1 /* 2 * Copyright (c) 2017 Stormshield. 3 * Copyright (c) 2017 Semihalf. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 19 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 20 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 23 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 * POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include "opt_platform.h" 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/endian.h> 35 #include <sys/mbuf.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/socket.h> 41 #include <sys/sysctl.h> 42 #include <sys/smp.h> 43 #include <sys/taskqueue.h> 44 #ifdef MVNETA_KTR 45 #include <sys/ktr.h> 46 #endif 47 48 #include <net/ethernet.h> 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_arp.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 57 #include <netinet/in_systm.h> 58 #include <netinet/in.h> 59 #include <netinet/ip.h> 60 #include <netinet/tcp_lro.h> 61 62 #include <sys/sockio.h> 63 #include <sys/bus.h> 64 #include <machine/bus.h> 65 #include <sys/rman.h> 66 #include <machine/resource.h> 67 68 #include <dev/mii/mii.h> 69 #include <dev/mii/miivar.h> 70 71 #include <dev/ofw/openfirm.h> 72 #include <dev/ofw/ofw_bus.h> 73 #include <dev/ofw/ofw_bus_subr.h> 74 75 #include <dev/mdio/mdio.h> 76 77 #include <arm/mv/mvvar.h> 78 79 #if !defined(__aarch64__) 80 #include <arm/mv/mvreg.h> 81 #include <arm/mv/mvwin.h> 82 #endif 83 84 #include "if_mvnetareg.h" 85 #include "if_mvnetavar.h" 86 87 #include "miibus_if.h" 88 #include "mdio_if.h" 89 90 #ifdef MVNETA_DEBUG 91 #define STATIC /* nothing */ 92 #else 93 #define STATIC static 94 #endif 95 96 #define DASSERT(x) KASSERT((x), (#x)) 97 98 #define A3700_TCLK_250MHZ 250000000 99 100 /* Device Register Initialization */ 101 STATIC int mvneta_initreg(struct ifnet *); 102 103 /* Descriptor Ring Control for each of queues */ 104 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int); 105 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int); 106 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int); 107 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int); 108 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int); 109 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int); 110 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int); 111 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int); 112 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int); 113 STATIC int mvneta_dma_create(struct mvneta_softc *); 114 115 /* Rx/Tx Queue Control */ 116 STATIC int mvneta_rx_queue_init(struct ifnet *, int); 117 STATIC int mvneta_tx_queue_init(struct ifnet *, int); 118 STATIC int mvneta_rx_queue_enable(struct ifnet *, int); 119 STATIC int mvneta_tx_queue_enable(struct ifnet *, int); 120 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int); 121 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int); 122 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int); 123 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int); 124 125 /* Interrupt Handlers */ 126 STATIC void mvneta_disable_intr(struct mvneta_softc *); 127 STATIC void mvneta_enable_intr(struct mvneta_softc *); 128 STATIC void mvneta_rxtxth_intr(void *); 129 STATIC int mvneta_misc_intr(struct mvneta_softc *); 130 STATIC void mvneta_tick(void *); 131 /* struct ifnet and mii callbacks*/ 132 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **); 133 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int); 134 #ifdef MVNETA_MULTIQUEUE 135 STATIC int mvneta_transmit(struct ifnet *, struct mbuf *); 136 #else /* !MVNETA_MULTIQUEUE */ 137 STATIC void mvneta_start(struct ifnet *); 138 #endif 139 STATIC void mvneta_qflush(struct ifnet *); 140 STATIC void mvneta_tx_task(void *, int); 141 STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t); 142 STATIC void mvneta_init(void *); 143 STATIC void mvneta_init_locked(void *); 144 STATIC void mvneta_stop(struct mvneta_softc *); 145 STATIC void mvneta_stop_locked(struct mvneta_softc *); 146 STATIC int mvneta_mediachange(struct ifnet *); 147 STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *); 148 STATIC void mvneta_portup(struct mvneta_softc *); 149 STATIC void mvneta_portdown(struct mvneta_softc *); 150 151 /* Link State Notify */ 152 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int); 153 STATIC int mvneta_update_media(struct mvneta_softc *, int); 154 STATIC void mvneta_adjust_link(struct mvneta_softc *); 155 STATIC void mvneta_update_eee(struct mvneta_softc *); 156 STATIC void mvneta_update_fc(struct mvneta_softc *); 157 STATIC void mvneta_link_isr(struct mvneta_softc *); 158 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t); 159 STATIC void mvneta_linkup(struct mvneta_softc *); 160 STATIC void mvneta_linkdown(struct mvneta_softc *); 161 STATIC void mvneta_linkreset(struct mvneta_softc *); 162 163 /* Tx Subroutines */ 164 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int); 165 STATIC void mvneta_tx_set_csumflag(struct ifnet *, 166 struct mvneta_tx_desc *, struct mbuf *); 167 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int); 168 STATIC void mvneta_tx_drain(struct mvneta_softc *); 169 170 /* Rx Subroutines */ 171 STATIC int mvneta_rx(struct mvneta_softc *, int, int); 172 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int); 173 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int); 174 STATIC void mvneta_rx_set_csumflag(struct ifnet *, 175 struct mvneta_rx_desc *, struct mbuf *); 176 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *); 177 178 /* MAC address filter */ 179 STATIC void mvneta_filter_setup(struct mvneta_softc *); 180 181 /* sysctl(9) */ 182 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS); 183 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS); 184 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS); 185 STATIC void sysctl_mvneta_init(struct mvneta_softc *); 186 187 /* MIB */ 188 STATIC void mvneta_clear_mib(struct mvneta_softc *); 189 STATIC void mvneta_update_mib(struct mvneta_softc *); 190 191 /* Switch */ 192 STATIC boolean_t mvneta_find_ethernet_prop_switch(phandle_t, phandle_t); 193 STATIC boolean_t mvneta_has_switch(device_t); 194 195 #define mvneta_sc_lock(sc) mtx_lock(&sc->mtx) 196 #define mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx) 197 198 STATIC struct mtx mii_mutex; 199 STATIC int mii_init = 0; 200 201 /* Device */ 202 STATIC int mvneta_detach(device_t); 203 /* MII */ 204 STATIC int mvneta_miibus_readreg(device_t, int, int); 205 STATIC int mvneta_miibus_writereg(device_t, int, int, int); 206 207 /* Clock */ 208 STATIC uint32_t mvneta_get_clk(void); 209 210 static device_method_t mvneta_methods[] = { 211 /* Device interface */ 212 DEVMETHOD(device_detach, mvneta_detach), 213 /* MII interface */ 214 DEVMETHOD(miibus_readreg, mvneta_miibus_readreg), 215 DEVMETHOD(miibus_writereg, mvneta_miibus_writereg), 216 /* MDIO interface */ 217 DEVMETHOD(mdio_readreg, mvneta_miibus_readreg), 218 DEVMETHOD(mdio_writereg, mvneta_miibus_writereg), 219 220 /* End */ 221 DEVMETHOD_END 222 }; 223 224 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc)); 225 226 DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0); 227 DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0); 228 MODULE_DEPEND(mvneta, mdio, 1, 1, 1); 229 MODULE_DEPEND(mvneta, ether, 1, 1, 1); 230 MODULE_DEPEND(mvneta, miibus, 1, 1, 1); 231 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1); 232 233 /* 234 * List of MIB register and names 235 */ 236 enum mvneta_mib_idx 237 { 238 MVNETA_MIB_RX_GOOD_OCT_IDX, 239 MVNETA_MIB_RX_BAD_OCT_IDX, 240 MVNETA_MIB_TX_MAC_TRNS_ERR_IDX, 241 MVNETA_MIB_RX_GOOD_FRAME_IDX, 242 MVNETA_MIB_RX_BAD_FRAME_IDX, 243 MVNETA_MIB_RX_BCAST_FRAME_IDX, 244 MVNETA_MIB_RX_MCAST_FRAME_IDX, 245 MVNETA_MIB_RX_FRAME64_OCT_IDX, 246 MVNETA_MIB_RX_FRAME127_OCT_IDX, 247 MVNETA_MIB_RX_FRAME255_OCT_IDX, 248 MVNETA_MIB_RX_FRAME511_OCT_IDX, 249 MVNETA_MIB_RX_FRAME1023_OCT_IDX, 250 MVNETA_MIB_RX_FRAMEMAX_OCT_IDX, 251 MVNETA_MIB_TX_GOOD_OCT_IDX, 252 MVNETA_MIB_TX_GOOD_FRAME_IDX, 253 MVNETA_MIB_TX_EXCES_COL_IDX, 254 MVNETA_MIB_TX_MCAST_FRAME_IDX, 255 MVNETA_MIB_TX_BCAST_FRAME_IDX, 256 MVNETA_MIB_TX_MAC_CTL_ERR_IDX, 257 MVNETA_MIB_FC_SENT_IDX, 258 MVNETA_MIB_FC_GOOD_IDX, 259 MVNETA_MIB_FC_BAD_IDX, 260 MVNETA_MIB_PKT_UNDERSIZE_IDX, 261 MVNETA_MIB_PKT_FRAGMENT_IDX, 262 MVNETA_MIB_PKT_OVERSIZE_IDX, 263 MVNETA_MIB_PKT_JABBER_IDX, 264 MVNETA_MIB_MAC_RX_ERR_IDX, 265 MVNETA_MIB_MAC_CRC_ERR_IDX, 266 MVNETA_MIB_MAC_COL_IDX, 267 MVNETA_MIB_MAC_LATE_COL_IDX, 268 }; 269 270 STATIC struct mvneta_mib_def { 271 uint32_t regnum; 272 int reg64; 273 const char *sysctl_name; 274 const char *desc; 275 } mvneta_mib_list[] = { 276 [MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1, 277 "rx_good_oct", "Good Octets Rx"}, 278 [MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0, 279 "rx_bad_oct", "Bad Octets Rx"}, 280 [MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0, 281 "tx_mac_err", "MAC Transmit Error"}, 282 [MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0, 283 "rx_good_frame", "Good Frames Rx"}, 284 [MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0, 285 "rx_bad_frame", "Bad Frames Rx"}, 286 [MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0, 287 "rx_bcast_frame", "Broadcast Frames Rx"}, 288 [MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0, 289 "rx_mcast_frame", "Multicast Frames Rx"}, 290 [MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0, 291 "rx_frame_1_64", "Frame Size 1 - 64"}, 292 [MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0, 293 "rx_frame_65_127", "Frame Size 65 - 127"}, 294 [MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0, 295 "rx_frame_128_255", "Frame Size 128 - 255"}, 296 [MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0, 297 "rx_frame_256_511", "Frame Size 256 - 511"}, 298 [MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0, 299 "rx_frame_512_1023", "Frame Size 512 - 1023"}, 300 [MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0, 301 "rx_fame_1024_max", "Frame Size 1024 - Max"}, 302 [MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1, 303 "tx_good_oct", "Good Octets Tx"}, 304 [MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0, 305 "tx_good_frame", "Good Frames Tx"}, 306 [MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0, 307 "tx_exces_collision", "Excessive Collision"}, 308 [MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0, 309 "tx_mcast_frame", "Multicast Frames Tx"}, 310 [MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0, 311 "tx_bcast_frame", "Broadcast Frames Tx"}, 312 [MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0, 313 "tx_mac_ctl_err", "Unknown MAC Control"}, 314 [MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0, 315 "fc_tx", "Flow Control Tx"}, 316 [MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0, 317 "fc_rx_good", "Good Flow Control Rx"}, 318 [MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0, 319 "fc_rx_bad", "Bad Flow Control Rx"}, 320 [MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0, 321 "pkt_undersize", "Undersized Packets Rx"}, 322 [MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0, 323 "pkt_fragment", "Fragmented Packets Rx"}, 324 [MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0, 325 "pkt_oversize", "Oversized Packets Rx"}, 326 [MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0, 327 "pkt_jabber", "Jabber Packets Rx"}, 328 [MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0, 329 "mac_rx_err", "MAC Rx Errors"}, 330 [MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0, 331 "mac_crc_err", "MAC CRC Errors"}, 332 [MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0, 333 "mac_collision", "MAC Collision"}, 334 [MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0, 335 "mac_late_collision", "MAC Late Collision"}, 336 }; 337 338 static struct resource_spec res_spec[] = { 339 { SYS_RES_MEMORY, 0, RF_ACTIVE }, 340 { SYS_RES_IRQ, 0, RF_ACTIVE }, 341 { -1, 0} 342 }; 343 344 static struct { 345 driver_intr_t *handler; 346 char * description; 347 } mvneta_intrs[] = { 348 { mvneta_rxtxth_intr, "MVNETA aggregated interrupt" }, 349 }; 350 351 STATIC uint32_t 352 mvneta_get_clk() 353 { 354 #if defined(__aarch64__) 355 return (A3700_TCLK_250MHZ); 356 #else 357 return (get_tclk()); 358 #endif 359 } 360 361 static int 362 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr) 363 { 364 unsigned int mac_h; 365 unsigned int mac_l; 366 367 mac_l = (addr[4] << 8) | (addr[5]); 368 mac_h = (addr[0] << 24) | (addr[1] << 16) | 369 (addr[2] << 8) | (addr[3] << 0); 370 371 MVNETA_WRITE(sc, MVNETA_MACAL, mac_l); 372 MVNETA_WRITE(sc, MVNETA_MACAH, mac_h); 373 return (0); 374 } 375 376 static int 377 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr) 378 { 379 uint32_t mac_l, mac_h; 380 381 #ifdef FDT 382 if (mvneta_fdt_mac_address(sc, addr) == 0) 383 return (0); 384 #endif 385 /* 386 * Fall back -- use the currently programmed address. 