1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi 5 * Copyright (C) 2011-2016 Luigi Rizzo 6 * Copyright (C) 2011-2016 Giuseppe Lettieri 7 * Copyright (C) 2011-2016 Vincenzo Maffione 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 33 /* 34 * $FreeBSD$ 35 * 36 * This module supports memory mapped access to network devices, 37 * see netmap(4). 38 * 39 * The module uses a large, memory pool allocated by the kernel 40 * and accessible as mmapped memory by multiple userspace threads/processes. 41 * The memory pool contains packet buffers and "netmap rings", 42 * i.e. user-accessible copies of the interface's queues. 43 * 44 * Access to the network card works like this: 45 * 1. a process/thread issues one or more open() on /dev/netmap, to create 46 * select()able file descriptor on which events are reported. 47 * 2. on each descriptor, the process issues an ioctl() to identify 48 * the interface that should report events to the file descriptor. 49 * 3. on each descriptor, the process issues an mmap() request to 50 * map the shared memory region within the process' address space. 51 * The list of interesting queues is indicated by a location in 52 * the shared memory region. 53 * 4. using the functions in the netmap(4) userspace API, a process 54 * can look up the occupation state of a queue, access memory buffers, 55 * and retrieve received packets or enqueue packets to transmit. 56 * 5. using some ioctl()s the process can synchronize the userspace view 57 * of the queue with the actual status in the kernel. This includes both 58 * receiving the notification of new packets, and transmitting new 59 * packets on the output interface. 60 * 6. select() or poll() can be used to wait for events on individual 61 * transmit or receive queues (or all queues for a given interface). 62 * 63 64 SYNCHRONIZATION (USER) 65 66 The netmap rings and data structures may be shared among multiple 67 user threads or even independent processes. 68 Any synchronization among those threads/processes is delegated 69 to the threads themselves. Only one thread at a time can be in 70 a system call on the same netmap ring. The OS does not enforce 71 this and only guarantees against system crashes in case of 72 invalid usage. 73 74 LOCKING (INTERNAL) 75 76 Within the kernel, access to the netmap rings is protected as follows: 77 78 - a spinlock on each ring, to handle producer/consumer races on 79 RX rings attached to the host stack (against multiple host 80 threads writing from the host stack to the same ring), 81 and on 'destination' rings attached to a VALE switch 82 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 83 protecting multiple active senders for the same destination) 84 85 - an atomic variable to guarantee that there is at most one 86 instance of *_*xsync() on the ring at any time. 87 For rings connected to user file 88 descriptors, an atomic_test_and_set() protects this, and the 89 lock on the ring is not actually used. 90 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 91 is also used to prevent multiple executions (the driver might indeed 92 already guarantee this). 93 For NIC TX rings connected to a VALE switch, the lock arbitrates 94 access to the queue (both when allocating buffers and when pushing 95 them out). 96 97 - *xsync() should be protected against initializations of the card. 98 On FreeBSD most devices have the reset routine protected by 99 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 100 the RING protection on rx_reset(), this should be added. 101 102 On linux there is an external lock on the tx path, which probably 103 also arbitrates access to the reset routine. XXX to be revised 104 105 - a per-interface core_lock protecting access from the host stack 106 while interfaces may be detached from netmap mode. 107 XXX there should be no need for this lock if we detach the interfaces 108 only while they are down. 109 110 111 --- VALE SWITCH --- 112 113 NMG_LOCK() serializes all modifications to switches and ports. 114 A switch cannot be deleted until all ports are gone. 115 116 For each switch, an SX lock (RWlock on linux) protects 117 deletion of ports. When configuring or deleting a new port, the 118 lock is acquired in exclusive mode (after holding NMG_LOCK). 119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 120 The lock is held throughout the entire forwarding cycle, 121 during which the thread may incur in a page fault. 122 Hence it is important that sleepable shared locks are used. 123 124 On the rx ring, the per-port lock is grabbed initially to reserve 125 a number of slot in the ring, then the lock is released, 126 packets are copied from source to destination, and then 127 the lock is acquired again and the receive ring is updated. 128 (A similar thing is done on the tx ring for NIC and host stack 129 ports attached to the switch) 130 131 */ 132 133 134 /* --- internals ---- 135 * 136 * Roadmap to the code that implements the above. 137 * 138 * > 1. a process/thread issues one or more open() on /dev/netmap, to create 139 * > select()able file descriptor on which events are reported. 140 * 141 * Internally, we allocate a netmap_priv_d structure, that will be 142 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d 143 * structure for each open(). 144 * 145 * os-specific: 146 * FreeBSD: see netmap_open() (netmap_freebsd.c) 147 * linux: see linux_netmap_open() (netmap_linux.c) 148 * 149 * > 2. on each descriptor, the process issues an ioctl() to identify 150 * > the interface that should report events to the file descriptor. 151 * 152 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0. 153 * Most important things happen in netmap_get_na() and 154 * netmap_do_regif(), called from there. Additional details can be 155 * found in the comments above those functions. 156 * 157 * In all cases, this action creates/takes-a-reference-to a 158 * netmap_*_adapter describing the port, and allocates a netmap_if 159 * and all necessary netmap rings, filling them with netmap buffers. 160 * 161 * In this phase, the sync callbacks for each ring are set (these are used 162 * in steps 5 and 6 below). The callbacks depend on the type of adapter. 163 * The adapter creation/initialization code puts them in the 164 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they 165 * are copied from there to the netmap_kring's during netmap_do_regif(), by 166 * the nm_krings_create() callback. All the nm_krings_create callbacks 167 * actually call netmap_krings_create() to perform this and the other 168 * common stuff. netmap_krings_create() also takes care of the host rings, 169 * if needed, by setting their sync callbacks appropriately. 170 * 171 * Additional actions depend on the kind of netmap_adapter that has been 172 * registered: 173 * 174 * - netmap_hw_adapter: [netmap.c] 175 * This is a system netdev/ifp with native netmap support. 176 * The ifp is detached from the host stack by redirecting: 177 * - transmissions (from the network stack) to netmap_transmit() 178 * - receive notifications to the nm_notify() callback for 179 * this adapter. The callback is normally netmap_notify(), unless 180 * the ifp is attached to a bridge using bwrap, in which case it 181 * is netmap_bwrap_intr_notify(). 182 * 183 * - netmap_generic_adapter: [netmap_generic.c] 184 * A system netdev/ifp without native netmap support. 185 * 186 * (the decision about native/non native support is taken in 187 * netmap_get_hw_na(), called by netmap_get_na()) 188 * 189 * - netmap_vp_adapter [netmap_vale.c] 190 * Returned by netmap_get_bdg_na(). 191 * This is a persistent or ephemeral VALE port. Ephemeral ports 192 * are created on the fly if they don't already exist, and are 193 * always attached to a bridge. 194 * Persistent VALE ports must must be created separately, and i 195 * then attached like normal NICs. The NIOCREGIF we are examining 196 * will find them only if they had previosly been created and 197 * attached (see VALE_CTL below). 198 * 199 * - netmap_pipe_adapter [netmap_pipe.c] 200 * Returned by netmap_get_pipe_na(). 201 * Both pipe ends are created, if they didn't already exist. 202 * 203 * - netmap_monitor_adapter [netmap_monitor.c] 204 * Returned by netmap_get_monitor_na(). 205 * If successful, the nm_sync callbacks of the monitored adapter 206 * will be intercepted by the returned monitor. 207 * 208 * - netmap_bwrap_adapter [netmap_vale.c] 209 * Cannot be obtained in this way, see VALE_CTL below 210 * 211 * 212 * os-specific: 213 * linux: we first go through linux_netmap_ioctl() to 214 * adapt the FreeBSD interface to the linux one. 215 * 216 * 217 * > 3. on each descriptor, the process issues an mmap() request to 218 * > map the shared memory region within the process' address space. 219 * > The list of interesting queues is indicated by a location in 220 * > the shared memory region. 221 * 222 * os-specific: 223 * FreeBSD: netmap_mmap_single (netmap_freebsd.c). 224 * linux: linux_netmap_mmap (netmap_linux.c). 225 * 226 * > 4. using the functions in the netmap(4) userspace API, a process 227 * > can look up the occupation state of a queue, access memory buffers, 228 * > and retrieve received packets or enqueue packets to transmit. 229 * 230 * these actions do not involve the kernel. 231 * 232 * > 5. using some ioctl()s the process can synchronize the userspace view 233 * > of the queue with the actual status in the kernel. This includes both 234 * > receiving the notification of new packets, and transmitting new 235 * > packets on the output interface. 236 * 237 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC 238 * cases. They invoke the nm_sync callbacks on the netmap_kring 239 * structures, as initialized in step 2 and maybe later modified 240 * by a monitor. Monitors, however, will always call the original 241 * callback before doing anything else. 242 * 243 * 244 * > 6. select() or poll() can be used to wait for events on individual 245 * > transmit or receive queues (or all queues for a given interface). 246 * 247 * Implemented in netmap_poll(). This will call the same nm_sync() 248 * callbacks as in step 5 above. 249 * 250 * os-specific: 251 * linux: we first go through linux_netmap_poll() to adapt 252 * the FreeBSD interface to the linux one. 253 * 254 * 255 * ---- VALE_CTL ----- 256 * 257 * VALE switches are controlled by issuing a NIOCREGIF with a non-null 258 * nr_cmd in the nmreq structure. These subcommands are handled by 259 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created 260 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF 261 * subcommands, respectively. 262 * 263 * Any network interface known to the system (including a persistent VALE 264 * port) can be attached to a VALE switch by issuing the 265 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports 266 * look exactly like ephemeral VALE ports (as created in step 2 above). The 267 * attachment of other interfaces, instead, requires the creation of a 268 * netmap_bwrap_adapter. Moreover, the attached interface must be put in 269 * netmap mode. This may require the creation of a netmap_generic_adapter if 270 * we have no native support for the interface, or if generic adapters have 271 * been forced by sysctl. 272 * 273 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(), 274 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach() 275 * callback. In the case of the bwrap, the callback creates the 276 * netmap_bwrap_adapter. The initialization of the bwrap is then 277 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl() 278 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c). 279 * A generic adapter for the wrapped ifp will be created if needed, when 280 * netmap_get_bdg_na() calls netmap_get_hw_na(). 281 * 282 * 283 * ---- DATAPATHS ----- 284 * 285 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =- 286 * 287 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach() 288 * 289 * - tx from netmap userspace: 290 * concurrently: 291 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 292 * kring->nm_sync() == DEVICE_netmap_txsync() 293 * 2) device interrupt handler 294 * na->nm_notify() == netmap_notify() 295 * - rx from netmap userspace: 296 * concurrently: 297 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 298 * kring->nm_sync() == DEVICE_netmap_rxsync() 299 * 2) device interrupt handler 300 * na->nm_notify() == netmap_notify() 301 * - rx from host stack 302 * concurrently: 303 * 1) host stack 304 * netmap_transmit() 305 * na->nm_notify == netmap_notify() 306 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context 307 * kring->nm_sync() == netmap_rxsync_from_host 308 * netmap_rxsync_from_host(na, NULL, NULL) 309 * - tx to host stack 310 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 311 * kring->nm_sync() == netmap_txsync_to_host 312 * netmap_txsync_to_host(na) 313 * nm_os_send_up() 314 * FreeBSD: na->if_input() == ether_input() 315 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX 316 * 317 * 318 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =- 319 * 320 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach() 321 * 322 * - tx from netmap userspace: 323 * concurrently: 324 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 325 * kring->nm_sync() == generic_netmap_txsync() 326 * nm_os_generic_xmit_frame() 327 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX 328 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 329 * gna->save_start_xmit == orig. dev. start_xmit 330 * FreeBSD: na->if_transmit() == orig. dev if_transmit 331 * 2) generic_mbuf_destructor() 332 * na->nm_notify() == netmap_notify() 333 * - rx from netmap userspace: 334 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 335 * kring->nm_sync() == generic_netmap_rxsync() 336 * mbq_safe_dequeue() 337 * 2) device driver 338 * generic_rx_handler() 339 * mbq_safe_enqueue() 340 * na->nm_notify() == netmap_notify() 341 * - rx from host stack 342 * FreeBSD: same as native 343 * Linux: same as native except: 344 * 1) host stack 345 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX 346 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 347 * netmap_transmit() 348 * na->nm_notify() == netmap_notify() 349 * - tx to host stack (same as native): 350 * 351 * 352 * -= VALE =- 353 * 354 * INCOMING: 355 * 356 * - VALE ports: 357 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 358 * kring->nm_sync() == netmap_vp_txsync() 359 * 360 * - system device with native support: 361 * from cable: 362 * interrupt 363 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 364 * kring->nm_sync() == DEVICE_netmap_rxsync() 365 * netmap_vp_txsync() 366 * kring->nm_sync() == DEVICE_netmap_rxsync() 367 * from host stack: 368 * netmap_transmit() 369 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 370 * kring->nm_sync() == netmap_rxsync_from_host() 371 * netmap_vp_txsync() 372 * 373 * - system device with generic support: 374 * from device driver: 375 * generic_rx_handler() 376 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 377 * kring->nm_sync() == generic_netmap_rxsync() 378 * netmap_vp_txsync() 379 * kring->nm_sync() == generic_netmap_rxsync() 380 * from host stack: 381 * netmap_transmit() 382 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 383 * kring->nm_sync() == netmap_rxsync_from_host() 384 * netmap_vp_txsync() 385 * 386 * (all cases) --> nm_bdg_flush() 387 * dest_na->nm_notify() == (see below) 388 * 389 * OUTGOING: 390 * 391 * - VALE ports: 392 * concurrently: 393 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 394 * kring->nm_sync() == netmap_vp_rxsync() 395 * 2) from nm_bdg_flush() 396 * na->nm_notify() == netmap_notify() 397 * 398 * - system device with native support: 399 * to cable: 400 * na->nm_notify() == netmap_bwrap_notify() 401 * netmap_vp_rxsync() 402 * kring->nm_sync() == DEVICE_netmap_txsync() 403 * netmap_vp_rxsync() 404 * to host stack: 405 * netmap_vp_rxsync() 406 * kring->nm_sync() == netmap_txsync_to_host 407 * netmap_vp_rxsync_locked() 408 * 409 * - system device with generic adapter: 410 * to device driver: 411 * na->nm_notify() == netmap_bwrap_notify() 412 * netmap_vp_rxsync() 413 * kring->nm_sync() == generic_netmap_txsync() 414 * netmap_vp_rxsync() 415 * to host stack: 416 * netmap_vp_rxsync() 417 * kring->nm_sync() == netmap_txsync_to_host 418 * netmap_vp_rxsync() 419 * 420 */ 421 422 /* 423 * OS-specific code that is used only within this file. 424 * Other OS-specific code that must be accessed by drivers 425 * is present in netmap_kern.h 426 */ 427 428 #if defined(__FreeBSD__) 429 #include <sys/cdefs.h> /* prerequisite */ 430 #include <sys/types.h> 431 #include <sys/errno.h> 432 #include <sys/param.h> /* defines used in kernel.h */ 433 #include <sys/kernel.h> /* types used in module initialization */ 434 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 435 #include <sys/filio.h> /* FIONBIO */ 436 #include <sys/sockio.h> 437 #include <sys/socketvar.h> /* struct socket */ 438 #include <sys/malloc.h> 439 #include <sys/poll.h> 440 #include <sys/rwlock.h> 441 #include <sys/socket.h> /* sockaddrs */ 442 #include <sys/selinfo.h> 443 #include <sys/sysctl.h> 444 #include <sys/jail.h> 445 #include <net/vnet.h> 446 #include <net/if.h> 447 #include <net/if_var.h> 448 #include <net/bpf.h> /* BIOCIMMEDIATE */ 449 #include <machine/bus.h> /* bus_dmamap_* */ 450 #include <sys/endian.h> 451 #include <sys/refcount.h> 452 #include <net/ethernet.h> /* ETHER_BPF_MTAP */ 453 454 455 #elif defined(linux) 456 457 #include "bsd_glue.h" 458 459 #elif defined(__APPLE__) 460 461 #warning OSX support is only partial 462 #include "osx_glue.h" 463 464 #elif defined (_WIN32) 465 466 #include "win_glue.h" 467 468 #else 469 470 #error Unsupported platform 471 472 #endif /* unsupported */ 473 474 /* 475 * common headers 476 */ 477 #include <net/netmap.h> 478 #include <dev/netmap/netmap_kern.h> 479 #include <dev/netmap/netmap_mem2.h> 480 481 482 /* user-controlled variables */ 483 int netmap_verbose; 484 #ifdef CONFIG_NETMAP_DEBUG 485 int netmap_debug; 486 #endif /* CONFIG_NETMAP_DEBUG */ 487 488 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 489 int netmap_no_pendintr = 1; 490 int netmap_txsync_retry = 2; 491 static int netmap_fwd = 0; /* force transparent forwarding */ 492 493 /* 494 * netmap_admode selects the netmap mode to use. 495 * Invalid values are reset to NETMAP_ADMODE_BEST 496 */ 497 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 498 NETMAP_ADMODE_NATIVE, /* either native or none */ 499 NETMAP_ADMODE_GENERIC, /* force generic */ 500 NETMAP_ADMODE_LAST }; 501 static int netmap_admode = NETMAP_ADMODE_BEST; 502 503 /* netmap_generic_mit controls mitigation of RX notifications for 504 * the generic netmap adapter. The value is a time interval in 505 * nanoseconds. */ 506 int netmap_generic_mit = 100*1000; 507 508 /* We use by default netmap-aware qdiscs with generic netmap adapters, 509 * even if there can be a little performance hit with hardware NICs. 510 * However, using the qdisc is the safer approach, for two reasons: 511 * 1) it prevents non-fifo qdiscs to break the TX notification 512 * scheme, which is based on mbuf destructors when txqdisc is 513 * not used. 514 * 2) it makes it possible to transmit over software devices that 515 * change skb->dev, like bridge, veth, ... 516 * 517 * Anyway users looking for the best performance should 518 * use native adapters. 519 */ 520 #ifdef linux 521 int netmap_generic_txqdisc = 1; 522 #endif 523 524 /* Default number of slots and queues for generic adapters. */ 525 int netmap_generic_ringsize = 1024; 526 int netmap_generic_rings = 1; 527 528 /* Non-zero to enable checksum offloading in NIC drivers */ 529 int netmap_generic_hwcsum = 0; 530 531 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */ 532 int ptnet_vnet_hdr = 1; 533 534 /* 535 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated 536 * in some other operating systems 537 */ 538 SYSBEGIN(main_init); 539 540 SYSCTL_DECL(_dev_netmap); 541 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 542 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 543 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 544 #ifdef CONFIG_NETMAP_DEBUG 545 SYSCTL_INT(_dev_netmap, OID_AUTO, debug, 546 CTLFLAG_RW, &netmap_debug, 0, "Debug messages"); 547 #endif /* CONFIG_NETMAP_DEBUG */ 548 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 549 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr, 551 0, "Always look for new received packets."); 552 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 553 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush."); 554 555 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0, 556 "Force NR_FORWARD mode"); 557 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0, 558 "Adapter mode. 0 selects the best option available," 559 "1 forces native adapter, 2 forces emulated adapter"); 560 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum, 561 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default)," 562 "1 to enable checksum generation by the NIC"); 563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 564 0, "RX notification interval in nanoseconds"); 565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, 566 &netmap_generic_ringsize, 0, 567 "Number of per-ring slots for emulated netmap mode"); 568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW, 569 &netmap_generic_rings, 0, 570 "Number of TX/RX queues for emulated netmap adapters"); 571 #ifdef linux 572 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW, 573 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters"); 574 #endif 575 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr, 576 0, "Allow ptnet devices to use virtio-net headers"); 577 578 SYSEND; 579 580 NMG_LOCK_T netmap_global_lock; 581 582 /* 583 * mark the ring as stopped, and run through the locks 584 * to make sure other users get to see it. 585 * stopped must be either NR_KR_STOPPED (for unbounded stop) 586 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes) 587 */ 588 static void 589 netmap_disable_ring(struct netmap_kring *kr, int stopped) 590 { 591 nm_kr_stop(kr, stopped); 592 // XXX check if nm_kr_stop is sufficient 593 mtx_lock(&kr->q_lock); 594 mtx_unlock(&kr->q_lock); 595 nm_kr_put(kr); 596 } 597 598 /* stop or enable a single ring */ 599 void 600 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped) 601 { 602 if (stopped) 603 netmap_disable_ring(NMR(na, t)[ring_id], stopped); 604 else 605 NMR(na, t)[ring_id]->nkr_stopped = 0; 606 } 607 608 609 /* stop or enable all the rings of na */ 610 void 611 netmap_set_all_rings(struct netmap_adapter *na, int stopped) 612 { 613 int i; 614 enum txrx t; 615 616 if (!nm_netmap_on(na)) 617 return; 618 619 for_rx_tx(t) { 620 for (i = 0; i < netmap_real_rings(na, t); i++) { 621 netmap_set_ring(na, i, t, stopped); 622 } 623 } 624 } 625 626 /* 627 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s 628 * to finish and prevents any new one from starting. Call this before turning 629 * netmap mode off, or before removing the hardware rings (e.g., on module 630 * onload). 631 */ 632 void 633 netmap_disable_all_rings(struct ifnet *ifp) 634 { 635 if (NM_NA_VALID(ifp)) { 636 netmap_set_all_rings(NA(ifp), NM_KR_STOPPED); 637 } 638 } 639 640 /* 641 * Convenience function used in drivers. Re-enables rxsync and txsync on the 642 * adapter's rings In linux drivers, this should be placed near each 643 * napi_enable(). 644 */ 645 void 646 netmap_enable_all_rings(struct ifnet *ifp) 647 { 648 if (NM_NA_VALID(ifp)) { 649 netmap_set_all_rings(NA(ifp), 0 /* enabled */); 650 } 651 } 652 653 void 654 netmap_make_zombie(struct ifnet *ifp) 655 { 656 if (NM_NA_VALID(ifp)) { 657 struct netmap_adapter *na = NA(ifp); 658 netmap_set_all_rings(na, NM_KR_LOCKED); 659 na->na_flags |= NAF_ZOMBIE; 660 netmap_set_all_rings(na, 0); 661 } 662 } 663 664 void 665 netmap_undo_zombie(struct ifnet *ifp) 666 { 667 if (NM_NA_VALID(ifp)) { 668 struct netmap_adapter *na = NA(ifp); 669 if (na->na_flags & NAF_ZOMBIE) { 670 netmap_set_all_rings(na, NM_KR_LOCKED); 671 na->na_flags &= ~NAF_ZOMBIE; 672 netmap_set_all_rings(na, 0); 673 } 674 } 675 } 676 677 /* 678 * generic bound_checking function 679 */ 680 u_int 681 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 682 { 683 u_int oldv = *v; 684 const char *op = NULL; 685 686 if (dflt < lo) 687 dflt = lo; 688 if (dflt > hi) 689 dflt = hi; 690 if (oldv < lo) { 691 *v = dflt; 692 op = "Bump"; 693 } else if (oldv > hi) { 694 *v = hi; 695 op = "Clamp"; 696 } 697 if (op && msg) 698 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv); 699 return *v; 700 } 701 702 703 /* 704 * packet-dump function, user-supplied or static buffer. 705 * The destination buffer must be at least 30+4*len 706 */ 707 const char * 708 nm_dump_buf(char *p, int len, int lim, char *dst) 709 { 710 static char _dst[8192]; 711 int i, j, i0; 712 static char hex[] ="0123456789abcdef"; 713 char *o; /* output position */ 714 715 #define P_HI(x) hex[((x) & 0xf0)>>4] 716 #define P_LO(x) hex[((x) & 0xf)] 717 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 718 if (!dst) 719 dst = _dst; 720 if (lim <= 0 || lim > len) 721 lim = len; 722 o = dst; 723 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 724 o += strlen(o); 725 /* hexdump routine */ 726 for (i = 0; i < lim; ) { 727 sprintf(o, "%5d: ", i); 728 o += strlen(o); 729 memset(o, ' ', 48); 730 i0 = i; 731 for (j=0; j < 16 && i < lim; i++, j++) { 732 o[j*3] = P_HI(p[i]); 733 o[j*3+1] = P_LO(p[i]); 734 } 735 i = i0; 736 for (j=0; j < 16 && i < lim; i++, j++) 737 o[j + 48] = P_C(p[i]); 738 o[j+48] = '\n'; 739 o += j+49; 740 } 741 *o = '\0'; 742 #undef P_HI 743 #undef P_LO 744 #undef P_C 745 return dst; 746 } 747 748 749 /* 750 * Fetch configuration from the device, to cope with dynamic 751 * reconfigurations after loading the module. 752 */ 753 /* call with NMG_LOCK held */ 754 int 755 netmap_update_config(struct netmap_adapter *na) 756 { 757 struct nm_config_info info; 758 759 bzero(&info, sizeof(info)); 760 if (na->nm_config == NULL || 761 na->nm_config(na, &info)) { 762 /* take whatever we had at init time */ 763 info.num_tx_rings = na->num_tx_rings; 764 info.num_tx_descs = na->num_tx_desc; 765 info.num_rx_rings = na->num_rx_rings; 766 info.num_rx_descs = na->num_rx_desc; 767 info.rx_buf_maxsize = na->rx_buf_maxsize; 768 } 769 770 if (na->num_tx_rings == info.num_tx_rings && 771 na->num_tx_desc == info.num_tx_descs && 772 na->num_rx_rings == info.num_rx_rings && 773 na->num_rx_desc == info.num_rx_descs && 774 na->rx_buf_maxsize == info.rx_buf_maxsize) 775 return 0; /* nothing changed */ 776 if (na->active_fds == 0) { 777 na->num_tx_rings = info.num_tx_rings; 778 na->num_tx_desc = info.num_tx_descs; 779 na->num_rx_rings = info.num_rx_rings; 780 na->num_rx_desc = info.num_rx_descs; 781 na->rx_buf_maxsize = info.rx_buf_maxsize; 782 if (netmap_verbose) 783 nm_prinf("configuration changed for %s: txring %d x %d, " 784 "rxring %d x %d, rxbufsz %d", 785 na->name, na->num_tx_rings, na->num_tx_desc, 786 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize); 787 return 0; 788 } 789 nm_prerr("WARNING: configuration changed for %s while active: " 790 "txring %d x %d, rxring %d x %d, rxbufsz %d", 791 na->name, info.num_tx_rings, info.num_tx_descs, 792 info.num_rx_rings, info.num_rx_descs, 793 info.rx_buf_maxsize); 794 return 1; 795 } 796 797 /* nm_sync callbacks for the host rings */ 798 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags); 799 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags); 800 801 /* create the krings array and initialize the fields common to all adapters. 802 * The array layout is this: 803 * 804 * +----------+ 805 * na->tx_rings ----->| | \ 806 * | | } na->num_tx_ring 807 * | | / 808 * +----------+ 809 * | | host tx kring 810 * na->rx_rings ----> +----------+ 811 * | | \ 812 * | | } na->num_rx_rings 813 * | | / 814 * +----------+ 815 * | | host rx kring 816 * +----------+ 817 * na->tailroom ----->| | \ 818 * | | } tailroom bytes 819 * | | / 820 * +----------+ 821 * 822 * Note: for compatibility, host krings are created even when not needed. 823 * The tailroom space is currently used by vale ports for allocating leases. 824 */ 825 /* call with NMG_LOCK held */ 826 int 827 netmap_krings_create(struct netmap_adapter *na, u_int tailroom) 828 { 829 u_int i, len, ndesc; 830 struct netmap_kring *kring; 831 u_int n[NR_TXRX]; 832 enum txrx t; 833 834 if (na->tx_rings != NULL) { 835 if (netmap_debug & NM_DEBUG_ON) 836 nm_prerr("warning: krings were already created"); 837 return 0; 838 } 839 840 /* account for the (possibly fake) host rings */ 841 n[NR_TX] = netmap_all_rings(na, NR_TX); 842 n[NR_RX] = netmap_all_rings(na, NR_RX); 843 844 len = (n[NR_TX] + n[NR_RX]) * 845 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *)) 846 + tailroom; 847 848 na->tx_rings = nm_os_malloc((size_t)len); 849 if (na->tx_rings == NULL) { 850 nm_prerr("Cannot allocate krings"); 851 return ENOMEM; 852 } 853 na->rx_rings = na->tx_rings + n[NR_TX]; 854 na->tailroom = na->rx_rings + n[NR_RX]; 855 856 /* link the krings in the krings array */ 857 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom); 858 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) { 859 na->tx_rings[i] = kring; 860 kring++; 861 } 862 863 /* 864 * All fields in krings are 0 except the one initialized below. 865 * but better be explicit on important kring fields. 866 */ 867 for_rx_tx(t) { 868 ndesc = nma_get_ndesc(na, t); 869 for (i = 0; i < n[t]; i++) { 870 kring = NMR(na, t)[i]; 871 bzero(kring, sizeof(*kring)); 872 kring->na = na; 873 kring->notify_na = na; 874 kring->ring_id = i; 875 kring->tx = t; 876 kring->nkr_num_slots = ndesc; 877 kring->nr_mode = NKR_NETMAP_OFF; 878 kring->nr_pending_mode = NKR_NETMAP_OFF; 879 if (i < nma_get_nrings(na, t)) { 880 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync); 881 } else { 882 if (!(na->na_flags & NAF_HOST_RINGS)) 883 kring->nr_kflags |= NKR_FAKERING; 884 kring->nm_sync = (t == NR_TX ? 885 netmap_txsync_to_host: 886 netmap_rxsync_from_host); 887 } 888 kring->nm_notify = na->nm_notify; 889 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 890 /* 891 * IMPORTANT: Always keep one slot empty. 892 */ 893 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0); 894 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name, 895 nm_txrx2str(t), i); 896 ND("ktx %s h %d c %d t %d", 897 kring->name, kring->rhead, kring->rcur, kring->rtail); 898 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF); 899 nm_os_selinfo_init(&kring->si); 900 } 901 nm_os_selinfo_init(&na->si[t]); 902 } 903 904 905 return 0; 906 } 907 908 909 /* undo the actions performed by netmap_krings_create */ 910 /* call with NMG_LOCK held */ 911 void 912 netmap_krings_delete(struct netmap_adapter *na) 913 { 914 struct netmap_kring **kring = na->tx_rings; 915 enum txrx t; 916 917 if (na->tx_rings == NULL) { 918 if (netmap_debug & NM_DEBUG_ON) 919 nm_prerr("warning: krings were already deleted"); 920 return; 921 } 922 923 for_rx_tx(t) 924 nm_os_selinfo_uninit(&na->si[t]); 925 926 /* we rely on the krings layout described above */ 927 for ( ; kring != na->tailroom; kring++) { 928 mtx_destroy(&(*kring)->q_lock); 929 nm_os_selinfo_uninit(&(*kring)->si); 930 } 931 nm_os_free(na->tx_rings); 932 na->tx_rings = na->rx_rings = na->tailroom = NULL; 933 } 934 935 936 /* 937 * Destructor for NIC ports. They also have an mbuf queue 938 * on the rings connected to the host so we need to purge 939 * them first. 