1 /* 2 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 27 /* 28 * $FreeBSD$ 29 * 30 * This module supports memory mapped access to network devices, 31 * see netmap(4). 32 * 33 * The module uses a large, memory pool allocated by the kernel 34 * and accessible as mmapped memory by multiple userspace threads/processes. 35 * The memory pool contains packet buffers and "netmap rings", 36 * i.e. user-accessible copies of the interface's queues. 37 * 38 * Access to the network card works like this: 39 * 1. a process/thread issues one or more open() on /dev/netmap, to create 40 * select()able file descriptor on which events are reported. 41 * 2. on each descriptor, the process issues an ioctl() to identify 42 * the interface that should report events to the file descriptor. 43 * 3. on each descriptor, the process issues an mmap() request to 44 * map the shared memory region within the process' address space. 45 * The list of interesting queues is indicated by a location in 46 * the shared memory region. 47 * 4. using the functions in the netmap(4) userspace API, a process 48 * can look up the occupation state of a queue, access memory buffers, 49 * and retrieve received packets or enqueue packets to transmit. 50 * 5. using some ioctl()s the process can synchronize the userspace view 51 * of the queue with the actual status in the kernel. This includes both 52 * receiving the notification of new packets, and transmitting new 53 * packets on the output interface. 54 * 6. select() or poll() can be used to wait for events on individual 55 * transmit or receive queues (or all queues for a given interface). 56 * 57 58 SYNCHRONIZATION (USER) 59 60 The netmap rings and data structures may be shared among multiple 61 user threads or even independent processes. 62 Any synchronization among those threads/processes is delegated 63 to the threads themselves. Only one thread at a time can be in 64 a system call on the same netmap ring. The OS does not enforce 65 this and only guarantees against system crashes in case of 66 invalid usage. 67 68 LOCKING (INTERNAL) 69 70 Within the kernel, access to the netmap rings is protected as follows: 71 72 - a spinlock on each ring, to handle producer/consumer races on 73 RX rings attached to the host stack (against multiple host 74 threads writing from the host stack to the same ring), 75 and on 'destination' rings attached to a VALE switch 76 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 77 protecting multiple active senders for the same destination) 78 79 - an atomic variable to guarantee that there is at most one 80 instance of *_*xsync() on the ring at any time. 81 For rings connected to user file 82 descriptors, an atomic_test_and_set() protects this, and the 83 lock on the ring is not actually used. 84 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 85 is also used to prevent multiple executions (the driver might indeed 86 already guarantee this). 87 For NIC TX rings connected to a VALE switch, the lock arbitrates 88 access to the queue (both when allocating buffers and when pushing 89 them out). 90 91 - *xsync() should be protected against initializations of the card. 92 On FreeBSD most devices have the reset routine protected by 93 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 94 the RING protection on rx_reset(), this should be added. 95 96 On linux there is an external lock on the tx path, which probably 97 also arbitrates access to the reset routine. XXX to be revised 98 99 - a per-interface core_lock protecting access from the host stack 100 while interfaces may be detached from netmap mode. 101 XXX there should be no need for this lock if we detach the interfaces 102 only while they are down. 103 104 105 --- VALE SWITCH --- 106 107 NMG_LOCK() serializes all modifications to switches and ports. 108 A switch cannot be deleted until all ports are gone. 109 110 For each switch, an SX lock (RWlock on linux) protects 111 deletion of ports. When configuring or deleting a new port, the 112 lock is acquired in exclusive mode (after holding NMG_LOCK). 113 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 114 The lock is held throughout the entire forwarding cycle, 115 during which the thread may incur in a page fault. 116 Hence it is important that sleepable shared locks are used. 117 118 On the rx ring, the per-port lock is grabbed initially to reserve 119 a number of slot in the ring, then the lock is released, 120 packets are copied from source to destination, and then 121 the lock is acquired again and the receive ring is updated. 122 (A similar thing is done on the tx ring for NIC and host stack 123 ports attached to the switch) 124 125 */ 126 127 /* 128 * OS-specific code that is used only within this file. 129 * Other OS-specific code that must be accessed by drivers 130 * is present in netmap_kern.h 131 */ 132 133 #if defined(__FreeBSD__) 134 #include <sys/cdefs.h> /* prerequisite */ 135 #include <sys/types.h> 136 #include <sys/errno.h> 137 #include <sys/param.h> /* defines used in kernel.h */ 138 #include <sys/kernel.h> /* types used in module initialization */ 139 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 140 #include <sys/sockio.h> 141 #include <sys/socketvar.h> /* struct socket */ 142 #include <sys/malloc.h> 143 #include <sys/poll.h> 144 #include <sys/rwlock.h> 145 #include <sys/socket.h> /* sockaddrs */ 146 #include <sys/selinfo.h> 147 #include <sys/sysctl.h> 148 #include <sys/jail.h> 149 #include <net/vnet.h> 150 #include <net/if.h> 151 #include <net/if_var.h> 152 #include <net/bpf.h> /* BIOCIMMEDIATE */ 153 #include <machine/bus.h> /* bus_dmamap_* */ 154 #include <sys/endian.h> 155 #include <sys/refcount.h> 156 157 158 /* reduce conditional code */ 159 #define init_waitqueue_head(x) // only needed in linux 160 161 162 163 #elif defined(linux) 164 165 #include "bsd_glue.h" 166 167 168 169 #elif defined(__APPLE__) 170 171 #warning OSX support is only partial 172 #include "osx_glue.h" 173 174 #else 175 176 #error Unsupported platform 177 178 #endif /* unsupported */ 179 180 /* 181 * common headers 182 */ 183 #include <net/netmap.h> 184 #include <dev/netmap/netmap_kern.h> 185 #include <dev/netmap/netmap_mem2.h> 186 187 188 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 189 190 /* 191 * The following variables are used by the drivers and replicate 192 * fields in the global memory pool. They only refer to buffers 193 * used by physical interfaces. 194 */ 195 u_int netmap_total_buffers; 196 u_int netmap_buf_size; 197 char *netmap_buffer_base; /* also address of an invalid buffer */ 198 199 /* user-controlled variables */ 200 int netmap_verbose; 201 202 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 203 204 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 205 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 206 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 207 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 208 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 209 int netmap_mitigate = 1; 210 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 211 int netmap_no_pendintr = 1; 212 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 213 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 214 int netmap_txsync_retry = 2; 215 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 216 &netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush."); 217 218 int netmap_flags = 0; /* debug flags */ 219 int netmap_fwd = 0; /* force transparent mode */ 220 int netmap_mmap_unreg = 0; /* allow mmap of unregistered fds */ 221 222 /* 223 * netmap_admode selects the netmap mode to use. 224 * Invalid values are reset to NETMAP_ADMODE_BEST 225 */ 226 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 227 NETMAP_ADMODE_NATIVE, /* either native or none */ 228 NETMAP_ADMODE_GENERIC, /* force generic */ 229 NETMAP_ADMODE_LAST }; 230 static int netmap_admode = NETMAP_ADMODE_BEST; 231 232 int netmap_generic_mit = 100*1000; /* Generic mitigation interval in nanoseconds. */ 233 int netmap_generic_ringsize = 1024; /* Generic ringsize. */ 234 235 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 236 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , ""); 237 SYSCTL_INT(_dev_netmap, OID_AUTO, mmap_unreg, CTLFLAG_RW, &netmap_mmap_unreg, 0, ""); 238 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0 , ""); 239 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 0 , ""); 240 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, &netmap_generic_ringsize, 0 , ""); 241 242 NMG_LOCK_T netmap_global_lock; 243 244 245 static void 246 nm_kr_get(struct netmap_kring *kr) 247 { 248 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 249 tsleep(kr, 0, "NM_KR_GET", 4); 250 } 251 252 253 /* 254 * mark the ring as stopped, and run through the locks 255 * to make sure other users get to see it. 256 */ 257 void 258 netmap_disable_ring(struct netmap_kring *kr) 259 { 260 kr->nkr_stopped = 1; 261 nm_kr_get(kr); 262 mtx_lock(&kr->q_lock); 263 mtx_unlock(&kr->q_lock); 264 nm_kr_put(kr); 265 } 266 267 268 static void 269 netmap_set_all_rings(struct ifnet *ifp, int stopped) 270 { 271 struct netmap_adapter *na; 272 int i; 273 274 if (!