1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi 5 * Copyright (C) 2011-2016 Luigi Rizzo 6 * Copyright (C) 2011-2016 Giuseppe Lettieri 7 * Copyright (C) 2011-2016 Vincenzo Maffione 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 33 /* 34 * $FreeBSD$ 35 * 36 * This module supports memory mapped access to network devices, 37 * see netmap(4). 38 * 39 * The module uses a large, memory pool allocated by the kernel 40 * and accessible as mmapped memory by multiple userspace threads/processes. 41 * The memory pool contains packet buffers and "netmap rings", 42 * i.e. user-accessible copies of the interface's queues. 43 * 44 * Access to the network card works like this: 45 * 1. a process/thread issues one or more open() on /dev/netmap, to create 46 * select()able file descriptor on which events are reported. 47 * 2. on each descriptor, the process issues an ioctl() to identify 48 * the interface that should report events to the file descriptor. 49 * 3. on each descriptor, the process issues an mmap() request to 50 * map the shared memory region within the process' address space. 51 * The list of interesting queues is indicated by a location in 52 * the shared memory region. 53 * 4. using the functions in the netmap(4) userspace API, a process 54 * can look up the occupation state of a queue, access memory buffers, 55 * and retrieve received packets or enqueue packets to transmit. 56 * 5. using some ioctl()s the process can synchronize the userspace view 57 * of the queue with the actual status in the kernel. This includes both 58 * receiving the notification of new packets, and transmitting new 59 * packets on the output interface. 60 * 6. select() or poll() can be used to wait for events on individual 61 * transmit or receive queues (or all queues for a given interface). 62 * 63 64 SYNCHRONIZATION (USER) 65 66 The netmap rings and data structures may be shared among multiple 67 user threads or even independent processes. 68 Any synchronization among those threads/processes is delegated 69 to the threads themselves. Only one thread at a time can be in 70 a system call on the same netmap ring. The OS does not enforce 71 this and only guarantees against system crashes in case of 72 invalid usage. 73 74 LOCKING (INTERNAL) 75 76 Within the kernel, access to the netmap rings is protected as follows: 77 78 - a spinlock on each ring, to handle producer/consumer races on 79 RX rings attached to the host stack (against multiple host 80 threads writing from the host stack to the same ring), 81 and on 'destination' rings attached to a VALE switch 82 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 83 protecting multiple active senders for the same destination) 84 85 - an atomic variable to guarantee that there is at most one 86 instance of *_*xsync() on the ring at any time. 87 For rings connected to user file 88 descriptors, an atomic_test_and_set() protects this, and the 89 lock on the ring is not actually used. 90 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 91 is also used to prevent multiple executions (the driver might indeed 92 already guarantee this). 93 For NIC TX rings connected to a VALE switch, the lock arbitrates 94 access to the queue (both when allocating buffers and when pushing 95 them out). 96 97 - *xsync() should be protected against initializations of the card. 98 On FreeBSD most devices have the reset routine protected by 99 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 100 the RING protection on rx_reset(), this should be added. 101 102 On linux there is an external lock on the tx path, which probably 103 also arbitrates access to the reset routine. XXX to be revised 104 105 - a per-interface core_lock protecting access from the host stack 106 while interfaces may be detached from netmap mode. 107 XXX there should be no need for this lock if we detach the interfaces 108 only while they are down. 109 110 111 --- VALE SWITCH --- 112 113 NMG_LOCK() serializes all modifications to switches and ports. 114 A switch cannot be deleted until all ports are gone. 115 116 For each switch, an SX lock (RWlock on linux) protects 117 deletion of ports. When configuring or deleting a new port, the 118 lock is acquired in exclusive mode (after holding NMG_LOCK). 119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 120 The lock is held throughout the entire forwarding cycle, 121 during which the thread may incur in a page fault. 122 Hence it is important that sleepable shared locks are used. 123 124 On the rx ring, the per-port lock is grabbed initially to reserve 125 a number of slot in the ring, then the lock is released, 126 packets are copied from source to destination, and then 127 the lock is acquired again and the receive ring is updated. 128 (A similar thing is done on the tx ring for NIC and host stack 129 ports attached to the switch) 130 131 */ 132 133 134 /* --- internals ---- 135 * 136 * Roadmap to the code that implements the above. 137 * 138 * > 1. a process/thread issues one or more open() on /dev/netmap, to create 139 * > select()able file descriptor on which events are reported. 140 * 141 * Internally, we allocate a netmap_priv_d structure, that will be 142 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d 143 * structure for each open(). 144 * 145 * os-specific: 146 * FreeBSD: see netmap_open() (netmap_freebsd.c) 147 * linux: see linux_netmap_open() (netmap_linux.c) 148 * 149 * > 2. on each descriptor, the process issues an ioctl() to identify 150 * > the interface that should report events to the file descriptor. 151 * 152 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0. 153 * Most important things happen in netmap_get_na() and 154 * netmap_do_regif(), called from there. Additional details can be 155 * found in the comments above those functions. 156 * 157 * In all cases, this action creates/takes-a-reference-to a 158 * netmap_*_adapter describing the port, and allocates a netmap_if 159 * and all necessary netmap rings, filling them with netmap buffers. 160 * 161 * In this phase, the sync callbacks for each ring are set (these are used 162 * in steps 5 and 6 below). The callbacks depend on the type of adapter. 163 * The adapter creation/initialization code puts them in the 164 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they 165 * are copied from there to the netmap_kring's during netmap_do_regif(), by 166 * the nm_krings_create() callback. All the nm_krings_create callbacks 167 * actually call netmap_krings_create() to perform this and the other 168 * common stuff. netmap_krings_create() also takes care of the host rings, 169 * if needed, by setting their sync callbacks appropriately. 170 * 171 * Additional actions depend on the kind of netmap_adapter that has been 172 * registered: 173 * 174 * - netmap_hw_adapter: [netmap.c] 175 * This is a system netdev/ifp with native netmap support. 176 * The ifp is detached from the host stack by redirecting: 177 * - transmissions (from the network stack) to netmap_transmit() 178 * - receive notifications to the nm_notify() callback for 179 * this adapter. The callback is normally netmap_notify(), unless 180 * the ifp is attached to a bridge using bwrap, in which case it 181 * is netmap_bwrap_intr_notify(). 182 * 183 * - netmap_generic_adapter: [netmap_generic.c] 184 * A system netdev/ifp without native netmap support. 185 * 186 * (the decision about native/non native support is taken in 187 * netmap_get_hw_na(), called by netmap_get_na()) 188 * 189 * - netmap_vp_adapter [netmap_vale.c] 190 * Returned by netmap_get_bdg_na(). 191 * This is a persistent or ephemeral VALE port. Ephemeral ports 192 * are created on the fly if they don't already exist, and are 193 * always attached to a bridge. 194 * Persistent VALE ports must must be created separately, and i 195 * then attached like normal NICs. The NIOCREGIF we are examining 196 * will find them only if they had previosly been created and 197 * attached (see VALE_CTL below). 198 * 199 * - netmap_pipe_adapter [netmap_pipe.c] 200 * Returned by netmap_get_pipe_na(). 201 * Both pipe ends are created, if they didn't already exist. 202 * 203 * - netmap_monitor_adapter [netmap_monitor.c] 204 * Returned by netmap_get_monitor_na(). 205 * If successful, the nm_sync callbacks of the monitored adapter 206 * will be intercepted by the returned monitor. 207 * 208 * - netmap_bwrap_adapter [netmap_vale.c] 209 * Cannot be obtained in this way, see VALE_CTL below 210 * 211 * 212 * os-specific: 213 * linux: we first go through linux_netmap_ioctl() to 214 * adapt the FreeBSD interface to the linux one. 215 * 216 * 217 * > 3. on each descriptor, the process issues an mmap() request to 218 * > map the shared memory region within the process' address space. 219 * > The list of interesting queues is indicated by a location in 220 * > the shared memory region. 221 * 222 * os-specific: 223 * FreeBSD: netmap_mmap_single (netmap_freebsd.c). 224 * linux: linux_netmap_mmap (netmap_linux.c). 225 * 226 * > 4. using the functions in the netmap(4) userspace API, a process 227 * > can look up the occupation state of a queue, access memory buffers, 228 * > and retrieve received packets or enqueue packets to transmit. 229 * 230 * these actions do not involve the kernel. 231 * 232 * > 5. using some ioctl()s the process can synchronize the userspace view 233 * > of the queue with the actual status in the kernel. This includes both 234 * > receiving the notification of new packets, and transmitting new 235 * > packets on the output interface. 236 * 237 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC 238 * cases. They invoke the nm_sync callbacks on the netmap_kring 239 * structures, as initialized in step 2 and maybe later modified 240 * by a monitor. Monitors, however, will always call the original 241 * callback before doing anything else. 242 * 243 * 244 * > 6. select() or poll() can be used to wait for events on individual 245 * > transmit or receive queues (or all queues for a given interface). 246 * 247 * Implemented in netmap_poll(). This will call the same nm_sync() 248 * callbacks as in step 5 above. 249 * 250 * os-specific: 251 * linux: we first go through linux_netmap_poll() to adapt 252 * the FreeBSD interface to the linux one. 253 * 254 * 255 * ---- VALE_CTL ----- 256 * 257 * VALE switches are controlled by issuing a NIOCREGIF with a non-null 258 * nr_cmd in the nmreq structure. These subcommands are handled by 259 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created 260 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF 261 * subcommands, respectively. 262 * 263 * Any network interface known to the system (including a persistent VALE 264 * port) can be attached to a VALE switch by issuing the 265 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports 266 * look exactly like ephemeral VALE ports (as created in step 2 above). The 267 * attachment of other interfaces, instead, requires the creation of a 268 * netmap_bwrap_adapter. Moreover, the attached interface must be put in 269 * netmap mode. This may require the creation of a netmap_generic_adapter if 270 * we have no native support for the interface, or if generic adapters have 271 * been forced by sysctl. 272 * 273 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(), 274 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach() 275 * callback. In the case of the bwrap, the callback creates the 276 * netmap_bwrap_adapter. The initialization of the bwrap is then 277 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl() 278 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c). 279 * A generic adapter for the wrapped ifp will be created if needed, when 280 * netmap_get_bdg_na() calls netmap_get_hw_na(). 281 * 282 * 283 * ---- DATAPATHS ----- 284 * 285 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =- 286 * 287 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach() 288 * 289 * - tx from netmap userspace: 290 * concurrently: 291 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 292 * kring->nm_sync() == DEVICE_netmap_txsync() 293 * 2) device interrupt handler 294 * na->nm_notify() == netmap_notify() 295 * - rx from netmap userspace: 296 * concurrently: 297 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 298 * kring->nm_sync() == DEVICE_netmap_rxsync() 299 * 2) device interrupt handler 300 * na->nm_notify() == netmap_notify() 301 * - rx from host stack 302 * concurrently: 303 * 1) host stack 304 * netmap_transmit() 305 * na->nm_notify == netmap_notify() 306 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context 307 * kring->nm_sync() == netmap_rxsync_from_host 308 * netmap_rxsync_from_host(na, NULL, NULL) 309 * - tx to host stack 310 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 311 * kring->nm_sync() == netmap_txsync_to_host 312 * netmap_txsync_to_host(na) 313 * nm_os_send_up() 314 * FreeBSD: na->if_input() == ether_input() 315 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX 316 * 317 * 318 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =- 319 * 320 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach() 321 * 322 * - tx from netmap userspace: 323 * concurrently: 324 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 325 * kring->nm_sync() == generic_netmap_txsync() 326 * nm_os_generic_xmit_frame() 327 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX 328 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 329 * gna->save_start_xmit == orig. dev. start_xmit 330 * FreeBSD: na->if_transmit() == orig. dev if_transmit 331 * 2) generic_mbuf_destructor() 332 * na->nm_notify() == netmap_notify() 333 * - rx from netmap userspace: 334 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 335 * kring->nm_sync() == generic_netmap_rxsync() 336 * mbq_safe_dequeue() 337 * 2) device driver 338 * generic_rx_handler() 339 * mbq_safe_enqueue() 340 * na->nm_notify() == netmap_notify() 341 * - rx from host stack 342 * FreeBSD: same as native 343 * Linux: same as native except: 344 * 1) host stack 345 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX 346 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 347 * netmap_transmit() 348 * na->nm_notify() == netmap_notify() 349 * - tx to host stack (same as native): 350 * 351 * 352 * -= VALE =- 353 * 354 * INCOMING: 355 * 356 * - VALE ports: 357 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 358 * kring->nm_sync() == netmap_vp_txsync() 359 * 360 * - system device with native support: 361 * from cable: 362 * interrupt 363 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 364 * kring->nm_sync() == DEVICE_netmap_rxsync() 365 * netmap_vp_txsync() 366 * kring->nm_sync() == DEVICE_netmap_rxsync() 367 * from host stack: 368 * netmap_transmit() 369 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 370 * kring->nm_sync() == netmap_rxsync_from_host() 371 * netmap_vp_txsync() 372 * 373 * - system device with generic support: 374 * from device driver: 375 * generic_rx_handler() 376 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 377 * kring->nm_sync() == generic_netmap_rxsync() 378 * netmap_vp_txsync() 379 * kring->nm_sync() == generic_netmap_rxsync() 380 * from host stack: 381 * netmap_transmit() 382 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 383 * kring->nm_sync() == netmap_rxsync_from_host() 384 * netmap_vp_txsync() 385 * 386 * (all cases) --> nm_bdg_flush() 387 * dest_na->nm_notify() == (see below) 388 * 389 * OUTGOING: 390 * 391 * - VALE ports: 392 * concurrently: 393 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 394 * kring->nm_sync() == netmap_vp_rxsync() 395 * 2) from nm_bdg_flush() 396 * na->nm_notify() == netmap_notify() 397 * 398 * - system device with native support: 399 * to cable: 400 * na->nm_notify() == netmap_bwrap_notify() 401 * netmap_vp_rxsync() 