xref: /freebsd/sys/dev/neta/if_mvneta.c (revision ae8d58814089308028046ac80aeeb9cbb784bd0a)
1 /*
2  * Copyright (c) 2017 Stormshield.
3  * Copyright (c) 2017 Semihalf.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/endian.h>
33 #include <sys/mbuf.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/kernel.h>
37 #include <sys/module.h>
38 #include <sys/socket.h>
39 #include <sys/sysctl.h>
40 #include <sys/smp.h>
41 #include <sys/taskqueue.h>
42 #ifdef MVNETA_KTR
43 #include <sys/ktr.h>
44 #endif
45 
46 #include <net/ethernet.h>
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_vlan_var.h>
54 
55 #include <netinet/in_systm.h>
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/tcp_lro.h>
59 
60 #include <sys/sockio.h>
61 #include <sys/bus.h>
62 #include <machine/bus.h>
63 #include <sys/rman.h>
64 #include <machine/resource.h>
65 
66 #include <dev/clk/clk.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 
71 #include <dev/mdio/mdio.h>
72 
73 #include <arm/mv/mvvar.h>
74 
75 #if !defined(__aarch64__)
76 #include <arm/mv/mvreg.h>
77 #include <arm/mv/mvwin.h>
78 #endif
79 
80 #include "if_mvnetareg.h"
81 #include "if_mvnetavar.h"
82 
83 #include "miibus_if.h"
84 #include "mdio_if.h"
85 
86 #ifdef MVNETA_DEBUG
87 #define	STATIC /* nothing */
88 #else
89 #define	STATIC static
90 #endif
91 
92 #define	DASSERT(x) KASSERT((x), (#x))
93 
94 #define	A3700_TCLK_250MHZ		250000000
95 
96 /* Device Register Initialization */
97 STATIC int mvneta_initreg(if_t);
98 
99 /* Descriptor Ring Control for each of queues */
100 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
101 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
102 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
103 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
104 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
105 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
106 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
107 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
108 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
109 STATIC int mvneta_dma_create(struct mvneta_softc *);
110 
111 /* Rx/Tx Queue Control */
112 STATIC int mvneta_rx_queue_init(if_t, int);
113 STATIC int mvneta_tx_queue_init(if_t, int);
114 STATIC int mvneta_rx_queue_enable(if_t, int);
115 STATIC int mvneta_tx_queue_enable(if_t, int);
116 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
117 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
118 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
119 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
120 
121 /* Interrupt Handlers */
122 STATIC void mvneta_disable_intr(struct mvneta_softc *);
123 STATIC void mvneta_enable_intr(struct mvneta_softc *);
124 STATIC void mvneta_rxtxth_intr(void *);
125 STATIC int mvneta_misc_intr(struct mvneta_softc *);
126 STATIC void mvneta_tick(void *);
127 /* struct ifnet and mii callbacks*/
128 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
129 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
130 #ifdef MVNETA_MULTIQUEUE
131 STATIC int mvneta_transmit(if_t, struct mbuf *);
132 #else /* !MVNETA_MULTIQUEUE */
133 STATIC void mvneta_start(if_t);
134 #endif
135 STATIC void mvneta_qflush(if_t);
136 STATIC void mvneta_tx_task(void *, int);
137 STATIC int mvneta_ioctl(if_t, u_long, caddr_t);
138 STATIC void mvneta_init(void *);
139 STATIC void mvneta_init_locked(void *);
140 STATIC void mvneta_stop(struct mvneta_softc *);
141 STATIC void mvneta_stop_locked(struct mvneta_softc *);
142 STATIC int mvneta_mediachange(if_t);
143 STATIC void mvneta_mediastatus(if_t, struct ifmediareq *);
144 STATIC void mvneta_portup(struct mvneta_softc *);
145 STATIC void mvneta_portdown(struct mvneta_softc *);
146 
147 /* Link State Notify */
148 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
149 STATIC int mvneta_update_media(struct mvneta_softc *, int);
150 STATIC void mvneta_adjust_link(struct mvneta_softc *);
151 STATIC void mvneta_update_eee(struct mvneta_softc *);
152 STATIC void mvneta_update_fc(struct mvneta_softc *);
153 STATIC void mvneta_link_isr(struct mvneta_softc *);
154 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
155 STATIC void mvneta_linkup(struct mvneta_softc *);
156 STATIC void mvneta_linkdown(struct mvneta_softc *);
157 STATIC void mvneta_linkreset(struct mvneta_softc *);
158 
159 /* Tx Subroutines */
160 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
161 STATIC void mvneta_tx_set_csumflag(if_t,
162     struct mvneta_tx_desc *, struct mbuf *);
163 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
164 STATIC void mvneta_tx_drain(struct mvneta_softc *);
165 
166 /* Rx Subroutines */
167 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
168 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
169 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
170 STATIC void mvneta_rx_set_csumflag(if_t,
171     struct mvneta_rx_desc *, struct mbuf *);
172 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
173 
174 /* MAC address filter */
175 STATIC void mvneta_filter_setup(struct mvneta_softc *);
176 
177 /* sysctl(9) */
178 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
179 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
180 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
181 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
182 
183 /* MIB */
184 STATIC void mvneta_clear_mib(struct mvneta_softc *);
185 STATIC uint64_t mvneta_read_mib(struct mvneta_softc *, int);
186 STATIC void mvneta_update_mib(struct mvneta_softc *);
187 
188 /* Switch */
189 STATIC boolean_t mvneta_has_switch(device_t);
190 
191 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
192 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
193 
194 STATIC struct mtx mii_mutex;
195 STATIC int mii_init = 0;
196 
197 /* Device */
198 STATIC int mvneta_detach(device_t);
199 /* MII */
200 STATIC int mvneta_miibus_readreg(device_t, int, int);
201 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
202 
203 static device_method_t mvneta_methods[] = {
204 	/* Device interface */
205 	DEVMETHOD(device_detach,	mvneta_detach),
206 	/* MII interface */
207 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
208 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
209 	/* MDIO interface */
210 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
211 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
212 
213 	/* End */
214 	DEVMETHOD_END
215 };
216 
217 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
218 
219 DRIVER_MODULE(miibus, mvneta, miibus_driver, 0, 0);
220 DRIVER_MODULE(mdio, mvneta, mdio_driver, 0, 0);
221 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
222 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
223 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
224 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
225 
226 /*
227  * List of MIB register and names
228  */
229 enum mvneta_mib_idx
230 {
231 	MVNETA_MIB_RX_GOOD_OCT_IDX,
232 	MVNETA_MIB_RX_BAD_OCT_IDX,
233 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
234 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
235 	MVNETA_MIB_RX_BAD_FRAME_IDX,
236 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
237 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
238 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
239 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
240 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
241 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
242 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
243 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
244 	MVNETA_MIB_TX_GOOD_OCT_IDX,
245 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
246 	MVNETA_MIB_TX_EXCES_COL_IDX,
247 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
248 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
249 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
250 	MVNETA_MIB_FC_SENT_IDX,
251 	MVNETA_MIB_FC_GOOD_IDX,
252 	MVNETA_MIB_FC_BAD_IDX,
253 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
254 	MVNETA_MIB_PKT_FRAGMENT_IDX,
255 	MVNETA_MIB_PKT_OVERSIZE_IDX,
256 	MVNETA_MIB_PKT_JABBER_IDX,
257 	MVNETA_MIB_MAC_RX_ERR_IDX,
258 	MVNETA_MIB_MAC_CRC_ERR_IDX,
259 	MVNETA_MIB_MAC_COL_IDX,
260 	MVNETA_MIB_MAC_LATE_COL_IDX,
261 };
262 
263 STATIC struct mvneta_mib_def {
264 	uint32_t regnum;
265 	int reg64;
266 	const char *sysctl_name;
267 	const char *desc;
268 } mvneta_mib_list[] = {
269 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
270 	    "rx_good_oct", "Good Octets Rx"},
271 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
272 	    "rx_bad_oct", "Bad  Octets Rx"},
273 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
274 	    "tx_mac_err", "MAC Transmit Error"},
275 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
276 	    "rx_good_frame", "Good Frames Rx"},
277 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
278 	    "rx_bad_frame", "Bad Frames Rx"},
279 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
280 	    "rx_bcast_frame", "Broadcast Frames Rx"},
281 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
282 	    "rx_mcast_frame", "Multicast Frames Rx"},
283 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
284 	    "rx_frame_1_64", "Frame Size    1 -   64"},
285 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
286 	    "rx_frame_65_127", "Frame Size   65 -  127"},
287 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
288 	    "rx_frame_128_255", "Frame Size  128 -  255"},
289 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
290 	    "rx_frame_256_511", "Frame Size  256 -  511"},
291 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
292 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
293 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
294 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
295 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
296 	    "tx_good_oct", "Good Octets Tx"},
297 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
298 	    "tx_good_frame", "Good Frames Tx"},
299 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
300 	    "tx_exces_collision", "Excessive Collision"},
301 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
302 	    "tx_mcast_frame", "Multicast Frames Tx"},
303 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
304 	    "tx_bcast_frame", "Broadcast Frames Tx"},
305 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
306 	    "tx_mac_ctl_err", "Unknown MAC Control"},
307 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
308 	    "fc_tx", "Flow Control Tx"},
309 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
310 	    "fc_rx_good", "Good Flow Control Rx"},
311 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
312 	    "fc_rx_bad", "Bad Flow Control Rx"},
313 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
314 	    "pkt_undersize", "Undersized Packets Rx"},
315 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
316 	    "pkt_fragment", "Fragmented Packets Rx"},
317 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
318 	    "pkt_oversize", "Oversized Packets Rx"},
319 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
320 	    "pkt_jabber", "Jabber Packets Rx"},
321 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
322 	    "mac_rx_err", "MAC Rx Errors"},
323 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
324 	    "mac_crc_err", "MAC CRC Errors"},
325 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
326 	    "mac_collision", "MAC Collision"},
327 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
328 	    "mac_late_collision", "MAC Late Collision"},
329 };
330 
331 static struct resource_spec res_spec[] = {
332 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
333 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
334 	{ -1, 0}
335 };
336 
337 static struct {
338 	driver_intr_t *handler;
339 	char * description;
340 } mvneta_intrs[] = {
341 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
342 };
343 
344 static int
345 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
346 {
347 	unsigned int mac_h;
348 	unsigned int mac_l;
349 
350 	mac_l = (addr[4] << 8) | (addr[5]);
351 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
352 	    (addr[2] << 8) | (addr[3] << 0);
353 
354 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
355 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
356 	return (0);
357 }
358 
359 static int
360 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
361 {
362 	uint32_t mac_l, mac_h;
363 
364 #ifdef FDT
365 	if (mvneta_fdt_mac_address(sc, addr) == 0)
366 		return (0);
367 #endif
368 	/*
369 	 * Fall back -- use the currently programmed address.
370 	 */
371 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
372 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
373 	if (mac_l == 0 && mac_h == 0) {
374 		/*
375 		 * Generate pseudo-random MAC.
376 		 * Set lower part to random number | unit number.
377 		 */
378 		mac_l = arc4random() & ~0xff;
379 		mac_l |= device_get_unit(sc->dev) & 0xff;
380 		mac_h = arc4random();
381 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
382 		if (bootverbose) {
383 			device_printf(sc->dev,
384 			    "Could not acquire MAC address. "
385 			    "Using randomized one.\n");
386 		}
387 	}
388 
389 	addr[0] = (mac_h & 0xff000000) >> 24;
390 	addr[1] = (mac_h & 0x00ff0000) >> 16;
391 	addr[2] = (mac_h & 0x0000ff00) >> 8;
392 	addr[3] = (mac_h & 0x000000ff);
393 	addr[4] = (mac_l & 0x0000ff00) >> 8;
394 	addr[5] = (mac_l & 0x000000ff);
395 	return (0);
396 }
397 
398 STATIC boolean_t
399 mvneta_has_switch(device_t self)
400 {
401 #ifdef FDT
402 	return (mvneta_has_switch_fdt(self));
403 #endif
404 
405 	return (false);
406 }
407 
408 STATIC int
409 mvneta_dma_create(struct mvneta_softc *sc)
410 {
411 	size_t maxsize, maxsegsz;
412 	size_t q;
413 	int error;
414 
415 	/*
416 	 * Create Tx DMA
417 	 */
418 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
419 
420 	error = bus_dma_tag_create(
421 	    bus_get_dma_tag(sc->dev),		/* parent */
422 	    16, 0,                              /* alignment, boundary */
423 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
424 	    BUS_SPACE_MAXADDR,                  /* highaddr */
425 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
426 	    maxsize,				/* maxsize */
427 	    1,					/* nsegments */
428 	    maxsegsz,				/* maxsegsz */
429 	    0,					/* flags */
430 	    NULL, NULL,				/* lockfunc, lockfuncarg */
431 	    &sc->tx_dtag);			/* dmat */
432 	if (error != 0) {
433 		device_printf(sc->dev,
434 		    "Failed to create DMA tag for Tx descriptors.\n");
435 		goto fail;
436 	}
437 	error = bus_dma_tag_create(
438 	    bus_get_dma_tag(sc->dev),		/* parent */
439 	    1, 0,				/* alignment, boundary */
440 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
441 	    BUS_SPACE_MAXADDR,			/* highaddr */
442 	    NULL, NULL,				/* filtfunc, filtfuncarg */
443 	    MVNETA_MAX_FRAME,			/* maxsize */
444 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
445 	    MVNETA_MAX_FRAME,			/* maxsegsz */
446 	    BUS_DMA_ALLOCNOW,			/* flags */
447 	    NULL, NULL,				/* lockfunc, lockfuncarg */
448 	    &sc->txmbuf_dtag);
449 	if (error != 0) {
450 		device_printf(sc->dev,
451 		    "Failed to create DMA tag for Tx mbufs.\n");
452 		goto fail;
453 	}
454 
455 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
456 		error = mvneta_ring_alloc_tx_queue(sc, q);
457 		if (error != 0) {
458 			device_printf(sc->dev,
459 			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
460 			goto fail;
461 		}
462 	}
463 
464 	/*
465 	 * Create Rx DMA.
