1 /* 2 * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * $FreeBSD$ 28 * $Id: netmap.c 9662 2011-11-16 13:18:06Z luigi $ 29 * 30 * This module supports memory mapped access to network devices, 31 * see netmap(4). 32 * 33 * The module uses a large, memory pool allocated by the kernel 34 * and accessible as mmapped memory by multiple userspace threads/processes. 35 * The memory pool contains packet buffers and "netmap rings", 36 * i.e. user-accessible copies of the interface's queues. 37 * 38 * Access to the network card works like this: 39 * 1. a process/thread issues one or more open() on /dev/netmap, to create 40 * select()able file descriptor on which events are reported. 41 * 2. on each descriptor, the process issues an ioctl() to identify 42 * the interface that should report events to the file descriptor. 43 * 3. on each descriptor, the process issues an mmap() request to 44 * map the shared memory region within the process' address space. 45 * The list of interesting queues is indicated by a location in 46 * the shared memory region. 47 * 4. using the functions in the netmap(4) userspace API, a process 48 * can look up the occupation state of a queue, access memory buffers, 49 * and retrieve received packets or enqueue packets to transmit. 50 * 5. using some ioctl()s the process can synchronize the userspace view 51 * of the queue with the actual status in the kernel. This includes both 52 * receiving the notification of new packets, and transmitting new 53 * packets on the output interface. 54 * 6. select() or poll() can be used to wait for events on individual 55 * transmit or receive queues (or all queues for a given interface). 56 */ 57 58 #include <sys/cdefs.h> /* prerequisite */ 59 __FBSDID("$FreeBSD$"); 60 61 #include <sys/types.h> 62 #include <sys/module.h> 63 #include <sys/errno.h> 64 #include <sys/param.h> /* defines used in kernel.h */ 65 #include <sys/kernel.h> /* types used in module initialization */ 66 #include <sys/conf.h> /* cdevsw struct */ 67 #include <sys/uio.h> /* uio struct */ 68 #include <sys/sockio.h> 69 #include <sys/socketvar.h> /* struct socket */ 70 #include <sys/malloc.h> 71 #include <sys/mman.h> /* PROT_EXEC */ 72 #include <sys/poll.h> 73 #include <vm/vm.h> /* vtophys */ 74 #include <vm/pmap.h> /* vtophys */ 75 #include <sys/socket.h> /* sockaddrs */ 76 #include <machine/bus.h> 77 #include <sys/selinfo.h> 78 #include <sys/sysctl.h> 79 #include <net/if.h> 80 #include <net/bpf.h> /* BIOCIMMEDIATE */ 81 #include <net/netmap.h> 82 #include <dev/netmap/netmap_kern.h> 83 #include <machine/bus.h> /* bus_dmamap_* */ 84 85 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 86 87 /* 88 * lock and unlock for the netmap memory allocator 89 */ 90 #define NMA_LOCK() mtx_lock(&netmap_mem_d->nm_mtx); 91 #define NMA_UNLOCK() mtx_unlock(&netmap_mem_d->nm_mtx); 92 93 /* 94 * Default amount of memory pre-allocated by the module. 95 * We start with a large size and then shrink our demand 96 * according to what is avalable when the module is loaded. 97 * At the moment the block is contiguous, but we can easily 98 * restrict our demand to smaller units (16..64k) 99 */ 100 #define NETMAP_MEMORY_SIZE (64 * 1024 * PAGE_SIZE) 101 static void * netmap_malloc(size_t size, const char *msg); 102 static void netmap_free(void *addr, const char *msg); 103 104 /* 105 * Allocator for a pool of packet buffers. For each buffer we have 106 * one entry in the bitmap to signal the state. Allocation scans 107 * the bitmap, but since this is done only on attach, we are not 108 * too worried about performance 109 * XXX if we need to allocate small blocks, a translation 110 * table is used both for kernel virtual address and physical 111 * addresses. 112 */ 113 struct netmap_buf_pool { 114 u_int total_buffers; /* total buffers. */ 115 u_int free; 116 u_int bufsize; 117 char *base; /* buffer base address */ 118 uint32_t *bitmap; /* one bit per buffer, 1 means free */ 119 }; 120 struct netmap_buf_pool nm_buf_pool; 121 /* XXX move these two vars back into netmap_buf_pool */ 122 u_int netmap_total_buffers; 123 char *netmap_buffer_base; 124 125 /* user-controlled variables */ 126 int netmap_verbose; 127 128 static int no_timestamp; /* don't timestamp on rxsync */ 129 130 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 131 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 132 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 133 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 134 CTLFLAG_RW, &no_timestamp, 0, "no_timestamp"); 135 SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers, 136 CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers"); 137 SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers, 138 CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers"); 139 140 /* 141 * Allocate n buffers from the ring, and fill the slot. 142 * Buffer 0 is the 'junk' buffer. 143 */ 144 static void 145 netmap_new_bufs(struct netmap_buf_pool *p, struct netmap_slot *slot, u_int n) 146 { 147 uint32_t bi = 0; /* index in the bitmap */ 148 uint32_t mask, j, i = 0; /* slot counter */ 149 150 if (n > p->free) { 151 D("only %d out of %d buffers available", i, n); 152 return; 153 } 154 /* termination is guaranteed by p->free */ 155 while (i < n && p->free > 0) { 156 uint32_t cur = p->bitmap[bi]; 157 if (cur == 0) { /* bitmask is fully used */ 158 bi++; 159 continue; 160 } 161 /* locate a slot */ 162 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ; 163 p->bitmap[bi] &= ~mask; /* slot in use */ 164 p->free--; 165 slot[i].buf_idx = bi*32+j; 166 slot[i].len = p->bufsize; 167 slot[i].flags = NS_BUF_CHANGED; 168 i++; 169 } 170 ND("allocated %d buffers, %d available", n, p->free); 171 } 172 173 174 static void 175 netmap_free_buf(struct netmap_buf_pool *p, uint32_t i) 176 { 177 uint32_t pos, mask; 178 if (i >= p->total_buffers) { 179 D("invalid free index %d", i); 180 return; 181 } 182 pos = i / 32; 183 mask = 1 << (i % 32); 184 if (p->bitmap[pos] & mask) { 185 D("slot %d already free", i); 186 return; 187 } 188 p->bitmap[pos] |= mask; 189 p->free++; 190 } 191 192 193 /* Descriptor of the memory objects handled by our memory allocator. */ 194 struct netmap_mem_obj { 195 TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the 196 chain. */ 197 int nmo_used; /* flag set on used memory objects. */ 198 size_t nmo_size; /* size of the memory area reserved for the 199 object. */ 200 void *nmo_data; /* pointer to the memory area. */ 201 }; 202 203 /* Wrap our memory objects to make them ``chainable``. */ 204 TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj); 205 206 207 /* Descriptor of our custom memory allocator. */ 208 struct netmap_mem_d { 209 struct mtx nm_mtx; /* lock used to handle the chain of memory 210 objects. */ 211 struct netmap_mem_obj_h nm_molist; /* list of memory objects */ 212 size_t nm_size; /* total amount of memory used for rings etc. */ 213 size_t nm_totalsize; /* total amount of allocated memory 214 (the difference is used for buffers) */ 215 size_t nm_buf_start; /* offset of packet buffers. 