_BROADCAST) 2972 dsts[num_dsts++] = d_i; 2973 } else { 2974 ft[d->bq_tail].ft_next = i; 2975 d->bq_tail = i; 2976 } 2977 } 2978 2979 /* if there is a broadcast, set ring 0 of all ports to be scanned 2980 * XXX This would be optimized by recording the highest index of active 2981 * ports. 2982 */ 2983 brddst = dst_ents + NM_BDG_BROADCAST * NM_BDG_MAXRINGS; 2984 if (brddst->bq_head != NM_BDG_BATCH) { 2985 for (i = 0; likely(i < NM_BDG_MAXPORTS); i++) { 2986 uint16_t d_i = i * NM_BDG_MAXRINGS; 2987 if (unlikely(i == me) || !BDG_GET_VAR(b->bdg_ports[i])) 2988 continue; 2989 else if (dst_ents[d_i].bq_head == NM_BDG_BATCH) 2990 dsts[num_dsts++] = d_i; 2991 } 2992 } 2993 2994 /* second pass: scan destinations (XXX will be modular somehow) */ 2995 for (i = 0; i < num_dsts; i++) { 2996 struct ifnet *dst_ifp; 2997 struct netmap_adapter *dst_na; 2998 struct netmap_kring *kring; 2999 struct netmap_ring *ring; 3000 u_int dst_nr, is_vp, lim, j, sent = 0, d_i, next, brd_next; 3001 int howmany, retry = netmap_txsync_retry; 3002 struct nm_bdg_q *d; 3003 3004 d_i = dsts[i]; 3005 d = dst_ents + d_i; 3006 dst_na = BDG_GET_VAR(b->bdg_ports[d_i/NM_BDG_MAXRINGS]); 3007 /* protect from the lookup function returning an inactive 3008 * destination port 3009 */ 3010 if (unlikely(dst_na == NULL)) 3011 continue; 3012 else if (dst_na->na_flags & NAF_SW_ONLY) 3013 continue; 3014 dst_ifp = dst_na->ifp; 3015 /* 3016 * The interface may be in !netmap mode in two cases: 3017 * - when na is attached but not activated yet; 3018 * - when na is being deactivated but is still attached. 3019 */ 3020 if (unlikely(!(dst_ifp->if_capenable & IFCAP_NETMAP))) 3021 continue; 3022 3023 /* there is at least one either unicast or broadcast packet */ 3024 brd_next = brddst->bq_head; 3025 next = d->bq_head; 3026 3027 is_vp = nma_is_vp(dst_na); 3028 dst_nr = d_i & (NM_BDG_MAXRINGS-1); 3029 if (is_vp) { /* virtual port */ 3030 if (dst_nr >= dst_na->num_rx_rings) 3031 dst_nr = dst_nr % dst_na->num_rx_rings; 3032 kring = &dst_na->rx_rings[dst_nr]; 3033 ring = kring->ring; 3034 lim = kring->nkr_num_slots - 1; 3035 dst_na->nm_lock(dst_ifp, NETMAP_RX_LOCK, dst_nr); 3036 j = kring->nr_hwcur + kring->nr_hwavail; 3037 if (j > lim) 3038 j -= kring->nkr_num_slots; 3039 howmany = lim - kring->nr_hwavail; 3040 } else { /* hw or sw adapter */ 3041 if (dst_nr >= dst_na->num_tx_rings) 3042 dst_nr = dst_nr % dst_na->num_tx_rings; 3043 kring = &dst_na->tx_rings[dst_nr]; 3044 ring = kring->ring; 3045 lim = kring->nkr_num_slots - 1; 3046 dst_na->nm_lock(dst_ifp, NETMAP_TX_LOCK, dst_nr); 3047 retry: 3048 dst_na->nm_txsync(dst_ifp, dst_nr, 0); 3049 /* see nm_bdg_flush() */ 3050 j = kring->nr_hwcur; 3051 howmany = kring->nr_hwavail; 3052 } 3053 while (howmany-- > 0) { 3054 struct netmap_slot *slot; 3055 struct nm_bdg_fwd *ft_p; 3056 3057 /* our 'NULL' is always higher than valid indexes 3058 * so we never dereference it if the other list 3059 * has packets (and if both are NULL we never 3060 * get here). 3061 */ 3062 if (next < brd_next) { 3063 ft_p = ft + next; 3064 next = ft_p->ft_next; 3065 ND("j %d uni %d next %d %d", 3066 j, ft_p - ft, next, brd_next); 3067 } else { /* insert broadcast */ 3068 ft_p = ft + brd_next; 3069 brd_next = ft_p->ft_next; 3070 ND("j %d brd %d next %d %d", 3071 j, ft_p - ft, next, brd_next); 3072 } 3073 slot = &ring->slot[j]; 3074 ND("send %d %d bytes at %s:%d", i, ft_p->ft_len, dst_ifp->if_xname, j); 3075 if (ft_p->ft_flags & NS_INDIRECT) { 3076 ND("copying from INDIRECT source"); 3077 copyin(ft_p->ft_buf, NMB(slot), 3078 (ft_p->ft_len + 63) & ~63); 3079 } else { 3080 pkt_copy(ft_p->ft_buf, NMB(slot), ft_p->ft_len); 3081 } 3082 slot->len = ft_p->ft_len; 3083 j = unlikely(j == lim) ? 