466 	 */
467 	/* Create tag for Rx descripors */
468 	error = bus_dma_tag_create(
469 	    bus_get_dma_tag(sc->dev),		/* parent */
470 	    32, 0,                              /* alignment, boundary */
471 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
472 	    BUS_SPACE_MAXADDR,                  /* highaddr */
473 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
474 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
475 	    1,					/* nsegments */
476 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
477 	    0,					/* flags */
478 	    NULL, NULL,				/* lockfunc, lockfuncarg */
479 	    &sc->rx_dtag);			/* dmat */
480 	if (error != 0) {
481 		device_printf(sc->dev,
482 		    "Failed to create DMA tag for Rx descriptors.\n");
483 		goto fail;
484 	}
485 
486 	/* Create tag for Rx buffers */
487 	error = bus_dma_tag_create(
488 	    bus_get_dma_tag(sc->dev),		/* parent */
489 	    32, 0,				/* alignment, boundary */
490 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
491 	    BUS_SPACE_MAXADDR,			/* highaddr */
492 	    NULL, NULL,				/* filtfunc, filtfuncarg */
493 	    MVNETA_MAX_FRAME, 1,		/* maxsize, nsegments */
494 	    MVNETA_MAX_FRAME,			/* maxsegsz */
495 	    0,					/* flags */
496 	    NULL, NULL,				/* lockfunc, lockfuncarg */
497 	    &sc->rxbuf_dtag);			/* dmat */
498 	if (error != 0) {
499 		device_printf(sc->dev,
500 		    "Failed to create DMA tag for Rx buffers.\n");
501 		goto fail;
502 	}
503 
504 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
505 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
506 			device_printf(sc->dev,
507 			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
508 			goto fail;
509 		}
510 	}
511 
512 	return (0);
513 fail:
514 	mvneta_detach(sc->dev);
515 
516 	return (error);
517 }
518 
519 /* ARGSUSED */
520 int
521 mvneta_attach(device_t self)
522 {
523 	struct mvneta_softc *sc;
524 	if_t ifp;
525 	device_t child;
526 	int ifm_target;
527 	int q, error;
528 #if !defined(__aarch64__)
529 	uint32_t reg;
530 #endif
531 	clk_t clk;
532 
533 	sc = device_get_softc(self);
534 	sc->dev = self;
535 
536 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
537 
538 	error = bus_alloc_resources(self, res_spec, sc->res);
539 	if (error) {
540 		device_printf(self, "could not allocate resources\n");
541 		return (ENXIO);
542 	}
543 
544 	sc->version = MVNETA_READ(sc, MVNETA_PV);
545 	device_printf(self, "version is %x\n", sc->version);
546 	callout_init(&sc->tick_ch, 0);
547 
548 	/*
549 	 * make sure DMA engines are in reset state
550 	 */
551 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
552 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
553 
554 	error = clk_get_by_ofw_index(sc->dev, ofw_bus_get_node(sc->dev), 0,
555 	    &clk);
556 	if (error != 0) {
557 #if defined(__aarch64__)
558 		device_printf(sc->dev,
559 			"Cannot get clock, using default frequency: %d\n",
560 			A3700_TCLK_250MHZ);
561 		sc->clk_freq = A3700_TCLK_250MHZ;
562 #else
563 		device_printf(sc->dev,
564 			"Cannot get clock, using get_tclk()\n");
565 		sc->clk_freq = get_tclk();
566 #endif
567 	} else {
568 		error = clk_get_freq(clk, &sc->clk_freq);
569 		if (error != 0) {
570 			device_printf(sc->dev,
571 				"Cannot obtain frequency from parent clock\n");
572 			bus_release_resources(sc->dev, res_spec, sc->res);
573 			return (error);
574 		}
575 	}
576 
577 #if !defined(__aarch64__)
578 	/*
579 	 * Disable port snoop for buffers and descriptors
580 	 * to avoid L2 caching of both without DRAM copy.
581 	 * Obtain coherency settings from the first MBUS
582 	 * window attribute.
583 	 */
584 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
585 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
586 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
587 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
588 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
589 	}
590 #endif
591 
592 	error = bus_setup_intr(self, sc->res[1],
593 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
594 	    &sc->ih_cookie[0]);
595 	if (error) {
596 		device_printf(self, "could not setup %s\n",
597 		    mvneta_intrs[0].description);
598 		mvneta_detach(self);
599 		return (error);
600 	}
601 
602 	/*
603 	 * MAC address
604 	 */
605 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
606 		device_printf(self, "no mac address.\n");
607 		return (ENXIO);
608 	}
609 	mvneta_set_mac_address(sc, sc->enaddr);
610 
611 	mvneta_disable_intr(sc);
612 
613 	/* Allocate network interface */
614 	ifp = sc->ifp = if_alloc(IFT_ETHER);
615 	if_initname(ifp, device_get_name(self), device_get_unit(self));
616 
617 	/*
618 	 * We can support 802.1Q VLAN-sized frames and jumbo
619 	 * Ethernet frames.
620 	 */
621 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU, 0);
622 
623 	if_setsoftc(ifp, sc);
624 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
625 #ifdef MVNETA_MULTIQUEUE
626 	if_settransmitfn(ifp, mvneta_transmit);
627 	if_setqflushfn(ifp, mvneta_qflush);
628 #else /* !MVNETA_MULTIQUEUE */
629 	if_setstartfn(ifp, mvneta_start);
630 	if_setsendqlen(ifp, MVNETA_TX_RING_CNT - 1);
631 	if_setsendqready(ifp);
632 #endif
633 	if_setinitfn(ifp, mvneta_init);
634 	if_setioctlfn(ifp, mvneta_ioctl);
635 
636 	/*
637 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
638 	 */
639 	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
640 
641 	/*
642 	 * As VLAN hardware tagging is not supported
643 	 * but is necessary to perform VLAN hardware checksums,
644 	 * it is done in the driver
645 	 */
646 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM, 0);
647 
648 	/*
649 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
650 	 */
651 	if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM_IPV6);
652 	if_setcapenable(ifp, if_getcapabilities(ifp));
653 
654 	/*
655 	 * Disabled option(s):
656 	 * - Support for Large Receive Offload
657 	 */
658 	if_setcapabilitiesbit(ifp, IFCAP_LRO, 0);
659 
660 	if_sethwassist(ifp, CSUM_IP | CSUM_TCP | CSUM_UDP);
661 
662 	sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */
663 
664 	/*
665 	 * Device DMA Buffer allocation.
666 	 * Handles resource deallocation in case of failure.
667 	 */
668 	error = mvneta_dma_create(sc);
669 	if (error != 0) {
670 		mvneta_detach(self);
671 		return (error);
672 	}
673 
674 	/* Initialize queues */
675 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
676 		error = mvneta_ring_init_tx_queue(sc, q);
677 		if (error != 0) {
678 			mvneta_detach(self);
679 			return (error);
680 		}
681 	}
682 
683 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
684 		error = mvneta_ring_init_rx_queue(sc, q);
685 		if (error != 0) {
686 			mvneta_detach(self);
687 			return (error);
688 		}
689 	}
690 
691 	/*
692 	 * Enable DMA engines and Initialize Device Registers.
693 	 */
694 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
695 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
696 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
697 	mvneta_sc_lock(sc);
698 	mvneta_filter_setup(sc);
699 	mvneta_sc_unlock(sc);
700 	mvneta_initreg(ifp);
701 
702 	/*
703 	 * Now MAC is working, setup MII.
704 	 */
705 	if (mii_init == 0) {
706 		/*
707 		 * MII bus is shared by all MACs and all PHYs in SoC.
708 		 * serializing the bus access should be safe.
709 		 */
710 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
711 		mii_init = 1;
712 	}
713 
714 	/* Attach PHY(s) */
715 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
716 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
717 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
718 		    MII_OFFSET_ANY, 0);
719 		if (error != 0) {
720 			device_printf(self, "MII attach failed, error: %d\n",
721 			    error);
722 			ether_ifdetach(sc->ifp);
723 			mvneta_detach(self);
724 			return (error);
725 		}
726 		sc->mii = device_get_softc(sc->miibus);
727 		sc->phy_attached = 1;
728 
729 		/* Disable auto-negotiation in MAC - rely on PHY layer */
730 		mvneta_update_autoneg(sc, FALSE);
731 	} else if (sc->use_inband_status == TRUE) {
732 		/* In-band link status */
733 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
734 		    mvneta_mediastatus);
735 
736 		/* Configure media */
737 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
738 		    0, NULL);
739 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
740 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
741 		    0, NULL);
742 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
743 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
744 		    0, NULL);
745 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
746 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
747 
748 		/* Enable auto-negotiation */
749 		mvneta_update_autoneg(sc, TRUE);
750 
751 		mvneta_sc_lock(sc);
752 		if (MVNETA_IS_LINKUP(sc))
753 			mvneta_linkup(sc);
754 		else
755 			mvneta_linkdown(sc);
756 		mvneta_sc_unlock(sc);
757 
758 	} else {
759 		/* Fixed-link, use predefined values */
760 		mvneta_update_autoneg(sc, FALSE);
761 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
762 		    mvneta_mediastatus);
763 
764 		ifm_target = IFM_ETHER;
765 		switch (sc->phy_speed) {
766 		case 2500:
767 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
768 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
769 				device_printf(self,
770 				    "2.5G speed can work only in (Q)SGMII mode\n");
771 				ether_ifdetach(sc->ifp);
772 				mvneta_detach(self);
773 				return (ENXIO);
774 			}
775 			ifm_target |= IFM_2500_T;
776 			break;
777 		case 1000:
778 			ifm_target |= IFM_1000_T;
779 			break;
780 		case 100:
781 			ifm_target |= IFM_100_TX;
782 			break;
783 		case 10:
784 			ifm_target |= IFM_10_T;
785 			break;
786 		default:
787 			ether_ifdetach(sc->ifp);
788 			mvneta_detach(self);
789 			return (ENXIO);
790 		}
791 
792 		if (sc->phy_fdx)
793 			ifm_target |= IFM_FDX;
794 		else
795 			ifm_target |= IFM_HDX;
796 
797 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
798 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
799 		if_link_state_change(sc->ifp, LINK_STATE_UP);
800 
801 		if (mvneta_has_switch(self)) {
802 			if (bootverbose)
803 				device_printf(self, "This device is attached to a switch\n");
804 			child = device_add_child(sc->dev, "mdio", -1);
805 			if (child == NULL) {
806 				ether_ifdetach(sc->ifp);
807 				mvneta_detach(self);
808 				return (ENXIO);
809 			}
810 			bus_generic_attach(sc->dev);
811 			bus_generic_attach(child);
812 		}
813 
814 		/* Configure MAC media */
815 		mvneta_update_media(sc, ifm_target);
816 	}
817 
818 	ether_ifattach(ifp, sc->enaddr);
819 
820 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
821 
822 	sysctl_mvneta_init(sc);
823 
824 	return (0);
825 }
826 
827 STATIC int
828 mvneta_detach(device_t dev)
829 {
830 	struct mvneta_softc *sc;
831 	int q;
832 
833 	sc = device_get_softc(dev);
834 
835 	if (device_is_attached(dev)) {
836 		mvneta_stop(sc);
837 		callout_drain(&sc->tick_ch);
838 		ether_ifdetach(sc->ifp);
839 	}
840 
841 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
842 		mvneta_ring_dealloc_rx_queue(sc, q);
843 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
844 		mvneta_ring_dealloc_tx_queue(sc, q);
845 
846 	device_delete_children(dev);
847 
848 	if (sc->ih_cookie[0] != NULL)
849 		bus_teardown_intr(dev, sc->res[1], sc->ih_cookie[0]);
850 
851 	if (sc->tx_dtag != NULL)
852 		bus_dma_tag_destroy(sc->tx_dtag);
853 	if (sc->rx_dtag != NULL)
854 		bus_dma_tag_destroy(sc->rx_dtag);
855 	if (sc->txmbuf_dtag != NULL)
856 		bus_dma_tag_destroy(sc->txmbuf_dtag);
857 	if (sc->rxbuf_dtag != NULL)
858 		bus_dma_tag_destroy(sc->rxbuf_dtag);
859 
860 	bus_release_resources(dev, res_spec, sc->res);
861 
862 	if (sc->ifp)
863 		if_free(sc->ifp);
864 
865 	if (mtx_initialized(&sc->mtx))
866 		mtx_destroy(&sc->mtx);
867 
868 	return (0);
869 }
870 
871 /*
872  * MII
873  */
874 STATIC int
875 mvneta_miibus_readreg(device_t dev, int phy, int reg)
876 {
877 	struct mvneta_softc *sc;
878 	if_t ifp;
879 	uint32_t smi, val;
880 	int i;
881 
882 	sc = device_get_softc(dev);
883 	ifp = sc->ifp;
884 
885 	mtx_lock(&mii_mutex);
886 
887 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
888 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
889 			break;
890 		DELAY(1);
891 	}
892 	if (i == MVNETA_PHY_TIMEOUT) {
893 		if_printf(ifp, "SMI busy timeout\n");
894 		mtx_unlock(&mii_mutex);
895 		return (-1);
896 	}
897 
898 	smi = MVNETA_SMI_PHYAD(phy) |
899 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
900 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
901 
902 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
903 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
904 			break;
905 		DELAY(1);
906 	}
907 
908 	if (i == MVNETA_PHY_TIMEOUT) {
909 		if_printf(ifp, "SMI busy timeout\n");
910 		mtx_unlock(&mii_mutex);
911 		return (-1);
912 	}
913 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
914 		smi = MVNETA_READ(sc, MVNETA_SMI);
915 		if (smi & MVNETA_SMI_READVALID)
916 			break;
917 		DELAY(1);