387 */ 388 mac_l = MVNETA_READ(sc, MVNETA_MACAL); 389 mac_h = MVNETA_READ(sc, MVNETA_MACAH); 390 if (mac_l == 0 && mac_h == 0) { 391 /* 392 * Generate pseudo-random MAC. 393 * Set lower part to random number | unit number. 394 */ 395 mac_l = arc4random() & ~0xff; 396 mac_l |= device_get_unit(sc->dev) & 0xff; 397 mac_h = arc4random(); 398 mac_h &= ~(3 << 24); /* Clear multicast and LAA bits */ 399 if (bootverbose) { 400 device_printf(sc->dev, 401 "Could not acquire MAC address. " 402 "Using randomized one.\n"); 403 } 404 } 405 406 addr[0] = (mac_h & 0xff000000) >> 24; 407 addr[1] = (mac_h & 0x00ff0000) >> 16; 408 addr[2] = (mac_h & 0x0000ff00) >> 8; 409 addr[3] = (mac_h & 0x000000ff); 410 addr[4] = (mac_l & 0x0000ff00) >> 8; 411 addr[5] = (mac_l & 0x000000ff); 412 return (0); 413 } 414 415 STATIC boolean_t 416 mvneta_find_ethernet_prop_switch(phandle_t ethernet, phandle_t node) 417 { 418 boolean_t ret; 419 phandle_t child, switch_eth_handle, switch_eth; 420 421 for (child = OF_child(node); child != 0; child = OF_peer(child)) { 422 if (OF_getencprop(child, "ethernet", (void*)&switch_eth_handle, 423 sizeof(switch_eth_handle)) > 0) { 424 if (switch_eth_handle > 0) { 425 switch_eth = OF_node_from_xref( 426 switch_eth_handle); 427 428 if (switch_eth == ethernet) 429 return (true); 430 } 431 } 432 433 ret = mvneta_find_ethernet_prop_switch(ethernet, child); 434 if (ret != 0) 435 return (ret); 436 } 437 438 return (false); 439 } 440 441 STATIC boolean_t 442 mvneta_has_switch(device_t self) 443 { 444 phandle_t node; 445 446 node = ofw_bus_get_node(self); 447 448 return mvneta_find_ethernet_prop_switch(node, OF_finddevice("/")); 449 } 450 451 STATIC int 452 mvneta_dma_create(struct mvneta_softc *sc) 453 { 454 size_t maxsize, maxsegsz; 455 size_t q; 456 int error; 457 458 /* 459 * Create Tx DMA 460 */ 461 maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT; 462 463 error = bus_dma_tag_create( 464 bus_get_dma_tag(sc->dev), /* parent */ 465 16, 0, /* alignment, boundary */ 466 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 467 BUS_SPACE_MAXADDR, /* highaddr */ 468 NULL, NULL, /* filtfunc, filtfuncarg */ 469 maxsize, /* maxsize */ 470 1, /* nsegments */ 471 maxsegsz, /* maxsegsz */ 472 0, /* flags */ 473 NULL, NULL, /* lockfunc, lockfuncarg */ 474 &sc->tx_dtag); /* dmat */ 475 if (error != 0) { 476 device_printf(sc->dev, 477 "Failed to create DMA tag for Tx descriptors.\n"); 478 goto fail; 479 } 480 error = bus_dma_tag_create( 481 bus_get_dma_tag(sc->dev), /* parent */ 482 1, 0, /* alignment, boundary */ 483 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 484 BUS_SPACE_MAXADDR, /* highaddr */ 485 NULL, NULL, /* filtfunc, filtfuncarg */ 486 MVNETA_MAX_FRAME, /* maxsize */ 487 MVNETA_TX_SEGLIMIT, /* nsegments */ 488 MVNETA_MAX_FRAME, /* maxsegsz */ 489 BUS_DMA_ALLOCNOW, /* flags */ 490 NULL, NULL, /* lockfunc, lockfuncarg */ 491 &sc->txmbuf_dtag); 492 if (error != 0) { 493 device_printf(sc->dev, 494 "Failed to create DMA tag for Tx mbufs.\n"); 495 goto fail; 496 } 497 498 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) { 499 error = mvneta_ring_alloc_tx_queue(sc, q); 500 if (error != 0) { 501 device_printf(sc->dev, 502 "Failed to allocate DMA safe memory for TxQ: %zu\n", q); 503 goto fail; 504 } 505 } 506 507 /* 508 * Create Rx DMA. 509 */ 510 /* Create tag for Rx descripors */ 511 error = bus_dma_tag_create( 512 bus_get_dma_tag(sc->dev), /* parent */ 513 32, 0, /* alignment, boundary */ 514 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 515 BUS_SPACE_MAXADDR, /* highaddr */ 516 NULL, NULL, /* filtfunc, filtfuncarg */ 517 sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */ 518 1, /* nsegments */ 519 sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */ 520 0, /* flags */ 521 NULL, NULL, /* lockfunc, lockfuncarg */ 522 &sc->rx_dtag); /* dmat */ 523 if (error != 0) { 524 device_printf(sc->dev, 525 "Failed to create DMA tag for Rx descriptors.\n"); 526 goto fail; 527 } 528 529 /* Create tag for Rx buffers */ 530 error = bus_dma_tag_create( 531 bus_get_dma_tag(sc->dev), /* parent */ 532 32, 0, /* alignment, boundary */ 533 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 534 BUS_SPACE_MAXADDR, /* highaddr */ 535 NULL, NULL, /* filtfunc, filtfuncarg */ 536 MVNETA_MAX_FRAME, 1, /* maxsize, nsegments */ 537 MVNETA_MAX_FRAME, /* maxsegsz */ 538 0, /* flags */ 539 NULL, NULL, /* lockfunc, lockfuncarg */ 540 &sc->rxbuf_dtag); /* dmat */ 541 if (error != 0) { 542 device_printf(sc->dev, 543 "Failed to create DMA tag for Rx buffers.\n"); 544 goto fail; 545 } 546 547 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 548 if (mvneta_ring_alloc_rx_queue(sc, q) != 0) { 549 device_printf(sc->dev, 550 "Failed to allocate DMA safe memory for RxQ: %zu\n", q); 551 goto fail; 552 } 553 } 554 555 return (0); 556 fail: 557 mvneta_detach(sc->dev); 558 559 return (error); 560 } 561 562 /* ARGSUSED */ 563 int 564 mvneta_attach(device_t self) 565 { 566 struct mvneta_softc *sc; 567 struct ifnet *ifp; 568 device_t child; 569 int ifm_target; 570 int q, error; 571 #if !defined(__aarch64__) 572 uint32_t reg; 573 #endif 574 575 sc = device_get_softc(self); 576 sc->dev = self; 577 578 mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF); 579 580 error = bus_alloc_resources(self, res_spec, sc->res); 581 if (error) { 582 device_printf(self, "could not allocate resources\n"); 583 return (ENXIO); 584 } 585 586 sc->version = MVNETA_READ(sc, MVNETA_PV); 587 device_printf(self, "version is %x\n", sc->version); 588 callout_init(&sc->tick_ch, 0); 589 590 /* 591 * make sure DMA engines are in reset state 592 */ 593 MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001); 594 MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001); 595 596 #if !defined(__aarch64__) 597 /* 598 * Disable port snoop for buffers and descriptors 599 * to avoid L2 caching of both without DRAM copy. 600 * Obtain coherency settings from the first MBUS 601 * window attribute. 602 */ 603 if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) { 604 reg = MVNETA_READ(sc, MVNETA_PSNPCFG); 605 reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK; 606 reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK; 607 MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg); 608 } 609 #endif 610 611 /* 612 * MAC address 613 */ 614 if (mvneta_get_mac_address(sc, sc->enaddr)) { 615 device_printf(self, "no mac address.\n"); 616 return (ENXIO); 617 } 618 mvneta_set_mac_address(sc, sc->enaddr); 619 620 mvneta_disable_intr(sc); 621 622 /* Allocate network interface */ 623 ifp = sc->ifp = if_alloc(IFT_ETHER); 624 if (ifp == NULL) { 625 device_printf(self, "if_alloc() failed\n"); 626 mvneta_detach(self); 627 return (ENOMEM); 628 } 629 if_initname(ifp, device_get_name(self), device_get_unit(self)); 630 631 /* 632 * We can support 802.1Q VLAN-sized frames and jumbo 633 * Ethernet frames. 634 */ 635 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU; 636 637 ifp->if_softc = sc; 638 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 639 #ifdef MVNETA_MULTIQUEUE 640 ifp->if_transmit = mvneta_transmit; 641 ifp->if_qflush = mvneta_qflush; 642 #else /* !MVNETA_MULTIQUEUE */ 643 ifp->if_start = mvneta_start; 644 ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1; 645 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 646 IFQ_SET_READY(&ifp->if_snd); 647 #endif 648 ifp->if_init = mvneta_init; 649 ifp->if_ioctl = mvneta_ioctl; 650 651 /* 652 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware. 653 */ 654 ifp->if_capabilities |= IFCAP_HWCSUM; 655 656 /* 657 * As VLAN hardware tagging is not supported 658 * but is necessary to perform VLAN hardware checksums, 659 * it is done in the driver 660 */ 661 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; 662 663 /* 664 * Currently IPv6 HW checksum is broken, so make sure it is disabled. 665 */ 666 ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6; 667 ifp->if_capenable = ifp->if_capabilities; 668 669 /* 670 * Disabled option(s): 671 * - Support for Large Receive Offload 672 */ 673 ifp->if_capabilities |= IFCAP_LRO; 674 675 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP; 676 677 sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */ 678 679 /* 680 * Device DMA Buffer allocation. 681 * Handles resource deallocation in case of failure. 682 */ 683 error = mvneta_dma_create(sc); 684 if (error != 0) { 685 mvneta_detach(self); 686 return (error); 687 } 688 689 /* Initialize queues */ 690 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) { 691 error = mvneta_ring_init_tx_queue(sc, q); 692 if (error != 0) { 693 mvneta_detach(self); 694 return (error); 695 } 696 } 697 698 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 699 error = mvneta_ring_init_rx_queue(sc, q); 700 if (error != 0) { 701 mvneta_detach(self); 702 return (error); 703 } 704 } 705 706 ether_ifattach(ifp, sc->enaddr); 707 708 /* 709 * Enable DMA engines and Initialize Device Registers. 710 */ 711 MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000); 712 MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000); 713 MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM); 714 mvneta_sc_lock(sc); 715 mvneta_filter_setup(sc); 716 mvneta_sc_unlock(sc); 717 mvneta_initreg(ifp); 718 719 /* 720 * Now MAC is working, setup MII. 721 */ 722 if (mii_init == 0) { 723 /* 724 * MII bus is shared by all MACs and all PHYs in SoC. 725 * serializing the bus access should be safe. 726 */ 727 mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF); 728 mii_init = 1; 729 } 730 731 /* Attach PHY(s) */ 732 if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) { 733 error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange, 734 mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr, 735 MII_OFFSET_ANY, 0); 736 if (error != 0) { 737 if (bootverbose) { 738 device_printf(self, 739 "MII attach failed, error: %d\n", error); 740 } 741 ether_ifdetach(sc->ifp); 742 mvneta_detach(self); 743 return (error); 744 } 745 sc->mii = device_get_softc(sc->miibus); 746 sc->phy_attached = 1; 747 748 /* Disable auto-negotiation in MAC - rely on PHY layer */ 749 mvneta_update_autoneg(sc, FALSE); 750 } else if (sc->use_inband_status == TRUE) { 751 /* In-band link status */ 752 ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange, 753 mvneta_mediastatus); 754 755 /* Configure media */ 756 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX, 757 0, NULL); 758 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL); 759 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX, 760 0, NULL); 761 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL); 762 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX, 763 0, NULL); 764 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 765 ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO); 766 767 /* Enable auto-negotiation */ 768 mvneta_update_autoneg(sc, TRUE); 769 770 mvneta_sc_lock(sc); 771 if (MVNETA_IS_LINKUP(sc)) 772 mvneta_linkup(sc); 773 else 774 mvneta_linkdown(sc); 775 mvneta_sc_unlock(sc); 776 777 } else { 778 /* Fixed-link, use predefined values */ 779 mvneta_update_autoneg(sc, FALSE); 780 ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange, 781 mvneta_mediastatus); 782 783 ifm_target = IFM_ETHER; 784 switch (sc->phy_speed) { 785 case 2500: 786 if (sc->phy_mode != MVNETA_PHY_SGMII && 787 sc->phy_mode != MVNETA_PHY_QSGMII) { 788 device_printf(self, 789 "2.5G speed can work only in (Q)SGMII mode\n"); 790 ether_ifdetach(sc->ifp); 791 mvneta_detach(self); 792 return (ENXIO); 793 } 794 ifm_target |= IFM_2500_T; 795 break; 796 case 1000: 797 ifm_target |= IFM_1000_T; 798 break; 799 case 100: 800 ifm_target |= IFM_100_TX; 801 break; 802 case 10: 803 ifm_target |= IFM_10_T; 804 break; 805 default: 806 ether_ifdetach(sc->ifp); 807 mvneta_detach(self); 808 return (ENXIO); 809 } 810 811 if (sc->phy_fdx) 812 ifm_target |= IFM_FDX; 813 else 814 ifm_target |= IFM_HDX; 815 816 ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL); 817 ifmedia_set(&sc->mvneta_ifmedia, ifm_target); 818 if_link_state_change(sc->ifp, LINK_STATE_UP); 819 820 if (mvneta_has_switch(self)) { 821 if (bootverbose) 822 device_printf(self, "This device is attached to a switch\n"); 823 child = device_add_child(sc->dev, "mdio", -1); 824 if (child == NULL) { 825 ether_ifdetach(sc->ifp); 826 mvneta_detach(self); 827 return (ENXIO); 828 } 829 bus_generic_attach(sc->dev); 830 bus_generic_attach(child); 831 } 832 833 /* Configure MAC media */ 834 mvneta_update_media(sc, ifm_target); 835 } 836 837 sysctl_mvneta_init(sc); 838 839 callout_reset(&sc->tick_ch, 0, mvneta_tick, sc); 840 841 error = bus_setup_intr(self, sc->res[1], 842 INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc, 843 &sc->ih_cookie[0]); 844 if (error) { 845 device_printf(self, "could not setup %s\n", 846 mvneta_intrs[0].description); 847 ether_ifdetach(sc->ifp); 848 mvneta_detach(self); 849 return (error); 850 } 851 852 return (0); 853 } 854 855 