402 * kring->nm_sync() == DEVICE_netmap_txsync() 403 * netmap_vp_rxsync() 404 * to host stack: 405 * netmap_vp_rxsync() 406 * kring->nm_sync() == netmap_txsync_to_host 407 * netmap_vp_rxsync_locked() 408 * 409 * - system device with generic adapter: 410 * to device driver: 411 * na->nm_notify() == netmap_bwrap_notify() 412 * netmap_vp_rxsync() 413 * kring->nm_sync() == generic_netmap_txsync() 414 * netmap_vp_rxsync() 415 * to host stack: 416 * netmap_vp_rxsync() 417 * kring->nm_sync() == netmap_txsync_to_host 418 * netmap_vp_rxsync() 419 * 420 */ 421 422 /* 423 * OS-specific code that is used only within this file. 424 * Other OS-specific code that must be accessed by drivers 425 * is present in netmap_kern.h 426 */ 427 428 #if defined(__FreeBSD__) 429 #include <sys/cdefs.h> /* prerequisite */ 430 #include <sys/types.h> 431 #include <sys/errno.h> 432 #include <sys/param.h> /* defines used in kernel.h */ 433 #include <sys/kernel.h> /* types used in module initialization */ 434 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 435 #include <sys/filio.h> /* FIONBIO */ 436 #include <sys/sockio.h> 437 #include <sys/socketvar.h> /* struct socket */ 438 #include <sys/malloc.h> 439 #include <sys/poll.h> 440 #include <sys/rwlock.h> 441 #include <sys/socket.h> /* sockaddrs */ 442 #include <sys/selinfo.h> 443 #include <sys/sysctl.h> 444 #include <sys/jail.h> 445 #include <net/vnet.h> 446 #include <net/if.h> 447 #include <net/if_var.h> 448 #include <net/bpf.h> /* BIOCIMMEDIATE */ 449 #include <machine/bus.h> /* bus_dmamap_* */ 450 #include <sys/endian.h> 451 #include <sys/refcount.h> 452 #include <net/ethernet.h> /* ETHER_BPF_MTAP */ 453 454 455 #elif defined(linux) 456 457 #include "bsd_glue.h" 458 459 #elif defined(__APPLE__) 460 461 #warning OSX support is only partial 462 #include "osx_glue.h" 463 464 #elif defined (_WIN32) 465 466 #include "win_glue.h" 467 468 #else 469 470 #error Unsupported platform 471 472 #endif /* unsupported */ 473 474 /* 475 * common headers 476 */ 477 #include <net/netmap.h> 478 #include <dev/netmap/netmap_kern.h> 479 #include <dev/netmap/netmap_mem2.h> 480 481 482 /* user-controlled variables */ 483 int netmap_verbose; 484 #ifdef CONFIG_NETMAP_DEBUG 485 int netmap_debug; 486 #endif /* CONFIG_NETMAP_DEBUG */ 487 488 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 489 int netmap_no_pendintr = 1; 490 int netmap_txsync_retry = 2; 491 static int netmap_fwd = 0; /* force transparent forwarding */ 492 493 /* 494 * netmap_admode selects the netmap mode to use. 495 * Invalid values are reset to NETMAP_ADMODE_BEST 496 */ 497 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 498 NETMAP_ADMODE_NATIVE, /* either native or none */ 499 NETMAP_ADMODE_GENERIC, /* force generic */ 500 NETMAP_ADMODE_LAST }; 501 static int netmap_admode = NETMAP_ADMODE_BEST; 502 503 /* netmap_generic_mit controls mitigation of RX notifications for 504 * the generic netmap adapter. The value is a time interval in 505 * nanoseconds. */ 506 int netmap_generic_mit = 100*1000; 507 508 /* We use by default netmap-aware qdiscs with generic netmap adapters, 509 * even if there can be a little performance hit with hardware NICs. 510 * However, using the qdisc is the safer approach, for two reasons: 511 * 1) it prevents non-fifo qdiscs to break the TX notification 512 * scheme, which is based on mbuf destructors when txqdisc is 513 * not used. 514 * 2) it makes it possible to transmit over software devices that 515 * change skb->dev, like bridge, veth, ... 516 * 517 * Anyway users looking for the best performance should 518 * use native adapters. 519 */ 520 #ifdef linux 521 int netmap_generic_txqdisc = 1; 522 #endif 523 524 /* Default number of slots and queues for generic adapters. */ 525 int netmap_generic_ringsize = 1024; 526 int netmap_generic_rings = 1; 527 528 /* Non-zero to enable checksum offloading in NIC drivers */ 529 int netmap_generic_hwcsum = 0; 530 531 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */ 532 int ptnet_vnet_hdr = 1; 533 534 /* 535 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated 536 * in some other operating systems 537 */ 538 SYSBEGIN(main_init); 539 540 SYSCTL_DECL(_dev_netmap); 541 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 542 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 543 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 544 #ifdef CONFIG_NETMAP_DEBUG 545 SYSCTL_INT(_dev_netmap, OID_AUTO, debug, 546 CTLFLAG_RW, &netmap_debug, 0, "Debug messages"); 547 #endif /* CONFIG_NETMAP_DEBUG */ 548 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 549 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr, 551 0, "Always look for new received packets."); 552 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 553 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush."); 554 555 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0, 556 "Force NR_FORWARD mode"); 557 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0, 558 "Adapter mode. 0 selects the best option available," 559 "1 forces native adapter, 2 forces emulated adapter"); 560 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum, 561 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default)," 562 "1 to enable checksum generation by the NIC"); 563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 564 0, "RX notification interval in nanoseconds"); 565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, 566 &netmap_generic_ringsize, 0, 567 "Number of per-ring slots for emulated netmap mode"); 568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW, 569 &netmap_generic_rings, 0, 570 "Number of TX/RX queues for emulated netmap adapters"); 571 #ifdef linux 572 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW, 573 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters"); 574 #endif 575 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr, 576 0, "Allow ptnet devices to use virtio-net headers"); 577 578 SYSEND; 579 580 NMG_LOCK_T netmap_global_lock; 581 582 /* 583 * mark the ring as stopped, and run through the locks 584 * to make sure other users get to see it. 585 * stopped must be either NR_KR_STOPPED (for unbounded stop) 586 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes) 587 */ 588 static void 589 netmap_disable_ring(struct netmap_kring *kr, int stopped) 590 { 591 nm_kr_stop(kr, stopped); 592 // XXX check if nm_kr_stop is sufficient 593 mtx_lock(&kr->q_lock); 594 mtx_unlock(&kr->q_lock); 595 nm_kr_put(kr); 596 } 597 598 /* stop or enable a single ring */ 599 void 600 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped) 601 { 602 if (stopped) 603 netmap_disable_ring(NMR(na, t)[ring_id], stopped); 604 else 605 NMR(na, t)[ring_id]->nkr_stopped = 0; 606 } 607 608 609 /* stop or enable all the rings of na */ 610 void 611 netmap_set_all_rings(struct netmap_adapter *na, int stopped) 612 { 613 int i; 614 enum txrx t; 615 616 if (!nm_netmap_on(na)) 617 return; 618 619 for_rx_tx(t) { 620 for (i = 0; i < netmap_real_rings(na, t); i++) { 621 netmap_set_ring(na, i, t, stopped); 622 } 623 } 624 } 625 626 /* 627 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s 628 * to finish and prevents any new one from starting. Call this before turning 629 * netmap mode off, or before removing the hardware rings (e.g., on module 630 * onload). 631 */ 632 void 633 netmap_disable_all_rings(struct ifnet *ifp) 634 { 635 if (NM_NA_VALID(ifp)) { 636 netmap_set_all_rings(NA(ifp), NM_KR_STOPPED); 637 } 638 } 639 640 /* 641 * Convenience function used in drivers. Re-enables rxsync and txsync on the 642 * adapter's rings In linux drivers, this should be placed near each 643 * napi_enable(). 644 */ 645 void 646 netmap_enable_all_rings(struct ifnet *ifp) 647 { 648 if (NM_NA_VALID(ifp)) { 649 netmap_set_all_rings(NA(ifp), 0 /* enabled */); 650 } 651 } 652 653 void 654 netmap_make_zombie(struct ifnet *ifp) 655 { 656 if (NM_NA_VALID(ifp)) { 657 struct netmap_adapter *na = NA(ifp); 658 netmap_set_all_rings(na, NM_KR_LOCKED); 659 na->na_flags |= NAF_ZOMBIE; 660 netmap_set_all_rings(na, 0); 661 } 662 } 663 664 void 665 netmap_undo_zombie(struct ifnet *ifp) 666 { 667 if (NM_NA_VALID(ifp)) { 668 struct netmap_adapter *na = NA(ifp); 669 if (na->na_flags & NAF_ZOMBIE) { 670 netmap_set_all_rings(na, NM_KR_LOCKED); 671 na->na_flags &= ~NAF_ZOMBIE; 672 netmap_set_all_rings(na, 0); 673 } 674 } 675 } 676 677 /* 678 * generic bound_checking function 679 */ 680 u_int 681 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 682 { 683 u_int oldv = *v; 684 const char *op = NULL; 685 686 if (dflt < lo) 687 dflt = lo; 688 if (dflt > hi) 689 dflt = hi; 690 if (oldv < lo) { 691 *v = dflt; 692 op = "Bump"; 693 } else if (oldv > hi) { 694 *v = hi; 695 op = "Clamp"; 696 } 697 if (op && msg) 698 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv); 699 return *v; 700 } 701 702 703 /* 704 * packet-dump function, user-supplied or static buffer. 705 * The destination buffer must be at least 30+4*len 706 */ 707 const char * 708 nm_dump_buf(char *p, int len, int lim, char *dst) 709 { 710 static char _dst[8192]; 711 int i, j, i0; 712 static char hex[] ="0123456789abcdef"; 713 char *o; /* output position */ 714 715 #define P_HI(x) hex[((x) & 0xf0)>>4] 716 #define P_LO(x) hex[((x) & 0xf)] 717 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 718 if (!dst) 719 dst = _dst; 720 if (lim <= 0 || lim > len) 721 lim = len; 722 o = dst; 723 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 724 o += strlen(o); 725 /* hexdump routine */ 726 for (i = 0; i < lim; ) { 727 sprintf(o, "%5d: ", i); 728 o += strlen(o); 729 memset(o, ' ', 48); 730 i0 = i; 731 for (j=0; j < 16 && i < lim; i++, j++) { 732 o[j*3] = P_HI(p[i]); 733 o[j*3+1] = P_LO(p[i]); 734 } 735 i = i0; 736 for (j=0; j < 16 && i < lim; i++, j++) 737 o[j + 48] = P_C(p[i]); 738 o[j+48] = '\n'; 739 o += j+49; 740 } 741 *o = '\0'; 742 #undef P_HI 743 #undef P_LO 744 #undef P_C 745 return dst; 746 } 747 748 749 /* 750 * Fetch configuration from the device, to cope with dynamic 751 * reconfigurations after loading the module. 752 */ 753 /* call with NMG_LOCK held */ 754 int 755 netmap_update_config(struct netmap_adapter *na) 756 { 757 struct nm_config_info info; 758 759 bzero(&info, sizeof(info)); 760 if (na->nm_config == NULL || 761 na->nm_config(na, &info)) { 762 /* take whatever we had at init time */ 763 info.num_tx_rings = na->num_tx_rings; 764 info.num_tx_descs = na->num_tx_desc; 765 info.num_rx_rings = na->num_rx_rings; 766 info.num_rx_descs = na->num_rx_desc; 767 info.rx_buf_maxsize = na->rx_buf_maxsize; 768 } 769 770 if (na->num_tx_rings == info.num_tx_rings && 771 na->num_tx_desc == info.num_tx_descs && 772 na->num_rx_rings == info.num_rx_rings && 773 na->num_rx_desc == info.num_rx_descs && 774 na->rx_buf_maxsize == info.rx_buf_maxsize) 775 return 0; /* nothing changed */ 776 if (na->active_fds == 0) { 777 na->num_tx_rings = info.num_tx_rings; 778 na->num_tx_desc = info.num_tx_descs; 779 na->num_rx_rings = info.num_rx_rings; 780 na->num_rx_desc = info.num_rx_descs; 781 na->rx_buf_maxsize = info.rx_buf_maxsize; 782 if (netmap_verbose) 783 nm_prinf("configuration changed for %s: txring %d x %d, " 784 "rxring %d x %d, rxbufsz %d", 785 na->name, na->num_tx_rings, na->num_tx_desc, 786 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize); 787 return 0; 788 } 789 nm_prerr("WARNING: configuration changed for %s while active: " 790 "txring %d x %d, rxring %d x %d, rxbufsz %d", 791 na->name, info.num_tx_rings, info.num_tx_descs, 792 info.num_rx_rings, info.num_rx_descs, 793 info.rx_buf_maxsize); 794 return 1; 795 } 796 797 /* nm_sync callbacks for the host rings */ 798 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags); 799 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags); 800 801 /* create the krings array and initialize the fields common to all adapters. 802 * The array layout is this: 803 * 804 * +----------+ 805 * na->tx_rings ----->| | \ 806 * | | } na->num_tx_ring 807 * | | / 808 * +----------+ 809 * | | host tx kring 810 * na->rx_rings ----> +----------+ 811 * | | \ 812 * | | } na->num_rx_rings 813 * | | / 814 * +----------+ 815 * | | host rx kring 816 * +----------+ 817 * na->tailroom ----->| | \ 818 * | | } tailroom bytes 819 * | | / 820 * +----------+ 821 * 822 * Note: for compatibility, host krings are created even when not needed. 823 * The tailroom space is currently used by vale ports for allocating leases. 824 */ 825 /* call with NMG_LOCK held */ 826 int 827 netmap_krings_create(struct netmap_adapter *na, u_int tailroom) 828 { 829 u_int i, len, ndesc; 830 struct netmap_kring *kring; 831 u_int n[NR_TXRX]; 832 enum txrx t; 833 834 if (na->tx_rings != NULL) { 835 if (netmap_debug & NM_DEBUG_ON) 836 nm_prerr("warning: krings were already created"); 837 return 0; 838 } 839 840 /* account for the (possibly fake) host rings */ 841 n[NR_TX] = netmap_all_rings(na, NR_TX); 842 n[NR_RX] = netmap_all_rings(na, NR_RX); 843 844 len = (n[NR_TX] + n[NR_RX]) * 845 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *)) 846 + tailroom; 847 848 na->tx_rings = nm_os_malloc((size_t)len); 849 if (na->tx_rings == NULL) { 850 nm_prerr("Cannot allocate krings"); 851 return ENOMEM; 852 } 853 na->rx_rings = na->tx_rings + n[NR_TX]; 854 na->tailroom = na->rx_rings + n[NR_RX]; 855 856 /* link the krings in the krings array */ 857 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom); 858 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) { 859 na->tx_rings[i] = kring; 860 kring++; 861 } 862 863 /* 864 * All fields in krings are 0 except the one initialized below. 865 * but better be explicit on important kring fields. 866 */ 867 for_rx_tx(t) { 868 ndesc = nma_get_ndesc(na, t); 869 for (i = 0; i < n[t]; i++) { 870 kring = NMR(na, t)[i]; 871 bzero(kring, sizeof(*kring)); 872 kring->na = na; 873 kring->notify_na = na; 874 kring->ring_id = i; 875 kring->tx = t; 876 kring->nkr_num_slots = ndesc; 877 kring->nr_mode = NKR_NETMAP_OFF; 878 kring->nr_pending_mode = NKR_NETMAP_OFF; 879 if (i < nma_get_nrings(na, t)) { 880 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync); 881 } else { 882 if (!(na->na_flags & NAF_HOST_RINGS)) 883 kring->nr_kflags |= NKR_FAKERING; 884 kring->nm_sync = (t == NR_TX ? 885 netmap_txsync_to_host: 886 netmap_rxsync_from_host); 887 } 888 kring->nm_notify = na->nm_notify; 889 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 890 /* 891 * IMPORTANT: Always keep one slot empty. 892 */ 893 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0); 894 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name, 895 nm_txrx2str(t), i); 896 ND("ktx %s h %d c %d t %d", 897 kring->name, kring->rhead, kring->rcur, kring->rtail); 898 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF); 899 nm_os_selinfo_init(&kring->si); 900 } 901 nm_os_selinfo_init(&na->si[t]); 902 } 903 904 905 return 0; 906 } 907 908 909 /* undo the actions performed by netmap_krings_create */ 910 /* call with NMG_LOCK held */ 911 void 912 netmap_krings_delete(struct netmap_adapter *na) 913 { 914 struct netmap_kring **kring = na->tx_rings; 915 enum txrx t; 916 917 if (na->tx_rings == NULL) { 918 if (netmap_debug & NM_DEBUG_ON) 919 nm_prerr("warning: krings were already deleted"); 920 return; 921 } 922 923 for_rx_tx(t) 924 nm_os_selinfo_uninit(&na->si[t]); 925 926 /* we rely on the krings layout described above */ 927 for ( ; kring != na->tailroom; kring++) { 928 mtx_destroy(&(*kring)->q_lock); 929 nm_os_selinfo_uninit(&(*kring)->si); 930 } 931 nm_os_free(na->tx_rings); 932 na->tx_rings = na->rx_rings = na->tailroom = NULL; 933 } 934 935 936 /* 937 * Destructor for NIC ports. They also have an mbuf queue 938 * on the rings connected to the host so we need to purge 939 * them first. 