918 	}
919 
920 	if (i == MVNETA_PHY_TIMEOUT) {
921 		if_printf(ifp, "SMI busy timeout\n");
922 		mtx_unlock(&mii_mutex);
923 		return (-1);
924 	}
925 
926 	mtx_unlock(&mii_mutex);
927 
928 #ifdef MVNETA_KTR
929 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", if_getname(ifp), i,
930 	    MVNETA_PHY_TIMEOUT);
931 #endif
932 
933 	val = smi & MVNETA_SMI_DATA_MASK;
934 
935 #ifdef MVNETA_KTR
936 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", if_getname(ifp), phy,
937 	    reg, val);
938 #endif
939 	return (val);
940 }
941 
942 STATIC int
943 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
944 {
945 	struct mvneta_softc *sc;
946 	if_t ifp;
947 	uint32_t smi;
948 	int i;
949 
950 	sc = device_get_softc(dev);
951 	ifp = sc->ifp;
952 #ifdef MVNETA_KTR
953 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", if_name(ifp),
954 	    phy, reg, val);
955 #endif
956 
957 	mtx_lock(&mii_mutex);
958 
959 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
960 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
961 			break;
962 		DELAY(1);
963 	}
964 	if (i == MVNETA_PHY_TIMEOUT) {
965 		if_printf(ifp, "SMI busy timeout\n");
966 		mtx_unlock(&mii_mutex);
967 		return (0);
968 	}
969 
970 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
971 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
972 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
973 
974 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
975 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
976 			break;
977 		DELAY(1);
978 	}
979 
980 	mtx_unlock(&mii_mutex);
981 
982 	if (i == MVNETA_PHY_TIMEOUT)
983 		if_printf(ifp, "phy write timed out\n");
984 
985 	return (0);
986 }
987 
988 STATIC void
989 mvneta_portup(struct mvneta_softc *sc)
990 {
991 	int q;
992 
993 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
994 		mvneta_rx_lockq(sc, q);
995 		mvneta_rx_queue_enable(sc->ifp, q);
996 		mvneta_rx_unlockq(sc, q);
997 	}
998 
999 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1000 		mvneta_tx_lockq(sc, q);
1001 		mvneta_tx_queue_enable(sc->ifp, q);
1002 		mvneta_tx_unlockq(sc, q);
1003 	}
1004 
1005 }
1006 
1007 STATIC void
1008 mvneta_portdown(struct mvneta_softc *sc)
1009 {
1010 	struct mvneta_rx_ring *rx;
1011 	struct mvneta_tx_ring *tx;
1012 	int q, cnt;
1013 	uint32_t reg;
1014 
1015 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1016 		rx = MVNETA_RX_RING(sc, q);
1017 		mvneta_rx_lockq(sc, q);
1018 		rx->queue_status = MVNETA_QUEUE_DISABLED;
1019 		mvneta_rx_unlockq(sc, q);
1020 	}
1021 
1022 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1023 		tx = MVNETA_TX_RING(sc, q);
1024 		mvneta_tx_lockq(sc, q);
1025 		tx->queue_status = MVNETA_QUEUE_DISABLED;
1026 		mvneta_tx_unlockq(sc, q);
1027 	}
1028 
1029 	/* Wait for all Rx activity to terminate. */
1030 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1031 	reg = MVNETA_RQC_DIS(reg);
1032 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1033 	cnt = 0;
1034 	do {
1035 		if (cnt >= RX_DISABLE_TIMEOUT) {
1036 			if_printf(sc->ifp,
1037 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1038 			break;
1039 		}
1040 		cnt++;
1041 		reg = MVNETA_READ(sc, MVNETA_RQC);
1042 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1043 
1044 	/* Wait for all Tx activity to terminate. */
1045 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1046 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1047 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1048 
1049 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1050 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1051 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1052 
1053 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1054 	reg = MVNETA_TQC_DIS(reg);
1055 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1056 	cnt = 0;
1057 	do {
1058 		if (cnt >= TX_DISABLE_TIMEOUT) {
1059 			if_printf(sc->ifp,
1060 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1061 			break;
1062 		}
1063 		cnt++;
1064 		reg = MVNETA_READ(sc, MVNETA_TQC);
1065 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1066 
1067 	/* Wait for all Tx FIFO is empty */
1068 	cnt = 0;
1069 	do {
1070 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1071 			if_printf(sc->ifp,
1072 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1073 			break;
1074 		}
1075 		cnt++;
1076 		reg = MVNETA_READ(sc, MVNETA_PS0);
1077 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1078 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1079 }
1080 
1081 /*
1082  * Device Register Initialization
1083  *  reset device registers to device driver default value.
1084  *  the device is not enabled here.
1085  */
1086 STATIC int
1087 mvneta_initreg(if_t ifp)
1088 {
1089 	struct mvneta_softc *sc;
1090 	int q;
1091 	uint32_t reg;
1092 
1093 	sc = if_getsoftc(ifp);
1094 #ifdef MVNETA_KTR
1095 	CTR1(KTR_SPARE2, "%s initializing device register", if_name(ifp));
1096 #endif
1097 
1098 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1099 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1100 	/* Enable mbus retry. */
1101 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1102 
1103 	/* Init TX/RX Queue Registers */
1104 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1105 		mvneta_rx_lockq(sc, q);
1106 		if (mvneta_rx_queue_init(ifp, q) != 0) {
1107 			device_printf(sc->dev,
1108 			    "initialization failed: cannot initialize queue\n");
1109 			mvneta_rx_unlockq(sc, q);
1110 			return (ENOBUFS);
1111 		}
1112 		mvneta_rx_unlockq(sc, q);
1113 	}
1114 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1115 		mvneta_tx_lockq(sc, q);
1116 		if (mvneta_tx_queue_init(ifp, q) != 0) {
1117 			device_printf(sc->dev,
1118 			    "initialization failed: cannot initialize queue\n");
1119 			mvneta_tx_unlockq(sc, q);
1120 			return (ENOBUFS);
1121 		}
1122 		mvneta_tx_unlockq(sc, q);
1123 	}
1124 
1125 	/*
1126 	 * Ethernet Unit Control - disable automatic PHY management by HW.
1127 	 * In case the port uses SMI-controlled PHY, poll its status with
1128 	 * mii_tick() and update MAC settings accordingly.
1129 	 */
1130 	reg = MVNETA_READ(sc, MVNETA_EUC);
1131 	reg &= ~MVNETA_EUC_POLLING;
1132 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1133 
1134 	/* EEE: Low Power Idle */
1135 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1136 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1137 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1138 
1139 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1140 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1141 
1142 	reg = MVNETA_LPIC2_MUSTSET;
1143 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1144 
1145 	/* Port MAC Control set 0 */
1146 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1147 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1148 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(if_getmtu(ifp) + MVNETA_ETHER_SIZE);
1149 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1150 
1151 	/* Port MAC Control set 2 */
1152 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1153 	switch (sc->phy_mode) {
1154 	case MVNETA_PHY_QSGMII:
1155 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1156 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1157 		break;
1158 	case MVNETA_PHY_SGMII:
1159 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1160 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1161 		break;
1162 	case MVNETA_PHY_RGMII:
1163 	case MVNETA_PHY_RGMII_ID:
1164 		reg |= MVNETA_PMACC2_RGMIIEN;
1165 		break;
1166 	}
1167 	reg |= MVNETA_PMACC2_MUSTSET;
1168 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1169 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1170 
1171 	/* Port Configuration Extended: enable Tx CRC generation */
1172 	reg = MVNETA_READ(sc, MVNETA_PXCX);
1173 	reg &= ~MVNETA_PXCX_TXCRCDIS;
1174 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1175 
1176 	/* clear MIB counter registers(clear by read) */
1177 	mvneta_sc_lock(sc);
1178 	mvneta_clear_mib(sc);
1179 	mvneta_sc_unlock(sc);
1180 
1181 	/* Set SDC register except IPGINT bits */
1182 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1183 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1184 	reg |= MVNETA_SDC_BLMR;
1185 	reg |= MVNETA_SDC_BLMT;
1186 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1187 
1188 	return (0);
1189 }
1190 
1191 STATIC void
1192 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1193 {
1194 
1195 	if (error != 0)
1196 		return;
1197 	*(bus_addr_t *)arg = segs->ds_addr;
1198 }
1199 
1200 STATIC int
1201 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1202 {
1203 	struct mvneta_rx_ring *rx;
1204 	struct mvneta_buf *rxbuf;
1205 	bus_dmamap_t dmap;
1206 	int i, error;
1207 
1208 	if (q >= MVNETA_RX_QNUM_MAX)
1209 		return (EINVAL);
1210 
1211 	rx = MVNETA_RX_RING(sc, q);
1212 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1213 	/* Allocate DMA memory for Rx descriptors */
1214 	error = bus_dmamem_alloc(sc->rx_dtag,
1215 	    (void**)&(rx->desc),
1216 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1217 	    &rx->desc_map);
1218 	if (error != 0 || rx->desc == NULL)
1219 		goto fail;
1220 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1221 	    rx->desc,
1222 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1223 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1224 	if (error != 0)
1225 		goto fail;
1226 
1227 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1228 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1229 		if (error != 0) {
1230 			device_printf(sc->dev,
1231 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1232 			goto fail;
1233 		}
1234 		rxbuf = &rx->rxbuf[i];
1235 		rxbuf->dmap = dmap;
1236 		rxbuf->m = NULL;
1237 	}
1238 
1239 	return (0);
1240 fail:
1241 	mvneta_rx_lockq(sc, q);
1242 	mvneta_ring_flush_rx_queue(sc, q);
1243 	mvneta_rx_unlockq(sc, q);
1244 	mvneta_ring_dealloc_rx_queue(sc, q);
1245 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1246 	return (error);
1247 }
1248 
1249 STATIC int
1250 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1251 {
1252 	struct mvneta_tx_ring *tx;
1253 	int error;
1254 
1255 	if (q >= MVNETA_TX_QNUM_MAX)
1256 		return (EINVAL);
1257 	tx = MVNETA_TX_RING(sc, q);
1258 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1259 	error = bus_dmamem_alloc(sc->tx_dtag,
1260 	    (void**)&(tx->desc),
1261 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1262 	    &tx->desc_map);
1263 	if (error != 0 || tx->desc == NULL)
1264 		goto fail;
1265 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1266 	    tx->desc,
1267 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1268 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1269 	if (error != 0)
1270 		goto fail;
1271 
1272 #ifdef MVNETA_MULTIQUEUE
1273 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1274 	    &tx->ring_mtx);
1275 	if (tx->br == NULL) {
1276 		device_printf(sc->dev,
1277 		    "Could not setup buffer ring for TxQ(%d)\n", q);
1278 		error = ENOMEM;
1279 		goto fail;
1280 	}
1281 #endif
1282 
1283 	return (0);
1284 fail:
1285 	mvneta_tx_lockq(sc, q);
1286 	mvneta_ring_flush_tx_queue(sc, q);
1287 	mvneta_tx_unlockq(sc, q);
1288 	mvneta_ring_dealloc_tx_queue(sc, q);
1289 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1290 	return (error);
1291 }
1292 
1293 STATIC void
1294 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1295 {
1296 	struct mvneta_tx_ring *tx;
1297 	struct mvneta_buf *txbuf;
1298 	void *kva;
1299 	int error;
1300 	int i;
1301 
1302 	if (q >= MVNETA_TX_QNUM_MAX)
1303 		return;
1304 	tx = MVNETA_TX_RING(sc, q);
1305 
1306 	if (tx->taskq != NULL) {
1307 		/* Remove task */
1308 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1309 			taskqueue_drain(tx->taskq, &tx->task);
1310 	}
1311 #ifdef MVNETA_MULTIQUEUE
1312 	if (tx->br != NULL)
1313 		drbr_free(tx->br, M_DEVBUF);
1314 #endif
1315 
1316 	if (sc->txmbuf_dtag != NULL) {
1317 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1318 			txbuf = &tx->txbuf[i];
1319 			if (txbuf->dmap != NULL) {
1320 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1321 				    txbuf->dmap);
1322 				if (error != 0) {
1323 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1324 					    __func__, q, i);
1325 				}
1326 			}
1327 		}
1328 	}
1329 
1330 	if (tx->desc_pa != 0)
1331 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1332 
1333 	kva = (void *)tx->desc;
1334 	if (kva != NULL)
1335 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1336 
1337 	if (mtx_name(&tx->ring_mtx) != NULL)
1338 		mtx_destroy(&tx->ring_mtx);
1339 
1340 	memset(tx, 0, sizeof(*tx));
1341 }
1342 
1343 STATIC void
1344 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1345 {
1346 	struct mvneta_rx_ring *rx;
1347 	struct lro_ctrl	*lro;
1348 	void *kva;
1349 
1350 	if (q >= MVNETA_RX_QNUM_MAX)
1351 		return;
1352 
1353 	rx = MVNETA_RX_RING(sc, q);
1354 
1355 	if (rx->desc_pa != 0)
1356 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1357 
1358 	kva = (void *)rx->desc;
1359 	if (kva != NULL)
