xref: /freebsd/sys/dev/neta/if_mvneta.c (revision 833a452e9f082a7982a31c21f0da437dbbe0a39d)
1 /*
2  * Copyright (c) 2017 Stormshield.
3  * Copyright (c) 2017 Semihalf.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/endian.h>
35 #include <sys/mbuf.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/smp.h>
43 #include <sys/taskqueue.h>
44 #ifdef MVNETA_KTR
45 #include <sys/ktr.h>
46 #endif
47 
48 #include <net/ethernet.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp_lro.h>
61 
62 #include <sys/sockio.h>
63 #include <sys/bus.h>
64 #include <machine/bus.h>
65 #include <sys/rman.h>
66 #include <machine/resource.h>
67 
68 #if defined(__aarch64__)
69 #include <dev/extres/clk/clk.h>
70 #endif
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/mdio/mdio.h>
76 
77 #include <arm/mv/mvvar.h>
78 
79 #if !defined(__aarch64__)
80 #include <arm/mv/mvreg.h>
81 #include <arm/mv/mvwin.h>
82 #endif
83 
84 #include "if_mvnetareg.h"
85 #include "if_mvnetavar.h"
86 
87 #include "miibus_if.h"
88 #include "mdio_if.h"
89 
90 #ifdef MVNETA_DEBUG
91 #define	STATIC /* nothing */
92 #else
93 #define	STATIC static
94 #endif
95 
96 #define	DASSERT(x) KASSERT((x), (#x))
97 
98 #define	A3700_TCLK_250MHZ		250000000
99 
100 /* Device Register Initialization */
101 STATIC int mvneta_initreg(struct ifnet *);
102 
103 /* Descriptor Ring Control for each of queues */
104 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
105 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
106 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
107 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
108 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
109 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
110 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
111 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
112 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 STATIC int mvneta_dma_create(struct mvneta_softc *);
114 
115 /* Rx/Tx Queue Control */
116 STATIC int mvneta_rx_queue_init(struct ifnet *, int);
117 STATIC int mvneta_tx_queue_init(struct ifnet *, int);
118 STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
119 STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
120 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
121 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
122 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
123 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
124 
125 /* Interrupt Handlers */
126 STATIC void mvneta_disable_intr(struct mvneta_softc *);
127 STATIC void mvneta_enable_intr(struct mvneta_softc *);
128 STATIC void mvneta_rxtxth_intr(void *);
129 STATIC int mvneta_misc_intr(struct mvneta_softc *);
130 STATIC void mvneta_tick(void *);
131 /* struct ifnet and mii callbacks*/
132 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
133 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
134 #ifdef MVNETA_MULTIQUEUE
135 STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
136 #else /* !MVNETA_MULTIQUEUE */
137 STATIC void mvneta_start(struct ifnet *);
138 #endif
139 STATIC void mvneta_qflush(struct ifnet *);
140 STATIC void mvneta_tx_task(void *, int);
141 STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
142 STATIC void mvneta_init(void *);
143 STATIC void mvneta_init_locked(void *);
144 STATIC void mvneta_stop(struct mvneta_softc *);
145 STATIC void mvneta_stop_locked(struct mvneta_softc *);
146 STATIC int mvneta_mediachange(struct ifnet *);
147 STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
148 STATIC void mvneta_portup(struct mvneta_softc *);
149 STATIC void mvneta_portdown(struct mvneta_softc *);
150 
151 /* Link State Notify */
152 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
153 STATIC int mvneta_update_media(struct mvneta_softc *, int);
154 STATIC void mvneta_adjust_link(struct mvneta_softc *);
155 STATIC void mvneta_update_eee(struct mvneta_softc *);
156 STATIC void mvneta_update_fc(struct mvneta_softc *);
157 STATIC void mvneta_link_isr(struct mvneta_softc *);
158 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
159 STATIC void mvneta_linkup(struct mvneta_softc *);
160 STATIC void mvneta_linkdown(struct mvneta_softc *);
161 STATIC void mvneta_linkreset(struct mvneta_softc *);
162 
163 /* Tx Subroutines */
164 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
165 STATIC void mvneta_tx_set_csumflag(struct ifnet *,
166     struct mvneta_tx_desc *, struct mbuf *);
167 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
168 STATIC void mvneta_tx_drain(struct mvneta_softc *);
169 
170 /* Rx Subroutines */
171 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
172 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
173 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