216 This is page-aligned. */ 217 size_t nm_buf_len; /* total memory for buffers */ 218 void *nm_buffer; /* pointer to the whole pre-allocated memory 219 area. */ 220 }; 221 222 223 /* Structure associated to each thread which registered an interface. */ 224 struct netmap_priv_d { 225 struct netmap_if *np_nifp; /* netmap interface descriptor. */ 226 227 struct ifnet *np_ifp; /* device for which we hold a reference */ 228 int np_ringid; /* from the ioctl */ 229 u_int np_qfirst, np_qlast; /* range of rings to scan */ 230 uint16_t np_txpoll; 231 }; 232 233 234 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 235 static struct netmap_mem_d *netmap_mem_d; /* Our memory allocator. */ 236 237 238 static d_mmap_t netmap_mmap; 239 static d_ioctl_t netmap_ioctl; 240 static d_poll_t netmap_poll; 241 242 #ifdef NETMAP_KEVENT 243 static d_kqfilter_t netmap_kqfilter; 244 #endif 245 246 static struct cdevsw netmap_cdevsw = { 247 .d_version = D_VERSION, 248 .d_name = "netmap", 249 .d_mmap = netmap_mmap, 250 .d_ioctl = netmap_ioctl, 251 .d_poll = netmap_poll, 252 #ifdef NETMAP_KEVENT 253 .d_kqfilter = netmap_kqfilter, 254 #endif 255 }; 256 257 #ifdef NETMAP_KEVENT 258 static int netmap_kqread(struct knote *, long); 259 static int netmap_kqwrite(struct knote *, long); 260 static void netmap_kqdetach(struct knote *); 261 262 static struct filterops netmap_read_filterops = { 263 .f_isfd = 1, 264 .f_attach = NULL, 265 .f_detach = netmap_kqdetach, 266 .f_event = netmap_kqread, 267 }; 268 269 static struct filterops netmap_write_filterops = { 270 .f_isfd = 1, 271 .f_attach = NULL, 272 .f_detach = netmap_kqdetach, 273 .f_event = netmap_kqwrite, 274 }; 275 276 /* 277 * support for the kevent() system call. 278 * 279 * This is the kevent filter, and is executed each time a new event 280 * is triggered on the device. This function execute some operation 281 * depending on the received filter. 282 * 283 * The implementation should test the filters and should implement 284 * filter operations we are interested on (a full list in /sys/event.h). 285 * 286 * On a match we should: 287 * - set kn->kn_fop 288 * - set kn->kn_hook 289 * - call knlist_add() to deliver the event to the application. 290 * 291 * Return 0 if the event should be delivered to the application. 292 */ 293 static int 294 netmap_kqfilter(struct cdev *dev, struct knote *kn) 295 { 296 /* declare variables needed to read/write */ 297 298 switch(kn->kn_filter) { 299 case EVFILT_READ: 300 if (netmap_verbose) 301 D("%s kqfilter: EVFILT_READ" ifp->if_xname); 302 303 /* read operations */ 304 kn->kn_fop = &netmap_read_filterops; 305 break; 306 307 case EVFILT_WRITE: 308 if (netmap_verbose) 309 D("%s kqfilter: EVFILT_WRITE" ifp->if_xname); 310 311 /* write operations */ 312 kn->kn_fop = &netmap_write_filterops; 313 break; 314 315 default: 316 if (netmap_verbose) 317 D("%s kqfilter: invalid filter" ifp->if_xname); 318 return(EINVAL); 319 } 320 321 kn->kn_hook = 0;// 322 knlist_add(&netmap_sc->tun_rsel.si_note, kn, 0); 323 324 return (0); 325 } 326 #endif /* NETMAP_KEVENT */ 327 328 /* 329 * File descriptor's private data destructor. 330 * 331 * Call nm_register(ifp,0) to stop netmap mode on the interface and 332 * revert to normal operation. We expect that np_ifp has not gone. 333 */ 334 static void 335 netmap_dtor(void *data) 336 { 337 struct netmap_priv_d *priv = data; 338 struct ifnet *ifp = priv->np_ifp; 339 struct netmap_adapter *na = NA(ifp); 340 struct netmap_if *nifp = priv->np_nifp; 341 342 if (0) 343 printf("%s starting for %p ifp %p\n", __FUNCTION__, priv, 344 priv ? priv->np_ifp : NULL); 345 346 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 347 348 na->refcount--; 349 if (na->refcount <= 0) { /* last instance */ 350 u_int i; 351 352 D("deleting last netmap instance for %s", ifp->if_xname); 353 /* 354 * there is a race here with *_netmap_task() and 355 * netmap_poll(), which don't run under NETMAP_CORE_LOCK. 356 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 357 * (aka NETMAP_DELETING(na)) are a unique marker that the 358 * device is dying. 359 * Before destroying stuff we sleep a bit, and then complete 360 * the job. NIOCREG should realize the condition and 361 * loop until they can continue; the other routines 362 * should check the condition at entry and quit if 363 * they cannot run. 364 */ 365 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 366 tsleep(na, 0, "NIOCUNREG", 4); 367 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 368 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 369 /* Wake up any sleeping threads. netmap_poll will 370 * then return POLLERR 371 */ 372 for (i = 0; i < na->num_queues + 2; i++) { 373 selwakeuppri(&na->tx_rings[i].si, PI_NET); 374 selwakeuppri(&na->rx_rings[i].si, PI_NET); 375 } 376 /* release all buffers */ 377 NMA_LOCK(); 378 for (i = 0; i < na->num_queues + 1; i++) { 379 int j, lim; 380 struct netmap_ring *ring; 381 382 ND("tx queue %d", i); 383 ring = na->tx_rings[i].ring; 384 lim = na->tx_rings[i].nkr_num_slots; 385 for (j = 0; j < lim; j++) 386 netmap_free_buf(&nm_buf_pool, 387 ring->slot[j].buf_idx); 388 389 ND("rx queue %d", i); 390 ring = na->rx_rings[i].ring; 391 lim = na->rx_rings[i].nkr_num_slots; 392 for (j = 0; j < lim; j++) 393 netmap_free_buf(&nm_buf_pool, 394 ring->slot[j].buf_idx); 395 } 396 NMA_UNLOCK(); 397 netmap_free(na->tx_rings[0].ring, "shadow rings"); 398 wakeup(na); 399 } 400 netmap_free(nifp, "nifp"); 401 402 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 403 404 if_rele(ifp); 405 406 bzero(priv, sizeof(*priv)); /* XXX for safety */ 407 free(priv, M_DEVBUF); 408 } 409 410 411 412 /* 413 * Create and return a new ``netmap_if`` object, and possibly also 414 * rings and packet buffors. 415 * 416 * Return NULL on failure. 417 */ 418 static void * 419 netmap_if_new(const char *ifname, struct netmap_adapter *na) 420 { 421 struct netmap_if *nifp; 422 struct netmap_ring *ring; 423 char *buff; 424 u_int i, len, ofs; 425 u_int n = na->num_queues + 1; /* shorthand, include stack queue */ 426 427 /* 428 * the descriptor is followed inline by an array of offsets 429 * to the tx and rx rings in the shared memory region. 430 */ 431 len = sizeof(struct netmap_if) + 2 * n * sizeof(ssize_t); 432 nifp = netmap_malloc(len, "nifp"); 433 if (nifp == NULL) 434 return (NULL); 435 436 /* initialize base fields */ 437 *(int *)(uintptr_t)&nifp->ni_num_queues = na->num_queues; 438 strncpy(nifp->ni_name, ifname, IFNAMSIZ); 439 440 (na->refcount)++; /* XXX atomic ? we are under lock */ 441 if (na->refcount > 1) 442 goto final; 443 444 /* 445 * If this is the first instance, allocate the shadow rings and 446 * buffers for this card (one for each hw queue, one for the host). 