1360 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1361 
1362 	lro = &rx->lro;
1363 	tcp_lro_free(lro);
1364 
1365 	if (mtx_name(&rx->ring_mtx) != NULL)
1366 		mtx_destroy(&rx->ring_mtx);
1367 
1368 	memset(rx, 0, sizeof(*rx));
1369 }
1370 
1371 STATIC int
1372 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1373 {
1374 	struct mvneta_rx_ring *rx;
1375 	struct lro_ctrl	*lro;
1376 	int error;
1377 
1378 	if (q >= MVNETA_RX_QNUM_MAX)
1379 		return (0);
1380 
1381 	rx = MVNETA_RX_RING(sc, q);
1382 	rx->dma = rx->cpu = 0;
1383 	rx->queue_th_received = MVNETA_RXTH_COUNT;
1384 	rx->queue_th_time = (sc->clk_freq / 1000) / 10; /* 0.1 [ms] */
1385 
1386 	/* Initialize LRO */
1387 	rx->lro_enabled = FALSE;
1388 	if ((if_getcapenable(sc->ifp) & IFCAP_LRO) != 0) {
1389 		lro = &rx->lro;
1390 		error = tcp_lro_init(lro);
1391 		if (error != 0)
1392 			device_printf(sc->dev, "LRO Initialization failed!\n");
1393 		else {
1394 			rx->lro_enabled = TRUE;
1395 			lro->ifp = sc->ifp;
1396 		}
1397 	}
1398 
1399 	return (0);
1400 }
1401 
1402 STATIC int
1403 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1404 {
1405 	struct mvneta_tx_ring *tx;
1406 	struct mvneta_buf *txbuf;
1407 	int i, error;
1408 
1409 	if (q >= MVNETA_TX_QNUM_MAX)
1410 		return (0);
1411 
1412 	tx = MVNETA_TX_RING(sc, q);
1413 
1414 	/* Tx handle */
1415 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1416 		txbuf = &tx->txbuf[i];
1417 		txbuf->m = NULL;
1418 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1419 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1420 		    &txbuf->dmap);
1421 		if (error != 0) {
1422 			device_printf(sc->dev,
1423 			    "can't create dma map (tx ring %d)\n", i);
1424 			return (error);
1425 		}
1426 	}
1427 	tx->dma = tx->cpu = 0;
1428 	tx->used = 0;
1429 	tx->drv_error = 0;
1430 	tx->queue_status = MVNETA_QUEUE_DISABLED;
1431 	tx->queue_hung = FALSE;
1432 
1433 	tx->ifp = sc->ifp;
1434 	tx->qidx = q;
1435 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1436 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1437 	    taskqueue_thread_enqueue, &tx->taskq);
1438 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1439 	    device_get_nameunit(sc->dev), q);
1440 
1441 	return (0);
1442 }
1443 
1444 STATIC void
1445 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1446 {
1447 	struct mvneta_tx_ring *tx;
1448 	struct mvneta_buf *txbuf;
1449 	int i;
1450 
1451 	tx = MVNETA_TX_RING(sc, q);
1452 	KASSERT_TX_MTX(sc, q);
1453 
1454 	/* Tx handle */
1455 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1456 		txbuf = &tx->txbuf[i];
1457 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1458 		if (txbuf->m != NULL) {
1459 			m_freem(txbuf->m);
1460 			txbuf->m = NULL;
1461 		}
1462 	}
1463 	tx->dma = tx->cpu = 0;
1464 	tx->used = 0;
1465 }
1466 
1467 STATIC void
1468 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1469 {
1470 	struct mvneta_rx_ring *rx;
1471 	struct mvneta_buf *rxbuf;
1472 	int i;
1473 
1474 	rx = MVNETA_RX_RING(sc, q);
1475 	KASSERT_RX_MTX(sc, q);
1476 
1477 	/* Rx handle */
1478 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1479 		rxbuf = &rx->rxbuf[i];
1480 		mvneta_rx_buf_free(sc, rxbuf);
1481 	}
1482 	rx->dma = rx->cpu = 0;
1483 }
1484 
1485 /*
1486  * Rx/Tx Queue Control
1487  */
1488 STATIC int
1489 mvneta_rx_queue_init(if_t ifp, int q)
1490 {
1491 	struct mvneta_softc *sc;
1492 	struct mvneta_rx_ring *rx;
1493 	uint32_t reg;
1494 
1495 	sc = if_getsoftc(ifp);
1496 	KASSERT_RX_MTX(sc, q);
1497 	rx =  MVNETA_RX_RING(sc, q);
1498 	DASSERT(rx->desc_pa != 0);
1499 
1500 	/* descriptor address */
1501 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1502 
1503 	/* Rx buffer size and descriptor ring size */
1504 	reg  = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3);
1505 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1506 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1507 #ifdef MVNETA_KTR
1508 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", if_name(ifp), q,
1509 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1510 #endif
1511 	/* Rx packet offset address */
1512 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1513 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1514 #ifdef MVNETA_KTR
1515 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", if_name(ifp), q,
1516 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1517 #endif
1518 
1519 	/* if DMA is not working, register is not updated */
1520 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1521 	return (0);
1522 }
1523 
1524 STATIC int
1525 mvneta_tx_queue_init(if_t ifp, int q)
1526 {
1527 	struct mvneta_softc *sc;
1528 	struct mvneta_tx_ring *tx;
1529 	uint32_t reg;
1530 
1531 	sc = if_getsoftc(ifp);
1532 	KASSERT_TX_MTX(sc, q);
1533 	tx = MVNETA_TX_RING(sc, q);
1534 	DASSERT(tx->desc_pa != 0);
1535 
1536 	/* descriptor address */
1537 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1538 
1539 	/* descriptor ring size */
1540 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1541 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1542 
1543 	/* if DMA is not working, register is not updated */
1544 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1545 	return (0);
1546 }
1547 
1548 STATIC int
1549 mvneta_rx_queue_enable(if_t ifp, int q)
1550 {
1551 	struct mvneta_softc *sc;
1552 	struct mvneta_rx_ring *rx;
1553 	uint32_t reg;
1554 
1555 	sc = if_getsoftc(ifp);
1556 	rx = MVNETA_RX_RING(sc, q);
1557 	KASSERT_RX_MTX(sc, q);
1558 
1559 	/* Set Rx interrupt threshold */
1560 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1561 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1562 
1563 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1564 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1565 
1566 	/* Unmask RXTX_TH Intr. */
1567 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1568 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1569 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1570 
1571 	/* Enable Rx queue */
1572 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1573 	reg |= MVNETA_RQC_ENQ(q);
1574 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1575 
1576 	rx->queue_status = MVNETA_QUEUE_WORKING;
1577 	return (0);
1578 }
1579 
1580 STATIC int
1581 mvneta_tx_queue_enable(if_t ifp, int q)
1582 {
1583 	struct mvneta_softc *sc;
1584 	struct mvneta_tx_ring *tx;
1585 
1586 	sc = if_getsoftc(ifp);
1587 	tx = MVNETA_TX_RING(sc, q);
1588 	KASSERT_TX_MTX(sc, q);
1589 
1590 	/* Enable Tx queue */
1591 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1592 
1593 	tx->queue_status = MVNETA_QUEUE_IDLE;
1594 	tx->queue_hung = FALSE;
1595 	return (0);
1596 }
1597 
1598 STATIC __inline void
1599 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1600 {
1601 
1602 	DASSERT(q >= 0);
1603 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1604 	mtx_lock(&sc->rx_ring[q].ring_mtx);
1605 }
1606 
1607 STATIC __inline void
1608 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1609 {
1610 
1611 	DASSERT(q >= 0);
1612 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1613 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1614 }
1615 
1616 STATIC __inline int __unused
1617 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1618 {
1619 
1620 	DASSERT(q >= 0);
1621 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1622 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1623 }
1624 
1625 STATIC __inline void
1626 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1627 {
1628 
1629 	DASSERT(q >= 0);
1630 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1631 	mtx_lock(&sc->tx_ring[q].ring_mtx);
1632 }
1633 
1634 STATIC __inline void
1635 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1636 {
1637 
1638 	DASSERT(q >= 0);
1639 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1640 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1641 }
1642 
1643 /*
1644  * Interrupt Handlers
1645  */
1646 STATIC void
1647 mvneta_disable_intr(struct mvneta_softc *sc)
1648 {
1649 
1650 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1651 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1652 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1653 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1654 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1655 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1656 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1657 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1658 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1659 }
1660 
1661 STATIC void
1662 mvneta_enable_intr(struct mvneta_softc *sc)
1663 {
1664 	uint32_t reg;
1665 
1666 	/* Enable Summary Bit to check all interrupt cause. */
1667 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1668 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1669 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1670 
1671 	if (!sc->phy_attached || sc->use_inband_status) {
1672 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1673 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1674 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1675 	}
1676 
1677 	/* Enable All Queue Interrupt */
1678 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1679 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1680 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1681 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1682 }
1683 
1684 STATIC void
1685 mvneta_rxtxth_intr(void *arg)
1686 {
1687 	struct mvneta_softc *sc;
1688 	if_t ifp;
1689 	uint32_t ic, queues;
1690 
1691 	sc = arg;
1692 	ifp = sc->ifp;
1693 #ifdef MVNETA_KTR
1694 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", if_name(ifp));
1695 #endif
1696 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1697 	if (ic == 0)
1698 		return;
1699 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1700 
1701 	/* Ack maintenance interrupt first */
1702 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1703 	    (!sc->phy_attached || sc->use_inband_status))) {
1704 		mvneta_sc_lock(sc);
1705 		mvneta_misc_intr(sc);
1706 		mvneta_sc_unlock(sc);
1707 	}
1708 	if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)))
1709 		return;
1710 	/* RxTxTH interrupt */
1711 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1712 	if (__predict_true(queues)) {
1713 #ifdef MVNETA_KTR
1714 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", if_name(ifp));
1715 #endif
1716 		/* At the moment the driver support only one RX queue. */
1717 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1718 		mvneta_rx(sc, 0, 0);
1719 	}
1720 }
1721 
1722 STATIC int
1723 mvneta_misc_intr(struct mvneta_softc *sc)
1724 {
1725 	uint32_t ic;
1726 	int claimed = 0;
1727 
1728 #ifdef MVNETA_KTR
1729 	CTR1(KTR_SPARE2, "%s got MISC_INTR", if_name(sc->ifp));
1730 #endif
1731 	KASSERT_SC_MTX(sc);
1732 
1733 	for (;;) {
1734 		ic = MVNETA_READ(sc, MVNETA_PMIC);
1735 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1736 		if (ic == 0)
1737 			break;
1738 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1739 		claimed = 1;
1740 
1741 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1742 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1743 			mvneta_link_isr(sc);
1744 	}
1745 	return (claimed);
1746 }
1747 
1748 STATIC void
1749 mvneta_tick(void *arg)
1750 {
1751 	struct mvneta_softc *sc;
1752 	struct mvneta_tx_ring *tx;
1753 	struct mvneta_rx_ring *rx;
1754 	int q;
1755 	uint32_t fc_prev, fc_curr;
1756 
1757 	sc = arg;
1758 
1759 	/*
1760 	 * This is done before mib update to get the right stats
1761 	 * for this tick.
1762 	 */
1763 	mvneta_tx_drain(sc);
1764 
1765 	/* Extract previous flow-control frame received counter. */
1766 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1767 	/* Read mib registers (clear by read). */
1768 	mvneta_update_mib(sc);
1769 	/* Extract current flow-control frame received counter. */
1770 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1771 
1772 
1773 	if (sc->phy_attached && if_getflags(sc->ifp) & IFF_UP) {
1774 		mvneta_sc_lock(sc);
1775 		mii_tick(sc->mii);
1776 
1777 		/* Adjust MAC settings */
1778 		mvneta_adjust_link(sc);
1779 		mvneta_sc_unlock(sc);
1780 	}
1781 
1782 	/*
1783 	 * We were unable to refill the rx queue and left the rx func, leaving
1784 	 * the ring without mbuf and no way to call the refill func.
1785 	 */
1786 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1787 		rx = MVNETA_RX_RING(sc, q);
1788 		if (rx->needs_refill == TRUE) {
1789 			mvneta_rx_lockq(sc, q);
1790 			mvneta_rx_queue_refill(sc, q);
1791 			mvneta_rx_unlockq(sc, q);
1792 		}
1793 	}
1794 
1795 	/*
1796 	 * Watchdog:
1797 	 * - check if queue is mark as hung.
1798 	 * - ignore hung status if we received some pause frame
1799 	 *   as hardware may have paused packet transmit.
1800 	 */
1801 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1802 		/*
1803 		 * We should take queue lock, but as we only read
1804 		 * queue status we can do it without lock, we may
1805 		 * only missdetect queue status for one tick.