(ifp->if_capenable & IFCAP_NETMAP)) 275 return; 276 277 na = NA(ifp); 278 279 for (i = 0; i <= na->num_tx_rings; i++) { 280 if (stopped) 281 netmap_disable_ring(na->tx_rings + i); 282 else 283 na->tx_rings[i].nkr_stopped = 0; 284 na->nm_notify(na, i, NR_TX, NAF_DISABLE_NOTIFY | 285 (i == na->num_tx_rings ? NAF_GLOBAL_NOTIFY: 0)); 286 } 287 288 for (i = 0; i <= na->num_rx_rings; i++) { 289 if (stopped) 290 netmap_disable_ring(na->rx_rings + i); 291 else 292 na->rx_rings[i].nkr_stopped = 0; 293 na->nm_notify(na, i, NR_RX, NAF_DISABLE_NOTIFY | 294 (i == na->num_rx_rings ? NAF_GLOBAL_NOTIFY: 0)); 295 } 296 } 297 298 299 void 300 netmap_disable_all_rings(struct ifnet *ifp) 301 { 302 netmap_set_all_rings(ifp, 1 /* stopped */); 303 } 304 305 306 void 307 netmap_enable_all_rings(struct ifnet *ifp) 308 { 309 netmap_set_all_rings(ifp, 0 /* enabled */); 310 } 311 312 313 /* 314 * generic bound_checking function 315 */ 316 u_int 317 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 318 { 319 u_int oldv = *v; 320 const char *op = NULL; 321 322 if (dflt < lo) 323 dflt = lo; 324 if (dflt > hi) 325 dflt = hi; 326 if (oldv < lo) { 327 *v = dflt; 328 op = "Bump"; 329 } else if (oldv > hi) { 330 *v = hi; 331 op = "Clamp"; 332 } 333 if (op && msg) 334 printf("%s %s to %d (was %d)\n", op, msg, *v, oldv); 335 return *v; 336 } 337 338 339 /* 340 * packet-dump function, user-supplied or static buffer. 341 * The destination buffer must be at least 30+4*len 342 */ 343 const char * 344 nm_dump_buf(char *p, int len, int lim, char *dst) 345 { 346 static char _dst[8192]; 347 int i, j, i0; 348 static char hex[] ="0123456789abcdef"; 349 char *o; /* output position */ 350 351 #define P_HI(x) hex[((x) & 0xf0)>>4] 352 #define P_LO(x) hex[((x) & 0xf)] 353 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 354 if (!dst) 355 dst = _dst; 356 if (lim <= 0 || lim > len) 357 lim = len; 358 o = dst; 359 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 360 o += strlen(o); 361 /* hexdump routine */ 362 for (i = 0; i < lim; ) { 363 sprintf(o, "%5d: ", i); 364 o += strlen(o); 365 memset(o, ' ', 48); 366 i0 = i; 367 for (j=0; j < 16 && i < lim; i++, j++) { 368 o[j*3] = P_HI(p[i]); 369 o[j*3+1] = P_LO(p[i]); 370 } 371 i = i0; 372 for (j=0; j < 16 && i < lim; i++, j++) 373 o[j + 48] = P_C(p[i]); 374 o[j+48] = '\n'; 375 o += j+49; 376 } 377 *o = '\0'; 378 #undef P_HI 379 #undef P_LO 380 #undef P_C 381 return dst; 382 } 383 384 385 /* 386 * Fetch configuration from the device, to cope with dynamic 387 * reconfigurations after loading the module. 388 */ 389 int 390 netmap_update_config(struct netmap_adapter *na) 391 { 392 struct ifnet *ifp = na->ifp; 393 u_int txr, txd, rxr, rxd; 394 395 txr = txd = rxr = rxd = 0; 396 if (na->nm_config) { 397 na->nm_config(na, &txr, &txd, &rxr, &rxd); 398 } else { 399 /* take whatever we had at init time */ 400 txr = na->num_tx_rings; 401 txd = na->num_tx_desc; 402 rxr = na->num_rx_rings; 403 rxd = na->num_rx_desc; 404 } 405 406 if (na->num_tx_rings == txr && na->num_tx_desc == txd && 407 na->num_rx_rings == rxr && na->num_rx_desc == rxd) 408 return 0; /* nothing changed */ 409 if (netmap_verbose || na->active_fds > 0) { 410 D("stored config %s: txring %d x %d, rxring %d x %d", 411 NM_IFPNAME(ifp), 412 na->num_tx_rings, na->num_tx_desc, 413 na->num_rx_rings, na->num_rx_desc); 414 D("new config %s: txring %d x %d, rxring %d x %d", 415 NM_IFPNAME(ifp), txr, txd, rxr, rxd); 416 } 417 if (na->active_fds == 0) { 418 D("configuration changed (but fine)"); 419 na->num_tx_rings = txr; 420 na->num_tx_desc = txd; 421 na->num_rx_rings = rxr; 422 na->num_rx_desc = rxd; 423 return 0; 424 } 425 D("configuration changed while active, this is bad..."); 426 return 1; 427 } 428 429 430 int 431 netmap_krings_create(struct netmap_adapter *na, u_int ntx, u_int nrx, u_int tailroom) 432 { 433 u_int i, len, ndesc; 434 struct netmap_kring *kring; 435 436 // XXX additional space for extra rings ? 437 len = (ntx + nrx) * sizeof(struct netmap_kring) + tailroom; 438 439 na->tx_rings = malloc((size_t)len, M_DEVBUF, M_NOWAIT | M_ZERO); 440 if (na->tx_rings == NULL) { 441 D("Cannot allocate krings"); 442 return ENOMEM; 443 } 444 na->rx_rings = na->tx_rings + ntx; 445 446 /* 447 * All fields in krings are 0 except the one initialized below. 448 * but better be explicit on important kring fields. 449 */ 450 ndesc = na->num_tx_desc; 451 for (i = 0; i < ntx; i++) { /* Transmit rings */ 452 kring = &na->tx_rings[i]; 453 bzero(kring, sizeof(*kring)); 454 kring->na = na; 455 kring->ring_id = i; 456 kring->nkr_num_slots = ndesc; 457 /* 458 * IMPORTANT: Always keep one slot empty. 459 */ 460 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 461 kring->rtail = kring->nr_hwtail = ndesc - 1; 462 snprintf(kring->name, sizeof(kring->name) - 1, "%s TX%d", NM_IFPNAME(na->ifp), i); 463 mtx_init(&kring->q_lock, "nm_txq_lock", NULL, MTX_DEF); 464 init_waitqueue_head(&kring->si); 465 } 466 467 ndesc = na->num_rx_desc; 468 for (i = 0; i < nrx; i++) { /* Receive rings */ 469 kring = &na->rx_rings[i]; 470 bzero(kring, sizeof(*kring)); 471 kring->na = na; 472 kring->ring_id = i; 473 kring->nkr_num_slots = ndesc; 474 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 475 kring->rtail = kring->nr_hwtail = 0; 476 snprintf(kring->name, sizeof(kring->name) - 1, "%s RX%d", NM_IFPNAME(na->ifp), i); 477 mtx_init(&kring->q_lock, "nm_rxq_lock", NULL, MTX_DEF); 478 init_waitqueue_head(&kring->si); 479 } 480 init_waitqueue_head(&na->tx_si); 481 init_waitqueue_head(&na->rx_si); 482 483 na->tailroom = na->rx_rings + nrx; 484 485 return 0; 486 } 487 488 489 /* XXX check boundaries */ 490 void 491 netmap_krings_delete(struct netmap_adapter *na) 492 { 493 int i; 494 495 for (i = 0; i < na->num_tx_rings + 1; i++) { 496 mtx_destroy(&na->tx_rings[i].q_lock); 497 } 498 for (i = 0; i < na->num_rx_rings + 1; i++) { 499 mtx_destroy(&na->rx_rings[i].q_lock); 500 } 501 free(na->tx_rings, M_DEVBUF); 502 na->tx_rings = na->rx_rings = na->tailroom = NULL; 503 } 504 505 506 /* 507 * Destructor for NIC ports. They also have an mbuf queue 508 * on the rings connected to the host so we need to purge 509 * them first. 510 */ 511 static void 512 netmap_hw_krings_delete(struct netmap_adapter *na) 513 { 514 struct mbq *q = &na->rx_rings[na->num_rx_rings].rx_queue; 515 516 ND("destroy sw mbq with len %d", mbq_len(q)); 517 mbq_purge(q); 518 mbq_safe_destroy(q); 519 netmap_krings_delete(na); 520 } 521 522 523 static struct netmap_if* 524 netmap_if_new(const char *ifname, struct netmap_adapter *na) 525 { 526 struct netmap_if *nifp; 527 528 if (netmap_update_config(na)) { 529 /* configuration mismatch, report and fail */ 530 return NULL; 531 } 532 533 if (na->active_fds) 534 goto final; 535 536 if (na->nm_krings_create(na)) 537 goto cleanup; 538 539 if (netmap_mem_rings_create(na)) 540 goto cleanup; 541 542 final: 543 544 nifp = netmap_mem_if_new(ifname, na); 545 if (nifp == NULL) 546 goto cleanup; 547 548 return (nifp); 549 550 cleanup: 551 552 if (na->active_fds == 0) { 553 netmap_mem_rings_delete(na); 554 na->nm_krings_delete(na); 555 } 556 557 return NULL; 558 } 559 560 561 /* grab a reference to the memory allocator, if we don't have one already. The 562 * reference is taken from the netmap_adapter registered with the priv. 563 * 564 */ 565 static int 566 netmap_get_memory_locked(struct netmap_priv_d* p) 567 { 568 struct netmap_mem_d *nmd; 569 int error = 0; 570 571 if (p->np_na == NULL) { 572 if (!netmap_mmap_unreg) 573 return ENODEV; 574 /* for compatibility with older versions of the API 575 * we use the global allocator when no interface has been 576 * registered 577 */ 578 nmd = &nm_mem; 579 } else { 580 nmd = p->np_na->nm_mem; 581 } 582 if (p->np_mref == NULL) { 583 error = netmap_mem_finalize(nmd); 584 if (!error) 585 p->np_mref = nmd; 586 } else if (p->np_mref != nmd) { 587 /* a virtual port has been registered, but previous 588 * syscalls already used the global allocator. 589 * We cannot continue 590 */ 591 error = ENODEV; 592 } 593 return error; 594 } 595 596 597 int 598 netmap_get_memory(struct netmap_priv_d* p) 599 { 600 int error; 601 NMG_LOCK(); 602 error = netmap_get_memory_locked(p); 603 NMG_UNLOCK(); 604 return error; 605 } 606 607 608 static int 609 netmap_have_memory_locked(struct netmap_priv_d* p) 610 { 611 return p->np_mref != NULL; 612 } 613 614 615 static void 616 netmap_drop_memory_locked(struct netmap_priv_d* p) 617 { 618 if (p->np_mref) { 619 netmap_mem_deref(p->np_mref); 620 p->np_mref = NULL; 621 } 622 } 623 624 625 /* 626 * File descriptor's private data destructor. 627 * 628 * Call nm_register(ifp,0) to stop netmap mode on the interface and 629 * revert to normal operation. We expect that np_na->ifp has not gone. 630 * The second argument is the nifp to work on. In some cases it is 631 * not attached yet to the netmap_priv_d so we need to pass it as 632 * a separate argument. 