1 /* 2 * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * This module supports memory mapped access to network devices, 28 * see netmap(4). 29 * 30 * The module uses a large, memory pool allocated by the kernel 31 * and accessible as mmapped memory by multiple userspace threads/processes. 32 * The memory pool contains packet buffers and "netmap rings", 33 * i.e. user-accessible copies of the interface's queues. 34 * 35 * Access to the network card works like this: 36 * 1. a process/thread issues one or more open() on /dev/netmap, to create 37 * select()able file descriptor on which events are reported. 38 * 2. on each descriptor, the process issues an ioctl() to identify 39 * the interface that should report events to the file descriptor. 40 * 3. on each descriptor, the process issues an mmap() request to 41 * map the shared memory region within the process' address space. 42 * The list of interesting queues is indicated by a location in 43 * the shared memory region. 44 * 4. using the functions in the netmap(4) userspace API, a process 45 * can look up the occupation state of a queue, access memory buffers, 46 * and retrieve received packets or enqueue packets to transmit. 47 * 5. using some ioctl()s the process can synchronize the userspace view 48 * of the queue with the actual status in the kernel. This includes both 49 * receiving the notification of new packets, and transmitting new 50 * packets on the output interface. 51 * 6. select() or poll() can be used to wait for events on individual 52 * transmit or receive queues (or all queues for a given interface). 53 */ 54 55 #include <sys/cdefs.h> /* prerequisite */ 56 __FBSDID("$FreeBSD$"); 57 58 #include <sys/types.h> 59 #include <sys/module.h> 60 #include <sys/errno.h> 61 #include <sys/param.h> /* defines used in kernel.h */ 62 #include <sys/jail.h> 63 #include <sys/kernel.h> /* types used in module initialization */ 64 #include <sys/conf.h> /* cdevsw struct */ 65 #include <sys/uio.h> /* uio struct */ 66 #include <sys/sockio.h> 67 #include <sys/socketvar.h> /* struct socket */ 68 #include <sys/malloc.h> 69 #include <sys/mman.h> /* PROT_EXEC */ 70 #include <sys/poll.h> 71 #include <sys/proc.h> 72 #include <vm/vm.h> /* vtophys */ 73 #include <vm/pmap.h> /* vtophys */ 74 #include <sys/socket.h> /* sockaddrs */ 75 #include <machine/bus.h> 76 #include <sys/selinfo.h> 77 #include <sys/sysctl.h> 78 #include <net/if.h> 79 #include <net/bpf.h> /* BIOCIMMEDIATE */ 80 #include <net/vnet.h> 81 #include <net/netmap.h> 82 #include <dev/netmap/netmap_kern.h> 83 #include <machine/bus.h> /* bus_dmamap_* */ 84 85 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 86 87 /* 88 * lock and unlock for the netmap memory allocator 89 */ 90 #define NMA_LOCK() mtx_lock(&netmap_mem_d->nm_mtx); 91 #define NMA_UNLOCK() mtx_unlock(&netmap_mem_d->nm_mtx); 92 struct netmap_mem_d; 93 static struct netmap_mem_d *netmap_mem_d; /* Our memory allocator. */ 94 95 u_int netmap_total_buffers; 96 char *netmap_buffer_base; /* address of an invalid buffer */ 97 98 /* user-controlled variables */ 99 int netmap_verbose; 100 101 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 102 103 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 104 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 105 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 106 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 107 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 108 int netmap_buf_size = 2048; 109 TUNABLE_INT("hw.netmap.buf_size", &netmap_buf_size); 110 SYSCTL_INT(_dev_netmap, OID_AUTO, buf_size, 111 CTLFLAG_RD, &netmap_buf_size, 0, "Size of packet buffers"); 112 int netmap_mitigate = 1; 113 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 114 int netmap_no_pendintr; 115 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 116 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 117 118 119 120 /*----- memory allocator -----------------*/ 121 /* 122 * Here we have the low level routines for memory allocator 123 * and its primary users. 124 */ 125 126 /* 127 * Default amount of memory pre-allocated by the module. 128 * We start with a large size and then shrink our demand 129 * according to what is avalable when the module is loaded. 130 * At the moment the block is contiguous, but we can easily 131 * restrict our demand to smaller units (16..64k) 132 */ 133 #define NETMAP_MEMORY_SIZE (64 * 1024 * PAGE_SIZE) 134 static void * netmap_malloc(size_t size, const char *msg); 135 static void netmap_free(void *addr, const char *msg); 136 137 #define netmap_if_malloc(len) netmap_malloc(len, "nifp") 138 #define netmap_if_free(v) netmap_free((v), "nifp") 139 140 #define netmap_ring_malloc(len) netmap_malloc(len, "ring") 141 #define netmap_free_rings(na) \ 142 netmap_free((na)->tx_rings[0].ring, "shadow rings"); 143 144 /* 145 * Allocator for a pool of packet buffers. For each buffer we have 146 * one entry in the bitmap to signal the state. Allocation scans 147 * the bitmap, but since this is done only on attach, we are not 148 * too worried about performance 149 * XXX if we need to allocate small blocks, a translation 150 * table is used both for kernel virtual address and physical 151 * addresses. 152 */ 153 struct netmap_buf_pool { 154 u_int total_buffers; /* total buffers. */ 155 u_int free; 156 u_int bufsize; 157 char *base; /* buffer base address */ 158 uint32_t *bitmap; /* one bit per buffer, 1 means free */ 159 }; 160 struct netmap_buf_pool nm_buf_pool; 161 SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers, 162 CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers"); 163 SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers, 164 CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers"); 165 166 167 168 169 /* 170 * Allocate n buffers from the ring, and fill the slot. 171 * Buffer 0 is the 'junk' buffer. 