1806 		 */
1807 		tx = MVNETA_TX_RING(sc, q);
1808 
1809 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1810 			goto timeout;
1811 	}
1812 
1813 	callout_schedule(&sc->tick_ch, hz);
1814 	return;
1815 
1816 timeout:
1817 	if_printf(sc->ifp, "watchdog timeout\n");
1818 
1819 	mvneta_sc_lock(sc);
1820 	sc->counter_watchdog++;
1821 	sc->counter_watchdog_mib++;
1822 	/* Trigger reinitialize sequence. */
1823 	mvneta_stop_locked(sc);
1824 	mvneta_init_locked(sc);
1825 	mvneta_sc_unlock(sc);
1826 }
1827 
1828 STATIC void
1829 mvneta_qflush(if_t ifp)
1830 {
1831 #ifdef MVNETA_MULTIQUEUE
1832 	struct mvneta_softc *sc;
1833 	struct mvneta_tx_ring *tx;
1834 	struct mbuf *m;
1835 	size_t q;
1836 
1837 	sc = if_getsoftc(ifp);
1838 
1839 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1840 		tx = MVNETA_TX_RING(sc, q);
1841 		mvneta_tx_lockq(sc, q);
1842 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1843 			m_freem(m);
1844 		mvneta_tx_unlockq(sc, q);
1845 	}
1846 #endif
1847 	if_qflush(ifp);
1848 }
1849 
1850 STATIC void
1851 mvneta_tx_task(void *arg, int pending)
1852 {
1853 	struct mvneta_softc *sc;
1854 	struct mvneta_tx_ring *tx;
1855 	if_t ifp;
1856 	int error;
1857 
1858 	tx = arg;
1859 	ifp = tx->ifp;
1860 	sc = if_getsoftc(ifp);
1861 
1862 	mvneta_tx_lockq(sc, tx->qidx);
1863 	error = mvneta_xmit_locked(sc, tx->qidx);
1864 	mvneta_tx_unlockq(sc, tx->qidx);
1865 
1866 	/* Try again */
1867 	if (__predict_false(error != 0 && error != ENETDOWN)) {
1868 		pause("mvneta_tx_task_sleep", 1);
1869 		taskqueue_enqueue(tx->taskq, &tx->task);
1870 	}
1871 }
1872 
1873 STATIC int
1874 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1875 {
1876 	struct mvneta_tx_ring *tx;
1877 	if_t ifp;
1878 	int error;
1879 
1880 	KASSERT_TX_MTX(sc, q);
1881 	tx = MVNETA_TX_RING(sc, q);
1882 	error = 0;
1883 
1884 	ifp = sc->ifp;
1885 
1886 	/* Dont enqueue packet if the queue is disabled. */
1887 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1888 		m_freem(*m);
1889 		*m = NULL;
1890 		return (ENETDOWN);
1891 	}
1892 
1893 	/* Reclaim mbuf if above threshold. */
1894 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1895 		mvneta_tx_queue_complete(sc, q);
1896 
1897 	/* Do not call transmit path if queue is already too full. */
1898 	if (__predict_false(tx->used >
1899 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1900 		return (ENOBUFS);
1901 
1902 	error = mvneta_tx_queue(sc, m, q);
1903 	if (__predict_false(error != 0))
1904 		return (error);
1905 
1906 	/* Send a copy of the frame to the BPF listener */
1907 	ETHER_BPF_MTAP(ifp, *m);
1908 
1909 	/* Set watchdog on */
1910 	tx->watchdog_time = ticks;
1911 	tx->queue_status = MVNETA_QUEUE_WORKING;
1912 
1913 	return (error);
1914 }
1915 
1916 #ifdef MVNETA_MULTIQUEUE
1917 STATIC int
1918 mvneta_transmit(if_t ifp, struct mbuf *m)
1919 {
1920 	struct mvneta_softc *sc;
1921 	struct mvneta_tx_ring *tx;
1922 	int error;
1923 	int q;
1924 
1925 	sc = if_getsoftc(ifp);
1926 
1927 	/* Use default queue if there is no flow id as thread can migrate. */
1928 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1929 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1930 	else
1931 		q = 0;
1932 
1933 	tx = MVNETA_TX_RING(sc, q);
1934 
1935 	/* If buf_ring is full start transmit immediately. */
1936 	if (buf_ring_full(tx->br)) {
1937 		mvneta_tx_lockq(sc, q);
1938 		mvneta_xmit_locked(sc, q);
1939 		mvneta_tx_unlockq(sc, q);
1940 	}
1941 
1942 	/*
1943 	 * If the buf_ring is empty we will not reorder packets.
1944 	 * If the lock is available transmit without using buf_ring.
1945 	 */
1946 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1947 		error = mvneta_xmitfast_locked(sc, q, &m);
1948 		mvneta_tx_unlockq(sc, q);
1949 		if (__predict_true(error == 0))
1950 			return (0);
1951 
1952 		/* Transmit can fail in fastpath. */
1953 		if (__predict_false(m == NULL))
1954 			return (error);
1955 	}
1956 
1957 	/* Enqueue then schedule taskqueue. */
1958 	error = drbr_enqueue(ifp, tx->br, m);
1959 	if (__predict_false(error != 0))
1960 		return (error);
1961 
1962 	taskqueue_enqueue(tx->taskq, &tx->task);
1963 	return (0);
1964 }
1965 
1966 STATIC int
1967 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1968 {
1969 	if_t ifp;
1970 	struct mvneta_tx_ring *tx;
1971 	struct mbuf *m;
1972 	int error;
1973 
1974 	KASSERT_TX_MTX(sc, q);
1975 	ifp = sc->ifp;
1976 	tx = MVNETA_TX_RING(sc, q);
1977 	error = 0;
1978 
1979 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
1980 		error = mvneta_xmitfast_locked(sc, q, &m);
1981 		if (__predict_false(error != 0)) {
1982 			if (m != NULL)
1983 				drbr_putback(ifp, tx->br, m);
1984 			else
1985 				drbr_advance(ifp, tx->br);
1986 			break;
1987 		}
1988 		drbr_advance(ifp, tx->br);
1989 	}
1990 
1991 	return (error);
1992 }
1993 #else /* !MVNETA_MULTIQUEUE */
1994 STATIC void
1995 mvneta_start(if_t ifp)
1996 {
1997 	struct mvneta_softc *sc;
1998 	struct mvneta_tx_ring *tx;
1999 	int error;
2000 
2001 	sc = if_getsoftc(ifp);
2002 	tx = MVNETA_TX_RING(sc, 0);
2003 
2004 	mvneta_tx_lockq(sc, 0);
2005 	error = mvneta_xmit_locked(sc, 0);
2006 	mvneta_tx_unlockq(sc, 0);
2007 	/* Handle retransmit in the background taskq. */
2008 	if (__predict_false(error != 0 && error != ENETDOWN))
2009 		taskqueue_enqueue(tx->taskq, &tx->task);
2010 }
2011 
2012 STATIC int
2013 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2014 {
2015 	if_t ifp;
2016 	struct mbuf *m;
2017 	int error;
2018 
2019 	KASSERT_TX_MTX(sc, q);
2020 	ifp = sc->ifp;
2021 	error = 0;
2022 
2023 	while (!if_sendq_empty(ifp)) {
2024 		m = if_dequeue(ifp);
2025 		if (m == NULL)
2026 			break;
2027 
2028 		error = mvneta_xmitfast_locked(sc, q, &m);
2029 		if (__predict_false(error != 0)) {
2030 			if (m != NULL)
2031 				if_sendq_prepend(ifp, m);
2032 			break;
2033 		}
2034 	}
2035 
2036 	return (error);
2037 }
2038 #endif
2039 
2040 STATIC int
2041 mvneta_ioctl(if_t ifp, u_long cmd, caddr_t data)
2042 {
2043 	struct mvneta_softc *sc;
2044 	struct mvneta_rx_ring *rx;
2045 	struct ifreq *ifr;
2046 	int error, mask;
2047 	uint32_t flags;
2048 	bool reinit;
2049 	int q;
2050 
2051 	error = 0;
2052 	reinit = false;
2053 	sc = if_getsoftc(ifp);
2054 	ifr = (struct ifreq *)data;
2055 	switch (cmd) {
2056 	case SIOCSIFFLAGS:
2057 		mvneta_sc_lock(sc);
2058 		if (if_getflags(ifp) & IFF_UP) {
2059 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2060 				flags = if_getflags(ifp) ^ sc->mvneta_if_flags;
2061 
2062 				if (flags != 0)
2063 					sc->mvneta_if_flags = if_getflags(ifp);
2064 
2065 				if ((flags & IFF_PROMISC) != 0)
2066 					mvneta_filter_setup(sc);
2067 			} else {
2068 				mvneta_init_locked(sc);
2069 				sc->mvneta_if_flags = if_getflags(ifp);
2070 				if (sc->phy_attached)
2071 					mii_mediachg(sc->mii);
2072 				mvneta_sc_unlock(sc);
2073 				break;
2074 			}
2075 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2076 			mvneta_stop_locked(sc);
2077 
2078 		sc->mvneta_if_flags = if_getflags(ifp);
2079 		mvneta_sc_unlock(sc);
2080 		break;
2081 	case SIOCSIFCAP:
2082 		if (if_getmtu(ifp) > sc->tx_csum_limit &&
2083 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2084 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2085 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2086 		if (mask & IFCAP_HWCSUM) {
2087 			if_setcapenablebit(ifp, IFCAP_HWCSUM & ifr->ifr_reqcap,
2088 			    IFCAP_HWCSUM);
2089 			if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2090 				if_sethwassist(ifp, CSUM_IP | CSUM_TCP |
2091 				    CSUM_UDP);
2092 			else
2093 				if_sethwassist(ifp, 0);
2094 		}
2095 		if (mask & IFCAP_LRO) {
2096 			mvneta_sc_lock(sc);
2097 			if_togglecapenable(ifp, IFCAP_LRO);
2098 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2099 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2100 					rx = MVNETA_RX_RING(sc, q);
2101 					rx->lro_enabled = !rx->lro_enabled;
2102 				}
2103 			}
2104 			mvneta_sc_unlock(sc);
2105 		}
2106 		VLAN_CAPABILITIES(ifp);
2107 		break;
2108 	case SIOCSIFMEDIA:
2109 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2110 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2111 		    (ifr->ifr_media & IFM_FDX) == 0) {
2112 			device_printf(sc->dev,
2113 			    "%s half-duplex unsupported\n",
2114 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2115 			    "1000Base-T" :
2116 			    "2500Base-T");
2117 			error = EINVAL;
2118 			break;
2119 		}
2120 	case SIOCGIFMEDIA: /* FALLTHROUGH */
2121 	case SIOCGIFXMEDIA:
2122 		if (!sc->phy_attached)
2123 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2124 			    cmd);
2125 		else
2126 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2127 			    cmd);
2128 		break;
2129 	case SIOCSIFMTU:
2130 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2131 		    MVNETA_ETHER_SIZE) {
2132 			error = EINVAL;
2133 		} else {
2134 			if_setmtu(ifp, ifr->ifr_mtu);
2135 			mvneta_sc_lock(sc);
2136 			if (if_getmtu(ifp) + MVNETA_ETHER_SIZE <= MCLBYTES) {
2137 				sc->rx_frame_size = MCLBYTES;
2138 			} else {
2139 				sc->rx_frame_size = MJUM9BYTES;
2140 			}
2141 			if (if_getmtu(ifp) > sc->tx_csum_limit) {
2142 				if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
2143 				if_sethwassist(ifp, 0);
2144 			} else {
2145 				if_setcapenablebit(ifp, IFCAP_TXCSUM, 0);
2146 				if_sethwassist(ifp, CSUM_IP | CSUM_TCP |
2147 					CSUM_UDP);
2148 			}
2149 			/*
2150 			 * Reinitialize RX queues.
2151 			 * We need to update RX descriptor size.