940 */ 941 /* call with NMG_LOCK held */ 942 void 943 netmap_hw_krings_delete(struct netmap_adapter *na) 944 { 945 u_int lim = netmap_real_rings(na, NR_RX), i; 946 947 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) { 948 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue; 949 ND("destroy sw mbq with len %d", mbq_len(q)); 950 mbq_purge(q); 951 mbq_safe_fini(q); 952 } 953 netmap_krings_delete(na); 954 } 955 956 static void 957 netmap_mem_drop(struct netmap_adapter *na) 958 { 959 int last = netmap_mem_deref(na->nm_mem, na); 960 /* if the native allocator had been overrided on regif, 961 * restore it now and drop the temporary one 962 */ 963 if (last && na->nm_mem_prev) { 964 netmap_mem_put(na->nm_mem); 965 na->nm_mem = na->nm_mem_prev; 966 na->nm_mem_prev = NULL; 967 } 968 } 969 970 /* 971 * Undo everything that was done in netmap_do_regif(). In particular, 972 * call nm_register(ifp,0) to stop netmap mode on the interface and 973 * revert to normal operation. 974 */ 975 /* call with NMG_LOCK held */ 976 static void netmap_unset_ringid(struct netmap_priv_d *); 977 static void netmap_krings_put(struct netmap_priv_d *); 978 void 979 netmap_do_unregif(struct netmap_priv_d *priv) 980 { 981 struct netmap_adapter *na = priv->np_na; 982 983 NMG_LOCK_ASSERT(); 984 na->active_fds--; 985 /* unset nr_pending_mode and possibly release exclusive mode */ 986 netmap_krings_put(priv); 987 988 #ifdef WITH_MONITOR 989 /* XXX check whether we have to do something with monitor 990 * when rings change nr_mode. */ 991 if (na->active_fds <= 0) { 992 /* walk through all the rings and tell any monitor 993 * that the port is going to exit netmap mode 994 */ 995 netmap_monitor_stop(na); 996 } 997 #endif 998 999 if (na->active_fds <= 0 || nm_kring_pending(priv)) { 1000 na->nm_register(na, 0); 1001 } 1002 1003 /* delete rings and buffers that are no longer needed */ 1004 netmap_mem_rings_delete(na); 1005 1006 if (na->active_fds <= 0) { /* last instance */ 1007 /* 1008 * (TO CHECK) We enter here 1009 * when the last reference to this file descriptor goes 1010 * away. This means we cannot have any pending poll() 1011 * or interrupt routine operating on the structure. 1012 * XXX The file may be closed in a thread while 1013 * another thread is using it. 1014 * Linux keeps the file opened until the last reference 1015 * by any outstanding ioctl/poll or mmap is gone. 1016 * FreeBSD does not track mmap()s (but we do) and 1017 * wakes up any sleeping poll(). Need to check what 1018 * happens if the close() occurs while a concurrent 1019 * syscall is running. 1020 */ 1021 if (netmap_debug & NM_DEBUG_ON) 1022 nm_prinf("deleting last instance for %s", na->name); 1023 1024 if (nm_netmap_on(na)) { 1025 nm_prerr("BUG: netmap on while going to delete the krings"); 1026 } 1027 1028 na->nm_krings_delete(na); 1029 } 1030 1031 /* possibily decrement counter of tx_si/rx_si users */ 1032 netmap_unset_ringid(priv); 1033 /* delete the nifp */ 1034 netmap_mem_if_delete(na, priv->np_nifp); 1035 /* drop the allocator */ 1036 netmap_mem_drop(na); 1037 /* mark the priv as unregistered */ 1038 priv->np_na = NULL; 1039 priv->np_nifp = NULL; 1040 } 1041 1042 struct netmap_priv_d* 1043 netmap_priv_new(void) 1044 { 1045 struct netmap_priv_d *priv; 1046 1047 priv = nm_os_malloc(sizeof(struct netmap_priv_d)); 1048 if (priv == NULL) 1049 return NULL; 1050 priv->np_refs = 1; 1051 nm_os_get_module(); 1052 return priv; 1053 } 1054 1055 /* 1056 * Destructor of the netmap_priv_d, called when the fd is closed 1057 * Action: undo all the things done by NIOCREGIF, 1058 * On FreeBSD we need to track whether there are active mmap()s, 1059 * and we use np_active_mmaps for that. On linux, the field is always 0. 1060 * Return: 1 if we can free priv, 0 otherwise. 1061 * 1062 */ 1063 /* call with NMG_LOCK held */ 1064 void 1065 netmap_priv_delete(struct netmap_priv_d *priv) 1066 { 1067 struct netmap_adapter *na = priv->np_na; 1068 1069 /* number of active references to this fd */ 1070 if (--priv->np_refs > 0) { 1071 return; 1072 } 1073 nm_os_put_module(); 1074 if (na) { 1075 netmap_do_unregif(priv); 1076 } 1077 netmap_unget_na(na, priv->np_ifp); 1078 bzero(priv, sizeof(*priv)); /* for safety */ 1079 nm_os_free(priv); 1080 } 1081 1082 1083 /* call with NMG_LOCK *not* held */ 1084 void 1085 netmap_dtor(void *data) 1086 { 1087 struct netmap_priv_d *priv = data; 1088 1089 NMG_LOCK(); 1090 netmap_priv_delete(priv); 1091 NMG_UNLOCK(); 1092 } 1093 1094 1095 /* 1096 * Handlers for synchronization of the rings from/to the host stack. 1097 * These are associated to a network interface and are just another 1098 * ring pair managed by userspace. 1099 * 1100 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD 1101 * flags): 1102 * 1103 * - Before releasing buffers on hw RX rings, the application can mark 1104 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they 1105 * will be forwarded to the host stack, similarly to what happened if 1106 * the application moved them to the host TX ring. 1107 * 1108 * - Before releasing buffers on the host RX ring, the application can 1109 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(), 1110 * they will be forwarded to the hw TX rings, saving the application 1111 * from doing the same task in user-space. 1112 * 1113 * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD 1114 * flag, or globally with the netmap_fwd sysctl. 1115 * 1116 * The transfer NIC --> host is relatively easy, just encapsulate 1117 * into mbufs and we are done. The host --> NIC side is slightly 1118 * harder because there might not be room in the tx ring so it 1119 * might take a while before releasing the buffer. 1120 */ 1121 1122 1123 /* 1124 * Pass a whole queue of mbufs to the host stack as coming from 'dst' 1125 * We do not need to lock because the queue is private. 1126 * After this call the queue is empty. 1127 */ 1128 static void 1129 netmap_send_up(struct ifnet *dst, struct mbq *q) 1130 { 1131 struct mbuf *m; 1132 struct mbuf *head = NULL, *prev = NULL; 1133 1134 /* Send packets up, outside the lock; head/prev machinery 1135 * is only useful for Windows. */ 1136 while ((m = mbq_dequeue(q)) != NULL) { 1137 if (netmap_debug & NM_DEBUG_HOST) 1138 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m)); 1139 prev = nm_os_send_up(dst, m, prev); 1140 if (head == NULL) 1141 head = prev; 1142 } 1143 if (head) 1144 nm_os_send_up(dst, NULL, head); 1145 mbq_fini(q); 1146 } 1147 1148 1149 /* 1150 * Scan the buffers from hwcur to ring->head, and put a copy of those 1151 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs. 1152 * Drop remaining packets in the unlikely event 1153 * of an mbuf shortage. 1154 */ 1155 static void 1156 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 1157 { 1158 u_int const lim = kring->nkr_num_slots - 1; 1159 u_int const head = kring->rhead; 1160 u_int n; 1161 struct netmap_adapter *na = kring->na; 1162 1163 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 1164 struct mbuf *m; 1165 struct netmap_slot *slot = &kring->ring->slot[n]; 1166 1167 if ((slot->flags & NS_FORWARD) == 0 && !force) 1168 continue; 1169 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) { 1170 RD(5, "bad pkt at %d len %d", n, slot->len); 1171 continue; 1172 } 1173 slot->flags &= ~NS_FORWARD; // XXX needed ? 1174 /* XXX TODO: adapt to the case of a multisegment packet */ 1175 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL); 1176 1177 if (m == NULL) 1178 break; 1179 mbq_enqueue(q, m); 1180 } 1181 } 1182 1183 static inline int 1184 _nm_may_forward(struct netmap_kring *kring) 1185 { 1186 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) && 1187 kring->na->na_flags & NAF_HOST_RINGS && 1188 kring->tx == NR_RX); 1189 } 1190 1191 static inline int 1192 nm_may_forward_up(struct netmap_kring *kring) 1193 { 1194 return _nm_may_forward(kring) && 1195 kring->ring_id != kring->na->num_rx_rings; 1196 } 1197 1198 static inline int 1199 nm_may_forward_down(struct netmap_kring *kring, int sync_flags) 1200 { 1201 return _nm_may_forward(kring) && 1202 (sync_flags & NAF_CAN_FORWARD_DOWN) && 1203 kring->ring_id == kring->na->num_rx_rings; 1204 } 1205 1206 /* 1207 * Send to the NIC rings packets marked NS_FORWARD between 1208 * kring->nr_hwcur and kring->rhead. 1209 * Called under kring->rx_queue.lock on the sw rx ring. 1210 * 1211 * It can only be called if the user opened all the TX hw rings, 1212 * see NAF_CAN_FORWARD_DOWN flag. 1213 * We can touch the TX netmap rings (slots, head and cur) since 1214 * we are in poll/ioctl system call context, and the application 1215 * is not supposed to touch the ring (using a different thread) 1216 * during the execution of the system call. 1217 */ 1218 static u_int 1219 netmap_sw_to_nic(struct netmap_adapter *na) 1220 { 1221 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings]; 1222 struct netmap_slot *rxslot = kring->ring->slot; 1223 u_int i, rxcur = kring->nr_hwcur; 1224 u_int const head = kring->rhead; 1225 u_int const src_lim = kring->nkr_num_slots - 1; 1226 u_int sent = 0; 1227 1228 /* scan rings to find space, then fill as much as possible */ 1229 for (i = 0; i < na->num_tx_rings; i++) { 1230 struct netmap_kring *kdst = na->tx_rings[i]; 1231 struct netmap_ring *rdst = kdst->ring; 1232 u_int const dst_lim = kdst->nkr_num_slots - 1; 1233 1234 /* XXX do we trust ring or kring->rcur,rtail ? */ 1235 for (; rxcur != head && !nm_ring_empty(rdst); 1236 rxcur = nm_next(rxcur, src_lim) ) { 1237 struct netmap_slot *src, *dst, tmp; 1238 u_int dst_head = rdst->head; 1239 1240 src = &rxslot[rxcur]; 1241 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 1242 continue; 1243 1244 sent++; 1245 1246 dst = &rdst->slot[dst_head]; 1247 1248 tmp = *src; 1249 1250 src->buf_idx = dst->buf_idx; 1251 src->flags = NS_BUF_CHANGED; 1252 1253 dst->buf_idx = tmp.buf_idx; 1254 dst->len = tmp.len; 1255 dst->flags = NS_BUF_CHANGED; 1256 1257 rdst->head = rdst->cur = nm_next(dst_head, dst_lim); 1258 } 1259 /* if (sent) XXX txsync ? it would be just an optimization */ 1260 } 1261 return sent; 1262 } 1263 1264 1265 /* 1266 * netmap_txsync_to_host() passes packets up. We are called from a 1267 * system call in user process context, and the only contention 1268 * can be among multiple user threads erroneously calling 1269 * this routine concurrently. 1270 */ 1271 static int 1272 netmap_txsync_to_host(struct netmap_kring *kring, int flags) 1273 { 1274 struct netmap_adapter *na = kring->na; 1275 u_int const lim = kring->nkr_num_slots - 1; 1276 u_int const head = kring->rhead; 1277 struct mbq q; 1278 1279 /* Take packets from hwcur to head and pass them up. 1280 * Force hwcur = head since netmap_grab_packets() stops at head 1281 */ 1282 mbq_init(&q); 1283 netmap_grab_packets(kring, &q, 1 /* force */); 1284 ND("have %d pkts in queue", mbq_len(&q)); 1285 kring->nr_hwcur = head; 1286 kring->nr_hwtail = head + lim; 1287 if (kring->nr_hwtail > lim) 1288 kring->nr_hwtail -= lim + 1; 1289 1290 netmap_send_up(na->ifp, &q); 1291 return 0; 1292 } 1293 1294 1295 /* 1296 * rxsync backend for packets coming from the host stack. 1297 * They have been put in kring->rx_queue by netmap_transmit(). 1298 * We protect access to the kring using kring->rx_queue.lock 1299 * 1300 * also moves to the nic hw rings any packet the user has marked 1301 * for transparent-mode forwarding, then sets the NR_FORWARD 1302 * flag in the kring to let the caller push them out 1303 */ 1304 static int 1305 netmap_rxsync_from_host(struct netmap_kring *kring, int flags) 1306 { 1307 struct netmap_adapter *na = kring->na; 1308 struct netmap_ring *ring = kring->ring; 1309 u_int nm_i, n; 1310 u_int const lim = kring->nkr_num_slots - 1; 1311 u_int const head = kring->rhead; 1312 int ret = 0; 1313 struct mbq *q = &kring->rx_queue, fq; 1314 1315 mbq_init(&fq); /* fq holds packets to be freed */ 1316 1317 mbq_lock(q); 1318 1319 /* First part: import newly received packets */ 1320 n = mbq_len(q); 1321 if (n) { /* grab packets from the queue */ 1322 struct mbuf *m; 1323 uint32_t stop_i; 1324 1325 nm_i = kring->nr_hwtail; 1326 stop_i = nm_prev(kring->nr_hwcur, lim); 1327 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 1328 int len = MBUF_LEN(m); 1329 struct netmap_slot *slot = &ring->slot[nm_i]; 1330 1331 m_copydata(m, 0, len, NMB(na, slot)); 1332 ND("nm %d len %d", nm_i, len); 1333 if (netmap_debug & NM_DEBUG_HOST) 1334 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL)); 1335 1336 slot->len = len; 1337 slot->flags = 0; 1338 nm_i = nm_next(nm_i, lim); 1339 mbq_enqueue(&fq, m); 1340 } 1341 kring->nr_hwtail = nm_i; 1342 } 1343 1344 /* 1345 * Second part: skip past packets that userspace has released. 1346 */ 1347 nm_i = kring->nr_hwcur; 1348 if (nm_i != head) { /* something was released */ 1349 if (nm_may_forward_down(kring, flags)) { 1350 ret = netmap_sw_to_nic(na); 1351 if (ret > 0) { 1352 kring->nr_kflags |= NR_FORWARD; 1353 ret = 0; 1354 } 1355 } 1356 kring->nr_hwcur = head; 1357 } 1358 1359 mbq_unlock(q); 1360 1361 mbq_purge(&fq); 1362 mbq_fini(&fq); 1363 1364 return ret; 1365 } 1366 1367 1368 /* Get a netmap adapter for the port. 1369 * 1370 * If it is possible to satisfy the request, return 0 1371 * with *na containing the netmap adapter found. 1372 * Otherwise return an error code, with *na containing NULL. 1373 * 1374 * When the port is attached to a bridge, we always return 1375 * EBUSY. 1376 * Otherwise, if the port is already bound to a file descriptor, 1377 * then we unconditionally return the existing adapter into *na. 1378 * In all the other cases, we return (into *na) either native, 1379 * generic or NULL, according to the following table: 1380 * 1381 * native_support 1382 * active_fds dev.netmap.admode YES NO 1383 * ------------------------------------------------------- 1384 * >0 * NA(ifp) NA(ifp) 1385 * 1386 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1387 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1388 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1389 * 1390 */ 1391 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */ 1392 int 1393 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na) 1394 { 1395 /* generic support */ 1396 int i = netmap_admode; /* Take a snapshot. */ 1397 struct netmap_adapter *prev_na; 1398 int error = 0; 1399 1400 *na = NULL; /* default */ 1401 1402 /* reset in case of invalid value */ 1403 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1404 i = netmap_admode = NETMAP_ADMODE_BEST; 1405 1406 if (NM_NA_VALID(ifp)) { 1407 prev_na = NA(ifp); 1408 /* If an adapter already exists, return it if 1409 * there are active file descriptors or if 1410 * netmap is not forced to use generic 1411 * adapters. 1412 */ 1413 if (NETMAP_OWNED_BY_ANY(prev_na) 1414 || i != NETMAP_ADMODE_GENERIC 1415 || prev_na->na_flags & NAF_FORCE_NATIVE 1416 #ifdef WITH_PIPES 1417 /* ugly, but we cannot allow an adapter switch 1418 * if some pipe is referring to this one 1419 */ 1420 || prev_na->na_next_pipe > 0 1421 #endif 1422 ) { 1423 *na = prev_na; 1424 goto assign_mem; 1425 } 1426 } 1427 1428 /* If there isn't native support and netmap is not allowed 1429 * to use generic adapters, we cannot satisfy the request. 1430 */ 1431 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE) 1432 return EOPNOTSUPP; 1433 1434 /* Otherwise, create a generic adapter and return it, 1435 * saving the previously used netmap adapter, if any. 1436 * 1437 * Note that here 'prev_na', if not NULL, MUST be a 1438 * native adapter, and CANNOT be a generic one. This is 1439 * true because generic adapters are created on demand, and 1440 * destroyed when not used anymore. Therefore, if the adapter 1441 * currently attached to an interface 'ifp' is generic, it 1442 * must be that 1443 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1444 * Consequently, if NA(ifp) is generic, we will enter one of 1445 * the branches above. This ensures that we never override 1446 * a generic adapter with another generic adapter. 