172 */ 173 static void 174 netmap_new_bufs(struct netmap_if *nifp __unused, 175 struct netmap_slot *slot, u_int n) 176 { 177 struct netmap_buf_pool *p = &nm_buf_pool; 178 uint32_t bi = 0; /* index in the bitmap */ 179 uint32_t mask, j, i = 0; /* slot counter */ 180 181 if (n > p->free) { 182 D("only %d out of %d buffers available", i, n); 183 return; 184 } 185 /* termination is guaranteed by p->free */ 186 while (i < n && p->free > 0) { 187 uint32_t cur = p->bitmap[bi]; 188 if (cur == 0) { /* bitmask is fully used */ 189 bi++; 190 continue; 191 } 192 /* locate a slot */ 193 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ; 194 p->bitmap[bi] &= ~mask; /* slot in use */ 195 p->free--; 196 slot[i].buf_idx = bi*32+j; 197 slot[i].len = p->bufsize; 198 slot[i].flags = NS_BUF_CHANGED; 199 i++; 200 } 201 ND("allocated %d buffers, %d available", n, p->free); 202 } 203 204 205 static void 206 netmap_free_buf(struct netmap_if *nifp __unused, uint32_t i) 207 { 208 struct netmap_buf_pool *p = &nm_buf_pool; 209 210 uint32_t pos, mask; 211 if (i >= p->total_buffers) { 212 D("invalid free index %d", i); 213 return; 214 } 215 pos = i / 32; 216 mask = 1 << (i % 32); 217 if (p->bitmap[pos] & mask) { 218 D("slot %d already free", i); 219 return; 220 } 221 p->bitmap[pos] |= mask; 222 p->free++; 223 } 224 225 226 /* Descriptor of the memory objects handled by our memory allocator. */ 227 struct netmap_mem_obj { 228 TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the 229 chain. */ 230 int nmo_used; /* flag set on used memory objects. */ 231 size_t nmo_size; /* size of the memory area reserved for the 232 object. */ 233 void *nmo_data; /* pointer to the memory area. */ 234 }; 235 236 /* Wrap our memory objects to make them ``chainable``. */ 237 TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj); 238 239 240 /* Descriptor of our custom memory allocator. */ 241 struct netmap_mem_d { 242 struct mtx nm_mtx; /* lock used to handle the chain of memory 243 objects. */ 244 struct netmap_mem_obj_h nm_molist; /* list of memory objects */ 245 size_t nm_size; /* total amount of memory used for rings etc. */ 246 size_t nm_totalsize; /* total amount of allocated memory 247 (the difference is used for buffers) */ 248 size_t nm_buf_start; /* offset of packet buffers. 249 This is page-aligned. */ 250 size_t nm_buf_len; /* total memory for buffers */ 251 void *nm_buffer; /* pointer to the whole pre-allocated memory 252 area. */ 253 }; 254 255 /* Shorthand to compute a netmap interface offset. */ 256 #define netmap_if_offset(v) \ 257 ((char *) (v) - (char *) netmap_mem_d->nm_buffer) 258 /* .. and get a physical address given a memory offset */ 259 #define netmap_ofstophys(o) \ 260 (vtophys(netmap_mem_d->nm_buffer) + (o)) 261 262 263 /*------ netmap memory allocator -------*/ 264 /* 265 * Request for a chunk of memory. 266 * 267 * Memory objects are arranged into a list, hence we need to walk this 268 * list until we find an object with the needed amount of data free. 269 * This sounds like a completely inefficient implementation, but given 270 * the fact that data allocation is done once, we can handle it 271 * flawlessly. 272 * 273 * Return NULL on failure. 274 */ 275 static void * 276 netmap_malloc(size_t size, __unused const char *msg) 277 { 278 struct netmap_mem_obj *mem_obj, *new_mem_obj; 279 void *ret = NULL; 280 281 NMA_LOCK(); 282 TAILQ_FOREACH(mem_obj, &netmap_mem_d->nm_molist, nmo_next) { 283 if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size) 284 continue; 285 286 new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 287 M_WAITOK | M_ZERO); 288 TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next); 289 290 new_mem_obj->nmo_used = 1; 291 new_mem_obj->nmo_size = size; 292 new_mem_obj->nmo_data = mem_obj->nmo_data; 293 memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size); 294 295 mem_obj->nmo_size -= size; 296 mem_obj->nmo_data = (char *) mem_obj->nmo_data + size; 297 if (mem_obj->nmo_size == 0) { 298 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, 299 nmo_next); 300 free(mem_obj, M_NETMAP); 301 } 302 303 ret = new_mem_obj->nmo_data; 304 305 break; 306 } 307 NMA_UNLOCK(); 308 ND("%s: %d bytes at %p", msg, size, ret); 309 310 return (ret); 311 } 312 313 /* 314 * Return the memory to the allocator. 315 * 316 * While freeing a memory object, we try to merge adjacent chunks in 317 * order to reduce memory fragmentation. 318 */ 319 static void 320 netmap_free(void *addr, const char *msg) 321 { 322 size_t size; 323 struct netmap_mem_obj *cur, *prev, *next; 324 325 if (addr == NULL) { 326 D("NULL addr for %s", msg); 327 return; 328 } 329 330 NMA_LOCK(); 331 TAILQ_FOREACH(cur, &netmap_mem_d->nm_molist, nmo_next) { 332 if (cur->nmo_data == addr && cur->nmo_used) 333 break; 334 } 335 if (cur == NULL) { 336 NMA_UNLOCK(); 337 D("invalid addr %s %p", msg, addr); 338 return; 339 } 340 341 size = cur->nmo_size; 342 cur->nmo_used = 0; 343 344 /* merge current chunk of memory with the previous one, 345 if present. */ 346 prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next); 347 if (prev && prev->nmo_used == 0) { 348 TAILQ_REMOVE(&netmap_mem_d->nm_molist, cur, nmo_next); 349 prev->nmo_size += cur->nmo_size; 350 free(cur, M_NETMAP); 351 cur = prev; 352 } 353 354 /* merge with the next one */ 355 next = TAILQ_NEXT(cur, nmo_next); 356 if (next && next->nmo_used == 0) { 357 TAILQ_REMOVE(&netmap_mem_d->nm_molist, next, nmo_next); 358 cur->nmo_size += next->nmo_size; 359 free(next, M_NETMAP); 360 } 361 NMA_UNLOCK(); 362 ND("freed %s %d bytes at %p", msg, size, addr); 363 } 364 365 366 /* 367 * Create and return a new ``netmap_if`` object, and possibly also 368 * rings and packet buffors. 369 * 370 * Return NULL on failure. 371 */ 372 static void * 373 netmap_if_new(const char *ifname, struct netmap_adapter *na) 374 { 375 struct netmap_if *nifp; 376 struct netmap_ring *ring; 377 char *buff; 378 u_int i, len, ofs; 379 u_int n = na->num_queues + 1; /* shorthand, include stack queue */ 380 381 /* 382 * the descriptor is followed inline by an array of offsets 383 * to the tx and rx rings in the shared memory region. 384 */ 385 len = sizeof(struct netmap_if) + 2 * n * sizeof(ssize_t); 386 nifp = netmap_if_malloc(len); 387 if (nifp == NULL) 388 return (NULL); 389 390 /* initialize base fields */ 391 *(int *)(uintptr_t)&nifp->ni_num_queues = na->num_queues; 392 strncpy(nifp->ni_name, ifname, IFNAMSIZ); 393 394 (na->refcount)++; /* XXX atomic ? we are under lock */ 395 if (na->refcount > 1) 396 goto final; 397 398 /* 399 * If this is the first instance, allocate the shadow rings and 400 * buffers for this card (one for each hw queue, one for the host). 401 * The rings are contiguous, but have variable size. 402 * The entire block is reachable at 403 * na->tx_rings[0].ring 404 */ 405 406 len = n * (2 * sizeof(struct netmap_ring) + 407 (na->num_tx_desc + na->num_rx_desc) * 408 sizeof(struct netmap_slot) ); 409 buff = netmap_ring_malloc(len); 410 if (buff == NULL) { 411 D("failed to allocate %d bytes for %s shadow ring", 412 len, ifname); 413 error: 414 (na->refcount)--; 415 netmap_if_free(nifp); 416 return (NULL); 417 } 418 /* do we have the bufers ? we are in need of num_tx_desc buffers for 419 * each tx ring and num_tx_desc buffers for each rx ring. */ 420 len = n * (na->num_tx_desc + na->num_rx_desc); 421 NMA_LOCK(); 422 if (nm_buf_pool.free < len) { 423 NMA_UNLOCK(); 424 netmap_free(buff, "not enough bufs"); 425 goto error; 426 } 427 /* 428 * in the kring, store the pointers to the shared rings 429 * and initialize the rings. We are under NMA_LOCK(). 