174 STATIC void mvneta_rx_set_csumflag(struct ifnet *,
175     struct mvneta_rx_desc *, struct mbuf *);
176 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
177 
178 /* MAC address filter */
179 STATIC void mvneta_filter_setup(struct mvneta_softc *);
180 
181 /* sysctl(9) */
182 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
183 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
184 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
185 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
186 
187 /* MIB */
188 STATIC void mvneta_clear_mib(struct mvneta_softc *);
189 STATIC uint64_t mvneta_read_mib(struct mvneta_softc *, int);
190 STATIC void mvneta_update_mib(struct mvneta_softc *);
191 
192 /* Switch */
193 STATIC boolean_t mvneta_has_switch(device_t);
194 
195 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
196 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
197 
198 STATIC struct mtx mii_mutex;
199 STATIC int mii_init = 0;
200 
201 /* Device */
202 STATIC int mvneta_detach(device_t);
203 /* MII */
204 STATIC int mvneta_miibus_readreg(device_t, int, int);
205 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
206 
207 static device_method_t mvneta_methods[] = {
208 	/* Device interface */
209 	DEVMETHOD(device_detach,	mvneta_detach),
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
213 	/* MDIO interface */
214 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
215 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
216 
217 	/* End */
218 	DEVMETHOD_END
219 };
220 
221 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
222 
223 DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0);
224 DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0);
225 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
226 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
227 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
228 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
229 
230 /*
231  * List of MIB register and names
232  */
233 enum mvneta_mib_idx
234 {
235 	MVNETA_MIB_RX_GOOD_OCT_IDX,
236 	MVNETA_MIB_RX_BAD_OCT_IDX,
237 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
238 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
239 	MVNETA_MIB_RX_BAD_FRAME_IDX,
240 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
241 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
242 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
243 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
244 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
245 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
246 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
247 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
248 	MVNETA_MIB_TX_GOOD_OCT_IDX,
249 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
250 	MVNETA_MIB_TX_EXCES_COL_IDX,
251 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
252 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
253 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
254 	MVNETA_MIB_FC_SENT_IDX,
255 	MVNETA_MIB_FC_GOOD_IDX,
256 	MVNETA_MIB_FC_BAD_IDX,
257 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
258 	MVNETA_MIB_PKT_FRAGMENT_IDX,
259 	MVNETA_MIB_PKT_OVERSIZE_IDX,
260 	MVNETA_MIB_PKT_JABBER_IDX,
261 	MVNETA_MIB_MAC_RX_ERR_IDX,
262 	MVNETA_MIB_MAC_CRC_ERR_IDX,
263 	MVNETA_MIB_MAC_COL_IDX,
264 	MVNETA_MIB_MAC_LATE_COL_IDX,
265 };
266 
267 STATIC struct mvneta_mib_def {
268 	uint32_t regnum;
269 	int reg64;
270 	const char *sysctl_name;
271 	const char *desc;
272 } mvneta_mib_list[] = {
273 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
274 	    "rx_good_oct", "Good Octets Rx"},
275 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
276 	    "rx_bad_oct", "Bad  Octets Rx"},
277 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
278 	    "tx_mac_err", "MAC Transmit Error"},
279 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
280 	    "rx_good_frame", "Good Frames Rx"},
281 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
282 	    "rx_bad_frame", "Bad Frames Rx"},
283 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
284 	    "rx_bcast_frame", "Broadcast Frames Rx"},
285 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
286 	    "rx_mcast_frame", "Multicast Frames Rx"},
287 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
288 	    "rx_frame_1_64", "Frame Size    1 -   64"},
289 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
290 	    "rx_frame_65_127", "Frame Size   65 -  127"},
291 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
292 	    "rx_frame_128_255", "Frame Size  128 -  255"},
293 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
294 	    "rx_frame_256_511", "Frame Size  256 -  511"},