633 */ 634 /* call with NMG_LOCK held */ 635 static void 636 netmap_do_unregif(struct netmap_priv_d *priv, struct netmap_if *nifp) 637 { 638 struct netmap_adapter *na = priv->np_na; 639 struct ifnet *ifp = na->ifp; 640 641 NMG_LOCK_ASSERT(); 642 na->active_fds--; 643 if (na->active_fds <= 0) { /* last instance */ 644 645 if (netmap_verbose) 646 D("deleting last instance for %s", NM_IFPNAME(ifp)); 647 /* 648 * (TO CHECK) This function is only called 649 * when the last reference to this file descriptor goes 650 * away. This means we cannot have any pending poll() 651 * or interrupt routine operating on the structure. 652 * XXX The file may be closed in a thread while 653 * another thread is using it. 654 * Linux keeps the file opened until the last reference 655 * by any outstanding ioctl/poll or mmap is gone. 656 * FreeBSD does not track mmap()s (but we do) and 657 * wakes up any sleeping poll(). Need to check what 658 * happens if the close() occurs while a concurrent 659 * syscall is running. 660 */ 661 if (ifp) 662 na->nm_register(na, 0); /* off, clear flags */ 663 /* Wake up any sleeping threads. netmap_poll will 664 * then return POLLERR 665 * XXX The wake up now must happen during *_down(), when 666 * we order all activities to stop. -gl 667 */ 668 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 669 /* knlist_destroy(&na->tx_si.si_note); */ 670 /* knlist_destroy(&na->rx_si.si_note); */ 671 672 /* delete rings and buffers */ 673 netmap_mem_rings_delete(na); 674 na->nm_krings_delete(na); 675 } 676 /* delete the nifp */ 677 netmap_mem_if_delete(na, nifp); 678 } 679 680 681 /* 682 * returns 1 if this is the last instance and we can free priv 683 */ 684 int 685 netmap_dtor_locked(struct netmap_priv_d *priv) 686 { 687 struct netmap_adapter *na = priv->np_na; 688 689 #ifdef __FreeBSD__ 690 /* 691 * np_refcount is the number of active mmaps on 692 * this file descriptor 693 */ 694 if (--priv->np_refcount > 0) { 695 return 0; 696 } 697 #endif /* __FreeBSD__ */ 698 if (!na) { 699 return 1; //XXX is it correct? 700 } 701 netmap_do_unregif(priv, priv->np_nifp); 702 priv->np_nifp = NULL; 703 netmap_drop_memory_locked(priv); 704 if (priv->np_na) { 705 netmap_adapter_put(na); 706 priv->np_na = NULL; 707 } 708 return 1; 709 } 710 711 712 void 713 netmap_dtor(void *data) 714 { 715 struct netmap_priv_d *priv = data; 716 int last_instance; 717 718 NMG_LOCK(); 719 last_instance = netmap_dtor_locked(priv); 720 NMG_UNLOCK(); 721 if (last_instance) { 722 bzero(priv, sizeof(*priv)); /* for safety */ 723 free(priv, M_DEVBUF); 724 } 725 } 726 727 728 729 730 /* 731 * Handlers for synchronization of the queues from/to the host. 732 * Netmap has two operating modes: 733 * - in the default mode, the rings connected to the host stack are 734 * just another ring pair managed by userspace; 735 * - in transparent mode (XXX to be defined) incoming packets 736 * (from the host or the NIC) are marked as NS_FORWARD upon 737 * arrival, and the user application has a chance to reset the 738 * flag for packets that should be dropped. 739 * On the RXSYNC or poll(), packets in RX rings between 740 * kring->nr_kcur and ring->cur with NS_FORWARD still set are moved 741 * to the other side. 742 * The transfer NIC --> host is relatively easy, just encapsulate 743 * into mbufs and we are done. The host --> NIC side is slightly 744 * harder because there might not be room in the tx ring so it 745 * might take a while before releasing the buffer. 746 */ 747 748 749 /* 750 * pass a chain of buffers to the host stack as coming from 'dst' 751 * We do not need to lock because the queue is private. 752 */ 753 static void 754 netmap_send_up(struct ifnet *dst, struct mbq *q) 755 { 756 struct mbuf *m; 757 758 /* send packets up, outside the lock */ 759 while ((m = mbq_dequeue(q)) != NULL) { 760 if (netmap_verbose & NM_VERB_HOST) 761 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 762 NM_SEND_UP(dst, m); 763 } 764 mbq_destroy(q); 765 } 766 767 768 /* 769 * put a copy of the buffers marked NS_FORWARD into an mbuf chain. 770 * Take packets from hwcur to ring->head marked NS_FORWARD (or forced) 771 * and pass them up. Drop remaining packets in the unlikely event 772 * of an mbuf shortage. 773 */ 774 static void 775 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 776 { 777 u_int const lim = kring->nkr_num_slots - 1; 778 u_int const head = kring->ring->head; 779 u_int n; 780 struct netmap_adapter *na = kring->na; 781 782 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 783 struct mbuf *m; 784 struct netmap_slot *slot = &kring->ring->slot[n]; 785 786 if ((slot->flags & NS_FORWARD) == 0 && !force) 787 continue; 788 if (slot->len < 14 || slot->len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) { 789 RD(5, "bad pkt at %d len %d", n, slot->len); 790 continue; 791 } 792 slot->flags &= ~NS_FORWARD; // XXX needed ? 793 /* XXX TODO: adapt to the case of a multisegment packet */ 794 m = m_devget(BDG_NMB(na, slot), slot->len, 0, na->ifp, NULL); 795 796 if (m == NULL) 797 break; 798 mbq_enqueue(q, m); 799 } 800 } 801 802 803 /* 804 * Send to the NIC rings packets marked NS_FORWARD between 805 * kring->nr_hwcur and kring->rhead 806 * Called under kring->rx_queue.lock on the sw rx ring, 807 */ 808 static u_int 809 netmap_sw_to_nic(struct netmap_adapter *na) 810 { 811 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 812 struct netmap_slot *rxslot = kring->ring->slot; 813 u_int i, rxcur = kring->nr_hwcur; 814 u_int const head = kring->rhead; 815 u_int const src_lim = kring->nkr_num_slots - 1; 816 u_int sent = 0; 817 818 /* scan rings to find space, then fill as much as possible */ 819 for (i = 0; i < na->num_tx_rings; i++) { 820 struct netmap_kring *kdst = &na->tx_rings[i]; 821 struct netmap_ring *rdst = kdst->ring; 822 u_int const dst_lim = kdst->nkr_num_slots - 1; 823 824 /* XXX do we trust ring or kring->rcur,rtail ? */ 825 for (; rxcur != head && !nm_ring_empty(rdst); 826 rxcur = nm_next(rxcur, src_lim) ) { 827 struct netmap_slot *src, *dst, tmp; 828 u_int dst_cur = rdst->cur; 829 830 src = &rxslot[rxcur]; 831 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 832 continue; 833 834 sent++; 835 836 dst = &rdst->slot[dst_cur]; 837 838 tmp = *src; 839 840 src->buf_idx = dst->buf_idx; 841 src->flags = NS_BUF_CHANGED; 842 843 dst->buf_idx = tmp.buf_idx; 844 dst->len = tmp.len; 845 dst->flags = NS_BUF_CHANGED; 846 847 rdst->cur = nm_next(dst_cur, dst_lim); 848 } 849 /* if (sent) XXX txsync ? */ 850 } 851 return sent; 852 } 853 854 855 /* 856 * netmap_txsync_to_host() passes packets up. We are called from a 857 * system call in user process context, and the only contention 858 * can be among multiple user threads erroneously calling 859 * this routine concurrently. 860 */ 861 void 862 netmap_txsync_to_host(struct netmap_adapter *na) 863 { 864 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 865 struct netmap_ring *ring = kring->ring; 866 u_int const lim = kring->nkr_num_slots - 1; 867 u_int const head = nm_txsync_prologue(kring); 868 struct mbq q; 869 int error; 870 871 error = nm_kr_tryget(kring); 872 if (error) { 873 if (error == NM_KR_BUSY) 874 D("ring %p busy (user error)", kring); 875 return; 876 } 877 if (head > lim) { 878 D("invalid ring index in stack TX kring %p", kring); 879 netmap_ring_reinit(kring); 880 nm_kr_put(kring); 881 return; 882 } 883 884 /* Take packets from hwcur to head and pass them up. 885 * force head = cur since netmap_grab_packets() stops at head 886 * In case of no buffers we give up. At the end of the loop, 887 * the queue is drained in all cases. 888 */ 889 mbq_init(&q); 890 ring->cur = head; 891 netmap_grab_packets(kring, &q, 1 /* force */); 892 ND("have %d pkts in queue", mbq_len(&q)); 893 kring->nr_hwcur = head; 894 kring->nr_hwtail = head + lim; 895 if (kring->nr_hwtail > lim) 896 kring->nr_hwtail -= lim + 1; 897 nm_txsync_finalize(kring); 898 899 nm_kr_put(kring); 900 netmap_send_up(na->ifp, &q); 901 } 902 903 904 /* 905 * rxsync backend for packets coming from the host stack. 906 * They have been put in kring->rx_queue by netmap_transmit(). 907 * We protect access to the kring using kring->rx_queue.lock 908 * 909 * This routine also does the selrecord if called from the poll handler 910 * (we know because td != NULL). 911 * 912 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 913 * as an additional hidden argument. 914 * returns the number of packets delivered to tx queues in 915 * transparent mode, or a negative value if error 916 */ 917 int 918 netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 919 { 920 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 921 struct netmap_ring *ring = kring->ring; 922 u_int nm_i, n; 923 u_int const lim = kring->nkr_num_slots - 1; 924 u_int const head = nm_rxsync_prologue(kring); 925 int ret = 0; 926 struct mbq *q = &kring->rx_queue; 927 928 (void)pwait; /* disable unused warnings */ 929 930 if (head > lim) { 931 netmap_ring_reinit(kring); 932 return EINVAL; 933 } 934 935 if (kring->nkr_stopped) /* check a first time without lock */ 936 return EBUSY; 937 938 mtx_lock(&q->lock); 939 940 if (kring->nkr_stopped) { /* check again with lock held */ 941 ret = EBUSY; 942 goto unlock_out; 943 } 944 945 /* First part: import newly received packets */ 946 n = mbq_len(q); 947 if (n) { /* grab packets from the queue */ 948 struct mbuf *m; 949 uint32_t stop_i; 950 951 nm_i = kring->nr_hwtail; 952 stop_i = nm_prev(nm_i, lim); 953 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 954 int len = MBUF_LEN(m); 955 struct netmap_slot *slot = &ring->slot[nm_i]; 956 957 m_copydata(m, 0, len, BDG_NMB(na, slot)); 958 ND("nm %d len %d", nm_i, len); 959 if (netmap_verbose) 960 D("%s", nm_dump_buf(BDG_NMB(na, slot),len, 128, NULL)); 961 962 slot->len = len; 963 slot->flags = kring->nkr_slot_flags; 964 nm_i = nm_next(nm_i, lim); 965 } 966 kring->nr_hwtail = nm_i; 967 } 968 969 /* 970 * Second part: skip past packets that userspace has released. 