430 */ 431 ofs = 0; 432 for (i = 0; i < n; i++) { 433 struct netmap_kring *kring; 434 int numdesc; 435 436 /* Transmit rings */ 437 kring = &na->tx_rings[i]; 438 numdesc = na->num_tx_desc; 439 bzero(kring, sizeof(*kring)); 440 kring->na = na; 441 442 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 443 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 444 nm_buf_pool.base - (char *)ring; 445 ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs); 446 *(uint32_t *)(uintptr_t)&ring->num_slots = 447 kring->nkr_num_slots = numdesc; 448 449 /* 450 * IMPORTANT: 451 * Always keep one slot empty, so we can detect new 452 * transmissions comparing cur and nr_hwcur (they are 453 * the same only if there are no new transmissions). 454 */ 455 ring->avail = kring->nr_hwavail = numdesc - 1; 456 ring->cur = kring->nr_hwcur = 0; 457 *(uint16_t *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE; 458 netmap_new_bufs(nifp, ring->slot, numdesc); 459 460 ofs += sizeof(struct netmap_ring) + 461 numdesc * sizeof(struct netmap_slot); 462 463 /* Receive rings */ 464 kring = &na->rx_rings[i]; 465 numdesc = na->num_rx_desc; 466 bzero(kring, sizeof(*kring)); 467 kring->na = na; 468 469 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 470 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 471 nm_buf_pool.base - (char *)ring; 472 ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs); 473 *(uint32_t *)(uintptr_t)&ring->num_slots = 474 kring->nkr_num_slots = numdesc; 475 ring->cur = kring->nr_hwcur = 0; 476 ring->avail = kring->nr_hwavail = 0; /* empty */ 477 *(uint16_t *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE; 478 netmap_new_bufs(nifp, ring->slot, numdesc); 479 ofs += sizeof(struct netmap_ring) + 480 numdesc * sizeof(struct netmap_slot); 481 } 482 NMA_UNLOCK(); 483 for (i = 0; i < n+1; i++) { 484 // XXX initialize the selrecord structs. 485 } 486 final: 487 /* 488 * fill the slots for the rx and tx queues. They contain the offset 489 * between the ring and nifp, so the information is usable in 490 * userspace to reach the ring from the nifp. 491 */ 492 for (i = 0; i < n; i++) { 493 char *base = (char *)nifp; 494 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = 495 (char *)na->tx_rings[i].ring - base; 496 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n] = 497 (char *)na->rx_rings[i].ring - base; 498 } 499 return (nifp); 500 } 501 502 /* 503 * Initialize the memory allocator. 504 * 505 * Create the descriptor for the memory , allocate the pool of memory 506 * and initialize the list of memory objects with a single chunk 507 * containing the whole pre-allocated memory marked as free. 508 * 509 * Start with a large size, then halve as needed if we fail to 510 * allocate the block. While halving, always add one extra page 511 * because buffers 0 and 1 are used for special purposes. 512 * Return 0 on success, errno otherwise. 513 */ 514 static int 515 netmap_memory_init(void) 516 { 517 struct netmap_mem_obj *mem_obj; 518 void *buf = NULL; 519 int i, n, sz = NETMAP_MEMORY_SIZE; 520 int extra_sz = 0; // space for rings and two spare buffers 521 522 for (; sz >= 1<<20; sz >>=1) { 523 extra_sz = sz/200; 524 extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 525 buf = contigmalloc(sz + extra_sz, 526 M_NETMAP, 527 M_WAITOK | M_ZERO, 528 0, /* low address */ 529 -1UL, /* high address */ 530 PAGE_SIZE, /* alignment */ 531 0 /* boundary */ 532 ); 533 if (buf) 534 break; 535 } 536 if (buf == NULL) 537 return (ENOMEM); 538 sz += extra_sz; 539 netmap_mem_d = malloc(sizeof(struct netmap_mem_d), M_NETMAP, 540 M_WAITOK | M_ZERO); 541 mtx_init(&netmap_mem_d->nm_mtx, "netmap memory allocator lock", NULL, 542 MTX_DEF); 543 TAILQ_INIT(&netmap_mem_d->nm_molist); 544 netmap_mem_d->nm_buffer = buf; 545 netmap_mem_d->nm_totalsize = sz; 546 547 /* 548 * A buffer takes 2k, a slot takes 8 bytes + ring overhead, 549 * so the ratio is 200:1. In other words, we can use 1/200 of 550 * the memory for the rings, and the rest for the buffers, 551 * and be sure we never run out. 552 */ 553 netmap_mem_d->nm_size = sz/200; 554 netmap_mem_d->nm_buf_start = 555 (netmap_mem_d->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 556 netmap_mem_d->nm_buf_len = sz - netmap_mem_d->nm_buf_start; 557 558 nm_buf_pool.base = netmap_mem_d->nm_buffer; 559 nm_buf_pool.base += netmap_mem_d->nm_buf_start; 560 netmap_buffer_base = nm_buf_pool.base; 561 D("netmap_buffer_base %p (offset %d)", 562 netmap_buffer_base, (int)netmap_mem_d->nm_buf_start); 563 /* number of buffers, they all start as free */ 564 565 netmap_total_buffers = nm_buf_pool.total_buffers = 566 netmap_mem_d->nm_buf_len / NETMAP_BUF_SIZE; 567 nm_buf_pool.bufsize = NETMAP_BUF_SIZE; 568 569 D("Have %d MB, use %dKB for rings, %d buffers at %p", 570 (sz >> 20), (int)(netmap_mem_d->nm_size >> 10), 571 nm_buf_pool.total_buffers, nm_buf_pool.base); 572 573 /* allocate and initialize the bitmap. Entry 0 is considered 574 * always busy (used as default when there are no buffers left). 575 */ 576 n = (nm_buf_pool.total_buffers + 31) / 32; 577 nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, 578 M_WAITOK | M_ZERO); 579 nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */ 580 for (i = 1; i < n; i++) 581 nm_buf_pool.bitmap[i] = ~0; 582 nm_buf_pool.free = nm_buf_pool.total_buffers - 2; 583 584 mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 585 M_WAITOK | M_ZERO); 586 TAILQ_INSERT_HEAD(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 587 mem_obj->nmo_used = 0; 588 mem_obj->nmo_size = netmap_mem_d->nm_size; 589 mem_obj->nmo_data = netmap_mem_d->nm_buffer; 590 591 return (0); 592 } 593 594 595 /* 596 * Finalize the memory allocator. 597 * 598 * Free all the memory objects contained inside the list, and deallocate 599 * the pool of memory; finally free the memory allocator descriptor. 