xref: /freebsd/sys/dev/netmap/netmap.c (revision 08c4a937a6685f05667996228898521fc453f8f3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi
5  * Copyright (C) 2011-2016 Luigi Rizzo
6  * Copyright (C) 2011-2016 Giuseppe Lettieri
7  * Copyright (C) 2011-2016 Vincenzo Maffione
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *   1. Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *   2. Redistributions in binary form must reproduce the above copyright
16  *      notice, this list of conditions and the following disclaimer in the
17  *      documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 
33 /*
34  * $FreeBSD$
35  *
36  * This module supports memory mapped access to network devices,
37  * see netmap(4).
38  *
39  * The module uses a large, memory pool allocated by the kernel
40  * and accessible as mmapped memory by multiple userspace threads/processes.
41  * The memory pool contains packet buffers and "netmap rings",
42  * i.e. user-accessible copies of the interface's queues.
43  *
44  * Access to the network card works like this:
45  * 1. a process/thread issues one or more open() on /dev/netmap, to create
46  *    select()able file descriptor on which events are reported.
47  * 2. on each descriptor, the process issues an ioctl() to identify
48  *    the interface that should report events to the file descriptor.
49  * 3. on each descriptor, the process issues an mmap() request to
50  *    map the shared memory region within the process' address space.
51  *    The list of interesting queues is indicated by a location in
52  *    the shared memory region.
53  * 4. using the functions in the netmap(4) userspace API, a process
54  *    can look up the occupation state of a queue, access memory buffers,
55  *    and retrieve received packets or enqueue packets to transmit.
56  * 5. using some ioctl()s the process can synchronize the userspace view
57  *    of the queue with the actual status in the kernel. This includes both
58  *    receiving the notification of new packets, and transmitting new
59  *    packets on the output interface.
60  * 6. select() or poll() can be used to wait for events on individual
61  *    transmit or receive queues (or all queues for a given interface).
62  *
63 
64 		SYNCHRONIZATION (USER)
65 
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73 
74 		LOCKING (INTERNAL)
75 
76 Within the kernel, access to the netmap rings is protected as follows:
77 
78 - a spinlock on each ring, to handle producer/consumer races on
79   RX rings attached to the host stack (against multiple host
80   threads writing from the host stack to the same ring),
81   and on 'destination' rings attached to a VALE switch
82   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83   protecting multiple active senders for the same destination)
84 
85 - an atomic variable to guarantee that there is at most one
86   instance of *_*xsync() on the ring at any time.
87   For rings connected to user file
88   descriptors, an atomic_test_and_set() protects this, and the
89   lock on the ring is not actually used.
90   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91   is also used to prevent multiple executions (the driver might indeed
92   already guarantee this).
93   For NIC TX rings connected to a VALE switch, the lock arbitrates
94   access to the queue (both when allocating buffers and when pushing
95   them out).
96 
97 - *xsync() should be protected against initializations of the card.
98   On FreeBSD most devices have the reset routine protected by
99   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100   the RING protection on rx_reset(), this should be added.
101 
102   On linux there is an external lock on the tx path, which probably
103   also arbitrates access to the reset routine. XXX to be revised
104 
105 - a per-interface core_lock protecting access from the host stack
106   while interfaces may be detached from netmap mode.
107   XXX there should be no need for this lock if we detach the interfaces
108   only while they are down.
109 
110 
111 --- VALE SWITCH ---
112 
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115 
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123 
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130 
131  */
132 
133 
134 /* --- internals ----
135  *
136  * Roadmap to the code that implements the above.
137  *
138  * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139  * >    select()able file descriptor on which events are reported.
140  *
141  *  	Internally, we allocate a netmap_priv_d structure, that will be
142  *  	initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143  *  	structure for each open().
144  *
145  *      os-specific:
146  *  	    FreeBSD: see netmap_open() (netmap_freebsd.c)
147  *  	    linux:   see linux_netmap_open() (netmap_linux.c)
148  *
149  * > 2. on each descriptor, the process issues an ioctl() to identify
150  * >    the interface that should report events to the file descriptor.
151  *
152  * 	Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153  * 	Most important things happen in netmap_get_na() and
154  * 	netmap_do_regif(), called from there. Additional details can be
155  * 	found in the comments above those functions.
156  *
157  * 	In all cases, this action creates/takes-a-reference-to a
158  * 	netmap_*_adapter describing the port, and allocates a netmap_if
159  * 	and all necessary netmap rings, filling them with netmap buffers.
160  *
161  *      In this phase, the sync callbacks for each ring are set (these are used
162  *      in steps 5 and 6 below).  The callbacks depend on the type of adapter.
163  *      The adapter creation/initialization code puts them in the
164  * 	netmap_adapter (fields na->nm_txsync and na->nm_rxsync).  Then, they
165  * 	are copied from there to the netmap_kring's during netmap_do_regif(), by
166  * 	the nm_krings_create() callback.  All the nm_krings_create callbacks
167  * 	actually call netmap_krings_create() to perform this and the other
168  * 	common stuff. netmap_krings_create() also takes care of the host rings,
169  * 	if needed, by setting their sync callbacks appropriately.
170  *
171  * 	Additional actions depend on the kind of netmap_adapter that has been
172  * 	registered:
173  *
174  * 	- netmap_hw_adapter:  	     [netmap.c]
175  * 	     This is a system netdev/ifp with native netmap support.
176  * 	     The ifp is detached from the host stack by redirecting:
177  * 	       - transmissions (from the network stack) to netmap_transmit()
178  * 	       - receive notifications to the nm_notify() callback for
179  * 	         this adapter. The callback is normally netmap_notify(), unless
180  * 	         the ifp is attached to a bridge using bwrap, in which case it
181  * 	         is netmap_bwrap_intr_notify().
182  *
183  * 	- netmap_generic_adapter:      [netmap_generic.c]
184  * 	      A system netdev/ifp without native netmap support.
185  *
186  * 	(the decision about native/non native support is taken in
187  * 	 netmap_get_hw_na(), called by netmap_get_na())
188  *
189  * 	- netmap_vp_adapter 		[netmap_vale.c]
190  * 	      Returned by netmap_get_bdg_na().
191  * 	      This is a persistent or ephemeral VALE port. Ephemeral ports
192  * 	      are created on the fly if they don't already exist, and are
193  * 	      always attached to a bridge.
194  * 	      Persistent VALE ports must must be created separately, and i
195  * 	      then attached like normal NICs. The NIOCREGIF we are examining
196  * 	      will find them only if they had previosly been created and
197  * 	      attached (see VALE_CTL below).
198  *
199  * 	- netmap_pipe_adapter 	      [netmap_pipe.c]
200  * 	      Returned by netmap_get_pipe_na().
201  * 	      Both pipe ends are created, if they didn't already exist.
202  *
203  * 	- netmap_monitor_adapter      [netmap_monitor.c]
204  * 	      Returned by netmap_get_monitor_na().
205  * 	      If successful, the nm_sync callbacks of the monitored adapter
206  * 	      will be intercepted by the returned monitor.
207  *
208  * 	- netmap_bwrap_adapter	      [netmap_vale.c]
209  * 	      Cannot be obtained in this way, see VALE_CTL below
210  *
211  *
212  * 	os-specific:
213  * 	    linux: we first go through linux_netmap_ioctl() to
214  * 	           adapt the FreeBSD interface to the linux one.
215  *
216  *
217  * > 3. on each descriptor, the process issues an mmap() request to
218  * >    map the shared memory region within the process' address space.
219  * >    The list of interesting queues is indicated by a location in
220  * >    the shared memory region.
221  *
222  *      os-specific:
223  *  	    FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224  *  	    linux:   linux_netmap_mmap (netmap_linux.c).
225  *
226  * > 4. using the functions in the netmap(4) userspace API, a process
227  * >    can look up the occupation state of a queue, access memory buffers,
228  * >    and retrieve received packets or enqueue packets to transmit.
229  *
230  * 	these actions do not involve the kernel.
231  *
232  * > 5. using some ioctl()s the process can synchronize the userspace view
233  * >    of the queue with the actual status in the kernel. This includes both
234  * >    receiving the notification of new packets, and transmitting new
235  * >    packets on the output interface.
236  *
237  * 	These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238  * 	cases. They invoke the nm_sync callbacks on the netmap_kring
239  * 	structures, as initialized in step 2 and maybe later modified
240  * 	by a monitor. Monitors, however, will always call the original
241  * 	callback before doing anything else.
242  *
243  *
244  * > 6. select() or poll() can be used to wait for events on individual
245  * >    transmit or receive queues (or all queues for a given interface).
246  *
247  * 	Implemented in netmap_poll(). This will call the same nm_sync()
248  * 	callbacks as in step 5 above.
249  *
250  * 	os-specific:
251  * 		linux: we first go through linux_netmap_poll() to adapt
252  * 		       the FreeBSD interface to the linux one.
253  *
254  *
255  *  ----  VALE_CTL -----
256  *
257  *  VALE switches are controlled by issuing a NIOCREGIF with a non-null
258  *  nr_cmd in the nmreq structure. These subcommands are handled by
259  *  netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260  *  and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261  *  subcommands, respectively.
262  *
263  *  Any network interface known to the system (including a persistent VALE
264  *  port) can be attached to a VALE switch by issuing the
265  *  NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266  *  look exactly like ephemeral VALE ports (as created in step 2 above).  The
267  *  attachment of other interfaces, instead, requires the creation of a
268  *  netmap_bwrap_adapter.  Moreover, the attached interface must be put in
269  *  netmap mode. This may require the creation of a netmap_generic_adapter if
270  *  we have no native support for the interface, or if generic adapters have
271  *  been forced by sysctl.
272  *
273  *  Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274  *  called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275  *  callback.  In the case of the bwrap, the callback creates the
276  *  netmap_bwrap_adapter.  The initialization of the bwrap is then
277  *  completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278  *  callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279  *  A generic adapter for the wrapped ifp will be created if needed, when
280  *  netmap_get_bdg_na() calls netmap_get_hw_na().
281  *
282  *
283  *  ---- DATAPATHS -----
284  *
285  *              -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286  *
287  *    na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288  *
289  *    - tx from netmap userspace:
290  *	 concurrently:
291  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292  *                kring->nm_sync() == DEVICE_netmap_txsync()
293  *           2) device interrupt handler
294  *                na->nm_notify()  == netmap_notify()
295  *    - rx from netmap userspace:
296  *       concurrently:
297  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298  *                kring->nm_sync() == DEVICE_netmap_rxsync()
299  *           2) device interrupt handler
300  *                na->nm_notify()  == netmap_notify()
301  *    - rx from host stack
302  *       concurrently:
303  *           1) host stack
304  *                netmap_transmit()
305  *                  na->nm_notify  == netmap_notify()
306  *           2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307  *                kring->nm_sync() == netmap_rxsync_from_host
308  *                  netmap_rxsync_from_host(na, NULL, NULL)
309  *    - tx to host stack
310  *           ioctl(NIOCTXSYNC)/netmap_poll() in process context
311  *             kring->nm_sync() == netmap_txsync_to_host
312  *               netmap_txsync_to_host(na)
313  *                 nm_os_send_up()
314  *                   FreeBSD: na->if_input() == ether_input()
315  *                   linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316  *
317  *
318  *               -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319  *
320  *    na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321  *
322  *    - tx from netmap userspace:
323  *       concurrently:
324  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325  *               kring->nm_sync() == generic_netmap_txsync()
326  *                   nm_os_generic_xmit_frame()
327  *                       linux:   dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328  *                           ifp->ndo_start_xmit == generic_ndo_start_xmit()
329  *                               gna->save_start_xmit == orig. dev. start_xmit
330  *                       FreeBSD: na->if_transmit() == orig. dev if_transmit
331  *           2) generic_mbuf_destructor()
332  *                   na->nm_notify() == netmap_notify()
333  *    - rx from netmap userspace:
334  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335  *               kring->nm_sync() == generic_netmap_rxsync()
336  *                   mbq_safe_dequeue()
337  *           2) device driver
338  *               generic_rx_handler()
339  *                   mbq_safe_enqueue()
340  *                   na->nm_notify() == netmap_notify()
341  *    - rx from host stack
342  *        FreeBSD: same as native
343  *        Linux: same as native except:
344  *           1) host stack
345  *               dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346  *                   ifp->ndo_start_xmit == generic_ndo_start_xmit()
347  *                       netmap_transmit()
348  *                           na->nm_notify() == netmap_notify()
349  *    - tx to host stack (same as native):
350  *
351  *
352  *                           -= VALE =-
353  *
354  *   INCOMING:
355  *
356  *      - VALE ports:
357  *          ioctl(NIOCTXSYNC)/netmap_poll() in process context
358  *              kring->nm_sync() == netmap_vp_txsync()
359  *
360  *      - system device with native support:
361  *         from cable:
362  *             interrupt
363  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
365  *                     netmap_vp_txsync()
366  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
367  *         from host stack:
368  *             netmap_transmit()
369  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370  *                     kring->nm_sync() == netmap_rxsync_from_host()
371  *                     netmap_vp_txsync()
372  *
373  *      - system device with generic support:
374  *         from device driver:
375  *            generic_rx_handler()
376  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377  *                     kring->nm_sync() == generic_netmap_rxsync()
378  *                     netmap_vp_txsync()
379  *                     kring->nm_sync() == generic_netmap_rxsync()
380  *         from host stack:
381  *            netmap_transmit()
382  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383  *                     kring->nm_sync() == netmap_rxsync_from_host()
384  *                     netmap_vp_txsync()
385  *
386  *   (all cases) --> nm_bdg_flush()
387  *                      dest_na->nm_notify() == (see below)
388  *
389  *   OUTGOING:
390  *
391  *      - VALE ports:
392  *         concurrently:
393  *             1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394  *                    kring->nm_sync() == netmap_vp_rxsync()
395  *             2) from nm_bdg_flush()
396  *                    na->nm_notify() == netmap_notify()
397  *
398  *      - system device with native support:
399  *          to cable:
400  *             na->nm_notify() == netmap_bwrap_notify()
401  *                 netmap_vp_rxsync()
402  *                 kring->nm_sync() == DEVICE_netmap_txsync()
403  *                 netmap_vp_rxsync()
404  *          to host stack:
405  *                 netmap_vp_rxsync()
406  *                 kring->nm_sync() == netmap_txsync_to_host
407  *                 netmap_vp_rxsync_locked()
408  *
409  *      - system device with generic adapter:
410  *          to device driver:
411  *             na->nm_notify() == netmap_bwrap_notify()
412  *                 netmap_vp_rxsync()
413  *                 kring->nm_sync() == generic_netmap_txsync()
414  *                 netmap_vp_rxsync()
415  *          to host stack:
416  *                 netmap_vp_rxsync()
417  *                 kring->nm_sync() == netmap_txsync_to_host
418  *                 netmap_vp_rxsync()
419  *
420  */
421 
422 /*
423  * OS-specific code that is used only within this file.
424  * Other OS-specific code that must be accessed by drivers
425  * is present in netmap_kern.h
426  */
427 
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h>	/* defines used in kernel.h */
433 #include <sys/kernel.h>	/* types used in module initialization */
434 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
435 #include <sys/filio.h>	/* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h>	/* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/rwlock.h>
441 #include <sys/socket.h> /* sockaddrs */
442 #include <sys/selinfo.h>
443 #include <sys/sysctl.h>
444 #include <sys/jail.h>
445 #include <net/vnet.h>
446 #include <net/if.h>
447 #include <net/if_var.h>
448 #include <net/bpf.h>		/* BIOCIMMEDIATE */
449 #include <machine/bus.h>	/* bus_dmamap_* */
450 #include <sys/endian.h>
451 #include <sys/refcount.h>
452 #include <net/ethernet.h>      /* ETHER_BPF_MTAP */
453 
454 
455 #elif defined(linux)
456 
457 #include "bsd_glue.h"
458 
459 #elif defined(__APPLE__)
460 
461 #warning OSX support is only partial
462 #include "osx_glue.h"
463 
464 #elif defined (_WIN32)
465 
466 #include "win_glue.h"
467 
468 #else
469 
470 #error	Unsupported platform
471 
472 #endif /* unsupported */
473 
474 /*
475  * common headers
476  */
477 #include <net/netmap.h>
478 #include <dev/netmap/netmap_kern.h>
479 #include <dev/netmap/netmap_mem2.h>
480 
481 
482 /* user-controlled variables */
483 int netmap_verbose;
484 #ifdef CONFIG_NETMAP_DEBUG
485 int netmap_debug;
486 #endif /* CONFIG_NETMAP_DEBUG */
487 
488 static int netmap_no_timestamp; /* don't timestamp on rxsync */
489 int netmap_no_pendintr = 1;
490 int netmap_txsync_retry = 2;
491 static int netmap_fwd = 0;	/* force transparent forwarding */
492 
493 /*
494  * netmap_admode selects the netmap mode to use.
495  * Invalid values are reset to NETMAP_ADMODE_BEST
496  */
497 enum {	NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
498 	NETMAP_ADMODE_NATIVE,	/* either native or none */
499 	NETMAP_ADMODE_GENERIC,	/* force generic */
500 	NETMAP_ADMODE_LAST };
501 static int netmap_admode = NETMAP_ADMODE_BEST;
502 
503 /* netmap_generic_mit controls mitigation of RX notifications for
504  * the generic netmap adapter. The value is a time interval in
505  * nanoseconds. */
506 int netmap_generic_mit = 100*1000;
507 
508 /* We use by default netmap-aware qdiscs with generic netmap adapters,
509  * even if there can be a little performance hit with hardware NICs.
510  * However, using the qdisc is the safer approach, for two reasons:
511  * 1) it prevents non-fifo qdiscs to break the TX notification
512  *    scheme, which is based on mbuf destructors when txqdisc is
513  *    not used.
514  * 2) it makes it possible to transmit over software devices that
515  *    change skb->dev, like bridge, veth, ...
516  *
517  * Anyway users looking for the best performance should
518  * use native adapters.