295 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
296 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
297 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
298 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
299 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
300 	    "tx_good_oct", "Good Octets Tx"},
301 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
302 	    "tx_good_frame", "Good Frames Tx"},
303 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
304 	    "tx_exces_collision", "Excessive Collision"},
305 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
306 	    "tx_mcast_frame", "Multicast Frames Tx"},
307 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
308 	    "tx_bcast_frame", "Broadcast Frames Tx"},
309 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
310 	    "tx_mac_ctl_err", "Unknown MAC Control"},
311 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
312 	    "fc_tx", "Flow Control Tx"},
313 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
314 	    "fc_rx_good", "Good Flow Control Rx"},
315 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
316 	    "fc_rx_bad", "Bad Flow Control Rx"},
317 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
318 	    "pkt_undersize", "Undersized Packets Rx"},
319 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
320 	    "pkt_fragment", "Fragmented Packets Rx"},
321 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
322 	    "pkt_oversize", "Oversized Packets Rx"},
323 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
324 	    "pkt_jabber", "Jabber Packets Rx"},
325 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
326 	    "mac_rx_err", "MAC Rx Errors"},
327 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
328 	    "mac_crc_err", "MAC CRC Errors"},
329 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
330 	    "mac_collision", "MAC Collision"},
331 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
332 	    "mac_late_collision", "MAC Late Collision"},
333 };
334 
335 static struct resource_spec res_spec[] = {
336 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
337 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
338 	{ -1, 0}
339 };
340 
341 static struct {
342 	driver_intr_t *handler;
343 	char * description;
344 } mvneta_intrs[] = {
345 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
346 };
347 
348 static int
349 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
350 {
351 	unsigned int mac_h;
352 	unsigned int mac_l;
353 
354 	mac_l = (addr[4] << 8) | (addr[5]);
355 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
356 	    (addr[2] << 8) | (addr[3] << 0);
357 
358 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
359 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
360 	return (0);
361 }
362 
363 static int
364 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
365 {
366 	uint32_t mac_l, mac_h;
367 
368 #ifdef FDT
369 	if (mvneta_fdt_mac_address(sc, addr) == 0)
370 		return (0);
371 #endif
372 	/*
373 	 * Fall back -- use the currently programmed address.
374 	 */
375 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
376 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
377 	if (mac_l == 0 && mac_h == 0) {
378 		/*
379 		 * Generate pseudo-random MAC.
380 		 * Set lower part to random number | unit number.
381 		 */
382 		mac_l = arc4random() & ~0xff;
383 		mac_l |= device_get_unit(sc->dev) & 0xff;
384 		mac_h = arc4random();
385 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
386 		if (bootverbose) {
387 			device_printf(sc->dev,
388 			    "Could not acquire MAC address. "
389 			    "Using randomized one.\n");
390 		}
391 	}
392 
393 	addr[0] = (mac_h & 0xff000000) >> 24;
394 	addr[1] = (mac_h & 0x00ff0000) >> 16;
395 	addr[2] = (mac_h & 0x0000ff00) >> 8;
396 	addr[3] = (mac_h & 0x000000ff);
397 	addr[4] = (mac_l & 0x0000ff00) >> 8;
398 	addr[5] = (mac_l & 0x000000ff);
399 	return (0);
400 }
401 
402 STATIC boolean_t
403 mvneta_has_switch(device_t self)
404 {
405 #ifdef FDT
406 	return (mvneta_has_switch_fdt(self));
407 #endif
408 
409 	return (false);
410 }
411 
412 STATIC int
413 mvneta_dma_create(struct mvneta_softc *sc)
414 {
415 	size_t maxsize, maxsegsz;
416 	size_t q;
417 	int error;
418 
419 	/*
420 	 * Create Tx DMA
421 	 */
422 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
423 
424 	error = bus_dma_tag_create(
425 	    bus_get_dma_tag(sc->dev),		/* parent */
426 	    16, 0,                              /* alignment, boundary */
427 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
428 	    BUS_SPACE_MAXADDR,                  /* highaddr */
429 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
430 	    maxsize,				/* maxsize */
431 	    1,					/* nsegments */