1447 */ 1448 error = generic_netmap_attach(ifp); 1449 if (error) 1450 return error; 1451 1452 *na = NA(ifp); 1453 1454 assign_mem: 1455 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) && 1456 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) { 1457 (*na)->nm_mem_prev = (*na)->nm_mem; 1458 (*na)->nm_mem = netmap_mem_get(nmd); 1459 } 1460 1461 return 0; 1462 } 1463 1464 /* 1465 * MUST BE CALLED UNDER NMG_LOCK() 1466 * 1467 * Get a refcounted reference to a netmap adapter attached 1468 * to the interface specified by req. 1469 * This is always called in the execution of an ioctl(). 1470 * 1471 * Return ENXIO if the interface specified by the request does 1472 * not exist, ENOTSUP if netmap is not supported by the interface, 1473 * EBUSY if the interface is already attached to a bridge, 1474 * EINVAL if parameters are invalid, ENOMEM if needed resources 1475 * could not be allocated. 1476 * If successful, hold a reference to the netmap adapter. 1477 * 1478 * If the interface specified by req is a system one, also keep 1479 * a reference to it and return a valid *ifp. 1480 */ 1481 int 1482 netmap_get_na(struct nmreq_header *hdr, 1483 struct netmap_adapter **na, struct ifnet **ifp, 1484 struct netmap_mem_d *nmd, int create) 1485 { 1486 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; 1487 int error = 0; 1488 struct netmap_adapter *ret = NULL; 1489 int nmd_ref = 0; 1490 1491 *na = NULL; /* default return value */ 1492 *ifp = NULL; 1493 1494 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { 1495 return EINVAL; 1496 } 1497 1498 if (req->nr_mode == NR_REG_PIPE_MASTER || 1499 req->nr_mode == NR_REG_PIPE_SLAVE) { 1500 /* Do not accept deprecated pipe modes. */ 1501 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax"); 1502 return EINVAL; 1503 } 1504 1505 NMG_LOCK_ASSERT(); 1506 1507 /* if the request contain a memid, try to find the 1508 * corresponding memory region 1509 */ 1510 if (nmd == NULL && req->nr_mem_id) { 1511 nmd = netmap_mem_find(req->nr_mem_id); 1512 if (nmd == NULL) 1513 return EINVAL; 1514 /* keep the rereference */ 1515 nmd_ref = 1; 1516 } 1517 1518 /* We cascade through all possible types of netmap adapter. 1519 * All netmap_get_*_na() functions return an error and an na, 1520 * with the following combinations: 1521 * 1522 * error na 1523 * 0 NULL type doesn't match 1524 * !0 NULL type matches, but na creation/lookup failed 1525 * 0 !NULL type matches and na created/found 1526 * !0 !NULL impossible 1527 */ 1528 error = netmap_get_null_na(hdr, na, nmd, create); 1529 if (error || *na != NULL) 1530 goto out; 1531 1532 /* try to see if this is a monitor port */ 1533 error = netmap_get_monitor_na(hdr, na, nmd, create); 1534 if (error || *na != NULL) 1535 goto out; 1536 1537 /* try to see if this is a pipe port */ 1538 error = netmap_get_pipe_na(hdr, na, nmd, create); 1539 if (error || *na != NULL) 1540 goto out; 1541 1542 /* try to see if this is a bridge port */ 1543 error = netmap_get_vale_na(hdr, na, nmd, create); 1544 if (error) 1545 goto out; 1546 1547 if (*na != NULL) /* valid match in netmap_get_bdg_na() */ 1548 goto out; 1549 1550 /* 1551 * This must be a hardware na, lookup the name in the system. 1552 * Note that by hardware we actually mean "it shows up in ifconfig". 1553 * This may still be a tap, a veth/epair, or even a 1554 * persistent VALE port. 1555 */ 1556 *ifp = ifunit_ref(hdr->nr_name); 1557 if (*ifp == NULL) { 1558 error = ENXIO; 1559 goto out; 1560 } 1561 1562 error = netmap_get_hw_na(*ifp, nmd, &ret); 1563 if (error) 1564 goto out; 1565 1566 *na = ret; 1567 netmap_adapter_get(ret); 1568 1569 out: 1570 if (error) { 1571 if (ret) 1572 netmap_adapter_put(ret); 1573 if (*ifp) { 1574 if_rele(*ifp); 1575 *ifp = NULL; 1576 } 1577 } 1578 if (nmd_ref) 1579 netmap_mem_put(nmd); 1580 1581 return error; 1582 } 1583 1584 /* undo netmap_get_na() */ 1585 void 1586 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp) 1587 { 1588 if (ifp) 1589 if_rele(ifp); 1590 if (na) 1591 netmap_adapter_put(na); 1592 } 1593 1594 1595 #define NM_FAIL_ON(t) do { \ 1596 if (unlikely(t)) { \ 1597 RD(5, "%s: fail '" #t "' " \ 1598 "h %d c %d t %d " \ 1599 "rh %d rc %d rt %d " \ 1600 "hc %d ht %d", \ 1601 kring->name, \ 1602 head, cur, ring->tail, \ 1603 kring->rhead, kring->rcur, kring->rtail, \ 1604 kring->nr_hwcur, kring->nr_hwtail); \ 1605 return kring->nkr_num_slots; \ 1606 } \ 1607 } while (0) 1608 1609 /* 1610 * validate parameters on entry for *_txsync() 1611 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1612 * in case of error. 1613 * 1614 * rhead, rcur and rtail=hwtail are stored from previous round. 1615 * hwcur is the next packet to send to the ring. 1616 * 1617 * We want 1618 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1619 * 1620 * hwcur, rhead, rtail and hwtail are reliable 1621 */ 1622 u_int 1623 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1624 { 1625 u_int head = ring->head; /* read only once */ 1626 u_int cur = ring->cur; /* read only once */ 1627 u_int n = kring->nkr_num_slots; 1628 1629 ND(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1630 kring->name, 1631 kring->nr_hwcur, kring->nr_hwtail, 1632 ring->head, ring->cur, ring->tail); 1633 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1634 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n || 1635 kring->rtail >= n || kring->nr_hwtail >= n); 1636 #endif /* kernel sanity checks */ 1637 /* 1638 * user sanity checks. We only use head, 1639 * A, B, ... are possible positions for head: 1640 * 1641 * 0 A rhead B rtail C n-1 1642 * 0 D rtail E rhead F n-1 1643 * 1644 * B, F, D are valid. A, C, E are wrong 1645 */ 1646 if (kring->rtail >= kring->rhead) { 1647 /* want rhead <= head <= rtail */ 1648 NM_FAIL_ON(head < kring->rhead || head > kring->rtail); 1649 /* and also head <= cur <= rtail */ 1650 NM_FAIL_ON(cur < head || cur > kring->rtail); 1651 } else { /* here rtail < rhead */ 1652 /* we need head outside rtail .. rhead */ 1653 NM_FAIL_ON(head > kring->rtail && head < kring->rhead); 1654 1655 /* two cases now: head <= rtail or head >= rhead */ 1656 if (head <= kring->rtail) { 1657 /* want head <= cur <= rtail */ 1658 NM_FAIL_ON(cur < head || cur > kring->rtail); 1659 } else { /* head >= rhead */ 1660 /* cur must be outside rtail..head */ 1661 NM_FAIL_ON(cur > kring->rtail && cur < head); 1662 } 1663 } 1664 if (ring->tail != kring->rtail) { 1665 RD(5, "%s tail overwritten was %d need %d", kring->name, 1666 ring->tail, kring->rtail); 1667 ring->tail = kring->rtail; 1668 } 1669 kring->rhead = head; 1670 kring->rcur = cur; 1671 return head; 1672 } 1673 1674 1675 /* 1676 * validate parameters on entry for *_rxsync() 1677 * Returns ring->head if ok, kring->nkr_num_slots on error. 1678 * 1679 * For a valid configuration, 1680 * hwcur <= head <= cur <= tail <= hwtail 1681 * 1682 * We only consider head and cur. 1683 * hwcur and hwtail are reliable. 1684 * 1685 */ 1686 u_int 1687 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1688 { 1689 uint32_t const n = kring->nkr_num_slots; 1690 uint32_t head, cur; 1691 1692 ND(5,"%s kc %d kt %d h %d c %d t %d", 1693 kring->name, 1694 kring->nr_hwcur, kring->nr_hwtail, 1695 ring->head, ring->cur, ring->tail); 1696 /* 1697 * Before storing the new values, we should check they do not 1698 * move backwards. However: 1699 * - head is not an issue because the previous value is hwcur; 1700 * - cur could in principle go back, however it does not matter 1701 * because we are processing a brand new rxsync() 1702 */ 1703 cur = kring->rcur = ring->cur; /* read only once */ 1704 head = kring->rhead = ring->head; /* read only once */ 1705 #if 1 /* kernel sanity checks */ 1706 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n); 1707 #endif /* kernel sanity checks */ 1708 /* user sanity checks */ 1709 if (kring->nr_hwtail >= kring->nr_hwcur) { 1710 /* want hwcur <= rhead <= hwtail */ 1711 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail); 1712 /* and also rhead <= rcur <= hwtail */ 1713 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1714 } else { 1715 /* we need rhead outside hwtail..hwcur */ 1716 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail); 1717 /* two cases now: head <= hwtail or head >= hwcur */ 1718 if (head <= kring->nr_hwtail) { 1719 /* want head <= cur <= hwtail */ 1720 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1721 } else { 1722 /* cur must be outside hwtail..head */ 1723 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail); 1724 } 1725 } 1726 if (ring->tail != kring->rtail) { 1727 RD(5, "%s tail overwritten was %d need %d", 1728 kring->name, 1729 ring->tail, kring->rtail); 1730 ring->tail = kring->rtail; 1731 } 1732 return head; 1733 } 1734 1735 1736 /* 1737 * Error routine called when txsync/rxsync detects an error. 1738 * Can't do much more than resetting head = cur = hwcur, tail = hwtail 1739 * Return 1 on reinit. 1740 * 1741 * This routine is only called by the upper half of the kernel. 1742 * It only reads hwcur (which is changed only by the upper half, too) 1743 * and hwtail (which may be changed by the lower half, but only on 1744 * a tx ring and only to increase it, so any error will be recovered 1745 * on the next call). For the above, we don't strictly need to call 1746 * it under lock. 1747 */ 1748 int 1749 netmap_ring_reinit(struct netmap_kring *kring) 1750 { 1751 struct netmap_ring *ring = kring->ring; 1752 u_int i, lim = kring->nkr_num_slots - 1; 1753 int errors = 0; 1754 1755 // XXX KASSERT nm_kr_tryget 1756 RD(10, "called for %s", kring->name); 1757 // XXX probably wrong to trust userspace 1758 kring->rhead = ring->head; 1759 kring->rcur = ring->cur; 1760 kring->rtail = ring->tail; 1761 1762 if (ring->cur > lim) 1763 errors++; 1764 if (ring->head > lim) 1765 errors++; 1766 if (ring->tail > lim) 1767 errors++; 1768 for (i = 0; i <= lim; i++) { 1769 u_int idx = ring->slot[i].buf_idx; 1770 u_int len = ring->slot[i].len; 1771 if (idx < 2 || idx >= kring->na->na_lut.objtotal) { 1772 RD(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1773 ring->slot[i].buf_idx = 0; 1774 ring->slot[i].len = 0; 1775 } else if (len > NETMAP_BUF_SIZE(kring->na)) { 1776 ring->slot[i].len = 0; 1777 RD(5, "bad len at slot %d idx %d len %d", i, idx, len); 1778 } 1779 } 1780 if (errors) { 1781 RD(10, "total %d errors", errors); 1782 RD(10, "%s reinit, cur %d -> %d tail %d -> %d", 1783 kring->name, 1784 ring->cur, kring->nr_hwcur, 1785 ring->tail, kring->nr_hwtail); 1786 ring->head = kring->rhead = kring->nr_hwcur; 1787 ring->cur = kring->rcur = kring->nr_hwcur; 1788 ring->tail = kring->rtail = kring->nr_hwtail; 1789 } 1790 return (errors ? 1 : 0); 1791 } 1792 1793 /* interpret the ringid and flags fields of an nmreq, by translating them 1794 * into a pair of intervals of ring indices: 1795 * 1796 * [priv->np_txqfirst, priv->np_txqlast) and 1797 * [priv->np_rxqfirst, priv->np_rxqlast) 1798 * 1799 */ 1800 int 1801 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1802 uint16_t nr_ringid, uint64_t nr_flags) 1803 { 1804 struct netmap_adapter *na = priv->np_na; 1805 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY }; 1806 enum txrx t; 1807 u_int j; 1808 1809 for_rx_tx(t) { 1810 if (nr_flags & excluded_direction[t]) { 1811 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1812 continue; 1813 } 1814 switch (nr_mode) { 1815 case NR_REG_ALL_NIC: 1816 case NR_REG_NULL: 1817 priv->np_qfirst[t] = 0; 1818 priv->np_qlast[t] = nma_get_nrings(na, t); 1819 ND("ALL/PIPE: %s %d %d", nm_txrx2str(t), 1820 priv->np_qfirst[t], priv->np_qlast[t]); 1821 break; 1822 case NR_REG_SW: 1823 case NR_REG_NIC_SW: 1824 if (!(na->na_flags & NAF_HOST_RINGS)) { 1825 nm_prerr("host rings not supported"); 1826 return EINVAL; 1827 } 1828 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ? 1829 nma_get_nrings(na, t) : 0); 1830 priv->np_qlast[t] = netmap_all_rings(na, t); 1831 ND("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW", 1832 nm_txrx2str(t), 1833 priv->np_qfirst[t], priv->np_qlast[t]); 1834 break; 1835 case NR_REG_ONE_NIC: 1836 if (nr_ringid >= na->num_tx_rings && 1837 nr_ringid >= na->num_rx_rings) { 1838 nm_prerr("invalid ring id %d", nr_ringid); 1839 return EINVAL; 1840 } 1841 /* if not enough rings, use the first one */ 1842 j = nr_ringid; 1843 if (j >= nma_get_nrings(na, t)) 1844 j = 0; 1845 priv->np_qfirst[t] = j; 1846 priv->np_qlast[t] = j + 1; 1847 ND("ONE_NIC: %s %d %d", nm_txrx2str(t), 1848 priv->np_qfirst[t], priv->np_qlast[t]); 1849 break; 1850 default: 1851 nm_prerr("invalid regif type %d", nr_mode); 1852 return EINVAL; 1853 } 1854 } 1855 priv->np_flags = nr_flags; 1856 1857 /* Allow transparent forwarding mode in the host --> nic 1858 * direction only if all the TX hw rings have been opened. */ 1859 if (priv->np_qfirst[NR_TX] == 0 && 1860 priv->np_qlast[NR_TX] >= na->num_tx_rings) { 1861 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN; 1862 } 1863 1864 if (netmap_verbose) { 1865 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d", 1866 na->name, 1867 priv->np_qfirst[NR_TX], 1868 priv->np_qlast[NR_TX], 1869 priv->np_qfirst[NR_RX], 1870 priv->np_qlast[NR_RX], 1871 nr_ringid); 1872 } 1873 return 0; 1874 } 1875 1876 1877 /* 1878 * Set the ring ID. For devices with a single queue, a request 1879 * for all rings is the same as a single ring. 1880 */ 1881 static int 1882 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1883 uint16_t nr_ringid, uint64_t nr_flags) 1884 { 1885 struct netmap_adapter *na = priv->np_na; 1886 int error; 1887 enum txrx t; 1888 1889 error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags); 1890 if (error) { 1891 return error; 1892 } 1893 1894 priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1; 1895 1896 /* optimization: count the users registered for more than 1897 * one ring, which are the ones sleeping on the global queue. 1898 * The default netmap_notify() callback will then 1899 * avoid signaling the global queue if nobody is using it 1900 */ 1901 for_rx_tx(t) { 1902 if (nm_si_user(priv, t)) 1903 na->si_users[t]++; 1904 } 1905 return 0; 1906 } 1907 1908 static void 1909 netmap_unset_ringid(struct netmap_priv_d *priv) 1910 { 1911 struct netmap_adapter *na = priv->np_na; 1912 enum txrx t; 1913 1914 for_rx_tx(t) { 1915 if (nm_si_user(priv, t)) 1916 na->si_users[t]--; 1917 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1918 } 1919 priv->np_flags = 0; 1920 priv->np_txpoll = 0; 1921 priv->np_kloop_state = 0; 1922 } 1923 1924 1925 /* Set the nr_pending_mode for the requested rings. 