STATIC int 856 mvneta_detach(device_t dev) 857 { 858 struct mvneta_softc *sc; 859 int q; 860 861 sc = device_get_softc(dev); 862 863 mvneta_stop(sc); 864 /* Detach network interface */ 865 if (sc->ifp) 866 if_free(sc->ifp); 867 868 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) 869 mvneta_ring_dealloc_rx_queue(sc, q); 870 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) 871 mvneta_ring_dealloc_tx_queue(sc, q); 872 873 if (sc->tx_dtag != NULL) 874 bus_dma_tag_destroy(sc->tx_dtag); 875 if (sc->rx_dtag != NULL) 876 bus_dma_tag_destroy(sc->rx_dtag); 877 if (sc->txmbuf_dtag != NULL) 878 bus_dma_tag_destroy(sc->txmbuf_dtag); 879 if (sc->rxbuf_dtag != NULL) 880 bus_dma_tag_destroy(sc->rxbuf_dtag); 881 882 bus_release_resources(dev, res_spec, sc->res); 883 return (0); 884 } 885 886 /* 887 * MII 888 */ 889 STATIC int 890 mvneta_miibus_readreg(device_t dev, int phy, int reg) 891 { 892 struct mvneta_softc *sc; 893 struct ifnet *ifp; 894 uint32_t smi, val; 895 int i; 896 897 sc = device_get_softc(dev); 898 ifp = sc->ifp; 899 900 mtx_lock(&mii_mutex); 901 902 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) { 903 if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0) 904 break; 905 DELAY(1); 906 } 907 if (i == MVNETA_PHY_TIMEOUT) { 908 if_printf(ifp, "SMI busy timeout\n"); 909 mtx_unlock(&mii_mutex); 910 return (-1); 911 } 912 913 smi = MVNETA_SMI_PHYAD(phy) | 914 MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ; 915 MVNETA_WRITE(sc, MVNETA_SMI, smi); 916 917 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) { 918 if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0) 919 break; 920 DELAY(1); 921 } 922 923 if (i == MVNETA_PHY_TIMEOUT) { 924 if_printf(ifp, "SMI busy timeout\n"); 925 mtx_unlock(&mii_mutex); 926 return (-1); 927 } 928 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) { 929 smi = MVNETA_READ(sc, MVNETA_SMI); 930 if (smi & MVNETA_SMI_READVALID) 931 break; 932 DELAY(1); 933 } 934 935 if (i == MVNETA_PHY_TIMEOUT) { 936 if_printf(ifp, "SMI busy timeout\n"); 937 mtx_unlock(&mii_mutex); 938 return (-1); 939 } 940 941 mtx_unlock(&mii_mutex); 942 943 #ifdef MVNETA_KTR 944 CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i, 945 MVNETA_PHY_TIMEOUT); 946 #endif 947 948 val = smi & MVNETA_SMI_DATA_MASK; 949 950 #ifdef MVNETA_KTR 951 CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy, 952 reg, val); 953 #endif 954 return (val); 955 } 956 957 STATIC int 958 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val) 959 { 960 struct mvneta_softc *sc; 961 struct ifnet *ifp; 962 uint32_t smi; 963 int i; 964 965 sc = device_get_softc(dev); 966 ifp = sc->ifp; 967 #ifdef MVNETA_KTR 968 CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, 969 phy, reg, val); 970 #endif 971 972 mtx_lock(&mii_mutex); 973 974 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) { 975 if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0) 976 break; 977 DELAY(1); 978 } 979 if (i == MVNETA_PHY_TIMEOUT) { 980 if_printf(ifp, "SMI busy timeout\n"); 981 mtx_unlock(&mii_mutex); 982 return (0); 983 } 984 985 smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) | 986 MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK); 987 MVNETA_WRITE(sc, MVNETA_SMI, smi); 988 989 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) { 990 if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0) 991 break; 992 DELAY(1); 993 } 994 995 mtx_unlock(&mii_mutex); 996 997 if (i == MVNETA_PHY_TIMEOUT) 998 if_printf(ifp, "phy write timed out\n"); 999 1000 return (0); 1001 } 1002 1003 STATIC void 1004 mvneta_portup(struct mvneta_softc *sc) 1005 { 1006 int q; 1007 1008 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 1009 mvneta_rx_lockq(sc, q); 1010 mvneta_rx_queue_enable(sc->ifp, q); 1011 mvneta_rx_unlockq(sc, q); 1012 } 1013 1014 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) { 1015 mvneta_tx_lockq(sc, q); 1016 mvneta_tx_queue_enable(sc->ifp, q); 1017 mvneta_tx_unlockq(sc, q); 1018 } 1019 1020 } 1021 1022 STATIC void 1023 mvneta_portdown(struct mvneta_softc *sc) 1024 { 1025 struct mvneta_rx_ring *rx; 1026 struct mvneta_tx_ring *tx; 1027 int q, cnt; 1028 uint32_t reg; 1029 1030 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 1031 rx = MVNETA_RX_RING(sc, q); 1032 mvneta_rx_lockq(sc, q); 1033 rx->queue_status = MVNETA_QUEUE_DISABLED; 1034 mvneta_rx_unlockq(sc, q); 1035 } 1036 1037 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) { 1038 tx = MVNETA_TX_RING(sc, q); 1039 mvneta_tx_lockq(sc, q); 1040 tx->queue_status = MVNETA_QUEUE_DISABLED; 1041 mvneta_tx_unlockq(sc, q); 1042 } 1043 1044 /* Wait for all Rx activity to terminate. */ 1045 reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK; 1046 reg = MVNETA_RQC_DIS(reg); 1047 MVNETA_WRITE(sc, MVNETA_RQC, reg); 1048 cnt = 0; 1049 do { 1050 if (cnt >= RX_DISABLE_TIMEOUT) { 1051 if_printf(sc->ifp, 1052 "timeout for RX stopped. rqc 0x%x\n", reg); 1053 break; 1054 } 1055 cnt++; 1056 reg = MVNETA_READ(sc, MVNETA_RQC); 1057 } while ((reg & MVNETA_RQC_EN_MASK) != 0); 1058 1059 /* Wait for all Tx activity to terminate. */ 1060 reg = MVNETA_READ(sc, MVNETA_PIE); 1061 reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK; 1062 MVNETA_WRITE(sc, MVNETA_PIE, reg); 1063 1064 reg = MVNETA_READ(sc, MVNETA_PRXTXTIM); 1065 reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK; 1066 MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg); 1067 1068 reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK; 1069 reg = MVNETA_TQC_DIS(reg); 1070 MVNETA_WRITE(sc, MVNETA_TQC, reg); 1071 cnt = 0; 1072 do { 1073 if (cnt >= TX_DISABLE_TIMEOUT) { 1074 if_printf(sc->ifp, 1075 "timeout for TX stopped. tqc 0x%x\n", reg); 1076 break; 1077 } 1078 cnt++; 1079 reg = MVNETA_READ(sc, MVNETA_TQC); 1080 } while ((reg & MVNETA_TQC_EN_MASK) != 0); 1081 1082 /* Wait for all Tx FIFO is empty */ 1083 cnt = 0; 1084 do { 1085 if (cnt >= TX_FIFO_EMPTY_TIMEOUT) { 1086 if_printf(sc->ifp, 1087 "timeout for TX FIFO drained. ps0 0x%x\n", reg); 1088 break; 1089 } 1090 cnt++; 1091 reg = MVNETA_READ(sc, MVNETA_PS0); 1092 } while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) && 1093 ((reg & MVNETA_PS0_TXINPROG) != 0)); 1094 } 1095 1096 /* 1097 * Device Register Initialization 1098 * reset device registers to device driver default value. 1099 * the device is not enabled here. 1100 */ 1101 STATIC int 1102 mvneta_initreg(struct ifnet *ifp) 1103 { 1104 struct mvneta_softc *sc; 1105 int q, i; 1106 uint32_t reg; 1107 1108 sc = ifp->if_softc; 1109 #ifdef MVNETA_KTR 1110 CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname); 1111 #endif 1112 1113 /* Disable Legacy WRR, Disable EJP, Release from reset. */ 1114 MVNETA_WRITE(sc, MVNETA_TQC_1, 0); 1115 /* Enable mbus retry. */ 1116 MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN); 1117 1118 /* Init TX/RX Queue Registers */ 1119 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 1120 mvneta_rx_lockq(sc, q); 1121 if (mvneta_rx_queue_init(ifp, q) != 0) { 1122 device_printf(sc->dev, 1123 "initialization failed: cannot initialize queue\n"); 1124 mvneta_rx_unlockq(sc, q); 1125 return (ENOBUFS); 1126 } 1127 mvneta_rx_unlockq(sc, q); 1128 } 1129 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) { 1130 mvneta_tx_lockq(sc, q); 1131 if (mvneta_tx_queue_init(ifp, q) != 0) { 1132 device_printf(sc->dev, 1133 "initialization failed: cannot initialize queue\n"); 1134 mvneta_tx_unlockq(sc, q); 1135 return (ENOBUFS); 1136 } 1137 mvneta_tx_unlockq(sc, q); 1138 } 1139 1140 /* 1141 * Ethernet Unit Control - disable automatic PHY management by HW. 1142 * In case the port uses SMI-controlled PHY, poll its status with 1143 * mii_tick() and update MAC settings accordingly. 1144 */ 1145 reg = MVNETA_READ(sc, MVNETA_EUC); 1146 reg &= ~MVNETA_EUC_POLLING; 1147 MVNETA_WRITE(sc, MVNETA_EUC, reg); 1148 1149 /* EEE: Low Power Idle */ 1150 reg = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI); 1151 reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS); 1152 MVNETA_WRITE(sc, MVNETA_LPIC0, reg); 1153 1154 reg = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW); 1155 MVNETA_WRITE(sc, MVNETA_LPIC1, reg); 1156 1157 reg = MVNETA_LPIC2_MUSTSET; 1158 MVNETA_WRITE(sc, MVNETA_LPIC2, reg); 1159 1160 /* Port MAC Control set 0 */ 1161 reg = MVNETA_PMACC0_MUSTSET; /* must write 0x1 */ 1162 reg &= ~MVNETA_PMACC0_PORTEN; /* port is still disabled */ 1163 reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE); 1164 MVNETA_WRITE(sc, MVNETA_PMACC0, reg); 1165 1166 /* Port MAC Control set 2 */ 1167 reg = MVNETA_READ(sc, MVNETA_PMACC2); 1168 switch (sc->phy_mode) { 1169 case MVNETA_PHY_QSGMII: 1170 reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN); 1171 MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII); 1172 break; 1173 case MVNETA_PHY_SGMII: 1174 reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN); 1175 MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII); 1176 break; 1177 case MVNETA_PHY_RGMII: 1178 case MVNETA_PHY_RGMII_ID: 1179 reg |= MVNETA_PMACC2_RGMIIEN; 1180 break; 1181 } 1182 reg |= MVNETA_PMACC2_MUSTSET; 1183 reg &= ~MVNETA_PMACC2_PORTMACRESET; 1184 MVNETA_WRITE(sc, MVNETA_PMACC2, reg); 1185 1186 /* Port Configuration Extended: enable Tx CRC generation */ 1187 reg = MVNETA_READ(sc, MVNETA_PXCX); 1188 reg &= ~MVNETA_PXCX_TXCRCDIS; 1189 MVNETA_WRITE(sc, MVNETA_PXCX, reg); 1190 1191 /* clear MIB counter registers(clear by read) */ 1192 for (i = 0; i < nitems(mvneta_mib_list); i++) { 1193 if (mvneta_mib_list[i].reg64) 1194 MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum); 1195 else 1196 MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum); 1197 } 1198 MVNETA_READ(sc, MVNETA_PDFC); 1199 MVNETA_READ(sc, MVNETA_POFC); 1200 1201 /* Set SDC register except IPGINT bits */ 1202 reg = MVNETA_SDC_RXBSZ_16_64BITWORDS; 1203 reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS; 1204 reg |= MVNETA_SDC_BLMR; 1205 reg |= MVNETA_SDC_BLMT; 1206 MVNETA_WRITE(sc, MVNETA_SDC, reg); 1207 1208 return (0); 1209 } 1210 1211 STATIC void 1212 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error) 1213 { 1214 1215 if (error != 0) 1216 return; 1217 *(bus_addr_t *)arg = segs->ds_addr; 1218 } 1219 1220 STATIC int 1221 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q) 1222 { 1223 struct mvneta_rx_ring *rx; 1224 struct mvneta_buf *rxbuf; 1225 bus_dmamap_t dmap; 1226 int i, error; 1227 1228 if (q >= MVNETA_RX_QNUM_MAX) 1229 return (EINVAL); 1230 1231 rx = MVNETA_RX_RING(sc, q); 1232 mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF); 1233 /* Allocate DMA memory for Rx descriptors */ 1234 error = bus_dmamem_alloc(sc->rx_dtag, 1235 (void**)&(rx->desc), 1236 BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1237 &rx->desc_map); 1238 if (error != 0 || rx->desc == NULL) 1239 goto fail; 1240 error = bus_dmamap_load(sc->rx_dtag, rx->desc_map, 1241 rx->desc, 1242 sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, 1243 mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT); 1244 if (error != 0) 1245 goto fail; 1246 1247 for (i = 0; i < MVNETA_RX_RING_CNT; i++) { 1248 error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap); 1249 if (error != 0) { 1250 device_printf(sc->dev, 1251 "Failed to create DMA map for Rx buffer num: %d\n", i); 1252 goto fail; 1253 } 1254 rxbuf = &rx->rxbuf[i]; 1255 rxbuf->dmap = dmap; 1256 rxbuf->m = NULL; 1257 } 1258 1259 return (0); 1260 fail: 1261 mvneta_ring_dealloc_rx_queue(sc, q); 1262 device_printf(sc->dev, "DMA Ring buffer allocation failure.\n"); 1263 return (error); 1264 } 1265 1266 STATIC int 1267 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q) 1268 { 1269 struct mvneta_tx_ring *tx; 1270 int error; 1271 1272 if (q >= MVNETA_TX_QNUM_MAX) 1273 return (EINVAL); 1274 tx = MVNETA_TX_RING(sc, q); 1275 mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF); 1276 error = bus_dmamem_alloc(sc->tx_dtag, 1277 (void**)&(tx->desc), 1278 BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1279 &tx->desc_map); 1280 if (error != 0 || tx->desc == NULL) 1281 goto fail; 1282 error = bus_dmamap_load(sc->tx_dtag, tx->desc_map, 1283 tx->desc, 1284 sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT, 1285 mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT); 1286 if (error != 0) 1287 goto fail; 1288 1289 #ifdef MVNETA_MULTIQUEUE 1290 tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT, 1291 &tx->ring_mtx); 1292 if (tx->br == NULL) { 1293 device_printf(sc->dev, 1294 "Could not setup buffer ring for TxQ(%d)\n", q); 1295 error = ENOMEM; 1296 goto fail; 1297 } 1298 #endif 1299 1300 return (0); 1301 fail: 1302 mvneta_ring_dealloc_tx_queue(sc, q); 1303 device_printf(sc->dev, "DMA Ring buffer allocation failure.