432 	    maxsegsz,				/* maxsegsz */
433 	    0,					/* flags */
434 	    NULL, NULL,				/* lockfunc, lockfuncarg */
435 	    &sc->tx_dtag);			/* dmat */
436 	if (error != 0) {
437 		device_printf(sc->dev,
438 		    "Failed to create DMA tag for Tx descriptors.\n");
439 		goto fail;
440 	}
441 	error = bus_dma_tag_create(
442 	    bus_get_dma_tag(sc->dev),		/* parent */
443 	    1, 0,				/* alignment, boundary */
444 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
445 	    BUS_SPACE_MAXADDR,			/* highaddr */
446 	    NULL, NULL,				/* filtfunc, filtfuncarg */
447 	    MVNETA_MAX_FRAME,			/* maxsize */
448 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
449 	    MVNETA_MAX_FRAME,			/* maxsegsz */
450 	    BUS_DMA_ALLOCNOW,			/* flags */
451 	    NULL, NULL,				/* lockfunc, lockfuncarg */
452 	    &sc->txmbuf_dtag);
453 	if (error != 0) {
454 		device_printf(sc->dev,
455 		    "Failed to create DMA tag for Tx mbufs.\n");
456 		goto fail;
457 	}
458 
459 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
460 		error = mvneta_ring_alloc_tx_queue(sc, q);
461 		if (error != 0) {
462 			device_printf(sc->dev,
463 			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
464 			goto fail;
465 		}
466 	}
467 
468 	/*
469 	 * Create Rx DMA.
470 	 */
471 	/* Create tag for Rx descripors */
472 	error = bus_dma_tag_create(
473 	    bus_get_dma_tag(sc->dev),		/* parent */
474 	    32, 0,                              /* alignment, boundary */
475 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
476 	    BUS_SPACE_MAXADDR,                  /* highaddr */
477 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
478 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
479 	    1,					/* nsegments */
480 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
481 	    0,					/* flags */
482 	    NULL, NULL,				/* lockfunc, lockfuncarg */
483 	    &sc->rx_dtag);			/* dmat */
484 	if (error != 0) {
485 		device_printf(sc->dev,
486 		    "Failed to create DMA tag for Rx descriptors.\n");
487 		goto fail;
488 	}
489 
490 	/* Create tag for Rx buffers */
491 	error = bus_dma_tag_create(
492 	    bus_get_dma_tag(sc->dev),		/* parent */
493 	    32, 0,				/* alignment, boundary */
494 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
495 	    BUS_SPACE_MAXADDR,			/* highaddr */
496 	    NULL, NULL,				/* filtfunc, filtfuncarg */
497 	    MVNETA_MAX_FRAME, 1,		/* maxsize, nsegments */
498 	    MVNETA_MAX_FRAME,			/* maxsegsz */
499 	    0,					/* flags */
500 	    NULL, NULL,				/* lockfunc, lockfuncarg */
501 	    &sc->rxbuf_dtag);			/* dmat */
502 	if (error != 0) {
503 		device_printf(sc->dev,
504 		    "Failed to create DMA tag for Rx buffers.\n");
505 		goto fail;
506 	}
507 
508 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
509 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
510 			device_printf(sc->dev,
511 			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
512 			goto fail;
513 		}
514 	}
515 
516 	return (0);
517 fail:
518 	mvneta_detach(sc->dev);
519 
520 	return (error);
521 }
522 
523 /* ARGSUSED */
524 int
525 mvneta_attach(device_t self)
526 {
527 	struct mvneta_softc *sc;
528 	struct ifnet *ifp;
529 	device_t child;
530 	int ifm_target;
531 	int q, error;
532 #if !defined(__aarch64__)
533 	uint32_t reg;
534 #endif
535 #if defined(__aarch64__)
536 	clk_t clk;
537 #endif
538 	sc = device_get_softc(self);
539 	sc->dev = self;
540 
541 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
542 
543 	error = bus_alloc_resources(self, res_spec, sc->res);
544 	if (error) {
545 		device_printf(self, "could not allocate resources\n");
546 		return (ENXIO);
547 	}
548 
549 	sc->version = MVNETA_READ(sc, MVNETA_PV);
550 	device_printf(self, "version is %x\n", sc->version);
551 	callout_init(&sc->tick_ch, 0);
552 
553 	/*
554 	 * make sure DMA engines are in reset state
555 	 */
556 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
557 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
558 
559 #if defined(__aarch64__)
560 	error = clk_get_by_ofw_index(sc->dev, ofw_bus_get_node(sc->dev), 0,
561 	    &clk);
562 	if (error != 0) {
563 		device_printf(sc->dev,
564 			"Cannot get clock, using default frequency: %d\n",
565 			A3700_TCLK_250MHZ);
566 		sc->clk_freq = A3700_TCLK_250MHZ;
567 	} else {
568 		error = clk_get_freq(clk, &sc->clk_freq);
569 		if (error != 0) {
570 			device_printf(sc->dev,
571 				"Cannot obtain frequency from parent clock\n");
572 			bus_release_resources(sc->dev, res_spec, sc->res);
573 			return (error);
574 		}
575 	}
576 #else
577 	sc->clk_freq = get_tclk();
578 #endif
579 
580 #if !defined(__aarch64__)
581 	/*
582 	 * Disable port snoop for buffers and descriptors
583 	 * to avoid L2 caching of both without DRAM copy.