519  */
520 #ifdef linux
521 int netmap_generic_txqdisc = 1;
522 #endif
523 
524 /* Default number of slots and queues for generic adapters. */
525 int netmap_generic_ringsize = 1024;
526 int netmap_generic_rings = 1;
527 
528 /* Non-zero to enable checksum offloading in NIC drivers */
529 int netmap_generic_hwcsum = 0;
530 
531 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
532 int ptnet_vnet_hdr = 1;
533 
534 /*
535  * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
536  * in some other operating systems
537  */
538 SYSBEGIN(main_init);
539 
540 SYSCTL_DECL(_dev_netmap);
541 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
542 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
543 		CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
544 #ifdef CONFIG_NETMAP_DEBUG
545 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
546 		CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
547 #endif /* CONFIG_NETMAP_DEBUG */
548 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
549 		CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
551 		0, "Always look for new received packets.");
552 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
553 		&netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
554 
555 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
556 		"Force NR_FORWARD mode");
557 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
558 		"Adapter mode. 0 selects the best option available,"
559 		"1 forces native adapter, 2 forces emulated adapter");
560 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
561 		0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
562 		"1 to enable checksum generation by the NIC");
563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
564 		0, "RX notification interval in nanoseconds");
565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
566 		&netmap_generic_ringsize, 0,
567 		"Number of per-ring slots for emulated netmap mode");
568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
569 		&netmap_generic_rings, 0,
570 		"Number of TX/RX queues for emulated netmap adapters");
571 #ifdef linux
572 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
573 		&netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
574 #endif
575 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
576 		0, "Allow ptnet devices to use virtio-net headers");
577 
578 SYSEND;
579 
580 NMG_LOCK_T	netmap_global_lock;
581 
582 /*
583  * mark the ring as stopped, and run through the locks
584  * to make sure other users get to see it.
585  * stopped must be either NR_KR_STOPPED (for unbounded stop)
586  * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
587  */
588 static void
589 netmap_disable_ring(struct netmap_kring *kr, int stopped)
590 {
591 	nm_kr_stop(kr, stopped);
592 	// XXX check if nm_kr_stop is sufficient
593 	mtx_lock(&kr->q_lock);
594 	mtx_unlock(&kr->q_lock);
595 	nm_kr_put(kr);
596 }
597 
598 /* stop or enable a single ring */
599 void
600 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
601 {
602 	if (stopped)
603 		netmap_disable_ring(NMR(na, t)[ring_id], stopped);
604 	else
605 		NMR(na, t)[ring_id]->nkr_stopped = 0;
606 }
607 
608 
609 /* stop or enable all the rings of na */
610 void
611 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
612 {
613 	int i;
614 	enum txrx t;
615 
616 	if (!nm_netmap_on(na))
617 		return;
618 
619 	for_rx_tx(t) {
620 		for (i = 0; i < netmap_real_rings(na, t); i++) {
621 			netmap_set_ring(na, i, t, stopped);
622 		}
623 	}
624 }
625 
626 /*
627  * Convenience function used in drivers.  Waits for current txsync()s/rxsync()s
628  * to finish and prevents any new one from starting.  Call this before turning
629  * netmap mode off, or before removing the hardware rings (e.g., on module
630  * onload).
631  */
632 void
633 netmap_disable_all_rings(struct ifnet *ifp)
634 {
635 	if (NM_NA_VALID(ifp)) {
636 		netmap_set_all_rings(NA(ifp), NM_KR_STOPPED);
637 	}
638 }
639 
640 /*
641  * Convenience function used in drivers.  Re-enables rxsync and txsync on the
642  * adapter's rings In linux drivers, this should be placed near each
643  * napi_enable().
644  */
645 void
646 netmap_enable_all_rings(struct ifnet *ifp)
647 {
648 	if (NM_NA_VALID(ifp)) {
649 		netmap_set_all_rings(NA(ifp), 0 /* enabled */);
650 	}
651 }
652 
653 void
654 netmap_make_zombie(struct ifnet *ifp)
655 {
656 	if (NM_NA_VALID(ifp)) {
657 		struct netmap_adapter *na = NA(ifp);
658 		netmap_set_all_rings(na, NM_KR_LOCKED);
659 		na->na_flags |= NAF_ZOMBIE;
660 		netmap_set_all_rings(na, 0);
661 	}
662 }
663 
664 void
665 netmap_undo_zombie(struct ifnet *ifp)
666 {
667 	if (NM_NA_VALID(ifp)) {
668 		struct netmap_adapter *na = NA(ifp);
669 		if (na->na_flags & NAF_ZOMBIE) {
670 			netmap_set_all_rings(na, NM_KR_LOCKED);
671 			na->na_flags &= ~NAF_ZOMBIE;
672 			netmap_set_all_rings(na, 0);
673 		}
674 	}
675 }
676 
677 /*
678  * generic bound_checking function
679  */
680 u_int
681 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
682 {
683 	u_int oldv = *v;
684 	const char *op = NULL;
685 
686 	if (dflt < lo)
687 		dflt = lo;
688 	if (dflt > hi)
689 		dflt = hi;
690 	if (oldv < lo) {
691 		*v = dflt;
692 		op = "Bump";
693 	} else if (oldv > hi) {
694 		*v = hi;
695 		op = "Clamp";
696 	}
697 	if (op && msg)
698 		nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
699 	return *v;
700 }
701 
702 
703 /*
704  * packet-dump function, user-supplied or static buffer.
705  * The destination buffer must be at least 30+4*len
706  */
707 const char *
708 nm_dump_buf(char *p, int len, int lim, char *dst)
709 {
710 	static char _dst[8192];
711 	int i, j, i0;
712 	static char hex[] ="0123456789abcdef";
713 	char *o;	/* output position */
714 
715 #define P_HI(x)	hex[((x) & 0xf0)>>4]
716 #define P_LO(x)	hex[((x) & 0xf)]
717 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
718 	if (!dst)
719 		dst = _dst;
720 	if (lim <= 0 || lim > len)
721 		lim = len;
722 	o = dst;
723 	sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
724 	o += strlen(o);
725 	/* hexdump routine */
726 	for (i = 0; i < lim; ) {
727 		sprintf(o, "%5d: ", i);
728 		o += strlen(o);
729 		memset(o, ' ', 48);
730 		i0 = i;
731 		for (j=0; j < 16 && i < lim; i++, j++) {
732 			o[j*3] = P_HI(p[i]);
733 			o[j*3+1] = P_LO(p[i]);
734 		}
735 		i = i0;
736 		for (j=0; j < 16 && i < lim; i++, j++)
737 			o[j + 48] = P_C(p[i]);
738 		o[j+48] = '\n';
739 		o += j+49;
740 	}
741 	*o = '\0';
742 #undef P_HI
743 #undef P_LO
744 #undef P_C
745 	return dst;
746 }
747 
748 
749 /*
750  * Fetch configuration from the device, to cope with dynamic
751  * reconfigurations after loading the module.
752  */
753 /* call with NMG_LOCK held */
754 int
755 netmap_update_config(struct netmap_adapter *na)
756 {
757 	struct nm_config_info info;
758 
759 	bzero(&info, sizeof(info));
760 	if (na->nm_config == NULL ||
761 	    na->nm_config(na, &info)) {
762 		/* take whatever we had at init time */
763 		info.num_tx_rings = na->num_tx_rings;
764 		info.num_tx_descs = na->num_tx_desc;
765 		info.num_rx_rings = na->num_rx_rings;
766 		info.num_rx_descs = na->num_rx_desc;
767 		info.rx_buf_maxsize = na->rx_buf_maxsize;
768 	}
769 
770 	if (na->num_tx_rings == info.num_tx_rings &&
771 	    na->num_tx_desc == info.num_tx_descs &&
772 	    na->num_rx_rings == info.num_rx_rings &&
773 	    na->num_rx_desc == info.num_rx_descs &&
774 	    na->rx_buf_maxsize == info.rx_buf_maxsize)
775 		return 0; /* nothing changed */
776 	if (na->active_fds == 0) {
777 		na->num_tx_rings = info.num_tx_rings;
778 		na->num_tx_desc = info.num_tx_descs;
779 		na->num_rx_rings = info.num_rx_rings;
780 		na->num_rx_desc = info.num_rx_descs;
781 		na->rx_buf_maxsize = info.rx_buf_maxsize;
782 		if (netmap_verbose)
783 			nm_prinf("configuration changed for %s: txring %d x %d, "
784 				"rxring %d x %d, rxbufsz %d",
785 				na->name, na->num_tx_rings, na->num_tx_desc,
786 				na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
787 		return 0;
788 	}
789 	nm_prerr("WARNING: configuration changed for %s while active: "
790 		"txring %d x %d, rxring %d x %d, rxbufsz %d",
791 		na->name, info.num_tx_rings, info.num_tx_descs,
792 		info.num_rx_rings, info.num_rx_descs,
793 		info.rx_buf_maxsize);
794 	return 1;
795 }
796 
797 /* nm_sync callbacks for the host rings */
798 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
799 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
800 
801 /* create the krings array and initialize the fields common to all adapters.
802  * The array layout is this:
803  *
804  *                    +----------+
805  * na->tx_rings ----->|          | \
806  *                    |          |  } na->num_tx_ring
807  *                    |          | /
808  *                    +----------+
809  *                    |          |    host tx kring
810  * na->rx_rings ----> +----------+
811  *                    |          | \
812  *                    |          |  } na->num_rx_rings
813  *                    |          | /
814  *                    +----------+
815  *                    |          |    host rx kring
816  *                    +----------+
817  * na->tailroom ----->|          | \
818  *                    |          |  } tailroom bytes
819  *                    |          | /
820  *                    +----------+
821  *
822  * Note: for compatibility, host krings are created even when not needed.
823  * The tailroom space is currently used by vale ports for allocating leases.
824  */
825 /* call with NMG_LOCK held */
826 int
827 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
828 {
829 	u_int i, len, ndesc;
830 	struct netmap_kring *kring;
831 	u_int n[NR_TXRX];
832 	enum txrx t;
833 
834 	if (na->tx_rings != NULL) {
835 		if (netmap_debug & NM_DEBUG_ON)
836 			nm_prerr("warning: krings were already created");
837 		return 0;
838 	}
839 
840 	/* account for the (possibly fake) host rings */
841 	n[NR_TX] = netmap_all_rings(na, NR_TX);
842 	n[NR_RX] = netmap_all_rings(na, NR_RX);
843 
844 	len = (n[NR_TX] + n[NR_RX]) *
845 		(sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
846 		+ tailroom;
847 
848 	na->tx_rings = nm_os_malloc((size_t)len);
849 	if (na->tx_rings == NULL) {
850 		nm_prerr("Cannot allocate krings");
851 		return ENOMEM;
852 	}
853 	na->rx_rings = na->tx_rings + n[NR_TX];
854 	na->tailroom = na->rx_rings + n[NR_RX];
855 
856 	/* link the krings in the krings array */
857 	kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
858 	for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
859 		na->tx_rings[i] = kring;
860 		kring++;
861 	}
862 
863 	/*
864 	 * All fields in krings are 0 except the one initialized below.
865 	 * but better be explicit on important kring fields.
866 	 */
867 	for_rx_tx(t) {
868 		ndesc = nma_get_ndesc(na, t);
869 		for (i = 0; i < n[t]; i++) {
870 			kring = NMR(na, t)[i];
871 			bzero(kring, sizeof(*kring));
872 			kring->na = na;
873 			kring->notify_na = na;
874 			kring->ring_id = i;
875 			kring->tx = t;
876 			kring->nkr_num_slots = ndesc;
877 			kring->nr_mode = NKR_NETMAP_OFF;
878 			kring->nr_pending_mode = NKR_NETMAP_OFF;
879 			if (i < nma_get_nrings(na, t)) {
880 				kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
881 			} else {
882 				if (!(na->na_flags & NAF_HOST_RINGS))
883 					kring->nr_kflags |= NKR_FAKERING;
884 				kring->nm_sync = (t == NR_TX ?
885 						netmap_txsync_to_host:
886 						netmap_rxsync_from_host);
887 			}
888 			kring->nm_notify = na->nm_notify;
889 			kring->rhead = kring->rcur = kring->nr_hwcur = 0;
890 			/*
891 			 * IMPORTANT: Always keep one slot empty.
892 			 */
893 			kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
894 			snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
895 					nm_txrx2str(t), i);
896 			ND("ktx %s h %d c %d t %d",
897 				kring->name, kring->rhead, kring->rcur, kring->rtail);
898 			mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
899 			nm_os_selinfo_init(&kring->si);
900 		}
901 		nm_os_selinfo_init(&na->si[t]);
902 	}
903 
904 
905 	return 0;
906 }
907 
908 
909 /* undo the actions performed by netmap_krings_create */
910 /* call with NMG_LOCK held */
911 void
912 netmap_krings_delete(struct netmap_adapter *na)
913 {
914 	struct netmap_kring **kring = na->tx_rings;
915 	enum txrx t;
916 
917 	if (na->tx_rings == NULL) {
918 		if (netmap_debug & NM_DEBUG_ON)
919 			nm_prerr("warning: krings were already deleted");
920 		return;
921 	}
922 
923 	for_rx_tx(t)
924 		nm_os_selinfo_uninit(&na->si[t]);
925 
926 	/* we rely on the krings layout described above */
927 	for ( ; kring != na->tailroom; kring++) {
928 		mtx_destroy(&(*kring)->q_lock);
929 		nm_os_selinfo_uninit(&(*kring)->si);
930 	}
931 	nm_os_free(na->tx_rings);
932 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
933 }
934 
935 
936 /*
937  * Destructor for NIC ports. They also have an mbuf queue
938  * on the rings connected to the host so we need to purge
939  * them first.
940  */
941 /* call with NMG_LOCK held */
942 void
943 netmap_hw_krings_delete(struct netmap_adapter *na)
944 {
945 	u_int lim = netmap_real_rings(na, NR_RX), i;
946 
947 	for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
948 		struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
949 		ND("destroy sw mbq with len %d", mbq_len(q));
950 		mbq_purge(q);
951 		mbq_safe_fini(q);
952 	}
953 	netmap_krings_delete(na);
954 }
955 
956 static void
957 netmap_mem_drop(struct netmap_adapter *na)
958 {
959 	int last = netmap_mem_deref(na->nm_mem, na);
960 	/* if the native allocator had been overrided on regif,
961 	 * restore it now and drop the temporary one
962 	 */
963 	if (last && na->nm_mem_prev) {
964 		netmap_mem_put(na->nm_mem);
965 		na->nm_mem = na->nm_mem_prev;
966 		na->nm_mem_prev = NULL;
967 	}
968 }
969 
970 /*
971  * Undo everything that was done in netmap_do_regif(). In particular,
972  * call nm_register(ifp,0) to stop netmap mode on the interface and
973  * revert to normal operation.
974  */
975 /* call with NMG_LOCK held */
976 static void netmap_unset_ringid(struct netmap_priv_d *);
977 static void netmap_krings_put(struct netmap_priv_d *);
978 void
979 netmap_do_unregif(struct netmap_priv_d *priv)
980 {
981 	struct netmap_adapter *na = priv->np_na;
982 
983 	NMG_LOCK_ASSERT();
984 	na->active_fds--;
985 	/* unset nr_pending_mode and possibly release exclusive mode */
986 	netmap_krings_put(priv);
987 
988 #ifdef	WITH_MONITOR
989 	/* XXX check whether we have to do something with monitor
990 	 * when rings change nr_mode. */
991 	if (na->active_fds <= 0) {
992 		/* walk through all the rings and tell any monitor
993 		 * that the port is going to exit netmap mode
994 		 */
995 		netmap_monitor_stop(na);
996 	}
997 #endif
998 
999 	if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1000 		na->nm_register(na, 0);
1001 	}
1002 
1003 	/* delete rings and buffers that are no longer needed */
1004 	netmap_mem_rings_delete(na);
1005 
1006 	if (na->active_fds <= 0) {	/* last instance */
1007 		/*
1008 		 * (TO CHECK) We enter here
1009 		 * when the last reference to this file descriptor goes
1010 		 * away. This means we cannot have any pending poll()
1011 		 * or interrupt routine operating on the structure.
1012 		 * XXX The file may be closed in a thread while
1013 		 * another thread is using it.
1014 		 * Linux keeps the file opened until the last reference
1015 		 * by any outstanding ioctl/poll or mmap is gone.
1016 		 * FreeBSD does not track mmap()s (but we do) and
1017 		 * wakes up any sleeping poll(). Need to check what
1018 		 * happens if the close() occurs while a concurrent
1019 		 * syscall is running.
1020 		 */
1021 		if (netmap_debug & NM_DEBUG_ON)
1022 			nm_prinf("deleting last instance for %s", na->name);
1023 
1024 		if (nm_netmap_on(na)) {
1025 			nm_prerr("BUG: netmap on while going to delete the krings");
1026 		}
1027 
1028 		na->nm_krings_delete(na);
1029 	}
1030 
1031 	/* possibily decrement counter of tx_si/rx_si users */
1032 	netmap_unset_ringid(priv);
1033 	/* delete the nifp */
1034 	netmap_mem_if_delete(na, priv->np_nifp);
1035 	/* drop the allocator */
1036 	netmap_mem_drop(na);
1037 	/* mark the priv as unregistered */
1038 	priv->np_na = NULL;
1039 	priv->np_nifp = NULL;
1040 }
1041 
1042 struct netmap_priv_d*
1043 netmap_priv_new(void)
1044 {
1045 	struct netmap_priv_d *priv;
1046 
1047 	priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1048 	if (priv == NULL)
1049 		return NULL;
1050 	priv->np_refs = 1;
1051 	nm_os_get_module();
1052 	return priv;
1053 }
1054 
1055 /*
1056  * Destructor of the netmap_priv_d, called when the fd is closed
1057  * Action: undo all the things done by NIOCREGIF,
1058  * On FreeBSD we need to track whether there are active mmap()s,
1059  * and we use np_active_mmaps for that. On linux, the field is always 0.
1060  * Return: 1 if we can free priv, 0 otherwise.