447 * The rings are contiguous, but have variable size. 448 * The entire block is reachable at 449 * na->tx_rings[0].ring 450 */ 451 452 len = n * (2 * sizeof(struct netmap_ring) + 453 (na->num_tx_desc + na->num_rx_desc) * 454 sizeof(struct netmap_slot) ); 455 buff = netmap_malloc(len, "shadow rings"); 456 if (buff == NULL) { 457 D("failed to allocate %d bytes for %s shadow ring", 458 len, ifname); 459 error: 460 (na->refcount)--; 461 netmap_free(nifp, "nifp, rings failed"); 462 return (NULL); 463 } 464 /* do we have the bufers ? we are in need of num_tx_desc buffers for 465 * each tx ring and num_tx_desc buffers for each rx ring. */ 466 len = n * (na->num_tx_desc + na->num_rx_desc); 467 NMA_LOCK(); 468 if (nm_buf_pool.free < len) { 469 NMA_UNLOCK(); 470 netmap_free(buff, "not enough bufs"); 471 goto error; 472 } 473 /* 474 * in the kring, store the pointers to the shared rings 475 * and initialize the rings. We are under NMA_LOCK(). 476 */ 477 ofs = 0; 478 for (i = 0; i < n; i++) { 479 struct netmap_kring *kring; 480 int numdesc; 481 482 /* Transmit rings */ 483 kring = &na->tx_rings[i]; 484 numdesc = na->num_tx_desc; 485 bzero(kring, sizeof(*kring)); 486 kring->na = na; 487 488 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 489 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 490 nm_buf_pool.base - (char *)ring; 491 ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs); 492 *(int *)(int *)(uintptr_t)&ring->num_slots = 493 kring->nkr_num_slots = numdesc; 494 495 /* 496 * IMPORTANT: 497 * Always keep one slot empty, so we can detect new 498 * transmissions comparing cur and nr_hwcur (they are 499 * the same only if there are no new transmissions). 500 */ 501 ring->avail = kring->nr_hwavail = numdesc - 1; 502 ring->cur = kring->nr_hwcur = 0; 503 netmap_new_bufs(&nm_buf_pool, ring->slot, numdesc); 504 505 ofs += sizeof(struct netmap_ring) + 506 numdesc * sizeof(struct netmap_slot); 507 508 /* Receive rings */ 509 kring = &na->rx_rings[i]; 510 numdesc = na->num_rx_desc; 511 bzero(kring, sizeof(*kring)); 512 kring->na = na; 513 514 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 515 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 516 nm_buf_pool.base - (char *)ring; 517 ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs); 518 *(int *)(int *)(uintptr_t)&ring->num_slots = 519 kring->nkr_num_slots = numdesc; 520 ring->cur = kring->nr_hwcur = 0; 521 ring->avail = kring->nr_hwavail = 0; /* empty */ 522 netmap_new_bufs(&nm_buf_pool, ring->slot, numdesc); 523 ofs += sizeof(struct netmap_ring) + 524 numdesc * sizeof(struct netmap_slot); 525 } 526 NMA_UNLOCK(); 527 for (i = 0; i < n+1; i++) { 528 // XXX initialize the selrecord structs. 529 } 530 final: 531 /* 532 * fill the slots for the rx and tx queues. They contain the offset 533 * between the ring and nifp, so the information is usable in 534 * userspace to reach the ring from the nifp. 535 */ 536 for (i = 0; i < n; i++) { 537 char *base = (char *)nifp; 538 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = 539 (char *)na->tx_rings[i].ring - base; 540 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n] = 541 (char *)na->rx_rings[i].ring - base; 542 } 543 return (nifp); 544 } 545 546 547 /* 548 * mmap(2) support for the "netmap" device. 549 * 550 * Expose all the memory previously allocated by our custom memory 551 * allocator: this way the user has only to issue a single mmap(2), and 552 * can work on all the data structures flawlessly. 553 * 554 * Return 0 on success, -1 otherwise. 555 */ 556 static int 557 #if __FreeBSD_version < 900000 558 netmap_mmap(__unused struct cdev *dev, vm_offset_t offset, vm_paddr_t *paddr, 559 int nprot) 560 #else 561 netmap_mmap(__unused struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr, 562 int nprot, __unused vm_memattr_t *memattr) 563 #endif 564 { 565 if (nprot & PROT_EXEC) 566 return (-1); // XXX -1 or EINVAL ? 567 ND("request for offset 0x%x", (uint32_t)offset); 568 *paddr = vtophys(netmap_mem_d->nm_buffer) + offset; 569 570 return (0); 571 } 572 573 574 /* 575 * handler for synchronization of the queues from/to the host 576 */ 577 static void 578 netmap_sync_to_host(struct netmap_adapter *na) 579 { 580 struct netmap_kring *kring = &na->tx_rings[na->num_queues]; 581 struct netmap_ring *ring = kring->ring; 582 struct mbuf *head = NULL, *tail = NULL, *m; 583 u_int n, lim = kring->nkr_num_slots - 1; 584 585 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 586 587 /* Take packets from hwcur to cur and pass them up. 588 * In case of no buffers we give up. At the end of the loop, 589 * the queue is drained in all cases. 590 */ 591 for (n = kring->nr_hwcur; n != ring->cur;) { 592 struct netmap_slot *slot = &ring->slot[n]; 593 594 n = (n == lim) ? 0 : n + 1; 595 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 596 D("bad pkt at %d len %d", n, slot->len); 597 continue; 598 } 599 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 600 601 if (m == NULL) 602 break; 603 if (tail) 604 tail->m_nextpkt = m; 605 else 606 head = m; 607 tail = m; 608 m->m_nextpkt = NULL; 609 } 610 kring->nr_hwcur = ring->cur; 611 kring->nr_hwavail = ring->avail = lim; 612 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 613 614 /* send packets up, outside the lock */ 615 while ((m = head) != NULL) { 616 head = head->m_nextpkt; 617 m->m_nextpkt = NULL; 618 m->m_pkthdr.rcvif = na->ifp; 619 if (netmap_verbose & NM_VERB_HOST) 620 D("sending up pkt %p size %d", m, m->m_pkthdr.len); 621 (na->ifp->if_input)(na->ifp, m); 622 } 623 } 624 625 /* 626 * This routine also does the selrecord if called from the poll handler 627 * (we know because td != NULL). 628 */ 629 static void 630 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) 631 { 632 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 633 struct netmap_ring *ring = kring->ring; 634 int delta; 635 636 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 637 638 /* skip past packets processed by userspace, 639 * and then sync cur/avail with hwcur/hwavail 640 */ 641 delta = ring->cur - kring->nr_hwcur; 642 if (delta < 0) 643 delta += kring->nkr_num_slots; 644 kring->nr_hwavail -= delta; 645 kring->nr_hwcur = ring->cur; 646 ring->avail = kring->nr_hwavail; 647 if (ring->avail == 0 && td) 648 selrecord(td, &kring->si); 649 if (ring->avail && (netmap_verbose & NM_VERB_HOST)) 650 D("%d pkts from stack", ring->avail); 651 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 652 } 653 654 655 /* 656 * get a refcounted reference to an interface. 