940 */ 941 /* call with NMG_LOCK held */ 942 void 943 netmap_hw_krings_delete(struct netmap_adapter *na) 944 { 945 u_int lim = netmap_real_rings(na, NR_RX), i; 946 947 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) { 948 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue; 949 ND("destroy sw mbq with len %d", mbq_len(q)); 950 mbq_purge(q); 951 mbq_safe_fini(q); 952 } 953 netmap_krings_delete(na); 954 } 955 956 static void 957 netmap_mem_drop(struct netmap_adapter *na) 958 { 959 int last = netmap_mem_deref(na->nm_mem, na); 960 /* if the native allocator had been overrided on regif, 961 * restore it now and drop the temporary one 962 */ 963 if (last && na->nm_mem_prev) { 964 netmap_mem_put(na->nm_mem); 965 na->nm_mem = na->nm_mem_prev; 966 na->nm_mem_prev = NULL; 967 } 968 } 969 970 /* 971 * Undo everything that was done in netmap_do_regif(). In particular, 972 * call nm_register(ifp,0) to stop netmap mode on the interface and 973 * revert to normal operation. 974 */ 975 /* call with NMG_LOCK held */ 976 static void netmap_unset_ringid(struct netmap_priv_d *); 977 static void netmap_krings_put(struct netmap_priv_d *); 978 void 979 netmap_do_unregif(struct netmap_priv_d *priv) 980 { 981 struct netmap_adapter *na = priv->np_na; 982 983 NMG_LOCK_ASSERT(); 984 na->active_fds--; 985 /* unset nr_pending_mode and possibly release exclusive mode */ 986 netmap_krings_put(priv); 987 988 #ifdef WITH_MONITOR 989 /* XXX check whether we have to do something with monitor 990 * when rings change nr_mode. */ 991 if (na->active_fds <= 0) { 992 /* walk through all the rings and tell any monitor 993 * that the port is going to exit netmap mode 994 */ 995 netmap_monitor_stop(na); 996 } 997 #endif 998 999 if (na->active_fds <= 0 || nm_kring_pending(priv)) { 1000 na->nm_register(na, 0); 1001 } 1002 1003 /* delete rings and buffers that are no longer needed */ 1004 netmap_mem_rings_delete(na); 1005 1006 if (na->active_fds <= 0) { /* last instance */ 1007 /* 1008 * (TO CHECK) We enter here 1009 * when the last reference to this file descriptor goes 1010 * away. This means we cannot have any pending poll() 1011 * or interrupt routine operating on the structure. 1012 * XXX The file may be closed in a thread while 1013 * another thread is using it. 1014 * Linux keeps the file opened until the last reference 1015 * by any outstanding ioctl/poll or mmap is gone. 1016 * FreeBSD does not track mmap()s (but we do) and 1017 * wakes up any sleeping poll(). Need to check what 1018 * happens if the close() occurs while a concurrent 1019 * syscall is running. 1020 */ 1021 if (netmap_debug & NM_DEBUG_ON) 1022 nm_prinf("deleting last instance for %s", na->name); 1023 1024 if (nm_netmap_on(na)) { 1025 nm_prerr("BUG: netmap on while going to delete the krings"); 1026 } 1027 1028 na->nm_krings_delete(na); 1029 } 1030 1031 /* possibily decrement counter of tx_si/rx_si users */ 1032 netmap_unset_ringid(priv); 1033 /* delete the nifp */ 1034 netmap_mem_if_delete(na, priv->np_nifp); 1035 /* drop the allocator */ 1036 netmap_mem_drop(na); 1037 /* mark the priv as unregistered */ 1038 priv->np_na = NULL; 1039 priv->np_nifp = NULL; 1040 } 1041 1042 struct netmap_priv_d* 1043 netmap_priv_new(void) 1044 { 1045 struct netmap_priv_d *priv; 1046 1047 priv = nm_os_malloc(sizeof(struct netmap_priv_d)); 1048 if (priv == NULL) 1049 return NULL; 1050 priv->np_refs = 1; 1051 nm_os_get_module(); 1052 return priv; 1053 } 1054 1055 /* 1056 * Destructor of the netmap_priv_d, called when the fd is closed 1057 * Action: undo all the things done by NIOCREGIF, 1058 * On FreeBSD we need to track whether there are active mmap()s, 1059 * and we use np_active_mmaps for that. On linux, the field is always 0. 1060 * Return: 1 if we can free priv, 0 otherwise. 1061 * 1062 */ 1063 /* call with NMG_LOCK held */ 1064 void 1065 netmap_priv_delete(struct netmap_priv_d *priv) 1066 { 1067 struct netmap_adapter *na = priv->np_na; 1068 1069 /* number of active references to this fd */ 1070 if (--priv->np_refs > 0) { 1071 return; 1072 } 1073 nm_os_put_module(); 1074 if (na) { 1075 netmap_do_unregif(priv); 1076 } 1077 netmap_unget_na(na, priv->np_ifp); 1078 bzero(priv, sizeof(*priv)); /* for safety */ 1079 nm_os_free(priv); 1080 } 1081 1082 1083 /* call with NMG_LOCK *not* held */ 1084 void 1085 netmap_dtor(void *data) 1086 { 1087 struct netmap_priv_d *priv = data; 1088 1089 NMG_LOCK(); 1090 netmap_priv_delete(priv); 1091 NMG_UNLOCK(); 1092 } 1093 1094 1095 /* 1096 * Handlers for synchronization of the rings from/to the host stack. 1097 * These are associated to a network interface and are just another 1098 * ring pair managed by userspace. 1099 * 1100 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD 1101 * flags): 1102 * 1103 * - Before releasing buffers on hw RX rings, the application can mark 1104 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they 1105 * will be forwarded to the host stack, similarly to what happened if 1106 * the application moved them to the host TX ring. 1107 * 1108 * - Before releasing buffers on the host RX ring, the application can 1109 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(), 1110 * they will be forwarded to the hw TX rings, saving the application 1111 * from doing the same task in user-space. 1112 * 1113 * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD 1114 * flag, or globally with the netmap_fwd sysctl. 1115 * 1116 * The transfer NIC --> host is relatively easy, just encapsulate 1117 * into mbufs and we are done. The host --> NIC side is slightly 1118 * harder because there might not be room in the tx ring so it 1119 * might take a while before releasing the buffer. 1120 */ 1121 1122 1123 /* 1124 * Pass a whole queue of mbufs to the host stack as coming from 'dst' 1125 * We do not need to lock because the queue is private. 1126 * After this call the queue is empty. 1127 */ 1128 static void 1129 netmap_send_up(struct ifnet *dst, struct mbq *q) 1130 { 1131 struct mbuf *m; 1132 struct mbuf *head = NULL, *prev = NULL; 1133 1134 /* Send packets up, outside the lock; head/prev machinery 1135 * is only useful for Windows. */ 1136 while ((m = mbq_dequeue(q)) != NULL) { 1137 if (netmap_debug & NM_DEBUG_HOST) 1138 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m)); 1139 prev = nm_os_send_up(dst, m, prev); 1140 if (head == NULL) 1141 head = prev; 1142 } 1143 if (head) 1144 nm_os_send_up(dst, NULL, head); 1145 mbq_fini(q); 1146 } 1147 1148 1149 /* 1150 * Scan the buffers from hwcur to ring->head, and put a copy of those 1151 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs. 1152 * Drop remaining packets in the unlikely event 1153 * of an mbuf shortage. 1154 */ 1155 static void 1156 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 1157 { 1158 u_int const lim = kring->nkr_num_slots - 1; 1159 u_int const head = kring->rhead; 1160 u_int n; 1161 struct netmap_adapter *na = kring->na; 1162 1163 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 1164 struct mbuf *m; 1165 struct netmap_slot *slot = &kring->ring->slot[n]; 1166 1167 if ((slot->flags & NS_FORWARD) == 0 && !force) 1168 continue; 1169 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) { 1170 RD(5, "bad pkt at %d len %d", n, slot->len); 1171 continue; 1172 } 1173 slot->flags &= ~NS_FORWARD; // XXX needed ? 1174 /* XXX TODO: adapt to the case of a multisegment packet */ 1175 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL); 1176 1177 if (m == NULL) 1178 break; 1179 mbq_enqueue(q, m); 1180 } 1181 } 1182 1183 static inline int 1184 _nm_may_forward(struct netmap_kring *kring) 1185 { 1186 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) && 1187 kring->na->na_flags & NAF_HOST_RINGS && 1188 kring->tx == NR_RX); 1189 } 1190 1191 static inline int 1192 nm_may_forward_up(struct netmap_kring *kring) 1193 { 1194 return _nm_may_forward(kring) && 1195 kring->ring_id != kring->na->num_rx_rings; 1196 } 1197 1198 static inline int 1199 nm_may_forward_down(struct netmap_kring *kring, int sync_flags) 1200 { 1201 return _nm_may_forward(kring) && 1202 (sync_flags & NAF_CAN_FORWARD_DOWN) && 1203 kring->ring_id == kring->na->num_rx_rings; 1204 } 1205 1206 /* 1207 * Send to the NIC rings packets marked NS_FORWARD between 1208 * kring->nr_hwcur and kring->rhead. 1209 * Called under kring->rx_queue.lock on the sw rx ring. 1210 * 1211 * It can only be called if the user opened all the TX hw rings, 1212 * see NAF_CAN_FORWARD_DOWN flag. 1213 * We can touch the TX netmap rings (slots, head and cur) since 1214 * we are in poll/ioctl system call context, and the application 1215 * is not supposed to touch the ring (using a different thread) 1216 * during the execution of the system call. 1217 */ 1218 static u_int 1219 netmap_sw_to_nic(struct netmap_adapter *na) 1220 { 1221 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings]; 1222 struct netmap_slot *rxslot = kring->ring->slot; 1223 u_int i, rxcur = kring->nr_hwcur; 1224 u_int const head = kring->rhead; 1225 u_int const src_lim = kring->nkr_num_slots - 1; 1226 u_int sent = 0; 1227 1228 /* scan rings to find space, then fill as much as possible */ 1229 for (i = 0; i < na->num_tx_rings; i++) { 1230 struct netmap_kring *kdst = na->tx_rings[i]; 1231 struct netmap_ring *rdst = kdst->ring; 1232 u_int const dst_lim = kdst->nkr_num_slots - 1; 1233 1234 /* XXX do we trust ring or kring->rcur,rtail ? */ 1235 for (; rxcur != head && !nm_ring_empty(rdst); 1236 rxcur = nm_next(rxcur, src_lim) ) { 1237 struct netmap_slot *src, *dst, tmp; 1238 u_int dst_head = rdst->head; 1239 1240 src = &rxslot[rxcur]; 1241 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 1242 continue; 1243 1244 sent++; 1245 1246 dst = &rdst->slot[dst_head]; 1247 1248 tmp = *src; 1249 1250 src->buf_idx = dst->buf_idx; 1251 src->flags = NS_BUF_CHANGED; 1252 1253 dst->buf_idx = tmp.buf_idx; 1254 dst->len = tmp.len; 1255 dst->flags = NS_BUF_CHANGED; 1256 1257 rdst->head = rdst->cur = nm_next(dst_head, dst_lim); 1258 } 1259 /* if (sent) XXX txsync ? it would be just an optimization */ 1260 } 1261 return sent; 1262 } 1263 1264 1265 /* 1266 * netmap_txsync_to_host() passes packets up. We are called from a 1267 * system call in user process context, and the only contention 1268 * can be among multiple user threads erroneously calling 1269 * this routine concurrently. 1270 */ 1271 static int 1272 netmap_txsync_to_host(struct netmap_kring *kring, int flags) 1273 { 1274 struct netmap_adapter *na = kring->na; 1275 u_int const lim = kring->nkr_num_slots - 1; 1276 u_int const head = kring->rhead; 1277 struct mbq q; 1278 1279 /* Take packets from hwcur to head and pass them up. 1280 * Force hwcur = head since netmap_grab_packets() stops at head 1281 */ 1282 mbq_init(&q); 1283 netmap_grab_packets(kring, &q, 1 /* force */); 1284 ND("have %d pkts in queue", mbq_len(&q)); 1285 kring->nr_hwcur = head; 1286 kring->nr_hwtail = head + lim; 1287 if (kring->nr_hwtail > lim) 1288 kring->nr_hwtail -= lim + 1; 1289 1290 netmap_send_up(na->ifp, &q); 1291 return 0; 1292 } 1293 1294 1295 /* 1296 * rxsync backend for packets coming from the host stack. 1297 * They have been put in kring->rx_queue by netmap_transmit(). 1298 * We protect access to the kring using kring->rx_queue.lock 1299 * 1300 * also moves to the nic hw rings any packet the user has marked 1301 * for transparent-mode forwarding, then sets the NR_FORWARD 1302 * flag in the kring to let the caller push them out 1303 */ 1304 static int 1305 netmap_rxsync_from_host(struct netmap_kring *kring, int flags) 1306 { 1307 struct netmap_adapter *na = kring->na; 1308 struct netmap_ring *ring = kring->ring; 1309 u_int nm_i, n; 1310 u_int const lim = kring->nkr_num_slots - 1; 1311 u_int const head = kring->rhead; 1312 int ret = 0; 1313 struct mbq *q = &kring->rx_queue, fq; 1314 1315 mbq_init(&fq); /* fq holds packets to be freed */ 1316 1317 mbq_lock(q); 1318 1319 /* First part: import newly received packets */ 1320 n = mbq_len(q); 1321 if (n) { /* grab packets from the queue */ 1322 struct mbuf *m; 1323 uint32_t stop_i; 1324 1325 nm_i = kring->nr_hwtail; 1326 stop_i = nm_prev(kring->nr_hwcur, lim); 1327 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 1328 int len = MBUF_LEN(m); 1329 struct netmap_slot *slot = &ring->slot[nm_i]; 1330 1331 m_copydata(m, 0, len, NMB(na, slot)); 1332 ND("nm %d len %d", nm_i, len); 1333 if (netmap_debug & NM_DEBUG_HOST) 1334 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL)); 1335 1336 slot->len = len; 1337 slot->flags = 0; 1338 nm_i = nm_next(nm_i, lim); 1339 mbq_enqueue(&fq, m); 1340 } 1341 kring->nr_hwtail = nm_i; 1342 } 1343 1344 /* 1345 * Second part: skip past packets that userspace has released. 1346 */ 1347 nm_i = kring->nr_hwcur; 1348 if (nm_i != head) { /* something was released */ 1349 if (nm_may_forward_down(kring, flags)) { 1350 ret = netmap_sw_to_nic(na); 1351 if (ret > 0) { 1352 kring->nr_kflags |= NR_FORWARD; 1353 ret = 0; 1354 } 1355 } 1356 kring->nr_hwcur = head; 1357 } 1358 1359 mbq_unlock(q); 1360 1361 mbq_purge(&fq); 1362 mbq_fini(&fq); 1363 1364 return ret; 1365 } 1366 1367 1368 /* Get a netmap adapter for the port. 1369 * 1370 * If it is possible to satisfy the request, return 0 1371 * with *na containing the netmap adapter found. 1372 * Otherwise return an error code, with *na containing NULL. 1373 * 1374 * When the port is attached to a bridge, we always return 1375 * EBUSY. 1376 * Otherwise, if the port is already bound to a file descriptor, 1377 * then we unconditionally return the existing adapter into *na. 1378 * In all the other cases, we return (into *na) either native, 1379 * generic or NULL, according to the following table: 1380 * 1381 * native_support 1382 * active_fds dev.netmap.admode YES NO 1383 * ------------------------------------------------------- 1384 * >0 * NA(ifp) NA(ifp) 1385 * 1386 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1387 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1388 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1389 * 1390 */ 1391 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */ 1392 int 1393 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na) 1394 { 1395 /* generic support */ 1396 int i = netmap_admode; /* Take a snapshot. */ 1397 struct netmap_adapter *prev_na; 1398 int error = 0; 1399 1400 *na = NULL; /* default */ 1401 1402 /* reset in case of invalid value */ 1403 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1404 i = netmap_admode = NETMAP_ADMODE_BEST; 1405 1406 if (NM_NA_VALID(ifp)) { 1407 prev_na = NA(ifp); 1408 /* If an adapter already exists, return it if 1409 * there are active file descriptors or if 1410 * netmap is not forced to use generic 1411 * adapters. 1412 */ 1413 if (NETMAP_OWNED_BY_ANY(prev_na) 1414 || i != NETMAP_ADMODE_GENERIC 1415 || prev_na->na_flags & NAF_FORCE_NATIVE 1416 #ifdef WITH_PIPES 1417 /* ugly, but we cannot allow an adapter switch 1418 * if some pipe is referring to this one 1419 */ 1420 || prev_na->na_next_pipe > 0 1421 #endif 1422 ) { 1423 *na = prev_na; 1424 goto assign_mem; 1425 } 1426 } 1427 1428 /* If there isn't native support and netmap is not allowed 1429 * to use generic adapters, we cannot satisfy the request. 1430 */ 1431 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE) 1432 return EOPNOTSUPP; 1433 1434 /* Otherwise, create a generic adapter and return it, 1435 * saving the previously used netmap adapter, if any. 1436 * 1437 * Note that here 'prev_na', if not NULL, MUST be a 1438 * native adapter, and CANNOT be a generic one. This is 1439 * true because generic adapters are created on demand, and 1440 * destroyed when not used anymore. Therefore, if the adapter 1441 * currently attached to an interface 'ifp' is generic, it 1442 * must be that 1443 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1444 * Consequently, if NA(ifp) is generic, we will enter one of 1445 * the branches above. This ensures that we never override 1446 * a generic adapter with another generic adapter. 