\n"); 1304 return (error); 1305 } 1306 1307 STATIC void 1308 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q) 1309 { 1310 struct mvneta_tx_ring *tx; 1311 struct mvneta_buf *txbuf; 1312 void *kva; 1313 int error; 1314 int i; 1315 1316 if (q >= MVNETA_TX_QNUM_MAX) 1317 return; 1318 tx = MVNETA_TX_RING(sc, q); 1319 1320 if (tx->taskq != NULL) { 1321 /* Remove task */ 1322 while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0) 1323 taskqueue_drain(tx->taskq, &tx->task); 1324 } 1325 #ifdef MVNETA_MULTIQUEUE 1326 if (tx->br != NULL) 1327 drbr_free(tx->br, M_DEVBUF); 1328 #endif 1329 1330 if (sc->txmbuf_dtag != NULL) { 1331 if (mtx_name(&tx->ring_mtx) != NULL) { 1332 /* 1333 * It is assumed that maps are being loaded after mutex 1334 * is initialized. Therefore we can skip unloading maps 1335 * when mutex is empty. 1336 */ 1337 mvneta_tx_lockq(sc, q); 1338 mvneta_ring_flush_tx_queue(sc, q); 1339 mvneta_tx_unlockq(sc, q); 1340 } 1341 for (i = 0; i < MVNETA_TX_RING_CNT; i++) { 1342 txbuf = &tx->txbuf[i]; 1343 if (txbuf->dmap != NULL) { 1344 error = bus_dmamap_destroy(sc->txmbuf_dtag, 1345 txbuf->dmap); 1346 if (error != 0) { 1347 panic("%s: map busy for Tx descriptor (Q%d, %d)", 1348 __func__, q, i); 1349 } 1350 } 1351 } 1352 } 1353 1354 if (tx->desc_pa != 0) 1355 bus_dmamap_unload(sc->tx_dtag, tx->desc_map); 1356 1357 kva = (void *)tx->desc; 1358 if (kva != NULL) 1359 bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map); 1360 1361 if (mtx_name(&tx->ring_mtx) != NULL) 1362 mtx_destroy(&tx->ring_mtx); 1363 1364 memset(tx, 0, sizeof(*tx)); 1365 } 1366 1367 STATIC void 1368 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q) 1369 { 1370 struct mvneta_rx_ring *rx; 1371 struct lro_ctrl *lro; 1372 void *kva; 1373 1374 if (q >= MVNETA_RX_QNUM_MAX) 1375 return; 1376 1377 rx = MVNETA_RX_RING(sc, q); 1378 1379 mvneta_ring_flush_rx_queue(sc, q); 1380 1381 if (rx->desc_pa != 0) 1382 bus_dmamap_unload(sc->rx_dtag, rx->desc_map); 1383 1384 kva = (void *)rx->desc; 1385 if (kva != NULL) 1386 bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map); 1387 1388 lro = &rx->lro; 1389 tcp_lro_free(lro); 1390 1391 if (mtx_name(&rx->ring_mtx) != NULL) 1392 mtx_destroy(&rx->ring_mtx); 1393 1394 memset(rx, 0, sizeof(*rx)); 1395 } 1396 1397 STATIC int 1398 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q) 1399 { 1400 struct mvneta_rx_ring *rx; 1401 struct lro_ctrl *lro; 1402 int error; 1403 1404 if (q >= MVNETA_RX_QNUM_MAX) 1405 return (0); 1406 1407 rx = MVNETA_RX_RING(sc, q); 1408 rx->dma = rx->cpu = 0; 1409 rx->queue_th_received = MVNETA_RXTH_COUNT; 1410 rx->queue_th_time = (mvneta_get_clk() / 1000) / 10; /* 0.1 [ms] */ 1411 1412 /* Initialize LRO */ 1413 rx->lro_enabled = FALSE; 1414 if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) { 1415 lro = &rx->lro; 1416 error = tcp_lro_init(lro); 1417 if (error != 0) 1418 device_printf(sc->dev, "LRO Initialization failed!\n"); 1419 else { 1420 rx->lro_enabled = TRUE; 1421 lro->ifp = sc->ifp; 1422 } 1423 } 1424 1425 return (0); 1426 } 1427 1428 STATIC int 1429 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q) 1430 { 1431 struct mvneta_tx_ring *tx; 1432 struct mvneta_buf *txbuf; 1433 int i, error; 1434 1435 if (q >= MVNETA_TX_QNUM_MAX) 1436 return (0); 1437 1438 tx = MVNETA_TX_RING(sc, q); 1439 1440 /* Tx handle */ 1441 for (i = 0; i < MVNETA_TX_RING_CNT; i++) { 1442 txbuf = &tx->txbuf[i]; 1443 txbuf->m = NULL; 1444 /* Tx handle needs DMA map for busdma_load_mbuf() */ 1445 error = bus_dmamap_create(sc->txmbuf_dtag, 0, 1446 &txbuf->dmap); 1447 if (error != 0) { 1448 device_printf(sc->dev, 1449 "can't create dma map (tx ring %d)\n", i); 1450 return (error); 1451 } 1452 } 1453 tx->dma = tx->cpu = 0; 1454 tx->used = 0; 1455 tx->drv_error = 0; 1456 tx->queue_status = MVNETA_QUEUE_DISABLED; 1457 tx->queue_hung = FALSE; 1458 1459 tx->ifp = sc->ifp; 1460 tx->qidx = q; 1461 TASK_INIT(&tx->task, 0, mvneta_tx_task, tx); 1462 tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK, 1463 taskqueue_thread_enqueue, &tx->taskq); 1464 taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)", 1465 device_get_nameunit(sc->dev), q); 1466 1467 return (0); 1468 } 1469 1470 STATIC void 1471 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q) 1472 { 1473 struct mvneta_tx_ring *tx; 1474 struct mvneta_buf *txbuf; 1475 int i; 1476 1477 tx = MVNETA_TX_RING(sc, q); 1478 KASSERT_TX_MTX(sc, q); 1479 1480 /* Tx handle */ 1481 for (i = 0; i < MVNETA_TX_RING_CNT; i++) { 1482 txbuf = &tx->txbuf[i]; 1483 bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap); 1484 if (txbuf->m != NULL) { 1485 m_freem(txbuf->m); 1486 txbuf->m = NULL; 1487 } 1488 } 1489 tx->dma = tx->cpu = 0; 1490 tx->used = 0; 1491 } 1492 1493 STATIC void 1494 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q) 1495 { 1496 struct mvneta_rx_ring *rx; 1497 struct mvneta_buf *rxbuf; 1498 int i; 1499 1500 rx = MVNETA_RX_RING(sc, q); 1501 KASSERT_RX_MTX(sc, q); 1502 1503 /* Rx handle */ 1504 for (i = 0; i < MVNETA_RX_RING_CNT; i++) { 1505 rxbuf = &rx->rxbuf[i]; 1506 mvneta_rx_buf_free(sc, rxbuf); 1507 } 1508 rx->dma = rx->cpu = 0; 1509 } 1510 1511 /* 1512 * Rx/Tx Queue Control 1513 */ 1514 STATIC int 1515 mvneta_rx_queue_init(struct ifnet *ifp, int q) 1516 { 1517 struct mvneta_softc *sc; 1518 struct mvneta_rx_ring *rx; 1519 uint32_t reg; 1520 1521 sc = ifp->if_softc; 1522 KASSERT_RX_MTX(sc, q); 1523 rx = MVNETA_RX_RING(sc, q); 1524 DASSERT(rx->desc_pa != 0); 1525 1526 /* descriptor address */ 1527 MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa); 1528 1529 /* Rx buffer size and descriptor ring size */ 1530 reg = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3); 1531 reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT); 1532 MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg); 1533 #ifdef MVNETA_KTR 1534 CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q, 1535 MVNETA_READ(sc, MVNETA_PRXDQS(q))); 1536 #endif 1537 /* Rx packet offset address */ 1538 reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3); 1539 MVNETA_WRITE(sc, MVNETA_PRXC(q), reg); 1540 #ifdef MVNETA_KTR 1541 CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q, 1542 MVNETA_READ(sc, MVNETA_PRXC(q))); 1543 #endif 1544 1545 /* if DMA is not working, register is not updated */ 1546 DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa); 1547 return (0); 1548 } 1549 1550 STATIC int 1551 mvneta_tx_queue_init(struct ifnet *ifp, int q) 1552 { 1553 struct mvneta_softc *sc; 1554 struct mvneta_tx_ring *tx; 1555 uint32_t reg; 1556 1557 sc = ifp->if_softc; 1558 KASSERT_TX_MTX(sc, q); 1559 tx = MVNETA_TX_RING(sc, q); 1560 DASSERT(tx->desc_pa != 0); 1561 1562 /* descriptor address */ 1563 MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa); 1564 1565 /* descriptor ring size */ 1566 reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT); 1567 MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg); 1568 1569 /* if DMA is not working, register is not updated */ 1570 DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa); 1571 return (0); 1572 } 1573 1574 STATIC int 1575 mvneta_rx_queue_enable(struct ifnet *ifp, int q) 1576 { 1577 struct mvneta_softc *sc; 1578 struct mvneta_rx_ring *rx; 1579 uint32_t reg; 1580 1581 sc = ifp->if_softc; 1582 rx = MVNETA_RX_RING(sc, q); 1583 KASSERT_RX_MTX(sc, q); 1584 1585 /* Set Rx interrupt threshold */ 1586 reg = MVNETA_PRXDQTH_ODT(rx->queue_th_received); 1587 MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg); 1588 1589 reg = MVNETA_PRXITTH_RITT(rx->queue_th_time); 1590 MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg); 1591 1592 /* Unmask RXTX_TH Intr. */ 1593 reg = MVNETA_READ(sc, MVNETA_PRXTXTIM); 1594 reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */ 1595 MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg); 1596 1597 /* Enable Rx queue */ 1598 reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK; 1599 reg |= MVNETA_RQC_ENQ(q); 1600 MVNETA_WRITE(sc, MVNETA_RQC, reg); 1601 1602 rx->queue_status = MVNETA_QUEUE_WORKING; 1603 return (0); 1604 } 1605 1606 STATIC int 1607 mvneta_tx_queue_enable(struct ifnet *ifp, int q) 1608 { 1609 struct mvneta_softc *sc; 1610 struct mvneta_tx_ring *tx; 1611 1612 sc = ifp->if_softc; 1613 tx = MVNETA_TX_RING(sc, q); 1614 KASSERT_TX_MTX(sc, q); 1615 1616 /* Enable Tx queue */ 1617 MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q)); 1618 1619 tx->queue_status = MVNETA_QUEUE_IDLE; 1620 tx->queue_hung = FALSE; 1621 return (0); 1622 } 1623 1624 STATIC __inline void 1625 mvneta_rx_lockq(struct mvneta_softc *sc, int q) 1626 { 1627 1628 DASSERT(q >= 0); 1629 DASSERT(q < MVNETA_RX_QNUM_MAX); 1630 mtx_lock(&sc->rx_ring[q].ring_mtx); 1631 } 1632 1633 STATIC __inline void 1634 mvneta_rx_unlockq(struct mvneta_softc *sc, int q) 1635 { 1636 1637 DASSERT(q >= 0); 1638 DASSERT(q < MVNETA_RX_QNUM_MAX); 1639 mtx_unlock(&sc->rx_ring[q].ring_mtx); 1640 } 1641 1642 STATIC __inline int __unused 1643 mvneta_tx_trylockq(struct mvneta_softc *sc, int q) 1644 { 1645 1646 DASSERT(q >= 0); 1647 DASSERT(q < MVNETA_TX_QNUM_MAX); 1648 return (mtx_trylock(&sc->tx_ring[q].ring_mtx)); 1649 } 1650 1651 STATIC __inline void 1652 mvneta_tx_lockq(struct mvneta_softc *sc, int q) 1653 { 1654 1655 DASSERT(q >= 0); 1656 DASSERT(q < MVNETA_TX_QNUM_MAX); 1657 mtx_lock(&sc->tx_ring[q].ring_mtx); 1658 } 1659 1660 STATIC __inline void 1661 mvneta_tx_unlockq(struct mvneta_softc *sc, int q) 1662 { 1663 1664 DASSERT(q >= 0); 1665 DASSERT(q < MVNETA_TX_QNUM_MAX); 1666 mtx_unlock(&sc->tx_ring[q].ring_mtx); 1667 } 1668 1669 /* 1670 * Interrupt Handlers 1671 */ 1672 STATIC void 1673 mvneta_disable_intr(struct mvneta_softc *sc) 1674 { 1675 1676 MVNETA_WRITE(sc, MVNETA_EUIM, 0); 1677 MVNETA_WRITE(sc, MVNETA_EUIC, 0); 1678 MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0); 1679 MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0); 1680 MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0); 1681 MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0); 1682 MVNETA_WRITE(sc, MVNETA_PMIM, 0); 1683 MVNETA_WRITE(sc, MVNETA_PMIC, 0); 1684 MVNETA_WRITE(sc, MVNETA_PIE, 0); 1685 } 1686 1687 STATIC void 1688 mvneta_enable_intr(struct mvneta_softc *sc) 1689 { 1690 uint32_t reg; 1691 1692 /* Enable Summary Bit to check all interrupt cause. */ 1693 reg = MVNETA_READ(sc, MVNETA_PRXTXTIM); 1694 reg |= MVNETA_PRXTXTI_PMISCICSUMMARY; 1695 MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg); 1696 1697 if (sc->use_inband_status) { 1698 /* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */ 1699 MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG | 1700 MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE); 1701 } 1702 1703 /* Enable All Queue Interrupt */ 1704 reg = MVNETA_READ(sc, MVNETA_PIE); 1705 reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK; 1706 reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK; 1707 MVNETA_WRITE(sc, MVNETA_PIE, reg); 1708 } 1709 1710 STATIC void 1711 mvneta_rxtxth_intr(void *arg) 1712 { 1713 struct mvneta_softc *sc; 1714 struct ifnet *ifp; 1715 uint32_t ic, queues; 1716 1717 sc = arg; 1718 ifp = sc->ifp; 1719 #ifdef MVNETA_KTR 1720 CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname); 1721 #endif 1722 ic = MVNETA_READ(sc, MVNETA_PRXTXTIC); 1723 if (ic == 0) 1724 return; 1725 MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic); 1726 1727 /* Ack maintance interrupt first */ 1728 if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) && 1729 sc->use_inband_status)) { 1730 mvneta_sc_lock(sc); 1731 mvneta_misc_intr(sc); 1732 mvneta_sc_unlock(sc); 1733 } 1734 if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING))) 1735 return; 1736 /* RxTxTH interrupt */ 1737 queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic); 1738 if (__predict_true(queues)) { 1739 #ifdef MVNETA_KTR 1740 CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname); 1741 #endif 1742 /* At the moment the driver support only one RX queue. */ 1743 DASSERT(MVNETA_IS_QUEUE_SET(queues, 0)); 1744 mvneta_rx(sc, 0, 0); 1745 } 1746 } 1747 1748 STATIC int 1749 mvneta_misc_intr(struct mvneta_softc *sc) 1750 { 1751 uint32_t ic; 1752 int claimed = 0; 1753 1754 #ifdef MVNETA_KTR 1755 CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname); 1756 #endif 1757 KASSERT_SC_MTX(sc); 1758 1759 for (;;) { 1760 ic = MVNETA_READ(sc, MVNETA_PMIC); 1761 ic &= MVNETA_READ(sc, MVNETA_PMIM); 1762 if (ic == 0) 1763 break; 1764 MVNETA_WRITE(sc, MVNETA_PMIC, ~ic); 1765 claimed = 1; 1766 1767 if (ic & (MVNETA_PMI_PHYSTATUSCHNG | 1768 MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE)) 1769 mvneta_link_isr(sc); 1770 } 1771 return (claimed); 1772 } 1773 1774 STATIC void 1775 mvneta_tick(void *arg) 1776 { 1777 struct mvneta_softc *sc; 1778 struct mvneta_tx_ring *tx; 1779 struct mvneta_rx_ring *rx; 1780 int q; 1781 uint32_t fc_prev, fc_curr; 1782 1783 sc = arg; 1784 1785 /* 1786 * This is done before mib update to get the right stats 1787 * for this tick. 1788 */ 1789 mvneta_tx_drain(sc); 1790 1791 /* Extract previous flow-control frame received counter. */ 1792 fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter; 1793 /* Read mib registers (clear by read). */ 1794 mvneta_update_mib(sc); 1795 /* Extract current flow-control frame received counter. */ 1796 fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter; 1797 1798 1799 if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) { 1800 mvneta_sc_lock(sc); 1801 mii_tick(sc->mii); 1802 1803 /* Adjust MAC settings */ 1804 mvneta_adjust_link(sc); 1805 mvneta_sc_unlock(sc); 1806 } 1807 1808 /* 1809 * We were unable to refill the rx queue and left the rx func, leaving 1810 * the ring without mbuf and no way to call the refill func. 1811 */ 1812 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 1813 rx = MVNETA_RX_RING(sc, q); 1814 if (rx->needs_refill == TRUE) { 1815 mvneta_rx_lockq(sc, q); 1816 mvneta_rx_queue_refill(sc, q); 1817 mvneta_rx_unlockq(sc, q); 1818 } 1819 } 1820 1821 /* 1822 * Watchdog: 1823 * - check if queue is mark as hung. 1824 * - ignore hung status if we received some pause frame 1825 * as hardware may have paused packet transmit. 