657 * Return ENXIO if the interface does not exist, EINVAL if netmap 658 * is not supported by the interface. 659 * If successful, hold a reference. 660 */ 661 static int 662 get_ifp(const char *name, struct ifnet **ifp) 663 { 664 *ifp = ifunit_ref(name); 665 if (*ifp == NULL) 666 return (ENXIO); 667 /* can do this if the capability exists and if_pspare[0] 668 * points to the netmap descriptor. 669 */ 670 if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) 671 return 0; /* valid pointer, we hold the refcount */ 672 if_rele(*ifp); 673 return EINVAL; // not NETMAP capable 674 } 675 676 677 /* 678 * Error routine called when txsync/rxsync detects an error. 679 * Can't do much more than resetting cur = hwcur, avail = hwavail. 680 * Return 1 on reinit. 681 */ 682 int 683 netmap_ring_reinit(struct netmap_kring *kring) 684 { 685 struct netmap_ring *ring = kring->ring; 686 u_int i, lim = kring->nkr_num_slots - 1; 687 int errors = 0; 688 689 D("called for %s", kring->na->ifp->if_xname); 690 if (ring->cur > lim) 691 errors++; 692 for (i = 0; i <= lim; i++) { 693 u_int idx = ring->slot[i].buf_idx; 694 u_int len = ring->slot[i].len; 695 if (idx < 2 || idx >= netmap_total_buffers) { 696 if (!errors++) 697 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 698 ring->slot[i].buf_idx = 0; 699 ring->slot[i].len = 0; 700 } else if (len > NETMAP_BUF_SIZE) { 701 ring->slot[i].len = 0; 702 if (!errors++) 703 D("bad len %d at slot %d idx %d", 704 len, i, idx); 705 } 706 } 707 if (errors) { 708 int pos = kring - kring->na->tx_rings; 709 int n = kring->na->num_queues + 2; 710 711 D("total %d errors", errors); 712 errors++; 713 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 714 kring->na->ifp->if_xname, 715 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 716 ring->cur, kring->nr_hwcur, 717 ring->avail, kring->nr_hwavail); 718 ring->cur = kring->nr_hwcur; 719 ring->avail = kring->nr_hwavail; 720 ring->flags |= NR_REINIT; 721 kring->na->flags |= NR_REINIT; 722 } 723 return (errors ? 1 : 0); 724 } 725 726 /* 727 * Clean the reinit flag for our rings. 728 * XXX at the moment, clear for all rings 729 */ 730 static void 731 netmap_clean_reinit(struct netmap_adapter *na) 732 { 733 //struct netmap_kring *kring; 734 u_int i; 735 736 na->flags &= ~NR_REINIT; 737 D("--- NR_REINIT reset on %s", na->ifp->if_xname); 738 for (i = 0; i < na->num_queues + 1; i++) { 739 na->tx_rings[i].ring->flags &= ~NR_REINIT; 740 na->rx_rings[i].ring->flags &= ~NR_REINIT; 741 } 742 } 743 744 /* 745 * Set the ring ID. For devices with a single queue, a request 746 * for all rings is the same as a single ring. 747 */ 748 static int 749 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 750 { 751 struct ifnet *ifp = priv->np_ifp; 752 struct netmap_adapter *na = NA(ifp); 753 void *adapter = na->ifp->if_softc; /* shorthand */ 754 u_int i = ringid & NETMAP_RING_MASK; 755 /* first time we don't lock */ 756 int need_lock = (priv->np_qfirst != priv->np_qlast); 757 758 if ( (ringid & NETMAP_HW_RING) && i >= na->num_queues) { 759 D("invalid ring id %d", i); 760 return (EINVAL); 761 } 762 if (need_lock) 763 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 764 priv->np_ringid = ringid; 765 if (ringid & NETMAP_SW_RING) { 766 priv->np_qfirst = na->num_queues; 767 priv->np_qlast = na->num_queues + 1; 768 } else if (ringid & NETMAP_HW_RING) { 769 priv->np_qfirst = i; 770 priv->np_qlast = i + 1; 771 } else { 772 priv->np_qfirst = 0; 773 priv->np_qlast = na->num_queues; 774 } 775 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 776 if (need_lock) 777 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 778 if (ringid & NETMAP_SW_RING) 779 D("ringid %s set to SW RING", ifp->if_xname); 780 else if (ringid & NETMAP_HW_RING) 781 D("ringid %s set to HW RING %d", ifp->if_xname, 782 priv->np_qfirst); 783 else 784 D("ringid %s set to all %d HW RINGS", ifp->if_xname, 785 priv->np_qlast); 786 return 0; 787 } 788 789 /* 790 * ioctl(2) support for the "netmap" device. 791 * 792 * Following a list of accepted commands: 793 * - NIOCGINFO 794 * - SIOCGIFADDR just for convenience 795 * - NIOCREGIF 796 * - NIOCUNREGIF 797 * - NIOCTXSYNC 798 * - NIOCRXSYNC 799 * 800 * Return 0 on success, errno otherwise. 801 */ 802 static int 803 netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, 804 __unused int fflag, __unused struct thread *td) 805 { 806 struct netmap_priv_d *priv = NULL; 807 struct ifnet *ifp; 808 struct nmreq *nmr = (struct nmreq *) data; 809 struct netmap_adapter *na; 810 void *adapter; 811 int error; 812 u_int i; 813 struct netmap_if *nifp; 814 815 error = devfs_get_cdevpriv((void **)&priv); 816 if (error != ENOENT && error != 0) 817 return (error); 818 819 error = 0; /* Could be ENOENT */ 820 switch (cmd) { 821 case NIOCGINFO: /* return capabilities etc */ 822 /* memsize is always valid */ 823 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 824 nmr->nr_offset = 0; 825 nmr->nr_numrings = 0; 826 nmr->nr_numslots = 0; 827 if (nmr->nr_name[0] == '\0') /* just get memory info */ 828 break; 829 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 830 if (error) 831 break; 832 na = NA(ifp); /* retrieve netmap_adapter */ 833 nmr->nr_numrings = na->num_queues; 834 nmr->nr_numslots = na->num_tx_desc; 835 if_rele(ifp); /* return the refcount */ 836 break; 837 838 case NIOCREGIF: 839 if (priv != NULL) /* thread already registered */ 840 return netmap_set_ringid(priv, nmr->nr_ringid); 841 /* find the interface and a reference */ 842 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 843 if (error) 844 break; 845 na = NA(ifp); /* retrieve netmap adapter */ 846 adapter = na->ifp->if_softc; /* shorthand */ 847 /* 848 * Allocate the private per-thread structure. 849 * XXX perhaps we can use a blocking malloc ? 850 */ 851 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 852 M_NOWAIT | M_ZERO); 853 if (priv == NULL) { 854 error = ENOMEM; 855 if_rele(ifp); /* return the refcount */ 856 break; 857 } 858 859 860 for (i = 10; i > 0; i--) { 861 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 862 if (!NETMAP_DELETING(na)) 863 break; 864 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 865 tsleep(na, 0, "NIOCREGIF", hz/10); 866 } 867 if (i == 0) { 868 D("too many NIOCREGIF attempts, give up"); 869 error = EINVAL; 870 free(priv, M_DEVBUF); 871 if_rele(ifp); /* return the refcount */ 872 break; 873 } 874 875 priv->np_ifp = ifp; /* store the reference */ 876 error = netmap_set_ringid(priv, nmr->nr_ringid); 877 if (error) 878 goto error; 879 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); 880 if (nifp == NULL) { /* allocation failed */ 881 error = ENOMEM; 882 } else if (ifp->if_capenable & IFCAP_NETMAP) { 883 /* was already set */ 884 } else { 885 /* Otherwise set the card in netmap mode 886 * and make it use the shared buffers. 