971 */ 972 nm_i = kring->nr_hwcur; 973 if (nm_i != head) { /* something was released */ 974 if (netmap_fwd || kring->ring->flags & NR_FORWARD) 975 ret = netmap_sw_to_nic(na); 976 kring->nr_hwcur = head; 977 } 978 979 nm_rxsync_finalize(kring); 980 981 /* access copies of cur,tail in the kring */ 982 if (kring->rcur == kring->rtail && td) /* no bufs available */ 983 selrecord(td, &kring->si); 984 985 unlock_out: 986 987 mtx_unlock(&q->lock); 988 return ret; 989 } 990 991 992 /* Get a netmap adapter for the port. 993 * 994 * If it is possible to satisfy the request, return 0 995 * with *na containing the netmap adapter found. 996 * Otherwise return an error code, with *na containing NULL. 997 * 998 * When the port is attached to a bridge, we always return 999 * EBUSY. 1000 * Otherwise, if the port is already bound to a file descriptor, 1001 * then we unconditionally return the existing adapter into *na. 1002 * In all the other cases, we return (into *na) either native, 1003 * generic or NULL, according to the following table: 1004 * 1005 * native_support 1006 * active_fds dev.netmap.admode YES NO 1007 * ------------------------------------------------------- 1008 * >0 * NA(ifp) NA(ifp) 1009 * 1010 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1011 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1012 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1013 * 1014 */ 1015 1016 int 1017 netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na) 1018 { 1019 /* generic support */ 1020 int i = netmap_admode; /* Take a snapshot. */ 1021 int error = 0; 1022 struct netmap_adapter *prev_na; 1023 struct netmap_generic_adapter *gna; 1024 1025 *na = NULL; /* default */ 1026 1027 /* reset in case of invalid value */ 1028 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1029 i = netmap_admode = NETMAP_ADMODE_BEST; 1030 1031 if (NETMAP_CAPABLE(ifp)) { 1032 /* If an adapter already exists, but is 1033 * attached to a vale port, we report that the 1034 * port is busy. 1035 */ 1036 if (NETMAP_OWNED_BY_KERN(NA(ifp))) 1037 return EBUSY; 1038 1039 /* If an adapter already exists, return it if 1040 * there are active file descriptors or if 1041 * netmap is not forced to use generic 1042 * adapters. 1043 */ 1044 if (NA(ifp)->active_fds > 0 || 1045 i != NETMAP_ADMODE_GENERIC) { 1046 *na = NA(ifp); 1047 return 0; 1048 } 1049 } 1050 1051 /* If there isn't native support and netmap is not allowed 1052 * to use generic adapters, we cannot satisfy the request. 1053 */ 1054 if (!NETMAP_CAPABLE(ifp) && i == NETMAP_ADMODE_NATIVE) 1055 return EOPNOTSUPP; 1056 1057 /* Otherwise, create a generic adapter and return it, 1058 * saving the previously used netmap adapter, if any. 1059 * 1060 * Note that here 'prev_na', if not NULL, MUST be a 1061 * native adapter, and CANNOT be a generic one. This is 1062 * true because generic adapters are created on demand, and 1063 * destroyed when not used anymore. Therefore, if the adapter 1064 * currently attached to an interface 'ifp' is generic, it 1065 * must be that 1066 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1067 * Consequently, if NA(ifp) is generic, we will enter one of 1068 * the branches above. This ensures that we never override 1069 * a generic adapter with another generic adapter. 1070 */ 1071 prev_na = NA(ifp); 1072 error = generic_netmap_attach(ifp); 1073 if (error) 1074 return error; 1075 1076 *na = NA(ifp); 1077 gna = (struct netmap_generic_adapter*)NA(ifp); 1078 gna->prev = prev_na; /* save old na */ 1079 if (prev_na != NULL) { 1080 ifunit_ref(ifp->if_xname); 1081 // XXX add a refcount ? 1082 netmap_adapter_get(prev_na); 1083 } 1084 ND("Created generic NA %p (prev %p)", gna, gna->prev); 1085 1086 return 0; 1087 } 1088 1089 1090 /* 1091 * MUST BE CALLED UNDER NMG_LOCK() 1092 * 1093 * Get a refcounted reference to a netmap adapter attached 1094 * to the interface specified by nmr. 1095 * This is always called in the execution of an ioctl(). 1096 * 1097 * Return ENXIO if the interface specified by the request does 1098 * not exist, ENOTSUP if netmap is not supported by the interface, 1099 * EBUSY if the interface is already attached to a bridge, 1100 * EINVAL if parameters are invalid, ENOMEM if needed resources 1101 * could not be allocated. 1102 * If successful, hold a reference to the netmap adapter. 1103 * 1104 * No reference is kept on the real interface, which may then 1105 * disappear at any time. 1106 */ 1107 int 1108 netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create) 1109 { 1110 struct ifnet *ifp; 1111 int error = 0; 1112 struct netmap_adapter *ret; 1113 1114 *na = NULL; /* default return value */ 1115 1116 /* first try to see if this is a bridge port. */ 1117 NMG_LOCK_ASSERT(); 1118 1119 error = netmap_get_bdg_na(nmr, na, create); 1120 if (error || *na != NULL) /* valid match in netmap_get_bdg_na() */ 1121 return error; 1122 1123 ifp = ifunit_ref(nmr->nr_name); 1124 if (ifp == NULL) { 1125 return ENXIO; 1126 } 1127 1128 error = netmap_get_hw_na(ifp, &ret); 1129 if (error) 1130 goto out; 1131 1132 if (ret != NULL) { 1133 /* Users cannot use the NIC attached to a bridge directly */ 1134 if (NETMAP_OWNED_BY_KERN(ret)) { 1135 error = EBUSY; 1136 goto out; 1137 } 1138 error = 0; 1139 *na = ret; 1140 netmap_adapter_get(ret); 1141 } 1142 out: 1143 if_rele(ifp); 1144 1145 return error; 1146 } 1147 1148 1149 /* 1150 * validate parameters on entry for *_txsync() 1151 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1152 * in case of error. 1153 * 1154 * rhead, rcur and rtail=hwtail are stored from previous round. 1155 * hwcur is the next packet to send to the ring. 1156 * 1157 * We want 1158 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1159 * 1160 * hwcur, rhead, rtail and hwtail are reliable 1161 */ 1162 u_int 1163 nm_txsync_prologue(struct netmap_kring *kring) 1164 { 1165 struct netmap_ring *ring = kring->ring; 1166 u_int head = ring->head; /* read only once */ 1167 u_int cur = ring->cur; /* read only once */ 1168 u_int n = kring->nkr_num_slots; 1169 1170 ND(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1171 kring->name, 1172 kring->nr_hwcur, kring->nr_hwtail, 1173 ring->head, ring->cur, ring->tail); 1174 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1175 if (kring->nr_hwcur >= n || kring->rhead >= n || 1176 kring->rtail >= n || kring->nr_hwtail >= n) 1177 goto error; 1178 #endif /* kernel sanity checks */ 1179 /* 1180 * user sanity checks. We only use 'cur', 1181 * A, B, ... are possible positions for cur: 1182 * 1183 * 0 A cur B tail C n-1 1184 * 0 D tail E cur F n-1 1185 * 1186 * B, F, D are valid. A, C, E are wrong 1187 */ 1188 if (kring->rtail >= kring->rhead) { 1189 /* want rhead <= head <= rtail */ 1190 if (head < kring->rhead || head > kring->rtail) 1191 goto error; 1192 /* and also head <= cur <= rtail */ 1193 if (cur < head || cur > kring->rtail) 1194 goto error; 1195 } else { /* here rtail < rhead */ 1196 /* we need head outside rtail .. rhead */ 1197 if (head > kring->rtail && head < kring->rhead) 1198 goto error; 1199 1200 /* two cases now: head <= rtail or head >= rhead */ 1201 if (head <= kring->rtail) { 1202 /* want head <= cur <= rtail */ 1203 if (cur < head || cur > kring->rtail) 1204 goto error; 1205 } else { /* head >= rhead */ 1206 /* cur must be outside rtail..head */ 1207 if (cur > kring->rtail && cur < head) 1208 goto error; 1209 } 1210 } 1211 if (ring->tail != kring->rtail) { 1212 RD(5, "tail overwritten was %d need %d", 1213 ring->tail, kring->rtail); 1214 ring->tail = kring->rtail; 1215 } 1216 kring->rhead = head; 1217 kring->rcur = cur; 1218 return head; 1219 1220 error: 1221 RD(5, "%s kring error: hwcur %d rcur %d hwtail %d cur %d tail %d", 1222 kring->name, 1223 kring->nr_hwcur, 1224 kring->rcur, kring->nr_hwtail, 1225 cur, ring->tail); 1226 return n; 1227 } 1228 1229 1230 /* 1231 * validate parameters on entry for *_rxsync() 1232 * Returns ring->head if ok, kring->nkr_num_slots on error. 1233 * 1234 * For a valid configuration, 1235 * hwcur <= head <= cur <= tail <= hwtail 1236 * 1237 * We only consider head and cur. 1238 * hwcur and hwtail are reliable. 