1061  *
1062  */
1063 /* call with NMG_LOCK held */
1064 void
1065 netmap_priv_delete(struct netmap_priv_d *priv)
1066 {
1067 	struct netmap_adapter *na = priv->np_na;
1068 
1069 	/* number of active references to this fd */
1070 	if (--priv->np_refs > 0) {
1071 		return;
1072 	}
1073 	nm_os_put_module();
1074 	if (na) {
1075 		netmap_do_unregif(priv);
1076 	}
1077 	netmap_unget_na(na, priv->np_ifp);
1078 	bzero(priv, sizeof(*priv));	/* for safety */
1079 	nm_os_free(priv);
1080 }
1081 
1082 
1083 /* call with NMG_LOCK *not* held */
1084 void
1085 netmap_dtor(void *data)
1086 {
1087 	struct netmap_priv_d *priv = data;
1088 
1089 	NMG_LOCK();
1090 	netmap_priv_delete(priv);
1091 	NMG_UNLOCK();
1092 }
1093 
1094 
1095 /*
1096  * Handlers for synchronization of the rings from/to the host stack.
1097  * These are associated to a network interface and are just another
1098  * ring pair managed by userspace.
1099  *
1100  * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1101  * flags):
1102  *
1103  * - Before releasing buffers on hw RX rings, the application can mark
1104  *   them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1105  *   will be forwarded to the host stack, similarly to what happened if
1106  *   the application moved them to the host TX ring.
1107  *
1108  * - Before releasing buffers on the host RX ring, the application can
1109  *   mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1110  *   they will be forwarded to the hw TX rings, saving the application
1111  *   from doing the same task in user-space.
1112  *
1113  * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD
1114  * flag, or globally with the netmap_fwd sysctl.
1115  *
1116  * The transfer NIC --> host is relatively easy, just encapsulate
1117  * into mbufs and we are done. The host --> NIC side is slightly
1118  * harder because there might not be room in the tx ring so it
1119  * might take a while before releasing the buffer.
1120  */
1121 
1122 
1123 /*
1124  * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1125  * We do not need to lock because the queue is private.
1126  * After this call the queue is empty.
1127  */
1128 static void
1129 netmap_send_up(struct ifnet *dst, struct mbq *q)
1130 {
1131 	struct mbuf *m;
1132 	struct mbuf *head = NULL, *prev = NULL;
1133 
1134 	/* Send packets up, outside the lock; head/prev machinery
1135 	 * is only useful for Windows. */
1136 	while ((m = mbq_dequeue(q)) != NULL) {
1137 		if (netmap_debug & NM_DEBUG_HOST)
1138 			nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1139 		prev = nm_os_send_up(dst, m, prev);
1140 		if (head == NULL)
1141 			head = prev;
1142 	}
1143 	if (head)
1144 		nm_os_send_up(dst, NULL, head);
1145 	mbq_fini(q);
1146 }
1147 
1148 
1149 /*
1150  * Scan the buffers from hwcur to ring->head, and put a copy of those
1151  * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1152  * Drop remaining packets in the unlikely event
1153  * of an mbuf shortage.
1154  */
1155 static void
1156 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1157 {
1158 	u_int const lim = kring->nkr_num_slots - 1;
1159 	u_int const head = kring->rhead;
1160 	u_int n;
1161 	struct netmap_adapter *na = kring->na;
1162 
1163 	for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1164 		struct mbuf *m;
1165 		struct netmap_slot *slot = &kring->ring->slot[n];
1166 
1167 		if ((slot->flags & NS_FORWARD) == 0 && !force)
1168 			continue;
1169 		if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1170 			RD(5, "bad pkt at %d len %d", n, slot->len);
1171 			continue;
1172 		}
1173 		slot->flags &= ~NS_FORWARD; // XXX needed ?
1174 		/* XXX TODO: adapt to the case of a multisegment packet */
1175 		m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1176 
1177 		if (m == NULL)
1178 			break;
1179 		mbq_enqueue(q, m);
1180 	}
1181 }
1182 
1183 static inline int
1184 _nm_may_forward(struct netmap_kring *kring)
1185 {
1186 	return	((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1187 		 kring->na->na_flags & NAF_HOST_RINGS &&
1188 		 kring->tx == NR_RX);
1189 }
1190 
1191 static inline int
1192 nm_may_forward_up(struct netmap_kring *kring)
1193 {
1194 	return	_nm_may_forward(kring) &&
1195 		 kring->ring_id != kring->na->num_rx_rings;
1196 }
1197 
1198 static inline int
1199 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1200 {
1201 	return	_nm_may_forward(kring) &&
1202 		 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1203 		 kring->ring_id == kring->na->num_rx_rings;
1204 }
1205 
1206 /*
1207  * Send to the NIC rings packets marked NS_FORWARD between
1208  * kring->nr_hwcur and kring->rhead.
1209  * Called under kring->rx_queue.lock on the sw rx ring.
1210  *
1211  * It can only be called if the user opened all the TX hw rings,
1212  * see NAF_CAN_FORWARD_DOWN flag.
1213  * We can touch the TX netmap rings (slots, head and cur) since
1214  * we are in poll/ioctl system call context, and the application
1215  * is not supposed to touch the ring (using a different thread)
1216  * during the execution of the system call.
1217  */
1218 static u_int
1219 netmap_sw_to_nic(struct netmap_adapter *na)
1220 {
1221 	struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1222 	struct netmap_slot *rxslot = kring->ring->slot;
1223 	u_int i, rxcur = kring->nr_hwcur;
1224 	u_int const head = kring->rhead;
1225 	u_int const src_lim = kring->nkr_num_slots - 1;
1226 	u_int sent = 0;
1227 
1228 	/* scan rings to find space, then fill as much as possible */
1229 	for (i = 0; i < na->num_tx_rings; i++) {
1230 		struct netmap_kring *kdst = na->tx_rings[i];
1231 		struct netmap_ring *rdst = kdst->ring;
1232 		u_int const dst_lim = kdst->nkr_num_slots - 1;
1233 
1234 		/* XXX do we trust ring or kring->rcur,rtail ? */
1235 		for (; rxcur != head && !nm_ring_empty(rdst);
1236 		     rxcur = nm_next(rxcur, src_lim) ) {
1237 			struct netmap_slot *src, *dst, tmp;
1238 			u_int dst_head = rdst->head;
1239 
1240 			src = &rxslot[rxcur];
1241 			if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1242 				continue;
1243 
1244 			sent++;
1245 
1246 			dst = &rdst->slot[dst_head];
1247 
1248 			tmp = *src;
1249 
1250 			src->buf_idx = dst->buf_idx;
1251 			src->flags = NS_BUF_CHANGED;
1252 
1253 			dst->buf_idx = tmp.buf_idx;
1254 			dst->len = tmp.len;
1255 			dst->flags = NS_BUF_CHANGED;
1256 
1257 			rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1258 		}
1259 		/* if (sent) XXX txsync ? it would be just an optimization */
1260 	}
1261 	return sent;
1262 }
1263 
1264 
1265 /*
1266  * netmap_txsync_to_host() passes packets up. We are called from a
1267  * system call in user process context, and the only contention
1268  * can be among multiple user threads erroneously calling
1269  * this routine concurrently.
1270  */
1271 static int
1272 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1273 {
1274 	struct netmap_adapter *na = kring->na;
1275 	u_int const lim = kring->nkr_num_slots - 1;
1276 	u_int const head = kring->rhead;
1277 	struct mbq q;
1278 
1279 	/* Take packets from hwcur to head and pass them up.
1280 	 * Force hwcur = head since netmap_grab_packets() stops at head
1281 	 */
1282 	mbq_init(&q);
1283 	netmap_grab_packets(kring, &q, 1 /* force */);
1284 	ND("have %d pkts in queue", mbq_len(&q));
1285 	kring->nr_hwcur = head;
1286 	kring->nr_hwtail = head + lim;
1287 	if (kring->nr_hwtail > lim)
1288 		kring->nr_hwtail -= lim + 1;
1289 
1290 	netmap_send_up(na->ifp, &q);
1291 	return 0;
1292 }
1293 
1294 
1295 /*
1296  * rxsync backend for packets coming from the host stack.
1297  * They have been put in kring->rx_queue by netmap_transmit().
1298  * We protect access to the kring using kring->rx_queue.lock
1299  *
1300  * also moves to the nic hw rings any packet the user has marked
1301  * for transparent-mode forwarding, then sets the NR_FORWARD
1302  * flag in the kring to let the caller push them out
1303  */
1304 static int
1305 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1306 {
1307 	struct netmap_adapter *na = kring->na;
1308 	struct netmap_ring *ring = kring->ring;
1309 	u_int nm_i, n;
1310 	u_int const lim = kring->nkr_num_slots - 1;
1311 	u_int const head = kring->rhead;
1312 	int ret = 0;
1313 	struct mbq *q = &kring->rx_queue, fq;
1314 
1315 	mbq_init(&fq); /* fq holds packets to be freed */
1316 
1317 	mbq_lock(q);
1318 
1319 	/* First part: import newly received packets */
1320 	n = mbq_len(q);
1321 	if (n) { /* grab packets from the queue */
1322 		struct mbuf *m;
1323 		uint32_t stop_i;
1324 
1325 		nm_i = kring->nr_hwtail;
1326 		stop_i = nm_prev(kring->nr_hwcur, lim);
1327 		while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1328 			int len = MBUF_LEN(m);
1329 			struct netmap_slot *slot = &ring->slot[nm_i];
1330 
1331 			m_copydata(m, 0, len, NMB(na, slot));
1332 			ND("nm %d len %d", nm_i, len);
1333 			if (netmap_debug & NM_DEBUG_HOST)
1334 				nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1335 
1336 			slot->len = len;
1337 			slot->flags = 0;
1338 			nm_i = nm_next(nm_i, lim);
1339 			mbq_enqueue(&fq, m);
1340 		}
1341 		kring->nr_hwtail = nm_i;
1342 	}
1343 
1344 	/*
1345 	 * Second part: skip past packets that userspace has released.
1346 	 */
1347 	nm_i = kring->nr_hwcur;
1348 	if (nm_i != head) { /* something was released */
1349 		if (nm_may_forward_down(kring, flags)) {
1350 			ret = netmap_sw_to_nic(na);
1351 			if (ret > 0) {
1352 				kring->nr_kflags |= NR_FORWARD;
1353 				ret = 0;
1354 			}
1355 		}
1356 		kring->nr_hwcur = head;
1357 	}
1358 
1359 	mbq_unlock(q);
1360 
1361 	mbq_purge(&fq);
1362 	mbq_fini(&fq);
1363 
1364 	return ret;
1365 }
1366 
1367 
1368 /* Get a netmap adapter for the port.
1369  *
1370  * If it is possible to satisfy the request, return 0
1371  * with *na containing the netmap adapter found.
1372  * Otherwise return an error code, with *na containing NULL.
1373  *
1374  * When the port is attached to a bridge, we always return
1375  * EBUSY.
1376  * Otherwise, if the port is already bound to a file descriptor,
1377  * then we unconditionally return the existing adapter into *na.
1378  * In all the other cases, we return (into *na) either native,
1379  * generic or NULL, according to the following table:
1380  *
1381  *					native_support
1382  * active_fds   dev.netmap.admode         YES     NO
1383  * -------------------------------------------------------
1384  *    >0              *                 NA(ifp) NA(ifp)
1385  *
1386  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
1387  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
1388  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
1389  *
1390  */
1391 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1392 int
1393 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1394 {
1395 	/* generic support */
1396 	int i = netmap_admode;	/* Take a snapshot. */
1397 	struct netmap_adapter *prev_na;
1398 	int error = 0;
1399 
1400 	*na = NULL; /* default */
1401 
1402 	/* reset in case of invalid value */
1403 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1404 		i = netmap_admode = NETMAP_ADMODE_BEST;
1405 
1406 	if (NM_NA_VALID(ifp)) {
1407 		prev_na = NA(ifp);
1408 		/* If an adapter already exists, return it if
1409 		 * there are active file descriptors or if
1410 		 * netmap is not forced to use generic
1411 		 * adapters.
1412 		 */
1413 		if (NETMAP_OWNED_BY_ANY(prev_na)
1414 			|| i != NETMAP_ADMODE_GENERIC
1415 			|| prev_na->na_flags & NAF_FORCE_NATIVE
1416 #ifdef WITH_PIPES
1417 			/* ugly, but we cannot allow an adapter switch
1418 			 * if some pipe is referring to this one
1419 			 */
1420 			|| prev_na->na_next_pipe > 0
1421 #endif
1422 		) {
1423 			*na = prev_na;
1424 			goto assign_mem;
1425 		}
1426 	}
1427 
1428 	/* If there isn't native support and netmap is not allowed
1429 	 * to use generic adapters, we cannot satisfy the request.
1430 	 */
1431 	if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1432 		return EOPNOTSUPP;
1433 
1434 	/* Otherwise, create a generic adapter and return it,
1435 	 * saving the previously used netmap adapter, if any.
1436 	 *
1437 	 * Note that here 'prev_na', if not NULL, MUST be a
1438 	 * native adapter, and CANNOT be a generic one. This is
1439 	 * true because generic adapters are created on demand, and
1440 	 * destroyed when not used anymore. Therefore, if the adapter
1441 	 * currently attached to an interface 'ifp' is generic, it
1442 	 * must be that
1443 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1444 	 * Consequently, if NA(ifp) is generic, we will enter one of
1445 	 * the branches above. This ensures that we never override
1446 	 * a generic adapter with another generic adapter.
1447 	 */
1448 	error = generic_netmap_attach(ifp);
1449 	if (error)
1450 		return error;
1451 
1452 	*na = NA(ifp);
1453 
1454 assign_mem:
1455 	if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1456 	    (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1457 		(*na)->nm_mem_prev = (*na)->nm_mem;
1458 		(*na)->nm_mem = netmap_mem_get(nmd);
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 /*
1465  * MUST BE CALLED UNDER NMG_LOCK()
1466  *
1467  * Get a refcounted reference to a netmap adapter attached
1468  * to the interface specified by req.
1469  * This is always called in the execution of an ioctl().
1470  *
1471  * Return ENXIO if the interface specified by the request does
1472  * not exist, ENOTSUP if netmap is not supported by the interface,
1473  * EBUSY if the interface is already attached to a bridge,
1474  * EINVAL if parameters are invalid, ENOMEM if needed resources
1475  * could not be allocated.
1476  * If successful, hold a reference to the netmap adapter.
1477  *
1478  * If the interface specified by req is a system one, also keep
1479  * a reference to it and return a valid *ifp.
1480  */
1481 int
1482 netmap_get_na(struct nmreq_header *hdr,
1483 	      struct netmap_adapter **na, struct ifnet **ifp,
1484 	      struct netmap_mem_d *nmd, int create)
1485 {
1486 	struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1487 	int error = 0;
1488 	struct netmap_adapter *ret = NULL;
1489 	int nmd_ref = 0;
1490 
1491 	*na = NULL;     /* default return value */
1492 	*ifp = NULL;
1493 
1494 	if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1495 		return EINVAL;
1496 	}
1497 
1498 	if (req->nr_mode == NR_REG_PIPE_MASTER ||
1499 			req->nr_mode == NR_REG_PIPE_SLAVE) {
1500 		/* Do not accept deprecated pipe modes. */
1501 		nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1502 		return EINVAL;
1503 	}
1504 
1505 	NMG_LOCK_ASSERT();
1506 
1507 	/* if the request contain a memid, try to find the
1508 	 * corresponding memory region
1509 	 */
1510 	if (nmd == NULL && req->nr_mem_id) {
1511 		nmd = netmap_mem_find(req->nr_mem_id);
1512 		if (nmd == NULL)
1513 			return EINVAL;
1514 		/* keep the rereference */
1515 		nmd_ref = 1;
1516 	}
1517 
1518 	/* We cascade through all possible types of netmap adapter.
1519 	 * All netmap_get_*_na() functions return an error and an na,
1520 	 * with the following combinations:
1521 	 *
1522 	 * error    na
1523 	 *   0	   NULL		type doesn't match
1524 	 *  !0	   NULL		type matches, but na creation/lookup failed
1525 	 *   0	  !NULL		type matches and na created/found
1526 	 *  !0    !NULL		impossible
1527 	 */
1528 	error = netmap_get_null_na(hdr, na, nmd, create);
1529 	if (error || *na != NULL)
1530 		goto out;
1531 
1532 	/* try to see if this is a monitor port */
1533 	error = netmap_get_monitor_na(hdr, na, nmd, create);
1534 	if (error || *na != NULL)
1535 		goto out;
1536 
1537 	/* try to see if this is a pipe port */
1538 	error = netmap_get_pipe_na(hdr, na, nmd, create);
1539 	if (error || *na != NULL)
1540 		goto out;
1541 
1542 	/* try to see if this is a bridge port */
1543 	error = netmap_get_vale_na(hdr, na, nmd, create);
1544 	if (error)
1545 		goto out;
1546 
1547 	if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1548 		goto out;
1549 
1550 	/*
1551 	 * This must be a hardware na, lookup the name in the system.
1552 	 * Note that by hardware we actually mean "it shows up in ifconfig".
1553 	 * This may still be a tap, a veth/epair, or even a
1554 	 * persistent VALE port.
1555 	 */
1556 	*ifp = ifunit_ref(hdr->nr_name);
1557 	if (*ifp == NULL) {
1558 		error = ENXIO;
1559 		goto out;
1560 	}
1561 
1562 	error = netmap_get_hw_na(*ifp, nmd, &ret);
1563 	if (error)
1564 		goto out;
1565 
1566 	*na = ret;
1567 	netmap_adapter_get(ret);
1568 
1569 out:
1570 	if (error) {
1571 		if (ret)
1572 			netmap_adapter_put(ret);
1573 		if (*ifp) {
1574 			if_rele(*ifp);
1575 			*ifp = NULL;
1576 		}
1577 	}
1578 	if (nmd_ref)
1579 		netmap_mem_put(nmd);
1580 
1581 	return error;
1582 }
1583 
1584 /* undo netmap_get_na() */
1585 void
1586 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1587 {
1588 	if (ifp)
1589 		if_rele(ifp);
1590 	if (na)
1591 		netmap_adapter_put(na);
1592 }
1593 
1594 
1595 #define NM_FAIL_ON(t) do {						\
1596 	if (unlikely(t)) {						\
1597 		RD(5, "%s: fail '" #t "' "				\
1598 			"h %d c %d t %d "				\
1599 			"rh %d rc %d rt %d "				\
1600 			"hc %d ht %d",					\
1601 			kring->name,					\
1602 			head, cur, ring->tail,				\
1603 			kring->rhead, kring->rcur, kring->rtail,	\
1604 			kring->nr_hwcur, kring->nr_hwtail);		\
1605 		return kring->nkr_num_slots;				\
1606 	}								\
1607 } while (0)
1608 
1609 /*
1610  * validate parameters on entry for *_txsync()
1611  * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1612  * in case of error.