584 	 * Obtain coherency settings from the first MBUS
585 	 * window attribute.
586 	 */
587 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
588 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
589 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
590 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
591 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
592 	}
593 #endif
594 
595 	error = bus_setup_intr(self, sc->res[1],
596 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
597 	    &sc->ih_cookie[0]);
598 	if (error) {
599 		device_printf(self, "could not setup %s\n",
600 		    mvneta_intrs[0].description);
601 		mvneta_detach(self);
602 		return (error);
603 	}
604 
605 	/*
606 	 * MAC address
607 	 */
608 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
609 		device_printf(self, "no mac address.\n");
610 		return (ENXIO);
611 	}
612 	mvneta_set_mac_address(sc, sc->enaddr);
613 
614 	mvneta_disable_intr(sc);
615 
616 	/* Allocate network interface */
617 	ifp = sc->ifp = if_alloc(IFT_ETHER);
618 	if (ifp == NULL) {
619 		device_printf(self, "if_alloc() failed\n");
620 		mvneta_detach(self);
621 		return (ENOMEM);
622 	}
623 	if_initname(ifp, device_get_name(self), device_get_unit(self));
624 
625 	/*
626 	 * We can support 802.1Q VLAN-sized frames and jumbo
627 	 * Ethernet frames.
628 	 */
629 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
630 
631 	ifp->if_softc = sc;
632 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
633 #ifdef MVNETA_MULTIQUEUE
634 	ifp->if_transmit = mvneta_transmit;
635 	ifp->if_qflush = mvneta_qflush;
636 #else /* !MVNETA_MULTIQUEUE */
637 	ifp->if_start = mvneta_start;
638 	ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
639 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
640 	IFQ_SET_READY(&ifp->if_snd);
641 #endif
642 	ifp->if_init = mvneta_init;
643 	ifp->if_ioctl = mvneta_ioctl;
644 
645 	/*
646 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
647 	 */
648 	ifp->if_capabilities |= IFCAP_HWCSUM;
649 
650 	/*
651 	 * As VLAN hardware tagging is not supported
652 	 * but is necessary to perform VLAN hardware checksums,
653 	 * it is done in the driver
654 	 */
655 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
656 
657 	/*
658 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
659 	 */
660 	ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
661 	ifp->if_capenable = ifp->if_capabilities;
662 
663 	/*
664 	 * Disabled option(s):
665 	 * - Support for Large Receive Offload
666 	 */
667 	ifp->if_capabilities |= IFCAP_LRO;
668 
669 	ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
670 
671 	sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */
672 
673 	/*
674 	 * Device DMA Buffer allocation.
675 	 * Handles resource deallocation in case of failure.
676 	 */
677 	error = mvneta_dma_create(sc);
678 	if (error != 0) {
679 		mvneta_detach(self);
680 		return (error);
681 	}
682 
683 	/* Initialize queues */
684 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
685 		error = mvneta_ring_init_tx_queue(sc, q);
686 		if (error != 0) {
687 			mvneta_detach(self);
688 			return (error);
689 		}
690 	}
691 
692 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
693 		error = mvneta_ring_init_rx_queue(sc, q);
694 		if (error != 0) {
695 			mvneta_detach(self);
696 			return (error);
697 		}
698 	}
699 
700 	/*
701 	 * Enable DMA engines and Initialize Device Registers.