1447 */ 1448 error = generic_netmap_attach(ifp); 1449 if (error) 1450 return error; 1451 1452 *na = NA(ifp); 1453 1454 assign_mem: 1455 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) && 1456 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) { 1457 (*na)->nm_mem_prev = (*na)->nm_mem; 1458 (*na)->nm_mem = netmap_mem_get(nmd); 1459 } 1460 1461 return 0; 1462 } 1463 1464 /* 1465 * MUST BE CALLED UNDER NMG_LOCK() 1466 * 1467 * Get a refcounted reference to a netmap adapter attached 1468 * to the interface specified by req. 1469 * This is always called in the execution of an ioctl(). 1470 * 1471 * Return ENXIO if the interface specified by the request does 1472 * not exist, ENOTSUP if netmap is not supported by the interface, 1473 * EBUSY if the interface is already attached to a bridge, 1474 * EINVAL if parameters are invalid, ENOMEM if needed resources 1475 * could not be allocated. 1476 * If successful, hold a reference to the netmap adapter. 1477 * 1478 * If the interface specified by req is a system one, also keep 1479 * a reference to it and return a valid *ifp. 1480 */ 1481 int 1482 netmap_get_na(struct nmreq_header *hdr, 1483 struct netmap_adapter **na, struct ifnet **ifp, 1484 struct netmap_mem_d *nmd, int create) 1485 { 1486 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; 1487 int error = 0; 1488 struct netmap_adapter *ret = NULL; 1489 int nmd_ref = 0; 1490 1491 *na = NULL; /* default return value */ 1492 *ifp = NULL; 1493 1494 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { 1495 return EINVAL; 1496 } 1497 1498 if (req->nr_mode == NR_REG_PIPE_MASTER || 1499 req->nr_mode == NR_REG_PIPE_SLAVE) { 1500 /* Do not accept deprecated pipe modes. */ 1501 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax"); 1502 return EINVAL; 1503 } 1504 1505 NMG_LOCK_ASSERT(); 1506 1507 /* if the request contain a memid, try to find the 1508 * corresponding memory region 1509 */ 1510 if (nmd == NULL && req->nr_mem_id) { 1511 nmd = netmap_mem_find(req->nr_mem_id); 1512 if (nmd == NULL) 1513 return EINVAL; 1514 /* keep the rereference */ 1515 nmd_ref = 1; 1516 } 1517 1518 /* We cascade through all possible types of netmap adapter. 1519 * All netmap_get_*_na() functions return an error and an na, 1520 * with the following combinations: 1521 * 1522 * error na 1523 * 0 NULL type doesn't match 1524 * !0 NULL type matches, but na creation/lookup failed 1525 * 0 !NULL type matches and na created/found 1526 * !0 !NULL impossible 1527 */ 1528 error = netmap_get_null_na(hdr, na, nmd, create); 1529 if (error || *na != NULL) 1530 goto out; 1531 1532 /* try to see if this is a monitor port */ 1533 error = netmap_get_monitor_na(hdr, na, nmd, create); 1534 if (error || *na != NULL) 1535 goto out; 1536 1537 /* try to see if this is a pipe port */ 1538 error = netmap_get_pipe_na(hdr, na, nmd, create); 1539 if (error || *na != NULL) 1540 goto out; 1541 1542 /* try to see if this is a bridge port */ 1543 error = netmap_get_vale_na(hdr, na, nmd, create); 1544 if (error) 1545 goto out; 1546 1547 if (*na != NULL) /* valid match in netmap_get_bdg_na() */ 1548 goto out; 1549 1550 /* 1551 * This must be a hardware na, lookup the name in the system. 1552 * Note that by hardware we actually mean "it shows up in ifconfig". 1553 * This may still be a tap, a veth/epair, or even a 1554 * persistent VALE port. 1555 */ 1556 *ifp = ifunit_ref(hdr->nr_name); 1557 if (*ifp == NULL) { 1558 error = ENXIO; 1559 goto out; 1560 } 1561 1562 error = netmap_get_hw_na(*ifp, nmd, &ret); 1563 if (error) 1564 goto out; 1565 1566 *na = ret; 1567 netmap_adapter_get(ret); 1568 1569 out: 1570 if (error) { 1571 if (ret) 1572 netmap_adapter_put(ret); 1573 if (*ifp) { 1574 if_rele(*ifp); 1575 *ifp = NULL; 1576 } 1577 } 1578 if (nmd_ref) 1579 netmap_mem_put(nmd); 1580 1581 return error; 1582 } 1583 1584 /* undo netmap_get_na() */ 1585 void 1586 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp) 1587 { 1588 if (ifp) 1589 if_rele(ifp); 1590 if (na) 1591 netmap_adapter_put(na); 1592 } 1593 1594 1595 #define NM_FAIL_ON(t) do { \ 1596 if (unlikely(t)) { \ 1597 RD(5, "%s: fail '" #t "' " \ 1598 "h %d c %d t %d " \ 1599 "rh %d rc %d rt %d " \ 1600 "hc %d ht %d", \ 1601 kring->name, \ 1602 head, cur, ring->tail, \ 1603 kring->rhead, kring->rcur, kring->rtail, \ 1604 kring->nr_hwcur, kring->nr_hwtail); \ 1605 return kring->nkr_num_slots; \ 1606 } \ 1607 } while (0) 1608 1609 /* 1610 * validate parameters on entry for *_txsync() 1611 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1612 * in case of error. 1613 * 1614 * rhead, rcur and rtail=hwtail are stored from previous round. 1615 * hwcur is the next packet to send to the ring. 1616 * 1617 * We want 1618 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1619 * 1620 * hwcur, rhead, rtail and hwtail are reliable 1621 */ 1622 u_int 1623 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1624 { 1625 u_int head = ring->head; /* read only once */ 1626 u_int cur = ring->cur; /* read only once */ 1627 u_int n = kring->nkr_num_slots; 1628 1629 ND(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1630 kring->name, 1631 kring->nr_hwcur, kring->nr_hwtail, 1632 ring->head, ring->cur, ring->tail); 1633 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1634 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n || 1635 kring->rtail >= n || kring->nr_hwtail >= n); 1636 #endif /* kernel sanity checks */ 1637 /* 1638 * user sanity checks. We only use head, 1639 * A, B, ... are possible positions for head: 1640 * 1641 * 0 A rhead B rtail C n-1 1642 * 0 D rtail E rhead F n-1 1643 * 1644 * B, F, D are valid. A, C, E are wrong 1645 */ 1646 if (kring->rtail >= kring->rhead) { 1647 /* want rhead <= head <= rtail */ 1648 NM_FAIL_ON(head < kring->rhead || head > kring->rtail); 1649 /* and also head <= cur <= rtail */ 1650 NM_FAIL_ON(cur < head || cur > kring->rtail); 1651 } else { /* here rtail < rhead */ 1652 /* we need head outside rtail .. rhead */ 1653 NM_FAIL_ON(head > kring->rtail && head < kring->rhead); 1654 1655 /* two cases now: head <= rtail or head >= rhead */ 1656 if (head <= kring->rtail) { 1657 /* want head <= cur <= rtail */ 1658 NM_FAIL_ON(cur < head || cur > kring->rtail); 1659 } else { /* head >= rhead */ 1660 /* cur must be outside rtail..head */ 1661 NM_FAIL_ON(cur > kring->rtail && cur < head); 1662 } 1663 } 1664 if (ring->tail != kring->rtail) { 1665 RD(5, "%s tail overwritten was %d need %d", kring->name, 1666 ring->tail, kring->rtail); 1667 ring->tail = kring->rtail; 1668 } 1669 kring->rhead = head; 1670 kring->rcur = cur; 1671 return head; 1672 } 1673 1674 1675 /* 1676 * validate parameters on entry for *_rxsync() 1677 * Returns ring->head if ok, kring->nkr_num_slots on error. 1678 * 1679 * For a valid configuration, 1680 * hwcur <= head <= cur <= tail <= hwtail 1681 * 1682 * We only consider head and cur. 1683 * hwcur and hwtail are reliable. 1684 * 1685 */ 1686 u_int 1687 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1688 { 1689 uint32_t const n = kring->nkr_num_slots; 1690 uint32_t head, cur; 1691 1692 ND(5,"%s kc %d kt %d h %d c %d t %d", 1693 kring->name, 1694 kring->nr_hwcur, kring->nr_hwtail, 1695 ring->head, ring->cur, ring->tail); 1696 /* 1697 * Before storing the new values, we should check they do not 1698 * move backwards. However: 1699 * - head is not an issue because the previous value is hwcur; 1700 * - cur could in principle go back, however it does not matter 1701 * because we are processing a brand new rxsync() 1702 */ 1703 cur = kring->rcur = ring->cur; /* read only once */ 1704 head = kring->rhead = ring->head; /* read only once */ 1705 #if 1 /* kernel sanity checks */ 1706 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n); 1707 #endif /* kernel sanity checks */ 1708 /* user sanity checks */ 1709 if (kring->nr_hwtail >= kring->nr_hwcur) { 1710 /* want hwcur <= rhead <= hwtail */ 1711 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail); 1712 /* and also rhead <= rcur <= hwtail */ 1713 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1714 } else { 1715 /* we need rhead outside hwtail..hwcur */ 1716 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail); 1717 /* two cases now: head <= hwtail or head >= hwcur */ 1718 if (head <= kring->nr_hwtail) { 1719 /* want head <= cur <= hwtail */ 1720 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1721 } else { 1722 /* cur must be outside hwtail..head */ 1723 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail); 1724 } 1725 } 1726 if (ring->tail != kring->rtail) { 1727 RD(5, "%s tail overwritten was %d need %d", 1728 kring->name, 1729 ring->tail, kring->rtail); 1730 ring->tail = kring->rtail; 1731 } 1732 return head; 1733 } 1734 1735 1736 /* 1737 * Error routine called when txsync/rxsync detects an error. 1738 * Can't do much more than resetting head = cur = hwcur, tail = hwtail 1739 * Return 1 on reinit. 1740 * 1741 * This routine is only called by the upper half of the kernel. 1742 * It only reads hwcur (which is changed only by the upper half, too) 1743 * and hwtail (which may be changed by the lower half, but only on 1744 * a tx ring and only to increase it, so any error will be recovered 1745 * on the next call). For the above, we don't strictly need to call 1746 * it under lock. 1747 */ 1748 int 1749 netmap_ring_reinit(struct netmap_kring *kring) 1750 { 1751 struct netmap_ring *ring = kring->ring; 1752 u_int i, lim = kring->nkr_num_slots - 1; 1753 int errors = 0; 1754 1755 // XXX KASSERT nm_kr_tryget 1756 RD(10, "called for %s", kring->name); 1757 // XXX probably wrong to trust userspace 1758 kring->rhead = ring->head; 1759 kring->rcur = ring->cur; 1760 kring->rtail = ring->tail; 1761 1762 if (ring->cur > lim) 1763 errors++; 1764 if (ring->head > lim) 1765 errors++; 1766 if (ring->tail > lim) 1767 errors++; 1768 for (i = 0; i <= lim; i++) { 1769 u_int idx = ring->slot[i].buf_idx; 1770 u_int len = ring->slot[i].len; 1771 if (idx < 2 || idx >= kring->na->na_lut.objtotal) { 1772 RD(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1773 ring->slot[i].buf_idx = 0; 1774 ring->slot[i].len = 0; 1775 } else if (len > NETMAP_BUF_SIZE(kring->na)) { 1776 ring->slot[i].len = 0; 1777 RD(5, "bad len at slot %d idx %d len %d", i, idx, len); 1778 } 1779 } 1780 if (errors) { 1781 RD(10, "total %d errors", errors); 1782 RD(10, "%s reinit, cur %d -> %d tail %d -> %d", 1783 kring->name, 1784 ring->cur, kring->nr_hwcur, 1785 ring->tail, kring->nr_hwtail); 1786 ring->head = kring->rhead = kring->nr_hwcur; 1787 ring->cur = kring->rcur = kring->nr_hwcur; 1788 ring->tail = kring->rtail = kring->nr_hwtail; 1789 } 1790 return (errors ? 1 : 0); 1791 } 1792 1793 /* interpret the ringid and flags fields of an nmreq, by translating them 1794 * into a pair of intervals of ring indices: 1795 * 1796 * [priv->np_txqfirst, priv->np_txqlast) and 1797 * [priv->np_rxqfirst, priv->np_rxqlast) 1798 * 1799 */ 1800 int 1801 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1802 uint16_t nr_ringid, uint64_t nr_flags) 1803 { 1804 struct netmap_adapter *na = priv->np_na; 1805 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY }; 1806 enum txrx t; 1807 u_int j; 1808 1809 for_rx_tx(t) { 1810 if (nr_flags & excluded_direction[t]) { 1811 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1812 continue; 1813 } 1814 switch (nr_mode) { 1815 case NR_REG_ALL_NIC: 1816 case NR_REG_NULL: 1817 priv->np_qfirst[t] = 0; 1818 priv->np_qlast[t] = nma_get_nrings(na, t); 1819 ND("ALL/PIPE: %s %d %d", nm_txrx2str(t), 1820 priv->np_qfirst[t], priv->np_qlast[t]); 1821 break; 1822 case NR_REG_SW: 1823 case NR_REG_NIC_SW: 1824 if (!(na->na_flags & NAF_HOST_RINGS)) { 1825 nm_prerr("host rings not supported"); 1826 return EINVAL; 1827 } 1828 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ? 1829 nma_get_nrings(na, t) : 0); 1830 priv->np_qlast[t] = netmap_all_rings(na, t); 1831 ND("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW", 1832 nm_txrx2str(t), 1833 priv->np_qfirst[t], priv->np_qlast[t]); 1834 break; 1835 case NR_REG_ONE_NIC: 1836 if (nr_ringid >= na->num_tx_rings && 1837 nr_ringid >= na->num_rx_rings) { 1838 nm_prerr("invalid ring id %d", nr_ringid); 1839 return EINVAL; 1840 } 1841 /* if not enough rings, use the first one */ 1842 j = nr_ringid; 1843 if (j >= nma_get_nrings(na, t)) 1844 j = 0; 1845 priv->np_qfirst[t] = j; 1846 priv->np_qlast[t] = j + 1; 1847 ND("ONE_NIC: %s %d %d", nm_txrx2str(t), 1848 priv->np_qfirst[t], priv->np_qlast[t]); 1849 break; 1850 default: 1851 nm_prerr("invalid regif type %d", nr_mode); 1852 return EINVAL; 1853 } 1854 } 1855 priv->np_flags = nr_flags; 1856 1857 /* Allow transparent forwarding mode in the host --> nic 1858 * direction only if all the TX hw rings have been opened. */ 1859 if (priv->np_qfirst[NR_TX] == 0 && 1860 priv->np_qlast[NR_TX] >= na->num_tx_rings) { 1861 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN; 1862 } 1863 1864 if (netmap_verbose) { 1865 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d", 1866 na->name, 1867 priv->np_qfirst[NR_TX], 1868 priv->np_qlast[NR_TX], 1869 priv->np_qfirst[NR_RX], 1870 priv->np_qlast[NR_RX], 1871 nr_ringid); 1872 } 1873 return 0; 1874 } 1875 1876 1877 /* 1878 * Set the ring ID. For devices with a single queue, a request 1879 * for all rings is the same as a single ring. 1880 */ 1881 static int 1882 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1883 uint16_t nr_ringid, uint64_t nr_flags) 1884 { 1885 struct netmap_adapter *na = priv->np_na; 1886 int error; 1887 enum txrx t; 1888 1889 error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags); 1890 if (error) { 1891 return error; 1892 } 1893 1894 priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1; 1895 1896 /* optimization: count the users registered for more than 1897 * one ring, which are the ones sleeping on the global queue. 1898 * The default netmap_notify() callback will then 1899 * avoid signaling the global queue if nobody is using it 1900 */ 1901 for_rx_tx(t) { 1902 if (nm_si_user(priv, t)) 1903 na->si_users[t]++; 1904 } 1905 return 0; 1906 } 1907 1908 static void 1909 netmap_unset_ringid(struct netmap_priv_d *priv) 1910 { 1911 struct netmap_adapter *na = priv->np_na; 1912 enum txrx t; 1913 1914 for_rx_tx(t) { 1915 if (nm_si_user(priv, t)) 1916 na->si_users[t]--; 1917 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1918 } 1919 priv->np_flags = 0; 1920 priv->np_txpoll = 0; 1921 priv->np_kloop_state = 0; 1922 } 1923 1924 1925 /* Set the nr_pending_mode for the requested rings. 