1239 * 1240 */ 1241 u_int 1242 nm_rxsync_prologue(struct netmap_kring *kring) 1243 { 1244 struct netmap_ring *ring = kring->ring; 1245 uint32_t const n = kring->nkr_num_slots; 1246 uint32_t head, cur; 1247 1248 ND("%s kc %d kt %d h %d c %d t %d", 1249 kring->name, 1250 kring->nr_hwcur, kring->nr_hwtail, 1251 ring->head, ring->cur, ring->tail); 1252 /* 1253 * Before storing the new values, we should check they do not 1254 * move backwards. However: 1255 * - head is not an issue because the previous value is hwcur; 1256 * - cur could in principle go back, however it does not matter 1257 * because we are processing a brand new rxsync() 1258 */ 1259 cur = kring->rcur = ring->cur; /* read only once */ 1260 head = kring->rhead = ring->head; /* read only once */ 1261 #if 1 /* kernel sanity checks */ 1262 if (kring->nr_hwcur >= n || kring->nr_hwtail >= n) 1263 goto error; 1264 #endif /* kernel sanity checks */ 1265 /* user sanity checks */ 1266 if (kring->nr_hwtail >= kring->nr_hwcur) { 1267 /* want hwcur <= rhead <= hwtail */ 1268 if (head < kring->nr_hwcur || head > kring->nr_hwtail) 1269 goto error; 1270 /* and also rhead <= rcur <= hwtail */ 1271 if (cur < head || cur > kring->nr_hwtail) 1272 goto error; 1273 } else { 1274 /* we need rhead outside hwtail..hwcur */ 1275 if (head < kring->nr_hwcur && head > kring->nr_hwtail) 1276 goto error; 1277 /* two cases now: head <= hwtail or head >= hwcur */ 1278 if (head <= kring->nr_hwtail) { 1279 /* want head <= cur <= hwtail */ 1280 if (cur < head || cur > kring->nr_hwtail) 1281 goto error; 1282 } else { 1283 /* cur must be outside hwtail..head */ 1284 if (cur < head && cur > kring->nr_hwtail) 1285 goto error; 1286 } 1287 } 1288 if (ring->tail != kring->rtail) { 1289 RD(5, "%s tail overwritten was %d need %d", 1290 kring->name, 1291 ring->tail, kring->rtail); 1292 ring->tail = kring->rtail; 1293 } 1294 return head; 1295 1296 error: 1297 RD(5, "kring error: hwcur %d rcur %d hwtail %d head %d cur %d tail %d", 1298 kring->nr_hwcur, 1299 kring->rcur, kring->nr_hwtail, 1300 kring->rhead, kring->rcur, ring->tail); 1301 return n; 1302 } 1303 1304 1305 /* 1306 * Error routine called when txsync/rxsync detects an error. 1307 * Can't do much more than resetting head =cur = hwcur, tail = hwtail 1308 * Return 1 on reinit. 1309 * 1310 * This routine is only called by the upper half of the kernel. 1311 * It only reads hwcur (which is changed only by the upper half, too) 1312 * and hwtail (which may be changed by the lower half, but only on 1313 * a tx ring and only to increase it, so any error will be recovered 1314 * on the next call). For the above, we don't strictly need to call 1315 * it under lock. 1316 */ 1317 int 1318 netmap_ring_reinit(struct netmap_kring *kring) 1319 { 1320 struct netmap_ring *ring = kring->ring; 1321 u_int i, lim = kring->nkr_num_slots - 1; 1322 int errors = 0; 1323 1324 // XXX KASSERT nm_kr_tryget 1325 RD(10, "called for %s", NM_IFPNAME(kring->na->ifp)); 1326 // XXX probably wrong to trust userspace 1327 kring->rhead = ring->head; 1328 kring->rcur = ring->cur; 1329 kring->rtail = ring->tail; 1330 1331 if (ring->cur > lim) 1332 errors++; 1333 if (ring->head > lim) 1334 errors++; 1335 if (ring->tail > lim) 1336 errors++; 1337 for (i = 0; i <= lim; i++) { 1338 u_int idx = ring->slot[i].buf_idx; 1339 u_int len = ring->slot[i].len; 1340 if (idx < 2 || idx >= netmap_total_buffers) { 1341 RD(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1342 ring->slot[i].buf_idx = 0; 1343 ring->slot[i].len = 0; 1344 } else if (len > NETMAP_BDG_BUF_SIZE(kring->na->nm_mem)) { 1345 ring->slot[i].len = 0; 1346 RD(5, "bad len at slot %d idx %d len %d", i, idx, len); 1347 } 1348 } 1349 if (errors) { 1350 RD(10, "total %d errors", errors); 1351 RD(10, "%s reinit, cur %d -> %d tail %d -> %d", 1352 kring->name, 1353 ring->cur, kring->nr_hwcur, 1354 ring->tail, kring->nr_hwtail); 1355 ring->head = kring->rhead = kring->nr_hwcur; 1356 ring->cur = kring->rcur = kring->nr_hwcur; 1357 ring->tail = kring->rtail = kring->nr_hwtail; 1358 } 1359 return (errors ? 1 : 0); 1360 } 1361 1362 1363 /* 1364 * Set the ring ID. For devices with a single queue, a request 1365 * for all rings is the same as a single ring. 1366 */ 1367 static int 1368 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 1369 { 1370 struct netmap_adapter *na = priv->np_na; 1371 struct ifnet *ifp = na->ifp; 1372 u_int i = ringid & NETMAP_RING_MASK; 1373 /* initially (np_qfirst == np_qlast) we don't want to lock */ 1374 u_int lim = na->num_rx_rings; 1375 1376 if (na->num_tx_rings > lim) 1377 lim = na->num_tx_rings; 1378 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 1379 D("invalid ring id %d", i); 1380 return (EINVAL); 1381 } 1382 priv->np_ringid = ringid; 1383 if (ringid & NETMAP_SW_RING) { 1384 priv->np_qfirst = NETMAP_SW_RING; 1385 priv->np_qlast = 0; 1386 } else if (ringid & NETMAP_HW_RING) { 1387 priv->np_qfirst = i; 1388 priv->np_qlast = i + 1; 1389 } else { 1390 priv->np_qfirst = 0; 1391 priv->np_qlast = NETMAP_HW_RING ; 1392 } 1393 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 1394 if (netmap_verbose) { 1395 if (ringid & NETMAP_SW_RING) 1396 D("ringid %s set to SW RING", NM_IFPNAME(ifp)); 1397 else if (ringid & NETMAP_HW_RING) 1398 D("ringid %s set to HW RING %d", NM_IFPNAME(ifp), 1399 priv->np_qfirst); 1400 else 1401 D("ringid %s set to all %d HW RINGS", NM_IFPNAME(ifp), lim); 1402 } 1403 return 0; 1404 } 1405 1406 1407 /* 1408 * possibly move the interface to netmap-mode. 1409 * If success it returns a pointer to netmap_if, otherwise NULL. 1410 * This must be called with NMG_LOCK held. 1411 */ 1412 struct netmap_if * 1413 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1414 uint16_t ringid, int *err) 1415 { 1416 struct ifnet *ifp = na->ifp; 1417 struct netmap_if *nifp = NULL; 1418 int error, need_mem = 0; 1419 1420 NMG_LOCK_ASSERT(); 1421 /* ring configuration may have changed, fetch from the card */ 1422 netmap_update_config(na); 1423 priv->np_na = na; /* store the reference */ 1424 error = netmap_set_ringid(priv, ringid); 1425 if (error) 1426 goto out; 1427 /* ensure allocators are ready */ 1428 need_mem = !netmap_have_memory_locked(priv); 1429 if (need_mem) { 1430 error = netmap_get_memory_locked(priv); 1431 ND("get_memory returned %d", error); 1432 if (error) 1433 goto out; 1434 } 1435 nifp = netmap_if_new(NM_IFPNAME(ifp), na); 1436 if (nifp == NULL) { /* allocation failed */ 1437 /* we should drop the allocator, but only 1438 * if we were the ones who grabbed it 1439 */ 1440 error = ENOMEM; 1441 goto out; 1442 } 1443 na->active_fds++; 1444 if (ifp->if_capenable & IFCAP_NETMAP) { 1445 /* was already set */ 1446 } else { 1447 /* Otherwise set the card in netmap mode 1448 * and make it use the shared buffers. 1449 * 1450 * do not core lock because the race is harmless here, 1451 * there cannot be any traffic to netmap_transmit() 1452 */ 1453 na->na_lut = na->nm_mem->pools[NETMAP_BUF_POOL].lut; 1454 ND("%p->na_lut == %p", na, na->na_lut); 1455 na->na_lut_objtotal = na->nm_mem->pools[NETMAP_BUF_POOL].objtotal; 1456 error = na->nm_register(na, 1); /* mode on */ 1457 if (error) { 1458 netmap_do_unregif(priv, nifp); 1459 nifp = NULL; 1460 } 1461 } 1462 out: 1463 *err = error; 1464 if (error) { 1465 priv->np_na = NULL; 1466 if (need_mem) 1467 netmap_drop_memory_locked(priv); 1468 } 1469 if (nifp != NULL) { 1470 /* 1471 * advertise that the interface is ready bt setting ni_nifp. 1472 * The barrier is needed because readers (poll and *SYNC) 1473 * check for priv->np_nifp != NULL without locking 1474 */ 1475 wmb(); /* make sure previous writes are visible to all CPUs */ 1476 priv->np_nifp = nifp; 1477 } 1478 return nifp; 1479 } 1480 1481 1482 1483 /* 1484 * ioctl(2) support for the "netmap" device. 1485 * 1486 * Following a list of accepted commands: 1487 * - NIOCGINFO 1488 * - SIOCGIFADDR just for convenience 1489 * - NIOCREGIF 1490 * - NIOCTXSYNC 1491 * - NIOCRXSYNC 1492 * 1493 * Return 0 on success, errno otherwise. 1494 */ 1495 int 1496 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 1497 int fflag, struct thread *td) 1498 { 1499 struct netmap_priv_d *priv = NULL; 1500 struct ifnet *ifp = NULL; 1501 struct nmreq *nmr = (struct nmreq *) data; 1502 struct netmap_adapter *na = NULL; 1503 int error; 1504 u_int i, lim; 1505 struct netmap_if *nifp; 1506 struct netmap_kring *krings; 1507 1508 (void)dev; /* UNUSED */ 1509 (void)fflag; /* UNUSED */ 1510 #ifdef linux 1511 #define devfs_get_cdevpriv(pp) \ 1512 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 1513 (*pp ? 