600 */ 601 static void 602 netmap_memory_fini(void) 603 { 604 struct netmap_mem_obj *mem_obj; 605 606 while (!TAILQ_EMPTY(&netmap_mem_d->nm_molist)) { 607 mem_obj = TAILQ_FIRST(&netmap_mem_d->nm_molist); 608 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 609 if (mem_obj->nmo_used == 1) { 610 printf("netmap: leaked %d bytes at %p\n", 611 (int)mem_obj->nmo_size, 612 mem_obj->nmo_data); 613 } 614 free(mem_obj, M_NETMAP); 615 } 616 contigfree(netmap_mem_d->nm_buffer, netmap_mem_d->nm_totalsize, M_NETMAP); 617 // XXX mutex_destroy(nm_mtx); 618 free(netmap_mem_d, M_NETMAP); 619 } 620 /*------------- end of memory allocator -----------------*/ 621 622 623 /* Structure associated to each thread which registered an interface. */ 624 struct netmap_priv_d { 625 struct netmap_if *np_nifp; /* netmap interface descriptor. */ 626 627 struct ifnet *np_ifp; /* device for which we hold a reference */ 628 int np_ringid; /* from the ioctl */ 629 u_int np_qfirst, np_qlast; /* range of rings to scan */ 630 uint16_t np_txpoll; 631 }; 632 633 634 /* 635 * File descriptor's private data destructor. 636 * 637 * Call nm_register(ifp,0) to stop netmap mode on the interface and 638 * revert to normal operation. We expect that np_ifp has not gone. 639 */ 640 static void 641 netmap_dtor_locked(void *data) 642 { 643 struct netmap_priv_d *priv = data; 644 struct ifnet *ifp = priv->np_ifp; 645 struct netmap_adapter *na = NA(ifp); 646 struct netmap_if *nifp = priv->np_nifp; 647 648 na->refcount--; 649 if (na->refcount <= 0) { /* last instance */ 650 u_int i; 651 652 D("deleting last netmap instance for %s", ifp->if_xname); 653 /* 654 * there is a race here with *_netmap_task() and 655 * netmap_poll(), which don't run under NETMAP_REG_LOCK. 656 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 657 * (aka NETMAP_DELETING(na)) are a unique marker that the 658 * device is dying. 659 * Before destroying stuff we sleep a bit, and then complete 660 * the job. NIOCREG should realize the condition and 661 * loop until they can continue; the other routines 662 * should check the condition at entry and quit if 663 * they cannot run. 664 */ 665 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 666 tsleep(na, 0, "NIOCUNREG", 4); 667 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 668 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 669 /* Wake up any sleeping threads. netmap_poll will 670 * then return POLLERR 671 */ 672 for (i = 0; i < na->num_queues + 2; i++) { 673 selwakeuppri(&na->tx_rings[i].si, PI_NET); 674 selwakeuppri(&na->rx_rings[i].si, PI_NET); 675 } 676 /* release all buffers */ 677 NMA_LOCK(); 678 for (i = 0; i < na->num_queues + 1; i++) { 679 int j, lim; 680 struct netmap_ring *ring; 681 682 ND("tx queue %d", i); 683 ring = na->tx_rings[i].ring; 684 lim = na->tx_rings[i].nkr_num_slots; 685 for (j = 0; j < lim; j++) 686 netmap_free_buf(nifp, ring->slot[j].buf_idx); 687 688 ND("rx queue %d", i); 689 ring = na->rx_rings[i].ring; 690 lim = na->rx_rings[i].nkr_num_slots; 691 for (j = 0; j < lim; j++) 692 netmap_free_buf(nifp, ring->slot[j].buf_idx); 693 } 694 NMA_UNLOCK(); 695 netmap_free_rings(na); 696 wakeup(na); 697 } 698 netmap_if_free(nifp); 699 } 700 701 702 static void 703 netmap_dtor(void *data) 704 { 705 struct netmap_priv_d *priv = data; 706 struct ifnet *ifp = priv->np_ifp; 707 struct netmap_adapter *na = NA(ifp); 708 709 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 710 netmap_dtor_locked(data); 711 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 712 713 if_rele(ifp); 714 bzero(priv, sizeof(*priv)); /* XXX for safety */ 715 free(priv, M_DEVBUF); 716 } 717 718 719 /* 720 * mmap(2) support for the "netmap" device. 721 * 722 * Expose all the memory previously allocated by our custom memory 723 * allocator: this way the user has only to issue a single mmap(2), and 724 * can work on all the data structures flawlessly. 725 * 726 * Return 0 on success, -1 otherwise. 727 */ 728 729 static int 730 netmap_mmap(__unused struct cdev *dev, 731 #if __FreeBSD_version < 900000 732 vm_offset_t offset, vm_paddr_t *paddr, int nprot 733 #else 734 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 735 __unused vm_memattr_t *memattr 736 #endif 737 ) 738 { 739 if (nprot & PROT_EXEC) 740 return (-1); // XXX -1 or EINVAL ? 741 742 ND("request for offset 0x%x", (uint32_t)offset); 743 *paddr = netmap_ofstophys(offset); 744 745 return (0); 746 } 747 748 749 /* 750 * Handlers for synchronization of the queues from/to the host. 751 * 752 * netmap_sync_to_host() passes packets up. We are called from a 753 * system call in user process context, and the only contention 754 * can be among multiple user threads erroneously calling 755 * this routine concurrently. In principle we should not even 756 * need to lock. 757 */ 758 static void 759 netmap_sync_to_host(struct netmap_adapter *na) 760 { 761 struct netmap_kring *kring = &na->tx_rings[na->num_queues]; 762 struct netmap_ring *ring = kring->ring; 763 struct mbuf *head = NULL, *tail = NULL, *m; 764 u_int k, n, lim = kring->nkr_num_slots - 1; 765 766 k = ring->cur; 767 if (k > lim) { 768 netmap_ring_reinit(kring); 769 return; 770 } 771 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 772 773 /* Take packets from hwcur to cur and pass them up. 774 * In case of no buffers we give up. At the end of the loop, 775 * the queue is drained in all cases. 776 */ 777 for (n = kring->nr_hwcur; n != k;) { 778 struct netmap_slot *slot = &ring->slot[n]; 779 780 n = (n == lim) ? 0 : n + 1; 781 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 782 D("bad pkt at %d len %d", n, slot->len); 783 continue; 784 } 785 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 786 787 if (m == NULL) 788 break; 789 if (tail) 790 tail->m_nextpkt = m; 791 else 792 head = m; 793 tail = m; 794 m->m_nextpkt = NULL; 795 } 796 kring->nr_hwcur = k; 797 kring->nr_hwavail = ring->avail = lim; 798 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 799 800 /* send packets up, outside the lock */ 801 while ((m = head) != NULL) { 802 head = head->m_nextpkt; 803 m->m_nextpkt = NULL; 804 if (netmap_verbose & NM_VERB_HOST) 805 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 806 NM_SEND_UP(na->ifp, m); 807 } 808 } 809 810 /* 811 * rxsync backend for packets coming from the host stack. 812 * They have been put in the queue by netmap_start() so we 813 * need to protect access to the kring using a lock. 814 * 815 * This routine also does the selrecord if called from the poll handler 816 * (we know because td != NULL). 