1926 * If requested, also try to get exclusive access to the rings, provided 1927 * the rings we want to bind are not exclusively owned by a previous bind. 1928 */ 1929 static int 1930 netmap_krings_get(struct netmap_priv_d *priv) 1931 { 1932 struct netmap_adapter *na = priv->np_na; 1933 u_int i; 1934 struct netmap_kring *kring; 1935 int excl = (priv->np_flags & NR_EXCLUSIVE); 1936 enum txrx t; 1937 1938 if (netmap_debug & NM_DEBUG_ON) 1939 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)", 1940 na->name, 1941 priv->np_qfirst[NR_TX], 1942 priv->np_qlast[NR_TX], 1943 priv->np_qfirst[NR_RX], 1944 priv->np_qlast[NR_RX]); 1945 1946 /* first round: check that all the requested rings 1947 * are neither alread exclusively owned, nor we 1948 * want exclusive ownership when they are already in use 1949 */ 1950 for_rx_tx(t) { 1951 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 1952 kring = NMR(na, t)[i]; 1953 if ((kring->nr_kflags & NKR_EXCLUSIVE) || 1954 (kring->users && excl)) 1955 { 1956 ND("ring %s busy", kring->name); 1957 return EBUSY; 1958 } 1959 } 1960 } 1961 1962 /* second round: increment usage count (possibly marking them 1963 * as exclusive) and set the nr_pending_mode 1964 */ 1965 for_rx_tx(t) { 1966 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 1967 kring = NMR(na, t)[i]; 1968 kring->users++; 1969 if (excl) 1970 kring->nr_kflags |= NKR_EXCLUSIVE; 1971 kring->nr_pending_mode = NKR_NETMAP_ON; 1972 } 1973 } 1974 1975 return 0; 1976 1977 } 1978 1979 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode 1980 * if was asked on regif, and unset the nr_pending_mode if we are the 1981 * last users of the involved rings. */ 1982 static void 1983 netmap_krings_put(struct netmap_priv_d *priv) 1984 { 1985 struct netmap_adapter *na = priv->np_na; 1986 u_int i; 1987 struct netmap_kring *kring; 1988 int excl = (priv->np_flags & NR_EXCLUSIVE); 1989 enum txrx t; 1990 1991 ND("%s: releasing tx [%d, %d) rx [%d, %d)", 1992 na->name, 1993 priv->np_qfirst[NR_TX], 1994 priv->np_qlast[NR_TX], 1995 priv->np_qfirst[NR_RX], 1996 priv->np_qlast[MR_RX]); 1997 1998 for_rx_tx(t) { 1999 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 2000 kring = NMR(na, t)[i]; 2001 if (excl) 2002 kring->nr_kflags &= ~NKR_EXCLUSIVE; 2003 kring->users--; 2004 if (kring->users == 0) 2005 kring->nr_pending_mode = NKR_NETMAP_OFF; 2006 } 2007 } 2008 } 2009 2010 static int 2011 nm_priv_rx_enabled(struct netmap_priv_d *priv) 2012 { 2013 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]); 2014 } 2015 2016 /* Validate the CSB entries for both directions (atok and ktoa). 2017 * To be called under NMG_LOCK(). */ 2018 static int 2019 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo) 2020 { 2021 struct nm_csb_atok *csb_atok_base = 2022 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok; 2023 struct nm_csb_ktoa *csb_ktoa_base = 2024 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa; 2025 enum txrx t; 2026 int num_rings[NR_TXRX], tot_rings; 2027 size_t entry_size[2]; 2028 void *csb_start[2]; 2029 int i; 2030 2031 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) { 2032 nm_prerr("Cannot update CSB while kloop is running"); 2033 return EBUSY; 2034 } 2035 2036 tot_rings = 0; 2037 for_rx_tx(t) { 2038 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t]; 2039 tot_rings += num_rings[t]; 2040 } 2041 if (tot_rings <= 0) 2042 return 0; 2043 2044 if (!(priv->np_flags & NR_EXCLUSIVE)) { 2045 nm_prerr("CSB mode requires NR_EXCLUSIVE"); 2046 return EINVAL; 2047 } 2048 2049 entry_size[0] = sizeof(*csb_atok_base); 2050 entry_size[1] = sizeof(*csb_ktoa_base); 2051 csb_start[0] = (void *)csb_atok_base; 2052 csb_start[1] = (void *)csb_ktoa_base; 2053 2054 for (i = 0; i < 2; i++) { 2055 /* On Linux we could use access_ok() to simplify 2056 * the validation. However, the advantage of 2057 * this approach is that it works also on 2058 * FreeBSD. */ 2059 size_t csb_size = tot_rings * entry_size[i]; 2060 void *tmp; 2061 int err; 2062 2063 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) { 2064 nm_prerr("Unaligned CSB address"); 2065 return EINVAL; 2066 } 2067 2068 tmp = nm_os_malloc(csb_size); 2069 if (!tmp) 2070 return ENOMEM; 2071 if (i == 0) { 2072 /* Application --> kernel direction. */ 2073 err = copyin(csb_start[i], tmp, csb_size); 2074 } else { 2075 /* Kernel --> application direction. */ 2076 memset(tmp, 0, csb_size); 2077 err = copyout(tmp, csb_start[i], csb_size); 2078 } 2079 nm_os_free(tmp); 2080 if (err) { 2081 nm_prerr("Invalid CSB address"); 2082 return err; 2083 } 2084 } 2085 2086 priv->np_csb_atok_base = csb_atok_base; 2087 priv->np_csb_ktoa_base = csb_ktoa_base; 2088 2089 /* Initialize the CSB. */ 2090 for_rx_tx(t) { 2091 for (i = 0; i < num_rings[t]; i++) { 2092 struct netmap_kring *kring = 2093 NMR(priv->np_na, t)[i + priv->np_qfirst[t]]; 2094 struct nm_csb_atok *csb_atok = csb_atok_base + i; 2095 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i; 2096 2097 if (t == NR_RX) { 2098 csb_atok += num_rings[NR_TX]; 2099 csb_ktoa += num_rings[NR_TX]; 2100 } 2101 2102 CSB_WRITE(csb_atok, head, kring->rhead); 2103 CSB_WRITE(csb_atok, cur, kring->rcur); 2104 CSB_WRITE(csb_atok, appl_need_kick, 1); 2105 CSB_WRITE(csb_atok, sync_flags, 1); 2106 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur); 2107 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail); 2108 CSB_WRITE(csb_ktoa, kern_need_kick, 1); 2109 2110 nm_prinf("csb_init for kring %s: head %u, cur %u, " 2111 "hwcur %u, hwtail %u", kring->name, 2112 kring->rhead, kring->rcur, kring->nr_hwcur, 2113 kring->nr_hwtail); 2114 } 2115 } 2116 2117 return 0; 2118 } 2119 2120 /* 2121 * possibly move the interface to netmap-mode. 2122 * If success it returns a pointer to netmap_if, otherwise NULL. 2123 * This must be called with NMG_LOCK held. 2124 * 2125 * The following na callbacks are called in the process: 2126 * 2127 * na->nm_config() [by netmap_update_config] 2128 * (get current number and size of rings) 2129 * 2130 * We have a generic one for linux (netmap_linux_config). 2131 * The bwrap has to override this, since it has to forward 2132 * the request to the wrapped adapter (netmap_bwrap_config). 2133 * 2134 * 2135 * na->nm_krings_create() 2136 * (create and init the krings array) 2137 * 2138 * One of the following: 2139 * 2140 * * netmap_hw_krings_create, (hw ports) 2141 * creates the standard layout for the krings 2142 * and adds the mbq (used for the host rings). 2143 * 2144 * * netmap_vp_krings_create (VALE ports) 2145 * add leases and scratchpads 2146 * 2147 * * netmap_pipe_krings_create (pipes) 2148 * create the krings and rings of both ends and 2149 * cross-link them 2150 * 2151 * * netmap_monitor_krings_create (monitors) 2152 * avoid allocating the mbq 2153 * 2154 * * netmap_bwrap_krings_create (bwraps) 2155 * create both the brap krings array, 2156 * the krings array of the wrapped adapter, and 2157 * (if needed) the fake array for the host adapter 2158 * 2159 * na->nm_register(, 1) 2160 * (put the adapter in netmap mode) 2161 * 2162 * This may be one of the following: 2163 * 2164 * * netmap_hw_reg (hw ports) 2165 * checks that the ifp is still there, then calls 2166 * the hardware specific callback; 2167 * 2168 * * netmap_vp_reg (VALE ports) 2169 * If the port is connected to a bridge, 2170 * set the NAF_NETMAP_ON flag under the 2171 * bridge write lock. 2172 * 2173 * * netmap_pipe_reg (pipes) 2174 * inform the other pipe end that it is no 2175 * longer responsible for the lifetime of this 2176 * pipe end 2177 * 2178 * * netmap_monitor_reg (monitors) 2179 * intercept the sync callbacks of the monitored 2180 * rings 2181 * 2182 * * netmap_bwrap_reg (bwraps) 2183 * cross-link the bwrap and hwna rings, 2184 * forward the request to the hwna, override 2185 * the hwna notify callback (to get the frames 2186 * coming from outside go through the bridge). 2187 * 2188 * 2189 */ 2190 int 2191 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 2192 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags) 2193 { 2194 struct netmap_if *nifp = NULL; 2195 int error; 2196 2197 NMG_LOCK_ASSERT(); 2198 priv->np_na = na; /* store the reference */ 2199 error = netmap_mem_finalize(na->nm_mem, na); 2200 if (error) 2201 goto err; 2202 2203 if (na->active_fds == 0) { 2204 2205 /* cache the allocator info in the na */ 2206 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut); 2207 if (error) 2208 goto err_drop_mem; 2209 ND("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal, 2210 na->na_lut.objsize); 2211 2212 /* ring configuration may have changed, fetch from the card */ 2213 netmap_update_config(na); 2214 } 2215 2216 /* compute the range of tx and rx rings to monitor */ 2217 error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags); 2218 if (error) 2219 goto err_put_lut; 2220 2221 if (na->active_fds == 0) { 2222 /* 2223 * If this is the first registration of the adapter, 2224 * perform sanity checks and create the in-kernel view 2225 * of the netmap rings (the netmap krings). 2226 */ 2227 if (na->ifp && nm_priv_rx_enabled(priv)) { 2228 /* This netmap adapter is attached to an ifnet. */ 2229 unsigned nbs = NETMAP_BUF_SIZE(na); 2230 unsigned mtu = nm_os_ifnet_mtu(na->ifp); 2231 2232 ND("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d", 2233 na->name, mtu, na->rx_buf_maxsize, nbs); 2234 2235 if (na->rx_buf_maxsize == 0) { 2236 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name); 2237 error = EIO; 2238 goto err_drop_mem; 2239 } 2240 2241 if (mtu <= na->rx_buf_maxsize) { 2242 /* The MTU fits a single NIC slot. We only 2243 * Need to check that netmap buffers are 2244 * large enough to hold an MTU. NS_MOREFRAG 2245 * cannot be used in this case. */ 2246 if (nbs < mtu) { 2247 nm_prerr("error: netmap buf size (%u) " 2248 "< device MTU (%u)", nbs, mtu); 2249 error = EINVAL; 2250 goto err_drop_mem; 2251 } 2252 } else { 2253 /* More NIC slots may be needed to receive 2254 * or transmit a single packet. Check that 2255 * the adapter supports NS_MOREFRAG and that 2256 * netmap buffers are large enough to hold 2257 * the maximum per-slot size. */ 2258 if (!(na->na_flags & NAF_MOREFRAG)) { 2259 nm_prerr("error: large MTU (%d) needed " 2260 "but %s does not support " 2261 "NS_MOREFRAG", mtu, 2262 na->ifp->if_xname); 2263 error = EINVAL; 2264 goto err_drop_mem; 2265 } else if (nbs < na->rx_buf_maxsize) { 2266 nm_prerr("error: using NS_MOREFRAG on " 2267 "%s requires netmap buf size " 2268 ">= %u", na->ifp->if_xname, 2269 na->rx_buf_maxsize); 2270 error = EINVAL; 2271 goto err_drop_mem; 2272 } else { 2273 nm_prinf("info: netmap application on " 2274 "%s needs to support " 2275 "NS_MOREFRAG " 2276 "(MTU=%u,netmap_buf_size=%u)", 2277 na->ifp->if_xname, mtu, nbs); 2278 } 2279 } 2280 } 2281 2282 /* 2283 * Depending on the adapter, this may also create 2284 * the netmap rings themselves 2285 */ 2286 error = na->nm_krings_create(na); 2287 if (error) 2288 goto err_put_lut; 2289 2290 } 2291 2292 /* now the krings must exist and we can check whether some 2293 * previous bind has exclusive ownership on them, and set 2294 * nr_pending_mode 2295 */ 2296 error = netmap_krings_get(priv); 2297 if (error) 2298 goto err_del_krings; 2299 2300 /* create all needed missing netmap rings */ 2301 error = netmap_mem_rings_create(na); 2302 if (error) 2303 goto err_rel_excl; 2304 2305 /* in all cases, create a new netmap if */ 2306 nifp = netmap_mem_if_new(na, priv); 2307 if (nifp == NULL) { 2308 error = ENOMEM; 2309 goto err_rel_excl; 2310 } 2311 2312 if (nm_kring_pending(priv)) { 2313 /* Some kring is switching mode, tell the adapter to 2314 * react on this. */ 2315 error = na->nm_register(na, 1); 2316 if (error) 2317 goto err_del_if; 2318 } 2319 2320 /* Commit the reference. */ 2321 na->active_fds++; 2322 2323 /* 2324 * advertise that the interface is ready by setting np_nifp. 2325 * The barrier is needed because readers (poll, *SYNC and mmap) 2326 * check for priv->np_nifp != NULL without locking 2327 */ 2328 mb(); /* make sure previous writes are visible to all CPUs */ 2329 priv->np_nifp = nifp; 2330 2331 return 0; 2332 2333 err_del_if: 2334 netmap_mem_if_delete(na, nifp); 2335 err_rel_excl: 2336 netmap_krings_put(priv); 2337 netmap_mem_rings_delete(na); 2338 err_del_krings: 2339 if (na->active_fds == 0) 2340 na->nm_krings_delete(na); 2341 err_put_lut: 2342 if (na->active_fds == 0) 2343 memset(&na->na_lut, 0, sizeof(na->na_lut)); 2344 err_drop_mem: 2345 netmap_mem_drop(na); 2346 err: 2347 priv->np_na = NULL; 2348 return error; 2349 } 2350 2351 2352 /* 2353 * update kring and ring at the end of rxsync/txsync. 2354 */ 2355 static inline void 2356 nm_sync_finalize(struct netmap_kring *kring) 2357 { 2358 /* 2359 * Update ring tail to what the kernel knows 2360 * After txsync: head/rhead/hwcur might be behind cur/rcur 2361 * if no carrier. 2362 */ 2363 kring->ring->tail = kring->rtail = kring->nr_hwtail; 2364 2365 ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 2366 kring->name, kring->nr_hwcur, kring->nr_hwtail, 2367 kring->rhead, kring->rcur, kring->rtail); 2368 } 2369 2370 /* set ring timestamp */ 2371 static inline void 2372 ring_timestamp_set(struct netmap_ring *ring) 2373 { 2374 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) { 2375 microtime(&ring->ts); 2376 } 2377 } 2378 2379 static int nmreq_copyin(struct nmreq_header *, int); 2380 static int nmreq_copyout(struct nmreq_header *, int); 2381 static int nmreq_checkoptions(struct nmreq_header *); 2382 2383 /* 2384 * ioctl(2) support for the "netmap" device. 2385 * 2386 * Following a list of accepted commands: 2387 * - NIOCCTRL device control API 2388 * - NIOCTXSYNC sync TX rings 2389 * - NIOCRXSYNC sync RX rings 2390 * - SIOCGIFADDR just for convenience 2391 * - NIOCGINFO deprecated (legacy API) 2392 * - NIOCREGIF deprecated (legacy API) 2393 * 2394 * Return 0 on success, errno otherwise. 2395 */ 2396 int 2397 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 2398 struct thread *td, int nr_body_is_user) 2399 { 2400 struct mbq q; /* packets from RX hw queues to host stack */ 2401 struct netmap_adapter *na = NULL; 2402 struct netmap_mem_d *nmd = NULL; 2403 struct ifnet *ifp = NULL; 2404 int error = 0; 2405 u_int i, qfirst, qlast; 2406 struct netmap_kring **krings; 2407 int sync_flags; 2408 enum txrx t; 2409 2410 switch (cmd) { 2411 case NIOCCTRL: { 2412 struct nmreq_header *hdr = (struct nmreq_header *)data; 2413 2414 if (hdr->nr_version < NETMAP_MIN_API || 2415 hdr->nr_version > NETMAP_MAX_API) { 2416 nm_prerr("API mismatch: got %d need %d", 2417 hdr->nr_version, NETMAP_API); 2418 return EINVAL; 2419 } 2420 2421 /* Make a kernel-space copy of the user-space nr_body. 2422 * For convenince, the nr_body pointer and the pointers 2423 * in the options list will be replaced with their 2424 * kernel-space counterparts. The original pointers are 2425 * saved internally and later restored by nmreq_copyout 2426 */ 2427 error = nmreq_copyin(hdr, nr_body_is_user); 2428 if (error) { 2429 return error; 2430 } 2431 2432 /* Sanitize hdr->nr_name. */ 2433 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0'; 2434 2435 switch (hdr->nr_reqtype) { 2436 case NETMAP_REQ_REGISTER: { 2437 struct nmreq_register *req = 2438 (struct nmreq_register *)(uintptr_t)hdr->nr_body; 2439 struct netmap_if *nifp; 2440 2441 /* Protect access to priv from concurrent requests. */ 2442 NMG_LOCK(); 2443 do { 2444 struct nmreq_option *opt; 2445 u_int memflags; 2446 2447 if (priv->np_nifp != NULL) { /* thread already registered */ 2448 error = EBUSY; 2449 break; 2450 } 2451 2452 #ifdef WITH_EXTMEM 2453 opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options, 2454 NETMAP_REQ_OPT_EXTMEM); 2455 if (opt != NULL) { 2456 struct nmreq_opt_extmem *e = 2457 (struct nmreq_opt_extmem *)opt; 2458 2459 error = nmreq_checkduplicate(opt); 2460 if (error) { 2461 opt->nro_status = error; 2462 break; 2463 } 2464 nmd = netmap_mem_ext_create(e->nro_usrptr, 2465 &e->nro_info, &error); 2466 opt->nro_status = error; 2467 if (nmd == NULL) 2468 break; 2469 } 2470 #endif /* WITH_EXTMEM */ 2471 2472 if (nmd == NULL && req->nr_mem_id) { 2473 /* find the allocator and get a reference */ 2474 nmd = netmap_mem_find(req->nr_mem_id); 2475 if (nmd == NULL) { 2476 if (netmap_verbose) { 2477 nm_prerr("%s: failed to find mem_id %u", 2478 hdr->nr_name, req->nr_mem_id); 2479 } 2480 error = EINVAL; 2481 break; 2482 } 2483 } 2484 /* find the interface and a reference */ 2485 error = netmap_get_na(hdr, &na, &ifp, nmd, 2486 1 /* create */); /* keep reference */ 2487 if (error) 2488 break; 2489 if (NETMAP_OWNED_BY_KERN(na)) { 2490 error = EBUSY; 2491 break; 2492 } 2493 2494 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) { 2495 nm_prerr("virt_hdr_len=%d, but application does " 2496 "not accept it", na->virt_hdr_len); 2497 error = EIO; 2498 break; 2499 } 2500 2501 error = netmap_do_regif(priv, na, req->nr_mode, 2502 req->nr_ringid, req->nr_flags); 2503 if (error) { /* reg. failed, release priv and ref */ 2504 break; 2505 } 2506 2507 opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options, 2508 NETMAP_REQ_OPT_CSB); 2509 if (opt != NULL) { 2510 struct nmreq_opt_csb *csbo = 2511 (struct nmreq_opt_csb *)opt; 2512 error = nmreq_checkduplicate(opt); 2513 if (!error) { 2514 error = netmap_csb_validate(priv, csbo); 2515 } 2516 opt->nro_status = error; 2517 if (error) { 2518 netmap_do_unregif(priv); 2519 break; 2520 } 2521 } 2522 2523 nifp = priv->np_nifp; 2524 priv->np_td = td; /* for debugging purposes */ 2525 2526 /* return the offset of the netmap_if object */ 2527 req->nr_rx_rings = na->num_rx_rings; 2528 req->nr_tx_rings = na->num_tx_rings; 2529 req->nr_rx_slots = na->num_rx_desc; 2530 req->nr_tx_slots = na->num_tx_desc; 2531 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags, 2532 &req->nr_mem_id); 2533 if (error) { 2534 netmap_do_unregif(priv); 2535 break; 2536 } 2537 if (memflags & NETMAP_MEM_PRIVATE) { 2538 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 2539 } 2540 for_rx_tx(t) { 2541 priv->np_si[t] = nm_si_user(priv, t) ? 