887 */ 888 error = na->nm_register(ifp, 1); /* mode on */ 889 if (error) { 890 /* 891 * do something similar to netmap_dtor(). 892 */ 893 netmap_free(na->tx_rings[0].ring, "rings, reg.failed"); 894 free(na->tx_rings, M_DEVBUF); 895 na->tx_rings = na->rx_rings = NULL; 896 na->refcount--; 897 netmap_free(nifp, "nifp, rings failed"); 898 nifp = NULL; 899 } 900 } 901 902 if (error) { /* reg. failed, release priv and ref */ 903 error: 904 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 905 free(priv, M_DEVBUF); 906 if_rele(ifp); /* return the refcount */ 907 break; 908 } 909 910 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 911 error = devfs_set_cdevpriv(priv, netmap_dtor); 912 913 if (error != 0) { 914 /* could not assign the private storage for the 915 * thread, call the destructor explicitly. 916 */ 917 netmap_dtor(priv); 918 break; 919 } 920 921 /* return the offset of the netmap_if object */ 922 nmr->nr_numrings = na->num_queues; 923 nmr->nr_numslots = na->num_tx_desc; 924 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 925 nmr->nr_offset = 926 ((char *) nifp - (char *) netmap_mem_d->nm_buffer); 927 break; 928 929 case NIOCUNREGIF: 930 if (priv == NULL) 931 return (ENXIO); 932 933 /* the interface is unregistered inside the 934 destructor of the private data. */ 935 devfs_clear_cdevpriv(); 936 break; 937 938 case NIOCTXSYNC: 939 case NIOCRXSYNC: 940 if (priv == NULL) 941 return (ENXIO); 942 ifp = priv->np_ifp; /* we have a reference */ 943 na = NA(ifp); /* retrieve netmap adapter */ 944 adapter = ifp->if_softc; /* shorthand */ 945 946 if (na->flags & NR_REINIT) 947 netmap_clean_reinit(na); 948 949 if (priv->np_qfirst == na->num_queues) { 950 /* queues to/from host */ 951 if (cmd == NIOCTXSYNC) 952 netmap_sync_to_host(na); 953 else 954 netmap_sync_from_host(na, NULL); 955 return error; 956 } 957 958 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 959 if (cmd == NIOCTXSYNC) { 960 struct netmap_kring *kring = &na->tx_rings[i]; 961 if (netmap_verbose & NM_VERB_TXSYNC) 962 D("sync tx ring %d cur %d hwcur %d", 963 i, kring->ring->cur, 964 kring->nr_hwcur); 965 na->nm_txsync(adapter, i, 1 /* do lock */); 966 if (netmap_verbose & NM_VERB_TXSYNC) 967 D("after sync tx ring %d cur %d hwcur %d", 968 i, kring->ring->cur, 969 kring->nr_hwcur); 970 } else { 971 na->nm_rxsync(adapter, i, 1 /* do lock */); 972 microtime(&na->rx_rings[i].ring->ts); 973 } 974 } 975 976 break; 977 978 case BIOCIMMEDIATE: 979 case BIOCGHDRCMPLT: 980 case BIOCSHDRCMPLT: 981 case BIOCSSEESENT: 982 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 983 break; 984 985 default: 986 { 987 /* 988 * allow device calls 989 */ 990 struct socket so; 991 bzero(&so, sizeof(so)); 992 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 993 if (error) 994 break; 995 so.so_vnet = ifp->if_vnet; 996 // so->so_proto not null. 997 error = ifioctl(&so, cmd, data, td); 998 if_rele(ifp); 999 } 1000 } 1001 1002 return (error); 1003 } 1004 1005 1006 /* 1007 * select(2) and poll(2) handlers for the "netmap" device. 1008 * 1009 * Can be called for one or more queues. 1010 * Return true the event mask corresponding to ready events. 1011 * If there are no ready events, do a selrecord on either individual 1012 * selfd or on the global one. 1013 * Device-dependent parts (locking and sync of tx/rx rings) 1014 * are done through callbacks. 1015 */ 1016 static int 1017 netmap_poll(__unused struct cdev *dev, int events, struct thread *td) 1018 { 1019 struct netmap_priv_d *priv = NULL; 1020 struct netmap_adapter *na; 1021 struct ifnet *ifp; 1022 struct netmap_kring *kring; 1023 u_int i, check_all, want_tx, want_rx, revents = 0; 1024 void *adapter; 1025 1026 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1027 return POLLERR; 1028 1029 ifp = priv->np_ifp; 1030 // XXX check for deleting() ? 1031 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1032 return POLLERR; 1033 1034 if (netmap_verbose & 0x8000) 1035 D("device %s events 0x%x", ifp->if_xname, events); 1036 want_tx = events & (POLLOUT | POLLWRNORM); 1037 want_rx = events & (POLLIN | POLLRDNORM); 1038 1039 adapter = ifp->if_softc; 1040 na = NA(ifp); /* retrieve netmap adapter */ 1041 1042 /* pending reinit, report up as a poll error. Pending 1043 * reads and writes are lost. 1044 */ 1045 if (na->flags & NR_REINIT) { 1046 netmap_clean_reinit(na); 1047 revents |= POLLERR; 1048 } 1049 /* how many queues we are scanning */ 1050 i = priv->np_qfirst; 1051 if (i == na->num_queues) { /* from/to host */ 1052 if (priv->np_txpoll || want_tx) { 1053 /* push any packets up, then we are always ready */ 1054 kring = &na->tx_rings[i]; 1055 netmap_sync_to_host(na); 1056 revents |= want_tx; 1057 } 1058 if (want_rx) { 1059 kring = &na->rx_rings[i]; 1060 if (kring->ring->avail == 0) 1061 netmap_sync_from_host(na, td); 1062 if (kring->ring->avail > 0) { 1063 revents |= want_rx; 1064 } 1065 } 1066 return (revents); 1067 } 1068 1069 /* 1070 * check_all is set if the card has more than one queue and 1071 * the client is polling all of them. If true, we sleep on 1072 * the "global" selfd, otherwise we sleep on individual selfd 1073 * (we can only sleep on one of them per direction). 1074 * The interrupt routine in the driver should always wake on 1075 * the individual selfd, and also on the global one if the card 1076 * has more than one ring. 1077 * 1078 * If the card has only one lock, we just use that. 1079 * If the card has separate ring locks, we just use those 1080 * unless we are doing check_all, in which case the whole 1081 * loop is wrapped by the global lock. 1082 * We acquire locks only when necessary: if poll is called 1083 * when buffers are available, we can just return without locks. 1084 * 1085 * rxsync() is only called if we run out of buffers on a POLLIN. 1086 * txsync() is called if we run out of buffers on POLLOUT, or 1087 * there are pending packets to send. The latter can be disabled 1088 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1089 */ 1090 check_all = (i + 1 != priv->np_qlast); 1091 1092 /* 1093 * core_lock indicates what to do with the core lock. 1094 * The core lock is used when either the card has no individual 1095 * locks, or it has individual locks but we are cheking all 1096 * rings so we need the core lock to avoid missing wakeup events. 1097 * 1098 * It has three possible states: 1099 * NO_CL we don't need to use the core lock, e.g. 1100 * because we are protected by individual locks. 1101 * NEED_CL we need the core lock. In this case, when we 1102 * call the lock routine, move to LOCKED_CL 1103 * to remember to release the lock once done. 1104 * LOCKED_CL core lock is set, so we need to release it. 1105 */ 1106 enum {NO_CL, NEED_CL, LOCKED_CL }; 1107 int core_lock = (check_all || !na->separate_locks) ? 