1613  *
1614  * rhead, rcur and rtail=hwtail are stored from previous round.
1615  * hwcur is the next packet to send to the ring.
1616  *
1617  * We want
1618  *    hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1619  *
1620  * hwcur, rhead, rtail and hwtail are reliable
1621  */
1622 u_int
1623 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1624 {
1625 	u_int head = ring->head; /* read only once */
1626 	u_int cur = ring->cur; /* read only once */
1627 	u_int n = kring->nkr_num_slots;
1628 
1629 	ND(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1630 		kring->name,
1631 		kring->nr_hwcur, kring->nr_hwtail,
1632 		ring->head, ring->cur, ring->tail);
1633 #if 1 /* kernel sanity checks; but we can trust the kring. */
1634 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1635 	    kring->rtail >= n ||  kring->nr_hwtail >= n);
1636 #endif /* kernel sanity checks */
1637 	/*
1638 	 * user sanity checks. We only use head,
1639 	 * A, B, ... are possible positions for head:
1640 	 *
1641 	 *  0    A  rhead   B  rtail   C  n-1
1642 	 *  0    D  rtail   E  rhead   F  n-1
1643 	 *
1644 	 * B, F, D are valid. A, C, E are wrong
1645 	 */
1646 	if (kring->rtail >= kring->rhead) {
1647 		/* want rhead <= head <= rtail */
1648 		NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1649 		/* and also head <= cur <= rtail */
1650 		NM_FAIL_ON(cur < head || cur > kring->rtail);
1651 	} else { /* here rtail < rhead */
1652 		/* we need head outside rtail .. rhead */
1653 		NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1654 
1655 		/* two cases now: head <= rtail or head >= rhead  */
1656 		if (head <= kring->rtail) {
1657 			/* want head <= cur <= rtail */
1658 			NM_FAIL_ON(cur < head || cur > kring->rtail);
1659 		} else { /* head >= rhead */
1660 			/* cur must be outside rtail..head */
1661 			NM_FAIL_ON(cur > kring->rtail && cur < head);
1662 		}
1663 	}
1664 	if (ring->tail != kring->rtail) {
1665 		RD(5, "%s tail overwritten was %d need %d", kring->name,
1666 			ring->tail, kring->rtail);
1667 		ring->tail = kring->rtail;
1668 	}
1669 	kring->rhead = head;
1670 	kring->rcur = cur;
1671 	return head;
1672 }
1673 
1674 
1675 /*
1676  * validate parameters on entry for *_rxsync()
1677  * Returns ring->head if ok, kring->nkr_num_slots on error.
1678  *
1679  * For a valid configuration,
1680  * hwcur <= head <= cur <= tail <= hwtail
1681  *
1682  * We only consider head and cur.
1683  * hwcur and hwtail are reliable.
1684  *
1685  */
1686 u_int
1687 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1688 {
1689 	uint32_t const n = kring->nkr_num_slots;
1690 	uint32_t head, cur;
1691 
1692 	ND(5,"%s kc %d kt %d h %d c %d t %d",
1693 		kring->name,
1694 		kring->nr_hwcur, kring->nr_hwtail,
1695 		ring->head, ring->cur, ring->tail);
1696 	/*
1697 	 * Before storing the new values, we should check they do not
1698 	 * move backwards. However:
1699 	 * - head is not an issue because the previous value is hwcur;
1700 	 * - cur could in principle go back, however it does not matter
1701 	 *   because we are processing a brand new rxsync()
1702 	 */
1703 	cur = kring->rcur = ring->cur;	/* read only once */
1704 	head = kring->rhead = ring->head;	/* read only once */
1705 #if 1 /* kernel sanity checks */
1706 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1707 #endif /* kernel sanity checks */
1708 	/* user sanity checks */
1709 	if (kring->nr_hwtail >= kring->nr_hwcur) {
1710 		/* want hwcur <= rhead <= hwtail */
1711 		NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1712 		/* and also rhead <= rcur <= hwtail */
1713 		NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1714 	} else {
1715 		/* we need rhead outside hwtail..hwcur */
1716 		NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1717 		/* two cases now: head <= hwtail or head >= hwcur  */
1718 		if (head <= kring->nr_hwtail) {
1719 			/* want head <= cur <= hwtail */
1720 			NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1721 		} else {
1722 			/* cur must be outside hwtail..head */
1723 			NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1724 		}
1725 	}
1726 	if (ring->tail != kring->rtail) {
1727 		RD(5, "%s tail overwritten was %d need %d",
1728 			kring->name,
1729 			ring->tail, kring->rtail);
1730 		ring->tail = kring->rtail;
1731 	}
1732 	return head;
1733 }
1734 
1735 
1736 /*
1737  * Error routine called when txsync/rxsync detects an error.
1738  * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1739  * Return 1 on reinit.
1740  *
1741  * This routine is only called by the upper half of the kernel.
1742  * It only reads hwcur (which is changed only by the upper half, too)
1743  * and hwtail (which may be changed by the lower half, but only on
1744  * a tx ring and only to increase it, so any error will be recovered
1745  * on the next call). For the above, we don't strictly need to call
1746  * it under lock.
1747  */
1748 int
1749 netmap_ring_reinit(struct netmap_kring *kring)
1750 {
1751 	struct netmap_ring *ring = kring->ring;
1752 	u_int i, lim = kring->nkr_num_slots - 1;
1753 	int errors = 0;
1754 
1755 	// XXX KASSERT nm_kr_tryget
1756 	RD(10, "called for %s", kring->name);
1757 	// XXX probably wrong to trust userspace
1758 	kring->rhead = ring->head;
1759 	kring->rcur  = ring->cur;
1760 	kring->rtail = ring->tail;
1761 
1762 	if (ring->cur > lim)
1763 		errors++;
1764 	if (ring->head > lim)
1765 		errors++;
1766 	if (ring->tail > lim)
1767 		errors++;
1768 	for (i = 0; i <= lim; i++) {
1769 		u_int idx = ring->slot[i].buf_idx;
1770 		u_int len = ring->slot[i].len;
1771 		if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1772 			RD(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1773 			ring->slot[i].buf_idx = 0;
1774 			ring->slot[i].len = 0;
1775 		} else if (len > NETMAP_BUF_SIZE(kring->na)) {
1776 			ring->slot[i].len = 0;
1777 			RD(5, "bad len at slot %d idx %d len %d", i, idx, len);
1778 		}
1779 	}
1780 	if (errors) {
1781 		RD(10, "total %d errors", errors);
1782 		RD(10, "%s reinit, cur %d -> %d tail %d -> %d",
1783 			kring->name,
1784 			ring->cur, kring->nr_hwcur,
1785 			ring->tail, kring->nr_hwtail);
1786 		ring->head = kring->rhead = kring->nr_hwcur;
1787 		ring->cur  = kring->rcur  = kring->nr_hwcur;
1788 		ring->tail = kring->rtail = kring->nr_hwtail;
1789 	}
1790 	return (errors ? 1 : 0);
1791 }
1792 
1793 /* interpret the ringid and flags fields of an nmreq, by translating them
1794  * into a pair of intervals of ring indices:
1795  *
1796  * [priv->np_txqfirst, priv->np_txqlast) and
1797  * [priv->np_rxqfirst, priv->np_rxqlast)
1798  *
1799  */
1800 int
1801 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1802 			uint16_t nr_ringid, uint64_t nr_flags)
1803 {
1804 	struct netmap_adapter *na = priv->np_na;
1805 	int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1806 	enum txrx t;
1807 	u_int j;
1808 
1809 	for_rx_tx(t) {
1810 		if (nr_flags & excluded_direction[t]) {
1811 			priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1812 			continue;
1813 		}
1814 		switch (nr_mode) {
1815 		case NR_REG_ALL_NIC:
1816 		case NR_REG_NULL:
1817 			priv->np_qfirst[t] = 0;
1818 			priv->np_qlast[t] = nma_get_nrings(na, t);
1819 			ND("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1820 				priv->np_qfirst[t], priv->np_qlast[t]);
1821 			break;
1822 		case NR_REG_SW:
1823 		case NR_REG_NIC_SW:
1824 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1825 				nm_prerr("host rings not supported");
1826 				return EINVAL;
1827 			}
1828 			priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1829 				nma_get_nrings(na, t) : 0);
1830 			priv->np_qlast[t] = netmap_all_rings(na, t);
1831 			ND("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1832 				nm_txrx2str(t),
1833 				priv->np_qfirst[t], priv->np_qlast[t]);
1834 			break;
1835 		case NR_REG_ONE_NIC:
1836 			if (nr_ringid >= na->num_tx_rings &&
1837 					nr_ringid >= na->num_rx_rings) {
1838 				nm_prerr("invalid ring id %d", nr_ringid);
1839 				return EINVAL;
1840 			}
1841 			/* if not enough rings, use the first one */
1842 			j = nr_ringid;
1843 			if (j >= nma_get_nrings(na, t))
1844 				j = 0;
1845 			priv->np_qfirst[t] = j;
1846 			priv->np_qlast[t] = j + 1;
1847 			ND("ONE_NIC: %s %d %d", nm_txrx2str(t),
1848 				priv->np_qfirst[t], priv->np_qlast[t]);
1849 			break;
1850 		default:
1851 			nm_prerr("invalid regif type %d", nr_mode);
1852 			return EINVAL;
1853 		}
1854 	}
1855 	priv->np_flags = nr_flags;
1856 
1857 	/* Allow transparent forwarding mode in the host --> nic
1858 	 * direction only if all the TX hw rings have been opened. */
1859 	if (priv->np_qfirst[NR_TX] == 0 &&
1860 			priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1861 		priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1862 	}
1863 
1864 	if (netmap_verbose) {
1865 		nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1866 			na->name,
1867 			priv->np_qfirst[NR_TX],
1868 			priv->np_qlast[NR_TX],
1869 			priv->np_qfirst[NR_RX],
1870 			priv->np_qlast[NR_RX],
1871 			nr_ringid);
1872 	}
1873 	return 0;
1874 }
1875 
1876 
1877 /*
1878  * Set the ring ID. For devices with a single queue, a request
1879  * for all rings is the same as a single ring.
1880  */
1881 static int
1882 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1883 		uint16_t nr_ringid, uint64_t nr_flags)
1884 {
1885 	struct netmap_adapter *na = priv->np_na;
1886 	int error;
1887 	enum txrx t;
1888 
1889 	error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags);
1890 	if (error) {
1891 		return error;
1892 	}
1893 
1894 	priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1;
1895 
1896 	/* optimization: count the users registered for more than
1897 	 * one ring, which are the ones sleeping on the global queue.
1898 	 * The default netmap_notify() callback will then
1899 	 * avoid signaling the global queue if nobody is using it
1900 	 */
1901 	for_rx_tx(t) {
1902 		if (nm_si_user(priv, t))
1903 			na->si_users[t]++;
1904 	}
1905 	return 0;
1906 }
1907 
1908 static void
1909 netmap_unset_ringid(struct netmap_priv_d *priv)
1910 {
1911 	struct netmap_adapter *na = priv->np_na;
1912 	enum txrx t;
1913 
1914 	for_rx_tx(t) {
1915 		if (nm_si_user(priv, t))
1916 			na->si_users[t]--;
1917 		priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1918 	}
1919 	priv->np_flags = 0;
1920 	priv->np_txpoll = 0;
1921 	priv->np_kloop_state = 0;
1922 }
1923 
1924 
1925 /* Set the nr_pending_mode for the requested rings.
1926  * If requested, also try to get exclusive access to the rings, provided
1927  * the rings we want to bind are not exclusively owned by a previous bind.
1928  */
1929 static int
1930 netmap_krings_get(struct netmap_priv_d *priv)
1931 {
1932 	struct netmap_adapter *na = priv->np_na;
1933 	u_int i;
1934 	struct netmap_kring *kring;
1935 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1936 	enum txrx t;
1937 
1938 	if (netmap_debug & NM_DEBUG_ON)
1939 		nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
1940 			na->name,
1941 			priv->np_qfirst[NR_TX],
1942 			priv->np_qlast[NR_TX],
1943 			priv->np_qfirst[NR_RX],
1944 			priv->np_qlast[NR_RX]);
1945 
1946 	/* first round: check that all the requested rings
1947 	 * are neither alread exclusively owned, nor we
1948 	 * want exclusive ownership when they are already in use
1949 	 */
1950 	for_rx_tx(t) {
1951 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1952 			kring = NMR(na, t)[i];
1953 			if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
1954 			    (kring->users && excl))
1955 			{
1956 				ND("ring %s busy", kring->name);
1957 				return EBUSY;
1958 			}
1959 		}
1960 	}
1961 
1962 	/* second round: increment usage count (possibly marking them
1963 	 * as exclusive) and set the nr_pending_mode
1964 	 */
1965 	for_rx_tx(t) {
1966 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
1967 			kring = NMR(na, t)[i];
1968 			kring->users++;
1969 			if (excl)
1970 				kring->nr_kflags |= NKR_EXCLUSIVE;
1971 	                kring->nr_pending_mode = NKR_NETMAP_ON;
1972 		}
1973 	}
1974 
1975 	return 0;
1976 
1977 }
1978 
1979 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
1980  * if was asked on regif, and unset the nr_pending_mode if we are the
1981  * last users of the involved rings. */
1982 static void
1983 netmap_krings_put(struct netmap_priv_d *priv)
1984 {
1985 	struct netmap_adapter *na = priv->np_na;
1986 	u_int i;
1987 	struct netmap_kring *kring;
1988 	int excl = (priv->np_flags & NR_EXCLUSIVE);
1989 	enum txrx t;
1990 
1991 	ND("%s: releasing tx [%d, %d) rx [%d, %d)",
1992 			na->name,
1993 			priv->np_qfirst[NR_TX],
1994 			priv->np_qlast[NR_TX],
1995 			priv->np_qfirst[NR_RX],
1996 			priv->np_qlast[MR_RX]);
1997 
1998 	for_rx_tx(t) {
1999 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2000 			kring = NMR(na, t)[i];
2001 			if (excl)
2002 				kring->nr_kflags &= ~NKR_EXCLUSIVE;
2003 			kring->users--;
2004 			if (kring->users == 0)
2005 				kring->nr_pending_mode = NKR_NETMAP_OFF;
2006 		}
2007 	}
2008 }
2009 
2010 static int
2011 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2012 {
2013 	return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2014 }
2015 
2016 /* Validate the CSB entries for both directions (atok and ktoa).
2017  * To be called under NMG_LOCK(). */
2018 static int
2019 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2020 {
2021 	struct nm_csb_atok *csb_atok_base =
2022 		(struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2023 	struct nm_csb_ktoa *csb_ktoa_base =
2024 		(struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2025 	enum txrx t;
2026 	int num_rings[NR_TXRX], tot_rings;
2027 	size_t entry_size[2];
2028 	void *csb_start[2];
2029 	int i;
2030 
2031 	if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2032 		nm_prerr("Cannot update CSB while kloop is running");
2033 		return EBUSY;
2034 	}
2035 
2036 	tot_rings = 0;
2037 	for_rx_tx(t) {
2038 		num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2039 		tot_rings += num_rings[t];
2040 	}
2041 	if (tot_rings <= 0)
2042 		return 0;
2043 
2044 	if (!(priv->np_flags & NR_EXCLUSIVE)) {
2045 		nm_prerr("CSB mode requires NR_EXCLUSIVE");
2046 		return EINVAL;
2047 	}
2048 
2049 	entry_size[0] = sizeof(*csb_atok_base);
2050 	entry_size[1] = sizeof(*csb_ktoa_base);
2051 	csb_start[0] = (void *)csb_atok_base;
2052 	csb_start[1] = (void *)csb_ktoa_base;
2053 
2054 	for (i = 0; i < 2; i++) {
2055 		/* On Linux we could use access_ok() to simplify
2056 		 * the validation. However, the advantage of
2057 		 * this approach is that it works also on
2058 		 * FreeBSD. */
2059 		size_t csb_size = tot_rings * entry_size[i];
2060 		void *tmp;
2061 		int err;
2062 
2063 		if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2064 			nm_prerr("Unaligned CSB address");
2065 			return EINVAL;
2066 		}
2067 
2068 		tmp = nm_os_malloc(csb_size);
2069 		if (!tmp)
2070 			return ENOMEM;
2071 		if (i == 0) {
2072 			/* Application --> kernel direction. */
2073 			err = copyin(csb_start[i], tmp, csb_size);
2074 		} else {
2075 			/* Kernel --> application direction. */
2076 			memset(tmp, 0, csb_size);
2077 			err = copyout(tmp, csb_start[i], csb_size);
2078 		}
2079 		nm_os_free(tmp);
2080 		if (err) {
2081 			nm_prerr("Invalid CSB address");
2082 			return err;
2083 		}
2084 	}
2085 
2086 	priv->np_csb_atok_base = csb_atok_base;
2087 	priv->np_csb_ktoa_base = csb_ktoa_base;
2088 
2089 	/* Initialize the CSB. */
2090 	for_rx_tx(t) {
2091 		for (i = 0; i < num_rings[t]; i++) {
2092 			struct netmap_kring *kring =
2093 				NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2094 			struct nm_csb_atok *csb_atok = csb_atok_base + i;
2095 			struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2096 
2097 			if (t == NR_RX) {
2098 				csb_atok += num_rings[NR_TX];
2099 				csb_ktoa += num_rings[NR_TX];
2100 			}
2101 
2102 			CSB_WRITE(csb_atok, head, kring->rhead);
2103 			CSB_WRITE(csb_atok, cur, kring->rcur);
2104 			CSB_WRITE(csb_atok, appl_need_kick, 1);
2105 			CSB_WRITE(csb_atok, sync_flags, 1);
2106 			CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2107 			CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2108 			CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2109 
2110 			nm_prinf("csb_init for kring %s: head %u, cur %u, "
2111 				"hwcur %u, hwtail %u", kring->name,
2112 				kring->rhead, kring->rcur, kring->nr_hwcur,
2113 				kring->nr_hwtail);
2114 		}
2115 	}
2116 
2117 	return 0;
2118 }
2119 
2120 /*
2121  * possibly move the interface to netmap-mode.