2152 			 */
2153 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2154 				reinit = true;
2155 				mvneta_stop_locked(sc);
2156 			}
2157 
2158 			for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2159 				mvneta_rx_lockq(sc, q);
2160 				if (mvneta_rx_queue_init(ifp, q) != 0) {
2161 					device_printf(sc->dev,
2162 					    "initialization failed:"
2163 					    " cannot initialize queue\n");
2164 					mvneta_rx_unlockq(sc, q);
2165 					error = ENOBUFS;
2166 					break;
2167 				}
2168 				mvneta_rx_unlockq(sc, q);
2169 			}
2170 			if (reinit)
2171 				mvneta_init_locked(sc);
2172 
2173 			mvneta_sc_unlock(sc);
2174                 }
2175                 break;
2176 
2177 	default:
2178 		error = ether_ioctl(ifp, cmd, data);
2179 		break;
2180 	}
2181 
2182 	return (error);
2183 }
2184 
2185 STATIC void
2186 mvneta_init_locked(void *arg)
2187 {
2188 	struct mvneta_softc *sc;
2189 	if_t ifp;
2190 	uint32_t reg;
2191 	int q, cpu;
2192 
2193 	sc = arg;
2194 	ifp = sc->ifp;
2195 
2196 	if (!device_is_attached(sc->dev) ||
2197 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2198 		return;
2199 
2200 	mvneta_disable_intr(sc);
2201 	callout_stop(&sc->tick_ch);
2202 
2203 	/* Get the latest mac address */
2204 	bcopy(if_getlladdr(ifp), sc->enaddr, ETHER_ADDR_LEN);
2205 	mvneta_set_mac_address(sc, sc->enaddr);
2206 	mvneta_filter_setup(sc);
2207 
2208 	/* Start DMA Engine */
2209 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2210 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2211 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2212 
2213 	/* Enable port */
2214 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2215 	reg |= MVNETA_PMACC0_PORTEN;
2216 	reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK;
2217 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(if_getmtu(ifp) + MVNETA_ETHER_SIZE);
2218 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2219 
2220 	/* Allow access to each TXQ/RXQ from both CPU's */
2221 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2222 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2223 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2224 
2225 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2226 		mvneta_rx_lockq(sc, q);
2227 		mvneta_rx_queue_refill(sc, q);
2228 		mvneta_rx_unlockq(sc, q);
2229 	}
2230 
2231 	if (!sc->phy_attached)
2232 		mvneta_linkup(sc);
2233 
2234 	/* Enable interrupt */
2235 	mvneta_enable_intr(sc);
2236 
2237 	/* Set Counter */
2238 	callout_schedule(&sc->tick_ch, hz);
2239 
2240 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2241 }
2242 
2243 STATIC void
2244 mvneta_init(void *arg)
2245 {
2246 	struct mvneta_softc *sc;
2247 
2248 	sc = arg;
2249 	mvneta_sc_lock(sc);
2250 	mvneta_init_locked(sc);
2251 	if (sc->phy_attached)
2252 		mii_mediachg(sc->mii);
2253 	mvneta_sc_unlock(sc);
2254 }
2255 
2256 /* ARGSUSED */
2257 STATIC void
2258 mvneta_stop_locked(struct mvneta_softc *sc)
2259 {
2260 	if_t ifp;
2261 	uint32_t reg;
2262 	int q;
2263 
2264 	ifp = sc->ifp;
2265 	if (ifp == NULL || (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2266 		return;
2267 
2268 	mvneta_disable_intr(sc);
2269 
2270 	callout_stop(&sc->tick_ch);
2271 
2272 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2273 
2274 	/* Link down */
2275 	if (sc->linkup == TRUE)
2276 		mvneta_linkdown(sc);
2277 
2278 	/* Reset the MAC Port Enable bit */
2279 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2280 	reg &= ~MVNETA_PMACC0_PORTEN;
2281 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2282 
2283 	/* Disable each of queue */
2284 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2285 		mvneta_rx_lockq(sc, q);
2286 		mvneta_ring_flush_rx_queue(sc, q);
2287 		mvneta_rx_unlockq(sc, q);
2288 	}
2289 
2290 	/*
2291 	 * Hold Reset state of DMA Engine
2292 	 * (must write 0x0 to restart it)
2293 	 */
2294 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2295 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2296 
2297 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2298 		mvneta_tx_lockq(sc, q);
2299 		mvneta_ring_flush_tx_queue(sc, q);
2300 		mvneta_tx_unlockq(sc, q);
2301 	}
2302 }
2303 
2304 STATIC void
2305 mvneta_stop(struct mvneta_softc *sc)
2306 {
2307 
2308 	mvneta_sc_lock(sc);
2309 	mvneta_stop_locked(sc);
2310 	mvneta_sc_unlock(sc);
2311 }
2312 
2313 STATIC int
2314 mvneta_mediachange(if_t ifp)
2315 {
2316 	struct mvneta_softc *sc;
2317 
2318 	sc = if_getsoftc(ifp);
2319 
2320 	if (!sc->phy_attached && !sc->use_inband_status) {
2321 		/* We shouldn't be here */
2322 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2323 		return (0);
2324 	}
2325 
2326 	if (sc->use_inband_status) {
2327 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2328 		return (0);
2329 	}
2330 
2331 	mvneta_sc_lock(sc);
2332 
2333 	/* Update PHY */
2334 	mii_mediachg(sc->mii);
2335 
2336 	mvneta_sc_unlock(sc);
2337 
2338 	return (0);
2339 }
2340 
2341 STATIC void
2342 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2343 {
2344 	uint32_t psr;
2345 
2346 	psr = MVNETA_READ(sc, MVNETA_PSR);
2347 
2348 	/* Speed */
2349 	if (psr & MVNETA_PSR_GMIISPEED)
2350 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2351 	else if (psr & MVNETA_PSR_MIISPEED)
2352 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2353 	else if (psr & MVNETA_PSR_LINKUP)
2354 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2355 
2356 	/* Duplex */
2357 	if (psr & MVNETA_PSR_FULLDX)
2358 		ifmr->ifm_active |= IFM_FDX;
2359 
2360 	/* Link */
2361 	ifmr->ifm_status = IFM_AVALID;
2362 	if (psr & MVNETA_PSR_LINKUP)
2363 		ifmr->ifm_status |= IFM_ACTIVE;
2364 }
2365 
2366 STATIC void
2367 mvneta_mediastatus(if_t ifp, struct ifmediareq *ifmr)
2368 {
2369 	struct mvneta_softc *sc;
2370 	struct mii_data *mii;
2371 
2372 	sc = if_getsoftc(ifp);
2373 
2374 	if (!sc->phy_attached && !sc->use_inband_status) {
2375 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2376 		return;
2377 	}
2378 
2379 	mvneta_sc_lock(sc);
2380 
2381 	if (sc->use_inband_status) {
2382 		mvneta_get_media(sc, ifmr);
2383 		mvneta_sc_unlock(sc);
2384 		return;
2385 	}
2386 
2387 	mii = sc->mii;
2388 	mii_pollstat(mii);
2389 
2390 	ifmr->ifm_active = mii->mii_media_active;
2391 	ifmr->ifm_status = mii->mii_media_status;
2392 
2393 	mvneta_sc_unlock(sc);
2394 }
2395 
2396 /*
2397  * Link State Notify
2398  */
2399 STATIC void
2400 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2401 {
2402 	int reg;
2403 
2404 	if (enable) {
2405 		reg = MVNETA_READ(sc, MVNETA_PANC);
2406 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2407 		    MVNETA_PANC_ANFCEN);
2408 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2409 		    MVNETA_PANC_INBANDANEN;
2410 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2411 
2412 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2413 		reg |= MVNETA_PMACC2_INBANDANMODE;
2414 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2415 
2416 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2417 		reg |= MVNETA_PSOMSCD_ENABLE;
2418 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2419 	} else {
2420 		reg = MVNETA_READ(sc, MVNETA_PANC);
2421 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2422 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2423 		    MVNETA_PANC_INBANDANEN);
2424 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2425 
2426 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2427 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2428 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2429 
2430 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2431 		reg &= ~MVNETA_PSOMSCD_ENABLE;
2432 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2433 	}
2434 }
2435 
2436 STATIC int
2437 mvneta_update_media(struct mvneta_softc *sc, int media)
2438 {
2439 	int reg, err;
2440 	boolean_t running;
2441 
2442 	err = 0;
2443 
2444 	mvneta_sc_lock(sc);
2445 
2446 	mvneta_linkreset(sc);
2447 
2448 	running = (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) != 0;
2449 	if (running)
2450 		mvneta_stop_locked(sc);
2451 
2452 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2453 
2454 	if (!sc->phy_attached || sc->use_inband_status)
2455 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2456 
2457 	mvneta_update_eee(sc);
2458 	mvneta_update_fc(sc);
2459 
2460 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2461 		reg = MVNETA_READ(sc, MVNETA_PANC);
2462 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2463 		    MVNETA_PANC_SETMIISPEED |
2464 		    MVNETA_PANC_SETFULLDX);
2465 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2466 		    IFM_SUBTYPE(media) == IFM_2500_T) {
2467 			if ((media & IFM_FDX) == 0) {
2468 				device_printf(sc->dev,
2469 				    "%s half-duplex unsupported\n",
2470 				    IFM_SUBTYPE(media) == IFM_1000_T ?
2471 				    "1000Base-T" :
2472 				    "2500Base-T");
2473 				err = EINVAL;
2474 				goto out;
2475 			}
2476 			reg |= MVNETA_PANC_SETGMIISPEED;
2477 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2478 			reg |= MVNETA_PANC_SETMIISPEED;
2479 
2480 		if (media & IFM_FDX)
2481 			reg |= MVNETA_PANC_SETFULLDX;
2482 
2483 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2484 	}
2485 out:
2486 	if (running)
2487 		mvneta_init_locked(sc);
2488 	mvneta_sc_unlock(sc);
2489 	return (err);
2490 }
2491 
2492 STATIC void
2493 mvneta_adjust_link(struct mvneta_softc *sc)
2494 {
2495 	boolean_t phy_linkup;
2496 	int reg;
2497 
2498 	/* Update eee/fc */
2499 	mvneta_update_eee(sc);
2500 	mvneta_update_fc(sc);
2501 
2502 	/* Check for link change */
2503 	phy_linkup = (sc->mii->mii_media_status &
2504 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2505 
2506 	if (sc->linkup != phy_linkup)
2507 		mvneta_linkupdate(sc, phy_linkup);
2508 
2509 	/* Don't update media on disabled link */
2510 	if (!phy_linkup)
2511 		return;
2512 
2513 	/* Check for media type change */
2514 	if (sc->mvneta_media != sc->mii->mii_media_active) {
2515 		sc->mvneta_media = sc->mii->mii_media_active;
2516 
2517 		reg = MVNETA_READ(sc, MVNETA_PANC);
2518 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2519 		    MVNETA_PANC_SETMIISPEED |
2520 		    MVNETA_PANC_SETFULLDX);
2521 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2522 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2523 			reg |= MVNETA_PANC_SETGMIISPEED;
2524 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2525 			reg |= MVNETA_PANC_SETMIISPEED;
2526 
2527 		if (sc->mvneta_media & IFM_FDX)
2528 			reg |= MVNETA_PANC_SETFULLDX;
2529 
2530 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2531 	}
2532 }
2533 
2534 STATIC void
2535 mvneta_link_isr(struct mvneta_softc *sc)
2536 {
2537 	int linkup;
2538 
2539 	KASSERT_SC_MTX(sc);
2540 
2541 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2542 	if (sc->linkup == linkup)
2543 		return;
2544 
2545 	if (linkup == TRUE)
2546 		mvneta_linkup(sc);
2547 	else
2548 		mvneta_linkdown(sc);
2549 
2550 #ifdef DEBUG
2551 	device_printf(sc->dev,
2552 	    "%s: link %s\n", if_name(sc->ifp), linkup ? "up" : "down");
2553 #endif
2554 }
2555 
2556 STATIC void
2557 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2558 {
2559 
2560 	KASSERT_SC_MTX(sc);
2561 
2562 	if (linkup == TRUE)
2563 		mvneta_linkup(sc);
2564 	else
2565 		mvneta_linkdown(sc);
2566 
2567 #ifdef DEBUG
2568 	device_printf(sc->dev,
2569 	    "%s: link %s\n", if_name(sc->ifp), linkup ? "up" : "down");
2570 #endif
2571 }
2572 
2573 STATIC void
2574 mvneta_update_eee(struct mvneta_softc *sc)
2575 {
2576 	uint32_t reg;
2577 
2578 	KASSERT_SC_MTX(sc);
2579 
2580 	/* set EEE parameters */
2581 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2582 	if (sc->cf_lpi)
2583 		reg |= MVNETA_LPIC1_LPIRE;
2584 	else
2585 		reg &= ~MVNETA_LPIC1_LPIRE;
2586 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2587 }
2588 
2589 STATIC void
2590 mvneta_update_fc(struct mvneta_softc *sc)
2591 {
2592 	uint32_t reg;
2593 
2594 	KASSERT_SC_MTX(sc);
2595 
2596 	reg  = MVNETA_READ(sc, MVNETA_PANC);
2597 	if (sc->cf_fc) {
2598 		/* Flow control negotiation */
2599 		reg |= MVNETA_PANC_PAUSEADV;
2600 		reg |= MVNETA_PANC_ANFCEN;
2601 	} else {
2602 		/* Disable flow control negotiation */
2603 		reg &= ~MVNETA_PANC_PAUSEADV;
2604 		reg &= ~MVNETA_PANC_ANFCEN;
2605 	}
2606 
2607 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2608 }
2609 
2610 STATIC void
2611 mvneta_linkup(struct mvneta_softc *sc)
2612 {
2613 	uint32_t reg;
2614 
2615 	KASSERT_SC_MTX(sc);
2616 
2617 	if (!sc->phy_attached || !sc->use_inband_status) {
2618 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2619 		reg |= MVNETA_PANC_FORCELINKPASS;
2620 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2621 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2622 	}
2623 
2624 	mvneta_qflush(sc->ifp);
2625 	mvneta_portup(sc);
2626 	sc->linkup = TRUE;
2627 	if_link_state_change(sc->ifp, LINK_STATE_UP);
2628 }
2629 
2630 STATIC void
2631 mvneta_linkdown(struct mvneta_softc *sc)
2632 {
2633 	uint32_t reg;
2634 
2635 	KASSERT_SC_MTX(sc);
2636 
2637 	if (!sc->phy_attached || !sc->use_inband_status) {
2638 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2639 		reg &= ~MVNETA_PANC_FORCELINKPASS;