1926 * If requested, also try to get exclusive access to the rings, provided 1927 * the rings we want to bind are not exclusively owned by a previous bind. 1928 */ 1929 static int 1930 netmap_krings_get(struct netmap_priv_d *priv) 1931 { 1932 struct netmap_adapter *na = priv->np_na; 1933 u_int i; 1934 struct netmap_kring *kring; 1935 int excl = (priv->np_flags & NR_EXCLUSIVE); 1936 enum txrx t; 1937 1938 if (netmap_debug & NM_DEBUG_ON) 1939 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)", 1940 na->name, 1941 priv->np_qfirst[NR_TX], 1942 priv->np_qlast[NR_TX], 1943 priv->np_qfirst[NR_RX], 1944 priv->np_qlast[NR_RX]); 1945 1946 /* first round: check that all the requested rings 1947 * are neither alread exclusively owned, nor we 1948 * want exclusive ownership when they are already in use 1949 */ 1950 for_rx_tx(t) { 1951 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 1952 kring = NMR(na, t)[i]; 1953 if ((kring->nr_kflags & NKR_EXCLUSIVE) || 1954 (kring->users && excl)) 1955 { 1956 ND("ring %s busy", kring->name); 1957 return EBUSY; 1958 } 1959 } 1960 } 1961 1962 /* second round: increment usage count (possibly marking them 1963 * as exclusive) and set the nr_pending_mode 1964 */ 1965 for_rx_tx(t) { 1966 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 1967 kring = NMR(na, t)[i]; 1968 kring->users++; 1969 if (excl) 1970 kring->nr_kflags |= NKR_EXCLUSIVE; 1971 kring->nr_pending_mode = NKR_NETMAP_ON; 1972 } 1973 } 1974 1975 return 0; 1976 1977 } 1978 1979 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode 1980 * if was asked on regif, and unset the nr_pending_mode if we are the 1981 * last users of the involved rings. */ 1982 static void 1983 netmap_krings_put(struct netmap_priv_d *priv) 1984 { 1985 struct netmap_adapter *na = priv->np_na; 1986 u_int i; 1987 struct netmap_kring *kring; 1988 int excl = (priv->np_flags & NR_EXCLUSIVE); 1989 enum txrx t; 1990 1991 ND("%s: releasing tx [%d, %d) rx [%d, %d)", 1992 na->name, 1993 priv->np_qfirst[NR_TX], 1994 priv->np_qlast[NR_TX], 1995 priv->np_qfirst[NR_RX], 1996 priv->np_qlast[MR_RX]); 1997 1998 for_rx_tx(t) { 1999 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 2000 kring = NMR(na, t)[i]; 2001 if (excl) 2002 kring->nr_kflags &= ~NKR_EXCLUSIVE; 2003 kring->users--; 2004 if (kring->users == 0) 2005 kring->nr_pending_mode = NKR_NETMAP_OFF; 2006 } 2007 } 2008 } 2009 2010 static int 2011 nm_priv_rx_enabled(struct netmap_priv_d *priv) 2012 { 2013 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]); 2014 } 2015 2016 /* Validate the CSB entries for both directions (atok and ktoa). 2017 * To be called under NMG_LOCK(). */ 2018 static int 2019 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo) 2020 { 2021 struct nm_csb_atok *csb_atok_base = 2022 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok; 2023 struct nm_csb_ktoa *csb_ktoa_base = 2024 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa; 2025 enum txrx t; 2026 int num_rings[NR_TXRX], tot_rings; 2027 size_t entry_size[2]; 2028 void *csb_start[2]; 2029 int i; 2030 2031 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) { 2032 nm_prerr("Cannot update CSB while kloop is running"); 2033 return EBUSY; 2034 } 2035 2036 tot_rings = 0; 2037 for_rx_tx(t) { 2038 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t]; 2039 tot_rings += num_rings[t]; 2040 } 2041 if (tot_rings <= 0) 2042 return 0; 2043 2044 if (!(priv->np_flags & NR_EXCLUSIVE)) { 2045 nm_prerr("CSB mode requires NR_EXCLUSIVE"); 2046 return EINVAL; 2047 } 2048 2049 entry_size[0] = sizeof(*csb_atok_base); 2050 entry_size[1] = sizeof(*csb_ktoa_base); 2051 csb_start[0] = (void *)csb_atok_base; 2052 csb_start[1] = (void *)csb_ktoa_base; 2053 2054 for (i = 0; i < 2; i++) { 2055 /* On Linux we could use access_ok() to simplify 2056 * the validation. However, the advantage of 2057 * this approach is that it works also on 2058 * FreeBSD. */ 2059 size_t csb_size = tot_rings * entry_size[i]; 2060 void *tmp; 2061 int err; 2062 2063 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) { 2064 nm_prerr("Unaligned CSB address"); 2065 return EINVAL; 2066 } 2067 2068 tmp = nm_os_malloc(csb_size); 2069 if (!tmp) 2070 return ENOMEM; 2071 if (i == 0) { 2072 /* Application --> kernel direction. */ 2073 err = copyin(csb_start[i], tmp, csb_size); 2074 } else { 2075 /* Kernel --> application direction. */ 2076 memset(tmp, 0, csb_size); 2077 err = copyout(tmp, csb_start[i], csb_size); 2078 } 2079 nm_os_free(tmp); 2080 if (err) { 2081 nm_prerr("Invalid CSB address"); 2082 return err; 2083 } 2084 } 2085 2086 priv->np_csb_atok_base = csb_atok_base; 2087 priv->np_csb_ktoa_base = csb_ktoa_base; 2088 2089 /* Initialize the CSB. */ 2090 for_rx_tx(t) { 2091 for (i = 0; i < num_rings[t]; i++) { 2092 struct netmap_kring *kring = 2093 NMR(priv->np_na, t)[i + priv->np_qfirst[t]]; 2094 struct nm_csb_atok *csb_atok = csb_atok_base + i; 2095 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i; 2096 2097 if (t == NR_RX) { 2098 csb_atok += num_rings[NR_TX]; 2099 csb_ktoa += num_rings[NR_TX]; 2100 } 2101 2102 CSB_WRITE(csb_atok, head, kring->rhead); 2103 CSB_WRITE(csb_atok, cur, kring->rcur); 2104 CSB_WRITE(csb_atok, appl_need_kick, 1); 2105 CSB_WRITE(csb_atok, sync_flags, 1); 2106 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur); 2107 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail); 2108 CSB_WRITE(csb_ktoa, kern_need_kick, 1); 2109 2110 nm_prinf("csb_init for kring %s: head %u, cur %u, " 2111 "hwcur %u, hwtail %u", kring->name, 2112 kring->rhead, kring->rcur, kring->nr_hwcur, 2113 kring->nr_hwtail); 2114 } 2115 } 2116 2117 return 0; 2118 } 2119 2120 /* Ensure that the netmap adapter can support the given MTU. 2121 * @return EINVAL if the na cannot be set to mtu, 0 otherwise. 2122 */ 2123 int 2124 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) { 2125 unsigned nbs = NETMAP_BUF_SIZE(na); 2126 2127 if (mtu <= na->rx_buf_maxsize) { 2128 /* The MTU fits a single NIC slot. We only 2129 * Need to check that netmap buffers are 2130 * large enough to hold an MTU. NS_MOREFRAG 2131 * cannot be used in this case. */ 2132 if (nbs < mtu) { 2133 nm_prerr("error: netmap buf size (%u) " 2134 "< device MTU (%u)", nbs, mtu); 2135 return EINVAL; 2136 } 2137 } else { 2138 /* More NIC slots may be needed to receive 2139 * or transmit a single packet. Check that 2140 * the adapter supports NS_MOREFRAG and that 2141 * netmap buffers are large enough to hold 2142 * the maximum per-slot size. */ 2143 if (!(na->na_flags & NAF_MOREFRAG)) { 2144 nm_prerr("error: large MTU (%d) needed " 2145 "but %s does not support " 2146 "NS_MOREFRAG", mtu, 2147 na->ifp->if_xname); 2148 return EINVAL; 2149 } else if (nbs < na->rx_buf_maxsize) { 2150 nm_prerr("error: using NS_MOREFRAG on " 2151 "%s requires netmap buf size " 2152 ">= %u", na->ifp->if_xname, 2153 na->rx_buf_maxsize); 2154 return EINVAL; 2155 } else { 2156 nm_prinf("info: netmap application on " 2157 "%s needs to support " 2158 "NS_MOREFRAG " 2159 "(MTU=%u,netmap_buf_size=%u)", 2160 na->ifp->if_xname, mtu, nbs); 2161 } 2162 } 2163 return 0; 2164 } 2165 2166 2167 /* 2168 * possibly move the interface to netmap-mode. 2169 * If success it returns a pointer to netmap_if, otherwise NULL. 2170 * This must be called with NMG_LOCK held. 2171 * 2172 * The following na callbacks are called in the process: 2173 * 2174 * na->nm_config() [by netmap_update_config] 2175 * (get current number and size of rings) 2176 * 2177 * We have a generic one for linux (netmap_linux_config). 2178 * The bwrap has to override this, since it has to forward 2179 * the request to the wrapped adapter (netmap_bwrap_config). 2180 * 2181 * 2182 * na->nm_krings_create() 2183 * (create and init the krings array) 2184 * 2185 * One of the following: 2186 * 2187 * * netmap_hw_krings_create, (hw ports) 2188 * creates the standard layout for the krings 2189 * and adds the mbq (used for the host rings). 2190 * 2191 * * netmap_vp_krings_create (VALE ports) 2192 * add leases and scratchpads 2193 * 2194 * * netmap_pipe_krings_create (pipes) 2195 * create the krings and rings of both ends and 2196 * cross-link them 2197 * 2198 * * netmap_monitor_krings_create (monitors) 2199 * avoid allocating the mbq 2200 * 2201 * * netmap_bwrap_krings_create (bwraps) 2202 * create both the brap krings array, 2203 * the krings array of the wrapped adapter, and 2204 * (if needed) the fake array for the host adapter 2205 * 2206 * na->nm_register(, 1) 2207 * (put the adapter in netmap mode) 2208 * 2209 * This may be one of the following: 2210 * 2211 * * netmap_hw_reg (hw ports) 2212 * checks that the ifp is still there, then calls 2213 * the hardware specific callback; 2214 * 2215 * * netmap_vp_reg (VALE ports) 2216 * If the port is connected to a bridge, 2217 * set the NAF_NETMAP_ON flag under the 2218 * bridge write lock. 2219 * 2220 * * netmap_pipe_reg (pipes) 2221 * inform the other pipe end that it is no 2222 * longer responsible for the lifetime of this 2223 * pipe end 2224 * 2225 * * netmap_monitor_reg (monitors) 2226 * intercept the sync callbacks of the monitored 2227 * rings 2228 * 2229 * * netmap_bwrap_reg (bwraps) 2230 * cross-link the bwrap and hwna rings, 2231 * forward the request to the hwna, override 2232 * the hwna notify callback (to get the frames 2233 * coming from outside go through the bridge). 2234 * 2235 * 2236 */ 2237 int 2238 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 2239 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags) 2240 { 2241 struct netmap_if *nifp = NULL; 2242 int error; 2243 2244 NMG_LOCK_ASSERT(); 2245 priv->np_na = na; /* store the reference */ 2246 error = netmap_mem_finalize(na->nm_mem, na); 2247 if (error) 2248 goto err; 2249 2250 if (na->active_fds == 0) { 2251 2252 /* cache the allocator info in the na */ 2253 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut); 2254 if (error) 2255 goto err_drop_mem; 2256 ND("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal, 2257 na->na_lut.objsize); 2258 2259 /* ring configuration may have changed, fetch from the card */ 2260 netmap_update_config(na); 2261 } 2262 2263 /* compute the range of tx and rx rings to monitor */ 2264 error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags); 2265 if (error) 2266 goto err_put_lut; 2267 2268 if (na->active_fds == 0) { 2269 /* 2270 * If this is the first registration of the adapter, 2271 * perform sanity checks and create the in-kernel view 2272 * of the netmap rings (the netmap krings). 2273 */ 2274 if (na->ifp && nm_priv_rx_enabled(priv)) { 2275 /* This netmap adapter is attached to an ifnet. */ 2276 unsigned mtu = nm_os_ifnet_mtu(na->ifp); 2277 2278 ND("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d", 2279 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na)); 2280 2281 if (na->rx_buf_maxsize == 0) { 2282 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name); 2283 error = EIO; 2284 goto err_drop_mem; 2285 } 2286 2287 error = netmap_buf_size_validate(na, mtu); 2288 if (error) 2289 goto err_drop_mem; 2290 } 2291 2292 /* 2293 * Depending on the adapter, this may also create 2294 * the netmap rings themselves 2295 */ 2296 error = na->nm_krings_create(na); 2297 if (error) 2298 goto err_put_lut; 2299 2300 } 2301 2302 /* now the krings must exist and we can check whether some 2303 * previous bind has exclusive ownership on them, and set 2304 * nr_pending_mode 2305 */ 2306 error = netmap_krings_get(priv); 2307 if (error) 2308 goto err_del_krings; 2309 2310 /* create all needed missing netmap rings */ 2311 error = netmap_mem_rings_create(na); 2312 if (error) 2313 goto err_rel_excl; 2314 2315 /* in all cases, create a new netmap if */ 2316 nifp = netmap_mem_if_new(na, priv); 2317 if (nifp == NULL) { 2318 error = ENOMEM; 2319 goto err_rel_excl; 2320 } 2321 2322 if (nm_kring_pending(priv)) { 2323 /* Some kring is switching mode, tell the adapter to 2324 * react on this. */ 2325 error = na->nm_register(na, 1); 2326 if (error) 2327 goto err_del_if; 2328 } 2329 2330 /* Commit the reference. */ 2331 na->active_fds++; 2332 2333 /* 2334 * advertise that the interface is ready by setting np_nifp. 2335 * The barrier is needed because readers (poll, *SYNC and mmap) 2336 * check for priv->np_nifp != NULL without locking 2337 */ 2338 mb(); /* make sure previous writes are visible to all CPUs */ 2339 priv->np_nifp = nifp; 2340 2341 return 0; 2342 2343 err_del_if: 2344 netmap_mem_if_delete(na, nifp); 2345 err_rel_excl: 2346 netmap_krings_put(priv); 2347 netmap_mem_rings_delete(na); 2348 err_del_krings: 2349 if (na->active_fds == 0) 2350 na->nm_krings_delete(na); 2351 err_put_lut: 2352 if (na->active_fds == 0) 2353 memset(&na->na_lut, 0, sizeof(na->na_lut)); 2354 err_drop_mem: 2355 netmap_mem_drop(na); 2356 err: 2357 priv->np_na = NULL; 2358 return error; 2359 } 2360 2361 2362 /* 2363 * update kring and ring at the end of rxsync/txsync. 2364 */ 2365 static inline void 2366 nm_sync_finalize(struct netmap_kring *kring) 2367 { 2368 /* 2369 * Update ring tail to what the kernel knows 2370 * After txsync: head/rhead/hwcur might be behind cur/rcur 2371 * if no carrier. 2372 */ 2373 kring->ring->tail = kring->rtail = kring->nr_hwtail; 2374 2375 ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 2376 kring->name, kring->nr_hwcur, kring->nr_hwtail, 2377 kring->rhead, kring->rcur, kring->rtail); 2378 } 2379 2380 /* set ring timestamp */ 2381 static inline void 2382 ring_timestamp_set(struct netmap_ring *ring) 2383 { 2384 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) { 2385 microtime(&ring->ts); 2386 } 2387 } 2388 2389 static int nmreq_copyin(struct nmreq_header *, int); 2390 static int nmreq_copyout(struct nmreq_header *, int); 2391 static int nmreq_checkoptions(struct nmreq_header *); 2392 2393 /* 2394 * ioctl(2) support for the "netmap" device. 2395 * 2396 * Following a list of accepted commands: 2397 * - NIOCCTRL device control API 2398 * - NIOCTXSYNC sync TX rings 2399 * - NIOCRXSYNC sync RX rings 2400 * - SIOCGIFADDR just for convenience 2401 * - NIOCGINFO deprecated (legacy API) 2402 * - NIOCREGIF deprecated (legacy API) 2403 * 2404 * Return 0 on success, errno otherwise. 2405 */ 2406 int 2407 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 2408 struct thread *td, int nr_body_is_user) 2409 { 2410 struct mbq q; /* packets from RX hw queues to host stack */ 2411 struct netmap_adapter *na = NULL; 2412 struct netmap_mem_d *nmd = NULL; 2413 struct ifnet *ifp = NULL; 2414 int error = 0; 2415 u_int i, qfirst, qlast; 2416 struct netmap_kring **krings; 2417 int sync_flags; 2418 enum txrx t; 2419 2420 switch (cmd) { 2421 case NIOCCTRL: { 2422 struct nmreq_header *hdr = (struct nmreq_header *)data; 2423 2424 if (hdr->nr_version < NETMAP_MIN_API || 2425 hdr->nr_version > NETMAP_MAX_API) { 2426 nm_prerr("API mismatch: got %d need %d", 2427 hdr->nr_version, NETMAP_API); 2428 return EINVAL; 2429 } 2430 2431 /* Make a kernel-space copy of the user-space nr_body. 2432 * For convenince, the nr_body pointer and the pointers 2433 * in the options list will be replaced with their 2434 * kernel-space counterparts. The original pointers are 2435 * saved internally and later restored by nmreq_copyout 2436 */ 2437 error = nmreq_copyin(hdr, nr_body_is_user); 2438 if (error) { 2439 return error; 2440 } 2441 2442 /* Sanitize hdr->nr_name. */ 2443 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0'; 2444 2445 switch (hdr->nr_reqtype) { 2446 case NETMAP_REQ_REGISTER: { 2447 struct nmreq_register *req = 2448 (struct nmreq_register *)(uintptr_t)hdr->nr_body; 2449 struct netmap_if *nifp; 2450 2451 /* Protect access to priv from concurrent requests. */ 2452 NMG_LOCK(); 2453 do { 2454 struct nmreq_option *opt; 2455 u_int memflags; 2456 2457 if (priv->np_nifp != NULL) { /* thread already registered */ 2458 error = EBUSY; 2459 break; 2460 } 2461 2462 #ifdef WITH_EXTMEM 2463 opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options, 2464 NETMAP_REQ_OPT_EXTMEM); 2465 if (opt != NULL) { 2466 struct nmreq_opt_extmem *e = 2467 (struct nmreq_opt_extmem *)opt; 2468 2469 error = nmreq_checkduplicate(opt); 2470 if (error) { 2471 opt->nro_status = error; 2472 break; 2473 } 2474 nmd = netmap_mem_ext_create(e->nro_usrptr, 2475 &e->nro_info, &error); 2476 opt->nro_status = error; 2477 if (nmd == NULL) 2478 break; 2479 } 2480 #endif /* WITH_EXTMEM */ 2481 2482 if (nmd == NULL && req->nr_mem_id) { 2483 /* find the allocator and get a reference */ 2484 nmd = netmap_mem_find(req->nr_mem_id); 2485 if (nmd == NULL) { 2486 if (netmap_verbose) { 2487 nm_prerr("%s: failed to find mem_id %u", 2488 hdr->nr_name, req->nr_mem_id); 2489 } 2490 error = EINVAL; 2491 break; 2492 } 2493 } 2494 /* find the interface and a reference */ 2495 error = netmap_get_na(hdr, &na, &ifp, nmd, 2496 1 /* create */); /* keep reference */ 2497 if (error) 2498 break; 2499 if (NETMAP_OWNED_BY_KERN(na)) { 2500 error = EBUSY; 2501 break; 2502 } 2503 2504 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) { 2505 nm_prerr("virt_hdr_len=%d, but application does " 2506 "not accept it", na->virt_hdr_len); 2507 error = EIO; 2508 break; 2509 } 2510 2511 error = netmap_do_regif(priv, na, req->nr_mode, 2512 req->nr_ringid, req->nr_flags); 2513 if (error) { /* reg. failed, release priv and ref */ 2514 break; 2515 } 2516 2517 opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options, 2518 NETMAP_REQ_OPT_CSB); 2519 if (opt != NULL) { 2520 struct nmreq_opt_csb *csbo = 2521 (struct nmreq_opt_csb *)opt; 2522 error = nmreq_checkduplicate(opt); 2523 if (!error) { 2524 error = netmap_csb_validate(priv, csbo); 2525 } 2526 opt->nro_status = error; 2527 if (error) { 2528 netmap_do_unregif(priv); 2529 break; 2530 } 2531 } 2532 2533 nifp = priv->np_nifp; 2534 2535 /* return the offset of the netmap_if object */ 2536 req->nr_rx_rings = na->num_rx_rings; 2537 req->nr_tx_rings = na->num_tx_rings; 2538 req->nr_rx_slots = na->num_rx_desc; 2539 req->nr_tx_slots = na->num_tx_desc; 2540 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags, 2541 &req->nr_mem_id); 2542 if (error) { 2543 netmap_do_unregif(priv); 2544 break; 2545 } 2546 if (memflags & NETMAP_MEM_PRIVATE) { 2547 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 2548 } 2549 for_rx_tx(t) { 2550 priv->np_si[t] = nm_si_user(priv, t) ? 