2122  * If success it returns a pointer to netmap_if, otherwise NULL.
2123  * This must be called with NMG_LOCK held.
2124  *
2125  * The following na callbacks are called in the process:
2126  *
2127  * na->nm_config()			[by netmap_update_config]
2128  * (get current number and size of rings)
2129  *
2130  *  	We have a generic one for linux (netmap_linux_config).
2131  *  	The bwrap has to override this, since it has to forward
2132  *  	the request to the wrapped adapter (netmap_bwrap_config).
2133  *
2134  *
2135  * na->nm_krings_create()
2136  * (create and init the krings array)
2137  *
2138  * 	One of the following:
2139  *
2140  *	* netmap_hw_krings_create, 			(hw ports)
2141  *		creates the standard layout for the krings
2142  * 		and adds the mbq (used for the host rings).
2143  *
2144  * 	* netmap_vp_krings_create			(VALE ports)
2145  * 		add leases and scratchpads
2146  *
2147  * 	* netmap_pipe_krings_create			(pipes)
2148  * 		create the krings and rings of both ends and
2149  * 		cross-link them
2150  *
2151  *      * netmap_monitor_krings_create 			(monitors)
2152  *      	avoid allocating the mbq
2153  *
2154  *      * netmap_bwrap_krings_create			(bwraps)
2155  *      	create both the brap krings array,
2156  *      	the krings array of the wrapped adapter, and
2157  *      	(if needed) the fake array for the host adapter
2158  *
2159  * na->nm_register(, 1)
2160  * (put the adapter in netmap mode)
2161  *
2162  * 	This may be one of the following:
2163  *
2164  * 	* netmap_hw_reg				        (hw ports)
2165  * 		checks that the ifp is still there, then calls
2166  * 		the hardware specific callback;
2167  *
2168  * 	* netmap_vp_reg					(VALE ports)
2169  *		If the port is connected to a bridge,
2170  *		set the NAF_NETMAP_ON flag under the
2171  *		bridge write lock.
2172  *
2173  *	* netmap_pipe_reg				(pipes)
2174  *		inform the other pipe end that it is no
2175  *		longer responsible for the lifetime of this
2176  *		pipe end
2177  *
2178  *	* netmap_monitor_reg				(monitors)
2179  *		intercept the sync callbacks of the monitored
2180  *		rings
2181  *
2182  *	* netmap_bwrap_reg				(bwraps)
2183  *		cross-link the bwrap and hwna rings,
2184  *		forward the request to the hwna, override
2185  *		the hwna notify callback (to get the frames
2186  *		coming from outside go through the bridge).
2187  *
2188  *
2189  */
2190 int
2191 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2192 	uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags)
2193 {
2194 	struct netmap_if *nifp = NULL;
2195 	int error;
2196 
2197 	NMG_LOCK_ASSERT();
2198 	priv->np_na = na;     /* store the reference */
2199 	error = netmap_mem_finalize(na->nm_mem, na);
2200 	if (error)
2201 		goto err;
2202 
2203 	if (na->active_fds == 0) {
2204 
2205 		/* cache the allocator info in the na */
2206 		error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2207 		if (error)
2208 			goto err_drop_mem;
2209 		ND("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2210 					    na->na_lut.objsize);
2211 
2212 		/* ring configuration may have changed, fetch from the card */
2213 		netmap_update_config(na);
2214 	}
2215 
2216 	/* compute the range of tx and rx rings to monitor */
2217 	error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags);
2218 	if (error)
2219 		goto err_put_lut;
2220 
2221 	if (na->active_fds == 0) {
2222 		/*
2223 		 * If this is the first registration of the adapter,
2224 		 * perform sanity checks and create the in-kernel view
2225 		 * of the netmap rings (the netmap krings).
2226 		 */
2227 		if (na->ifp && nm_priv_rx_enabled(priv)) {
2228 			/* This netmap adapter is attached to an ifnet. */
2229 			unsigned nbs = NETMAP_BUF_SIZE(na);
2230 			unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2231 
2232 			ND("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2233 					na->name, mtu, na->rx_buf_maxsize, nbs);
2234 
2235 			if (na->rx_buf_maxsize == 0) {
2236 				nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2237 				error = EIO;
2238 				goto err_drop_mem;
2239 			}
2240 
2241 			if (mtu <= na->rx_buf_maxsize) {
2242 				/* The MTU fits a single NIC slot. We only
2243 				 * Need to check that netmap buffers are
2244 				 * large enough to hold an MTU. NS_MOREFRAG
2245 				 * cannot be used in this case. */
2246 				if (nbs < mtu) {
2247 					nm_prerr("error: netmap buf size (%u) "
2248 						"< device MTU (%u)", nbs, mtu);
2249 					error = EINVAL;
2250 					goto err_drop_mem;
2251 				}
2252 			} else {
2253 				/* More NIC slots may be needed to receive
2254 				 * or transmit a single packet. Check that
2255 				 * the adapter supports NS_MOREFRAG and that
2256 				 * netmap buffers are large enough to hold
2257 				 * the maximum per-slot size. */
2258 				if (!(na->na_flags & NAF_MOREFRAG)) {
2259 					nm_prerr("error: large MTU (%d) needed "
2260 						"but %s does not support "
2261 						"NS_MOREFRAG", mtu,
2262 						na->ifp->if_xname);
2263 					error = EINVAL;
2264 					goto err_drop_mem;
2265 				} else if (nbs < na->rx_buf_maxsize) {
2266 					nm_prerr("error: using NS_MOREFRAG on "
2267 						"%s requires netmap buf size "
2268 						">= %u", na->ifp->if_xname,
2269 						na->rx_buf_maxsize);
2270 					error = EINVAL;
2271 					goto err_drop_mem;
2272 				} else {
2273 					nm_prinf("info: netmap application on "
2274 						"%s needs to support "
2275 						"NS_MOREFRAG "
2276 						"(MTU=%u,netmap_buf_size=%u)",
2277 						na->ifp->if_xname, mtu, nbs);
2278 				}
2279 			}
2280 		}
2281 
2282 		/*
2283 		 * Depending on the adapter, this may also create
2284 		 * the netmap rings themselves
2285 		 */
2286 		error = na->nm_krings_create(na);
2287 		if (error)
2288 			goto err_put_lut;
2289 
2290 	}
2291 
2292 	/* now the krings must exist and we can check whether some
2293 	 * previous bind has exclusive ownership on them, and set
2294 	 * nr_pending_mode
2295 	 */
2296 	error = netmap_krings_get(priv);
2297 	if (error)
2298 		goto err_del_krings;
2299 
2300 	/* create all needed missing netmap rings */
2301 	error = netmap_mem_rings_create(na);
2302 	if (error)
2303 		goto err_rel_excl;
2304 
2305 	/* in all cases, create a new netmap if */
2306 	nifp = netmap_mem_if_new(na, priv);
2307 	if (nifp == NULL) {
2308 		error = ENOMEM;
2309 		goto err_rel_excl;
2310 	}
2311 
2312 	if (nm_kring_pending(priv)) {
2313 		/* Some kring is switching mode, tell the adapter to
2314 		 * react on this. */
2315 		error = na->nm_register(na, 1);
2316 		if (error)
2317 			goto err_del_if;
2318 	}
2319 
2320 	/* Commit the reference. */
2321 	na->active_fds++;
2322 
2323 	/*
2324 	 * advertise that the interface is ready by setting np_nifp.
2325 	 * The barrier is needed because readers (poll, *SYNC and mmap)
2326 	 * check for priv->np_nifp != NULL without locking
2327 	 */
2328 	mb(); /* make sure previous writes are visible to all CPUs */
2329 	priv->np_nifp = nifp;
2330 
2331 	return 0;
2332 
2333 err_del_if:
2334 	netmap_mem_if_delete(na, nifp);
2335 err_rel_excl:
2336 	netmap_krings_put(priv);
2337 	netmap_mem_rings_delete(na);
2338 err_del_krings:
2339 	if (na->active_fds == 0)
2340 		na->nm_krings_delete(na);
2341 err_put_lut:
2342 	if (na->active_fds == 0)
2343 		memset(&na->na_lut, 0, sizeof(na->na_lut));
2344 err_drop_mem:
2345 	netmap_mem_drop(na);
2346 err:
2347 	priv->np_na = NULL;
2348 	return error;
2349 }
2350 
2351 
2352 /*
2353  * update kring and ring at the end of rxsync/txsync.
2354  */
2355 static inline void
2356 nm_sync_finalize(struct netmap_kring *kring)
2357 {
2358 	/*
2359 	 * Update ring tail to what the kernel knows
2360 	 * After txsync: head/rhead/hwcur might be behind cur/rcur
2361 	 * if no carrier.
2362 	 */
2363 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
2364 
2365 	ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2366 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
2367 		kring->rhead, kring->rcur, kring->rtail);
2368 }
2369 
2370 /* set ring timestamp */
2371 static inline void
2372 ring_timestamp_set(struct netmap_ring *ring)
2373 {
2374 	if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2375 		microtime(&ring->ts);
2376 	}
2377 }
2378 
2379 static int nmreq_copyin(struct nmreq_header *, int);
2380 static int nmreq_copyout(struct nmreq_header *, int);
2381 static int nmreq_checkoptions(struct nmreq_header *);
2382 
2383 /*
2384  * ioctl(2) support for the "netmap" device.
2385  *
2386  * Following a list of accepted commands:
2387  * - NIOCCTRL		device control API
2388  * - NIOCTXSYNC		sync TX rings
2389  * - NIOCRXSYNC		sync RX rings
2390  * - SIOCGIFADDR	just for convenience
2391  * - NIOCGINFO		deprecated (legacy API)
2392  * - NIOCREGIF		deprecated (legacy API)
2393  *
2394  * Return 0 on success, errno otherwise.
2395  */
2396 int
2397 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2398 		struct thread *td, int nr_body_is_user)
2399 {
2400 	struct mbq q;	/* packets from RX hw queues to host stack */
2401 	struct netmap_adapter *na = NULL;
2402 	struct netmap_mem_d *nmd = NULL;
2403 	struct ifnet *ifp = NULL;
2404 	int error = 0;
2405 	u_int i, qfirst, qlast;
2406 	struct netmap_kring **krings;
2407 	int sync_flags;
2408 	enum txrx t;
2409 
2410 	switch (cmd) {
2411 	case NIOCCTRL: {
2412 		struct nmreq_header *hdr = (struct nmreq_header *)data;
2413 
2414 		if (hdr->nr_version < NETMAP_MIN_API ||
2415 		    hdr->nr_version > NETMAP_MAX_API) {
2416 			nm_prerr("API mismatch: got %d need %d",
2417 				hdr->nr_version, NETMAP_API);
2418 			return EINVAL;
2419 		}
2420 
2421 		/* Make a kernel-space copy of the user-space nr_body.
2422 		 * For convenince, the nr_body pointer and the pointers
2423 		 * in the options list will be replaced with their
2424 		 * kernel-space counterparts. The original pointers are
2425 		 * saved internally and later restored by nmreq_copyout
2426 		 */
2427 		error = nmreq_copyin(hdr, nr_body_is_user);
2428 		if (error) {
2429 			return error;
2430 		}
2431 
2432 		/* Sanitize hdr->nr_name. */
2433 		hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2434 
2435 		switch (hdr->nr_reqtype) {
2436 		case NETMAP_REQ_REGISTER: {
2437 			struct nmreq_register *req =
2438 				(struct nmreq_register *)(uintptr_t)hdr->nr_body;
2439 			struct netmap_if *nifp;
2440 
2441 			/* Protect access to priv from concurrent requests. */
2442 			NMG_LOCK();
2443 			do {
2444 				struct nmreq_option *opt;
2445 				u_int memflags;
2446 
2447 				if (priv->np_nifp != NULL) {	/* thread already registered */
2448 					error = EBUSY;
2449 					break;
2450 				}
2451 
2452 #ifdef WITH_EXTMEM
2453 				opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2454 						NETMAP_REQ_OPT_EXTMEM);
2455 				if (opt != NULL) {
2456 					struct nmreq_opt_extmem *e =
2457 						(struct nmreq_opt_extmem *)opt;
2458 
2459 					error = nmreq_checkduplicate(opt);
2460 					if (error) {
2461 						opt->nro_status = error;
2462 						break;
2463 					}
2464 					nmd = netmap_mem_ext_create(e->nro_usrptr,
2465 							&e->nro_info, &error);
2466 					opt->nro_status = error;
2467 					if (nmd == NULL)
2468 						break;
2469 				}
2470 #endif /* WITH_EXTMEM */
2471 
2472 				if (nmd == NULL && req->nr_mem_id) {
2473 					/* find the allocator and get a reference */
2474 					nmd = netmap_mem_find(req->nr_mem_id);
2475 					if (nmd == NULL) {
2476 						if (netmap_verbose) {
2477 							nm_prerr("%s: failed to find mem_id %u",
2478 									hdr->nr_name, req->nr_mem_id);
2479 						}
2480 						error = EINVAL;
2481 						break;
2482 					}
2483 				}
2484 				/* find the interface and a reference */
2485 				error = netmap_get_na(hdr, &na, &ifp, nmd,
2486 						      1 /* create */); /* keep reference */
2487 				if (error)
2488 					break;
2489 				if (NETMAP_OWNED_BY_KERN(na)) {
2490 					error = EBUSY;
2491 					break;
2492 				}
2493 
2494 				if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2495 					nm_prerr("virt_hdr_len=%d, but application does "
2496 						"not accept it", na->virt_hdr_len);
2497 					error = EIO;
2498 					break;
2499 				}
2500 
2501 				error = netmap_do_regif(priv, na, req->nr_mode,
2502 							req->nr_ringid, req->nr_flags);
2503 				if (error) {    /* reg. failed, release priv and ref */
2504 					break;
2505 				}
2506 
2507 				opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2508 							NETMAP_REQ_OPT_CSB);
2509 				if (opt != NULL) {
2510 					struct nmreq_opt_csb *csbo =
2511 						(struct nmreq_opt_csb *)opt;
2512 					error = nmreq_checkduplicate(opt);
2513 					if (!error) {
2514 						error = netmap_csb_validate(priv, csbo);
2515 					}
2516 					opt->nro_status = error;
2517 					if (error) {
2518 						netmap_do_unregif(priv);
2519 						break;
2520 					}
2521 				}
2522 
2523 				nifp = priv->np_nifp;
2524 				priv->np_td = td; /* for debugging purposes */
2525 
2526 				/* return the offset of the netmap_if object */
2527 				req->nr_rx_rings = na->num_rx_rings;
2528 				req->nr_tx_rings = na->num_tx_rings;
2529 				req->nr_rx_slots = na->num_rx_desc;
2530 				req->nr_tx_slots = na->num_tx_desc;
2531 				error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2532 					&req->nr_mem_id);
2533 				if (error) {
2534 					netmap_do_unregif(priv);
2535 					break;
2536 				}
2537 				if (memflags & NETMAP_MEM_PRIVATE) {
2538 					*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2539 				}
2540 				for_rx_tx(t) {
2541 					priv->np_si[t] = nm_si_user(priv, t) ?