2640 		reg |= MVNETA_PANC_FORCELINKFAIL;
2641 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2642 	}
2643 
2644 	mvneta_portdown(sc);
2645 	mvneta_qflush(sc->ifp);
2646 	sc->linkup = FALSE;
2647 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2648 }
2649 
2650 STATIC void
2651 mvneta_linkreset(struct mvneta_softc *sc)
2652 {
2653 	struct mii_softc *mii;
2654 
2655 	if (sc->phy_attached) {
2656 		/* Force reset PHY */
2657 		mii = LIST_FIRST(&sc->mii->mii_phys);
2658 		if (mii)
2659 			mii_phy_reset(mii);
2660 	}
2661 }
2662 
2663 /*
2664  * Tx Subroutines
2665  */
2666 STATIC int
2667 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2668 {
2669 	if_t ifp;
2670 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2671 	struct mbuf *mtmp, *mbuf;
2672 	struct mvneta_tx_ring *tx;
2673 	struct mvneta_buf *txbuf;
2674 	struct mvneta_tx_desc *t;
2675 	uint32_t ptxsu;
2676 	int used, error, i, txnsegs;
2677 
2678 	mbuf = *mbufp;
2679 	tx = MVNETA_TX_RING(sc, q);
2680 	DASSERT(tx->used >= 0);
2681 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2682 	t = NULL;
2683 	ifp = sc->ifp;
2684 
2685 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2686 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2687 		if (mbuf == NULL) {
2688 			tx->drv_error++;
2689 			*mbufp = NULL;
2690 			return (ENOBUFS);
2691 		}
2692 		mbuf->m_flags &= ~M_VLANTAG;
2693 		*mbufp = mbuf;
2694 	}
2695 
2696 	if (__predict_false(mbuf->m_next != NULL &&
2697 	    (mbuf->m_pkthdr.csum_flags &
2698 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2699 		if (M_WRITABLE(mbuf) == 0) {
2700 			mtmp = m_dup(mbuf, M_NOWAIT);
2701 			m_freem(mbuf);
2702 			if (mtmp == NULL) {
2703 				tx->drv_error++;
2704 				*mbufp = NULL;
2705 				return (ENOBUFS);
2706 			}
2707 			*mbufp = mbuf = mtmp;
2708 		}
2709 	}
2710 
2711 	/* load mbuf using dmamap of 1st descriptor */
2712 	txbuf = &tx->txbuf[tx->cpu];
2713 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2714 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2715 	    BUS_DMA_NOWAIT);
2716 	if (__predict_false(error != 0)) {
2717 #ifdef MVNETA_KTR
2718 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", if_name(ifp), q, error);
2719 #endif
2720 		/* This is the only recoverable error (except EFBIG). */
2721 		if (error != ENOMEM) {
2722 			tx->drv_error++;
2723 			m_freem(mbuf);
2724 			*mbufp = NULL;
2725 			return (ENOBUFS);
2726 		}
2727 		return (error);
2728 	}
2729 
2730 	if (__predict_false(txnsegs <= 0
2731 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2732 		/* we have no enough descriptors or mbuf is broken */
2733 #ifdef MVNETA_KTR
2734 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2735 		    if_name(ifp), q, txnsegs);
2736 #endif
2737 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2738 		return (ENOBUFS);
2739 	}
2740 	DASSERT(txbuf->m == NULL);
2741 
2742 	/* remember mbuf using 1st descriptor */
2743 	txbuf->m = mbuf;
2744 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2745 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2746 
2747 	/* load to tx descriptors */
2748 	used = 0;
2749 	for (i = 0; i < txnsegs; i++) {
2750 		t = &tx->desc[tx->cpu];
2751 		t->command = 0;
2752 		t->l4ichk = 0;
2753 		t->flags = 0;
2754 		if (__predict_true(i == 0)) {
2755 			/* 1st descriptor */
2756 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2757 			t->command |= MVNETA_TX_CMD_F;
2758 			mvneta_tx_set_csumflag(ifp, t, mbuf);
2759 		}
2760 		t->bufptr_pa = txsegs[i].ds_addr;
2761 		t->bytecnt = txsegs[i].ds_len;
2762 		tx->cpu = tx_counter_adv(tx->cpu, 1);
2763 
2764 		tx->used++;
2765 		used++;
2766 	}
2767 	/* t is last descriptor here */
2768 	DASSERT(t != NULL);
2769 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2770 
2771 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2772 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2773 
2774 	while (__predict_false(used > 255)) {
2775 		ptxsu = MVNETA_PTXSU_NOWD(255);
2776 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2777 		used -= 255;
2778 	}
2779 	if (__predict_true(used > 0)) {
2780 		ptxsu = MVNETA_PTXSU_NOWD(used);
2781 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2782 	}
2783 	return (0);
2784 }
2785 
2786 STATIC void
2787 mvneta_tx_set_csumflag(if_t ifp,
2788     struct mvneta_tx_desc *t, struct mbuf *m)
2789 {
2790 	struct ether_header *eh;
2791 	struct ether_vlan_header *evh;
2792 	int csum_flags;
2793 	uint32_t iphl, ipoff;
2794 	struct ip *ip;
2795 
2796 	iphl = ipoff = 0;
2797 	csum_flags = if_gethwassist(ifp) & m->m_pkthdr.csum_flags;
2798 	eh = mtod(m, struct ether_header *);
2799 
2800 	switch (ntohs(eh->ether_type)) {
2801 	case ETHERTYPE_IP:
2802 		ipoff = ETHER_HDR_LEN;
2803 		break;
2804 	case ETHERTYPE_VLAN:
2805 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2806 		evh = mtod(m, struct ether_vlan_header *);
2807 		if (ntohs(evh->evl_proto) == ETHERTYPE_VLAN)
2808 			ipoff += ETHER_VLAN_ENCAP_LEN;
2809 		break;
2810 	default:
2811 		csum_flags = 0;
2812 	}
2813 
2814 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2815 		ip = (struct ip *)(m->m_data + ipoff);
2816 		iphl = ip->ip_hl<<2;
2817 		t->command |= MVNETA_TX_CMD_L3_IP4;
2818 	} else {
2819 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2820 		return;
2821 	}
2822 
2823 
2824 	/* L3 */
2825 	if (csum_flags & CSUM_IP) {
2826 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2827 	}
2828 
2829 	/* L4 */
2830 	if (csum_flags & CSUM_IP_TCP) {
2831 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2832 		t->command |= MVNETA_TX_CMD_L4_TCP;
2833 	} else if (csum_flags & CSUM_IP_UDP) {
2834 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2835 		t->command |= MVNETA_TX_CMD_L4_UDP;
2836 	} else
2837 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2838 
2839 	t->l4ichk = 0;
2840 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2841 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2842 }
2843 
2844 STATIC void
2845 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2846 {
2847 	struct mvneta_tx_ring *tx;
2848 	struct mvneta_buf *txbuf;
2849 	struct mvneta_tx_desc *t __diagused;
2850 	uint32_t ptxs, ptxsu, ndesc;
2851 	int i;
2852 
2853 	KASSERT_TX_MTX(sc, q);
2854 
2855 	tx = MVNETA_TX_RING(sc, q);
2856 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2857 		return;
2858 
2859 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2860 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2861 
2862 	if (__predict_false(ndesc == 0)) {
2863 		if (tx->used == 0)
2864 			tx->queue_status = MVNETA_QUEUE_IDLE;
2865 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2866 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2867 			tx->queue_hung = TRUE;
2868 		return;
2869 	}
2870 
2871 #ifdef MVNETA_KTR
2872 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2873 	    if_name(sc->ifp), q, ndesc);
2874 #endif
2875 
2876 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2877 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2878 
2879 	for (i = 0; i < ndesc; i++) {
2880 		t = &tx->desc[tx->dma];
2881 #ifdef MVNETA_KTR
2882 		if (t->flags & MVNETA_TX_F_ES)
2883 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2884 			    if_name(sc->ifp), q, tx->dma);
2885 #endif
2886 		txbuf = &tx->txbuf[tx->dma];
2887 		if (__predict_true(txbuf->m != NULL)) {
2888 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2889 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2890 			m_freem(txbuf->m);
2891 			txbuf->m = NULL;
2892 		}
2893 		else
2894 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2895 		tx->dma = tx_counter_adv(tx->dma, 1);
2896 		tx->used--;
2897 	}
2898 	DASSERT(tx->used >= 0);
2899 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2900 	while (__predict_false(ndesc > 255)) {
2901 		ptxsu = MVNETA_PTXSU_NORB(255);
2902 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2903 		ndesc -= 255;
2904 	}
2905 	if (__predict_true(ndesc > 0)) {
2906 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2907 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2908 	}
2909 #ifdef MVNETA_KTR
2910 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2911 	    if_name(sc->ifp), q, tx->cpu, tx->dma, tx->used);
2912 #endif
2913 
2914 	tx->watchdog_time = ticks;
2915 
2916 	if (tx->used == 0)
2917 		tx->queue_status = MVNETA_QUEUE_IDLE;
2918 }
2919 
2920 /*
2921  * Do a final TX complete when TX is idle.
2922  */
2923 STATIC void
2924 mvneta_tx_drain(struct mvneta_softc *sc)
2925 {
2926 	struct mvneta_tx_ring *tx;
2927 	int q;
2928 
2929 	/*
2930 	 * Handle trailing mbuf on TX queue.
2931 	 * Check is done lockess to avoid TX path contention.
2932 	 */
2933 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2934 		tx = MVNETA_TX_RING(sc, q);
2935 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2936 		    tx->used > 0) {
2937 			mvneta_tx_lockq(sc, q);
2938 			mvneta_tx_queue_complete(sc, q);
2939 			mvneta_tx_unlockq(sc, q);
2940 		}
2941 	}
2942 }
2943 
2944 /*
2945  * Rx Subroutines
2946  */
2947 STATIC int
2948 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2949 {
2950 	uint32_t prxs, npkt;
2951 	int more;
2952 
2953 	more = 0;
2954 	mvneta_rx_lockq(sc, q);
2955 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2956 	npkt = MVNETA_PRXS_GET_ODC(prxs);
2957 	if (__predict_false(npkt == 0))
2958 		goto out;
2959 
2960 	if (count > 0 && npkt > count) {
2961 		more = 1;
2962 		npkt = count;
2963 	}
2964 	mvneta_rx_queue(sc, q, npkt);
2965 out:
2966 	mvneta_rx_unlockq(sc, q);
2967 	return more;
2968 }
2969 
2970 /*
2971  * Helper routine for updating PRXSU register of a given queue.
2972  * Handles number of processed descriptors bigger than maximum acceptable value.
2973  */
2974 STATIC __inline void
2975 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
2976 {
2977 	uint32_t prxsu;
2978 
2979 	while (__predict_false(processed > 255)) {
2980 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2981 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2982 		processed -= 255;
2983 	}
2984 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
2985 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2986 }
2987 
2988 static __inline void
2989 mvneta_prefetch(void *p)
2990 {
2991 
2992 	__builtin_prefetch(p);
2993 }
2994 
2995 STATIC void
2996 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
2997 {
2998 	if_t ifp;
2999 	struct mvneta_rx_ring *rx;
3000 	struct mvneta_rx_desc *r;
3001 	struct mvneta_buf *rxbuf;
3002 	struct mbuf *m;
3003 	struct lro_ctrl *lro;
3004 	struct lro_entry *queued;
3005 	void *pktbuf;
3006 	int i, pktlen, processed, ndma;
3007 
3008 	KASSERT_RX_MTX(sc, q);
3009 
3010 	ifp = sc->ifp;
3011 	rx = MVNETA_RX_RING(sc, q);
3012 	processed = 0;
3013 
3014 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3015 		return;
3016 
3017 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
3018 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3019 
3020 	for (i = 0; i < npkt; i++) {
3021 		/* Prefetch next desc, rxbuf. */
3022 		ndma = rx_counter_adv(rx->dma, 1);
3023 		mvneta_prefetch(&rx->desc[ndma]);
3024 		mvneta_prefetch(&rx->rxbuf[ndma]);
3025 
3026 		/* get descriptor and packet */
3027 		r = &rx->desc[rx->dma];
3028 		rxbuf = &rx->rxbuf[rx->dma];
3029 		m = rxbuf->m;
3030 		rxbuf->m = NULL;
3031 		DASSERT(m != NULL);
3032 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3033 		    BUS_DMASYNC_POSTREAD);
3034 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3035 		/* Prefetch mbuf header. */
3036 		mvneta_prefetch(m);
3037 
3038 		processed++;
3039 		/* Drop desc with error status or not in a single buffer. */
3040 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3041 		    (MVNETA_RX_F|MVNETA_RX_L));
3042 		if (__predict_false((r->status & MVNETA_RX_ES) ||
3043 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3044 		    (MVNETA_RX_F|MVNETA_RX_L)))
3045 			goto rx_error;
3046 
3047 		/*
3048 		 * [ OFF | MH | PKT | CRC ]
3049 		 * bytecnt cover MH, PKT, CRC
3050 		 */
3051 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3052 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3053                     MVNETA_HWHEADER_SIZE;
3054 
3055 		/* Prefetch mbuf data. */
3056 		mvneta_prefetch(pktbuf);
3057 
3058 		/* Write value to mbuf (avoid read). */
3059 		m->m_data = pktbuf;
3060 		m->m_len = m->m_pkthdr.len = pktlen;
3061 		m->m_pkthdr.rcvif = ifp;
3062 		mvneta_rx_set_csumflag(ifp, r, m);
3063 
3064 		/* Increase rx_dma before releasing the lock. */
3065 		rx->dma = ndma;
3066 
3067 		if (__predict_false(rx->lro_enabled &&
3068 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3069 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3070 		    (m->m_pkthdr.csum_flags &
3071 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3072 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3073 			if (rx->lro.lro_cnt != 0) {
3074 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3075 					goto rx_done;
3076 			}
3077 		}
3078 
3079 		mvneta_rx_unlockq(sc, q);
3080 		if_input(ifp, m);
3081 		mvneta_rx_lockq(sc, q);
3082 		/*
3083 		 * Check whether this queue has been disabled in the
3084 		 * meantime. If yes, then clear LRO and exit.