1826 */ 1827 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) { 1828 /* 1829 * We should take queue lock, but as we only read 1830 * queue status we can do it without lock, we may 1831 * only missdetect queue status for one tick. 1832 */ 1833 tx = MVNETA_TX_RING(sc, q); 1834 1835 if (tx->queue_hung && (fc_curr - fc_prev) == 0) 1836 goto timeout; 1837 } 1838 1839 callout_schedule(&sc->tick_ch, hz); 1840 return; 1841 1842 timeout: 1843 if_printf(sc->ifp, "watchdog timeout\n"); 1844 1845 mvneta_sc_lock(sc); 1846 sc->counter_watchdog++; 1847 sc->counter_watchdog_mib++; 1848 /* Trigger reinitialize sequence. */ 1849 mvneta_stop_locked(sc); 1850 mvneta_init_locked(sc); 1851 mvneta_sc_unlock(sc); 1852 } 1853 1854 STATIC void 1855 mvneta_qflush(struct ifnet *ifp) 1856 { 1857 #ifdef MVNETA_MULTIQUEUE 1858 struct mvneta_softc *sc; 1859 struct mvneta_tx_ring *tx; 1860 struct mbuf *m; 1861 size_t q; 1862 1863 sc = ifp->if_softc; 1864 1865 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) { 1866 tx = MVNETA_TX_RING(sc, q); 1867 mvneta_tx_lockq(sc, q); 1868 while ((m = buf_ring_dequeue_sc(tx->br)) != NULL) 1869 m_freem(m); 1870 mvneta_tx_unlockq(sc, q); 1871 } 1872 #endif 1873 if_qflush(ifp); 1874 } 1875 1876 STATIC void 1877 mvneta_tx_task(void *arg, int pending) 1878 { 1879 struct mvneta_softc *sc; 1880 struct mvneta_tx_ring *tx; 1881 struct ifnet *ifp; 1882 int error; 1883 1884 tx = arg; 1885 ifp = tx->ifp; 1886 sc = ifp->if_softc; 1887 1888 mvneta_tx_lockq(sc, tx->qidx); 1889 error = mvneta_xmit_locked(sc, tx->qidx); 1890 mvneta_tx_unlockq(sc, tx->qidx); 1891 1892 /* Try again */ 1893 if (__predict_false(error != 0 && error != ENETDOWN)) { 1894 pause("mvneta_tx_task_sleep", 1); 1895 taskqueue_enqueue(tx->taskq, &tx->task); 1896 } 1897 } 1898 1899 STATIC int 1900 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m) 1901 { 1902 struct mvneta_tx_ring *tx; 1903 struct ifnet *ifp; 1904 int error; 1905 1906 KASSERT_TX_MTX(sc, q); 1907 tx = MVNETA_TX_RING(sc, q); 1908 error = 0; 1909 1910 ifp = sc->ifp; 1911 1912 /* Dont enqueue packet if the queue is disabled. */ 1913 if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) { 1914 m_freem(*m); 1915 *m = NULL; 1916 return (ENETDOWN); 1917 } 1918 1919 /* Reclaim mbuf if above threshold. */ 1920 if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT)) 1921 mvneta_tx_queue_complete(sc, q); 1922 1923 /* Do not call transmit path if queue is already too full. */ 1924 if (__predict_false(tx->used > 1925 MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT)) 1926 return (ENOBUFS); 1927 1928 error = mvneta_tx_queue(sc, m, q); 1929 if (__predict_false(error != 0)) 1930 return (error); 1931 1932 /* Send a copy of the frame to the BPF listener */ 1933 ETHER_BPF_MTAP(ifp, *m); 1934 1935 /* Set watchdog on */ 1936 tx->watchdog_time = ticks; 1937 tx->queue_status = MVNETA_QUEUE_WORKING; 1938 1939 return (error); 1940 } 1941 1942 #ifdef MVNETA_MULTIQUEUE 1943 STATIC int 1944 mvneta_transmit(struct ifnet *ifp, struct mbuf *m) 1945 { 1946 struct mvneta_softc *sc; 1947 struct mvneta_tx_ring *tx; 1948 int error; 1949 int q; 1950 1951 sc = ifp->if_softc; 1952 1953 /* Use default queue if there is no flow id as thread can migrate. */ 1954 if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)) 1955 q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX; 1956 else 1957 q = 0; 1958 1959 tx = MVNETA_TX_RING(sc, q); 1960 1961 /* If buf_ring is full start transmit immediatly. */ 1962 if (buf_ring_full(tx->br)) { 1963 mvneta_tx_lockq(sc, q); 1964 mvneta_xmit_locked(sc, q); 1965 mvneta_tx_unlockq(sc, q); 1966 } 1967 1968 /* 1969 * If the buf_ring is empty we will not reorder packets. 1970 * If the lock is available transmit without using buf_ring. 1971 */ 1972 if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) { 1973 error = mvneta_xmitfast_locked(sc, q, &m); 1974 mvneta_tx_unlockq(sc, q); 1975 if (__predict_true(error == 0)) 1976 return (0); 1977 1978 /* Transmit can fail in fastpath. */ 1979 if (__predict_false(m == NULL)) 1980 return (error); 1981 } 1982 1983 /* Enqueue then schedule taskqueue. */ 1984 error = drbr_enqueue(ifp, tx->br, m); 1985 if (__predict_false(error != 0)) 1986 return (error); 1987 1988 taskqueue_enqueue(tx->taskq, &tx->task); 1989 return (0); 1990 } 1991 1992 STATIC int 1993 mvneta_xmit_locked(struct mvneta_softc *sc, int q) 1994 { 1995 struct ifnet *ifp; 1996 struct mvneta_tx_ring *tx; 1997 struct mbuf *m; 1998 int error; 1999 2000 KASSERT_TX_MTX(sc, q); 2001 ifp = sc->ifp; 2002 tx = MVNETA_TX_RING(sc, q); 2003 error = 0; 2004 2005 while ((m = drbr_peek(ifp, tx->br)) != NULL) { 2006 error = mvneta_xmitfast_locked(sc, q, &m); 2007 if (__predict_false(error != 0)) { 2008 if (m != NULL) 2009 drbr_putback(ifp, tx->br, m); 2010 else 2011 drbr_advance(ifp, tx->br); 2012 break; 2013 } 2014 drbr_advance(ifp, tx->br); 2015 } 2016 2017 return (error); 2018 } 2019 #else /* !MVNETA_MULTIQUEUE */ 2020 STATIC void 2021 mvneta_start(struct ifnet *ifp) 2022 { 2023 struct mvneta_softc *sc; 2024 struct mvneta_tx_ring *tx; 2025 int error; 2026 2027 sc = ifp->if_softc; 2028 tx = MVNETA_TX_RING(sc, 0); 2029 2030 mvneta_tx_lockq(sc, 0); 2031 error = mvneta_xmit_locked(sc, 0); 2032 mvneta_tx_unlockq(sc, 0); 2033 /* Handle retransmit in the background taskq. */ 2034 if (__predict_false(error != 0 && error != ENETDOWN)) 2035 taskqueue_enqueue(tx->taskq, &tx->task); 2036 } 2037 2038 STATIC int 2039 mvneta_xmit_locked(struct mvneta_softc *sc, int q) 2040 { 2041 struct ifnet *ifp; 2042 struct mvneta_tx_ring *tx; 2043 struct mbuf *m; 2044 int error; 2045 2046 KASSERT_TX_MTX(sc, q); 2047 ifp = sc->ifp; 2048 tx = MVNETA_TX_RING(sc, 0); 2049 error = 0; 2050 2051 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 2052 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2053 if (m == NULL) 2054 break; 2055 2056 error = mvneta_xmitfast_locked(sc, q, &m); 2057 if (__predict_false(error != 0)) { 2058 if (m != NULL) 2059 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2060 break; 2061 } 2062 } 2063 2064 return (error); 2065 } 2066 #endif 2067 2068 STATIC int 2069 mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2070 { 2071 struct mvneta_softc *sc; 2072 struct mvneta_rx_ring *rx; 2073 struct ifreq *ifr; 2074 int error, mask; 2075 uint32_t flags; 2076 int q; 2077 2078 error = 0; 2079 sc = ifp->if_softc; 2080 ifr = (struct ifreq *)data; 2081 switch (cmd) { 2082 case SIOCSIFFLAGS: 2083 mvneta_sc_lock(sc); 2084 if (ifp->if_flags & IFF_UP) { 2085 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2086 flags = ifp->if_flags ^ sc->mvneta_if_flags; 2087 2088 if (flags != 0) 2089 sc->mvneta_if_flags = ifp->if_flags; 2090 2091 if ((flags & IFF_PROMISC) != 0) 2092 mvneta_filter_setup(sc); 2093 } else { 2094 mvneta_init_locked(sc); 2095 sc->mvneta_if_flags = ifp->if_flags; 2096 if (sc->phy_attached) 2097 mii_mediachg(sc->mii); 2098 mvneta_sc_unlock(sc); 2099 break; 2100 } 2101 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2102 mvneta_stop_locked(sc); 2103 2104 sc->mvneta_if_flags = ifp->if_flags; 2105 mvneta_sc_unlock(sc); 2106 break; 2107 case SIOCSIFCAP: 2108 if (ifp->if_mtu > sc->tx_csum_limit && 2109 ifr->ifr_reqcap & IFCAP_TXCSUM) 2110 ifr->ifr_reqcap &= ~IFCAP_TXCSUM; 2111 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 2112 if (mask & IFCAP_HWCSUM) { 2113 ifp->if_capenable &= ~IFCAP_HWCSUM; 2114 ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap; 2115 if (ifp->if_capenable & IFCAP_TXCSUM) 2116 ifp->if_hwassist = CSUM_IP | CSUM_TCP | 2117 CSUM_UDP; 2118 else 2119 ifp->if_hwassist = 0; 2120 } 2121 if (mask & IFCAP_LRO) { 2122 mvneta_sc_lock(sc); 2123 ifp->if_capenable ^= IFCAP_LRO; 2124 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2125 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 2126 rx = MVNETA_RX_RING(sc, q); 2127 rx->lro_enabled = !rx->lro_enabled; 2128 } 2129 } 2130 mvneta_sc_unlock(sc); 2131 } 2132 VLAN_CAPABILITIES(ifp); 2133 break; 2134 case SIOCSIFMEDIA: 2135 if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T || 2136 IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) && 2137 (ifr->ifr_media & IFM_FDX) == 0) { 2138 device_printf(sc->dev, 2139 "%s half-duplex unsupported\n", 2140 IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ? 2141 "1000Base-T" : 2142 "2500Base-T"); 2143 error = EINVAL; 2144 break; 2145 } 2146 case SIOCGIFMEDIA: /* FALLTHROUGH */ 2147 case SIOCGIFXMEDIA: 2148 if (!sc->phy_attached) 2149 error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia, 2150 cmd); 2151 else 2152 error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, 2153 cmd); 2154 break; 2155 case SIOCSIFMTU: 2156 if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME - 2157 MVNETA_ETHER_SIZE) { 2158 error = EINVAL; 2159 } else { 2160 ifp->if_mtu = ifr->ifr_mtu; 2161 mvneta_sc_lock(sc); 2162 if (ifp->if_mtu + MVNETA_ETHER_SIZE <= MCLBYTES) { 2163 sc->rx_frame_size = MCLBYTES; 2164 } else { 2165 sc->rx_frame_size = MJUM9BYTES; 2166 } 2167 if (ifp->if_mtu > sc->tx_csum_limit) { 2168 ifp->if_capenable &= ~IFCAP_TXCSUM; 2169 ifp->if_hwassist = 0; 2170 } else { 2171 ifp->if_capenable |= IFCAP_TXCSUM; 2172 ifp->if_hwassist = CSUM_IP | CSUM_TCP | 2173 CSUM_UDP; 2174 } 2175 2176 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2177 /* Stop hardware */ 2178 mvneta_stop_locked(sc); 2179 /* 2180 * Reinitialize RX queues. 2181 * We need to update RX descriptor size. 2182 */ 2183 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 2184 mvneta_rx_lockq(sc, q); 2185 if (mvneta_rx_queue_init(ifp, q) != 0) { 2186 device_printf(sc->dev, 2187 "initialization failed:" 2188 " cannot initialize queue\n"); 2189 mvneta_rx_unlockq(sc, q); 2190 error = ENOBUFS; 2191 break; 2192 } 2193 mvneta_rx_unlockq(sc, q); 2194 } 2195 /* Trigger reinitialization */ 2196 mvneta_init_locked(sc); 2197 } 2198 mvneta_sc_unlock(sc); 2199 } 2200 break; 2201 2202 default: 2203 error = ether_ioctl(ifp, cmd, data); 2204 break; 2205 } 2206 2207 return (error); 2208 } 2209 2210 STATIC void 2211 mvneta_init_locked(void *arg) 2212 { 2213 struct mvneta_softc *sc; 2214 struct ifnet *ifp; 2215 uint32_t reg; 2216 int q, cpu; 2217 2218 sc = arg; 2219 ifp = sc->ifp; 2220 2221 if (!device_is_attached(sc->dev) || 2222 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2223 return; 2224 2225 mvneta_disable_intr(sc); 2226 callout_stop(&sc->tick_ch); 2227 2228 /* Get the latest mac address */ 2229 bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN); 2230 mvneta_set_mac_address(sc, sc->enaddr); 2231 mvneta_filter_setup(sc); 2232 2233 /* Start DMA Engine */ 2234 MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000); 2235 MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000); 2236 MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM); 2237 2238 /* Enable port */ 2239 reg = MVNETA_READ(sc, MVNETA_PMACC0); 2240 reg |= MVNETA_PMACC0_PORTEN; 2241 reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK; 2242 reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE); 2243 MVNETA_WRITE(sc, MVNETA_PMACC0, reg); 2244 2245 /* Allow access to each TXQ/RXQ from both CPU's */ 2246 for (cpu = 0; cpu < mp_ncpus; ++cpu) 2247 MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu), 2248 MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK); 2249 2250 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 2251 mvneta_rx_lockq(sc, q); 2252 mvneta_rx_queue_refill(sc, q); 2253 mvneta_rx_unlockq(sc, q); 2254 } 2255 2256 if (!sc->phy_attached) 2257 mvneta_linkup(sc); 2258 2259 /* Enable interrupt */ 2260 mvneta_enable_intr(sc); 2261 2262 /* Set Counter */ 2263 callout_schedule(&sc->tick_ch, hz); 2264 2265 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2266 } 2267 2268 STATIC void 2269 mvneta_init(void *arg) 2270 { 2271 struct mvneta_softc *sc; 2272 2273 sc = arg; 2274 mvneta_sc_lock(sc); 2275 mvneta_init_locked(sc); 2276 if (sc->phy_attached) 2277 mii_mediachg(sc->mii); 2278 mvneta_sc_unlock(sc); 2279 } 2280 2281 /* ARGSUSED */ 2282 STATIC void 2283 mvneta_stop_locked(struct mvneta_softc *sc) 2284 { 2285 struct ifnet *ifp; 2286 struct mvneta_rx_ring *rx; 2287 struct mvneta_tx_ring *tx; 2288 uint32_t reg; 2289 int q; 2290 2291 ifp = sc->ifp; 2292 if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2293 return; 2294 2295 mvneta_disable_intr(sc); 2296 2297 callout_stop(&sc->tick_ch); 2298 2299 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2300 2301 /* Link down */ 2302 if (sc->linkup == TRUE) 2303 mvneta_linkdown(sc); 2304 2305 /* Reset the MAC Port Enable bit */ 2306 reg = MVNETA_READ(sc, MVNETA_PMACC0); 2307 reg &= ~MVNETA_PMACC0_PORTEN; 2308 MVNETA_WRITE(sc, MVNETA_PMACC0, reg); 2309 2310 /* Disable each of queue */ 2311 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 2312 rx = MVNETA_RX_RING(sc, q); 2313 2314 mvneta_rx_lockq(sc, q); 2315 mvneta_ring_flush_rx_queue(sc, q); 2316 mvneta_rx_unlockq(sc, q); 2317 } 2318 2319 /* 2320 * Hold Reset state of DMA Engine 2321 * (must write 0x0 to restart it) 2322 */ 2323 MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001); 2324 MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001); 2325 2326 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) { 2327 tx = MVNETA_TX_RING(sc, q); 2328 2329 mvneta_tx_lockq(sc, q); 2330 mvneta_ring_flush_tx_queue(sc, q); 2331 mvneta_tx_unlockq(sc, q); 2332 } 2333 } 2334 2335 STATIC void 2336 mvneta_stop(struct mvneta_softc *sc) 2337 { 2338 2339 mvneta_sc_lock(sc); 2340 mvneta_stop_locked(sc); 2341 mvneta_sc_unlock(sc); 2342 } 2343 2344 STATIC int 2345 mvneta_mediachange(struct ifnet *ifp) 2346 { 2347 struct mvneta_softc *sc; 2348 2349 sc = ifp->if_softc; 2350 2351 if (!sc->phy_attached && !sc->use_inband_status) { 2352 /* We shouldn't be here */ 2353 if_printf(ifp, "Cannot change media in fixed-link mode!