2542 						&na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2543 				}
2544 
2545 				if (req->nr_extra_bufs) {
2546 					if (netmap_verbose)
2547 						nm_prinf("requested %d extra buffers",
2548 							req->nr_extra_bufs);
2549 					req->nr_extra_bufs = netmap_extra_alloc(na,
2550 						&nifp->ni_bufs_head, req->nr_extra_bufs);
2551 					if (netmap_verbose)
2552 						nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2553 				}
2554 				req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2555 
2556 				error = nmreq_checkoptions(hdr);
2557 				if (error) {
2558 					netmap_do_unregif(priv);
2559 					break;
2560 				}
2561 
2562 				/* store ifp reference so that priv destructor may release it */
2563 				priv->np_ifp = ifp;
2564 			} while (0);
2565 			if (error) {
2566 				netmap_unget_na(na, ifp);
2567 			}
2568 			/* release the reference from netmap_mem_find() or
2569 			 * netmap_mem_ext_create()
2570 			 */
2571 			if (nmd)
2572 				netmap_mem_put(nmd);
2573 			NMG_UNLOCK();
2574 			break;
2575 		}
2576 
2577 		case NETMAP_REQ_PORT_INFO_GET: {
2578 			struct nmreq_port_info_get *req =
2579 				(struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2580 
2581 			NMG_LOCK();
2582 			do {
2583 				u_int memflags;
2584 
2585 				if (hdr->nr_name[0] != '\0') {
2586 					/* Build a nmreq_register out of the nmreq_port_info_get,
2587 					 * so that we can call netmap_get_na(). */
2588 					struct nmreq_register regreq;
2589 					bzero(&regreq, sizeof(regreq));
2590 					regreq.nr_mode = NR_REG_ALL_NIC;
2591 					regreq.nr_tx_slots = req->nr_tx_slots;
2592 					regreq.nr_rx_slots = req->nr_rx_slots;
2593 					regreq.nr_tx_rings = req->nr_tx_rings;
2594 					regreq.nr_rx_rings = req->nr_rx_rings;
2595 					regreq.nr_mem_id = req->nr_mem_id;
2596 
2597 					/* get a refcount */
2598 					hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2599 					hdr->nr_body = (uintptr_t)&regreq;
2600 					error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2601 					hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2602 					hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2603 					if (error) {
2604 						na = NULL;
2605 						ifp = NULL;
2606 						break;
2607 					}
2608 					nmd = na->nm_mem; /* get memory allocator */
2609 				} else {
2610 					nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2611 					if (nmd == NULL) {
2612 						if (netmap_verbose)
2613 							nm_prerr("%s: failed to find mem_id %u",
2614 									hdr->nr_name,
2615 									req->nr_mem_id ? req->nr_mem_id : 1);
2616 						error = EINVAL;
2617 						break;
2618 					}
2619 				}
2620 
2621 				error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2622 					&req->nr_mem_id);
2623 				if (error)
2624 					break;
2625 				if (na == NULL) /* only memory info */
2626 					break;
2627 				netmap_update_config(na);
2628 				req->nr_rx_rings = na->num_rx_rings;
2629 				req->nr_tx_rings = na->num_tx_rings;
2630 				req->nr_rx_slots = na->num_rx_desc;
2631 				req->nr_tx_slots = na->num_tx_desc;
2632 			} while (0);
2633 			netmap_unget_na(na, ifp);
2634 			NMG_UNLOCK();
2635 			break;
2636 		}
2637 #ifdef WITH_VALE
2638 		case NETMAP_REQ_VALE_ATTACH: {
2639 			error = netmap_vale_attach(hdr, NULL /* userspace request */);
2640 			break;
2641 		}
2642 
2643 		case NETMAP_REQ_VALE_DETACH: {
2644 			error = netmap_vale_detach(hdr, NULL /* userspace request */);
2645 			break;
2646 		}
2647 
2648 		case NETMAP_REQ_VALE_LIST: {
2649 			error = netmap_vale_list(hdr);
2650 			break;
2651 		}
2652 
2653 		case NETMAP_REQ_PORT_HDR_SET: {
2654 			struct nmreq_port_hdr *req =
2655 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2656 			/* Build a nmreq_register out of the nmreq_port_hdr,
2657 			 * so that we can call netmap_get_bdg_na(). */
2658 			struct nmreq_register regreq;
2659 			bzero(&regreq, sizeof(regreq));
2660 			regreq.nr_mode = NR_REG_ALL_NIC;
2661 
2662 			/* For now we only support virtio-net headers, and only for
2663 			 * VALE ports, but this may change in future. Valid lengths
2664 			 * for the virtio-net header are 0 (no header), 10 and 12. */
2665 			if (req->nr_hdr_len != 0 &&
2666 				req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
2667 					req->nr_hdr_len != 12) {
2668 				if (netmap_verbose)
2669 					nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
2670 				error = EINVAL;
2671 				break;
2672 			}
2673 			NMG_LOCK();
2674 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2675 			hdr->nr_body = (uintptr_t)&regreq;
2676 			error = netmap_get_vale_na(hdr, &na, NULL, 0);
2677 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
2678 			hdr->nr_body = (uintptr_t)req;
2679 			if (na && !error) {
2680 				struct netmap_vp_adapter *vpna =
2681 					(struct netmap_vp_adapter *)na;
2682 				na->virt_hdr_len = req->nr_hdr_len;
2683 				if (na->virt_hdr_len) {
2684 					vpna->mfs = NETMAP_BUF_SIZE(na);
2685 				}
2686 				if (netmap_verbose)
2687 					nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
2688 				netmap_adapter_put(na);
2689 			} else if (!na) {
2690 				error = ENXIO;
2691 			}
2692 			NMG_UNLOCK();
2693 			break;
2694 		}
2695 
2696 		case NETMAP_REQ_PORT_HDR_GET: {
2697 			/* Get vnet-header length for this netmap port */
2698 			struct nmreq_port_hdr *req =
2699 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2700 			/* Build a nmreq_register out of the nmreq_port_hdr,
2701 			 * so that we can call netmap_get_bdg_na(). */
2702 			struct nmreq_register regreq;
2703 			struct ifnet *ifp;
2704 
2705 			bzero(&regreq, sizeof(regreq));
2706 			regreq.nr_mode = NR_REG_ALL_NIC;
2707 			NMG_LOCK();
2708 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2709 			hdr->nr_body = (uintptr_t)&regreq;
2710 			error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
2711 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
2712 			hdr->nr_body = (uintptr_t)req;
2713 			if (na && !error) {
2714 				req->nr_hdr_len = na->virt_hdr_len;
2715 			}
2716 			netmap_unget_na(na, ifp);
2717 			NMG_UNLOCK();
2718 			break;
2719 		}
2720 
2721 		case NETMAP_REQ_VALE_NEWIF: {
2722 			error = nm_vi_create(hdr);
2723 			break;
2724 		}
2725 
2726 		case NETMAP_REQ_VALE_DELIF: {
2727 			error = nm_vi_destroy(hdr->nr_name);
2728 			break;
2729 		}
2730 
2731 		case NETMAP_REQ_VALE_POLLING_ENABLE:
2732 		case NETMAP_REQ_VALE_POLLING_DISABLE: {
2733 			error = nm_bdg_polling(hdr);
2734 			break;
2735 		}
2736 #endif  /* WITH_VALE */
2737 		case NETMAP_REQ_POOLS_INFO_GET: {
2738 			/* Get information from the memory allocator used for
2739 			 * hdr->nr_name. */
2740 			struct nmreq_pools_info *req =
2741 				(struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
2742 			NMG_LOCK();
2743 			do {
2744 				/* Build a nmreq_register out of the nmreq_pools_info,
2745 				 * so that we can call netmap_get_na(). */
2746 				struct nmreq_register regreq;
2747 				bzero(&regreq, sizeof(regreq));
2748 				regreq.nr_mem_id = req->nr_mem_id;
2749 				regreq.nr_mode = NR_REG_ALL_NIC;
2750 
2751 				hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2752 				hdr->nr_body = (uintptr_t)&regreq;
2753 				error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2754 				hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
2755 				hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2756 				if (error) {
2757 					na = NULL;
2758 					ifp = NULL;
2759 					break;
2760 				}
2761 				nmd = na->nm_mem; /* grab the memory allocator */
2762 				if (nmd == NULL) {
2763 					error = EINVAL;
2764 					break;
2765 				}
2766 
2767 				/* Finalize the memory allocator, get the pools
2768 				 * information and release the allocator. */
2769 				error = netmap_mem_finalize(nmd, na);
2770 				if (error) {
2771 					break;
2772 				}
2773 				error = netmap_mem_pools_info_get(req, nmd);
2774 				netmap_mem_drop(na);
2775 			} while (0);
2776 			netmap_unget_na(na, ifp);
2777 			NMG_UNLOCK();
2778 			break;
2779 		}
2780 
2781 		case NETMAP_REQ_CSB_ENABLE: {
2782 			struct nmreq_option *opt;
2783 
2784 			opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options,
2785 						NETMAP_REQ_OPT_CSB);
2786 			if (opt == NULL) {
2787 				error = EINVAL;
2788 			} else {
2789 				struct nmreq_opt_csb *csbo =
2790 					(struct nmreq_opt_csb *)opt;
2791 				error = nmreq_checkduplicate(opt);
2792 				if (!error) {
2793 					NMG_LOCK();
2794 					error = netmap_csb_validate(priv, csbo);
2795 					NMG_UNLOCK();
2796 				}
2797 				opt->nro_status = error;
2798 			}
2799 			break;
2800 		}
2801 
2802 		case NETMAP_REQ_SYNC_KLOOP_START: {
2803 			error = netmap_sync_kloop(priv, hdr);
2804 			break;
2805 		}
2806 
2807 		case NETMAP_REQ_SYNC_KLOOP_STOP: {
2808 			error = netmap_sync_kloop_stop(priv);
2809 			break;
2810 		}
2811 
2812 		default: {
2813 			error = EINVAL;
2814 			break;
2815 		}
2816 		}
2817 		/* Write back request body to userspace and reset the
2818 		 * user-space pointer. */
2819 		error = nmreq_copyout(hdr, error);
2820 		break;
2821 	}
2822 
2823 	case NIOCTXSYNC:
2824 	case NIOCRXSYNC: {
2825 		if (unlikely(priv->np_nifp == NULL)) {
2826 			error = ENXIO;
2827 			break;
2828 		}
2829 		mb(); /* make sure following reads are not from cache */
2830 
2831 		if (unlikely(priv->np_csb_atok_base)) {
2832 			nm_prerr("Invalid sync in CSB mode");
2833 			error = EBUSY;
2834 			break;
2835 		}
2836 
2837 		na = priv->np_na;      /* we have a reference */
2838 
2839 		mbq_init(&q);
2840 		t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
2841 		krings = NMR(na, t);
2842 		qfirst = priv->np_qfirst[t];
2843 		qlast = priv->np_qlast[t];
2844 		sync_flags = priv->np_sync_flags;
2845 
2846 		for (i = qfirst; i < qlast; i++) {
2847 			struct netmap_kring *kring = krings[i];
2848 			struct netmap_ring *ring = kring->ring;
2849 
2850 			if (unlikely(nm_kr_tryget(kring, 1, &error))) {
2851 				error = (error ? EIO : 0);
2852 				continue;
2853 			}
2854 
2855 			if (cmd == NIOCTXSYNC) {
2856 				if (netmap_debug & NM_DEBUG_TXSYNC)
2857 					nm_prinf("pre txsync ring %d cur %d hwcur %d",
2858 					    i, ring->cur,
2859 					    kring->nr_hwcur);
2860 				if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2861 					netmap_ring_reinit(kring);
2862 				} else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
2863 					nm_sync_finalize(kring);
2864 				}
2865 				if (netmap_debug & NM_DEBUG_TXSYNC)
2866 					nm_prinf("post txsync ring %d cur %d hwcur %d",
2867 					    i, ring->cur,
2868 					    kring->nr_hwcur);
2869 			} else {
2870 				if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2871 					netmap_ring_reinit(kring);
2872 				}
2873 				if (nm_may_forward_up(kring)) {
2874 					/* transparent forwarding, see netmap_poll() */
2875 					netmap_grab_packets(kring, &q, netmap_fwd);
2876 				}
2877 				if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
2878 					nm_sync_finalize(kring);
2879 				}
2880 				ring_timestamp_set(ring);
2881 			}
2882 			nm_kr_put(kring);
2883 		}
2884 
2885 		if (mbq_peek(&q)) {
2886 			netmap_send_up(na->ifp, &q);
2887 		}
2888 
2889 		break;
2890 	}
2891 
2892 	default: {
2893 		return netmap_ioctl_legacy(priv, cmd, data, td);
2894 		break;
2895 	}
2896 	}
2897 
2898 	return (error);
2899 }
2900 
2901 size_t
2902 nmreq_size_by_type(uint16_t nr_reqtype)
2903 {
2904 	switch (nr_reqtype) {
2905 	case NETMAP_REQ_REGISTER:
2906 		return sizeof(struct nmreq_register);
2907 	case NETMAP_REQ_PORT_INFO_GET:
2908 		return sizeof(struct nmreq_port_info_get);
2909 	case NETMAP_REQ_VALE_ATTACH:
2910 		return sizeof(struct nmreq_vale_attach);
2911 	case NETMAP_REQ_VALE_DETACH:
2912 		return sizeof(struct nmreq_vale_detach);
2913 	case NETMAP_REQ_VALE_LIST:
2914 		return sizeof(struct nmreq_vale_list);
2915 	case NETMAP_REQ_PORT_HDR_SET:
2916 	case NETMAP_REQ_PORT_HDR_GET:
2917 		return sizeof(struct nmreq_port_hdr);
2918 	case NETMAP_REQ_VALE_NEWIF:
2919 		return sizeof(struct nmreq_vale_newif);
2920 	case NETMAP_REQ_VALE_DELIF:
2921 	case NETMAP_REQ_SYNC_KLOOP_STOP:
2922 	case NETMAP_REQ_CSB_ENABLE:
2923 		return 0;
2924 	case NETMAP_REQ_VALE_POLLING_ENABLE:
2925 	case NETMAP_REQ_VALE_POLLING_DISABLE:
2926 		return sizeof(struct nmreq_vale_polling);
2927 	case NETMAP_REQ_POOLS_INFO_GET:
2928 		return sizeof(struct nmreq_pools_info);
2929 	case NETMAP_REQ_SYNC_KLOOP_START:
2930 		return sizeof(struct nmreq_sync_kloop_start);
2931 	}
2932 	return 0;
2933 }
2934 
2935 static size_t
2936 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
2937 {
2938 	size_t rv = sizeof(struct nmreq_option);
2939 #ifdef NETMAP_REQ_OPT_DEBUG
2940 	if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
2941 		return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
2942 #endif /* NETMAP_REQ_OPT_DEBUG */
2943 	switch (nro_reqtype) {
2944 #ifdef WITH_EXTMEM
2945 	case NETMAP_REQ_OPT_EXTMEM:
2946 		rv = sizeof(struct nmreq_opt_extmem);
2947 		break;
2948 #endif /* WITH_EXTMEM */
2949 	case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
2950 		if (nro_size >= rv)
2951 			rv = nro_size;
2952 		break;
2953 	case NETMAP_REQ_OPT_CSB:
2954 		rv = sizeof(struct nmreq_opt_csb);
2955 		break;
2956 	}
2957 	/* subtract the common header */
2958 	return rv - sizeof(struct nmreq_option);
2959 }
2960 
2961 int
2962 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
2963 {
2964 	size_t rqsz, optsz, bufsz;
2965 	int error;
2966 	char *ker = NULL, *p;
2967 	struct nmreq_option **next, *src;
2968 	struct nmreq_option buf;
2969 	uint64_t *ptrs;
2970 
2971 	if (hdr->nr_reserved) {
2972 		if (netmap_verbose)
2973 			nm_prerr("nr_reserved must be zero");
2974 		return EINVAL;
2975 	}
2976 
2977 	if (!nr_body_is_user)
2978 		return 0;
2979 
2980 	hdr->nr_reserved = nr_body_is_user;
2981 
2982 	/* compute the total size of the buffer */
2983 	rqsz = nmreq_size_by_type(hdr->nr_reqtype);
2984 	if (rqsz > NETMAP_REQ_MAXSIZE) {
2985 		error = EMSGSIZE;
2986 		goto out_err;
2987 	}
2988 	if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
2989 		(!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
2990 		/* Request body expected, but not found; or
2991 		 * request body found but unexpected. */
2992 		if (netmap_verbose)
2993 			nm_prerr("nr_body expected but not found, or vice versa");
2994 		error = EINVAL;
2995 		goto out_err;
2996 	}
2997 
2998 	bufsz = 2 * sizeof(void *) + rqsz;
2999 	optsz = 0;
3000 	for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src;
3001 	     src = (struct nmreq_option *)(uintptr_t)buf.nro_next)
3002 	{
3003 		error = copyin(src, &buf, sizeof(*src));
3004 		if (error)
3005 			goto out_err;
3006 		optsz += sizeof(*src);
3007 		optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size);
3008 		if (rqsz + optsz > NETMAP_REQ_MAXSIZE) {
3009 			error = EMSGSIZE;
3010 			goto out_err;
3011 		}
3012 		bufsz += optsz + sizeof(void *);
3013 	}
3014 
3015 	ker = nm_os_malloc(bufsz);
3016 	if (ker == NULL) {
3017 		error = ENOMEM;
3018 		goto out_err;
3019 	}
3020 	p = ker;
3021 
3022 	/* make a copy of the user pointers */
3023 	ptrs = (uint64_t*)p;
3024 	*ptrs++ = hdr->nr_body;
3025 	*ptrs++ = hdr->nr_options;
3026 	p = (char *)ptrs;
3027 
3028 	/* copy the body */
3029 	error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz);
3030 	if (error)
3031 		goto out_restore;
3032 	/* overwrite the user pointer with the in-kernel one */
3033 	hdr->nr_body = (uintptr_t)p;
3034 	p += rqsz;
3035 
3036 	/* copy the options */
3037 	next = (struct nmreq_option **)&hdr->nr_options;
3038 	src = *next;
3039 	while (src) {
3040 		struct nmreq_option *opt;
3041 
3042 		/* copy the option header */
3043 		ptrs = (uint64_t *)p;
3044 		opt = (struct nmreq_option *)(ptrs + 1);
3045 		error = copyin(src, opt, sizeof(*src));
3046 		if (error)
3047 			goto out_restore;
3048 		/* make a copy of the user next pointer */
3049 		*ptrs = opt->nro_next;
3050 		/* overwrite the user pointer with the in-kernel one */
3051 		*next = opt;
3052 
3053 		/* initialize the option as not supported.
3054 		 * Recognized options will update this field.