2542 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si; 2543 } 2544 2545 if (req->nr_extra_bufs) { 2546 if (netmap_verbose) 2547 nm_prinf("requested %d extra buffers", 2548 req->nr_extra_bufs); 2549 req->nr_extra_bufs = netmap_extra_alloc(na, 2550 &nifp->ni_bufs_head, req->nr_extra_bufs); 2551 if (netmap_verbose) 2552 nm_prinf("got %d extra buffers", req->nr_extra_bufs); 2553 } 2554 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 2555 2556 error = nmreq_checkoptions(hdr); 2557 if (error) { 2558 netmap_do_unregif(priv); 2559 break; 2560 } 2561 2562 /* store ifp reference so that priv destructor may release it */ 2563 priv->np_ifp = ifp; 2564 } while (0); 2565 if (error) { 2566 netmap_unget_na(na, ifp); 2567 } 2568 /* release the reference from netmap_mem_find() or 2569 * netmap_mem_ext_create() 2570 */ 2571 if (nmd) 2572 netmap_mem_put(nmd); 2573 NMG_UNLOCK(); 2574 break; 2575 } 2576 2577 case NETMAP_REQ_PORT_INFO_GET: { 2578 struct nmreq_port_info_get *req = 2579 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body; 2580 2581 NMG_LOCK(); 2582 do { 2583 u_int memflags; 2584 2585 if (hdr->nr_name[0] != '\0') { 2586 /* Build a nmreq_register out of the nmreq_port_info_get, 2587 * so that we can call netmap_get_na(). */ 2588 struct nmreq_register regreq; 2589 bzero(®req, sizeof(regreq)); 2590 regreq.nr_mode = NR_REG_ALL_NIC; 2591 regreq.nr_tx_slots = req->nr_tx_slots; 2592 regreq.nr_rx_slots = req->nr_rx_slots; 2593 regreq.nr_tx_rings = req->nr_tx_rings; 2594 regreq.nr_rx_rings = req->nr_rx_rings; 2595 regreq.nr_mem_id = req->nr_mem_id; 2596 2597 /* get a refcount */ 2598 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2599 hdr->nr_body = (uintptr_t)®req; 2600 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2601 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */ 2602 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2603 if (error) { 2604 na = NULL; 2605 ifp = NULL; 2606 break; 2607 } 2608 nmd = na->nm_mem; /* get memory allocator */ 2609 } else { 2610 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1); 2611 if (nmd == NULL) { 2612 if (netmap_verbose) 2613 nm_prerr("%s: failed to find mem_id %u", 2614 hdr->nr_name, 2615 req->nr_mem_id ? req->nr_mem_id : 1); 2616 error = EINVAL; 2617 break; 2618 } 2619 } 2620 2621 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags, 2622 &req->nr_mem_id); 2623 if (error) 2624 break; 2625 if (na == NULL) /* only memory info */ 2626 break; 2627 netmap_update_config(na); 2628 req->nr_rx_rings = na->num_rx_rings; 2629 req->nr_tx_rings = na->num_tx_rings; 2630 req->nr_rx_slots = na->num_rx_desc; 2631 req->nr_tx_slots = na->num_tx_desc; 2632 } while (0); 2633 netmap_unget_na(na, ifp); 2634 NMG_UNLOCK(); 2635 break; 2636 } 2637 #ifdef WITH_VALE 2638 case NETMAP_REQ_VALE_ATTACH: { 2639 error = netmap_vale_attach(hdr, NULL /* userspace request */); 2640 break; 2641 } 2642 2643 case NETMAP_REQ_VALE_DETACH: { 2644 error = netmap_vale_detach(hdr, NULL /* userspace request */); 2645 break; 2646 } 2647 2648 case NETMAP_REQ_VALE_LIST: { 2649 error = netmap_vale_list(hdr); 2650 break; 2651 } 2652 2653 case NETMAP_REQ_PORT_HDR_SET: { 2654 struct nmreq_port_hdr *req = 2655 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2656 /* Build a nmreq_register out of the nmreq_port_hdr, 2657 * so that we can call netmap_get_bdg_na(). */ 2658 struct nmreq_register regreq; 2659 bzero(®req, sizeof(regreq)); 2660 regreq.nr_mode = NR_REG_ALL_NIC; 2661 2662 /* For now we only support virtio-net headers, and only for 2663 * VALE ports, but this may change in future. Valid lengths 2664 * for the virtio-net header are 0 (no header), 10 and 12. */ 2665 if (req->nr_hdr_len != 0 && 2666 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) && 2667 req->nr_hdr_len != 12) { 2668 if (netmap_verbose) 2669 nm_prerr("invalid hdr_len %u", req->nr_hdr_len); 2670 error = EINVAL; 2671 break; 2672 } 2673 NMG_LOCK(); 2674 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2675 hdr->nr_body = (uintptr_t)®req; 2676 error = netmap_get_vale_na(hdr, &na, NULL, 0); 2677 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET; 2678 hdr->nr_body = (uintptr_t)req; 2679 if (na && !error) { 2680 struct netmap_vp_adapter *vpna = 2681 (struct netmap_vp_adapter *)na; 2682 na->virt_hdr_len = req->nr_hdr_len; 2683 if (na->virt_hdr_len) { 2684 vpna->mfs = NETMAP_BUF_SIZE(na); 2685 } 2686 if (netmap_verbose) 2687 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na); 2688 netmap_adapter_put(na); 2689 } else if (!na) { 2690 error = ENXIO; 2691 } 2692 NMG_UNLOCK(); 2693 break; 2694 } 2695 2696 case NETMAP_REQ_PORT_HDR_GET: { 2697 /* Get vnet-header length for this netmap port */ 2698 struct nmreq_port_hdr *req = 2699 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2700 /* Build a nmreq_register out of the nmreq_port_hdr, 2701 * so that we can call netmap_get_bdg_na(). */ 2702 struct nmreq_register regreq; 2703 struct ifnet *ifp; 2704 2705 bzero(®req, sizeof(regreq)); 2706 regreq.nr_mode = NR_REG_ALL_NIC; 2707 NMG_LOCK(); 2708 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2709 hdr->nr_body = (uintptr_t)®req; 2710 error = netmap_get_na(hdr, &na, &ifp, NULL, 0); 2711 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET; 2712 hdr->nr_body = (uintptr_t)req; 2713 if (na && !error) { 2714 req->nr_hdr_len = na->virt_hdr_len; 2715 } 2716 netmap_unget_na(na, ifp); 2717 NMG_UNLOCK(); 2718 break; 2719 } 2720 2721 case NETMAP_REQ_VALE_NEWIF: { 2722 error = nm_vi_create(hdr); 2723 break; 2724 } 2725 2726 case NETMAP_REQ_VALE_DELIF: { 2727 error = nm_vi_destroy(hdr->nr_name); 2728 break; 2729 } 2730 2731 case NETMAP_REQ_VALE_POLLING_ENABLE: 2732 case NETMAP_REQ_VALE_POLLING_DISABLE: { 2733 error = nm_bdg_polling(hdr); 2734 break; 2735 } 2736 #endif /* WITH_VALE */ 2737 case NETMAP_REQ_POOLS_INFO_GET: { 2738 /* Get information from the memory allocator used for 2739 * hdr->nr_name. */ 2740 struct nmreq_pools_info *req = 2741 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body; 2742 NMG_LOCK(); 2743 do { 2744 /* Build a nmreq_register out of the nmreq_pools_info, 2745 * so that we can call netmap_get_na(). */ 2746 struct nmreq_register regreq; 2747 bzero(®req, sizeof(regreq)); 2748 regreq.nr_mem_id = req->nr_mem_id; 2749 regreq.nr_mode = NR_REG_ALL_NIC; 2750 2751 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2752 hdr->nr_body = (uintptr_t)®req; 2753 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2754 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */ 2755 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2756 if (error) { 2757 na = NULL; 2758 ifp = NULL; 2759 break; 2760 } 2761 nmd = na->nm_mem; /* grab the memory allocator */ 2762 if (nmd == NULL) { 2763 error = EINVAL; 2764 break; 2765 } 2766 2767 /* Finalize the memory allocator, get the pools 2768 * information and release the allocator. */ 2769 error = netmap_mem_finalize(nmd, na); 2770 if (error) { 2771 break; 2772 } 2773 error = netmap_mem_pools_info_get(req, nmd); 2774 netmap_mem_drop(na); 2775 } while (0); 2776 netmap_unget_na(na, ifp); 2777 NMG_UNLOCK(); 2778 break; 2779 } 2780 2781 case NETMAP_REQ_CSB_ENABLE: { 2782 struct nmreq_option *opt; 2783 2784 opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options, 2785 NETMAP_REQ_OPT_CSB); 2786 if (opt == NULL) { 2787 error = EINVAL; 2788 } else { 2789 struct nmreq_opt_csb *csbo = 2790 (struct nmreq_opt_csb *)opt; 2791 error = nmreq_checkduplicate(opt); 2792 if (!error) { 2793 NMG_LOCK(); 2794 error = netmap_csb_validate(priv, csbo); 2795 NMG_UNLOCK(); 2796 } 2797 opt->nro_status = error; 2798 } 2799 break; 2800 } 2801 2802 case NETMAP_REQ_SYNC_KLOOP_START: { 2803 error = netmap_sync_kloop(priv, hdr); 2804 break; 2805 } 2806 2807 case NETMAP_REQ_SYNC_KLOOP_STOP: { 2808 error = netmap_sync_kloop_stop(priv); 2809 break; 2810 } 2811 2812 default: { 2813 error = EINVAL; 2814 break; 2815 } 2816 } 2817 /* Write back request body to userspace and reset the 2818 * user-space pointer. */ 2819 error = nmreq_copyout(hdr, error); 2820 break; 2821 } 2822 2823 case NIOCTXSYNC: 2824 case NIOCRXSYNC: { 2825 if (unlikely(priv->np_nifp == NULL)) { 2826 error = ENXIO; 2827 break; 2828 } 2829 mb(); /* make sure following reads are not from cache */ 2830 2831 if (unlikely(priv->np_csb_atok_base)) { 2832 nm_prerr("Invalid sync in CSB mode"); 2833 error = EBUSY; 2834 break; 2835 } 2836 2837 na = priv->np_na; /* we have a reference */ 2838 2839 mbq_init(&q); 2840 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX); 2841 krings = NMR(na, t); 2842 qfirst = priv->np_qfirst[t]; 2843 qlast = priv->np_qlast[t]; 2844 sync_flags = priv->np_sync_flags; 2845 2846 for (i = qfirst; i < qlast; i++) { 2847 struct netmap_kring *kring = krings[i]; 2848 struct netmap_ring *ring = kring->ring; 2849 2850 if (unlikely(nm_kr_tryget(kring, 1, &error))) { 2851 error = (error ? EIO : 0); 2852 continue; 2853 } 2854 2855 if (cmd == NIOCTXSYNC) { 2856 if (netmap_debug & NM_DEBUG_TXSYNC) 2857 nm_prinf("pre txsync ring %d cur %d hwcur %d", 2858 i, ring->cur, 2859 kring->nr_hwcur); 2860 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2861 netmap_ring_reinit(kring); 2862 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) { 2863 nm_sync_finalize(kring); 2864 } 2865 if (netmap_debug & NM_DEBUG_TXSYNC) 2866 nm_prinf("post txsync ring %d cur %d hwcur %d", 2867 i, ring->cur, 2868 kring->nr_hwcur); 2869 } else { 2870 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2871 netmap_ring_reinit(kring); 2872 } 2873 if (nm_may_forward_up(kring)) { 2874 /* transparent forwarding, see netmap_poll() */ 2875 netmap_grab_packets(kring, &q, netmap_fwd); 2876 } 2877 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) { 2878 nm_sync_finalize(kring); 2879 } 2880 ring_timestamp_set(ring); 2881 } 2882 nm_kr_put(kring); 2883 } 2884 2885 if (mbq_peek(&q)) { 2886 netmap_send_up(na->ifp, &q); 2887 } 2888 2889 break; 2890 } 2891 2892 default: { 2893 return netmap_ioctl_legacy(priv, cmd, data, td); 2894 break; 2895 } 2896 } 2897 2898 return (error); 2899 } 2900 2901 size_t 2902 nmreq_size_by_type(uint16_t nr_reqtype) 2903 { 2904 switch (nr_reqtype) { 2905 case NETMAP_REQ_REGISTER: 2906 return sizeof(struct nmreq_register); 2907 case NETMAP_REQ_PORT_INFO_GET: 2908 return sizeof(struct nmreq_port_info_get); 2909 case NETMAP_REQ_VALE_ATTACH: 2910 return sizeof(struct nmreq_vale_attach); 2911 case NETMAP_REQ_VALE_DETACH: 2912 return sizeof(struct nmreq_vale_detach); 2913 case NETMAP_REQ_VALE_LIST: 2914 return sizeof(struct nmreq_vale_list); 2915 case NETMAP_REQ_PORT_HDR_SET: 2916 case NETMAP_REQ_PORT_HDR_GET: 2917 return sizeof(struct nmreq_port_hdr); 2918 case NETMAP_REQ_VALE_NEWIF: 2919 return sizeof(struct nmreq_vale_newif); 2920 case NETMAP_REQ_VALE_DELIF: 2921 case NETMAP_REQ_SYNC_KLOOP_STOP: 2922 case NETMAP_REQ_CSB_ENABLE: 2923 return 0; 2924 case NETMAP_REQ_VALE_POLLING_ENABLE: 2925 case NETMAP_REQ_VALE_POLLING_DISABLE: 2926 return sizeof(struct nmreq_vale_polling); 2927 case NETMAP_REQ_POOLS_INFO_GET: 2928 return sizeof(struct nmreq_pools_info); 2929 case NETMAP_REQ_SYNC_KLOOP_START: 2930 return sizeof(struct nmreq_sync_kloop_start); 2931 } 2932 return 0; 2933 } 2934 2935 static size_t 2936 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size) 2937 { 2938 size_t rv = sizeof(struct nmreq_option); 2939 #ifdef NETMAP_REQ_OPT_DEBUG 2940 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG) 2941 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG); 2942 #endif /* NETMAP_REQ_OPT_DEBUG */ 2943 switch (nro_reqtype) { 2944 #ifdef WITH_EXTMEM 2945 case NETMAP_REQ_OPT_EXTMEM: 2946 rv = sizeof(struct nmreq_opt_extmem); 2947 break; 2948 #endif /* WITH_EXTMEM */ 2949 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS: 2950 if (nro_size >= rv) 2951 rv = nro_size; 2952 break; 2953 case NETMAP_REQ_OPT_CSB: 2954 rv = sizeof(struct nmreq_opt_csb); 2955 break; 2956 } 2957 /* subtract the common header */ 2958 return rv - sizeof(struct nmreq_option); 2959 } 2960 2961 int 2962 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user) 2963 { 2964 size_t rqsz, optsz, bufsz; 2965 int error; 2966 char *ker = NULL, *p; 2967 struct nmreq_option **next, *src; 2968 struct nmreq_option buf; 2969 uint64_t *ptrs; 2970 2971 if (hdr->nr_reserved) { 2972 if (netmap_verbose) 2973 nm_prerr("nr_reserved must be zero"); 2974 return EINVAL; 2975 } 2976 2977 if (!nr_body_is_user) 2978 return 0; 2979 2980 hdr->nr_reserved = nr_body_is_user; 2981 2982 /* compute the total size of the buffer */ 2983 rqsz = nmreq_size_by_type(hdr->nr_reqtype); 2984 if (rqsz > NETMAP_REQ_MAXSIZE) { 2985 error = EMSGSIZE; 2986 goto out_err; 2987 } 2988 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) || 2989 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) { 2990 /* Request body expected, but not found; or 2991 * request body found but unexpected. */ 2992 if (netmap_verbose) 2993 nm_prerr("nr_body expected but not found, or vice versa"); 2994 error = EINVAL; 2995 goto out_err; 2996 } 2997 2998 bufsz = 2 * sizeof(void *) + rqsz; 2999 optsz = 0; 3000 for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src; 3001 src = (struct nmreq_option *)(uintptr_t)buf.nro_next) 3002 { 3003 error = copyin(src, &buf, sizeof(*src)); 3004 if (error) 3005 goto out_err; 3006 optsz += sizeof(*src); 3007 optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size); 3008 if (rqsz + optsz > NETMAP_REQ_MAXSIZE) { 3009 error = EMSGSIZE; 3010 goto out_err; 3011 } 3012 bufsz += optsz + sizeof(void *); 3013 } 3014 3015 ker = nm_os_malloc(bufsz); 3016 if (ker == NULL) { 3017 error = ENOMEM; 3018 goto out_err; 3019 } 3020 p = ker; 3021 3022 /* make a copy of the user pointers */ 3023 ptrs = (uint64_t*)p; 3024 *ptrs++ = hdr->nr_body; 3025 *ptrs++ = hdr->nr_options; 3026 p = (char *)ptrs; 3027 3028 /* copy the body */ 3029 error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz); 3030 if (error) 3031 goto out_restore; 3032 /* overwrite the user pointer with the in-kernel one */ 3033 hdr->nr_body = (uintptr_t)p; 3034 p += rqsz; 3035 3036 /* copy the options */ 3037 next = (struct nmreq_option **)&hdr->nr_options; 3038 src = *next; 3039 while (src) { 3040 struct nmreq_option *opt; 3041 3042 /* copy the option header */ 3043 ptrs = (uint64_t *)p; 3044 opt = (struct nmreq_option *)(ptrs + 1); 3045 error = copyin(src, opt, sizeof(*src)); 3046 if (error) 3047 goto out_restore; 3048 /* make a copy of the user next pointer */ 3049 *ptrs = opt->nro_next; 3050 /* overwrite the user pointer with the in-kernel one */ 3051 *next = opt; 3052 3053 /* initialize the option as not supported. 