702 	 */
703 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
704 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
705 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
706 	mvneta_sc_lock(sc);
707 	mvneta_filter_setup(sc);
708 	mvneta_sc_unlock(sc);
709 	mvneta_initreg(ifp);
710 
711 	/*
712 	 * Now MAC is working, setup MII.
713 	 */
714 	if (mii_init == 0) {
715 		/*
716 		 * MII bus is shared by all MACs and all PHYs in SoC.
717 		 * serializing the bus access should be safe.
718 		 */
719 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
720 		mii_init = 1;
721 	}
722 
723 	/* Attach PHY(s) */
724 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
725 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
726 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
727 		    MII_OFFSET_ANY, 0);
728 		if (error != 0) {
729 			device_printf(self, "MII attach failed, error: %d\n",
730 			    error);
731 			ether_ifdetach(sc->ifp);
732 			mvneta_detach(self);
733 			return (error);
734 		}
735 		sc->mii = device_get_softc(sc->miibus);
736 		sc->phy_attached = 1;
737 
738 		/* Disable auto-negotiation in MAC - rely on PHY layer */
739 		mvneta_update_autoneg(sc, FALSE);
740 	} else if (sc->use_inband_status == TRUE) {
741 		/* In-band link status */
742 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
743 		    mvneta_mediastatus);
744 
745 		/* Configure media */
746 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
747 		    0, NULL);
748 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
749 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
750 		    0, NULL);
751 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
752 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
753 		    0, NULL);
754 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
755 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
756 
757 		/* Enable auto-negotiation */
758 		mvneta_update_autoneg(sc, TRUE);
759 
760 		mvneta_sc_lock(sc);
761 		if (MVNETA_IS_LINKUP(sc))
762 			mvneta_linkup(sc);
763 		else
764 			mvneta_linkdown(sc);
765 		mvneta_sc_unlock(sc);
766 
767 	} else {
768 		/* Fixed-link, use predefined values */
769 		mvneta_update_autoneg(sc, FALSE);
770 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
771 		    mvneta_mediastatus);
772 
773 		ifm_target = IFM_ETHER;
774 		switch (sc->phy_speed) {
775 		case 2500:
776 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
777 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
778 				device_printf(self,
779 				    "2.5G speed can work only in (Q)SGMII mode\n");
780 				ether_ifdetach(sc->ifp);
781 				mvneta_detach(self);
782 				return (ENXIO);
783 			}
784 			ifm_target |= IFM_2500_T;
785 			break;
786 		case 1000:
787 			ifm_target |= IFM_1000_T;
788 			break;
789 		case 100:
790 			ifm_target |= IFM_100_TX;
791 			break;
792 		case 10:
793 			ifm_target |= IFM_10_T;
794 			break;
795 		default:
796 			ether_ifdetach(sc->ifp);
797 			mvneta_detach(self);
798 			return (ENXIO);
799 		}
800 
801 		if (sc->phy_fdx)
802 			ifm_target |= IFM_FDX;
803 		else
804 			ifm_target |= IFM_HDX;
805 
806 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
807 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
808 		if_link_state_change(sc->ifp, LINK_STATE_UP);
809 
810 		if (mvneta_has_switch(self)) {
811 			if (bootverbose)
812 				device_printf(self, "This device is attached to a switch\n");
813 			child = device_add_child(sc->dev, "mdio", -1);
814 			if (child == NULL) {
815 				ether_ifdetach(sc->ifp);
816 				mvneta_detach(self);
817 				return (ENXIO);
818 			}
819 			bus_generic_attach(sc->dev);
820 			bus_generic_attach(child);
821 		}
822 
823 		/* Configure MAC media */
824 		mvneta_update_media(sc, ifm_target);
825 	}
826 
827 	ether_ifattach(ifp, sc->enaddr);
828 
829 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
830 
831 	sysctl_mvneta_init(sc);
832 