1108 NEED_CL:NO_CL; 1109 /* 1110 * We start with a lock free round which is good if we have 1111 * data available. If this fails, then lock and call the sync 1112 * routines. 1113 */ 1114 for (i = priv->np_qfirst; want_rx && i < priv->np_qlast; i++) { 1115 kring = &na->rx_rings[i]; 1116 if (kring->ring->avail > 0) { 1117 revents |= want_rx; 1118 want_rx = 0; /* also breaks the loop */ 1119 } 1120 } 1121 for (i = priv->np_qfirst; want_tx && i < priv->np_qlast; i++) { 1122 kring = &na->tx_rings[i]; 1123 if (kring->ring->avail > 0) { 1124 revents |= want_tx; 1125 want_tx = 0; /* also breaks the loop */ 1126 } 1127 } 1128 1129 /* 1130 * If we to push packets out (priv->np_txpoll) or want_tx is 1131 * still set, we do need to run the txsync calls (on all rings, 1132 * to avoid that the tx rings stall). 1133 */ 1134 if (priv->np_txpoll || want_tx) { 1135 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1136 kring = &na->tx_rings[i]; 1137 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1138 continue; 1139 if (core_lock == NEED_CL) { 1140 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1141 core_lock = LOCKED_CL; 1142 } 1143 if (na->separate_locks) 1144 na->nm_lock(adapter, NETMAP_TX_LOCK, i); 1145 if (netmap_verbose & NM_VERB_TXSYNC) 1146 D("send %d on %s %d", 1147 kring->ring->cur, 1148 ifp->if_xname, i); 1149 if (na->nm_txsync(adapter, i, 0 /* no lock */)) 1150 revents |= POLLERR; 1151 1152 if (want_tx) { 1153 if (kring->ring->avail > 0) { 1154 /* stop at the first ring. We don't risk 1155 * starvation. 1156 */ 1157 revents |= want_tx; 1158 want_tx = 0; 1159 } else if (!check_all) 1160 selrecord(td, &kring->si); 1161 } 1162 if (na->separate_locks) 1163 na->nm_lock(adapter, NETMAP_TX_UNLOCK, i); 1164 } 1165 } 1166 1167 /* 1168 * now if want_rx is still set we need to lock and rxsync. 1169 * Do it on all rings because otherwise we starve. 1170 */ 1171 if (want_rx) { 1172 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1173 kring = &na->rx_rings[i]; 1174 if (core_lock == NEED_CL) { 1175 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1176 core_lock = LOCKED_CL; 1177 } 1178 if (na->separate_locks) 1179 na->nm_lock(adapter, NETMAP_RX_LOCK, i); 1180 1181 if (na->nm_rxsync(adapter, i, 0 /* no lock */)) 1182 revents |= POLLERR; 1183 if (no_timestamp == 0 || 1184 kring->ring->flags & NR_TIMESTAMP) 1185 microtime(&kring->ring->ts); 1186 1187 if (kring->ring->avail > 0) 1188 revents |= want_rx; 1189 else if (!check_all) 1190 selrecord(td, &kring->si); 1191 if (na->separate_locks) 1192 na->nm_lock(adapter, NETMAP_RX_UNLOCK, i); 1193 } 1194 } 1195 if (check_all && revents == 0) { 1196 i = na->num_queues + 1; /* the global queue */ 1197 if (want_tx) 1198 selrecord(td, &na->tx_rings[i].si); 1199 if (want_rx) 1200 selrecord(td, &na->rx_rings[i].si); 1201 } 1202 if (core_lock == LOCKED_CL) 1203 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 1204 1205 return (revents); 1206 } 1207 1208 /*------- driver support routines ------*/ 1209 1210 /* 1211 * Initialize a ``netmap_adapter`` object created by driver on attach. 1212 * We allocate a block of memory with room for a struct netmap_adapter 1213 * plus two sets of N+2 struct netmap_kring (where N is the number 1214 * of hardware rings): 1215 * krings 0..N-1 are for the hardware queues. 1216 * kring N is for the host stack queue 1217 * kring N+1 is only used for the selinfo for all queues. 1218 * Return 0 on success, ENOMEM otherwise. 1219 */ 1220 int 1221 netmap_attach(struct netmap_adapter *na, int num_queues) 1222 { 1223 int n = num_queues + 2; 1224 int size = sizeof(*na) + 2 * n * sizeof(struct netmap_kring); 1225 void *buf; 1226 struct ifnet *ifp = na->ifp; 1227 1228 if (ifp == NULL) { 1229 D("ifp not set, giving up"); 1230 return EINVAL; 1231 } 1232 na->refcount = 0; 1233 na->num_queues = num_queues; 1234 1235 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1236 if (buf) { 1237 ifp->if_pspare[0] = buf; 1238 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1239 na->rx_rings = na->tx_rings + n; 1240 bcopy(na, buf, sizeof(*na)); 1241 ifp->if_capabilities |= IFCAP_NETMAP; 1242 } 1243 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1244 1245 return (buf ? 0 : ENOMEM); 1246 } 1247 1248 1249 /* 1250 * Free the allocated memory linked to the given ``netmap_adapter`` 1251 * object. 1252 */ 1253 void 1254 netmap_detach(struct ifnet *ifp) 1255 { 1256 u_int i; 1257 struct netmap_adapter *na = NA(ifp); 1258 1259 if (!na) 1260 return; 1261 1262 for (i = 0; i < na->num_queues + 2; i++) { 1263 knlist_destroy(&na->tx_rings[i].si.si_note); 1264 knlist_destroy(&na->rx_rings[i].si.si_note); 1265 } 1266 bzero(na, sizeof(*na)); 1267 ifp->if_pspare[0] = NULL; 1268 free(na, M_DEVBUF); 1269 } 1270 1271 1272 /* 1273 * intercept packets coming from the network stack and present 1274 * them to netmap as incoming packets on a separate ring. 1275 * We are not locked when called. 1276 */ 1277 int 1278 netmap_start(struct ifnet *ifp, struct mbuf *m) 1279 { 1280 struct netmap_adapter *na = NA(ifp); 1281 u_int i, len, n = na->num_queues; 1282 int error = EBUSY; 1283 struct netmap_kring *kring = &na->rx_rings[n]; 1284 struct netmap_slot *slot; 1285 1286 len = m->m_pkthdr.len; 1287 if (netmap_verbose & NM_VERB_HOST) 1288 D("%s packet %d len %d from the stack", ifp->if_xname, 1289 kring->nr_hwcur + kring->nr_hwavail, len); 1290 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 1291 if (kring->nr_hwavail >= (int)kring->nkr_num_slots - 1) { 1292 D("stack ring %s full\n", ifp->if_xname); 1293 goto done; /* no space */ 1294 } 1295 if (len > na->buff_size) { 1296 D("drop packet size %d > %d", len, na->buff_size); 1297 goto done; /* too long for us */ 1298 } 1299 1300 /* compute the insert position */ 1301 i = kring->nr_hwcur + kring->nr_hwavail; 1302 if (i >= kring->nkr_num_slots) 1303 i -= kring->nkr_num_slots; 1304 slot = &kring->ring->slot[i]; 1305 m_copydata(m, 0, len, NMB(slot)); 1306 slot->len = len; 1307 kring->nr_hwavail++; 1308 if (netmap_verbose & NM_VERB_HOST) 1309 D("wake up host ring %s %d", na->ifp->if_xname, na->num_queues); 1310 selwakeuppri(&kring->si, PI_NET); 1311 error = 0; 1312 done: 1313 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 1314 1315 /* release the mbuf in either cases of success or failure. As an 1316 * alternative, put the mbuf in a free list and free the list 1317 * only when really necessary. 1318 */ 1319 m_freem(m); 1320 1321 return (error); 1322 } 1323 1324 1325 /* 1326 * netmap_reset() is called by the driver routines when reinitializing 1327 * a ring. The driver is in charge of locking to protect the kring. 1328 * If netmap mode is not set just return NULL. 1329 * Otherwise set NR_REINIT (in the ring and in na) to signal 1330 * that a ring has been reinitialized, 1331 * set cur = hwcur = 0 and avail = hwavail = num_slots - 1 . 