817 */ 818 static void 819 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) 820 { 821 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 822 struct netmap_ring *ring = kring->ring; 823 int error = 1, delta; 824 u_int k = ring->cur, lim = kring->nkr_num_slots; 825 826 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 827 if (k >= lim) /* bad value */ 828 goto done; 829 delta = k - kring->nr_hwcur; 830 if (delta < 0) 831 delta += lim; 832 kring->nr_hwavail -= delta; 833 if (kring->nr_hwavail < 0) /* error */ 834 goto done; 835 kring->nr_hwcur = k; 836 error = 0; 837 k = ring->avail = kring->nr_hwavail; 838 if (k == 0 && td) 839 selrecord(td, &kring->si); 840 if (k && (netmap_verbose & NM_VERB_HOST)) 841 D("%d pkts from stack", k); 842 done: 843 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 844 if (error) 845 netmap_ring_reinit(kring); 846 } 847 848 849 /* 850 * get a refcounted reference to an interface. 851 * Return ENXIO if the interface does not exist, EINVAL if netmap 852 * is not supported by the interface. 853 * If successful, hold a reference. 854 */ 855 static int 856 get_ifp(const char *name, struct ifnet **ifp) 857 { 858 *ifp = ifunit_ref(name); 859 if (*ifp == NULL) 860 return (ENXIO); 861 /* can do this if the capability exists and if_pspare[0] 862 * points to the netmap descriptor. 863 */ 864 if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) 865 return 0; /* valid pointer, we hold the refcount */ 866 if_rele(*ifp); 867 return EINVAL; // not NETMAP capable 868 } 869 870 871 /* 872 * Error routine called when txsync/rxsync detects an error. 873 * Can't do much more than resetting cur = hwcur, avail = hwavail. 874 * Return 1 on reinit. 875 * 876 * This routine is only called by the upper half of the kernel. 877 * It only reads hwcur (which is changed only by the upper half, too) 878 * and hwavail (which may be changed by the lower half, but only on 879 * a tx ring and only to increase it, so any error will be recovered 880 * on the next call). For the above, we don't strictly need to call 881 * it under lock. 882 */ 883 int 884 netmap_ring_reinit(struct netmap_kring *kring) 885 { 886 struct netmap_ring *ring = kring->ring; 887 u_int i, lim = kring->nkr_num_slots - 1; 888 int errors = 0; 889 890 D("called for %s", kring->na->ifp->if_xname); 891 if (ring->cur > lim) 892 errors++; 893 for (i = 0; i <= lim; i++) { 894 u_int idx = ring->slot[i].buf_idx; 895 u_int len = ring->slot[i].len; 896 if (idx < 2 || idx >= netmap_total_buffers) { 897 if (!errors++) 898 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 899 ring->slot[i].buf_idx = 0; 900 ring->slot[i].len = 0; 901 } else if (len > NETMAP_BUF_SIZE) { 902 ring->slot[i].len = 0; 903 if (!errors++) 904 D("bad len %d at slot %d idx %d", 905 len, i, idx); 906 } 907 } 908 if (errors) { 909 int pos = kring - kring->na->tx_rings; 910 int n = kring->na->num_queues + 2; 911 912 D("total %d errors", errors); 913 errors++; 914 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 915 kring->na->ifp->if_xname, 916 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 917 ring->cur, kring->nr_hwcur, 918 ring->avail, kring->nr_hwavail); 919 ring->cur = kring->nr_hwcur; 920 ring->avail = kring->nr_hwavail; 921 } 922 return (errors ? 1 : 0); 923 } 924 925 926 /* 927 * Set the ring ID. For devices with a single queue, a request 928 * for all rings is the same as a single ring. 929 */ 930 static int 931 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 932 { 933 struct ifnet *ifp = priv->np_ifp; 934 struct netmap_adapter *na = NA(ifp); 935 u_int i = ringid & NETMAP_RING_MASK; 936 /* first time we don't lock */ 937 int need_lock = (priv->np_qfirst != priv->np_qlast); 938 939 if ( (ringid & NETMAP_HW_RING) && i >= na->num_queues) { 940 D("invalid ring id %d", i); 941 return (EINVAL); 942 } 943 if (need_lock) 944 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 945 priv->np_ringid = ringid; 946 if (ringid & NETMAP_SW_RING) { 947 priv->np_qfirst = na->num_queues; 948 priv->np_qlast = na->num_queues + 1; 949 } else if (ringid & NETMAP_HW_RING) { 950 priv->np_qfirst = i; 951 priv->np_qlast = i + 1; 952 } else { 953 priv->np_qfirst = 0; 954 priv->np_qlast = na->num_queues; 955 } 956 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 957 if (need_lock) 958 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 959 if (ringid & NETMAP_SW_RING) 960 D("ringid %s set to SW RING", ifp->if_xname); 961 else if (ringid & NETMAP_HW_RING) 962 D("ringid %s set to HW RING %d", ifp->if_xname, 963 priv->np_qfirst); 964 else 965 D("ringid %s set to all %d HW RINGS", ifp->if_xname, 966 priv->np_qlast); 967 return 0; 968 } 969 970 /* 971 * ioctl(2) support for the "netmap" device. 972 * 973 * Following a list of accepted commands: 974 * - NIOCGINFO 975 * - SIOCGIFADDR just for convenience 976 * - NIOCREGIF 977 * - NIOCUNREGIF 978 * - NIOCTXSYNC 979 * - NIOCRXSYNC 980 * 981 * Return 0 on success, errno otherwise. 982 */ 983 static int 984 netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, 985 __unused int fflag, struct thread *td) 986 { 987 struct netmap_priv_d *priv = NULL; 988 struct ifnet *ifp; 989 struct nmreq *nmr = (struct nmreq *) data; 990 struct netmap_adapter *na; 991 int error; 992 u_int i; 993 struct netmap_if *nifp; 994 995 CURVNET_SET(TD_TO_VNET(td)); 996 997 error = devfs_get_cdevpriv((void **)&priv); 998 if (error != ENOENT && error != 0) { 999 CURVNET_RESTORE(); 1000 return (error); 1001 } 1002 1003 error = 0; /* Could be ENOENT */ 1004 switch (cmd) { 1005 case NIOCGINFO: /* return capabilities etc */ 1006 /* memsize is always valid */ 1007 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 1008 nmr->nr_offset = 0; 1009 nmr->nr_numrings = 0; 1010 nmr->nr_numslots = 0; 1011 if (nmr->nr_name[0] == '\0') /* just get memory info */ 1012 break; 1013 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 1014 if (error) 1015 break; 1016 na = NA(ifp); /* retrieve netmap_adapter */ 1017 nmr->nr_numrings = na->num_queues; 1018 nmr->nr_numslots = na->num_tx_desc; 1019 if_rele(ifp); /* return the refcount */ 1020 break; 1021 1022 case NIOCREGIF: 1023 if (priv != NULL) { /* thread already registered */ 1024 error = netmap_set_ringid(priv, nmr->nr_ringid); 1025 break; 1026 } 1027 /* find the interface and a reference */ 1028 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1029 if (error) 1030 break; 1031 na = NA(ifp); /* retrieve netmap adapter */ 1032 /* 1033 * Allocate the private per-thread structure. 1034 * XXX perhaps we can use a blocking malloc ? 