\n"); 2354 return (0); 2355 } 2356 2357 if (sc->use_inband_status) { 2358 mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media); 2359 return (0); 2360 } 2361 2362 mvneta_sc_lock(sc); 2363 2364 /* Update PHY */ 2365 mii_mediachg(sc->mii); 2366 2367 mvneta_sc_unlock(sc); 2368 2369 return (0); 2370 } 2371 2372 STATIC void 2373 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr) 2374 { 2375 uint32_t psr; 2376 2377 psr = MVNETA_READ(sc, MVNETA_PSR); 2378 2379 /* Speed */ 2380 if (psr & MVNETA_PSR_GMIISPEED) 2381 ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T); 2382 else if (psr & MVNETA_PSR_MIISPEED) 2383 ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX); 2384 else if (psr & MVNETA_PSR_LINKUP) 2385 ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T); 2386 2387 /* Duplex */ 2388 if (psr & MVNETA_PSR_FULLDX) 2389 ifmr->ifm_active |= IFM_FDX; 2390 2391 /* Link */ 2392 ifmr->ifm_status = IFM_AVALID; 2393 if (psr & MVNETA_PSR_LINKUP) 2394 ifmr->ifm_status |= IFM_ACTIVE; 2395 } 2396 2397 STATIC void 2398 mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2399 { 2400 struct mvneta_softc *sc; 2401 struct mii_data *mii; 2402 2403 sc = ifp->if_softc; 2404 2405 if (!sc->phy_attached && !sc->use_inband_status) { 2406 ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE; 2407 return; 2408 } 2409 2410 mvneta_sc_lock(sc); 2411 2412 if (sc->use_inband_status) { 2413 mvneta_get_media(sc, ifmr); 2414 mvneta_sc_unlock(sc); 2415 return; 2416 } 2417 2418 mii = sc->mii; 2419 mii_pollstat(mii); 2420 2421 ifmr->ifm_active = mii->mii_media_active; 2422 ifmr->ifm_status = mii->mii_media_status; 2423 2424 mvneta_sc_unlock(sc); 2425 } 2426 2427 /* 2428 * Link State Notify 2429 */ 2430 STATIC void 2431 mvneta_update_autoneg(struct mvneta_softc *sc, int enable) 2432 { 2433 int reg; 2434 2435 if (enable) { 2436 reg = MVNETA_READ(sc, MVNETA_PANC); 2437 reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS | 2438 MVNETA_PANC_ANFCEN); 2439 reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN | 2440 MVNETA_PANC_INBANDANEN; 2441 MVNETA_WRITE(sc, MVNETA_PANC, reg); 2442 2443 reg = MVNETA_READ(sc, MVNETA_PMACC2); 2444 reg |= MVNETA_PMACC2_INBANDANMODE; 2445 MVNETA_WRITE(sc, MVNETA_PMACC2, reg); 2446 2447 reg = MVNETA_READ(sc, MVNETA_PSOMSCD); 2448 reg |= MVNETA_PSOMSCD_ENABLE; 2449 MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg); 2450 } else { 2451 reg = MVNETA_READ(sc, MVNETA_PANC); 2452 reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS | 2453 MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN | 2454 MVNETA_PANC_INBANDANEN); 2455 MVNETA_WRITE(sc, MVNETA_PANC, reg); 2456 2457 reg = MVNETA_READ(sc, MVNETA_PMACC2); 2458 reg &= ~MVNETA_PMACC2_INBANDANMODE; 2459 MVNETA_WRITE(sc, MVNETA_PMACC2, reg); 2460 2461 reg = MVNETA_READ(sc, MVNETA_PSOMSCD); 2462 reg &= ~MVNETA_PSOMSCD_ENABLE; 2463 MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg); 2464 } 2465 } 2466 2467 STATIC int 2468 mvneta_update_media(struct mvneta_softc *sc, int media) 2469 { 2470 int reg, err; 2471 boolean_t running; 2472 2473 err = 0; 2474 2475 mvneta_sc_lock(sc); 2476 2477 mvneta_linkreset(sc); 2478 2479 running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; 2480 if (running) 2481 mvneta_stop_locked(sc); 2482 2483 sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO); 2484 2485 if (sc->use_inband_status) 2486 mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO); 2487 2488 mvneta_update_eee(sc); 2489 mvneta_update_fc(sc); 2490 2491 if (IFM_SUBTYPE(media) != IFM_AUTO) { 2492 reg = MVNETA_READ(sc, MVNETA_PANC); 2493 reg &= ~(MVNETA_PANC_SETGMIISPEED | 2494 MVNETA_PANC_SETMIISPEED | 2495 MVNETA_PANC_SETFULLDX); 2496 if (IFM_SUBTYPE(media) == IFM_1000_T || 2497 IFM_SUBTYPE(media) == IFM_2500_T) { 2498 if ((media & IFM_FDX) == 0) { 2499 device_printf(sc->dev, 2500 "%s half-duplex unsupported\n", 2501 IFM_SUBTYPE(media) == IFM_1000_T ? 2502 "1000Base-T" : 2503 "2500Base-T"); 2504 err = EINVAL; 2505 goto out; 2506 } 2507 reg |= MVNETA_PANC_SETGMIISPEED; 2508 } else if (IFM_SUBTYPE(media) == IFM_100_TX) 2509 reg |= MVNETA_PANC_SETMIISPEED; 2510 2511 if (media & IFM_FDX) 2512 reg |= MVNETA_PANC_SETFULLDX; 2513 2514 MVNETA_WRITE(sc, MVNETA_PANC, reg); 2515 } 2516 out: 2517 if (running) 2518 mvneta_init_locked(sc); 2519 mvneta_sc_unlock(sc); 2520 return (err); 2521 } 2522 2523 STATIC void 2524 mvneta_adjust_link(struct mvneta_softc *sc) 2525 { 2526 boolean_t phy_linkup; 2527 int reg; 2528 2529 /* Update eee/fc */ 2530 mvneta_update_eee(sc); 2531 mvneta_update_fc(sc); 2532 2533 /* Check for link change */ 2534 phy_linkup = (sc->mii->mii_media_status & 2535 (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE); 2536 2537 if (sc->linkup != phy_linkup) 2538 mvneta_linkupdate(sc, phy_linkup); 2539 2540 /* Don't update media on disabled link */ 2541 if (!phy_linkup) 2542 return; 2543 2544 /* Check for media type change */ 2545 if (sc->mvneta_media != sc->mii->mii_media_active) { 2546 sc->mvneta_media = sc->mii->mii_media_active; 2547 2548 reg = MVNETA_READ(sc, MVNETA_PANC); 2549 reg &= ~(MVNETA_PANC_SETGMIISPEED | 2550 MVNETA_PANC_SETMIISPEED | 2551 MVNETA_PANC_SETFULLDX); 2552 if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T || 2553 IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) { 2554 reg |= MVNETA_PANC_SETGMIISPEED; 2555 } else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX) 2556 reg |= MVNETA_PANC_SETMIISPEED; 2557 2558 if (sc->mvneta_media & IFM_FDX) 2559 reg |= MVNETA_PANC_SETFULLDX; 2560 2561 MVNETA_WRITE(sc, MVNETA_PANC, reg); 2562 } 2563 } 2564 2565 STATIC void 2566 mvneta_link_isr(struct mvneta_softc *sc) 2567 { 2568 int linkup; 2569 2570 KASSERT_SC_MTX(sc); 2571 2572 linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE; 2573 if (sc->linkup == linkup) 2574 return; 2575 2576 if (linkup == TRUE) 2577 mvneta_linkup(sc); 2578 else 2579 mvneta_linkdown(sc); 2580 2581 #ifdef DEBUG 2582 log(LOG_DEBUG, 2583 "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down"); 2584 #endif 2585 } 2586 2587 STATIC void 2588 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup) 2589 { 2590 2591 KASSERT_SC_MTX(sc); 2592 2593 if (linkup == TRUE) 2594 mvneta_linkup(sc); 2595 else 2596 mvneta_linkdown(sc); 2597 2598 #ifdef DEBUG 2599 log(LOG_DEBUG, 2600 "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down"); 2601 #endif 2602 } 2603 2604 STATIC void 2605 mvneta_update_eee(struct mvneta_softc *sc) 2606 { 2607 uint32_t reg; 2608 2609 KASSERT_SC_MTX(sc); 2610 2611 /* set EEE parameters */ 2612 reg = MVNETA_READ(sc, MVNETA_LPIC1); 2613 if (sc->cf_lpi) 2614 reg |= MVNETA_LPIC1_LPIRE; 2615 else 2616 reg &= ~MVNETA_LPIC1_LPIRE; 2617 MVNETA_WRITE(sc, MVNETA_LPIC1, reg); 2618 } 2619 2620 STATIC void 2621 mvneta_update_fc(struct mvneta_softc *sc) 2622 { 2623 uint32_t reg; 2624 2625 KASSERT_SC_MTX(sc); 2626 2627 reg = MVNETA_READ(sc, MVNETA_PANC); 2628 if (sc->cf_fc) { 2629 /* Flow control negotiation */ 2630 reg |= MVNETA_PANC_PAUSEADV; 2631 reg |= MVNETA_PANC_ANFCEN; 2632 } else { 2633 /* Disable flow control negotiation */ 2634 reg &= ~MVNETA_PANC_PAUSEADV; 2635 reg &= ~MVNETA_PANC_ANFCEN; 2636 } 2637 2638 MVNETA_WRITE(sc, MVNETA_PANC, reg); 2639 } 2640 2641 STATIC void 2642 mvneta_linkup(struct mvneta_softc *sc) 2643 { 2644 uint32_t reg; 2645 2646 KASSERT_SC_MTX(sc); 2647 2648 if (!sc->use_inband_status) { 2649 reg = MVNETA_READ(sc, MVNETA_PANC); 2650 reg |= MVNETA_PANC_FORCELINKPASS; 2651 reg &= ~MVNETA_PANC_FORCELINKFAIL; 2652 MVNETA_WRITE(sc, MVNETA_PANC, reg); 2653 } 2654 2655 mvneta_qflush(sc->ifp); 2656 mvneta_portup(sc); 2657 sc->linkup = TRUE; 2658 if_link_state_change(sc->ifp, LINK_STATE_UP); 2659 } 2660 2661 STATIC void 2662 mvneta_linkdown(struct mvneta_softc *sc) 2663 { 2664 uint32_t reg; 2665 2666 KASSERT_SC_MTX(sc); 2667 2668 if (!sc->use_inband_status) { 2669 reg = MVNETA_READ(sc, MVNETA_PANC); 2670 reg &= ~MVNETA_PANC_FORCELINKPASS; 2671 reg |= MVNETA_PANC_FORCELINKFAIL; 2672 MVNETA_WRITE(sc, MVNETA_PANC, reg); 2673 } 2674 2675 mvneta_portdown(sc); 2676 mvneta_qflush(sc->ifp); 2677 sc->linkup = FALSE; 2678 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 2679 } 2680 2681 STATIC void 2682 mvneta_linkreset(struct mvneta_softc *sc) 2683 { 2684 struct mii_softc *mii; 2685 2686 if (sc->phy_attached) { 2687 /* Force reset PHY */ 2688 mii = LIST_FIRST(&sc->mii->mii_phys); 2689 if (mii) 2690 mii_phy_reset(mii); 2691 } 2692 } 2693 2694 /* 2695 * Tx Subroutines 2696 */ 2697 STATIC int 2698 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q) 2699 { 2700 struct ifnet *ifp; 2701 bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT]; 2702 struct mbuf *mtmp, *mbuf; 2703 struct mvneta_tx_ring *tx; 2704 struct mvneta_buf *txbuf; 2705 struct mvneta_tx_desc *t; 2706 uint32_t ptxsu; 2707 int start, used, error, i, txnsegs; 2708 2709 mbuf = *mbufp; 2710 tx = MVNETA_TX_RING(sc, q); 2711 DASSERT(tx->used >= 0); 2712 DASSERT(tx->used <= MVNETA_TX_RING_CNT); 2713 t = NULL; 2714 ifp = sc->ifp; 2715 2716 if (__predict_false(mbuf->m_flags & M_VLANTAG)) { 2717 mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag); 2718 if (mbuf == NULL) { 2719 tx->drv_error++; 2720 *mbufp = NULL; 2721 return (ENOBUFS); 2722 } 2723 mbuf->m_flags &= ~M_VLANTAG; 2724 *mbufp = mbuf; 2725 } 2726 2727 if (__predict_false(mbuf->m_next != NULL && 2728 (mbuf->m_pkthdr.csum_flags & 2729 (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) { 2730 if (M_WRITABLE(mbuf) == 0) { 2731 mtmp = m_dup(mbuf, M_NOWAIT); 2732 m_freem(mbuf); 2733 if (mtmp == NULL) { 2734 tx->drv_error++; 2735 *mbufp = NULL; 2736 return (ENOBUFS); 2737 } 2738 *mbufp = mbuf = mtmp; 2739 } 2740 } 2741 2742 /* load mbuf using dmamap of 1st descriptor */ 2743 txbuf = &tx->txbuf[tx->cpu]; 2744 error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag, 2745 txbuf->dmap, mbuf, txsegs, &txnsegs, 2746 BUS_DMA_NOWAIT); 2747 if (__predict_false(error != 0)) { 2748 #ifdef MVNETA_KTR 2749 CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error); 2750 #endif 2751 /* This is the only recoverable error (except EFBIG). */ 2752 if (error != ENOMEM) { 2753 tx->drv_error++; 2754 m_freem(mbuf); 2755 *mbufp = NULL; 2756 return (ENOBUFS); 2757 } 2758 return (error); 2759 } 2760 2761 if (__predict_false(txnsegs <= 0 2762 || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) { 2763 /* we have no enough descriptors or mbuf is broken */ 2764 #ifdef MVNETA_KTR 2765 CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d", 2766 ifp->if_xname, q, txnsegs); 2767 #endif 2768 bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap); 2769 return (ENOBUFS); 2770 } 2771 DASSERT(txbuf->m == NULL); 2772 2773 /* remember mbuf using 1st descriptor */ 2774 txbuf->m = mbuf; 2775 bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap, 2776 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2777 2778 /* load to tx descriptors */ 2779 start = tx->cpu; 2780 used = 0; 2781 for (i = 0; i < txnsegs; i++) { 2782 t = &tx->desc[tx->cpu]; 2783 t->command = 0; 2784 t->l4ichk = 0; 2785 t->flags = 0; 2786 if (__predict_true(i == 0)) { 2787 /* 1st descriptor */ 2788 t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0); 2789 t->command |= MVNETA_TX_CMD_F; 2790 