1332 * IT IS IMPORTANT to leave one slot free even in the tx ring because 1333 * we rely on cur=hwcur only for empty rings. 1334 * These are good defaults but can be overridden later in the device 1335 * specific code if, after a reinit, the ring does not start from 0 1336 * (e.g. if_em.c does this). 1337 * 1338 * XXX we shouldn't be touching the ring, but there is a 1339 * race anyways and this is our best option. 1340 * 1341 * XXX setting na->flags makes the syscall code faster, as there is 1342 * only one place to check. On the other hand, we will need a better 1343 * way to notify multiple threads that rings have been reset. 1344 * One way is to increment na->rst_count at each ring reset. 1345 * Each thread in its own priv structure will keep a matching counter, 1346 * and on a reset will acknowledge and clean its own rings. 1347 */ 1348 struct netmap_slot * 1349 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1350 u_int new_cur) 1351 { 1352 struct netmap_kring *kring; 1353 struct netmap_ring *ring; 1354 struct netmap_slot *slot; 1355 u_int i; 1356 1357 if (na == NULL) 1358 return NULL; /* no netmap support here */ 1359 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1360 return NULL; /* nothing to reinitialize */ 1361 kring = tx == NR_TX ? na->tx_rings + n : na->rx_rings + n; 1362 ring = kring->ring; 1363 if (tx == NR_TX) { 1364 /* 1365 * The last argument is the new value of next_to_clean. 1366 * 1367 * In the TX ring, we have P pending transmissions (from 1368 * next_to_clean to nr_hwcur) followed by nr_hwavail free slots. 1369 * Generally we can use all the slots in the ring so 1370 * P = ring_size - nr_hwavail hence (modulo ring_size): 1371 * next_to_clean == nr_hwcur + nr_hwavail 1372 * 1373 * If, upon a reset, nr_hwavail == ring_size and next_to_clean 1374 * does not change we have nothing to report. Otherwise some 1375 * pending packets may be lost, or newly injected packets will. 1376 */ 1377 /* if hwcur does not change, nothing to report. 1378 * otherwise remember the change so perhaps we can 1379 * shift the block at the next reinit 1380 */ 1381 if (new_cur == kring->nr_hwcur && 1382 kring->nr_hwavail == kring->nkr_num_slots - 1) { 1383 /* all ok */ 1384 D("+++ NR_REINIT ok on %s TX[%d]", na->ifp->if_xname, n); 1385 } else { 1386 D("+++ NR_REINIT set on %s TX[%d]", na->ifp->if_xname, n); 1387 } 1388 ring->flags |= NR_REINIT; 1389 na->flags |= NR_REINIT; 1390 ring->avail = kring->nr_hwavail = kring->nkr_num_slots - 1; 1391 ring->cur = kring->nr_hwcur = new_cur; 1392 } else { 1393 /* 1394 * The last argument is the next free slot. 1395 * In the RX ring we have nr_hwavail full buffers starting 1396 * from nr_hwcur. 1397 * If nr_hwavail == 0 and nr_hwcur does not change we are ok 1398 * otherwise we might be in trouble as the buffers are 1399 * changing. 1400 */ 1401 if (new_cur == kring->nr_hwcur && kring->nr_hwavail == 0) { 1402 /* all ok */ 1403 D("+++ NR_REINIT ok on %s RX[%d]", na->ifp->if_xname, n); 1404 } else { 1405 D("+++ NR_REINIT set on %s RX[%d]", na->ifp->if_xname, n); 1406 } 1407 ring->flags |= NR_REINIT; 1408 na->flags |= NR_REINIT; 1409 ring->avail = kring->nr_hwavail = 0; /* no data */ 1410 ring->cur = kring->nr_hwcur = new_cur; 1411 } 1412 1413 slot = ring->slot; 1414 /* 1415 * Check that buffer indexes are correct. If we find a 1416 * bogus value we are a bit in trouble because we cannot 1417 * recover easily. Best we can do is (probably) persistently 1418 * reset the ring. 1419 */ 1420 for (i = 0; i < kring->nkr_num_slots; i++) { 1421 if (slot[i].buf_idx >= netmap_total_buffers) { 1422 D("invalid buf_idx %d at slot %d", slot[i].buf_idx, i); 1423 slot[i].buf_idx = 0; /* XXX reset */ 1424 } 1425 /* XXX we don't really need to set the length */ 1426 slot[i].len = 0; 1427 } 1428 /* wakeup possible waiters, both on the ring and on the global 1429 * selfd. Perhaps a bit early now but the device specific 1430 * routine is locked so hopefully we won't have a race. 1431 */ 1432 selwakeuppri(&kring->si, PI_NET); 1433 selwakeuppri(&kring[na->num_queues + 1 - n].si, PI_NET); 1434 return kring->ring->slot; 1435 } 1436 1437 static void 1438 ns_dmamap_cb(__unused void *arg, __unused bus_dma_segment_t * segs, 1439 __unused int nseg, __unused int error) 1440 { 1441 } 1442 1443 /* unload a bus_dmamap and create a new one. Used when the 1444 * buffer in the slot is changed. 1445 * XXX buflen is probably not needed, buffers have constant size. 1446 */ 1447 void 1448 netmap_reload_map(bus_dma_tag_t tag, bus_dmamap_t map, 1449 void *buf, bus_size_t buflen) 1450 { 1451 bus_addr_t paddr; 1452 bus_dmamap_unload(tag, map); 1453 bus_dmamap_load(tag, map, buf, buflen, ns_dmamap_cb, &paddr, 1454 BUS_DMA_NOWAIT); 1455 } 1456 1457 void 1458 netmap_load_map(bus_dma_tag_t tag, bus_dmamap_t map, 1459 void *buf, bus_size_t buflen) 1460 { 1461 bus_addr_t paddr; 1462 bus_dmamap_load(tag, map, buf, buflen, ns_dmamap_cb, &paddr, 1463 BUS_DMA_NOWAIT); 1464 } 1465 1466 /*------ netmap memory allocator -------*/ 1467 /* 1468 * Request for a chunk of memory. 1469 * 1470 * Memory objects are arranged into a list, hence we need to walk this 1471 * list until we find an object with the needed amount of data free. 1472 * This sounds like a completely inefficient implementation, but given 1473 * the fact that data allocation is done once, we can handle it 1474 * flawlessly. 1475 * 1476 * Return NULL on failure. 1477 */ 1478 static void * 1479 netmap_malloc(size_t size, __unused const char *msg) 1480 { 1481 struct netmap_mem_obj *mem_obj, *new_mem_obj; 1482 void *ret = NULL; 1483 1484 NMA_LOCK(); 1485 TAILQ_FOREACH(mem_obj, &netmap_mem_d->nm_molist, nmo_next) { 1486 if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size) 1487 continue; 1488 1489 new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1490 M_WAITOK | M_ZERO); 1491 TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next); 1492 1493 new_mem_obj->nmo_used = 1; 1494 new_mem_obj->nmo_size = size; 1495 new_mem_obj->nmo_data = mem_obj->nmo_data; 1496 memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size); 1497 1498 mem_obj->nmo_size -= size; 1499 mem_obj->nmo_data = (char *) mem_obj->nmo_data + size; 1500 if (mem_obj->nmo_size == 0) { 1501 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, 1502 nmo_next); 1503 free(mem_obj, M_NETMAP); 1504 } 1505 1506 ret = new_mem_obj->nmo_data; 1507 1508 break; 1509 } 1510 NMA_UNLOCK(); 1511 ND("%s: %d bytes at %p", msg, size, ret); 1512 1513 return (ret); 1514 } 1515 1516 /* 1517 * Return the memory to the allocator. 1518 * 1519 * While freeing a memory object, we try to merge adjacent chunks in 1520 * order to reduce memory fragmentation. 