2551 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si; 2552 } 2553 2554 if (req->nr_extra_bufs) { 2555 if (netmap_verbose) 2556 nm_prinf("requested %d extra buffers", 2557 req->nr_extra_bufs); 2558 req->nr_extra_bufs = netmap_extra_alloc(na, 2559 &nifp->ni_bufs_head, req->nr_extra_bufs); 2560 if (netmap_verbose) 2561 nm_prinf("got %d extra buffers", req->nr_extra_bufs); 2562 } 2563 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 2564 2565 error = nmreq_checkoptions(hdr); 2566 if (error) { 2567 netmap_do_unregif(priv); 2568 break; 2569 } 2570 2571 /* store ifp reference so that priv destructor may release it */ 2572 priv->np_ifp = ifp; 2573 } while (0); 2574 if (error) { 2575 netmap_unget_na(na, ifp); 2576 } 2577 /* release the reference from netmap_mem_find() or 2578 * netmap_mem_ext_create() 2579 */ 2580 if (nmd) 2581 netmap_mem_put(nmd); 2582 NMG_UNLOCK(); 2583 break; 2584 } 2585 2586 case NETMAP_REQ_PORT_INFO_GET: { 2587 struct nmreq_port_info_get *req = 2588 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body; 2589 2590 NMG_LOCK(); 2591 do { 2592 u_int memflags; 2593 2594 if (hdr->nr_name[0] != '\0') { 2595 /* Build a nmreq_register out of the nmreq_port_info_get, 2596 * so that we can call netmap_get_na(). */ 2597 struct nmreq_register regreq; 2598 bzero(®req, sizeof(regreq)); 2599 regreq.nr_mode = NR_REG_ALL_NIC; 2600 regreq.nr_tx_slots = req->nr_tx_slots; 2601 regreq.nr_rx_slots = req->nr_rx_slots; 2602 regreq.nr_tx_rings = req->nr_tx_rings; 2603 regreq.nr_rx_rings = req->nr_rx_rings; 2604 regreq.nr_mem_id = req->nr_mem_id; 2605 2606 /* get a refcount */ 2607 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2608 hdr->nr_body = (uintptr_t)®req; 2609 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2610 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */ 2611 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2612 if (error) { 2613 na = NULL; 2614 ifp = NULL; 2615 break; 2616 } 2617 nmd = na->nm_mem; /* get memory allocator */ 2618 } else { 2619 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1); 2620 if (nmd == NULL) { 2621 if (netmap_verbose) 2622 nm_prerr("%s: failed to find mem_id %u", 2623 hdr->nr_name, 2624 req->nr_mem_id ? req->nr_mem_id : 1); 2625 error = EINVAL; 2626 break; 2627 } 2628 } 2629 2630 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags, 2631 &req->nr_mem_id); 2632 if (error) 2633 break; 2634 if (na == NULL) /* only memory info */ 2635 break; 2636 netmap_update_config(na); 2637 req->nr_rx_rings = na->num_rx_rings; 2638 req->nr_tx_rings = na->num_tx_rings; 2639 req->nr_rx_slots = na->num_rx_desc; 2640 req->nr_tx_slots = na->num_tx_desc; 2641 } while (0); 2642 netmap_unget_na(na, ifp); 2643 NMG_UNLOCK(); 2644 break; 2645 } 2646 #ifdef WITH_VALE 2647 case NETMAP_REQ_VALE_ATTACH: { 2648 error = netmap_vale_attach(hdr, NULL /* userspace request */); 2649 break; 2650 } 2651 2652 case NETMAP_REQ_VALE_DETACH: { 2653 error = netmap_vale_detach(hdr, NULL /* userspace request */); 2654 break; 2655 } 2656 2657 case NETMAP_REQ_VALE_LIST: { 2658 error = netmap_vale_list(hdr); 2659 break; 2660 } 2661 2662 case NETMAP_REQ_PORT_HDR_SET: { 2663 struct nmreq_port_hdr *req = 2664 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2665 /* Build a nmreq_register out of the nmreq_port_hdr, 2666 * so that we can call netmap_get_bdg_na(). */ 2667 struct nmreq_register regreq; 2668 bzero(®req, sizeof(regreq)); 2669 regreq.nr_mode = NR_REG_ALL_NIC; 2670 2671 /* For now we only support virtio-net headers, and only for 2672 * VALE ports, but this may change in future. Valid lengths 2673 * for the virtio-net header are 0 (no header), 10 and 12. */ 2674 if (req->nr_hdr_len != 0 && 2675 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) && 2676 req->nr_hdr_len != 12) { 2677 if (netmap_verbose) 2678 nm_prerr("invalid hdr_len %u", req->nr_hdr_len); 2679 error = EINVAL; 2680 break; 2681 } 2682 NMG_LOCK(); 2683 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2684 hdr->nr_body = (uintptr_t)®req; 2685 error = netmap_get_vale_na(hdr, &na, NULL, 0); 2686 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET; 2687 hdr->nr_body = (uintptr_t)req; 2688 if (na && !error) { 2689 struct netmap_vp_adapter *vpna = 2690 (struct netmap_vp_adapter *)na; 2691 na->virt_hdr_len = req->nr_hdr_len; 2692 if (na->virt_hdr_len) { 2693 vpna->mfs = NETMAP_BUF_SIZE(na); 2694 } 2695 if (netmap_verbose) 2696 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na); 2697 netmap_adapter_put(na); 2698 } else if (!na) { 2699 error = ENXIO; 2700 } 2701 NMG_UNLOCK(); 2702 break; 2703 } 2704 2705 case NETMAP_REQ_PORT_HDR_GET: { 2706 /* Get vnet-header length for this netmap port */ 2707 struct nmreq_port_hdr *req = 2708 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2709 /* Build a nmreq_register out of the nmreq_port_hdr, 2710 * so that we can call netmap_get_bdg_na(). */ 2711 struct nmreq_register regreq; 2712 struct ifnet *ifp; 2713 2714 bzero(®req, sizeof(regreq)); 2715 regreq.nr_mode = NR_REG_ALL_NIC; 2716 NMG_LOCK(); 2717 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2718 hdr->nr_body = (uintptr_t)®req; 2719 error = netmap_get_na(hdr, &na, &ifp, NULL, 0); 2720 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET; 2721 hdr->nr_body = (uintptr_t)req; 2722 if (na && !error) { 2723 req->nr_hdr_len = na->virt_hdr_len; 2724 } 2725 netmap_unget_na(na, ifp); 2726 NMG_UNLOCK(); 2727 break; 2728 } 2729 2730 case NETMAP_REQ_VALE_NEWIF: { 2731 error = nm_vi_create(hdr); 2732 break; 2733 } 2734 2735 case NETMAP_REQ_VALE_DELIF: { 2736 error = nm_vi_destroy(hdr->nr_name); 2737 break; 2738 } 2739 2740 case NETMAP_REQ_VALE_POLLING_ENABLE: 2741 case NETMAP_REQ_VALE_POLLING_DISABLE: { 2742 error = nm_bdg_polling(hdr); 2743 break; 2744 } 2745 #endif /* WITH_VALE */ 2746 case NETMAP_REQ_POOLS_INFO_GET: { 2747 /* Get information from the memory allocator used for 2748 * hdr->nr_name. */ 2749 struct nmreq_pools_info *req = 2750 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body; 2751 NMG_LOCK(); 2752 do { 2753 /* Build a nmreq_register out of the nmreq_pools_info, 2754 * so that we can call netmap_get_na(). */ 2755 struct nmreq_register regreq; 2756 bzero(®req, sizeof(regreq)); 2757 regreq.nr_mem_id = req->nr_mem_id; 2758 regreq.nr_mode = NR_REG_ALL_NIC; 2759 2760 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2761 hdr->nr_body = (uintptr_t)®req; 2762 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2763 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */ 2764 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2765 if (error) { 2766 na = NULL; 2767 ifp = NULL; 2768 break; 2769 } 2770 nmd = na->nm_mem; /* grab the memory allocator */ 2771 if (nmd == NULL) { 2772 error = EINVAL; 2773 break; 2774 } 2775 2776 /* Finalize the memory allocator, get the pools 2777 * information and release the allocator. */ 2778 error = netmap_mem_finalize(nmd, na); 2779 if (error) { 2780 break; 2781 } 2782 error = netmap_mem_pools_info_get(req, nmd); 2783 netmap_mem_drop(na); 2784 } while (0); 2785 netmap_unget_na(na, ifp); 2786 NMG_UNLOCK(); 2787 break; 2788 } 2789 2790 case NETMAP_REQ_CSB_ENABLE: { 2791 struct nmreq_option *opt; 2792 2793 opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options, 2794 NETMAP_REQ_OPT_CSB); 2795 if (opt == NULL) { 2796 error = EINVAL; 2797 } else { 2798 struct nmreq_opt_csb *csbo = 2799 (struct nmreq_opt_csb *)opt; 2800 error = nmreq_checkduplicate(opt); 2801 if (!error) { 2802 NMG_LOCK(); 2803 error = netmap_csb_validate(priv, csbo); 2804 NMG_UNLOCK(); 2805 } 2806 opt->nro_status = error; 2807 } 2808 break; 2809 } 2810 2811 case NETMAP_REQ_SYNC_KLOOP_START: { 2812 error = netmap_sync_kloop(priv, hdr); 2813 break; 2814 } 2815 2816 case NETMAP_REQ_SYNC_KLOOP_STOP: { 2817 error = netmap_sync_kloop_stop(priv); 2818 break; 2819 } 2820 2821 default: { 2822 error = EINVAL; 2823 break; 2824 } 2825 } 2826 /* Write back request body to userspace and reset the 2827 * user-space pointer. */ 2828 error = nmreq_copyout(hdr, error); 2829 break; 2830 } 2831 2832 case NIOCTXSYNC: 2833 case NIOCRXSYNC: { 2834 if (unlikely(priv->np_nifp == NULL)) { 2835 error = ENXIO; 2836 break; 2837 } 2838 mb(); /* make sure following reads are not from cache */ 2839 2840 if (unlikely(priv->np_csb_atok_base)) { 2841 nm_prerr("Invalid sync in CSB mode"); 2842 error = EBUSY; 2843 break; 2844 } 2845 2846 na = priv->np_na; /* we have a reference */ 2847 2848 mbq_init(&q); 2849 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX); 2850 krings = NMR(na, t); 2851 qfirst = priv->np_qfirst[t]; 2852 qlast = priv->np_qlast[t]; 2853 sync_flags = priv->np_sync_flags; 2854 2855 for (i = qfirst; i < qlast; i++) { 2856 struct netmap_kring *kring = krings[i]; 2857 struct netmap_ring *ring = kring->ring; 2858 2859 if (unlikely(nm_kr_tryget(kring, 1, &error))) { 2860 error = (error ? EIO : 0); 2861 continue; 2862 } 2863 2864 if (cmd == NIOCTXSYNC) { 2865 if (netmap_debug & NM_DEBUG_TXSYNC) 2866 nm_prinf("pre txsync ring %d cur %d hwcur %d", 2867 i, ring->cur, 2868 kring->nr_hwcur); 2869 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2870 netmap_ring_reinit(kring); 2871 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) { 2872 nm_sync_finalize(kring); 2873 } 2874 if (netmap_debug & NM_DEBUG_TXSYNC) 2875 nm_prinf("post txsync ring %d cur %d hwcur %d", 2876 i, ring->cur, 2877 kring->nr_hwcur); 2878 } else { 2879 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2880 netmap_ring_reinit(kring); 2881 } 2882 if (nm_may_forward_up(kring)) { 2883 /* transparent forwarding, see netmap_poll() */ 2884 netmap_grab_packets(kring, &q, netmap_fwd); 2885 } 2886 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) { 2887 nm_sync_finalize(kring); 2888 } 2889 ring_timestamp_set(ring); 2890 } 2891 nm_kr_put(kring); 2892 } 2893 2894 if (mbq_peek(&q)) { 2895 netmap_send_up(na->ifp, &q); 2896 } 2897 2898 break; 2899 } 2900 2901 default: { 2902 return netmap_ioctl_legacy(priv, cmd, data, td); 2903 break; 2904 } 2905 } 2906 2907 return (error); 2908 } 2909 2910 size_t 2911 nmreq_size_by_type(uint16_t nr_reqtype) 2912 { 2913 switch (nr_reqtype) { 2914 case NETMAP_REQ_REGISTER: 2915 return sizeof(struct nmreq_register); 2916 case NETMAP_REQ_PORT_INFO_GET: 2917 return sizeof(struct nmreq_port_info_get); 2918 case NETMAP_REQ_VALE_ATTACH: 2919 return sizeof(struct nmreq_vale_attach); 2920 case NETMAP_REQ_VALE_DETACH: 2921 return sizeof(struct nmreq_vale_detach); 2922 case NETMAP_REQ_VALE_LIST: 2923 return sizeof(struct nmreq_vale_list); 2924 case NETMAP_REQ_PORT_HDR_SET: 2925 case NETMAP_REQ_PORT_HDR_GET: 2926 return sizeof(struct nmreq_port_hdr); 2927 case NETMAP_REQ_VALE_NEWIF: 2928 return sizeof(struct nmreq_vale_newif); 2929 case NETMAP_REQ_VALE_DELIF: 2930 case NETMAP_REQ_SYNC_KLOOP_STOP: 2931 case NETMAP_REQ_CSB_ENABLE: 2932 return 0; 2933 case NETMAP_REQ_VALE_POLLING_ENABLE: 2934 case NETMAP_REQ_VALE_POLLING_DISABLE: 2935 return sizeof(struct nmreq_vale_polling); 2936 case NETMAP_REQ_POOLS_INFO_GET: 2937 return sizeof(struct nmreq_pools_info); 2938 case NETMAP_REQ_SYNC_KLOOP_START: 2939 return sizeof(struct nmreq_sync_kloop_start); 2940 } 2941 return 0; 2942 } 2943 2944 static size_t 2945 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size) 2946 { 2947 size_t rv = sizeof(struct nmreq_option); 2948 #ifdef NETMAP_REQ_OPT_DEBUG 2949 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG) 2950 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG); 2951 #endif /* NETMAP_REQ_OPT_DEBUG */ 2952 switch (nro_reqtype) { 2953 #ifdef WITH_EXTMEM 2954 case NETMAP_REQ_OPT_EXTMEM: 2955 rv = sizeof(struct nmreq_opt_extmem); 2956 break; 2957 #endif /* WITH_EXTMEM */ 2958 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS: 2959 if (nro_size >= rv) 2960 rv = nro_size; 2961 break; 2962 case NETMAP_REQ_OPT_CSB: 2963 rv = sizeof(struct nmreq_opt_csb); 2964 break; 2965 } 2966 /* subtract the common header */ 2967 return rv - sizeof(struct nmreq_option); 2968 } 2969 2970 int 2971 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user) 2972 { 2973 size_t rqsz, optsz, bufsz; 2974 int error; 2975 char *ker = NULL, *p; 2976 struct nmreq_option **next, *src; 2977 struct nmreq_option buf; 2978 uint64_t *ptrs; 2979 2980 if (hdr->nr_reserved) { 2981 if (netmap_verbose) 2982 nm_prerr("nr_reserved must be zero"); 2983 return EINVAL; 2984 } 2985 2986 if (!nr_body_is_user) 2987 return 0; 2988 2989 hdr->nr_reserved = nr_body_is_user; 2990 2991 /* compute the total size of the buffer */ 2992 rqsz = nmreq_size_by_type(hdr->nr_reqtype); 2993 if (rqsz > NETMAP_REQ_MAXSIZE) { 2994 error = EMSGSIZE; 2995 goto out_err; 2996 } 2997 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) || 2998 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) { 2999 /* Request body expected, but not found; or 3000 * request body found but unexpected. */ 3001 if (netmap_verbose) 3002 nm_prerr("nr_body expected but not found, or vice versa"); 3003 error = EINVAL; 3004 goto out_err; 3005 } 3006 3007 bufsz = 2 * sizeof(void *) + rqsz; 3008 optsz = 0; 3009 for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src; 3010 src = (struct nmreq_option *)(uintptr_t)buf.nro_next) 3011 { 3012 error = copyin(src, &buf, sizeof(*src)); 3013 if (error) 3014 goto out_err; 3015 optsz += sizeof(*src); 3016 optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size); 3017 if (rqsz + optsz > NETMAP_REQ_MAXSIZE) { 3018 error = EMSGSIZE; 3019 goto out_err; 3020 } 3021 bufsz += optsz + sizeof(void *); 3022 } 3023 3024 ker = nm_os_malloc(bufsz); 3025 if (ker == NULL) { 3026 error = ENOMEM; 3027 goto out_err; 3028 } 3029 p = ker; 3030 3031 /* make a copy of the user pointers */ 3032 ptrs = (uint64_t*)p; 3033 *ptrs++ = hdr->nr_body; 3034 *ptrs++ = hdr->nr_options; 3035 p = (char *)ptrs; 3036 3037 /* copy the body */ 3038 error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz); 3039 if (error) 3040 goto out_restore; 3041 /* overwrite the user pointer with the in-kernel one */ 3042 hdr->nr_body = (uintptr_t)p; 3043 p += rqsz; 3044 3045 /* copy the options */ 3046 next = (struct nmreq_option **)&hdr->nr_options; 3047 src = *next; 3048 while (src) { 3049 struct nmreq_option *opt; 3050 3051 /* copy the option header */ 3052 ptrs = (uint64_t *)p; 3053 opt = (struct nmreq_option *)(ptrs + 1); 3054 error = copyin(src, opt, sizeof(*src)); 3055 if (error) 3056 goto out_restore; 3057 /* make a copy of the user next pointer */ 3058 *ptrs = opt->nro_next; 3059 /* overwrite the user pointer with the in-kernel one */ 3060 *next = opt; 3061 3062 /* initialize the option as not supported. 