0: j + 1; /* XXX to be macro-ed */ 3084 sent++; 3085 /* are we done ? */ 3086 if (next == NM_BDG_BATCH && brd_next == NM_BDG_BATCH) 3087 break; 3088 } 3089 if (netmap_verbose && (howmany < 0)) 3090 D("rx ring full on %s", dst_ifp->if_xname); 3091 if (is_vp) { 3092 if (sent) { 3093 kring->nr_hwavail += sent; 3094 selwakeuppri(&kring->si, PI_NET); 3095 } 3096 dst_na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, dst_nr); 3097 } else { 3098 if (sent) { 3099 ring->avail -= sent; 3100 ring->cur = j; 3101 dst_na->nm_txsync(dst_ifp, dst_nr, 0); 3102 } 3103 /* retry to send more packets */ 3104 if (nma_is_hw(dst_na) && howmany < 0 && retry--) 3105 goto retry; 3106 dst_na->nm_lock(dst_ifp, NETMAP_TX_UNLOCK, dst_nr); 3107 } 3108 /* NM_BDG_BATCH means 'no packet' */ 3109 d->bq_head = d->bq_tail = NM_BDG_BATCH; /* cleanup */ 3110 } 3111 brddst->bq_head = brddst->bq_tail = NM_BDG_BATCH; /* cleanup */ 3112 BDG_RUNLOCK(b); 3113 return 0; 3114 } 3115 3116 3117 /* 3118 * main dispatch routine 3119 */ 3120 static int 3121 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 3122 { 3123 struct netmap_adapter *na = NA(ifp); 3124 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 3125 struct netmap_ring *ring = kring->ring; 3126 int i, j, k, lim = kring->nkr_num_slots - 1; 3127 3128 k = ring->cur; 3129 if (k > lim) 3130 return netmap_ring_reinit(kring); 3131 if (do_lock) 3132 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 3133 3134 if (netmap_bridge <= 0) { /* testing only */ 3135 j = k; // used all 3136 goto done; 3137 } 3138 if (netmap_bridge > NM_BDG_BATCH) 3139 netmap_bridge = NM_BDG_BATCH; 3140 3141 j = nm_bdg_preflush(na, ring_nr, kring, k); 3142 i = k - j; 3143 if (i < 0) 3144 i += kring->nkr_num_slots; 3145 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 3146 if (j != k) 3147 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 3148 3149 done: 3150 kring->nr_hwcur = j; 3151 ring->avail = kring->nr_hwavail; 3152 if (do_lock) 3153 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 3154 3155 if (netmap_verbose) 3156 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 3157 return 0; 3158 } 3159 3160 3161 static int 3162 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 3163 { 3164 struct netmap_adapter *na = NA(ifp); 3165 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 3166 struct netmap_ring *ring = kring->ring; 3167 u_int j, lim = kring->nkr_num_slots - 1; 3168 u_int k = ring->cur, resvd = ring->reserved; 3169 int n; 3170 3171 ND("%s ring %d lock %d avail %d", 3172 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 3173 3174 if (k > lim) 3175 return netmap_ring_reinit(kring); 3176 if (do_lock) 3177 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 3178 3179 /* skip past packets that userspace has released */ 3180 j = kring->nr_hwcur; /* netmap ring index */ 3181 if (resvd > 0) { 3182 if (resvd + ring->avail >= lim + 1) { 3183 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 3184 ring->reserved = resvd = 0; // XXX panic... 