mvneta_tx_set_csumflag(ifp, t, mbuf); 2791 } 2792 t->bufptr_pa = txsegs[i].ds_addr; 2793 t->bytecnt = txsegs[i].ds_len; 2794 tx->cpu = tx_counter_adv(tx->cpu, 1); 2795 2796 tx->used++; 2797 used++; 2798 } 2799 /* t is last descriptor here */ 2800 DASSERT(t != NULL); 2801 t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING; 2802 2803 bus_dmamap_sync(sc->tx_dtag, tx->desc_map, 2804 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2805 2806 while (__predict_false(used > 255)) { 2807 ptxsu = MVNETA_PTXSU_NOWD(255); 2808 MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu); 2809 used -= 255; 2810 } 2811 if (__predict_true(used > 0)) { 2812 ptxsu = MVNETA_PTXSU_NOWD(used); 2813 MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu); 2814 } 2815 return (0); 2816 } 2817 2818 STATIC void 2819 mvneta_tx_set_csumflag(struct ifnet *ifp, 2820 struct mvneta_tx_desc *t, struct mbuf *m) 2821 { 2822 struct ether_header *eh; 2823 int csum_flags; 2824 uint32_t iphl, ipoff; 2825 struct ip *ip; 2826 2827 iphl = ipoff = 0; 2828 csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags; 2829 eh = mtod(m, struct ether_header *); 2830 2831 switch (ntohs(eh->ether_type)) { 2832 case ETHERTYPE_IP: 2833 ipoff = ETHER_HDR_LEN; 2834 break; 2835 case ETHERTYPE_VLAN: 2836 ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 2837 break; 2838 default: 2839 csum_flags = 0; 2840 } 2841 2842 if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) { 2843 ip = (struct ip *)(m->m_data + ipoff); 2844 iphl = ip->ip_hl<<2; 2845 t->command |= MVNETA_TX_CMD_L3_IP4; 2846 } else { 2847 t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE; 2848 return; 2849 } 2850 2851 2852 /* L3 */ 2853 if (csum_flags & CSUM_IP) { 2854 t->command |= MVNETA_TX_CMD_IP4_CHECKSUM; 2855 } 2856 2857 /* L4 */ 2858 if (csum_flags & CSUM_IP_TCP) { 2859 t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG; 2860 t->command |= MVNETA_TX_CMD_L4_TCP; 2861 } else if (csum_flags & CSUM_IP_UDP) { 2862 t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG; 2863 t->command |= MVNETA_TX_CMD_L4_UDP; 2864 } else 2865 t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE; 2866 2867 t->l4ichk = 0; 2868 t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2); 2869 t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff); 2870 } 2871 2872 STATIC void 2873 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q) 2874 { 2875 struct mvneta_tx_ring *tx; 2876 struct mvneta_buf *txbuf; 2877 struct mvneta_tx_desc *t; 2878 uint32_t ptxs, ptxsu, ndesc; 2879 int i; 2880 2881 KASSERT_TX_MTX(sc, q); 2882 2883 tx = MVNETA_TX_RING(sc, q); 2884 if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) 2885 return; 2886 2887 ptxs = MVNETA_READ(sc, MVNETA_PTXS(q)); 2888 ndesc = MVNETA_PTXS_GET_TBC(ptxs); 2889 2890 if (__predict_false(ndesc == 0)) { 2891 if (tx->used == 0) 2892 tx->queue_status = MVNETA_QUEUE_IDLE; 2893 else if (tx->queue_status == MVNETA_QUEUE_WORKING && 2894 ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG)) 2895 tx->queue_hung = TRUE; 2896 return; 2897 } 2898 2899 #ifdef MVNETA_KTR 2900 CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u", 2901 sc->ifp->if_xname, q, ndesc); 2902 #endif 2903 2904 bus_dmamap_sync(sc->tx_dtag, tx->desc_map, 2905 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2906 2907 for (i = 0; i < ndesc; i++) { 2908 t = &tx->desc[tx->dma]; 2909 #ifdef MVNETA_KTR 2910 if (t->flags & MVNETA_TX_F_ES) 2911 CTR3(KTR_SPARE2, "%s tx error queue %d desc %d", 2912 sc->ifp->if_xname, q, tx->dma); 2913 #endif 2914 txbuf = &tx->txbuf[tx->dma]; 2915 if (__predict_true(txbuf->m != NULL)) { 2916 DASSERT((t->command & MVNETA_TX_CMD_F) != 0); 2917 bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap); 2918 m_freem(txbuf->m); 2919 txbuf->m = NULL; 2920 } 2921 else 2922 DASSERT((t->flags & MVNETA_TX_CMD_F) == 0); 2923 tx->dma = tx_counter_adv(tx->dma, 1); 2924 tx->used--; 2925 } 2926 DASSERT(tx->used >= 0); 2927 DASSERT(tx->used <= MVNETA_TX_RING_CNT); 2928 while (__predict_false(ndesc > 255)) { 2929 ptxsu = MVNETA_PTXSU_NORB(255); 2930 MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu); 2931 ndesc -= 255; 2932 } 2933 if (__predict_true(ndesc > 0)) { 2934 ptxsu = MVNETA_PTXSU_NORB(ndesc); 2935 MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu); 2936 } 2937 #ifdef MVNETA_KTR 2938 CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d", 2939 sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used); 2940 #endif 2941 2942 tx->watchdog_time = ticks; 2943 2944 if (tx->used == 0) 2945 tx->queue_status = MVNETA_QUEUE_IDLE; 2946 } 2947 2948 /* 2949 * Do a final TX complete when TX is idle. 2950 */ 2951 STATIC void 2952 mvneta_tx_drain(struct mvneta_softc *sc) 2953 { 2954 struct mvneta_tx_ring *tx; 2955 int q; 2956 2957 /* 2958 * Handle trailing mbuf on TX queue. 2959 * Check is done lockess to avoid TX path contention. 2960 */ 2961 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) { 2962 tx = MVNETA_TX_RING(sc, q); 2963 if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP && 2964 tx->used > 0) { 2965 mvneta_tx_lockq(sc, q); 2966 mvneta_tx_queue_complete(sc, q); 2967 mvneta_tx_unlockq(sc, q); 2968 } 2969 } 2970 } 2971 2972 /* 2973 * Rx Subroutines 2974 */ 2975 STATIC int 2976 mvneta_rx(struct mvneta_softc *sc, int q, int count) 2977 { 2978 uint32_t prxs, npkt; 2979 int more; 2980 2981 more = 0; 2982 mvneta_rx_lockq(sc, q); 2983 prxs = MVNETA_READ(sc, MVNETA_PRXS(q)); 2984 npkt = MVNETA_PRXS_GET_ODC(prxs); 2985 if (__predict_false(npkt == 0)) 2986 goto out; 2987 2988 if (count > 0 && npkt > count) { 2989 more = 1; 2990 npkt = count; 2991 } 2992 mvneta_rx_queue(sc, q, npkt); 2993 out: 2994 mvneta_rx_unlockq(sc, q); 2995 return more; 2996 } 2997 2998 /* 2999 * Helper routine for updating PRXSU register of a given queue. 3000 * Handles number of processed descriptors bigger than maximum acceptable value. 3001 */ 3002 STATIC __inline void 3003 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed) 3004 { 3005 uint32_t prxsu; 3006 3007 while (__predict_false(processed > 255)) { 3008 prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255); 3009 MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu); 3010 processed -= 255; 3011 } 3012 prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed); 3013 MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu); 3014 } 3015 3016 static __inline void 3017 mvneta_prefetch(void *p) 3018 { 3019 3020 __builtin_prefetch(p); 3021 } 3022 3023 STATIC void 3024 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt) 3025 { 3026 struct ifnet *ifp; 3027 struct mvneta_rx_ring *rx; 3028 struct mvneta_rx_desc *r; 3029 struct mvneta_buf *rxbuf; 3030 struct mbuf *m; 3031 struct lro_ctrl *lro; 3032 struct lro_entry *queued; 3033 void *pktbuf; 3034 int i, pktlen, processed, ndma; 3035 3036 KASSERT_RX_MTX(sc, q); 3037 3038 ifp = sc->ifp; 3039 rx = MVNETA_RX_RING(sc, q); 3040 processed = 0; 3041 3042 if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED)) 3043 return; 3044 3045 bus_dmamap_sync(sc->rx_dtag, rx->desc_map, 3046 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 3047 3048 for (i = 0; i < npkt; i++) { 3049 /* Prefetch next desc, rxbuf. */ 3050 ndma = rx_counter_adv(rx->dma, 1); 3051 mvneta_prefetch(&rx->desc[ndma]); 3052 mvneta_prefetch(&rx->rxbuf[ndma]); 3053 3054 /* get descriptor and packet */ 3055 r = &rx->desc[rx->dma]; 3056 rxbuf = &rx->rxbuf[rx->dma]; 3057 m = rxbuf->m; 3058 rxbuf->m = NULL; 3059 DASSERT(m != NULL); 3060 bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap, 3061 BUS_DMASYNC_POSTREAD); 3062 bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap); 3063 /* Prefetch mbuf header. */ 3064 mvneta_prefetch(m); 3065 3066 processed++; 3067 /* Drop desc with error status or not in a single buffer. */ 3068 DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) == 3069 (MVNETA_RX_F|MVNETA_RX_L)); 3070 if (__predict_false((r->status & MVNETA_RX_ES) || 3071 (r->status & (MVNETA_RX_F|MVNETA_RX_L)) != 3072 (MVNETA_RX_F|MVNETA_RX_L))) 3073 goto rx_error; 3074 3075 /* 3076 * [ OFF | MH | PKT | CRC ] 3077 * bytecnt cover MH, PKT, CRC 3078 */ 3079 pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE; 3080 pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET + 3081 MVNETA_HWHEADER_SIZE; 3082 3083 /* Prefetch mbuf data. */ 3084 mvneta_prefetch(pktbuf); 3085 3086 /* Write value to mbuf (avoid read). */ 3087 m->m_data = pktbuf; 3088 m->m_len = m->m_pkthdr.len = pktlen; 3089 m->m_pkthdr.rcvif = ifp; 3090 mvneta_rx_set_csumflag(ifp, r, m); 3091 3092 /* Increase rx_dma before releasing the lock. */ 3093 rx->dma = ndma; 3094 3095 if (__predict_false(rx->lro_enabled && 3096 ((r->status & MVNETA_RX_L3_IP) != 0) && 3097 ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) && 3098 (m->m_pkthdr.csum_flags & 3099 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) == 3100 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) { 3101 if (rx->lro.lro_cnt != 0) { 3102 if (tcp_lro_rx(&rx->lro, m, 0) == 0) 3103 goto rx_done; 3104 } 3105 } 3106 3107 mvneta_rx_unlockq(sc, q); 3108 (*ifp->if_input)(ifp, m); 3109 mvneta_rx_lockq(sc, q); 3110 /* 3111 * Check whether this queue has been disabled in the 3112 * meantime. If yes, then clear LRO and exit. 3113 */ 3114 if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED)) 3115 goto rx_lro; 3116 rx_done: 3117 /* Refresh receive ring to avoid stall and minimize jitter. */ 3118 if (processed >= MVNETA_RX_REFILL_COUNT) { 3119 mvneta_prxsu_update(sc, q, processed); 3120 mvneta_rx_queue_refill(sc, q); 3121 processed = 0; 3122 } 3123 continue; 3124 rx_error: 3125 m_freem(m); 3126 rx->dma = ndma; 3127 /* Refresh receive ring to avoid stall and minimize jitter. */ 3128 if (processed >= MVNETA_RX_REFILL_COUNT) { 3129 mvneta_prxsu_update(sc, q, processed); 3130 mvneta_rx_queue_refill(sc, q); 3131 processed = 0; 3132 } 3133 } 3134 #ifdef MVNETA_KTR 3135 CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt); 3136 #endif 3137 /* DMA status update */ 3138 mvneta_prxsu_update(sc, q, processed); 3139 /* Refill the rest of buffers if there are any to refill */ 3140 mvneta_rx_queue_refill(sc, q); 3141 3142 rx_lro: 3143 /* 3144 * Flush any outstanding LRO work 3145 */ 3146 lro = &rx->lro; 3147 while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) { 3148 LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next); 3149 tcp_lro_flush(lro, queued); 3150 } 3151 } 3152 3153 STATIC void 3154 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf) 3155 { 3156 3157 bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap); 3158 /* This will remove all data at once */ 3159 m_freem(rxbuf->m); 3160 } 3161 3162 STATIC void 3163 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q) 3164 { 3165 struct mvneta_rx_ring *rx; 3166 struct mvneta_rx_desc *r; 3167 struct mvneta_buf *rxbuf; 3168 bus_dma_segment_t segs; 3169 struct mbuf *m; 3170 uint32_t prxs, prxsu, ndesc; 3171 int npkt, refill, nsegs, error; 3172 3173 KASSERT_RX_MTX(sc, q); 3174 3175 rx = MVNETA_RX_RING(sc, q); 3176 prxs = MVNETA_READ(sc, MVNETA_PRXS(q)); 3177 ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs); 3178 refill = MVNETA_RX_RING_CNT - ndesc; 3179 #ifdef MVNETA_KTR 3180 CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q, 3181 refill); 3182 #endif 3183 if (__predict_false(refill <= 0)) 3184 return; 3185 3186 for (npkt = 0; npkt < refill; npkt++) { 3187 rxbuf = &rx->rxbuf[rx->cpu]; 3188 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size); 3189 if (__predict_false(m == NULL)) { 3190 error = ENOBUFS; 3191 break; 3192 } 3193 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3194 3195 error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap, 3196 m, &segs, &nsegs, BUS_DMA_NOWAIT); 3197 if (__predict_false(error != 0 || nsegs != 1)) { 3198 KASSERT(1, ("Failed to load Rx mbuf DMA map")); 3199 m_freem(m); 3200 break; 3201 } 3202 3203 /* Add the packet to the ring */ 3204 rxbuf->m = m; 3205 r = &rx->desc[rx->cpu]; 3206 r->bufptr_pa = segs.ds_addr; 3207 rx->rxbuf_virt_addr[rx->cpu] = m->m_data; 3208 3209 rx->cpu = rx_counter_adv(rx->cpu, 1); 3210 } 3211 if (npkt == 0) { 3212 if (refill == MVNETA_RX_RING_CNT) 3213 rx->needs_refill = TRUE; 3214 return; 3215 } 3216 3217 rx->needs_refill = FALSE; 3218 bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 3219 3220 while (__predict_false(npkt > 255)) { 3221 prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255); 3222 MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu); 3223 npkt -= 255; 3224 } 3225 if (__predict_true(npkt > 0)) { 3226 prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt); 3227 MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu); 3228 } 3229 } 3230 3231 STATIC __inline void 3232 mvneta_rx_set_csumflag(struct ifnet *ifp, 3233 struct mvneta_rx_desc *r, struct mbuf *m) 3234 { 3235 uint32_t csum_flags; 3236 3237 csum_flags = 0; 3238 if (__predict_false((r->status & 3239 (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0)) 