1521 */ 1522 static void 1523 netmap_free(void *addr, const char *msg) 1524 { 1525 size_t size; 1526 struct netmap_mem_obj *cur, *prev, *next; 1527 1528 if (addr == NULL) { 1529 D("NULL addr for %s", msg); 1530 return; 1531 } 1532 1533 NMA_LOCK(); 1534 TAILQ_FOREACH(cur, &netmap_mem_d->nm_molist, nmo_next) { 1535 if (cur->nmo_data == addr && cur->nmo_used) 1536 break; 1537 } 1538 if (cur == NULL) { 1539 NMA_UNLOCK(); 1540 D("invalid addr %s %p", msg, addr); 1541 return; 1542 } 1543 1544 size = cur->nmo_size; 1545 cur->nmo_used = 0; 1546 1547 /* merge current chunk of memory with the previous one, 1548 if present. */ 1549 prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next); 1550 if (prev && prev->nmo_used == 0) { 1551 TAILQ_REMOVE(&netmap_mem_d->nm_molist, cur, nmo_next); 1552 prev->nmo_size += cur->nmo_size; 1553 free(cur, M_NETMAP); 1554 cur = prev; 1555 } 1556 1557 /* merge with the next one */ 1558 next = TAILQ_NEXT(cur, nmo_next); 1559 if (next && next->nmo_used == 0) { 1560 TAILQ_REMOVE(&netmap_mem_d->nm_molist, next, nmo_next); 1561 cur->nmo_size += next->nmo_size; 1562 free(next, M_NETMAP); 1563 } 1564 NMA_UNLOCK(); 1565 ND("freed %s %d bytes at %p", msg, size, addr); 1566 } 1567 1568 1569 /* 1570 * Initialize the memory allocator. 1571 * 1572 * Create the descriptor for the memory , allocate the pool of memory 1573 * and initialize the list of memory objects with a single chunk 1574 * containing the whole pre-allocated memory marked as free. 1575 * 1576 * Start with a large size, then halve as needed if we fail to 1577 * allocate the block. While halving, always add one extra page 1578 * because buffers 0 and 1 are used for special purposes. 1579 * Return 0 on success, errno otherwise. 1580 */ 1581 static int 1582 netmap_memory_init(void) 1583 { 1584 struct netmap_mem_obj *mem_obj; 1585 void *buf = NULL; 1586 int i, n, sz = NETMAP_MEMORY_SIZE; 1587 int extra_sz = 0; // space for rings and two spare buffers 1588 1589 for (; !buf && sz >= 1<<20; sz >>=1) { 1590 extra_sz = sz/200; 1591 extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1592 buf = contigmalloc(sz + extra_sz, 1593 M_NETMAP, 1594 M_WAITOK | M_ZERO, 1595 0, /* low address */ 1596 -1UL, /* high address */ 1597 PAGE_SIZE, /* alignment */ 1598 0 /* boundary */ 1599 ); 1600 } 1601 if (buf == NULL) 1602 return (ENOMEM); 1603 sz += extra_sz; 1604 netmap_mem_d = malloc(sizeof(struct netmap_mem_d), M_NETMAP, 1605 M_WAITOK | M_ZERO); 1606 mtx_init(&netmap_mem_d->nm_mtx, "netmap memory allocator lock", NULL, 1607 MTX_DEF); 1608 TAILQ_INIT(&netmap_mem_d->nm_molist); 1609 netmap_mem_d->nm_buffer = buf; 1610 netmap_mem_d->nm_totalsize = sz; 1611 1612 /* 1613 * A buffer takes 2k, a slot takes 8 bytes + ring overhead, 1614 * so the ratio is 200:1. In other words, we can use 1/200 of 1615 * the memory for the rings, and the rest for the buffers, 1616 * and be sure we never run out. 1617 */ 1618 netmap_mem_d->nm_size = sz/200; 1619 netmap_mem_d->nm_buf_start = 1620 (netmap_mem_d->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1621 netmap_mem_d->nm_buf_len = sz - netmap_mem_d->nm_buf_start; 1622 1623 nm_buf_pool.base = netmap_mem_d->nm_buffer; 1624 nm_buf_pool.base += netmap_mem_d->nm_buf_start; 1625 netmap_buffer_base = nm_buf_pool.base; 1626 D("netmap_buffer_base %p (offset %d)", 1627 netmap_buffer_base, netmap_mem_d->nm_buf_start); 1628 /* number of buffers, they all start as free */ 1629 1630 netmap_total_buffers = nm_buf_pool.total_buffers = 1631 netmap_mem_d->nm_buf_len / NETMAP_BUF_SIZE; 1632 nm_buf_pool.bufsize = NETMAP_BUF_SIZE; 1633 1634 D("Have %d MB, use %dKB for rings, %d buffers at %p", 1635 (sz >> 20), (netmap_mem_d->nm_size >> 10), 1636 nm_buf_pool.total_buffers, nm_buf_pool.base); 1637 1638 /* allocate and initialize the bitmap. Entry 0 is considered 1639 * always busy (used as default when there are no buffers left). 1640 */ 1641 n = (nm_buf_pool.total_buffers + 31) / 32; 1642 nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, 1643 M_WAITOK | M_ZERO); 1644 nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */ 1645 for (i = 1; i < n; i++) 1646 nm_buf_pool.bitmap[i] = ~0; 1647 nm_buf_pool.free = nm_buf_pool.total_buffers - 2; 1648 1649 mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1650 M_WAITOK | M_ZERO); 1651 TAILQ_INSERT_HEAD(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1652 mem_obj->nmo_used = 0; 1653 mem_obj->nmo_size = netmap_mem_d->nm_size; 1654 mem_obj->nmo_data = netmap_mem_d->nm_buffer; 1655 1656 return (0); 1657 } 1658 1659 1660 /* 1661 * Finalize the memory allocator. 1662 * 1663 * Free all the memory objects contained inside the list, and deallocate 1664 * the pool of memory; finally free the memory allocator descriptor. 1665 */ 1666 static void 1667 netmap_memory_fini(void) 1668 { 1669 struct netmap_mem_obj *mem_obj; 1670 1671 while (!TAILQ_EMPTY(&netmap_mem_d->nm_molist)) { 1672 mem_obj = TAILQ_FIRST(&netmap_mem_d->nm_molist); 1673 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1674 if (mem_obj->nmo_used == 1) { 1675 printf("netmap: leaked %d bytes at %p\n", 1676 mem_obj->nmo_size, 1677 mem_obj->nmo_data); 1678 } 1679 free(mem_obj, M_NETMAP); 1680 } 1681 contigfree(netmap_mem_d->nm_buffer, netmap_mem_d->nm_totalsize, M_NETMAP); 1682 // XXX mutex_destroy(nm_mtx); 1683 free(netmap_mem_d, M_NETMAP); 1684 } 1685 1686 1687 /* 1688 * Module loader. 1689 * 1690 * Create the /dev/netmap device and initialize all global 1691 * variables. 1692 * 1693 * Return 0 on success, errno on failure. 1694 */ 1695 static int 1696 netmap_init(void) 1697 { 1698 int error; 1699 1700 1701 error = netmap_memory_init(); 1702 if (error != 0) { 1703 printf("netmap: unable to initialize the memory allocator."); 1704 return (error); 1705 } 1706 printf("netmap: loaded module with %d Mbytes\n", 1707 netmap_mem_d->nm_totalsize >> 20); 1708 1709 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 1710 "netmap"); 1711 1712 return (0); 1713 } 1714 1715 1716 /* 1717 * Module unloader. 1718 * 1719 * Free all the memory, and destroy the ``/dev/netmap`` device. 1720 */ 1721 static void 1722 netmap_fini(void) 1723 { 1724 destroy_dev(netmap_dev); 1725 1726 netmap_memory_fini(); 1727 1728 printf("netmap: unloaded module.\n"); 1729 } 1730 1731 1732 /* 1733 * Kernel entry point. 1734 * 1735 * Initialize/finalize the module and return. 1736 * 1737 * Return 0 on success, errno on failure. 1738 */ 1739 static int 1740 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1741 { 1742 int error = 0; 1743 1744 switch (event) { 1745 case MOD_LOAD: 1746 error = netmap_init(); 1747 break; 1748 1749 case MOD_UNLOAD: 1750 netmap_fini(); 1751 break; 1752 1753 default: 1754 error = EOPNOTSUPP; 1755 break; 1756 } 1757 1758 return (error); 1759 } 1760 1761 1762 DEV_MODULE(netmap, netmap_loader, NULL); 1763