3085 		 */
3086 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3087 			goto rx_lro;
3088 rx_done:
3089 		/* Refresh receive ring to avoid stall and minimize jitter. */
3090 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3091 			mvneta_prxsu_update(sc, q, processed);
3092 			mvneta_rx_queue_refill(sc, q);
3093 			processed = 0;
3094 		}
3095 		continue;
3096 rx_error:
3097 		m_freem(m);
3098 		rx->dma = ndma;
3099 		/* Refresh receive ring to avoid stall and minimize jitter. */
3100 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3101 			mvneta_prxsu_update(sc, q, processed);
3102 			mvneta_rx_queue_refill(sc, q);
3103 			processed = 0;
3104 		}
3105 	}
3106 #ifdef MVNETA_KTR
3107 	CTR3(KTR_SPARE2, "%s:%u %u packets received", if_name(ifp), q, npkt);
3108 #endif
3109 	/* DMA status update */
3110 	mvneta_prxsu_update(sc, q, processed);
3111 	/* Refill the rest of buffers if there are any to refill */
3112 	mvneta_rx_queue_refill(sc, q);
3113 
3114 rx_lro:
3115 	/*
3116 	 * Flush any outstanding LRO work
3117 	 */
3118 	lro = &rx->lro;
3119 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3120 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3121 		tcp_lro_flush(lro, queued);
3122 	}
3123 }
3124 
3125 STATIC void
3126 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3127 {
3128 
3129 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3130 	/* This will remove all data at once */
3131 	m_freem(rxbuf->m);
3132 }
3133 
3134 STATIC void
3135 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3136 {
3137 	struct mvneta_rx_ring *rx;
3138 	struct mvneta_rx_desc *r;
3139 	struct mvneta_buf *rxbuf;
3140 	bus_dma_segment_t segs;
3141 	struct mbuf *m;
3142 	uint32_t prxs, prxsu, ndesc;
3143 	int npkt, refill, nsegs, error;
3144 
3145 	KASSERT_RX_MTX(sc, q);
3146 
3147 	rx = MVNETA_RX_RING(sc, q);
3148 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3149 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3150 	refill = MVNETA_RX_RING_CNT - ndesc;
3151 #ifdef MVNETA_KTR
3152 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", if_name(sc->ifp), q,
3153 	    refill);
3154 #endif
3155 	if (__predict_false(refill <= 0))
3156 		return;
3157 
3158 	for (npkt = 0; npkt < refill; npkt++) {
3159 		rxbuf = &rx->rxbuf[rx->cpu];
3160 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size);
3161 		if (__predict_false(m == NULL)) {
3162 			error = ENOBUFS;
3163 			break;
3164 		}
3165 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3166 
3167 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3168 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3169 		if (__predict_false(error != 0 || nsegs != 1)) {
3170 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3171 			m_freem(m);
3172 			break;
3173 		}
3174 
3175 		/* Add the packet to the ring */
3176 		rxbuf->m = m;
3177 		r = &rx->desc[rx->cpu];
3178 		r->bufptr_pa = segs.ds_addr;
3179 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3180 
3181 		rx->cpu = rx_counter_adv(rx->cpu, 1);
3182 	}
3183 	if (npkt == 0) {
3184 		if (refill == MVNETA_RX_RING_CNT)
3185 			rx->needs_refill = TRUE;
3186 		return;
3187 	}
3188 
3189 	rx->needs_refill = FALSE;
3190 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3191 
3192 	while (__predict_false(npkt > 255)) {
3193 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3194 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3195 		npkt -= 255;
3196 	}
3197 	if (__predict_true(npkt > 0)) {
3198 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3199 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3200 	}
3201 }
3202 
3203 STATIC __inline void
3204 mvneta_rx_set_csumflag(if_t ifp,
3205     struct mvneta_rx_desc *r, struct mbuf *m)
3206 {
3207 	uint32_t csum_flags;
3208 
3209 	csum_flags = 0;
3210 	if (__predict_false((r->status &
3211 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3212 		return; /* not a IP packet */
3213 
3214 	/* L3 */
3215 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3216 	    MVNETA_RX_IP_HEADER_OK))
3217 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3218 
3219 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3220 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3221 		/* L4 */
3222 		switch (r->status & MVNETA_RX_L4_MASK) {
3223 		case MVNETA_RX_L4_TCP:
3224 		case MVNETA_RX_L4_UDP:
3225 			csum_flags |= CSUM_L4_CALC;
3226 			if (__predict_true((r->status &
3227 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3228 				csum_flags |= CSUM_L4_VALID;
3229 				m->m_pkthdr.csum_data = htons(0xffff);
3230 			}
3231 			break;
3232 		case MVNETA_RX_L4_OTH:
3233 		default:
3234 			break;
3235 		}
3236 	}
3237 	m->m_pkthdr.csum_flags = csum_flags;
3238 }
3239 
3240 /*
3241  * MAC address filter
3242  */
3243 STATIC void
3244 mvneta_filter_setup(struct mvneta_softc *sc)
3245 {
3246 	if_t ifp;
3247 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3248 	uint32_t pxc;
3249 	int i;
3250 
3251 	KASSERT_SC_MTX(sc);
3252 
3253 	memset(dfut, 0, sizeof(dfut));
3254 	memset(dfsmt, 0, sizeof(dfsmt));
3255 	memset(dfomt, 0, sizeof(dfomt));
3256 
3257 	ifp = sc->ifp;
3258 	if_setflagbits(ifp, IFF_ALLMULTI, 0);
3259 	if (if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) {
3260 		for (i = 0; i < MVNETA_NDFSMT; i++) {
3261 			dfsmt[i] = dfomt[i] =
3262 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3263 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3264 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3265 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3266 		}
3267 	}
3268 
3269 	pxc = MVNETA_READ(sc, MVNETA_PXC);
3270 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3271 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3272 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3273 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3274 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3275 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3276 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3277 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3278 	if (if_getflags(ifp) & IFF_BROADCAST) {
3279 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3280 	}
3281 	if (if_getflags(ifp) & IFF_PROMISC) {
3282 		pxc |= MVNETA_PXC_UPM;
3283 	}
3284 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3285 
3286 	/* Set Destination Address Filter Unicast Table */
3287 	if (if_getflags(ifp) & IFF_PROMISC) {
3288 		/* pass all unicast addresses */
3289 		for (i = 0; i < MVNETA_NDFUT; i++) {
3290 			dfut[i] =
3291 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3292 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3293 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3294 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3295 		}
3296 	} else {
3297 		i = sc->enaddr[5] & 0xf;		/* last nibble */
3298 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3299 	}
3300 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3301 
3302 	/* Set Destination Address Filter Multicast Tables */
3303 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3304 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3305 }
3306 
3307 /*
3308  * sysctl(9)
3309  */
3310 STATIC int
3311 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3312 {
3313 	struct mvneta_sysctl_mib *arg;
3314 	struct mvneta_softc *sc;
3315 	uint64_t val;
3316 
3317 	arg = (struct mvneta_sysctl_mib *)arg1;
3318 	if (arg == NULL)
3319 		return (EINVAL);
3320 
3321 	sc = arg->sc;
3322 	if (sc == NULL)
3323 		return (EINVAL);
3324 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3325 		return (EINVAL);
3326 
3327 	mvneta_sc_lock(sc);
3328 	val = arg->counter;
3329 	mvneta_sc_unlock(sc);
3330 	return sysctl_handle_64(oidp, &val, 0, req);
3331 }
3332 
3333 
3334 STATIC int
3335 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3336 {
3337 	struct mvneta_softc *sc;
3338 	int err, val;
3339 
3340 	val = 0;
3341 	sc = (struct mvneta_softc *)arg1;
3342 	if (sc == NULL)
3343 		return (EINVAL);
3344 
3345 	err = sysctl_handle_int(oidp, &val, 0, req);
3346 	if (err != 0)
3347 		return (err);
3348 
3349 	if (val < 0 || val > 1)
3350 		return (EINVAL);
3351 
3352 	if (val == 1) {
3353 		mvneta_sc_lock(sc);
3354 		mvneta_clear_mib(sc);
3355 		mvneta_sc_unlock(sc);
3356 	}
3357 
3358 	return (0);
3359 }
3360 
3361 STATIC int
3362 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3363 {
3364 	struct mvneta_sysctl_queue *arg;
3365 	struct mvneta_rx_ring *rx;
3366 	struct mvneta_softc *sc;
3367 	uint32_t reg, time_mvtclk;
3368 	int err, time_us;
3369 
3370 	rx = NULL;
3371 	arg = (struct mvneta_sysctl_queue *)arg1;
3372 	if (arg == NULL)
3373 		return (EINVAL);
3374 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3375 		return (EINVAL);
3376 	if (arg->rxtx != MVNETA_SYSCTL_RX)
3377 		return (EINVAL);
3378 
3379 	sc = arg->sc;
3380 	if (sc == NULL)
3381 		return (EINVAL);
3382 
3383 	/* read queue length */
3384 	mvneta_sc_lock(sc);
3385 	mvneta_rx_lockq(sc, arg->queue);
3386 	rx = MVNETA_RX_RING(sc, arg->queue);
3387 	time_mvtclk = rx->queue_th_time;
3388 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / sc->clk_freq;
3389 	mvneta_rx_unlockq(sc, arg->queue);
3390 	mvneta_sc_unlock(sc);
3391 
3392 	err = sysctl_handle_int(oidp, &time_us, 0, req);
3393 	if (err != 0)
3394 		return (err);
3395 
3396 	mvneta_sc_lock(sc);
3397 	mvneta_rx_lockq(sc, arg->queue);
3398 
3399 	/* update queue length (0[sec] - 1[sec]) */
3400 	if (time_us < 0 || time_us > (1000 * 1000)) {
3401 		mvneta_rx_unlockq(sc, arg->queue);
3402 		mvneta_sc_unlock(sc);
3403 		return (EINVAL);
3404 	}
3405 	time_mvtclk = sc->clk_freq * (uint64_t)time_us / (1000ULL * 1000ULL);
3406 	rx->queue_th_time = time_mvtclk;
3407 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3408 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3409 	mvneta_rx_unlockq(sc, arg->queue);
3410 	mvneta_sc_unlock(sc);
3411 
3412 	return (0);
3413 }
3414 
3415 STATIC void
3416 sysctl_mvneta_init(struct mvneta_softc *sc)
3417 {
3418 	struct sysctl_ctx_list *ctx;
3419 	struct sysctl_oid_list *children;
3420 	struct sysctl_oid_list *rxchildren;
3421 	struct sysctl_oid_list *qchildren, *mchildren;
3422 	struct sysctl_oid *tree;
3423 	int i, q;
3424 	struct mvneta_sysctl_queue *rxarg;
3425 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
3426 	static const char *sysctl_queue_names[] = {
3427 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3428 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3429 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3430 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3431 	};
3432 #undef MVNETA_SYSCTL_NAME
3433 
3434 #ifndef NO_SYSCTL_DESCR
3435 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3436 	static const char *sysctl_queue_descrs[] = {
3437 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3438 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3439 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3440 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3441 	};
3442 #undef MVNETA_SYSCTL_DESCR
3443 #endif
3444 
3445 
3446 	ctx = device_get_sysctl_ctx(sc->dev);
3447 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3448 
3449 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3450 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX");
3451 	rxchildren = SYSCTL_CHILDREN(tree);
3452 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3453 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB");
3454 	mchildren = SYSCTL_CHILDREN(tree);
3455 
3456 
3457 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3458 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3459 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3460 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3461 
3462 	/*
3463 	 * MIB access
3464 	 */
3465 	/* dev.mvneta.[unit].mib.<mibs> */
3466 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3467 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3468 
3469 		mib_arg->sc = sc;
3470 		mib_arg->index = i;
3471 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3472 		    mvneta_mib_list[i].sysctl_name,
3473 		    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
3474 		    (void *)mib_arg, 0, sysctl_read_mib, "I",
3475 		    mvneta_mib_list[i].desc);
3476 	}
3477 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3478 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3479 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3480 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3481 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3482 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3483 
3484 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3485 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3486 	    (void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters");
3487 
3488 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3489 		rxarg = &sc->sysctl_rx_queue[q];
3490 
3491 		rxarg->sc = sc;
3492 		rxarg->queue = q;
3493 		rxarg->rxtx = MVNETA_SYSCTL_RX;
3494 
3495 		/* hw.mvneta.mvneta[unit].rx.[queue] */
3496 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3497 		    sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3498 		    sysctl_queue_descrs[q]);
3499 		qchildren = SYSCTL_CHILDREN(tree);
3500 
3501 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3502 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3503 		    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0,
3504 		    sysctl_set_queue_rxthtime, "I",
3505 		    "interrupt coalescing threshold timer [us]");
3506 	}
3507 }
3508 
3509 /*
3510  * MIB
3511  */
3512 STATIC uint64_t
3513 mvneta_read_mib(struct mvneta_softc *sc, int index)
3514 {
3515 	struct mvneta_mib_def *mib;
3516 	uint64_t val;
3517 
3518 	mib = &mvneta_mib_list[index];
3519 	val = MVNETA_READ_MIB(sc, mib->regnum);
3520 	if (mib->reg64)
3521 		val |= (uint64_t)MVNETA_READ_MIB(sc, mib->regnum + 4) << 32;
3522 	return (val);
3523 }
3524 
3525 STATIC void
3526 mvneta_clear_mib(struct mvneta_softc *sc)
3527 {
3528 	int i;
3529 
3530 	KASSERT_SC_MTX(sc);
3531 
3532 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3533 		(void)mvneta_read_mib(sc, i);
3534 		sc->sysctl_mib[i].counter = 0;
3535 	}
3536 	MVNETA_READ(sc, MVNETA_PDFC);
3537 	sc->counter_pdfc = 0;
3538 	MVNETA_READ(sc, MVNETA_POFC);
3539 	sc->counter_pofc = 0;
3540 	sc->counter_watchdog = 0;
3541 }
3542 
3543 STATIC void
3544 mvneta_update_mib(struct mvneta_softc *sc)
3545 {
3546 	struct mvneta_tx_ring *tx;
3547 	int i;
3548 	uint64_t val;
3549 	uint32_t reg;
3550 
3551 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3552 
3553 		val = mvneta_read_mib(sc, i);
3554 		if (val == 0)
3555 			continue;
3556 
3557 		sc->sysctl_mib[i].counter += val;
3558 		switch (mvneta_mib_list[i].regnum) {
3559 			case MVNETA_MIB_RX_GOOD_OCT:
3560 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3561 				break;
3562 			case MVNETA_MIB_RX_BAD_FRAME:
3563 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3564 				break;
3565 			case MVNETA_MIB_RX_GOOD_FRAME:
3566 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3567 				break;
3568 			case MVNETA_MIB_RX_MCAST_FRAME:
3569 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3570 				break;
3571 			case MVNETA_MIB_TX_GOOD_OCT:
3572 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3573 				break;
3574 			case MVNETA_MIB_TX_GOOD_FRAME:
3575 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3576 				break;
3577 			case MVNETA_MIB_TX_MCAST_FRAME:
3578 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3579 				break;
3580 			case MVNETA_MIB_MAC_COL:
3581 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3582 				break;
3583 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3584 			case MVNETA_MIB_TX_EXCES_COL:
3585 			case MVNETA_MIB_MAC_LATE_COL:
3586 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3587 				break;
3588 		}
3589 	}
3590 
3591 	reg = MVNETA_READ(sc, MVNETA_PDFC);
3592 	sc->counter_pdfc += reg;
3593 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3594 	reg = MVNETA_READ(sc, MVNETA_POFC);
3595 	sc->counter_pofc += reg;
3596 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3597 
3598 	/* TX watchdog. */
3599 	if (sc->counter_watchdog_mib > 0) {
3600 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3601 		sc->counter_watchdog_mib = 0;
3602 	}
3603 	/*
3604 	 * TX driver errors:
3605 	 * We do not take queue locks to not disrupt TX path.
3606 	 * We may only miss one drv error which will be fixed at
3607 	 * next mib update. We may also clear counter when TX path
3608 	 * is incrementing it but we only do it if counter was not zero
3609 	 * thus we may only loose one error.
3610 	 */
3611 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3612 		tx = MVNETA_TX_RING(sc, i);
3613 
3614 		if (tx->drv_error > 0) {
3615 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3616 			tx->drv_error = 0;
3617 		}
3618 	}
3619 }
3620