3055 		 */
3056 		opt->nro_status = EOPNOTSUPP;
3057 
3058 		p = (char *)(opt + 1);
3059 
3060 		/* copy the option body */
3061 		optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3062 						opt->nro_size);
3063 		if (optsz) {
3064 			/* the option body follows the option header */
3065 			error = copyin(src + 1, p, optsz);
3066 			if (error)
3067 				goto out_restore;
3068 			p += optsz;
3069 		}
3070 
3071 		/* move to next option */
3072 		next = (struct nmreq_option **)&opt->nro_next;
3073 		src = *next;
3074 	}
3075 	return 0;
3076 
3077 out_restore:
3078 	ptrs = (uint64_t *)ker;
3079 	hdr->nr_body = *ptrs++;
3080 	hdr->nr_options = *ptrs++;
3081 	hdr->nr_reserved = 0;
3082 	nm_os_free(ker);
3083 out_err:
3084 	return error;
3085 }
3086 
3087 static int
3088 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3089 {
3090 	struct nmreq_option *src, *dst;
3091 	void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3092 	uint64_t *ptrs;
3093 	size_t bodysz;
3094 	int error;
3095 
3096 	if (!hdr->nr_reserved)
3097 		return rerror;
3098 
3099 	/* restore the user pointers in the header */
3100 	ptrs = (uint64_t *)ker - 2;
3101 	bufstart = ptrs;
3102 	hdr->nr_body = *ptrs++;
3103 	src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3104 	hdr->nr_options = *ptrs;
3105 
3106 	if (!rerror) {
3107 		/* copy the body */
3108 		bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3109 		error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3110 		if (error) {
3111 			rerror = error;
3112 			goto out;
3113 		}
3114 	}
3115 
3116 	/* copy the options */
3117 	dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3118 	while (src) {
3119 		size_t optsz;
3120 		uint64_t next;
3121 
3122 		/* restore the user pointer */
3123 		next = src->nro_next;
3124 		ptrs = (uint64_t *)src - 1;
3125 		src->nro_next = *ptrs;
3126 
3127 		/* always copy the option header */
3128 		error = copyout(src, dst, sizeof(*src));
3129 		if (error) {
3130 			rerror = error;
3131 			goto out;
3132 		}
3133 
3134 		/* copy the option body only if there was no error */
3135 		if (!rerror && !src->nro_status) {
3136 			optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3137 							src->nro_size);
3138 			if (optsz) {
3139 				error = copyout(src + 1, dst + 1, optsz);
3140 				if (error) {
3141 					rerror = error;
3142 					goto out;
3143 				}
3144 			}
3145 		}
3146 		src = (struct nmreq_option *)(uintptr_t)next;
3147 		dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3148 	}
3149 
3150 
3151 out:
3152 	hdr->nr_reserved = 0;
3153 	nm_os_free(bufstart);
3154 	return rerror;
3155 }
3156 
3157 struct nmreq_option *
3158 nmreq_findoption(struct nmreq_option *opt, uint16_t reqtype)
3159 {
3160 	for ( ; opt; opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3161 		if (opt->nro_reqtype == reqtype)
3162 			return opt;
3163 	return NULL;
3164 }
3165 
3166 int
3167 nmreq_checkduplicate(struct nmreq_option *opt) {
3168 	uint16_t type = opt->nro_reqtype;
3169 	int dup = 0;
3170 
3171 	while ((opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)opt->nro_next,
3172 			type))) {
3173 		dup++;
3174 		opt->nro_status = EINVAL;
3175 	}
3176 	return (dup ? EINVAL : 0);
3177 }
3178 
3179 static int
3180 nmreq_checkoptions(struct nmreq_header *hdr)
3181 {
3182 	struct nmreq_option *opt;
3183 	/* return error if there is still any option
3184 	 * marked as not supported
3185 	 */
3186 
3187 	for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3188 	     opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3189 		if (opt->nro_status == EOPNOTSUPP)
3190 			return EOPNOTSUPP;
3191 
3192 	return 0;
3193 }
3194 
3195 /*
3196  * select(2) and poll(2) handlers for the "netmap" device.
3197  *
3198  * Can be called for one or more queues.
3199  * Return true the event mask corresponding to ready events.
3200  * If there are no ready events, do a selrecord on either individual
3201  * selinfo or on the global one.
3202  * Device-dependent parts (locking and sync of tx/rx rings)
3203  * are done through callbacks.
3204  *
3205  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3206  * The first one is remapped to pwait as selrecord() uses the name as an
3207  * hidden argument.
3208  */
3209 int
3210 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3211 {
3212 	struct netmap_adapter *na;
3213 	struct netmap_kring *kring;
3214 	struct netmap_ring *ring;
3215 	u_int i, want[NR_TXRX], revents = 0;
3216 	NM_SELINFO_T *si[NR_TXRX];
3217 #define want_tx want[NR_TX]
3218 #define want_rx want[NR_RX]
3219 	struct mbq q;	/* packets from RX hw queues to host stack */
3220 
3221 	/*
3222 	 * In order to avoid nested locks, we need to "double check"
3223 	 * txsync and rxsync if we decide to do a selrecord().
3224 	 * retry_tx (and retry_rx, later) prevent looping forever.
3225 	 */
3226 	int retry_tx = 1, retry_rx = 1;
3227 
3228 	/* Transparent mode: send_down is 1 if we have found some
3229 	 * packets to forward (host RX ring --> NIC) during the rx
3230 	 * scan and we have not sent them down to the NIC yet.
3231 	 * Transparent mode requires to bind all rings to a single
3232 	 * file descriptor.
3233 	 */
3234 	int send_down = 0;
3235 	int sync_flags = priv->np_sync_flags;
3236 
3237 	mbq_init(&q);
3238 
3239 	if (unlikely(priv->np_nifp == NULL)) {
3240 		return POLLERR;
3241 	}
3242 	mb(); /* make sure following reads are not from cache */
3243 
3244 	na = priv->np_na;
3245 
3246 	if (unlikely(!nm_netmap_on(na)))
3247 		return POLLERR;
3248 
3249 	if (unlikely(priv->np_csb_atok_base)) {
3250 		nm_prerr("Invalid poll in CSB mode");
3251 		return POLLERR;
3252 	}
3253 
3254 	if (netmap_debug & NM_DEBUG_ON)
3255 		nm_prinf("device %s events 0x%x", na->name, events);
3256 	want_tx = events & (POLLOUT | POLLWRNORM);
3257 	want_rx = events & (POLLIN | POLLRDNORM);
3258 
3259 	/*
3260 	 * If the card has more than one queue AND the file descriptor is
3261 	 * bound to all of them, we sleep on the "global" selinfo, otherwise
3262 	 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3263 	 * per file descriptor).
3264 	 * The interrupt routine in the driver wake one or the other
3265 	 * (or both) depending on which clients are active.
3266 	 *
3267 	 * rxsync() is only called if we run out of buffers on a POLLIN.
3268 	 * txsync() is called if we run out of buffers on POLLOUT, or
3269 	 * there are pending packets to send. The latter can be disabled
3270 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3271 	 */
3272 	si[NR_RX] = nm_si_user(priv, NR_RX) ? &na->si[NR_RX] :
3273 				&na->rx_rings[priv->np_qfirst[NR_RX]]->si;
3274 	si[NR_TX] = nm_si_user(priv, NR_TX) ? &na->si[NR_TX] :
3275 				&na->tx_rings[priv->np_qfirst[NR_TX]]->si;
3276 
3277 #ifdef __FreeBSD__
3278 	/*
3279 	 * We start with a lock free round which is cheap if we have
3280 	 * slots available. If this fails, then lock and call the sync
3281 	 * routines. We can't do this on Linux, as the contract says
3282 	 * that we must call nm_os_selrecord() unconditionally.
3283 	 */
3284 	if (want_tx) {
3285 		enum txrx t = NR_TX;
3286 		for (i = priv->np_qfirst[t]; want[t] && i < priv->np_qlast[t]; i++) {
3287 			kring = NMR(na, t)[i];
3288 			/* XXX compare ring->cur and kring->tail */
3289 			if (!nm_ring_empty(kring->ring)) {
3290 				revents |= want[t];
3291 				want[t] = 0;	/* also breaks the loop */
3292 			}
3293 		}
3294 	}
3295 	if (want_rx) {
3296 		enum txrx t = NR_RX;
3297 		want_rx = 0; /* look for a reason to run the handlers */
3298 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3299 			kring = NMR(na, t)[i];
3300 			if (kring->ring->cur == kring->ring->tail /* try fetch new buffers */
3301 			    || kring->rhead != kring->ring->head /* release buffers */) {
3302 				want_rx = 1;
3303 			}
3304 		}
3305 		if (!want_rx)
3306 			revents |= events & (POLLIN | POLLRDNORM); /* we have data */
3307 	}
3308 #endif
3309 
3310 #ifdef linux
3311 	/* The selrecord must be unconditional on linux. */
3312 	nm_os_selrecord(sr, si[NR_RX]);
3313 	nm_os_selrecord(sr, si[NR_TX]);
3314 #endif /* linux */
3315 
3316 	/*
3317 	 * If we want to push packets out (priv->np_txpoll) or
3318 	 * want_tx is still set, we must issue txsync calls
3319 	 * (on all rings, to avoid that the tx rings stall).
3320 	 * Fortunately, normal tx mode has np_txpoll set.
3321 	 */
3322 	if (priv->np_txpoll || want_tx) {
3323 		/*
3324 		 * The first round checks if anyone is ready, if not
3325 		 * do a selrecord and another round to handle races.
3326 		 * want_tx goes to 0 if any space is found, and is
3327 		 * used to skip rings with no pending transmissions.
3328 		 */
3329 flush_tx:
3330 		for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3331 			int found = 0;
3332 
3333 			kring = na->tx_rings[i];
3334 			ring = kring->ring;
3335 
3336 			/*
3337 			 * Don't try to txsync this TX ring if we already found some
3338 			 * space in some of the TX rings (want_tx == 0) and there are no
3339 			 * TX slots in this ring that need to be flushed to the NIC
3340 			 * (head == hwcur).
3341 			 */
3342 			if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3343 				continue;
3344 
3345 			if (nm_kr_tryget(kring, 1, &revents))
3346 				continue;
3347 
3348 			if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3349 				netmap_ring_reinit(kring);
3350 				revents |= POLLERR;
3351 			} else {
3352 				if (kring->nm_sync(kring, sync_flags))
3353 					revents |= POLLERR;
3354 				else
3355 					nm_sync_finalize(kring);
3356 			}
3357 
3358 			/*
3359 			 * If we found new slots, notify potential
3360 			 * listeners on the same ring.
3361 			 * Since we just did a txsync, look at the copies
3362 			 * of cur,tail in the kring.
3363 			 */
3364 			found = kring->rcur != kring->rtail;
3365 			nm_kr_put(kring);
3366 			if (found) { /* notify other listeners */
3367 				revents |= want_tx;
3368 				want_tx = 0;
3369 #ifndef linux
3370 				kring->nm_notify(kring, 0);
3371 #endif /* linux */
3372 			}
3373 		}
3374 		/* if there were any packet to forward we must have handled them by now */
3375 		send_down = 0;
3376 		if (want_tx && retry_tx && sr) {
3377 #ifndef linux
3378 			nm_os_selrecord(sr, si[NR_TX]);
3379 #endif /* !linux */
3380 			retry_tx = 0;
3381 			goto flush_tx;
3382 		}
3383 	}
3384 
3385 	/*
3386 	 * If want_rx is still set scan receive rings.
3387 	 * Do it on all rings because otherwise we starve.
3388 	 */
3389 	if (want_rx) {
3390 		/* two rounds here for race avoidance */
3391 do_retry_rx:
3392 		for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3393 			int found = 0;
3394 
3395 			kring = na->rx_rings[i];
3396 			ring = kring->ring;
3397 
3398 			if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3399 				continue;
3400 
3401 			if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3402 				netmap_ring_reinit(kring);
3403 				revents |= POLLERR;
3404 			}
3405 			/* now we can use kring->rcur, rtail */
3406 
3407 			/*
3408 			 * transparent mode support: collect packets from
3409 			 * hw rxring(s) that have been released by the user
3410 			 */
3411 			if (nm_may_forward_up(kring)) {
3412 				netmap_grab_packets(kring, &q, netmap_fwd);
3413 			}
3414 
3415 			/* Clear the NR_FORWARD flag anyway, it may be set by
3416 			 * the nm_sync() below only on for the host RX ring (see
3417 			 * netmap_rxsync_from_host()). */
3418 			kring->nr_kflags &= ~NR_FORWARD;
3419 			if (kring->nm_sync(kring, sync_flags))
3420 				revents |= POLLERR;
3421 			else
3422 				nm_sync_finalize(kring);
3423 			send_down |= (kring->nr_kflags & NR_FORWARD);
3424 			ring_timestamp_set(ring);
3425 			found = kring->rcur != kring->rtail;
3426 			nm_kr_put(kring);
3427 			if (found) {
3428 				revents |= want_rx;
3429 				retry_rx = 0;
3430 #ifndef linux
3431 				kring->nm_notify(kring, 0);
3432 #endif /* linux */
3433 			}
3434 		}
3435 
3436 #ifndef linux
3437 		if (retry_rx && sr) {
3438 			nm_os_selrecord(sr, si[NR_RX]);
3439 		}
3440 #endif /* !linux */
3441 		if (send_down || retry_rx) {
3442 			retry_rx = 0;
3443 			if (send_down)
3444 				goto flush_tx; /* and retry_rx */
3445 			else
3446 				goto do_retry_rx;
3447 		}
3448 	}
3449 
3450 	/*
3451 	 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3452 	 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3453 	 * to the host stack.
3454 	 */
3455 
3456 	if (mbq_peek(&q)) {
3457 		netmap_send_up(na->ifp, &q);
3458 	}
3459 
3460 	return (revents);
3461 #undef want_tx
3462 #undef want_rx
3463 }
3464 
3465 int
3466 nma_intr_enable(struct netmap_adapter *na, int onoff)
3467 {
3468 	bool changed = false;
3469 	enum txrx t;
3470 	int i;
3471 
3472 	for_rx_tx(t) {
3473 		for (i = 0; i < nma_get_nrings(na, t); i++) {
3474 			struct netmap_kring *kring = NMR(na, t)[i];
3475 			int on = !(kring->nr_kflags & NKR_NOINTR);
3476 
3477 			if (!!onoff != !!on) {
3478 				changed = true;
3479 			}
3480 			if (onoff) {
3481 				kring->nr_kflags &= ~NKR_NOINTR;
3482 			} else {
3483 				kring->nr_kflags |= NKR_NOINTR;
3484 			}
3485 		}
3486 	}
3487 
3488 	if (!changed) {
3489 		return 0; /* nothing to do */
3490 	}
3491 
3492 	if (!na->nm_intr) {
3493 		nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3494 		  na->name);
3495 		return -1;
3496 	}
3497 
3498 	na->nm_intr(na, onoff);
3499 
3500 	return 0;
3501 }
3502 
3503 
3504 /*-------------------- driver support routines -------------------*/
3505 
3506 /* default notify callback */
3507 static int
3508 netmap_notify(struct netmap_kring *kring, int flags)
3509 {
3510 	struct netmap_adapter *na = kring->notify_na;
3511 	enum txrx t = kring->tx;
3512 
3513 	nm_os_selwakeup(&kring->si);
3514 	/* optimization: avoid a wake up on the global
3515 	 * queue if nobody has registered for more
3516 	 * than one ring
3517 	 */
3518 	if (na->si_users[t] > 0)
3519 		nm_os_selwakeup(&na->si[t]);
3520 
3521 	return NM_IRQ_COMPLETED;
3522 }
3523 
3524 /* called by all routines that create netmap_adapters.
3525  * provide some defaults and get a reference to the
3526  * memory allocator
3527  */
3528 int
3529 netmap_attach_common(struct netmap_adapter *na)
3530 {
3531 	if (!na->rx_buf_maxsize) {
3532 		/* Set a conservative default (larger is safer). */
3533 		na->rx_buf_maxsize = PAGE_SIZE;
3534 	}
3535 
3536 #ifdef __FreeBSD__
3537 	if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3538 		na->if_input = na->ifp->if_input; /* for netmap_send_up */
3539 	}
3540 	na->pdev = na; /* make sure netmap_mem_map() is called */
3541 #endif /* __FreeBSD__ */
3542 	if (na->na_flags & NAF_HOST_RINGS) {
3543 		if (na->num_host_rx_rings == 0)
3544 			na->num_host_rx_rings = 1;
3545 		if (na->num_host_tx_rings == 0)
3546 			na->num_host_tx_rings = 1;
3547 	}
3548 	if (na->nm_krings_create == NULL) {
3549 		/* we assume that we have been called by a driver,
3550 		 * since other port types all provide their own
3551 		 * nm_krings_create
3552 		 */
3553 		na->nm_krings_create = netmap_hw_krings_create;
3554 		na->nm_krings_delete = netmap_hw_krings_delete;
3555 	}
3556 	if (na->nm_notify == NULL)
3557 		na->nm_notify = netmap_notify;
3558 	na->active_fds = 0;
3559 
3560 	if (na->nm_mem == NULL) {
3561 		/* use the global allocator */
3562 		na->nm_mem = netmap_mem_get(&nm_mem);
3563 	}
3564 #ifdef WITH_VALE
3565 	if (na->nm_bdg_attach == NULL)
3566 		/* no special nm_bdg_attach callback. On VALE
3567 		 * attach, we need to interpose a bwrap
3568 		 */
3569 		na->nm_bdg_attach = netmap_default_bdg_attach;
3570 #endif
3571 
3572 	return 0;
3573 }
3574 
3575 /* Wrapper for the register callback provided netmap-enabled
3576  * hardware drivers.
3577  * nm_iszombie(na) means that the driver module has been
3578  * unloaded, so we cannot call into it.
3579  * nm_os_ifnet_lock() must guarantee mutual exclusion with
3580  * module unloading.
3581  */
3582 static int
3583 netmap_hw_reg(struct netmap_adapter *na, int onoff)
3584 {
3585 	struct netmap_hw_adapter *hwna =
3586 		(struct netmap_hw_adapter*)na;
3587 	int error = 0;
3588 
3589 	nm_os_ifnet_lock();
3590 
3591 	if (nm_iszombie(na)) {
3592 		if (onoff) {
3593 			error = ENXIO;
3594 		} else if (na != NULL) {
3595 			na->na_flags &= ~NAF_NETMAP_ON;
3596 		}
3597 		goto out;
3598 	}
3599 
3600 	error = hwna->nm_hw_register(na, onoff);
3601 
3602 out:
3603 	nm_os_ifnet_unlock();
3604 
3605 	return error;
3606 }
3607 
3608 static void
3609 netmap_hw_dtor(struct netmap_adapter *na)
3610 {
3611 	if (na->ifp == NULL)
3612 		return;
3613 
3614 	NM_DETACH_NA(na->ifp);
3615 }
3616 
3617 
3618 /*
3619  * Allocate a netmap_adapter object, and initialize it from the
3620  * 'arg' passed by the driver on attach.
3621  * We allocate a block of memory of 'size' bytes, which has room
3622  * for struct netmap_adapter plus additional room private to
3623  * the caller.
3624  * Return 0 on success, ENOMEM otherwise.