3240 return; /* not a IP packet */ 3241 3242 /* L3 */ 3243 if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) == 3244 MVNETA_RX_IP_HEADER_OK)) 3245 csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID; 3246 3247 if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 3248 (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) { 3249 /* L4 */ 3250 switch (r->status & MVNETA_RX_L4_MASK) { 3251 case MVNETA_RX_L4_TCP: 3252 case MVNETA_RX_L4_UDP: 3253 csum_flags |= CSUM_L4_CALC; 3254 if (__predict_true((r->status & 3255 MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) { 3256 csum_flags |= CSUM_L4_VALID; 3257 m->m_pkthdr.csum_data = htons(0xffff); 3258 } 3259 break; 3260 case MVNETA_RX_L4_OTH: 3261 default: 3262 break; 3263 } 3264 } 3265 m->m_pkthdr.csum_flags = csum_flags; 3266 } 3267 3268 /* 3269 * MAC address filter 3270 */ 3271 STATIC void 3272 mvneta_filter_setup(struct mvneta_softc *sc) 3273 { 3274 struct ifnet *ifp; 3275 uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT]; 3276 uint32_t pxc; 3277 int i; 3278 3279 KASSERT_SC_MTX(sc); 3280 3281 memset(dfut, 0, sizeof(dfut)); 3282 memset(dfsmt, 0, sizeof(dfsmt)); 3283 memset(dfomt, 0, sizeof(dfomt)); 3284 3285 ifp = sc->ifp; 3286 ifp->if_flags |= IFF_ALLMULTI; 3287 if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) { 3288 for (i = 0; i < MVNETA_NDFSMT; i++) { 3289 dfsmt[i] = dfomt[i] = 3290 MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) | 3291 MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) | 3292 MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) | 3293 MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS); 3294 } 3295 } 3296 3297 pxc = MVNETA_READ(sc, MVNETA_PXC); 3298 pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK | 3299 MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK); 3300 pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1); 3301 pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1); 3302 pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1); 3303 pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1); 3304 pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1); 3305 pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP; 3306 if (ifp->if_flags & IFF_BROADCAST) { 3307 pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP); 3308 } 3309 if (ifp->if_flags & IFF_PROMISC) { 3310 pxc |= MVNETA_PXC_UPM; 3311 } 3312 MVNETA_WRITE(sc, MVNETA_PXC, pxc); 3313 3314 /* Set Destination Address Filter Unicast Table */ 3315 if (ifp->if_flags & IFF_PROMISC) { 3316 /* pass all unicast addresses */ 3317 for (i = 0; i < MVNETA_NDFUT; i++) { 3318 dfut[i] = 3319 MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) | 3320 MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) | 3321 MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) | 3322 MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS); 3323 } 3324 } else { 3325 i = sc->enaddr[5] & 0xf; /* last nibble */ 3326 dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS); 3327 } 3328 MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT); 3329 3330 /* Set Destination Address Filter Multicast Tables */ 3331 MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT); 3332 MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT); 3333 } 3334 3335 /* 3336 * sysctl(9) 3337 */ 3338 STATIC int 3339 sysctl_read_mib(SYSCTL_HANDLER_ARGS) 3340 { 3341 struct mvneta_sysctl_mib *arg; 3342 struct mvneta_softc *sc; 3343 uint64_t val; 3344 3345 arg = (struct mvneta_sysctl_mib *)arg1; 3346 if (arg == NULL) 3347 return (EINVAL); 3348 3349 sc = arg->sc; 3350 if (sc == NULL) 3351 return (EINVAL); 3352 if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER) 3353 return (EINVAL); 3354 3355 mvneta_sc_lock(sc); 3356 val = arg->counter; 3357 mvneta_sc_unlock(sc); 3358 return sysctl_handle_64(oidp, &val, 0, req); 3359 } 3360 3361 3362 STATIC int 3363 sysctl_clear_mib(SYSCTL_HANDLER_ARGS) 3364 { 3365 struct mvneta_softc *sc; 3366 int err, val; 3367 3368 val = 0; 3369 sc = (struct mvneta_softc *)arg1; 3370 if (sc == NULL) 3371 return (EINVAL); 3372 3373 err = sysctl_handle_int(oidp, &val, 0, req); 3374 if (err != 0) 3375 return (err); 3376 3377 if (val < 0 || val > 1) 3378 return (EINVAL); 3379 3380 if (val == 1) { 3381 mvneta_sc_lock(sc); 3382 mvneta_clear_mib(sc); 3383 mvneta_sc_unlock(sc); 3384 } 3385 3386 return (0); 3387 } 3388 3389 STATIC int 3390 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS) 3391 { 3392 struct mvneta_sysctl_queue *arg; 3393 struct mvneta_rx_ring *rx; 3394 struct mvneta_softc *sc; 3395 uint32_t reg, time_mvtclk; 3396 int err, time_us; 3397 3398 rx = NULL; 3399 arg = (struct mvneta_sysctl_queue *)arg1; 3400 if (arg == NULL) 3401 return (EINVAL); 3402 if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT) 3403 return (EINVAL); 3404 if (arg->rxtx != MVNETA_SYSCTL_RX) 3405 return (EINVAL); 3406 3407 sc = arg->sc; 3408 if (sc == NULL) 3409 return (EINVAL); 3410 3411 /* read queue length */ 3412 mvneta_sc_lock(sc); 3413 mvneta_rx_lockq(sc, arg->queue); 3414 rx = MVNETA_RX_RING(sc, arg->queue); 3415 time_mvtclk = rx->queue_th_time; 3416 time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvneta_get_clk(); 3417 mvneta_rx_unlockq(sc, arg->queue); 3418 mvneta_sc_unlock(sc); 3419 3420 err = sysctl_handle_int(oidp, &time_us, 0, req); 3421 if (err != 0) 3422 return (err); 3423 3424 mvneta_sc_lock(sc); 3425 mvneta_rx_lockq(sc, arg->queue); 3426 3427 /* update queue length (0[sec] - 1[sec]) */ 3428 if (time_us < 0 || time_us > (1000 * 1000)) { 3429 mvneta_rx_unlockq(sc, arg->queue); 3430 mvneta_sc_unlock(sc); 3431 return (EINVAL); 3432 } 3433 time_mvtclk = 3434 (uint64_t)mvneta_get_clk() * (uint64_t)time_us / (1000ULL * 1000ULL); 3435 rx->queue_th_time = time_mvtclk; 3436 reg = MVNETA_PRXITTH_RITT(rx->queue_th_time); 3437 MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg); 3438 mvneta_rx_unlockq(sc, arg->queue); 3439 mvneta_sc_unlock(sc); 3440 3441 return (0); 3442 } 3443 3444 STATIC void 3445 sysctl_mvneta_init(struct mvneta_softc *sc) 3446 { 3447 struct sysctl_ctx_list *ctx; 3448 struct sysctl_oid_list *children; 3449 struct sysctl_oid_list *rxchildren; 3450 struct sysctl_oid_list *qchildren, *mchildren; 3451 struct sysctl_oid *tree; 3452 int i, q; 3453 struct mvneta_sysctl_queue *rxarg; 3454 #define MVNETA_SYSCTL_NAME(num) "queue" # num 3455 static const char *sysctl_queue_names[] = { 3456 MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1), 3457 MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3), 3458 MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5), 3459 MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7), 3460 }; 3461 #undef MVNETA_SYSCTL_NAME 3462 3463 #ifndef NO_SYSCTL_DESCR 3464 #define MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num 3465 static const char *sysctl_queue_descrs[] = { 3466 MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1), 3467 MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3), 3468 MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5), 3469 MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7), 3470 }; 3471 #undef MVNETA_SYSCTL_DESCR 3472 #endif 3473 3474 3475 ctx = device_get_sysctl_ctx(sc->dev); 3476 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 3477 3478 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx", 3479 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX"); 3480 rxchildren = SYSCTL_CHILDREN(tree); 3481 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib", 3482 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB"); 3483 mchildren = SYSCTL_CHILDREN(tree); 3484 3485 3486 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control", 3487 CTLFLAG_RW, &sc->cf_fc, 0, "flow control"); 3488 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi", 3489 CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle"); 3490 3491 /* 3492 * MIB access 3493 */ 3494 /* dev.mvneta.[unit].mib.<mibs> */ 3495 for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) { 3496 struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i]; 3497 3498 mib_arg->sc = sc; 3499 mib_arg->index = i; 3500 SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, 3501 mvneta_mib_list[i].sysctl_name, 3502 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 3503 (void *)mib_arg, 0, sysctl_read_mib, "I", 3504 mvneta_mib_list[i].desc); 3505 } 3506 SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard", 3507 CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter"); 3508 SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun", 3509 CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter"); 3510 SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog", 3511 CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter"); 3512 3513 SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset", 3514 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 3515 (void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters"); 3516 3517 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) { 3518 rxarg = &sc->sysctl_rx_queue[q]; 3519 3520 rxarg->sc = sc; 3521 rxarg->queue = q; 3522 rxarg->rxtx = MVNETA_SYSCTL_RX; 3523 3524 /* hw.mvneta.mvneta[unit].rx.[queue] */ 3525 tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO, 3526 sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3527 sysctl_queue_descrs[q]); 3528 qchildren = SYSCTL_CHILDREN(tree); 3529 3530 /* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */ 3531 SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us", 3532 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0, 3533 sysctl_set_queue_rxthtime, "I", 3534 "interrupt coalescing threshold timer [us]"); 3535 } 3536 } 3537 3538 /* 3539 * MIB 3540 */ 3541 STATIC void 3542 mvneta_clear_mib(struct mvneta_softc *sc) 3543 { 3544 int i; 3545 3546 KASSERT_SC_MTX(sc); 3547 3548 for (i = 0; i < nitems(mvneta_mib_list); i++) { 3549 if (mvneta_mib_list[i].reg64) 3550 MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum); 3551 else 3552 MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum); 3553 sc->sysctl_mib[i].counter = 0; 3554 } 3555 MVNETA_READ(sc, MVNETA_PDFC); 3556 sc->counter_pdfc = 0; 3557 MVNETA_READ(sc, MVNETA_POFC); 3558 sc->counter_pofc = 0; 3559 sc->counter_watchdog = 0; 3560 } 3561 3562 STATIC void 3563 mvneta_update_mib(struct mvneta_softc *sc) 3564 { 3565 struct mvneta_tx_ring *tx; 3566 int i; 3567 uint64_t val; 3568 uint32_t reg; 3569 3570 for (i = 0; i < nitems(mvneta_mib_list); i++) { 3571 3572 if (mvneta_mib_list[i].reg64) 3573 val = MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum); 3574 else 3575 val = MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum); 3576 3577 if (val == 0) 3578 continue; 3579 3580 sc->sysctl_mib[i].counter += val; 3581 switch (mvneta_mib_list[i].regnum) { 3582 case MVNETA_MIB_RX_GOOD_OCT: 3583 if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val); 3584 break; 3585 case MVNETA_MIB_RX_BAD_FRAME: 3586 if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val); 3587 break; 3588 case MVNETA_MIB_RX_GOOD_FRAME: 3589 if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val); 3590 break; 3591 case MVNETA_MIB_RX_MCAST_FRAME: 3592 if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val); 3593 break; 3594 case MVNETA_MIB_TX_GOOD_OCT: 3595 if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val); 3596 break; 3597 case MVNETA_MIB_TX_GOOD_FRAME: 3598 if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val); 3599 break; 3600 case MVNETA_MIB_TX_MCAST_FRAME: 3601 if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val); 3602 break; 3603 case MVNETA_MIB_MAC_COL: 3604 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val); 3605 break; 3606 case MVNETA_MIB_TX_MAC_TRNS_ERR: 3607 case MVNETA_MIB_TX_EXCES_COL: 3608 case MVNETA_MIB_MAC_LATE_COL: 3609 if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val); 3610 break; 3611 } 3612 } 3613 3614 reg = MVNETA_READ(sc, MVNETA_PDFC); 3615 sc->counter_pdfc += reg; 3616 if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg); 3617 reg = MVNETA_READ(sc, MVNETA_POFC); 3618 sc->counter_pofc += reg; 3619 if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg); 3620 3621 /* TX watchdog. */ 3622 if (sc->counter_watchdog_mib > 0) { 3623 if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib); 3624 sc->counter_watchdog_mib = 0; 3625 } 3626 /* 3627 * TX driver errors: 3628 * We do not take queue locks to not disrupt TX path. 3629 * We may only miss one drv error which will be fixed at 3630 * next mib update. We may also clear counter when TX path 3631 * is incrementing it but we only do it if counter was not zero 3632 * thus we may only loose one error. 3633 */ 3634 for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) { 3635 tx = MVNETA_TX_RING(sc, i); 3636 3637 if (tx->drv_error > 0) { 3638 if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error); 3639 tx->drv_error = 0; 3640 } 3641 } 3642 } 3643