3054 * Recognized options will update this field. 3055 */ 3056 opt->nro_status = EOPNOTSUPP; 3057 3058 p = (char *)(opt + 1); 3059 3060 /* copy the option body */ 3061 optsz = nmreq_opt_size_by_type(opt->nro_reqtype, 3062 opt->nro_size); 3063 if (optsz) { 3064 /* the option body follows the option header */ 3065 error = copyin(src + 1, p, optsz); 3066 if (error) 3067 goto out_restore; 3068 p += optsz; 3069 } 3070 3071 /* move to next option */ 3072 next = (struct nmreq_option **)&opt->nro_next; 3073 src = *next; 3074 } 3075 return 0; 3076 3077 out_restore: 3078 ptrs = (uint64_t *)ker; 3079 hdr->nr_body = *ptrs++; 3080 hdr->nr_options = *ptrs++; 3081 hdr->nr_reserved = 0; 3082 nm_os_free(ker); 3083 out_err: 3084 return error; 3085 } 3086 3087 static int 3088 nmreq_copyout(struct nmreq_header *hdr, int rerror) 3089 { 3090 struct nmreq_option *src, *dst; 3091 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart; 3092 uint64_t *ptrs; 3093 size_t bodysz; 3094 int error; 3095 3096 if (!hdr->nr_reserved) 3097 return rerror; 3098 3099 /* restore the user pointers in the header */ 3100 ptrs = (uint64_t *)ker - 2; 3101 bufstart = ptrs; 3102 hdr->nr_body = *ptrs++; 3103 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3104 hdr->nr_options = *ptrs; 3105 3106 if (!rerror) { 3107 /* copy the body */ 3108 bodysz = nmreq_size_by_type(hdr->nr_reqtype); 3109 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz); 3110 if (error) { 3111 rerror = error; 3112 goto out; 3113 } 3114 } 3115 3116 /* copy the options */ 3117 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3118 while (src) { 3119 size_t optsz; 3120 uint64_t next; 3121 3122 /* restore the user pointer */ 3123 next = src->nro_next; 3124 ptrs = (uint64_t *)src - 1; 3125 src->nro_next = *ptrs; 3126 3127 /* always copy the option header */ 3128 error = copyout(src, dst, sizeof(*src)); 3129 if (error) { 3130 rerror = error; 3131 goto out; 3132 } 3133 3134 /* copy the option body only if there was no error */ 3135 if (!rerror && !src->nro_status) { 3136 optsz = nmreq_opt_size_by_type(src->nro_reqtype, 3137 src->nro_size); 3138 if (optsz) { 3139 error = copyout(src + 1, dst + 1, optsz); 3140 if (error) { 3141 rerror = error; 3142 goto out; 3143 } 3144 } 3145 } 3146 src = (struct nmreq_option *)(uintptr_t)next; 3147 dst = (struct nmreq_option *)(uintptr_t)*ptrs; 3148 } 3149 3150 3151 out: 3152 hdr->nr_reserved = 0; 3153 nm_os_free(bufstart); 3154 return rerror; 3155 } 3156 3157 struct nmreq_option * 3158 nmreq_findoption(struct nmreq_option *opt, uint16_t reqtype) 3159 { 3160 for ( ; opt; opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3161 if (opt->nro_reqtype == reqtype) 3162 return opt; 3163 return NULL; 3164 } 3165 3166 int 3167 nmreq_checkduplicate(struct nmreq_option *opt) { 3168 uint16_t type = opt->nro_reqtype; 3169 int dup = 0; 3170 3171 while ((opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)opt->nro_next, 3172 type))) { 3173 dup++; 3174 opt->nro_status = EINVAL; 3175 } 3176 return (dup ? EINVAL : 0); 3177 } 3178 3179 static int 3180 nmreq_checkoptions(struct nmreq_header *hdr) 3181 { 3182 struct nmreq_option *opt; 3183 /* return error if there is still any option 3184 * marked as not supported 3185 */ 3186 3187 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt; 3188 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3189 if (opt->nro_status == EOPNOTSUPP) 3190 return EOPNOTSUPP; 3191 3192 return 0; 3193 } 3194 3195 /* 3196 * select(2) and poll(2) handlers for the "netmap" device. 3197 * 3198 * Can be called for one or more queues. 3199 * Return true the event mask corresponding to ready events. 3200 * If there are no ready events, do a selrecord on either individual 3201 * selinfo or on the global one. 3202 * Device-dependent parts (locking and sync of tx/rx rings) 3203 * are done through callbacks. 3204 * 3205 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 3206 * The first one is remapped to pwait as selrecord() uses the name as an 3207 * hidden argument. 3208 */ 3209 int 3210 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr) 3211 { 3212 struct netmap_adapter *na; 3213 struct netmap_kring *kring; 3214 struct netmap_ring *ring; 3215 u_int i, want[NR_TXRX], revents = 0; 3216 NM_SELINFO_T *si[NR_TXRX]; 3217 #define want_tx want[NR_TX] 3218 #define want_rx want[NR_RX] 3219 struct mbq q; /* packets from RX hw queues to host stack */ 3220 3221 /* 3222 * In order to avoid nested locks, we need to "double check" 3223 * txsync and rxsync if we decide to do a selrecord(). 3224 * retry_tx (and retry_rx, later) prevent looping forever. 3225 */ 3226 int retry_tx = 1, retry_rx = 1; 3227 3228 /* Transparent mode: send_down is 1 if we have found some 3229 * packets to forward (host RX ring --> NIC) during the rx 3230 * scan and we have not sent them down to the NIC yet. 3231 * Transparent mode requires to bind all rings to a single 3232 * file descriptor. 3233 */ 3234 int send_down = 0; 3235 int sync_flags = priv->np_sync_flags; 3236 3237 mbq_init(&q); 3238 3239 if (unlikely(priv->np_nifp == NULL)) { 3240 return POLLERR; 3241 } 3242 mb(); /* make sure following reads are not from cache */ 3243 3244 na = priv->np_na; 3245 3246 if (unlikely(!nm_netmap_on(na))) 3247 return POLLERR; 3248 3249 if (unlikely(priv->np_csb_atok_base)) { 3250 nm_prerr("Invalid poll in CSB mode"); 3251 return POLLERR; 3252 } 3253 3254 if (netmap_debug & NM_DEBUG_ON) 3255 nm_prinf("device %s events 0x%x", na->name, events); 3256 want_tx = events & (POLLOUT | POLLWRNORM); 3257 want_rx = events & (POLLIN | POLLRDNORM); 3258 3259 /* 3260 * If the card has more than one queue AND the file descriptor is 3261 * bound to all of them, we sleep on the "global" selinfo, otherwise 3262 * we sleep on individual selinfo (FreeBSD only allows two selinfo's 3263 * per file descriptor). 3264 * The interrupt routine in the driver wake one or the other 3265 * (or both) depending on which clients are active. 3266 * 3267 * rxsync() is only called if we run out of buffers on a POLLIN. 3268 * txsync() is called if we run out of buffers on POLLOUT, or 3269 * there are pending packets to send. The latter can be disabled 3270 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 3271 */ 3272 si[NR_RX] = nm_si_user(priv, NR_RX) ? &na->si[NR_RX] : 3273 &na->rx_rings[priv->np_qfirst[NR_RX]]->si; 3274 si[NR_TX] = nm_si_user(priv, NR_TX) ? &na->si[NR_TX] : 3275 &na->tx_rings[priv->np_qfirst[NR_TX]]->si; 3276 3277 #ifdef __FreeBSD__ 3278 /* 3279 * We start with a lock free round which is cheap if we have 3280 * slots available. If this fails, then lock and call the sync 3281 * routines. We can't do this on Linux, as the contract says 3282 * that we must call nm_os_selrecord() unconditionally. 3283 */ 3284 if (want_tx) { 3285 enum txrx t = NR_TX; 3286 for (i = priv->np_qfirst[t]; want[t] && i < priv->np_qlast[t]; i++) { 3287 kring = NMR(na, t)[i]; 3288 /* XXX compare ring->cur and kring->tail */ 3289 if (!nm_ring_empty(kring->ring)) { 3290 revents |= want[t]; 3291 want[t] = 0; /* also breaks the loop */ 3292 } 3293 } 3294 } 3295 if (want_rx) { 3296 enum txrx t = NR_RX; 3297 want_rx = 0; /* look for a reason to run the handlers */ 3298 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3299 kring = NMR(na, t)[i]; 3300 if (kring->ring->cur == kring->ring->tail /* try fetch new buffers */ 3301 || kring->rhead != kring->ring->head /* release buffers */) { 3302 want_rx = 1; 3303 } 3304 } 3305 if (!want_rx) 3306 revents |= events & (POLLIN | POLLRDNORM); /* we have data */ 3307 } 3308 #endif 3309 3310 #ifdef linux 3311 /* The selrecord must be unconditional on linux. */ 3312 nm_os_selrecord(sr, si[NR_RX]); 3313 nm_os_selrecord(sr, si[NR_TX]); 3314 #endif /* linux */ 3315 3316 /* 3317 * If we want to push packets out (priv->np_txpoll) or 3318 * want_tx is still set, we must issue txsync calls 3319 * (on all rings, to avoid that the tx rings stall). 3320 * Fortunately, normal tx mode has np_txpoll set. 3321 */ 3322 if (priv->np_txpoll || want_tx) { 3323 /* 3324 * The first round checks if anyone is ready, if not 3325 * do a selrecord and another round to handle races. 3326 * want_tx goes to 0 if any space is found, and is 3327 * used to skip rings with no pending transmissions. 3328 */ 3329 flush_tx: 3330 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) { 3331 int found = 0; 3332 3333 kring = na->tx_rings[i]; 3334 ring = kring->ring; 3335 3336 /* 3337 * Don't try to txsync this TX ring if we already found some 3338 * space in some of the TX rings (want_tx == 0) and there are no 3339 * TX slots in this ring that need to be flushed to the NIC 3340 * (head == hwcur). 3341 */ 3342 if (!send_down && !want_tx && ring->head == kring->nr_hwcur) 3343 continue; 3344 3345 if (nm_kr_tryget(kring, 1, &revents)) 3346 continue; 3347 3348 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3349 netmap_ring_reinit(kring); 3350 revents |= POLLERR; 3351 } else { 3352 if (kring->nm_sync(kring, sync_flags)) 3353 revents |= POLLERR; 3354 else 3355 nm_sync_finalize(kring); 3356 } 3357 3358 /* 3359 * If we found new slots, notify potential 3360 * listeners on the same ring. 3361 * Since we just did a txsync, look at the copies 3362 * of cur,tail in the kring. 3363 */ 3364 found = kring->rcur != kring->rtail; 3365 nm_kr_put(kring); 3366 if (found) { /* notify other listeners */ 3367 revents |= want_tx; 3368 want_tx = 0; 3369 #ifndef linux 3370 kring->nm_notify(kring, 0); 3371 #endif /* linux */ 3372 } 3373 } 3374 /* if there were any packet to forward we must have handled them by now */ 3375 send_down = 0; 3376 if (want_tx && retry_tx && sr) { 3377 #ifndef linux 3378 nm_os_selrecord(sr, si[NR_TX]); 3379 #endif /* !linux */ 3380 retry_tx = 0; 3381 goto flush_tx; 3382 } 3383 } 3384 3385 /* 3386 * If want_rx is still set scan receive rings. 3387 * Do it on all rings because otherwise we starve. 3388 */ 3389 if (want_rx) { 3390 /* two rounds here for race avoidance */ 3391 do_retry_rx: 3392 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) { 3393 int found = 0; 3394 3395 kring = na->rx_rings[i]; 3396 ring = kring->ring; 3397 3398 if (unlikely(nm_kr_tryget(kring, 1, &revents))) 3399 continue; 3400 3401 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3402 netmap_ring_reinit(kring); 3403 revents |= POLLERR; 3404 } 3405 /* now we can use kring->rcur, rtail */ 3406 3407 /* 3408 * transparent mode support: collect packets from 3409 * hw rxring(s) that have been released by the user 3410 */ 3411 if (nm_may_forward_up(kring)) { 3412 netmap_grab_packets(kring, &q, netmap_fwd); 3413 } 3414 3415 /* Clear the NR_FORWARD flag anyway, it may be set by 3416 * the nm_sync() below only on for the host RX ring (see 3417 * netmap_rxsync_from_host()). */ 3418 kring->nr_kflags &= ~NR_FORWARD; 3419 if (kring->nm_sync(kring, sync_flags)) 3420 revents |= POLLERR; 3421 else 3422 nm_sync_finalize(kring); 3423 send_down |= (kring->nr_kflags & NR_FORWARD); 3424 ring_timestamp_set(ring); 3425 found = kring->rcur != kring->rtail; 3426 nm_kr_put(kring); 3427 if (found) { 3428 revents |= want_rx; 3429 retry_rx = 0; 3430 #ifndef linux 3431 kring->nm_notify(kring, 0); 3432 #endif /* linux */ 3433 } 3434 } 3435 3436 #ifndef linux 3437 if (retry_rx && sr) { 3438 nm_os_selrecord(sr, si[NR_RX]); 3439 } 3440 #endif /* !linux */ 3441 if (send_down || retry_rx) { 3442 retry_rx = 0; 3443 if (send_down) 3444 goto flush_tx; /* and retry_rx */ 3445 else 3446 goto do_retry_rx; 3447 } 3448 } 3449 3450 /* 3451 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and 3452 * ring->head) marked with NS_FORWARD on hw rx rings are passed up 3453 * to the host stack. 3454 */ 3455 3456 if (mbq_peek(&q)) { 3457 netmap_send_up(na->ifp, &q); 3458 } 3459 3460 return (revents); 3461 #undef want_tx 3462 #undef want_rx 3463 } 3464 3465 int 3466 nma_intr_enable(struct netmap_adapter *na, int onoff) 3467 { 3468 bool changed = false; 3469 enum txrx t; 3470 int i; 3471 3472 for_rx_tx(t) { 3473 for (i = 0; i < nma_get_nrings(na, t); i++) { 3474 struct netmap_kring *kring = NMR(na, t)[i]; 3475 int on = !(kring->nr_kflags & NKR_NOINTR); 3476 3477 if (!!onoff != !!on) { 3478 changed = true; 3479 } 3480 if (onoff) { 3481 kring->nr_kflags &= ~NKR_NOINTR; 3482 } else { 3483 kring->nr_kflags |= NKR_NOINTR; 3484 } 3485 } 3486 } 3487 3488 if (!changed) { 3489 return 0; /* nothing to do */ 3490 } 3491 3492 if (!na->nm_intr) { 3493 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable", 3494 na->name); 3495 return -1; 3496 } 3497 3498 na->nm_intr(na, onoff); 3499 3500 return 0; 3501 } 3502 3503 3504 /*-------------------- driver support routines -------------------*/ 3505 3506 /* default notify callback */ 3507 static int 3508 netmap_notify(struct netmap_kring *kring, int flags) 3509 { 3510 struct netmap_adapter *na = kring->notify_na; 3511 enum txrx t = kring->tx; 3512 3513 nm_os_selwakeup(&kring->si); 3514 /* optimization: avoid a wake up on the global 3515 * queue if nobody has registered for more 3516 * than one ring 3517 */ 3518 if (na->si_users[t] > 0) 3519 nm_os_selwakeup(&na->si[t]); 3520 3521 return NM_IRQ_COMPLETED; 3522 } 3523 3524 /* called by all routines that create netmap_adapters. 3525 * provide some defaults and get a reference to the 3526 * memory allocator 3527 */ 3528 int 3529 netmap_attach_common(struct netmap_adapter *na) 3530 { 3531 if (!na->rx_buf_maxsize) { 3532 /* Set a conservative default (larger is safer). */ 3533 na->rx_buf_maxsize = PAGE_SIZE; 3534 } 3535 3536 #ifdef __FreeBSD__ 3537 if (na->na_flags & NAF_HOST_RINGS && na->ifp) { 3538 na->if_input = na->ifp->if_input; /* for netmap_send_up */ 3539 } 3540 na->pdev = na; /* make sure netmap_mem_map() is called */ 3541 #endif /* __FreeBSD__ */ 3542 if (na->na_flags & NAF_HOST_RINGS) { 3543 if (na->num_host_rx_rings == 0) 3544 na->num_host_rx_rings = 1; 3545 if (na->num_host_tx_rings == 0) 3546 na->num_host_tx_rings = 1; 3547 } 3548 if (na->nm_krings_create == NULL) { 3549 /* we assume that we have been called by a driver, 3550 * since other port types all provide their own 3551 * nm_krings_create 3552 */ 3553 na->nm_krings_create = netmap_hw_krings_create; 3554 na->nm_krings_delete = netmap_hw_krings_delete; 3555 } 3556 if (na->nm_notify == NULL) 3557 na->nm_notify = netmap_notify; 3558 na->active_fds = 0; 3559 3560 if (na->nm_mem == NULL) { 3561 /* use the global allocator */ 3562 na->nm_mem = netmap_mem_get(&nm_mem); 3563 } 3564 #ifdef WITH_VALE 3565 if (na->nm_bdg_attach == NULL) 3566 /* no special nm_bdg_attach callback. On VALE 3567 * attach, we need to interpose a bwrap 3568 */ 3569 na->nm_bdg_attach = netmap_default_bdg_attach; 3570 #endif 3571 3572 return 0; 3573 } 3574 3575 /* Wrapper for the register callback provided netmap-enabled 3576 * hardware drivers. 3577 * nm_iszombie(na) means that the driver module has been 3578 * unloaded, so we cannot call into it. 3579 * nm_os_ifnet_lock() must guarantee mutual exclusion with 3580 * module unloading. 3581 */ 3582 static int 3583 netmap_hw_reg(struct netmap_adapter *na, int onoff) 3584 { 3585 struct netmap_hw_adapter *hwna = 3586 (struct netmap_hw_adapter*)na; 3587 int error = 0; 3588 3589 nm_os_ifnet_lock(); 3590 3591 if (nm_iszombie(na)) { 3592 if (onoff) { 3593 error = ENXIO; 3594 } else if (na != NULL) { 3595 na->na_flags &= ~NAF_NETMAP_ON; 3596 } 3597 goto out; 3598 } 3599 3600 error = hwna->nm_hw_register(na, onoff); 3601 3602 out: 3603 nm_os_ifnet_unlock(); 3604 3605 return error; 3606 } 3607 3608 static void 3609 netmap_hw_dtor(struct netmap_adapter *na) 3610 { 3611 if (na->ifp == NULL) 3612 return; 3613 3614 NM_DETACH_NA(na->ifp); 3615 } 3616 3617 3618 /* 3619 * Allocate a netmap_adapter object, and initialize it from the 3620 * 'arg' passed by the driver on attach. 