3625  */
3626 int
3627 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
3628 {
3629 	struct netmap_hw_adapter *hwna = NULL;
3630 	struct ifnet *ifp = NULL;
3631 
3632 	if (size < sizeof(struct netmap_hw_adapter)) {
3633 		if (netmap_debug & NM_DEBUG_ON)
3634 			nm_prerr("Invalid netmap adapter size %d", (int)size);
3635 		return EINVAL;
3636 	}
3637 
3638 	if (arg == NULL || arg->ifp == NULL) {
3639 		if (netmap_debug & NM_DEBUG_ON)
3640 			nm_prerr("either arg or arg->ifp is NULL");
3641 		return EINVAL;
3642 	}
3643 
3644 	if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
3645 		if (netmap_debug & NM_DEBUG_ON)
3646 			nm_prerr("%s: invalid rings tx %d rx %d",
3647 				arg->name, arg->num_tx_rings, arg->num_rx_rings);
3648 		return EINVAL;
3649 	}
3650 
3651 	ifp = arg->ifp;
3652 	if (NM_NA_CLASH(ifp)) {
3653 		/* If NA(ifp) is not null but there is no valid netmap
3654 		 * adapter it means that someone else is using the same
3655 		 * pointer (e.g. ax25_ptr on linux). This happens for
3656 		 * instance when also PF_RING is in use. */
3657 		nm_prerr("Error: netmap adapter hook is busy");
3658 		return EBUSY;
3659 	}
3660 
3661 	hwna = nm_os_malloc(size);
3662 	if (hwna == NULL)
3663 		goto fail;
3664 	hwna->up = *arg;
3665 	hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
3666 	strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
3667 	if (override_reg) {
3668 		hwna->nm_hw_register = hwna->up.nm_register;
3669 		hwna->up.nm_register = netmap_hw_reg;
3670 	}
3671 	if (netmap_attach_common(&hwna->up)) {
3672 		nm_os_free(hwna);
3673 		goto fail;
3674 	}
3675 	netmap_adapter_get(&hwna->up);
3676 
3677 	NM_ATTACH_NA(ifp, &hwna->up);
3678 
3679 	nm_os_onattach(ifp);
3680 
3681 	if (arg->nm_dtor == NULL) {
3682 		hwna->up.nm_dtor = netmap_hw_dtor;
3683 	}
3684 
3685 	if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
3686 	    hwna->up.num_tx_rings, hwna->up.num_tx_desc,
3687 	    hwna->up.num_rx_rings, hwna->up.num_rx_desc);
3688 	return 0;
3689 
3690 fail:
3691 	nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
3692 	return (hwna ? EINVAL : ENOMEM);
3693 }
3694 
3695 
3696 int
3697 netmap_attach(struct netmap_adapter *arg)
3698 {
3699 	return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
3700 			1 /* override nm_reg */);
3701 }
3702 
3703 
3704 void
3705 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
3706 {
3707 	if (!na) {
3708 		return;
3709 	}
3710 
3711 	refcount_acquire(&na->na_refcount);
3712 }
3713 
3714 
3715 /* returns 1 iff the netmap_adapter is destroyed */
3716 int
3717 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
3718 {
3719 	if (!na)
3720 		return 1;
3721 
3722 	if (!refcount_release(&na->na_refcount))
3723 		return 0;
3724 
3725 	if (na->nm_dtor)
3726 		na->nm_dtor(na);
3727 
3728 	if (na->tx_rings) { /* XXX should not happen */
3729 		if (netmap_debug & NM_DEBUG_ON)
3730 			nm_prerr("freeing leftover tx_rings");
3731 		na->nm_krings_delete(na);
3732 	}
3733 	netmap_pipe_dealloc(na);
3734 	if (na->nm_mem)
3735 		netmap_mem_put(na->nm_mem);
3736 	bzero(na, sizeof(*na));
3737 	nm_os_free(na);
3738 
3739 	return 1;
3740 }
3741 
3742 /* nm_krings_create callback for all hardware native adapters */
3743 int
3744 netmap_hw_krings_create(struct netmap_adapter *na)
3745 {
3746 	int ret = netmap_krings_create(na, 0);
3747 	if (ret == 0) {
3748 		/* initialize the mbq for the sw rx ring */
3749 		u_int lim = netmap_real_rings(na, NR_RX), i;
3750 		for (i = na->num_rx_rings; i < lim; i++) {
3751 			mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
3752 		}
3753 		ND("initialized sw rx queue %d", na->num_rx_rings);
3754 	}
3755 	return ret;
3756 }
3757 
3758 
3759 
3760 /*
3761  * Called on module unload by the netmap-enabled drivers
3762  */
3763 void
3764 netmap_detach(struct ifnet *ifp)
3765 {
3766 	struct netmap_adapter *na = NA(ifp);
3767 
3768 	if (!na)
3769 		return;
3770 
3771 	NMG_LOCK();
3772 	netmap_set_all_rings(na, NM_KR_LOCKED);
3773 	/*
3774 	 * if the netmap adapter is not native, somebody
3775 	 * changed it, so we can not release it here.
3776 	 * The NAF_ZOMBIE flag will notify the new owner that
3777 	 * the driver is gone.
3778 	 */
3779 	if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
3780 		na->na_flags |= NAF_ZOMBIE;
3781 	}
3782 	/* give active users a chance to notice that NAF_ZOMBIE has been
3783 	 * turned on, so that they can stop and return an error to userspace.
3784 	 * Note that this becomes a NOP if there are no active users and,
3785 	 * therefore, the put() above has deleted the na, since now NA(ifp) is
3786 	 * NULL.
3787 	 */
3788 	netmap_enable_all_rings(ifp);
3789 	NMG_UNLOCK();
3790 }
3791 
3792 
3793 /*
3794  * Intercept packets from the network stack and pass them
3795  * to netmap as incoming packets on the 'software' ring.
3796  *
3797  * We only store packets in a bounded mbq and then copy them
3798  * in the relevant rxsync routine.
3799  *
3800  * We rely on the OS to make sure that the ifp and na do not go
3801  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
3802  * In nm_register() or whenever there is a reinitialization,
3803  * we make sure to make the mode change visible here.
3804  */
3805 int
3806 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
3807 {
3808 	struct netmap_adapter *na = NA(ifp);
3809 	struct netmap_kring *kring, *tx_kring;
3810 	u_int len = MBUF_LEN(m);
3811 	u_int error = ENOBUFS;
3812 	unsigned int txr;
3813 	struct mbq *q;
3814 	int busy;
3815 	u_int i;
3816 
3817 	i = MBUF_TXQ(m);
3818 	if (i >= na->num_host_rx_rings) {
3819 		i = i % na->num_host_rx_rings;
3820 	}
3821 	kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
3822 
3823 	// XXX [Linux] we do not need this lock
3824 	// if we follow the down/configure/up protocol -gl
3825 	// mtx_lock(&na->core_lock);
3826 
3827 	if (!nm_netmap_on(na)) {
3828 		nm_prerr("%s not in netmap mode anymore", na->name);
3829 		error = ENXIO;
3830 		goto done;
3831 	}
3832 
3833 	txr = MBUF_TXQ(m);
3834 	if (txr >= na->num_tx_rings) {
3835 		txr %= na->num_tx_rings;
3836 	}
3837 	tx_kring = NMR(na, NR_TX)[txr];
3838 
3839 	if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
3840 		return MBUF_TRANSMIT(na, ifp, m);
3841 	}
3842 
3843 	q = &kring->rx_queue;
3844 
3845 	// XXX reconsider long packets if we handle fragments
3846 	if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
3847 		nm_prerr("%s from_host, drop packet size %d > %d", na->name,
3848 			len, NETMAP_BUF_SIZE(na));
3849 		goto done;
3850 	}
3851 
3852 	if (!netmap_generic_hwcsum) {
3853 		if (nm_os_mbuf_has_csum_offld(m)) {
3854 			RD(1, "%s drop mbuf that needs checksum offload", na->name);
3855 			goto done;
3856 		}
3857 	}
3858 
3859 	if (nm_os_mbuf_has_seg_offld(m)) {
3860 		RD(1, "%s drop mbuf that needs generic segmentation offload", na->name);
3861 		goto done;
3862 	}
3863 
3864 #ifdef __FreeBSD__
3865 	ETHER_BPF_MTAP(ifp, m);
3866 #endif /* __FreeBSD__ */
3867 
3868 	/* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
3869 	 * and maybe other instances of netmap_transmit (the latter
3870 	 * not possible on Linux).
3871 	 * We enqueue the mbuf only if we are sure there is going to be
3872 	 * enough room in the host RX ring, otherwise we drop it.
3873 	 */
3874 	mbq_lock(q);
3875 
3876 	busy = kring->nr_hwtail - kring->nr_hwcur;
3877 	if (busy < 0)
3878 		busy += kring->nkr_num_slots;
3879 	if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
3880 		RD(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
3881 			kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
3882 	} else {
3883 		mbq_enqueue(q, m);
3884 		ND(2, "%s %d bufs in queue", na->name, mbq_len(q));
3885 		/* notify outside the lock */
3886 		m = NULL;
3887 		error = 0;
3888 	}
3889 	mbq_unlock(q);
3890 
3891 done:
3892 	if (m)
3893 		m_freem(m);
3894 	/* unconditionally wake up listeners */
3895 	kring->nm_notify(kring, 0);
3896 	/* this is normally netmap_notify(), but for nics
3897 	 * connected to a bridge it is netmap_bwrap_intr_notify(),
3898 	 * that possibly forwards the frames through the switch
3899 	 */
3900 
3901 	return (error);
3902 }
3903 
3904 
3905 /*
3906  * netmap_reset() is called by the driver routines when reinitializing
3907  * a ring. The driver is in charge of locking to protect the kring.
3908  * If native netmap mode is not set just return NULL.
3909  * If native netmap mode is set, in particular, we have to set nr_mode to
3910  * NKR_NETMAP_ON.
3911  */
3912 struct netmap_slot *
3913 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
3914 	u_int new_cur)
3915 {
3916 	struct netmap_kring *kring;
3917 	int new_hwofs, lim;
3918 
3919 	if (!nm_native_on(na)) {
3920 		ND("interface not in native netmap mode");
3921 		return NULL;	/* nothing to reinitialize */
3922 	}
3923 
3924 	/* XXX note- in the new scheme, we are not guaranteed to be
3925 	 * under lock (e.g. when called on a device reset).
3926 	 * In this case, we should set a flag and do not trust too
3927 	 * much the values. In practice: TODO
3928 	 * - set a RESET flag somewhere in the kring
3929 	 * - do the processing in a conservative way
3930 	 * - let the *sync() fixup at the end.
3931 	 */
3932 	if (tx == NR_TX) {
3933 		if (n >= na->num_tx_rings)
3934 			return NULL;
3935 
3936 		kring = na->tx_rings[n];
3937 
3938 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
3939 			kring->nr_mode = NKR_NETMAP_OFF;
3940 			return NULL;
3941 		}
3942 
3943 		// XXX check whether we should use hwcur or rcur
3944 		new_hwofs = kring->nr_hwcur - new_cur;
3945 	} else {
3946 		if (n >= na->num_rx_rings)
3947 			return NULL;
3948 		kring = na->rx_rings[n];
3949 
3950 		if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
3951 			kring->nr_mode = NKR_NETMAP_OFF;
3952 			return NULL;
3953 		}
3954 
3955 		new_hwofs = kring->nr_hwtail - new_cur;
3956 	}
3957 	lim = kring->nkr_num_slots - 1;
3958 	if (new_hwofs > lim)
3959 		new_hwofs -= lim + 1;
3960 
3961 	/* Always set the new offset value and realign the ring. */
3962 	if (netmap_debug & NM_DEBUG_ON)
3963 	    nm_prinf("%s %s%d hwofs %d -> %d, hwtail %d -> %d",
3964 		na->name,
3965 		tx == NR_TX ? "TX" : "RX", n,
3966 		kring->nkr_hwofs, new_hwofs,
3967 		kring->nr_hwtail,
3968 		tx == NR_TX ? lim : kring->nr_hwtail);
3969 	kring->nkr_hwofs = new_hwofs;
3970 	if (tx == NR_TX) {
3971 		kring->nr_hwtail = kring->nr_hwcur + lim;
3972 		if (kring->nr_hwtail > lim)
3973 			kring->nr_hwtail -= lim + 1;
3974 	}
3975 
3976 	/*
3977 	 * Wakeup on the individual and global selwait
3978 	 * We do the wakeup here, but the ring is not yet reconfigured.
3979 	 * However, we are under lock so there are no races.
3980 	 */
3981 	kring->nr_mode = NKR_NETMAP_ON;
3982 	kring->nm_notify(kring, 0);
3983 	return kring->ring->slot;
3984 }
3985 
3986 
3987 /*
3988  * Dispatch rx/tx interrupts to the netmap rings.
3989  *
3990  * "work_done" is non-null on the RX path, NULL for the TX path.
3991  * We rely on the OS to make sure that there is only one active
3992  * instance per queue, and that there is appropriate locking.
3993  *
3994  * The 'notify' routine depends on what the ring is attached to.
3995  * - for a netmap file descriptor, do a selwakeup on the individual
3996  *   waitqueue, plus one on the global one if needed
3997  *   (see netmap_notify)
3998  * - for a nic connected to a switch, call the proper forwarding routine
3999  *   (see netmap_bwrap_intr_notify)
4000  */
4001 int
4002 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4003 {
4004 	struct netmap_kring *kring;
4005 	enum txrx t = (work_done ? NR_RX : NR_TX);
4006 
4007 	q &= NETMAP_RING_MASK;
4008 
4009 	if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4010 	        nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4011 	}
4012 
4013 	if (q >= nma_get_nrings(na, t))
4014 		return NM_IRQ_PASS; // not a physical queue
4015 
4016 	kring = NMR(na, t)[q];
4017 
4018 	if (kring->nr_mode == NKR_NETMAP_OFF) {
4019 		return NM_IRQ_PASS;
4020 	}
4021 
4022 	if (t == NR_RX) {
4023 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
4024 		*work_done = 1; /* do not fire napi again */
4025 	}
4026 
4027 	return kring->nm_notify(kring, 0);
4028 }
4029 
4030 
4031 /*
4032  * Default functions to handle rx/tx interrupts from a physical device.
4033  * "work_done" is non-null on the RX path, NULL for the TX path.
4034  *
4035  * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4036  * so that the caller proceeds with regular processing.
4037  * Otherwise call netmap_common_irq().
4038  *
4039  * If the card is connected to a netmap file descriptor,
4040  * do a selwakeup on the individual queue, plus one on the global one
4041  * if needed (multiqueue card _and_ there are multiqueue listeners),
4042  * and return NR_IRQ_COMPLETED.
4043  *
4044  * Finally, if called on rx from an interface connected to a switch,
4045  * calls the proper forwarding routine.
4046  */
4047 int
4048 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
4049 {
4050 	struct netmap_adapter *na = NA(ifp);
4051 
4052 	/*
4053 	 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4054 	 * we still use the regular driver even though the previous
4055 	 * check fails. It is unclear whether we should use
4056 	 * nm_native_on() here.
4057 	 */
4058 	if (!nm_netmap_on(na))
4059 		return NM_IRQ_PASS;
4060 
4061 	if (na->na_flags & NAF_SKIP_INTR) {
4062 		ND("use regular interrupt");
4063 		return NM_IRQ_PASS;
4064 	}
4065 
4066 	return netmap_common_irq(na, q, work_done);
4067 }
4068 
4069 /* set/clear native flags and if_transmit/netdev_ops */
4070 void
4071 nm_set_native_flags(struct netmap_adapter *na)
4072 {
4073 	struct ifnet *ifp = na->ifp;
4074 
4075 	/* We do the setup for intercepting packets only if we are the
4076 	 * first user of this adapapter. */
4077 	if (na->active_fds > 0) {
4078 		return;
4079 	}
4080 
4081 	na->na_flags |= NAF_NETMAP_ON;
4082 	nm_os_onenter(ifp);
4083 	nm_update_hostrings_mode(na);
4084 }
4085 
4086 void
4087 nm_clear_native_flags(struct netmap_adapter *na)
4088 {
4089 	struct ifnet *ifp = na->ifp;
4090 
4091 	/* We undo the setup for intercepting packets only if we are the
4092 	 * last user of this adapter. */
4093 	if (na->active_fds > 0) {
4094 		return;
4095 	}
4096 
4097 	nm_update_hostrings_mode(na);
4098 	nm_os_onexit(ifp);
4099 
4100 	na->na_flags &= ~NAF_NETMAP_ON;
4101 }
4102 
4103 /*
4104  * Module loader and unloader
4105  *
4106  * netmap_init() creates the /dev/netmap device and initializes
4107  * all global variables. Returns 0 on success, errno on failure
4108  * (but there is no chance)
4109  *
4110  * netmap_fini() destroys everything.
4111  */
4112 
4113 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4114 extern struct cdevsw netmap_cdevsw;
4115 
4116 
4117 void
4118 netmap_fini(void)
4119 {
4120 	if (netmap_dev)
4121 		destroy_dev(netmap_dev);
4122 	/* we assume that there are no longer netmap users */
4123 	nm_os_ifnet_fini();
4124 	netmap_uninit_bridges();
4125 	netmap_mem_fini();
4126 	NMG_LOCK_DESTROY();
4127 	nm_prinf("netmap: unloaded module.");
4128 }
4129 
4130 
4131 int
4132 netmap_init(void)
4133 {
4134 	int error;
4135 
4136 	NMG_LOCK_INIT();
4137 
4138 	error = netmap_mem_init();
4139 	if (error != 0)
4140 		goto fail;
4141 	/*
4142 	 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4143 	 * when the module is compiled in.
4144 	 * XXX could use make_dev_credv() to get error number
4145 	 */
4146 	netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4147 		&netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4148 			      "netmap");
4149 	if (!netmap_dev)
4150 		goto fail;
4151 
4152 	error = netmap_init_bridges();
4153 	if (error)
4154 		goto fail;
4155 
4156 #ifdef __FreeBSD__
4157 	nm_os_vi_init_index();
4158 #endif
4159 
4160 	error = nm_os_ifnet_init();
4161 	if (error)
4162 		goto fail;
4163 
4164 	nm_prinf("netmap: loaded module");
4165 	return (0);
4166 fail:
4167 	netmap_fini();
4168 	return (EINVAL); /* may be incorrect */
4169 }
4170