3063 * Recognized options will update this field. 3064 */ 3065 opt->nro_status = EOPNOTSUPP; 3066 3067 p = (char *)(opt + 1); 3068 3069 /* copy the option body */ 3070 optsz = nmreq_opt_size_by_type(opt->nro_reqtype, 3071 opt->nro_size); 3072 if (optsz) { 3073 /* the option body follows the option header */ 3074 error = copyin(src + 1, p, optsz); 3075 if (error) 3076 goto out_restore; 3077 p += optsz; 3078 } 3079 3080 /* move to next option */ 3081 next = (struct nmreq_option **)&opt->nro_next; 3082 src = *next; 3083 } 3084 return 0; 3085 3086 out_restore: 3087 ptrs = (uint64_t *)ker; 3088 hdr->nr_body = *ptrs++; 3089 hdr->nr_options = *ptrs++; 3090 hdr->nr_reserved = 0; 3091 nm_os_free(ker); 3092 out_err: 3093 return error; 3094 } 3095 3096 static int 3097 nmreq_copyout(struct nmreq_header *hdr, int rerror) 3098 { 3099 struct nmreq_option *src, *dst; 3100 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart; 3101 uint64_t *ptrs; 3102 size_t bodysz; 3103 int error; 3104 3105 if (!hdr->nr_reserved) 3106 return rerror; 3107 3108 /* restore the user pointers in the header */ 3109 ptrs = (uint64_t *)ker - 2; 3110 bufstart = ptrs; 3111 hdr->nr_body = *ptrs++; 3112 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3113 hdr->nr_options = *ptrs; 3114 3115 if (!rerror) { 3116 /* copy the body */ 3117 bodysz = nmreq_size_by_type(hdr->nr_reqtype); 3118 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz); 3119 if (error) { 3120 rerror = error; 3121 goto out; 3122 } 3123 } 3124 3125 /* copy the options */ 3126 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3127 while (src) { 3128 size_t optsz; 3129 uint64_t next; 3130 3131 /* restore the user pointer */ 3132 next = src->nro_next; 3133 ptrs = (uint64_t *)src - 1; 3134 src->nro_next = *ptrs; 3135 3136 /* always copy the option header */ 3137 error = copyout(src, dst, sizeof(*src)); 3138 if (error) { 3139 rerror = error; 3140 goto out; 3141 } 3142 3143 /* copy the option body only if there was no error */ 3144 if (!rerror && !src->nro_status) { 3145 optsz = nmreq_opt_size_by_type(src->nro_reqtype, 3146 src->nro_size); 3147 if (optsz) { 3148 error = copyout(src + 1, dst + 1, optsz); 3149 if (error) { 3150 rerror = error; 3151 goto out; 3152 } 3153 } 3154 } 3155 src = (struct nmreq_option *)(uintptr_t)next; 3156 dst = (struct nmreq_option *)(uintptr_t)*ptrs; 3157 } 3158 3159 3160 out: 3161 hdr->nr_reserved = 0; 3162 nm_os_free(bufstart); 3163 return rerror; 3164 } 3165 3166 struct nmreq_option * 3167 nmreq_findoption(struct nmreq_option *opt, uint16_t reqtype) 3168 { 3169 for ( ; opt; opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3170 if (opt->nro_reqtype == reqtype) 3171 return opt; 3172 return NULL; 3173 } 3174 3175 int 3176 nmreq_checkduplicate(struct nmreq_option *opt) { 3177 uint16_t type = opt->nro_reqtype; 3178 int dup = 0; 3179 3180 while ((opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)opt->nro_next, 3181 type))) { 3182 dup++; 3183 opt->nro_status = EINVAL; 3184 } 3185 return (dup ? EINVAL : 0); 3186 } 3187 3188 static int 3189 nmreq_checkoptions(struct nmreq_header *hdr) 3190 { 3191 struct nmreq_option *opt; 3192 /* return error if there is still any option 3193 * marked as not supported 3194 */ 3195 3196 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt; 3197 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3198 if (opt->nro_status == EOPNOTSUPP) 3199 return EOPNOTSUPP; 3200 3201 return 0; 3202 } 3203 3204 /* 3205 * select(2) and poll(2) handlers for the "netmap" device. 3206 * 3207 * Can be called for one or more queues. 3208 * Return true the event mask corresponding to ready events. 3209 * If there are no ready events (and 'sr' is not NULL), do a 3210 * selrecord on either individual selinfo or on the global one. 3211 * Device-dependent parts (locking and sync of tx/rx rings) 3212 * are done through callbacks. 3213 * 3214 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 3215 * The first one is remapped to pwait as selrecord() uses the name as an 3216 * hidden argument. 3217 */ 3218 int 3219 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr) 3220 { 3221 struct netmap_adapter *na; 3222 struct netmap_kring *kring; 3223 struct netmap_ring *ring; 3224 u_int i, want[NR_TXRX], revents = 0; 3225 NM_SELINFO_T *si[NR_TXRX]; 3226 #define want_tx want[NR_TX] 3227 #define want_rx want[NR_RX] 3228 struct mbq q; /* packets from RX hw queues to host stack */ 3229 3230 /* 3231 * In order to avoid nested locks, we need to "double check" 3232 * txsync and rxsync if we decide to do a selrecord(). 3233 * retry_tx (and retry_rx, later) prevent looping forever. 3234 */ 3235 int retry_tx = 1, retry_rx = 1; 3236 3237 /* Transparent mode: send_down is 1 if we have found some 3238 * packets to forward (host RX ring --> NIC) during the rx 3239 * scan and we have not sent them down to the NIC yet. 3240 * Transparent mode requires to bind all rings to a single 3241 * file descriptor. 3242 */ 3243 int send_down = 0; 3244 int sync_flags = priv->np_sync_flags; 3245 3246 mbq_init(&q); 3247 3248 if (unlikely(priv->np_nifp == NULL)) { 3249 return POLLERR; 3250 } 3251 mb(); /* make sure following reads are not from cache */ 3252 3253 na = priv->np_na; 3254 3255 if (unlikely(!nm_netmap_on(na))) 3256 return POLLERR; 3257 3258 if (unlikely(priv->np_csb_atok_base)) { 3259 nm_prerr("Invalid poll in CSB mode"); 3260 return POLLERR; 3261 } 3262 3263 if (netmap_debug & NM_DEBUG_ON) 3264 nm_prinf("device %s events 0x%x", na->name, events); 3265 want_tx = events & (POLLOUT | POLLWRNORM); 3266 want_rx = events & (POLLIN | POLLRDNORM); 3267 3268 /* 3269 * If the card has more than one queue AND the file descriptor is 3270 * bound to all of them, we sleep on the "global" selinfo, otherwise 3271 * we sleep on individual selinfo (FreeBSD only allows two selinfo's 3272 * per file descriptor). 3273 * The interrupt routine in the driver wake one or the other 3274 * (or both) depending on which clients are active. 3275 * 3276 * rxsync() is only called if we run out of buffers on a POLLIN. 3277 * txsync() is called if we run out of buffers on POLLOUT, or 3278 * there are pending packets to send. The latter can be disabled 3279 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 3280 */ 3281 si[NR_RX] = nm_si_user(priv, NR_RX) ? &na->si[NR_RX] : 3282 &na->rx_rings[priv->np_qfirst[NR_RX]]->si; 3283 si[NR_TX] = nm_si_user(priv, NR_TX) ? &na->si[NR_TX] : 3284 &na->tx_rings[priv->np_qfirst[NR_TX]]->si; 3285 3286 #ifdef __FreeBSD__ 3287 /* 3288 * We start with a lock free round which is cheap if we have 3289 * slots available. If this fails, then lock and call the sync 3290 * routines. We can't do this on Linux, as the contract says 3291 * that we must call nm_os_selrecord() unconditionally. 3292 */ 3293 if (want_tx) { 3294 const enum txrx t = NR_TX; 3295 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3296 kring = NMR(na, t)[i]; 3297 if (kring->ring->cur != kring->ring->tail) { 3298 /* Some unseen TX space is available, so what 3299 * we don't need to run txsync. */ 3300 revents |= want[t]; 3301 want[t] = 0; 3302 break; 3303 } 3304 } 3305 } 3306 if (want_rx) { 3307 const enum txrx t = NR_RX; 3308 int rxsync_needed = 0; 3309 3310 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3311 kring = NMR(na, t)[i]; 3312 if (kring->ring->cur == kring->ring->tail 3313 || kring->rhead != kring->ring->head) { 3314 /* There are no unseen packets on this ring, 3315 * or there are some buffers to be returned 3316 * to the netmap port. We therefore go ahead 3317 * and run rxsync. */ 3318 rxsync_needed = 1; 3319 break; 3320 } 3321 } 3322 if (!rxsync_needed) { 3323 revents |= want_rx; 3324 want_rx = 0; 3325 } 3326 } 3327 #endif 3328 3329 #ifdef linux 3330 /* The selrecord must be unconditional on linux. */ 3331 nm_os_selrecord(sr, si[NR_RX]); 3332 nm_os_selrecord(sr, si[NR_TX]); 3333 #endif /* linux */ 3334 3335 /* 3336 * If we want to push packets out (priv->np_txpoll) or 3337 * want_tx is still set, we must issue txsync calls 3338 * (on all rings, to avoid that the tx rings stall). 3339 * Fortunately, normal tx mode has np_txpoll set. 3340 */ 3341 if (priv->np_txpoll || want_tx) { 3342 /* 3343 * The first round checks if anyone is ready, if not 3344 * do a selrecord and another round to handle races. 3345 * want_tx goes to 0 if any space is found, and is 3346 * used to skip rings with no pending transmissions. 3347 */ 3348 flush_tx: 3349 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) { 3350 int found = 0; 3351 3352 kring = na->tx_rings[i]; 3353 ring = kring->ring; 3354 3355 /* 3356 * Don't try to txsync this TX ring if we already found some 3357 * space in some of the TX rings (want_tx == 0) and there are no 3358 * TX slots in this ring that need to be flushed to the NIC 3359 * (head == hwcur). 3360 */ 3361 if (!send_down && !want_tx && ring->head == kring->nr_hwcur) 3362 continue; 3363 3364 if (nm_kr_tryget(kring, 1, &revents)) 3365 continue; 3366 3367 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3368 netmap_ring_reinit(kring); 3369 revents |= POLLERR; 3370 } else { 3371 if (kring->nm_sync(kring, sync_flags)) 3372 revents |= POLLERR; 3373 else 3374 nm_sync_finalize(kring); 3375 } 3376 3377 /* 3378 * If we found new slots, notify potential 3379 * listeners on the same ring. 3380 * Since we just did a txsync, look at the copies 3381 * of cur,tail in the kring. 3382 */ 3383 found = kring->rcur != kring->rtail; 3384 nm_kr_put(kring); 3385 if (found) { /* notify other listeners */ 3386 revents |= want_tx; 3387 want_tx = 0; 3388 #ifndef linux 3389 kring->nm_notify(kring, 0); 3390 #endif /* linux */ 3391 } 3392 } 3393 /* if there were any packet to forward we must have handled them by now */ 3394 send_down = 0; 3395 if (want_tx && retry_tx && sr) { 3396 #ifndef linux 3397 nm_os_selrecord(sr, si[NR_TX]); 3398 #endif /* !linux */ 3399 retry_tx = 0; 3400 goto flush_tx; 3401 } 3402 } 3403 3404 /* 3405 * If want_rx is still set scan receive rings. 3406 * Do it on all rings because otherwise we starve. 3407 */ 3408 if (want_rx) { 3409 /* two rounds here for race avoidance */ 3410 do_retry_rx: 3411 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) { 3412 int found = 0; 3413 3414 kring = na->rx_rings[i]; 3415 ring = kring->ring; 3416 3417 if (unlikely(nm_kr_tryget(kring, 1, &revents))) 3418 continue; 3419 3420 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3421 netmap_ring_reinit(kring); 3422 revents |= POLLERR; 3423 } 3424 /* now we can use kring->rcur, rtail */ 3425 3426 /* 3427 * transparent mode support: collect packets from 3428 * hw rxring(s) that have been released by the user 3429 */ 3430 if (nm_may_forward_up(kring)) { 3431 netmap_grab_packets(kring, &q, netmap_fwd); 3432 } 3433 3434 /* Clear the NR_FORWARD flag anyway, it may be set by 3435 * the nm_sync() below only on for the host RX ring (see 3436 * netmap_rxsync_from_host()). */ 3437 kring->nr_kflags &= ~NR_FORWARD; 3438 if (kring->nm_sync(kring, sync_flags)) 3439 revents |= POLLERR; 3440 else 3441 nm_sync_finalize(kring); 3442 send_down |= (kring->nr_kflags & NR_FORWARD); 3443 ring_timestamp_set(ring); 3444 found = kring->rcur != kring->rtail; 3445 nm_kr_put(kring); 3446 if (found) { 3447 revents |= want_rx; 3448 retry_rx = 0; 3449 #ifndef linux 3450 kring->nm_notify(kring, 0); 3451 #endif /* linux */ 3452 } 3453 } 3454 3455 #ifndef linux 3456 if (retry_rx && sr) { 3457 nm_os_selrecord(sr, si[NR_RX]); 3458 } 3459 #endif /* !linux */ 3460 if (send_down || retry_rx) { 3461 retry_rx = 0; 3462 if (send_down) 3463 goto flush_tx; /* and retry_rx */ 3464 else 3465 goto do_retry_rx; 3466 } 3467 } 3468 3469 /* 3470 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and 3471 * ring->head) marked with NS_FORWARD on hw rx rings are passed up 3472 * to the host stack. 3473 */ 3474 3475 if (mbq_peek(&q)) { 3476 netmap_send_up(na->ifp, &q); 3477 } 3478 3479 return (revents); 3480 #undef want_tx 3481 #undef want_rx 3482 } 3483 3484 int 3485 nma_intr_enable(struct netmap_adapter *na, int onoff) 3486 { 3487 bool changed = false; 3488 enum txrx t; 3489 int i; 3490 3491 for_rx_tx(t) { 3492 for (i = 0; i < nma_get_nrings(na, t); i++) { 3493 struct netmap_kring *kring = NMR(na, t)[i]; 3494 int on = !(kring->nr_kflags & NKR_NOINTR); 3495 3496 if (!!onoff != !!on) { 3497 changed = true; 3498 } 3499 if (onoff) { 3500 kring->nr_kflags &= ~NKR_NOINTR; 3501 } else { 3502 kring->nr_kflags |= NKR_NOINTR; 3503 } 3504 } 3505 } 3506 3507 if (!changed) { 3508 return 0; /* nothing to do */ 3509 } 3510 3511 if (!na->nm_intr) { 3512 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable", 3513 na->name); 3514 return -1; 3515 } 3516 3517 na->nm_intr(na, onoff); 3518 3519 return 0; 3520 } 3521 3522 3523 /*-------------------- driver support routines -------------------*/ 3524 3525 /* default notify callback */ 3526 static int 3527 netmap_notify(struct netmap_kring *kring, int flags) 3528 { 3529 struct netmap_adapter *na = kring->notify_na; 3530 enum txrx t = kring->tx; 3531 3532 nm_os_selwakeup(&kring->si); 3533 /* optimization: avoid a wake up on the global 3534 * queue if nobody has registered for more 3535 * than one ring 3536 */ 3537 if (na->si_users[t] > 0) 3538 nm_os_selwakeup(&na->si[t]); 3539 3540 return NM_IRQ_COMPLETED; 3541 } 3542 3543 /* called by all routines that create netmap_adapters. 3544 * provide some defaults and get a reference to the 3545 * memory allocator 3546 */ 3547 int 3548 netmap_attach_common(struct netmap_adapter *na) 3549 { 3550 if (!na->rx_buf_maxsize) { 3551 /* Set a conservative default (larger is safer). */ 3552 na->rx_buf_maxsize = PAGE_SIZE; 3553 } 3554 3555 #ifdef __FreeBSD__ 3556 if (na->na_flags & NAF_HOST_RINGS && na->ifp) { 3557 na->if_input = na->ifp->if_input; /* for netmap_send_up */ 3558 } 3559 na->pdev = na; /* make sure netmap_mem_map() is called */ 3560 #endif /* __FreeBSD__ */ 3561 if (na->na_flags & NAF_HOST_RINGS) { 3562 if (na->num_host_rx_rings == 0) 3563 na->num_host_rx_rings = 1; 3564 if (na->num_host_tx_rings == 0) 3565 na->num_host_tx_rings = 1; 3566 } 3567 if (na->nm_krings_create == NULL) { 3568 /* we assume that we have been called by a driver, 3569 * since other port types all provide their own 3570 * nm_krings_create 3571 */ 3572 na->nm_krings_create = netmap_hw_krings_create; 3573 na->nm_krings_delete = netmap_hw_krings_delete; 3574 } 3575 if (na->nm_notify == NULL) 3576 na->nm_notify = netmap_notify; 3577 na->active_fds = 0; 3578 3579 if (na->nm_mem == NULL) { 3580 /* use the global allocator */ 3581 na->nm_mem = netmap_mem_get(&nm_mem); 3582 } 3583 #ifdef WITH_VALE 3584 if (na->nm_bdg_attach == NULL) 3585 /* no special nm_bdg_attach callback. On VALE 3586 * attach, we need to interpose a bwrap 3587 */ 3588 na->nm_bdg_attach = netmap_default_bdg_attach; 3589 #endif 3590 3591 return 0; 3592 } 3593 3594 /* Wrapper for the register callback provided netmap-enabled 3595 * hardware drivers. 3596 * nm_iszombie(na) means that the driver module has been 3597 * unloaded, so we cannot call into it. 3598 * nm_os_ifnet_lock() must guarantee mutual exclusion with 3599 * module unloading. 3600 */ 3601 static int 3602 netmap_hw_reg(struct netmap_adapter *na, int onoff) 3603 { 3604 struct netmap_hw_adapter *hwna = 3605 (struct netmap_hw_adapter*)na; 3606 int error = 0; 3607 3608 nm_os_ifnet_lock(); 3609 3610 if (nm_iszombie(na)) { 3611 if (onoff) { 3612 error = ENXIO; 3613 } else if (na != NULL) { 3614 na->na_flags &= ~NAF_NETMAP_ON; 3615 } 3616 goto out; 3617 } 3618 3619 error = hwna->nm_hw_register(na, onoff); 3620 3621 out: 3622 nm_os_ifnet_unlock(); 3623 3624 return error; 3625 } 3626 3627 static void 3628 netmap_hw_dtor(struct netmap_adapter *na) 3629 { 3630 if (na->ifp == NULL) 3631 return; 3632 3633 NM_DETACH_NA(na->ifp); 3634 } 3635 3636 3637 /* 3638 * Allocate a netmap_adapter object, and initialize it from the 3639 * 'arg' passed by the driver on attach. 