3621 * We allocate a block of memory of 'size' bytes, which has room 3622 * for struct netmap_adapter plus additional room private to 3623 * the caller. 3624 * Return 0 on success, ENOMEM otherwise. 3625 */ 3626 int 3627 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg) 3628 { 3629 struct netmap_hw_adapter *hwna = NULL; 3630 struct ifnet *ifp = NULL; 3631 3632 if (size < sizeof(struct netmap_hw_adapter)) { 3633 if (netmap_debug & NM_DEBUG_ON) 3634 nm_prerr("Invalid netmap adapter size %d", (int)size); 3635 return EINVAL; 3636 } 3637 3638 if (arg == NULL || arg->ifp == NULL) { 3639 if (netmap_debug & NM_DEBUG_ON) 3640 nm_prerr("either arg or arg->ifp is NULL"); 3641 return EINVAL; 3642 } 3643 3644 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) { 3645 if (netmap_debug & NM_DEBUG_ON) 3646 nm_prerr("%s: invalid rings tx %d rx %d", 3647 arg->name, arg->num_tx_rings, arg->num_rx_rings); 3648 return EINVAL; 3649 } 3650 3651 ifp = arg->ifp; 3652 if (NM_NA_CLASH(ifp)) { 3653 /* If NA(ifp) is not null but there is no valid netmap 3654 * adapter it means that someone else is using the same 3655 * pointer (e.g. ax25_ptr on linux). This happens for 3656 * instance when also PF_RING is in use. */ 3657 nm_prerr("Error: netmap adapter hook is busy"); 3658 return EBUSY; 3659 } 3660 3661 hwna = nm_os_malloc(size); 3662 if (hwna == NULL) 3663 goto fail; 3664 hwna->up = *arg; 3665 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE; 3666 strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name)); 3667 if (override_reg) { 3668 hwna->nm_hw_register = hwna->up.nm_register; 3669 hwna->up.nm_register = netmap_hw_reg; 3670 } 3671 if (netmap_attach_common(&hwna->up)) { 3672 nm_os_free(hwna); 3673 goto fail; 3674 } 3675 netmap_adapter_get(&hwna->up); 3676 3677 NM_ATTACH_NA(ifp, &hwna->up); 3678 3679 nm_os_onattach(ifp); 3680 3681 if (arg->nm_dtor == NULL) { 3682 hwna->up.nm_dtor = netmap_hw_dtor; 3683 } 3684 3685 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n", 3686 hwna->up.num_tx_rings, hwna->up.num_tx_desc, 3687 hwna->up.num_rx_rings, hwna->up.num_rx_desc); 3688 return 0; 3689 3690 fail: 3691 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna); 3692 return (hwna ? EINVAL : ENOMEM); 3693 } 3694 3695 3696 int 3697 netmap_attach(struct netmap_adapter *arg) 3698 { 3699 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter), 3700 1 /* override nm_reg */); 3701 } 3702 3703 3704 void 3705 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 3706 { 3707 if (!na) { 3708 return; 3709 } 3710 3711 refcount_acquire(&na->na_refcount); 3712 } 3713 3714 3715 /* returns 1 iff the netmap_adapter is destroyed */ 3716 int 3717 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 3718 { 3719 if (!na) 3720 return 1; 3721 3722 if (!refcount_release(&na->na_refcount)) 3723 return 0; 3724 3725 if (na->nm_dtor) 3726 na->nm_dtor(na); 3727 3728 if (na->tx_rings) { /* XXX should not happen */ 3729 if (netmap_debug & NM_DEBUG_ON) 3730 nm_prerr("freeing leftover tx_rings"); 3731 na->nm_krings_delete(na); 3732 } 3733 netmap_pipe_dealloc(na); 3734 if (na->nm_mem) 3735 netmap_mem_put(na->nm_mem); 3736 bzero(na, sizeof(*na)); 3737 nm_os_free(na); 3738 3739 return 1; 3740 } 3741 3742 /* nm_krings_create callback for all hardware native adapters */ 3743 int 3744 netmap_hw_krings_create(struct netmap_adapter *na) 3745 { 3746 int ret = netmap_krings_create(na, 0); 3747 if (ret == 0) { 3748 /* initialize the mbq for the sw rx ring */ 3749 u_int lim = netmap_real_rings(na, NR_RX), i; 3750 for (i = na->num_rx_rings; i < lim; i++) { 3751 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue); 3752 } 3753 ND("initialized sw rx queue %d", na->num_rx_rings); 3754 } 3755 return ret; 3756 } 3757 3758 3759 3760 /* 3761 * Called on module unload by the netmap-enabled drivers 3762 */ 3763 void 3764 netmap_detach(struct ifnet *ifp) 3765 { 3766 struct netmap_adapter *na = NA(ifp); 3767 3768 if (!na) 3769 return; 3770 3771 NMG_LOCK(); 3772 netmap_set_all_rings(na, NM_KR_LOCKED); 3773 /* 3774 * if the netmap adapter is not native, somebody 3775 * changed it, so we can not release it here. 3776 * The NAF_ZOMBIE flag will notify the new owner that 3777 * the driver is gone. 3778 */ 3779 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) { 3780 na->na_flags |= NAF_ZOMBIE; 3781 } 3782 /* give active users a chance to notice that NAF_ZOMBIE has been 3783 * turned on, so that they can stop and return an error to userspace. 3784 * Note that this becomes a NOP if there are no active users and, 3785 * therefore, the put() above has deleted the na, since now NA(ifp) is 3786 * NULL. 3787 */ 3788 netmap_enable_all_rings(ifp); 3789 NMG_UNLOCK(); 3790 } 3791 3792 3793 /* 3794 * Intercept packets from the network stack and pass them 3795 * to netmap as incoming packets on the 'software' ring. 3796 * 3797 * We only store packets in a bounded mbq and then copy them 3798 * in the relevant rxsync routine. 3799 * 3800 * We rely on the OS to make sure that the ifp and na do not go 3801 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 3802 * In nm_register() or whenever there is a reinitialization, 3803 * we make sure to make the mode change visible here. 3804 */ 3805 int 3806 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 3807 { 3808 struct netmap_adapter *na = NA(ifp); 3809 struct netmap_kring *kring, *tx_kring; 3810 u_int len = MBUF_LEN(m); 3811 u_int error = ENOBUFS; 3812 unsigned int txr; 3813 struct mbq *q; 3814 int busy; 3815 u_int i; 3816 3817 i = MBUF_TXQ(m); 3818 if (i >= na->num_host_rx_rings) { 3819 i = i % na->num_host_rx_rings; 3820 } 3821 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i]; 3822 3823 // XXX [Linux] we do not need this lock 3824 // if we follow the down/configure/up protocol -gl 3825 // mtx_lock(&na->core_lock); 3826 3827 if (!nm_netmap_on(na)) { 3828 nm_prerr("%s not in netmap mode anymore", na->name); 3829 error = ENXIO; 3830 goto done; 3831 } 3832 3833 txr = MBUF_TXQ(m); 3834 if (txr >= na->num_tx_rings) { 3835 txr %= na->num_tx_rings; 3836 } 3837 tx_kring = NMR(na, NR_TX)[txr]; 3838 3839 if (tx_kring->nr_mode == NKR_NETMAP_OFF) { 3840 return MBUF_TRANSMIT(na, ifp, m); 3841 } 3842 3843 q = &kring->rx_queue; 3844 3845 // XXX reconsider long packets if we handle fragments 3846 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */ 3847 nm_prerr("%s from_host, drop packet size %d > %d", na->name, 3848 len, NETMAP_BUF_SIZE(na)); 3849 goto done; 3850 } 3851 3852 if (!netmap_generic_hwcsum) { 3853 if (nm_os_mbuf_has_csum_offld(m)) { 3854 RD(1, "%s drop mbuf that needs checksum offload", na->name); 3855 goto done; 3856 } 3857 } 3858 3859 if (nm_os_mbuf_has_seg_offld(m)) { 3860 RD(1, "%s drop mbuf that needs generic segmentation offload", na->name); 3861 goto done; 3862 } 3863 3864 #ifdef __FreeBSD__ 3865 ETHER_BPF_MTAP(ifp, m); 3866 #endif /* __FreeBSD__ */ 3867 3868 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic() 3869 * and maybe other instances of netmap_transmit (the latter 3870 * not possible on Linux). 3871 * We enqueue the mbuf only if we are sure there is going to be 3872 * enough room in the host RX ring, otherwise we drop it. 3873 */ 3874 mbq_lock(q); 3875 3876 busy = kring->nr_hwtail - kring->nr_hwcur; 3877 if (busy < 0) 3878 busy += kring->nkr_num_slots; 3879 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) { 3880 RD(2, "%s full hwcur %d hwtail %d qlen %d", na->name, 3881 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q)); 3882 } else { 3883 mbq_enqueue(q, m); 3884 ND(2, "%s %d bufs in queue", na->name, mbq_len(q)); 3885 /* notify outside the lock */ 3886 m = NULL; 3887 error = 0; 3888 } 3889 mbq_unlock(q); 3890 3891 done: 3892 if (m) 3893 m_freem(m); 3894 /* unconditionally wake up listeners */ 3895 kring->nm_notify(kring, 0); 3896 /* this is normally netmap_notify(), but for nics 3897 * connected to a bridge it is netmap_bwrap_intr_notify(), 3898 * that possibly forwards the frames through the switch 3899 */ 3900 3901 return (error); 3902 } 3903 3904 3905 /* 3906 * netmap_reset() is called by the driver routines when reinitializing 3907 * a ring. The driver is in charge of locking to protect the kring. 3908 * If native netmap mode is not set just return NULL. 3909 * If native netmap mode is set, in particular, we have to set nr_mode to 3910 * NKR_NETMAP_ON. 3911 */ 3912 struct netmap_slot * 3913 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 3914 u_int new_cur) 3915 { 3916 struct netmap_kring *kring; 3917 int new_hwofs, lim; 3918 3919 if (!nm_native_on(na)) { 3920 ND("interface not in native netmap mode"); 3921 return NULL; /* nothing to reinitialize */ 3922 } 3923 3924 /* XXX note- in the new scheme, we are not guaranteed to be 3925 * under lock (e.g. when called on a device reset). 3926 * In this case, we should set a flag and do not trust too 3927 * much the values. In practice: TODO 3928 * - set a RESET flag somewhere in the kring 3929 * - do the processing in a conservative way 3930 * - let the *sync() fixup at the end. 3931 */ 3932 if (tx == NR_TX) { 3933 if (n >= na->num_tx_rings) 3934 return NULL; 3935 3936 kring = na->tx_rings[n]; 3937 3938 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 3939 kring->nr_mode = NKR_NETMAP_OFF; 3940 return NULL; 3941 } 3942 3943 // XXX check whether we should use hwcur or rcur 3944 new_hwofs = kring->nr_hwcur - new_cur; 3945 } else { 3946 if (n >= na->num_rx_rings) 3947 return NULL; 3948 kring = na->rx_rings[n]; 3949 3950 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 3951 kring->nr_mode = NKR_NETMAP_OFF; 3952 return NULL; 3953 } 3954 3955 new_hwofs = kring->nr_hwtail - new_cur; 3956 } 3957 lim = kring->nkr_num_slots - 1; 3958 if (new_hwofs > lim) 3959 new_hwofs -= lim + 1; 3960 3961 /* Always set the new offset value and realign the ring. */ 3962 if (netmap_debug & NM_DEBUG_ON) 3963 nm_prinf("%s %s%d hwofs %d -> %d, hwtail %d -> %d", 3964 na->name, 3965 tx == NR_TX ? "TX" : "RX", n, 3966 kring->nkr_hwofs, new_hwofs, 3967 kring->nr_hwtail, 3968 tx == NR_TX ? lim : kring->nr_hwtail); 3969 kring->nkr_hwofs = new_hwofs; 3970 if (tx == NR_TX) { 3971 kring->nr_hwtail = kring->nr_hwcur + lim; 3972 if (kring->nr_hwtail > lim) 3973 kring->nr_hwtail -= lim + 1; 3974 } 3975 3976 /* 3977 * Wakeup on the individual and global selwait 3978 * We do the wakeup here, but the ring is not yet reconfigured. 3979 * However, we are under lock so there are no races. 3980 */ 3981 kring->nr_mode = NKR_NETMAP_ON; 3982 kring->nm_notify(kring, 0); 3983 return kring->ring->slot; 3984 } 3985 3986 3987 /* 3988 * Dispatch rx/tx interrupts to the netmap rings. 3989 * 3990 * "work_done" is non-null on the RX path, NULL for the TX path. 3991 * We rely on the OS to make sure that there is only one active 3992 * instance per queue, and that there is appropriate locking. 3993 * 3994 * The 'notify' routine depends on what the ring is attached to. 3995 * - for a netmap file descriptor, do a selwakeup on the individual 3996 * waitqueue, plus one on the global one if needed 3997 * (see netmap_notify) 3998 * - for a nic connected to a switch, call the proper forwarding routine 3999 * (see netmap_bwrap_intr_notify) 4000 */ 4001 int 4002 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 4003 { 4004 struct netmap_kring *kring; 4005 enum txrx t = (work_done ? NR_RX : NR_TX); 4006 4007 q &= NETMAP_RING_MASK; 4008 4009 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) { 4010 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 4011 } 4012 4013 if (q >= nma_get_nrings(na, t)) 4014 return NM_IRQ_PASS; // not a physical queue 4015 4016 kring = NMR(na, t)[q]; 4017 4018 if (kring->nr_mode == NKR_NETMAP_OFF) { 4019 return NM_IRQ_PASS; 4020 } 4021 4022 if (t == NR_RX) { 4023 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 4024 *work_done = 1; /* do not fire napi again */ 4025 } 4026 4027 return kring->nm_notify(kring, 0); 4028 } 4029 4030 4031 /* 4032 * Default functions to handle rx/tx interrupts from a physical device. 4033 * "work_done" is non-null on the RX path, NULL for the TX path. 4034 * 4035 * If the card is not in netmap mode, simply return NM_IRQ_PASS, 4036 * so that the caller proceeds with regular processing. 4037 * Otherwise call netmap_common_irq(). 4038 * 4039 * If the card is connected to a netmap file descriptor, 4040 * do a selwakeup on the individual queue, plus one on the global one 4041 * if needed (multiqueue card _and_ there are multiqueue listeners), 4042 * and return NR_IRQ_COMPLETED. 4043 * 4044 * Finally, if called on rx from an interface connected to a switch, 4045 * calls the proper forwarding routine. 4046 */ 4047 int 4048 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 4049 { 4050 struct netmap_adapter *na = NA(ifp); 4051 4052 /* 4053 * XXX emulated netmap mode sets NAF_SKIP_INTR so 4054 * we still use the regular driver even though the previous 4055 * check fails. It is unclear whether we should use 4056 * nm_native_on() here. 4057 */ 4058 if (!nm_netmap_on(na)) 4059 return NM_IRQ_PASS; 4060 4061 if (na->na_flags & NAF_SKIP_INTR) { 4062 ND("use regular interrupt"); 4063 return NM_IRQ_PASS; 4064 } 4065 4066 return netmap_common_irq(na, q, work_done); 4067 } 4068 4069 /* set/clear native flags and if_transmit/netdev_ops */ 4070 void 4071 nm_set_native_flags(struct netmap_adapter *na) 4072 { 4073 struct ifnet *ifp = na->ifp; 4074 4075 /* We do the setup for intercepting packets only if we are the 4076 * first user of this adapapter. */ 4077 if (na->active_fds > 0) { 4078 return; 4079 } 4080 4081 na->na_flags |= NAF_NETMAP_ON; 4082 nm_os_onenter(ifp); 4083 nm_update_hostrings_mode(na); 4084 } 4085 4086 void 4087 nm_clear_native_flags(struct netmap_adapter *na) 4088 { 4089 struct ifnet *ifp = na->ifp; 4090 4091 /* We undo the setup for intercepting packets only if we are the 4092 * last user of this adapter. */ 4093 if (na->active_fds > 0) { 4094 return; 4095 } 4096 4097 nm_update_hostrings_mode(na); 4098 nm_os_onexit(ifp); 4099 4100 na->na_flags &= ~NAF_NETMAP_ON; 4101 } 4102 4103 /* 4104 * Module loader and unloader 4105 * 4106 * netmap_init() creates the /dev/netmap device and initializes 4107 * all global variables. Returns 0 on success, errno on failure 4108 * (but there is no chance) 4109 * 4110 * netmap_fini() destroys everything. 4111 */ 4112 4113 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 4114 extern struct cdevsw netmap_cdevsw; 4115 4116 4117 void 4118 netmap_fini(void) 4119 { 4120 if (netmap_dev) 4121 destroy_dev(netmap_dev); 4122 /* we assume that there are no longer netmap users */ 4123 nm_os_ifnet_fini(); 4124 netmap_uninit_bridges(); 4125 netmap_mem_fini(); 4126 NMG_LOCK_DESTROY(); 4127 nm_prinf("netmap: unloaded module."); 4128 } 4129 4130 4131 int 4132 netmap_init(void) 4133 { 4134 int error; 4135 4136 NMG_LOCK_INIT(); 4137 4138 error = netmap_mem_init(); 4139 if (error != 0) 4140 goto fail; 4141 /* 4142 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls 4143 * when the module is compiled in. 4144 * XXX could use make_dev_credv() to get error number 4145 */ 4146 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD, 4147 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, 4148 "netmap"); 4149 if (!netmap_dev) 4150 goto fail; 4151 4152 error = netmap_init_bridges(); 4153 if (error) 4154 goto fail; 4155 4156 #ifdef __FreeBSD__ 4157 nm_os_vi_init_index(); 4158 #endif 4159 4160 error = nm_os_ifnet_init(); 4161 if (error) 4162 goto fail; 4163 4164 nm_prinf("netmap: loaded module"); 4165 return (0); 4166 fail: 4167 netmap_fini(); 4168 return (EINVAL); /* may be incorrect */ 4169 } 4170