0 : ENOENT); }) 1514 1515 /* devfs_set_cdevpriv cannot fail on linux */ 1516 #define devfs_set_cdevpriv(p, fn) \ 1517 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 1518 1519 1520 #define devfs_clear_cdevpriv() do { \ 1521 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 1522 } while (0) 1523 #endif /* linux */ 1524 1525 if (cmd == NIOCGINFO || cmd == NIOCREGIF) { 1526 /* truncate name */ 1527 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; 1528 if (nmr->nr_version != NETMAP_API) { 1529 D("API mismatch for %s got %d need %d", 1530 nmr->nr_name, 1531 nmr->nr_version, NETMAP_API); 1532 nmr->nr_version = NETMAP_API; 1533 return EINVAL; 1534 } 1535 } 1536 CURVNET_SET(TD_TO_VNET(td)); 1537 1538 error = devfs_get_cdevpriv((void **)&priv); 1539 if (error) { 1540 CURVNET_RESTORE(); 1541 /* XXX ENOENT should be impossible, since the priv 1542 * is now created in the open */ 1543 return (error == ENOENT ? ENXIO : error); 1544 } 1545 1546 switch (cmd) { 1547 case NIOCGINFO: /* return capabilities etc */ 1548 if (nmr->nr_cmd == NETMAP_BDG_LIST) { 1549 error = netmap_bdg_ctl(nmr, NULL); 1550 break; 1551 } 1552 1553 NMG_LOCK(); 1554 do { 1555 /* memsize is always valid */ 1556 struct netmap_mem_d *nmd = &nm_mem; 1557 u_int memflags; 1558 1559 if (nmr->nr_name[0] != '\0') { 1560 /* get a refcount */ 1561 error = netmap_get_na(nmr, &na, 1 /* create */); 1562 if (error) 1563 break; 1564 nmd = na->nm_mem; /* get memory allocator */ 1565 } 1566 1567 error = netmap_mem_get_info(nmd, &nmr->nr_memsize, &memflags); 1568 if (error) 1569 break; 1570 if (na == NULL) /* only memory info */ 1571 break; 1572 nmr->nr_offset = 0; 1573 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 1574 netmap_update_config(na); 1575 nmr->nr_rx_rings = na->num_rx_rings; 1576 nmr->nr_tx_rings = na->num_tx_rings; 1577 nmr->nr_rx_slots = na->num_rx_desc; 1578 nmr->nr_tx_slots = na->num_tx_desc; 1579 if (memflags & NETMAP_MEM_PRIVATE) 1580 nmr->nr_ringid |= NETMAP_PRIV_MEM; 1581 netmap_adapter_put(na); 1582 } while (0); 1583 NMG_UNLOCK(); 1584 break; 1585 1586 case NIOCREGIF: 1587 /* possibly attach/detach NIC and VALE switch */ 1588 i = nmr->nr_cmd; 1589 if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH 1590 || i == NETMAP_BDG_OFFSET) { 1591 error = netmap_bdg_ctl(nmr, NULL); 1592 break; 1593 } else if (i != 0) { 1594 D("nr_cmd must be 0 not %d", i); 1595 error = EINVAL; 1596 break; 1597 } 1598 1599 /* protect access to priv from concurrent NIOCREGIF */ 1600 NMG_LOCK(); 1601 do { 1602 u_int memflags; 1603 1604 if (priv->np_na != NULL) { /* thread already registered */ 1605 error = netmap_set_ringid(priv, nmr->nr_ringid); 1606 break; 1607 } 1608 /* find the interface and a reference */ 1609 error = netmap_get_na(nmr, &na, 1 /* create */); /* keep reference */ 1610 if (error) 1611 break; 1612 ifp = na->ifp; 1613 if (NETMAP_OWNED_BY_KERN(na)) { 1614 netmap_adapter_put(na); 1615 error = EBUSY; 1616 break; 1617 } 1618 nifp = netmap_do_regif(priv, na, nmr->nr_ringid, &error); 1619 if (!nifp) { /* reg. failed, release priv and ref */ 1620 netmap_adapter_put(na); 1621 priv->np_nifp = NULL; 1622 break; 1623 } 1624 1625 /* return the offset of the netmap_if object */ 1626 nmr->nr_rx_rings = na->num_rx_rings; 1627 nmr->nr_tx_rings = na->num_tx_rings; 1628 nmr->nr_rx_slots = na->num_rx_desc; 1629 nmr->nr_tx_slots = na->num_tx_desc; 1630 error = netmap_mem_get_info(na->nm_mem, &nmr->nr_memsize, &memflags); 1631 if (error) { 1632 netmap_adapter_put(na); 1633 break; 1634 } 1635 if (memflags & NETMAP_MEM_PRIVATE) { 1636 nmr->nr_ringid |= NETMAP_PRIV_MEM; 1637 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 1638 } 1639 nmr->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 1640 } while (0); 1641 NMG_UNLOCK(); 1642 break; 1643 1644 case NIOCTXSYNC: 1645 case NIOCRXSYNC: 1646 nifp = priv->np_nifp; 1647 1648 if (nifp == NULL) { 1649 error = ENXIO; 1650 break; 1651 } 1652 rmb(); /* make sure following reads are not from cache */ 1653 1654 na = priv->np_na; /* we have a reference */ 1655 1656 if (na == NULL) { 1657 D("Internal error: nifp != NULL && na == NULL"); 1658 error = ENXIO; 1659 break; 1660 } 1661 1662 ifp = na->ifp; 1663 if (ifp == NULL) { 1664 RD(1, "the ifp is gone"); 1665 error = ENXIO; 1666 break; 1667 } 1668 1669 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 1670 if (cmd == NIOCTXSYNC) 1671 netmap_txsync_to_host(na); 1672 else 1673 netmap_rxsync_from_host(na, NULL, NULL); 1674 break; 1675 } 1676 /* find the last ring to scan */ 1677 lim = priv->np_qlast; 1678 if (lim == NETMAP_HW_RING) 1679 lim = (cmd == NIOCTXSYNC) ? 1680 na->num_tx_rings : na->num_rx_rings; 1681 1682 krings = (cmd == NIOCTXSYNC) ? na->tx_rings : na->rx_rings; 1683 for (i = priv->np_qfirst; i < lim; i++) { 1684 struct netmap_kring *kring = krings + i; 1685 if (nm_kr_tryget(kring)) { 1686 error = EBUSY; 1687 goto out; 1688 } 1689 if (cmd == NIOCTXSYNC) { 1690 if (netmap_verbose & NM_VERB_TXSYNC) 1691 D("pre txsync ring %d cur %d hwcur %d", 1692 i, kring->ring->cur, 1693 kring->nr_hwcur); 1694 if (nm_txsync_prologue(kring) >= kring->nkr_num_slots) { 1695 netmap_ring_reinit(kring); 1696 } else { 1697 na->nm_txsync(na, i, NAF_FORCE_RECLAIM); 1698 } 1699 if (netmap_verbose & NM_VERB_TXSYNC) 1700 D("post txsync ring %d cur %d hwcur %d", 1701 i, kring->ring->cur, 1702 kring->nr_hwcur); 1703 } else { 1704 na->nm_rxsync(na, i, NAF_FORCE_READ); 1705 microtime(&na->rx_rings[i].ring->ts); 1706 } 1707 nm_kr_put(kring); 1708 } 1709 1710 break; 1711 1712 #ifdef __FreeBSD__ 1713 case BIOCIMMEDIATE: 1714 case BIOCGHDRCMPLT: 1715 case BIOCSHDRCMPLT: 1716 case BIOCSSEESENT: 1717 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1718 break; 1719 1720 default: /* allow device-specific ioctls */ 1721 { 1722 struct socket so; 1723 1724 bzero(&so, sizeof(so)); 1725 NMG_LOCK(); 1726 error = netmap_get_na(nmr, &na, 0 /* don't create */); /* keep reference */ 1727 if (error) { 1728 netmap_adapter_put(na); 1729 NMG_UNLOCK(); 1730 break; 1731 } 1732 ifp = na->ifp; 1733 so.so_vnet = ifp->if_vnet; 1734 // so->so_proto not null. 1735 error = ifioctl(&so, cmd, data, td); 1736 netmap_adapter_put(na); 1737 NMG_UNLOCK(); 1738 break; 1739 } 1740 1741 #else /* linux */ 1742 default: 1743 error = EOPNOTSUPP; 1744 #endif /* linux */ 1745 } 1746 out: 1747 1748 CURVNET_RESTORE(); 1749 return (error); 1750 } 1751 1752 1753 /* 1754 * select(2) and poll(2) handlers for the "netmap" device. 1755 * 1756 * Can be called for one or more queues. 1757 * Return true the event mask corresponding to ready events. 1758 * If there are no ready events, do a selrecord on either individual 1759 * selinfo or on the global one. 1760 * Device-dependent parts (locking and sync of tx/rx rings) 1761 * are done through callbacks. 1762 * 1763 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1764 * The first one is remapped to pwait as selrecord() uses the name as an 1765 * hidden argument. 1766 */ 1767 int 1768 netmap_poll(struct cdev *dev, int events, struct thread *td) 1769 { 1770 struct netmap_priv_d *priv = NULL; 1771 struct netmap_adapter *na; 1772 struct ifnet *ifp; 1773 struct netmap_kring *kring; 1774 u_int i, check_all_tx, check_all_rx, want_tx, want_rx, revents = 0; 1775 u_int lim_tx, lim_rx; 1776 struct mbq q; /* packets from hw queues to host stack */ 1777 void *pwait = dev; /* linux compatibility */ 1778 1779 /* 1780 * In order to avoid nested locks, we need to "double check" 1781 * txsync and rxsync if we decide to do a selrecord(). 1782 * retry_tx (and retry_rx, later) prevent looping forever. 1783 */ 1784 int retry_tx = 1, retry_rx = 1; 1785 1786 (void)pwait; 1787 mbq_init(&q); 1788 1789 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1790 return POLLERR; 1791 1792 if (priv->np_nifp == NULL) { 1793 D("No if registered"); 1794 return POLLERR; 1795 } 1796 rmb(); /* make sure following reads are not from cache */ 1797 1798 na = priv->np_na; 1799 ifp = na->ifp; 1800 // check for deleted 1801 if (ifp == NULL) { 1802 RD(1, "the ifp is gone"); 1803 return POLLERR; 1804 } 1805 1806 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1807 return POLLERR; 1808 1809 if (netmap_verbose & 0x8000) 1810 D("device %s events 0x%x", NM_IFPNAME(ifp), events); 1811 want_tx = events & (POLLOUT | POLLWRNORM); 1812 want_rx = events & (POLLIN | POLLRDNORM); 1813 1814 lim_tx = na->num_tx_rings; 1815 lim_rx = na->num_rx_rings; 1816 1817 if (priv->np_qfirst == NETMAP_SW_RING) { 1818 // XXX locking ? 1819 /* handle the host stack ring */ 1820 if (priv->np_txpoll || want_tx) { 1821 /* push any packets up, then we are always ready */ 1822 netmap_txsync_to_host(na); 1823 revents |= want_tx; 1824 } 1825 if (want_rx) { 1826 kring = &na->rx_rings[lim_rx]; 1827 /* XXX replace with rxprologue etc. */ 1828 if (nm_ring_empty(kring->ring)) 1829 netmap_rxsync_from_host(na, td, dev); 1830 if (!nm_ring_empty(kring->ring)) 1831 revents |= want_rx; 1832 } 1833 return (revents); 1834 } 1835 1836 1837 /* 1838 * check_all_{tx|rx} are set if the card has more than one queue AND 1839 * the file descriptor is bound to all of them. If so, we sleep on 1840 * the "global" selinfo, otherwise we sleep on individual selinfo 1841 * (FreeBSD only allows two selinfo's per file descriptor). 1842 * The interrupt routine in the driver wake one or the other 1843 * (or both) depending on which clients are active. 1844 * 1845 * rxsync() is only called if we run out of buffers on a POLLIN. 1846 * txsync() is called if we run out of buffers on POLLOUT, or 1847 * there are pending packets to send. The latter can be disabled 1848 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1849 */ 1850 check_all_tx = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1); 1851 check_all_rx = (priv->np_qlast == NETMAP_HW_RING) && (lim_rx > 1); 1852 1853 if (priv->np_qlast != NETMAP_HW_RING) { 1854 lim_tx = lim_rx = priv->np_qlast; 1855 } 1856 1857 /* 1858 * We start with a lock free round which is cheap if we have 1859 * slots available. If this fails, then lock and call the sync 1860 * routines. 