1035 */ 1036 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 1037 M_NOWAIT | M_ZERO); 1038 if (priv == NULL) { 1039 error = ENOMEM; 1040 if_rele(ifp); /* return the refcount */ 1041 break; 1042 } 1043 1044 for (i = 10; i > 0; i--) { 1045 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 1046 if (!NETMAP_DELETING(na)) 1047 break; 1048 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1049 tsleep(na, 0, "NIOCREGIF", hz/10); 1050 } 1051 if (i == 0) { 1052 D("too many NIOCREGIF attempts, give up"); 1053 error = EINVAL; 1054 free(priv, M_DEVBUF); 1055 if_rele(ifp); /* return the refcount */ 1056 break; 1057 } 1058 1059 priv->np_ifp = ifp; /* store the reference */ 1060 error = netmap_set_ringid(priv, nmr->nr_ringid); 1061 if (error) 1062 goto error; 1063 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); 1064 if (nifp == NULL) { /* allocation failed */ 1065 error = ENOMEM; 1066 } else if (ifp->if_capenable & IFCAP_NETMAP) { 1067 /* was already set */ 1068 } else { 1069 /* Otherwise set the card in netmap mode 1070 * and make it use the shared buffers. 1071 */ 1072 error = na->nm_register(ifp, 1); /* mode on */ 1073 if (error) 1074 netmap_dtor_locked(priv); 1075 } 1076 1077 if (error) { /* reg. failed, release priv and ref */ 1078 error: 1079 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1080 if_rele(ifp); /* return the refcount */ 1081 bzero(priv, sizeof(*priv)); 1082 free(priv, M_DEVBUF); 1083 break; 1084 } 1085 1086 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1087 error = devfs_set_cdevpriv(priv, netmap_dtor); 1088 1089 if (error != 0) { 1090 /* could not assign the private storage for the 1091 * thread, call the destructor explicitly. 1092 */ 1093 netmap_dtor(priv); 1094 break; 1095 } 1096 1097 /* return the offset of the netmap_if object */ 1098 nmr->nr_numrings = na->num_queues; 1099 nmr->nr_numslots = na->num_tx_desc; 1100 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 1101 nmr->nr_offset = netmap_if_offset(nifp); 1102 break; 1103 1104 case NIOCUNREGIF: 1105 if (priv == NULL) { 1106 error = ENXIO; 1107 break; 1108 } 1109 1110 /* the interface is unregistered inside the 1111 destructor of the private data. */ 1112 devfs_clear_cdevpriv(); 1113 break; 1114 1115 case NIOCTXSYNC: 1116 case NIOCRXSYNC: 1117 if (priv == NULL) { 1118 error = ENXIO; 1119 break; 1120 } 1121 ifp = priv->np_ifp; /* we have a reference */ 1122 na = NA(ifp); /* retrieve netmap adapter */ 1123 1124 if (priv->np_qfirst == na->num_queues) { 1125 /* queues to/from host */ 1126 if (cmd == NIOCTXSYNC) 1127 netmap_sync_to_host(na); 1128 else 1129 netmap_sync_from_host(na, NULL); 1130 break; 1131 } 1132 1133 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1134 if (cmd == NIOCTXSYNC) { 1135 struct netmap_kring *kring = &na->tx_rings[i]; 1136 if (netmap_verbose & NM_VERB_TXSYNC) 1137 D("sync tx ring %d cur %d hwcur %d", 1138 i, kring->ring->cur, 1139 kring->nr_hwcur); 1140 na->nm_txsync(ifp, i, 1 /* do lock */); 1141 if (netmap_verbose & NM_VERB_TXSYNC) 1142 D("after sync tx ring %d cur %d hwcur %d", 1143 i, kring->ring->cur, 1144 kring->nr_hwcur); 1145 } else { 1146 na->nm_rxsync(ifp, i, 1 /* do lock */); 1147 microtime(&na->rx_rings[i].ring->ts); 1148 } 1149 } 1150 1151 break; 1152 1153 case BIOCIMMEDIATE: 1154 case BIOCGHDRCMPLT: 1155 case BIOCSHDRCMPLT: 1156 case BIOCSSEESENT: 1157 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1158 break; 1159 1160 default: /* allow device-specific ioctls */ 1161 { 1162 struct socket so; 1163 bzero(&so, sizeof(so)); 1164 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1165 if (error) 1166 break; 1167 so.so_vnet = ifp->if_vnet; 1168 // so->so_proto not null. 1169 error = ifioctl(&so, cmd, data, td); 1170 if_rele(ifp); 1171 break; 1172 } 1173 } 1174 1175 CURVNET_RESTORE(); 1176 return (error); 1177 } 1178 1179 1180 /* 1181 * select(2) and poll(2) handlers for the "netmap" device. 1182 * 1183 * Can be called for one or more queues. 1184 * Return true the event mask corresponding to ready events. 1185 * If there are no ready events, do a selrecord on either individual 1186 * selfd or on the global one. 1187 * Device-dependent parts (locking and sync of tx/rx rings) 1188 * are done through callbacks. 1189 */ 1190 static int 1191 netmap_poll(__unused struct cdev *dev, int events, struct thread *td) 1192 { 1193 struct netmap_priv_d *priv = NULL; 1194 struct netmap_adapter *na; 1195 struct ifnet *ifp; 1196 struct netmap_kring *kring; 1197 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1198 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1199 1200 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1201 return POLLERR; 1202 1203 ifp = priv->np_ifp; 1204 // XXX check for deleting() ? 1205 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1206 return POLLERR; 1207 1208 if (netmap_verbose & 0x8000) 1209 D("device %s events 0x%x", ifp->if_xname, events); 1210 want_tx = events & (POLLOUT | POLLWRNORM); 1211 want_rx = events & (POLLIN | POLLRDNORM); 1212 1213 na = NA(ifp); /* retrieve netmap adapter */ 1214 1215 /* how many queues we are scanning */ 1216 i = priv->np_qfirst; 1217 if (i == na->num_queues) { /* from/to host */ 1218 if (priv->np_txpoll || want_tx) { 1219 /* push any packets up, then we are always ready */ 1220 kring = &na->tx_rings[i]; 1221 netmap_sync_to_host(na); 1222 revents |= want_tx; 1223 } 1224 if (want_rx) { 1225 kring = &na->rx_rings[i]; 1226 if (kring->ring->avail == 0) 1227 netmap_sync_from_host(na, td); 1228 if (kring->ring->avail > 0) { 1229 revents |= want_rx; 1230 } 1231 } 1232 return (revents); 1233 } 1234 1235 /* 1236 * check_all is set if the card has more than one queue and 1237 * the client is polling all of them. If true, we sleep on 1238 * the "global" selfd, otherwise we sleep on individual selfd 1239 * (we can only sleep on one of them per direction). 1240 * The interrupt routine in the driver should always wake on 1241 * the individual selfd, and also on the global one if the card 1242 * has more than one ring. 1243 * 1244 * If the card has only one lock, we just use that. 1245 * If the card has separate ring locks, we just use those 1246 * unless we are doing check_all, in which case the whole 1247 * loop is wrapped by the global lock. 1248 * We acquire locks only when necessary: if poll is called 1249 * when buffers are available, we can just return without locks. 1250 * 1251 * rxsync() is only called if we run out of buffers on a POLLIN. 1252 * txsync() is called if we run out of buffers on POLLOUT, or 1253 * there are pending packets to send. The latter can be disabled 1254 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1255 */ 1256 check_all = (i + 1 != priv->np_qlast); 1257 1258 /* 1259 * core_lock indicates what to do with the core lock. 1260 * The core lock is used when either the card has no individual 1261 * locks, or it has individual locks but we are cheking all 1262 * rings so we need the core lock to avoid missing wakeup events. 