3640 * We allocate a block of memory of 'size' bytes, which has room 3641 * for struct netmap_adapter plus additional room private to 3642 * the caller. 3643 * Return 0 on success, ENOMEM otherwise. 3644 */ 3645 int 3646 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg) 3647 { 3648 struct netmap_hw_adapter *hwna = NULL; 3649 struct ifnet *ifp = NULL; 3650 3651 if (size < sizeof(struct netmap_hw_adapter)) { 3652 if (netmap_debug & NM_DEBUG_ON) 3653 nm_prerr("Invalid netmap adapter size %d", (int)size); 3654 return EINVAL; 3655 } 3656 3657 if (arg == NULL || arg->ifp == NULL) { 3658 if (netmap_debug & NM_DEBUG_ON) 3659 nm_prerr("either arg or arg->ifp is NULL"); 3660 return EINVAL; 3661 } 3662 3663 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) { 3664 if (netmap_debug & NM_DEBUG_ON) 3665 nm_prerr("%s: invalid rings tx %d rx %d", 3666 arg->name, arg->num_tx_rings, arg->num_rx_rings); 3667 return EINVAL; 3668 } 3669 3670 ifp = arg->ifp; 3671 if (NM_NA_CLASH(ifp)) { 3672 /* If NA(ifp) is not null but there is no valid netmap 3673 * adapter it means that someone else is using the same 3674 * pointer (e.g. ax25_ptr on linux). This happens for 3675 * instance when also PF_RING is in use. */ 3676 nm_prerr("Error: netmap adapter hook is busy"); 3677 return EBUSY; 3678 } 3679 3680 hwna = nm_os_malloc(size); 3681 if (hwna == NULL) 3682 goto fail; 3683 hwna->up = *arg; 3684 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE; 3685 strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name)); 3686 if (override_reg) { 3687 hwna->nm_hw_register = hwna->up.nm_register; 3688 hwna->up.nm_register = netmap_hw_reg; 3689 } 3690 if (netmap_attach_common(&hwna->up)) { 3691 nm_os_free(hwna); 3692 goto fail; 3693 } 3694 netmap_adapter_get(&hwna->up); 3695 3696 NM_ATTACH_NA(ifp, &hwna->up); 3697 3698 nm_os_onattach(ifp); 3699 3700 if (arg->nm_dtor == NULL) { 3701 hwna->up.nm_dtor = netmap_hw_dtor; 3702 } 3703 3704 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n", 3705 hwna->up.num_tx_rings, hwna->up.num_tx_desc, 3706 hwna->up.num_rx_rings, hwna->up.num_rx_desc); 3707 return 0; 3708 3709 fail: 3710 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna); 3711 return (hwna ? EINVAL : ENOMEM); 3712 } 3713 3714 3715 int 3716 netmap_attach(struct netmap_adapter *arg) 3717 { 3718 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter), 3719 1 /* override nm_reg */); 3720 } 3721 3722 3723 void 3724 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 3725 { 3726 if (!na) { 3727 return; 3728 } 3729 3730 refcount_acquire(&na->na_refcount); 3731 } 3732 3733 3734 /* returns 1 iff the netmap_adapter is destroyed */ 3735 int 3736 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 3737 { 3738 if (!na) 3739 return 1; 3740 3741 if (!refcount_release(&na->na_refcount)) 3742 return 0; 3743 3744 if (na->nm_dtor) 3745 na->nm_dtor(na); 3746 3747 if (na->tx_rings) { /* XXX should not happen */ 3748 if (netmap_debug & NM_DEBUG_ON) 3749 nm_prerr("freeing leftover tx_rings"); 3750 na->nm_krings_delete(na); 3751 } 3752 netmap_pipe_dealloc(na); 3753 if (na->nm_mem) 3754 netmap_mem_put(na->nm_mem); 3755 bzero(na, sizeof(*na)); 3756 nm_os_free(na); 3757 3758 return 1; 3759 } 3760 3761 /* nm_krings_create callback for all hardware native adapters */ 3762 int 3763 netmap_hw_krings_create(struct netmap_adapter *na) 3764 { 3765 int ret = netmap_krings_create(na, 0); 3766 if (ret == 0) { 3767 /* initialize the mbq for the sw rx ring */ 3768 u_int lim = netmap_real_rings(na, NR_RX), i; 3769 for (i = na->num_rx_rings; i < lim; i++) { 3770 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue); 3771 } 3772 ND("initialized sw rx queue %d", na->num_rx_rings); 3773 } 3774 return ret; 3775 } 3776 3777 3778 3779 /* 3780 * Called on module unload by the netmap-enabled drivers 3781 */ 3782 void 3783 netmap_detach(struct ifnet *ifp) 3784 { 3785 struct netmap_adapter *na = NA(ifp); 3786 3787 if (!na) 3788 return; 3789 3790 NMG_LOCK(); 3791 netmap_set_all_rings(na, NM_KR_LOCKED); 3792 /* 3793 * if the netmap adapter is not native, somebody 3794 * changed it, so we can not release it here. 3795 * The NAF_ZOMBIE flag will notify the new owner that 3796 * the driver is gone. 3797 */ 3798 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) { 3799 na->na_flags |= NAF_ZOMBIE; 3800 } 3801 /* give active users a chance to notice that NAF_ZOMBIE has been 3802 * turned on, so that they can stop and return an error to userspace. 3803 * Note that this becomes a NOP if there are no active users and, 3804 * therefore, the put() above has deleted the na, since now NA(ifp) is 3805 * NULL. 3806 */ 3807 netmap_enable_all_rings(ifp); 3808 NMG_UNLOCK(); 3809 } 3810 3811 3812 /* 3813 * Intercept packets from the network stack and pass them 3814 * to netmap as incoming packets on the 'software' ring. 3815 * 3816 * We only store packets in a bounded mbq and then copy them 3817 * in the relevant rxsync routine. 3818 * 3819 * We rely on the OS to make sure that the ifp and na do not go 3820 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 3821 * In nm_register() or whenever there is a reinitialization, 3822 * we make sure to make the mode change visible here. 3823 */ 3824 int 3825 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 3826 { 3827 struct netmap_adapter *na = NA(ifp); 3828 struct netmap_kring *kring, *tx_kring; 3829 u_int len = MBUF_LEN(m); 3830 u_int error = ENOBUFS; 3831 unsigned int txr; 3832 struct mbq *q; 3833 int busy; 3834 u_int i; 3835 3836 i = MBUF_TXQ(m); 3837 if (i >= na->num_host_rx_rings) { 3838 i = i % na->num_host_rx_rings; 3839 } 3840 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i]; 3841 3842 // XXX [Linux] we do not need this lock 3843 // if we follow the down/configure/up protocol -gl 3844 // mtx_lock(&na->core_lock); 3845 3846 if (!nm_netmap_on(na)) { 3847 nm_prerr("%s not in netmap mode anymore", na->name); 3848 error = ENXIO; 3849 goto done; 3850 } 3851 3852 txr = MBUF_TXQ(m); 3853 if (txr >= na->num_tx_rings) { 3854 txr %= na->num_tx_rings; 3855 } 3856 tx_kring = NMR(na, NR_TX)[txr]; 3857 3858 if (tx_kring->nr_mode == NKR_NETMAP_OFF) { 3859 return MBUF_TRANSMIT(na, ifp, m); 3860 } 3861 3862 q = &kring->rx_queue; 3863 3864 // XXX reconsider long packets if we handle fragments 3865 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */ 3866 nm_prerr("%s from_host, drop packet size %d > %d", na->name, 3867 len, NETMAP_BUF_SIZE(na)); 3868 goto done; 3869 } 3870 3871 if (!netmap_generic_hwcsum) { 3872 if (nm_os_mbuf_has_csum_offld(m)) { 3873 RD(1, "%s drop mbuf that needs checksum offload", na->name); 3874 goto done; 3875 } 3876 } 3877 3878 if (nm_os_mbuf_has_seg_offld(m)) { 3879 RD(1, "%s drop mbuf that needs generic segmentation offload", na->name); 3880 goto done; 3881 } 3882 3883 #ifdef __FreeBSD__ 3884 ETHER_BPF_MTAP(ifp, m); 3885 #endif /* __FreeBSD__ */ 3886 3887 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic() 3888 * and maybe other instances of netmap_transmit (the latter 3889 * not possible on Linux). 3890 * We enqueue the mbuf only if we are sure there is going to be 3891 * enough room in the host RX ring, otherwise we drop it. 3892 */ 3893 mbq_lock(q); 3894 3895 busy = kring->nr_hwtail - kring->nr_hwcur; 3896 if (busy < 0) 3897 busy += kring->nkr_num_slots; 3898 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) { 3899 RD(2, "%s full hwcur %d hwtail %d qlen %d", na->name, 3900 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q)); 3901 } else { 3902 mbq_enqueue(q, m); 3903 ND(2, "%s %d bufs in queue", na->name, mbq_len(q)); 3904 /* notify outside the lock */ 3905 m = NULL; 3906 error = 0; 3907 } 3908 mbq_unlock(q); 3909 3910 done: 3911 if (m) 3912 m_freem(m); 3913 /* unconditionally wake up listeners */ 3914 kring->nm_notify(kring, 0); 3915 /* this is normally netmap_notify(), but for nics 3916 * connected to a bridge it is netmap_bwrap_intr_notify(), 3917 * that possibly forwards the frames through the switch 3918 */ 3919 3920 return (error); 3921 } 3922 3923 3924 /* 3925 * netmap_reset() is called by the driver routines when reinitializing 3926 * a ring. The driver is in charge of locking to protect the kring. 3927 * If native netmap mode is not set just return NULL. 3928 * If native netmap mode is set, in particular, we have to set nr_mode to 3929 * NKR_NETMAP_ON. 3930 */ 3931 struct netmap_slot * 3932 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 3933 u_int new_cur) 3934 { 3935 struct netmap_kring *kring; 3936 int new_hwofs, lim; 3937 3938 if (!nm_native_on(na)) { 3939 ND("interface not in native netmap mode"); 3940 return NULL; /* nothing to reinitialize */ 3941 } 3942 3943 /* XXX note- in the new scheme, we are not guaranteed to be 3944 * under lock (e.g. when called on a device reset). 3945 * In this case, we should set a flag and do not trust too 3946 * much the values. In practice: TODO 3947 * - set a RESET flag somewhere in the kring 3948 * - do the processing in a conservative way 3949 * - let the *sync() fixup at the end. 3950 */ 3951 if (tx == NR_TX) { 3952 if (n >= na->num_tx_rings) 3953 return NULL; 3954 3955 kring = na->tx_rings[n]; 3956 3957 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 3958 kring->nr_mode = NKR_NETMAP_OFF; 3959 return NULL; 3960 } 3961 3962 // XXX check whether we should use hwcur or rcur 3963 new_hwofs = kring->nr_hwcur - new_cur; 3964 } else { 3965 if (n >= na->num_rx_rings) 3966 return NULL; 3967 kring = na->rx_rings[n]; 3968 3969 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 3970 kring->nr_mode = NKR_NETMAP_OFF; 3971 return NULL; 3972 } 3973 3974 new_hwofs = kring->nr_hwtail - new_cur; 3975 } 3976 lim = kring->nkr_num_slots - 1; 3977 if (new_hwofs > lim) 3978 new_hwofs -= lim + 1; 3979 3980 /* Always set the new offset value and realign the ring. */ 3981 if (netmap_debug & NM_DEBUG_ON) 3982 nm_prinf("%s %s%d hwofs %d -> %d, hwtail %d -> %d", 3983 na->name, 3984 tx == NR_TX ? "TX" : "RX", n, 3985 kring->nkr_hwofs, new_hwofs, 3986 kring->nr_hwtail, 3987 tx == NR_TX ? lim : kring->nr_hwtail); 3988 kring->nkr_hwofs = new_hwofs; 3989 if (tx == NR_TX) { 3990 kring->nr_hwtail = kring->nr_hwcur + lim; 3991 if (kring->nr_hwtail > lim) 3992 kring->nr_hwtail -= lim + 1; 3993 } 3994 3995 /* 3996 * Wakeup on the individual and global selwait 3997 * We do the wakeup here, but the ring is not yet reconfigured. 3998 * However, we are under lock so there are no races. 3999 */ 4000 kring->nr_mode = NKR_NETMAP_ON; 4001 kring->nm_notify(kring, 0); 4002 return kring->ring->slot; 4003 } 4004 4005 4006 /* 4007 * Dispatch rx/tx interrupts to the netmap rings. 4008 * 4009 * "work_done" is non-null on the RX path, NULL for the TX path. 4010 * We rely on the OS to make sure that there is only one active 4011 * instance per queue, and that there is appropriate locking. 4012 * 4013 * The 'notify' routine depends on what the ring is attached to. 4014 * - for a netmap file descriptor, do a selwakeup on the individual 4015 * waitqueue, plus one on the global one if needed 4016 * (see netmap_notify) 4017 * - for a nic connected to a switch, call the proper forwarding routine 4018 * (see netmap_bwrap_intr_notify) 4019 */ 4020 int 4021 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 4022 { 4023 struct netmap_kring *kring; 4024 enum txrx t = (work_done ? NR_RX : NR_TX); 4025 4026 q &= NETMAP_RING_MASK; 4027 4028 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) { 4029 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 4030 } 4031 4032 if (q >= nma_get_nrings(na, t)) 4033 return NM_IRQ_PASS; // not a physical queue 4034 4035 kring = NMR(na, t)[q]; 4036 4037 if (kring->nr_mode == NKR_NETMAP_OFF) { 4038 return NM_IRQ_PASS; 4039 } 4040 4041 if (t == NR_RX) { 4042 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 4043 *work_done = 1; /* do not fire napi again */ 4044 } 4045 4046 return kring->nm_notify(kring, 0); 4047 } 4048 4049 4050 /* 4051 * Default functions to handle rx/tx interrupts from a physical device. 4052 * "work_done" is non-null on the RX path, NULL for the TX path. 4053 * 4054 * If the card is not in netmap mode, simply return NM_IRQ_PASS, 4055 * so that the caller proceeds with regular processing. 4056 * Otherwise call netmap_common_irq(). 4057 * 4058 * If the card is connected to a netmap file descriptor, 4059 * do a selwakeup on the individual queue, plus one on the global one 4060 * if needed (multiqueue card _and_ there are multiqueue listeners), 4061 * and return NR_IRQ_COMPLETED. 4062 * 4063 * Finally, if called on rx from an interface connected to a switch, 4064 * calls the proper forwarding routine. 4065 */ 4066 int 4067 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 4068 { 4069 struct netmap_adapter *na = NA(ifp); 4070 4071 /* 4072 * XXX emulated netmap mode sets NAF_SKIP_INTR so 4073 * we still use the regular driver even though the previous 4074 * check fails. It is unclear whether we should use 4075 * nm_native_on() here. 4076 */ 4077 if (!nm_netmap_on(na)) 4078 return NM_IRQ_PASS; 4079 4080 if (na->na_flags & NAF_SKIP_INTR) { 4081 ND("use regular interrupt"); 4082 return NM_IRQ_PASS; 4083 } 4084 4085 return netmap_common_irq(na, q, work_done); 4086 } 4087 4088 /* set/clear native flags and if_transmit/netdev_ops */ 4089 void 4090 nm_set_native_flags(struct netmap_adapter *na) 4091 { 4092 struct ifnet *ifp = na->ifp; 4093 4094 /* We do the setup for intercepting packets only if we are the 4095 * first user of this adapapter. */ 4096 if (na->active_fds > 0) { 4097 return; 4098 } 4099 4100 na->na_flags |= NAF_NETMAP_ON; 4101 nm_os_onenter(ifp); 4102 nm_update_hostrings_mode(na); 4103 } 4104 4105 void 4106 nm_clear_native_flags(struct netmap_adapter *na) 4107 { 4108 struct ifnet *ifp = na->ifp; 4109 4110 /* We undo the setup for intercepting packets only if we are the 4111 * last user of this adapter. */ 4112 if (na->active_fds > 0) { 4113 return; 4114 } 4115 4116 nm_update_hostrings_mode(na); 4117 nm_os_onexit(ifp); 4118 4119 na->na_flags &= ~NAF_NETMAP_ON; 4120 } 4121 4122 /* 4123 * Module loader and unloader 4124 * 4125 * netmap_init() creates the /dev/netmap device and initializes 4126 * all global variables. Returns 0 on success, errno on failure 4127 * (but there is no chance) 4128 * 4129 * netmap_fini() destroys everything. 4130 */ 4131 4132 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 4133 extern struct cdevsw netmap_cdevsw; 4134 4135 4136 void 4137 netmap_fini(void) 4138 { 4139 if (netmap_dev) 4140 destroy_dev(netmap_dev); 4141 /* we assume that there are no longer netmap users */ 4142 nm_os_ifnet_fini(); 4143 netmap_uninit_bridges(); 4144 netmap_mem_fini(); 4145 NMG_LOCK_DESTROY(); 4146 nm_prinf("netmap: unloaded module."); 4147 } 4148 4149 4150 int 4151 netmap_init(void) 4152 { 4153 int error; 4154 4155 NMG_LOCK_INIT(); 4156 4157 error = netmap_mem_init(); 4158 if (error != 0) 4159 goto fail; 4160 /* 4161 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls 4162 * when the module is compiled in. 4163 * XXX could use make_dev_credv() to get error number 4164 */ 4165 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD, 4166 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, 4167 "netmap"); 4168 if (!netmap_dev) 4169 goto fail; 4170 4171 error = netmap_init_bridges(); 4172 if (error) 4173 goto fail; 4174 4175 #ifdef __FreeBSD__ 4176 nm_os_vi_init_index(); 4177 #endif 4178 4179 error = nm_os_ifnet_init(); 4180 if (error) 4181 goto fail; 4182 4183 nm_prinf("netmap: loaded module"); 4184 return (0); 4185 fail: 4186 netmap_fini(); 4187 return (EINVAL); /* may be incorrect */ 4188 } 4189