1861 */ 1862 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1863 kring = &na->rx_rings[i]; 1864 /* XXX compare ring->cur and kring->tail */ 1865 if (!nm_ring_empty(kring->ring)) { 1866 revents |= want_rx; 1867 want_rx = 0; /* also breaks the loop */ 1868 } 1869 } 1870 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1871 kring = &na->tx_rings[i]; 1872 /* XXX compare ring->cur and kring->tail */ 1873 if (!nm_ring_empty(kring->ring)) { 1874 revents |= want_tx; 1875 want_tx = 0; /* also breaks the loop */ 1876 } 1877 } 1878 1879 /* 1880 * If we want to push packets out (priv->np_txpoll) or 1881 * want_tx is still set, we must issue txsync calls 1882 * (on all rings, to avoid that the tx rings stall). 1883 * XXX should also check cur != hwcur on the tx rings. 1884 * Fortunately, normal tx mode has np_txpoll set. 1885 */ 1886 if (priv->np_txpoll || want_tx) { 1887 /* 1888 * The first round checks if anyone is ready, if not 1889 * do a selrecord and another round to handle races. 1890 * want_tx goes to 0 if any space is found, and is 1891 * used to skip rings with no pending transmissions. 1892 */ 1893 flush_tx: 1894 for (i = priv->np_qfirst; i < lim_tx; i++) { 1895 int found = 0; 1896 1897 kring = &na->tx_rings[i]; 1898 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1899 continue; 1900 /* only one thread does txsync */ 1901 if (nm_kr_tryget(kring)) { 1902 D("%p lost race on txring %d, ok", priv, i); 1903 continue; 1904 } 1905 if (nm_txsync_prologue(kring) >= kring->nkr_num_slots) { 1906 netmap_ring_reinit(kring); 1907 revents |= POLLERR; 1908 } else { 1909 if (na->nm_txsync(na, i, 0)) 1910 revents |= POLLERR; 1911 } 1912 1913 /* 1914 * If we found new slots, notify potential 1915 * listeners on the same ring. 1916 * Since we just did a txsync, look at the copies 1917 * of cur,tail in the kring. 1918 */ 1919 found = kring->rcur != kring->rtail; 1920 nm_kr_put(kring); 1921 if (found) { /* notify other listeners */ 1922 revents |= want_tx; 1923 want_tx = 0; 1924 na->nm_notify(na, i, NR_TX, NAF_GLOBAL_NOTIFY); 1925 } 1926 } 1927 if (want_tx && retry_tx) { 1928 selrecord(td, check_all_tx ? 1929 &na->tx_si : &na->tx_rings[priv->np_qfirst].si); 1930 retry_tx = 0; 1931 goto flush_tx; 1932 } 1933 } 1934 1935 /* 1936 * If want_rx is still set scan receive rings. 1937 * Do it on all rings because otherwise we starve. 1938 */ 1939 if (want_rx) { 1940 int send_down = 0; /* transparent mode */ 1941 /* two rounds here to for race avoidance */ 1942 do_retry_rx: 1943 for (i = priv->np_qfirst; i < lim_rx; i++) { 1944 int found = 0; 1945 1946 kring = &na->rx_rings[i]; 1947 1948 if (nm_kr_tryget(kring)) { 1949 D("%p lost race on rxring %d, ok", priv, i); 1950 continue; 1951 } 1952 1953 /* 1954 * transparent mode support: collect packets 1955 * from the rxring(s). 1956 * XXX NR_FORWARD should only be read on 1957 * physical or NIC ports 1958 */ 1959 if (netmap_fwd ||kring->ring->flags & NR_FORWARD) { 1960 ND(10, "forwarding some buffers up %d to %d", 1961 kring->nr_hwcur, kring->ring->cur); 1962 netmap_grab_packets(kring, &q, netmap_fwd); 1963 } 1964 1965 if (na->nm_rxsync(na, i, 0)) 1966 revents |= POLLERR; 1967 if (netmap_no_timestamp == 0 || 1968 kring->ring->flags & NR_TIMESTAMP) { 1969 microtime(&kring->ring->ts); 1970 } 1971 /* after an rxsync we can use kring->rcur, rtail */ 1972 found = kring->rcur != kring->rtail; 1973 nm_kr_put(kring); 1974 if (found) { 1975 revents |= want_rx; 1976 retry_rx = 0; 1977 na->nm_notify(na, i, NR_RX, NAF_GLOBAL_NOTIFY); 1978 } 1979 } 1980 1981 /* transparent mode XXX only during first pass ? */ 1982 kring = &na->rx_rings[lim_rx]; 1983 if (check_all_rx 1984 && (netmap_fwd || kring->ring->flags & NR_FORWARD)) { 1985 /* XXX fix to use kring fields */ 1986 if (nm_ring_empty(kring->ring)) 1987 send_down = netmap_rxsync_from_host(na, td, dev); 1988 if (!nm_ring_empty(kring->ring)) 1989 revents |= want_rx; 1990 } 1991 1992 if (retry_rx) 1993 selrecord(td, check_all_rx ? 1994 &na->rx_si : &na->rx_rings[priv->np_qfirst].si); 1995 if (send_down > 0 || retry_rx) { 1996 retry_rx = 0; 1997 if (send_down) 1998 goto flush_tx; /* and retry_rx */ 1999 else 2000 goto do_retry_rx; 2001 } 2002 } 2003 2004 /* 2005 * Transparent mode: marked bufs on rx rings between 2006 * kring->nr_hwcur and ring->head 2007 * are passed to the other endpoint. 2008 * 2009 * In this mode we also scan the sw rxring, which in 2010 * turn passes packets up. 2011 * 2012 * XXX Transparent mode at the moment requires to bind all 2013 * rings to a single file descriptor. 2014 */ 2015 2016 if (q.head) 2017 netmap_send_up(na->ifp, &q); 2018 2019 return (revents); 2020 } 2021 2022 2023 /*-------------------- driver support routines -------------------*/ 2024 2025 static int netmap_hw_krings_create(struct netmap_adapter *); 2026 2027 static int 2028 netmap_notify(struct netmap_adapter *na, u_int n_ring, 2029 enum txrx tx, int flags) 2030 { 2031 struct netmap_kring *kring; 2032 2033 if (tx == NR_TX) { 2034 kring = na->tx_rings + n_ring; 2035 selwakeuppri(&kring->si, PI_NET); 2036 if (flags & NAF_GLOBAL_NOTIFY) 2037 selwakeuppri(&na->tx_si, PI_NET); 2038 } else { 2039 kring = na->rx_rings + n_ring; 2040 selwakeuppri(&kring->si, PI_NET); 2041 if (flags & NAF_GLOBAL_NOTIFY) 2042 selwakeuppri(&na->rx_si, PI_NET); 2043 } 2044 return 0; 2045 } 2046 2047 2048 // XXX check handling of failures 2049 int 2050 netmap_attach_common(struct netmap_adapter *na) 2051 { 2052 struct ifnet *ifp = na->ifp; 2053 2054 if (na->num_tx_rings == 0 || na->num_rx_rings == 0) { 2055 D("%s: invalid rings tx %d rx %d", 2056 ifp->if_xname, na->num_tx_rings, na->num_rx_rings); 2057 return EINVAL; 2058 } 2059 WNA(ifp) = na; 2060 2061 /* the following is only needed for na that use the host port. 2062 * XXX do we have something similar for linux ? 2063 */ 2064 #ifdef __FreeBSD__ 2065 na->if_input = ifp->if_input; /* for netmap_send_up */ 2066 #endif /* __FreeBSD__ */ 2067 2068 NETMAP_SET_CAPABLE(ifp); 2069 if (na->nm_krings_create == NULL) { 2070 na->nm_krings_create = netmap_hw_krings_create; 2071 na->nm_krings_delete = netmap_hw_krings_delete; 2072 } 2073 if (na->nm_notify == NULL) 2074 na->nm_notify = netmap_notify; 2075 na->active_fds = 0; 2076 2077 if (na->nm_mem == NULL) 2078 na->nm_mem = &nm_mem; 2079 return 0; 2080 } 2081 2082 2083 void 2084 netmap_detach_common(struct netmap_adapter *na) 2085 { 2086 if (na->ifp) 2087 WNA(na->ifp) = NULL; /* XXX do we need this? */ 2088 2089 if (na->tx_rings) { /* XXX should not happen */ 2090 D("freeing leftover tx_rings"); 2091 na->nm_krings_delete(na); 2092 } 2093 if (na->na_flags & NAF_MEM_OWNER) 2094 netmap_mem_private_delete(na->nm_mem); 2095 bzero(na, sizeof(*na)); 2096 free(na, M_DEVBUF); 2097 } 2098 2099 2100 /* 2101 * Initialize a ``netmap_adapter`` object created by driver on attach. 2102 * We allocate a block of memory with room for a struct netmap_adapter 2103 * plus two sets of N+2 struct netmap_kring (where N is the number 2104 * of hardware rings): 2105 * krings 0..N-1 are for the hardware queues. 2106 * kring N is for the host stack queue 2107 * kring N+1 is only used for the selinfo for all queues. // XXX still true ? 2108 * Return 0 on success, ENOMEM otherwise. 2109 */ 2110 int 2111 netmap_attach(struct netmap_adapter *arg) 2112 { 2113 struct netmap_hw_adapter *hwna = NULL; 2114 // XXX when is arg == NULL ? 2115 struct ifnet *ifp = arg ? arg->ifp : NULL; 2116 2117 if (arg == NULL || ifp == NULL) 2118 goto fail; 2119 hwna = malloc(sizeof(*hwna), M_DEVBUF, M_NOWAIT | M_ZERO); 2120 if (hwna == NULL) 2121 goto fail; 2122 hwna->up = *arg; 2123 if (netmap_attach_common(&hwna->up)) { 2124 free(hwna, M_DEVBUF); 2125 goto fail; 2126 } 2127 netmap_adapter_get(&hwna->up); 2128 2129 #ifdef linux 2130 if (ifp->netdev_ops) { 2131 /* prepare a clone of the netdev ops */ 2132 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28) 2133 hwna->nm_ndo.ndo_start_xmit = ifp->netdev_ops; 2134 #else 2135 hwna->nm_ndo = *ifp->netdev_ops; 2136 #endif 2137 } 2138 hwna->nm_ndo.ndo_start_xmit = linux_netmap_start_xmit; 2139 #endif /* linux */ 2140 2141 D("success for %s", NM_IFPNAME(ifp)); 2142 return 0; 2143 2144 fail: 2145 D("fail, arg %p ifp %p na %p", arg, ifp, hwna); 2146 netmap_detach(ifp); 2147 return (hwna ? EINVAL : ENOMEM); 2148 } 2149 2150 2151 void 2152 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 2153 { 2154 if (!na) { 2155 return; 2156 } 2157 2158 refcount_acquire(&na->na_refcount); 2159 } 2160 2161 2162 /* returns 1 iff the netmap_adapter is destroyed */ 2163 int 2164 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 2165 { 2166 if (!na) 2167 return 1; 2168 2169 if (!refcount_release(&na->na_refcount)) 2170 return 0; 2171 2172 if (na->nm_dtor) 2173 na->nm_dtor(na); 2174 2175 netmap_detach_common(na); 2176 2177 return 1; 2178 } 2179 2180 2181 int 2182 netmap_hw_krings_create(struct netmap_adapter *na) 2183 { 2184 int ret = netmap_krings_create(na, 2185 na->num_tx_rings + 1, na->num_rx_rings + 1, 0); 2186 if (ret == 0) { 2187 /* initialize the mbq for the sw rx ring */ 2188 mbq_safe_init(&na->rx_rings[na->num_rx_rings].rx_queue); 2189 ND("initialized sw rx queue %d", na->num_rx_rings); 2190 } 2191 return ret; 2192 } 2193 2194 2195 2196 /* 2197 * Free the allocated memory linked to the given ``netmap_adapter`` 2198 * object. 