1263 * 1264 * It has three possible states: 1265 * NO_CL we don't need to use the core lock, e.g. 1266 * because we are protected by individual locks. 1267 * NEED_CL we need the core lock. In this case, when we 1268 * call the lock routine, move to LOCKED_CL 1269 * to remember to release the lock once done. 1270 * LOCKED_CL core lock is set, so we need to release it. 1271 */ 1272 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1273 /* 1274 * We start with a lock free round which is good if we have 1275 * data available. If this fails, then lock and call the sync 1276 * routines. 1277 */ 1278 for (i = priv->np_qfirst; want_rx && i < priv->np_qlast; i++) { 1279 kring = &na->rx_rings[i]; 1280 if (kring->ring->avail > 0) { 1281 revents |= want_rx; 1282 want_rx = 0; /* also breaks the loop */ 1283 } 1284 } 1285 for (i = priv->np_qfirst; want_tx && i < priv->np_qlast; i++) { 1286 kring = &na->tx_rings[i]; 1287 if (kring->ring->avail > 0) { 1288 revents |= want_tx; 1289 want_tx = 0; /* also breaks the loop */ 1290 } 1291 } 1292 1293 /* 1294 * If we to push packets out (priv->np_txpoll) or want_tx is 1295 * still set, we do need to run the txsync calls (on all rings, 1296 * to avoid that the tx rings stall). 1297 */ 1298 if (priv->np_txpoll || want_tx) { 1299 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1300 kring = &na->tx_rings[i]; 1301 /* 1302 * Skip the current ring if want_tx == 0 1303 * (we have already done a successful sync on 1304 * a previous ring) AND kring->cur == kring->hwcur 1305 * (there are no pending transmissions for this ring). 1306 */ 1307 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1308 continue; 1309 if (core_lock == NEED_CL) { 1310 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1311 core_lock = LOCKED_CL; 1312 } 1313 if (na->separate_locks) 1314 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 1315 if (netmap_verbose & NM_VERB_TXSYNC) 1316 D("send %d on %s %d", 1317 kring->ring->cur, 1318 ifp->if_xname, i); 1319 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 1320 revents |= POLLERR; 1321 1322 /* Check avail/call selrecord only if called with POLLOUT */ 1323 if (want_tx) { 1324 if (kring->ring->avail > 0) { 1325 /* stop at the first ring. We don't risk 1326 * starvation. 1327 */ 1328 revents |= want_tx; 1329 want_tx = 0; 1330 } else if (!check_all) 1331 selrecord(td, &kring->si); 1332 } 1333 if (na->separate_locks) 1334 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 1335 } 1336 } 1337 1338 /* 1339 * now if want_rx is still set we need to lock and rxsync. 1340 * Do it on all rings because otherwise we starve. 1341 */ 1342 if (want_rx) { 1343 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1344 kring = &na->rx_rings[i]; 1345 if (core_lock == NEED_CL) { 1346 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1347 core_lock = LOCKED_CL; 1348 } 1349 if (na->separate_locks) 1350 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 1351 1352 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 1353 revents |= POLLERR; 1354 if (netmap_no_timestamp == 0 || 1355 kring->ring->flags & NR_TIMESTAMP) { 1356 microtime(&kring->ring->ts); 1357 } 1358 1359 if (kring->ring->avail > 0) 1360 revents |= want_rx; 1361 else if (!check_all) 1362 selrecord(td, &kring->si); 1363 if (na->separate_locks) 1364 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 1365 } 1366 } 1367 if (check_all && revents == 0) { 1368 i = na->num_queues + 1; /* the global queue */ 1369 if (want_tx) 1370 selrecord(td, &na->tx_rings[i].si); 1371 if (want_rx) 1372 selrecord(td, &na->rx_rings[i].si); 1373 } 1374 if (core_lock == LOCKED_CL) 1375 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1376 1377 return (revents); 1378 } 1379 1380 /*------- driver support routines ------*/ 1381 1382 /* 1383 * default lock wrapper. 1384 */ 1385 static void 1386 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 1387 { 1388 struct netmap_adapter *na = NA(dev); 1389 1390 switch (what) { 1391 #ifdef linux /* some system do not need lock on register */ 1392 case NETMAP_REG_LOCK: 1393 case NETMAP_REG_UNLOCK: 1394 break; 1395 #endif /* linux */ 1396 1397 case NETMAP_CORE_LOCK: 1398 mtx_lock(&na->core_lock); 1399 break; 1400 1401 case NETMAP_CORE_UNLOCK: 1402 mtx_unlock(&na->core_lock); 1403 break; 1404 1405 case NETMAP_TX_LOCK: 1406 mtx_lock(&na->tx_rings[queueid].q_lock); 1407 break; 1408 1409 case NETMAP_TX_UNLOCK: 1410 mtx_unlock(&na->tx_rings[queueid].q_lock); 1411 break; 1412 1413 case NETMAP_RX_LOCK: 1414 mtx_lock(&na->rx_rings[queueid].q_lock); 1415 break; 1416 1417 case NETMAP_RX_UNLOCK: 1418 mtx_unlock(&na->rx_rings[queueid].q_lock); 1419 break; 1420 } 1421 } 1422 1423 1424 /* 1425 * Initialize a ``netmap_adapter`` object created by driver on attach. 1426 * We allocate a block of memory with room for a struct netmap_adapter 1427 * plus two sets of N+2 struct netmap_kring (where N is the number 1428 * of hardware rings): 1429 * krings 0..N-1 are for the hardware queues. 1430 * kring N is for the host stack queue 1431 * kring N+1 is only used for the selinfo for all queues. 1432 * Return 0 on success, ENOMEM otherwise. 1433 */ 1434 int 1435 netmap_attach(struct netmap_adapter *na, int num_queues) 1436 { 1437 int n = num_queues + 2; 1438 int size = sizeof(*na) + 2 * n * sizeof(struct netmap_kring); 1439 void *buf; 1440 struct ifnet *ifp = na->ifp; 1441 int i; 1442 1443 if (ifp == NULL) { 1444 D("ifp not set, giving up"); 1445 return EINVAL; 1446 } 1447 na->refcount = 0; 1448 na->num_queues = num_queues; 1449 1450 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1451 if (buf) { 1452 WNA(ifp) = buf; 1453 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1454 na->rx_rings = na->tx_rings + n; 1455 na->buff_size = NETMAP_BUF_SIZE; 1456 bcopy(na, buf, sizeof(*na)); 1457 ifp->if_capabilities |= IFCAP_NETMAP; 1458 1459 na = buf; 1460 if (na->nm_lock == NULL) 1461 na->nm_lock = netmap_lock_wrapper; 1462 mtx_init(&na->core_lock, "netmap core lock", NULL, MTX_DEF); 1463 for (i = 0 ; i < num_queues; i++) 1464 mtx_init(&na->tx_rings[i].q_lock, "netmap txq lock", NULL, MTX_DEF); 1465 for (i = 0 ; i < num_queues; i++) 1466 mtx_init(&na->rx_rings[i].q_lock, "netmap rxq lock", NULL, MTX_DEF); 1467 } 1468 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1469 1470 return (buf ? 0 : ENOMEM); 1471 } 1472 1473 1474 /* 1475 * Free the allocated memory linked to the given ``netmap_adapter`` 1476 * object. 