833 	return (0);
834 }
835 
836 STATIC int
837 mvneta_detach(device_t dev)
838 {
839 	struct mvneta_softc *sc;
840 	struct ifnet *ifp;
841 	int q;
842 
843 	sc = device_get_softc(dev);
844 	ifp = sc->ifp;
845 
846 	if (device_is_attached(dev)) {
847 		mvneta_stop(sc);
848 		callout_drain(&sc->tick_ch);
849 		ether_ifdetach(sc->ifp);
850 	}
851 
852 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
853 		mvneta_ring_dealloc_rx_queue(sc, q);
854 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
855 		mvneta_ring_dealloc_tx_queue(sc, q);
856 
857 	device_delete_children(dev);
858 
859 	if (sc->ih_cookie[0] != NULL)
860 		bus_teardown_intr(dev, sc->res[1], sc->ih_cookie[0]);
861 
862 	if (sc->tx_dtag != NULL)
863 		bus_dma_tag_destroy(sc->tx_dtag);
864 	if (sc->rx_dtag != NULL)
865 		bus_dma_tag_destroy(sc->rx_dtag);
866 	if (sc->txmbuf_dtag != NULL)
867 		bus_dma_tag_destroy(sc->txmbuf_dtag);
868 	if (sc->rxbuf_dtag != NULL)
869 		bus_dma_tag_destroy(sc->rxbuf_dtag);
870 
871 	bus_release_resources(dev, res_spec, sc->res);
872 
873 	if (sc->ifp)
874 		if_free(sc->ifp);
875 
876 	if (mtx_initialized(&sc->mtx))
877 		mtx_destroy(&sc->mtx);
878 
879 	return (0);
880 }
881 
882 /*
883  * MII
884  */
885 STATIC int
886 mvneta_miibus_readreg(device_t dev, int phy, int reg)
887 {
888 	struct mvneta_softc *sc;
889 	struct ifnet *ifp;
890 	uint32_t smi, val;
891 	int i;
892 
893 	sc = device_get_softc(dev);
894 	ifp = sc->ifp;
895 
896 	mtx_lock(&mii_mutex);
897 
898 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
899 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
900 			break;
901 		DELAY(1);
902 	}
903 	if (i == MVNETA_PHY_TIMEOUT) {
904 		if_printf(ifp, "SMI busy timeout\n");
905 		mtx_unlock(&mii_mutex);
906 		return (-1);
907 	}
908 
909 	smi = MVNETA_SMI_PHYAD(phy) |
910 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
911 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
912 
913 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
914 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
915 			break;
916 		DELAY(1);
917 	}
918 
919 	if (i == MVNETA_PHY_TIMEOUT) {
920 		if_printf(ifp, "SMI busy timeout\n");
921 		mtx_unlock(&mii_mutex);
922 		return (-1);
923 	}
924 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
925 		smi = MVNETA_READ(sc, MVNETA_SMI);
926 		if (smi & MVNETA_SMI_READVALID)
927 			break;
928 		DELAY(1);
929 	}
930 
931 	if (i == MVNETA_PHY_TIMEOUT) {
932 		if_printf(ifp, "SMI busy timeout\n");
933 		mtx_unlock(&mii_mutex);
934 		return (-1);
935 	}
936 
937 	mtx_unlock(&mii_mutex);
938 
939 #ifdef MVNETA_KTR
940 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
941 	    MVNETA_PHY_TIMEOUT);
942 #endif
943 
944 	val = smi & MVNETA_SMI_DATA_MASK;
945 
946 #ifdef MVNETA_KTR
947 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
948 	    reg, val);
949 #endif
950 	return (val);
951 }
952 
953 STATIC int
954 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
955 {
956 	struct mvneta_softc *sc;
957 	struct ifnet *ifp;
958 	uint32_t smi;
959 	int i;
960 
961 	sc = device_get_softc(dev);
962 	ifp = sc->ifp;
963 #ifdef MVNETA_KTR
964 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
965 	    phy, reg, val);
966 #endif
967 
968 	mtx_lock(&mii_mutex);
969 
970 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
971 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
972 			break;
973 		DELAY(1);
974 	}
975 	if (i == MVNETA_PHY_TIMEOUT) {
976 		if_printf(ifp, "SMI busy timeout\n");
977 		mtx_unlock(&mii_mutex);
978 		return (0);
979 	}
980 
981 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
982 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
983 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
984 
985 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
986 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
987 			break;
988 		DELAY(1);
989 	}
990 
991 	mtx_unlock(&mii_mutex);