2199 */ 2200 void 2201 netmap_detach(struct ifnet *ifp) 2202 { 2203 struct netmap_adapter *na = NA(ifp); 2204 2205 if (!na) 2206 return; 2207 2208 NMG_LOCK(); 2209 netmap_disable_all_rings(ifp); 2210 if (!netmap_adapter_put(na)) { 2211 /* someone is still using the adapter, 2212 * tell them that the interface is gone 2213 */ 2214 na->ifp = NULL; 2215 /* give them a chance to notice */ 2216 netmap_enable_all_rings(ifp); 2217 } 2218 NMG_UNLOCK(); 2219 } 2220 2221 2222 /* 2223 * Intercept packets from the network stack and pass them 2224 * to netmap as incoming packets on the 'software' ring. 2225 * 2226 * We only store packets in a bounded mbq and then copy them 2227 * in the relevant rxsync routine. 2228 * 2229 * We rely on the OS to make sure that the ifp and na do not go 2230 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 2231 * In nm_register() or whenever there is a reinitialization, 2232 * we make sure to make the mode change visible here. 2233 */ 2234 int 2235 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 2236 { 2237 struct netmap_adapter *na = NA(ifp); 2238 struct netmap_kring *kring; 2239 u_int len = MBUF_LEN(m); 2240 u_int error = ENOBUFS; 2241 struct mbq *q; 2242 int space; 2243 2244 // XXX [Linux] we do not need this lock 2245 // if we follow the down/configure/up protocol -gl 2246 // mtx_lock(&na->core_lock); 2247 2248 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) { 2249 D("%s not in netmap mode anymore", NM_IFPNAME(ifp)); 2250 error = ENXIO; 2251 goto done; 2252 } 2253 2254 kring = &na->rx_rings[na->num_rx_rings]; 2255 q = &kring->rx_queue; 2256 2257 // XXX reconsider long packets if we handle fragments 2258 if (len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) { /* too long for us */ 2259 D("%s from_host, drop packet size %d > %d", NM_IFPNAME(ifp), 2260 len, NETMAP_BDG_BUF_SIZE(na->nm_mem)); 2261 goto done; 2262 } 2263 2264 /* protect against rxsync_from_host(), netmap_sw_to_nic() 2265 * and maybe other instances of netmap_transmit (the latter 2266 * not possible on Linux). 2267 * Also avoid overflowing the queue. 2268 */ 2269 mtx_lock(&q->lock); 2270 2271 space = kring->nr_hwtail - kring->nr_hwcur; 2272 if (space < 0) 2273 space += kring->nkr_num_slots; 2274 if (space + mbq_len(q) >= kring->nkr_num_slots - 1) { // XXX 2275 RD(10, "%s full hwcur %d hwtail %d qlen %d len %d m %p", 2276 NM_IFPNAME(ifp), kring->nr_hwcur, kring->nr_hwtail, mbq_len(q), 2277 len, m); 2278 } else { 2279 mbq_enqueue(q, m); 2280 ND(10, "%s %d bufs in queue len %d m %p", 2281 NM_IFPNAME(ifp), mbq_len(q), len, m); 2282 /* notify outside the lock */ 2283 m = NULL; 2284 error = 0; 2285 } 2286 mtx_unlock(&q->lock); 2287 2288 done: 2289 if (m) 2290 m_freem(m); 2291 /* unconditionally wake up listeners */ 2292 na->nm_notify(na, na->num_rx_rings, NR_RX, 0); 2293 2294 return (error); 2295 } 2296 2297 2298 /* 2299 * netmap_reset() is called by the driver routines when reinitializing 2300 * a ring. The driver is in charge of locking to protect the kring. 2301 * If native netmap mode is not set just return NULL. 2302 */ 2303 struct netmap_slot * 2304 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 2305 u_int new_cur) 2306 { 2307 struct netmap_kring *kring; 2308 int new_hwofs, lim; 2309 2310 if (na == NULL) { 2311 D("NULL na, should not happen"); 2312 return NULL; /* no netmap support here */ 2313 } 2314 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) { 2315 ND("interface not in netmap mode"); 2316 return NULL; /* nothing to reinitialize */ 2317 } 2318 2319 /* XXX note- in the new scheme, we are not guaranteed to be 2320 * under lock (e.g. when called on a device reset). 2321 * In this case, we should set a flag and do not trust too 2322 * much the values. In practice: TODO 2323 * - set a RESET flag somewhere in the kring 2324 * - do the processing in a conservative way 2325 * - let the *sync() fixup at the end. 2326 */ 2327 if (tx == NR_TX) { 2328 if (n >= na->num_tx_rings) 2329 return NULL; 2330 kring = na->tx_rings + n; 2331 // XXX check whether we should use hwcur or rcur 2332 new_hwofs = kring->nr_hwcur - new_cur; 2333 } else { 2334 if (n >= na->num_rx_rings) 2335 return NULL; 2336 kring = na->rx_rings + n; 2337 new_hwofs = kring->nr_hwtail - new_cur; 2338 } 2339 lim = kring->nkr_num_slots - 1; 2340 if (new_hwofs > lim) 2341 new_hwofs -= lim + 1; 2342 2343 /* Always set the new offset value and realign the ring. */ 2344 if (netmap_verbose) 2345 D("%s %s%d hwofs %d -> %d, hwtail %d -> %d", 2346 NM_IFPNAME(na->ifp), 2347 tx == NR_TX ? "TX" : "RX", n, 2348 kring->nkr_hwofs, new_hwofs, 2349 kring->nr_hwtail, 2350 tx == NR_TX ? lim : kring->nr_hwtail); 2351 kring->nkr_hwofs = new_hwofs; 2352 if (tx == NR_TX) { 2353 kring->nr_hwtail = kring->nr_hwcur + lim; 2354 if (kring->nr_hwtail > lim) 2355 kring->nr_hwtail -= lim + 1; 2356 } 2357 2358 #if 0 // def linux 2359 /* XXX check that the mappings are correct */ 2360 /* need ring_nr, adapter->pdev, direction */ 2361 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 2362 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 2363 D("error mapping rx netmap buffer %d", i); 2364 // XXX fix error handling 2365 } 2366 2367 #endif /* linux */ 2368 /* 2369 * Wakeup on the individual and global selwait 2370 * We do the wakeup here, but the ring is not yet reconfigured. 2371 * However, we are under lock so there are no races. 2372 */ 2373 na->nm_notify(na, n, tx, NAF_GLOBAL_NOTIFY); 2374 return kring->ring->slot; 2375 } 2376 2377 2378 /* 2379 * Dispatch rx/tx interrupts to the netmap rings. 2380 * 2381 * "work_done" is non-null on the RX path, NULL for the TX path. 2382 * We rely on the OS to make sure that there is only one active 2383 * instance per queue, and that there is appropriate locking. 2384 * 2385 * The 'notify' routine depends on what the ring is attached to. 2386 * - for a netmap file descriptor, do a selwakeup on the individual 2387 * waitqueue, plus one on the global one if needed 2388 * - for a switch, call the proper forwarding routine 2389 * - XXX more ? 2390 */ 2391 void 2392 netmap_common_irq(struct ifnet *ifp, u_int q, u_int *work_done) 2393 { 2394 struct netmap_adapter *na = NA(ifp); 2395 struct netmap_kring *kring; 2396 2397 q &= NETMAP_RING_MASK; 2398 2399 if (netmap_verbose) { 2400 RD(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 2401 } 2402 2403 if (work_done) { /* RX path */ 2404 if (q >= na->num_rx_rings) 2405 return; // not a physical queue 2406 kring = na->rx_rings + q; 2407 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 2408 na->nm_notify(na, q, NR_RX, 2409 (na->num_rx_rings > 1 ? NAF_GLOBAL_NOTIFY : 0)); 2410 *work_done = 1; /* do not fire napi again */ 2411 } else { /* TX path */ 2412 if (q >= na->num_tx_rings) 2413 return; // not a physical queue 2414 kring = na->tx_rings + q; 2415 na->nm_notify(na, q, NR_TX, 2416 (na->num_tx_rings > 1 ? NAF_GLOBAL_NOTIFY : 0)); 2417 } 2418 } 2419 2420 2421 /* 2422 * Default functions to handle rx/tx interrupts from a physical device. 2423 * "work_done" is non-null on the RX path, NULL for the TX path. 2424 * 2425 * If the card is not in netmap mode, simply return 0, 2426 * so that the caller proceeds with regular processing. 2427 * Otherwise call netmap_common_irq() and return 1. 2428 * 2429 * If the card is connected to a netmap file descriptor, 2430 * do a selwakeup on the individual queue, plus one on the global one 2431 * if needed (multiqueue card _and_ there are multiqueue listeners), 2432 * and return 1. 2433 * 2434 * Finally, if called on rx from an interface connected to a switch, 2435 * calls the proper forwarding routine, and return 1. 2436 */ 2437 int 2438 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 2439 { 2440 // XXX could we check NAF_NATIVE_ON ? 2441 if (!(ifp->if_capenable & IFCAP_NETMAP)) 2442 return 0; 2443 2444 if (NA(ifp)->na_flags & NAF_SKIP_INTR) { 2445 ND("use regular interrupt"); 2446 return 0; 2447 } 2448 2449 netmap_common_irq(ifp, q, work_done); 2450 return 1; 2451 } 2452 2453 2454 /* 2455 * Module loader and unloader 2456 * 2457 * netmap_init() creates the /dev/netmap device and initializes 2458 * all global variables. Returns 0 on success, errno on failure 2459 * (but there is no chance) 2460 * 2461 * netmap_fini() destroys everything. 2462 */ 2463 2464 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 2465 extern struct cdevsw netmap_cdevsw; 2466 2467 2468 void 2469 netmap_fini(void) 2470 { 2471 // XXX destroy_bridges() ? 2472 if (netmap_dev) 2473 destroy_dev(netmap_dev); 2474 netmap_mem_fini(); 2475 NMG_LOCK_DESTROY(); 2476 printf("netmap: unloaded module.\n"); 2477 } 2478 2479 2480 int 2481 netmap_init(void) 2482 { 2483 int error; 2484 2485 NMG_LOCK_INIT(); 2486 2487 error = netmap_mem_init(); 2488 if (error != 0) 2489 goto fail; 2490 /* XXX could use make_dev_credv() to get error number */ 2491 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 2492 "netmap"); 2493 if (!netmap_dev) 2494 goto fail; 2495 2496 netmap_init_bridges(); 2497 printf("netmap: loaded module\n"); 2498 return (0); 2499 fail: 2500 netmap_fini(); 2501 return (EINVAL); /* may be incorrect */ 2502 } 2503