1477 */ 1478 void 1479 netmap_detach(struct ifnet *ifp) 1480 { 1481 u_int i; 1482 struct netmap_adapter *na = NA(ifp); 1483 1484 if (!na) 1485 return; 1486 1487 for (i = 0; i < na->num_queues + 2; i++) { 1488 knlist_destroy(&na->tx_rings[i].si.si_note); 1489 knlist_destroy(&na->rx_rings[i].si.si_note); 1490 } 1491 bzero(na, sizeof(*na)); 1492 WNA(ifp) = NULL; 1493 free(na, M_DEVBUF); 1494 } 1495 1496 1497 /* 1498 * Intercept packets from the network stack and pass them 1499 * to netmap as incoming packets on the 'software' ring. 1500 * We are not locked when called. 1501 */ 1502 int 1503 netmap_start(struct ifnet *ifp, struct mbuf *m) 1504 { 1505 struct netmap_adapter *na = NA(ifp); 1506 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 1507 u_int i, len = MBUF_LEN(m); 1508 int error = EBUSY, lim = kring->nkr_num_slots - 1; 1509 struct netmap_slot *slot; 1510 1511 if (netmap_verbose & NM_VERB_HOST) 1512 D("%s packet %d len %d from the stack", ifp->if_xname, 1513 kring->nr_hwcur + kring->nr_hwavail, len); 1514 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1515 if (kring->nr_hwavail >= lim) { 1516 D("stack ring %s full\n", ifp->if_xname); 1517 goto done; /* no space */ 1518 } 1519 if (len > na->buff_size) { 1520 D("drop packet size %d > %d", len, na->buff_size); 1521 goto done; /* too long for us */ 1522 } 1523 1524 /* compute the insert position */ 1525 i = kring->nr_hwcur + kring->nr_hwavail; 1526 if (i > lim) 1527 i -= lim + 1; 1528 slot = &kring->ring->slot[i]; 1529 m_copydata(m, 0, len, NMB(slot)); 1530 slot->len = len; 1531 kring->nr_hwavail++; 1532 if (netmap_verbose & NM_VERB_HOST) 1533 D("wake up host ring %s %d", na->ifp->if_xname, na->num_queues); 1534 selwakeuppri(&kring->si, PI_NET); 1535 error = 0; 1536 done: 1537 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1538 1539 /* release the mbuf in either cases of success or failure. As an 1540 * alternative, put the mbuf in a free list and free the list 1541 * only when really necessary. 1542 */ 1543 m_freem(m); 1544 1545 return (error); 1546 } 1547 1548 1549 /* 1550 * netmap_reset() is called by the driver routines when reinitializing 1551 * a ring. The driver is in charge of locking to protect the kring. 1552 * If netmap mode is not set just return NULL. 1553 */ 1554 struct netmap_slot * 1555 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1556 u_int new_cur) 1557 { 1558 struct netmap_kring *kring; 1559 struct netmap_ring *ring; 1560 int new_hwofs, lim; 1561 1562 if (na == NULL) 1563 return NULL; /* no netmap support here */ 1564 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1565 return NULL; /* nothing to reinitialize */ 1566 kring = tx == NR_TX ? na->tx_rings + n : na->rx_rings + n; 1567 ring = kring->ring; 1568 lim = kring->nkr_num_slots - 1; 1569 1570 if (tx == NR_TX) 1571 new_hwofs = kring->nr_hwcur - new_cur; 1572 else 1573 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1574 if (new_hwofs > lim) 1575 new_hwofs -= lim + 1; 1576 1577 /* Alwayws set the new offset value and realign the ring. */ 1578 kring->nkr_hwofs = new_hwofs; 1579 if (tx == NR_TX) 1580 kring->nr_hwavail = kring->nkr_num_slots - 1; 1581 D("new hwofs %d on %s %s[%d]", 1582 kring->nkr_hwofs, na->ifp->if_xname, 1583 tx == NR_TX ? "TX" : "RX", n); 1584 1585 /* 1586 * We do the wakeup here, but the ring is not yet reconfigured. 1587 * However, we are under lock so there are no races. 1588 */ 1589 selwakeuppri(&kring->si, PI_NET); 1590 selwakeuppri(&kring[na->num_queues + 1 - n].si, PI_NET); 1591 return kring->ring->slot; 1592 } 1593 1594 1595 /* 1596 * Default functions to handle rx/tx interrupts 1597 * we have 4 cases: 1598 * 1 ring, single lock: 1599 * lock(core); wake(i=0); unlock(core) 1600 * N rings, single lock: 1601 * lock(core); wake(i); wake(N+1) unlock(core) 1602 * 1 ring, separate locks: (i=0) 1603 * lock(i); wake(i); unlock(i) 1604 * N rings, separate locks: 1605 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 1606 */ 1607 int 1608 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 1609 { 1610 struct netmap_adapter *na; 1611 struct netmap_kring *r; 1612 1613 if (!(ifp->if_capenable & IFCAP_NETMAP)) 1614 return 0; 1615 na = NA(ifp); 1616 r = work_done ? na->rx_rings : na->tx_rings; 1617 if (na->separate_locks) { 1618 mtx_lock(&r[q].q_lock); 1619 selwakeuppri(&r[q].si, PI_NET); 1620 mtx_unlock(&r[q].q_lock); 1621 if (na->num_queues > 1) { 1622 mtx_lock(&na->core_lock); 1623 selwakeuppri(&r[na->num_queues + 1].si, PI_NET); 1624 mtx_unlock(&na->core_lock); 1625 } 1626 } else { 1627 mtx_lock(&na->core_lock); 1628 selwakeuppri(&r[q].si, PI_NET); 1629 if (na->num_queues > 1) 1630 selwakeuppri(&r[na->num_queues + 1].si, PI_NET); 1631 mtx_unlock(&na->core_lock); 1632 } 1633 if (work_done) 1634 *work_done = 1; /* do not fire napi again */ 1635 return 1; 1636 } 1637 1638 static struct cdevsw netmap_cdevsw = { 1639 .d_version = D_VERSION, 1640 .d_name = "netmap", 1641 .d_mmap = netmap_mmap, 1642 .d_ioctl = netmap_ioctl, 1643 .d_poll = netmap_poll, 1644 }; 1645 1646 1647 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 1648 1649 1650 /* 1651 * Module loader. 1652 * 1653 * Create the /dev/netmap device and initialize all global 1654 * variables. 1655 * 1656 * Return 0 on success, errno on failure. 1657 */ 1658 static int 1659 netmap_init(void) 1660 { 1661 int error; 1662 1663 error = netmap_memory_init(); 1664 if (error != 0) { 1665 printf("netmap: unable to initialize the memory allocator."); 1666 return (error); 1667 } 1668 printf("netmap: loaded module with %d Mbytes\n", 1669 (int)(netmap_mem_d->nm_totalsize >> 20)); 1670 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 1671 "netmap"); 1672 return (error); 1673 } 1674 1675 1676 /* 1677 * Module unloader. 1678 * 1679 * Free all the memory, and destroy the ``/dev/netmap`` device. 1680 */ 1681 static void 1682 netmap_fini(void) 1683 { 1684 destroy_dev(netmap_dev); 1685 netmap_memory_fini(); 1686 printf("netmap: unloaded module.\n"); 1687 } 1688 1689 1690 /* 1691 * Kernel entry point. 1692 * 1693 * Initialize/finalize the module and return. 1694 * 1695 * Return 0 on success, errno on failure. 1696 */ 1697 static int 1698 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1699 { 1700 int error = 0; 1701 1702 switch (event) { 1703 case MOD_LOAD: 1704 error = netmap_init(); 1705 break; 1706 1707 case MOD_UNLOAD: 1708 netmap_fini(); 1709 break; 1710 1711 default: 1712 error = EOPNOTSUPP; 1713 break; 1714 } 1715 1716 return (error); 1717 } 1718 1719 1720 DEV_MODULE(netmap, netmap_loader, NULL); 1721