3185 } 3186 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 3187 } 3188 3189 if (j != k) { /* userspace has released some packets. */ 3190 n = k - j; 3191 if (n < 0) 3192 n += kring->nkr_num_slots; 3193 ND("userspace releases %d packets", n); 3194 for (n = 0; likely(j != k); n++) { 3195 struct netmap_slot *slot = &ring->slot[j]; 3196 void *addr = NMB(slot); 3197 3198 if (addr == netmap_buffer_base) { /* bad buf */ 3199 if (do_lock) 3200 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 3201 return netmap_ring_reinit(kring); 3202 } 3203 /* decrease refcount for buffer */ 3204 3205 slot->flags &= ~NS_BUF_CHANGED; 3206 j = unlikely(j == lim) ? 0 : j + 1; 3207 } 3208 kring->nr_hwavail -= n; 3209 kring->nr_hwcur = k; 3210 } 3211 /* tell userspace that there are new packets */ 3212 ring->avail = kring->nr_hwavail - resvd; 3213 3214 if (do_lock) 3215 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 3216 return 0; 3217 } 3218 3219 3220 static void 3221 bdg_netmap_attach(struct netmap_adapter *arg) 3222 { 3223 struct netmap_adapter na; 3224 3225 ND("attaching virtual bridge"); 3226 bzero(&na, sizeof(na)); 3227 3228 na.ifp = arg->ifp; 3229 na.separate_locks = 1; 3230 na.num_tx_rings = arg->num_tx_rings; 3231 na.num_rx_rings = arg->num_rx_rings; 3232 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 3233 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 3234 na.nm_txsync = bdg_netmap_txsync; 3235 na.nm_rxsync = bdg_netmap_rxsync; 3236 na.nm_register = bdg_netmap_reg; 3237 netmap_attach(&na, na.num_tx_rings); 3238 } 3239 3240 #endif /* NM_BRIDGE */ 3241 3242 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 3243 3244 3245 /* 3246 * Module loader. 3247 * 3248 * Create the /dev/netmap device and initialize all global 3249 * variables. 3250 * 3251 * Return 0 on success, errno on failure. 3252 */ 3253 static int 3254 netmap_init(void) 3255 { 3256 int error; 3257 3258 error = netmap_memory_init(); 3259 if (error != 0) { 3260 printf("netmap: unable to initialize the memory allocator.\n"); 3261 return (error); 3262 } 3263 printf("netmap: loaded module\n"); 3264 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 3265 "netmap"); 3266 3267 #ifdef NM_BRIDGE 3268 { 3269 int i; 3270 mtx_init(&netmap_bridge_mutex, "netmap_bridge_mutex", 3271 MTX_NETWORK_LOCK, MTX_DEF); 3272 bzero(nm_bridges, sizeof(struct nm_bridge) * NM_BRIDGES); /* safety */ 3273 for (i = 0; i < NM_BRIDGES; i++) 3274 rw_init(&nm_bridges[i].bdg_lock, "bdg lock"); 3275 } 3276 #endif 3277 return (error); 3278 } 3279 3280 3281 /* 3282 * Module unloader. 3283 * 3284 * Free all the memory, and destroy the ``/dev/netmap`` device. 3285 */ 3286 static void 3287 netmap_fini(void) 3288 { 3289 destroy_dev(netmap_dev); 3290 netmap_memory_fini(); 3291 printf("netmap: unloaded module.\n"); 3292 } 3293 3294 3295 #ifdef __FreeBSD__ 3296 /* 3297 * Kernel entry point. 3298 * 3299 * Initialize/finalize the module and return. 3300 * 3301 * Return 0 on success, errno on failure. 3302 */ 3303 static int 3304 netmap_loader(__unused struct module *module, int event, __unused void *arg) 3305 { 3306 int error = 0; 3307 3308 switch (event) { 3309 case MOD_LOAD: 3310 error = netmap_init(); 3311 break; 3312 3313 case MOD_UNLOAD: 3314 netmap_fini(); 3315 break; 3316 3317 default: 3318 error = EOPNOTSUPP; 3319 break; 3320 } 3321 3322 return (error); 3323 } 3324 3325 3326 DEV_MODULE(netmap, netmap_loader, NULL); 3327 #endif /* __FreeBSD__ */ 3328