992 
993 	if (i == MVNETA_PHY_TIMEOUT)
994 		if_printf(ifp, "phy write timed out\n");
995 
996 	return (0);
997 }
998 
999 STATIC void
1000 mvneta_portup(struct mvneta_softc *sc)
1001 {
1002 	int q;
1003 
1004 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1005 		mvneta_rx_lockq(sc, q);
1006 		mvneta_rx_queue_enable(sc->ifp, q);
1007 		mvneta_rx_unlockq(sc, q);
1008 	}
1009 
1010 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1011 		mvneta_tx_lockq(sc, q);
1012 		mvneta_tx_queue_enable(sc->ifp, q);
1013 		mvneta_tx_unlockq(sc, q);
1014 	}
1015 
1016 }
1017 
1018 STATIC void
1019 mvneta_portdown(struct mvneta_softc *sc)
1020 {
1021 	struct mvneta_rx_ring *rx;
1022 	struct mvneta_tx_ring *tx;
1023 	int q, cnt;
1024 	uint32_t reg;
1025 
1026 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1027 		rx = MVNETA_RX_RING(sc, q);
1028 		mvneta_rx_lockq(sc, q);
1029 		rx->queue_status = MVNETA_QUEUE_DISABLED;
1030 		mvneta_rx_unlockq(sc, q);
1031 	}
1032 
1033 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1034 		tx = MVNETA_TX_RING(sc, q);
1035 		mvneta_tx_lockq(sc, q);
1036 		tx->queue_status = MVNETA_QUEUE_DISABLED;
1037 		mvneta_tx_unlockq(sc, q);
1038 	}
1039 
1040 	/* Wait for all Rx activity to terminate. */
1041 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1042 	reg = MVNETA_RQC_DIS(reg);
1043 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1044 	cnt = 0;
1045 	do {
1046 		if (cnt >= RX_DISABLE_TIMEOUT) {
1047 			if_printf(sc->ifp,
1048 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1049 			break;
1050 		}
1051 		cnt++;
1052 		reg = MVNETA_READ(sc, MVNETA_RQC);
1053 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1054 
1055 	/* Wait for all Tx activity to terminate. */
1056 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1057 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1058 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1059 
1060 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1061 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1062 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1063 
1064 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1065 	reg = MVNETA_TQC_DIS(reg);
1066 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1067 	cnt = 0;
1068 	do {
1069 		if (cnt >= TX_DISABLE_TIMEOUT) {
1070 			if_printf(sc->ifp,
1071 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1072 			break;
1073 		}
1074 		cnt++;
1075 		reg = MVNETA_READ(sc, MVNETA_TQC);
1076 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1077 
1078 	/* Wait for all Tx FIFO is empty */
1079 	cnt = 0;
1080 	do {
1081 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1082 			if_printf(sc->ifp,
1083 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1084 			break;
1085 		}
1086 		cnt++;
1087 		reg = MVNETA_READ(sc, MVNETA_PS0);
1088 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1089 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1090 }
1091 
1092 /*
1093  * Device Register Initialization
1094  *  reset device registers to device driver default value.
1095  *  the device is not enabled here.
1096  */
1097 STATIC int
1098 mvneta_initreg(struct ifnet *ifp)
1099 {
1100 	struct mvneta_softc *sc;
1101 	int q;
1102 	uint32_t reg;
1103 
1104 	sc = ifp->if_softc;
1105 #ifdef MVNETA_KTR
1106 	CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
1107 #endif
1108 
1109 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1110 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1111 	/* Enable mbus retry. */
1112 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1113 
1114 	/* Init TX/RX Queue Registers */
1115 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1116 		mvneta_rx_lockq(sc, q);
1117 		if (mvneta_rx_queue_init(ifp, q) != 0) {
1118 			device_printf(sc->dev,
1119 			    "initialization failed: cannot initialize queue\n");
1120 			mvneta_rx_unlockq(sc, q);
1121 			return (ENOBUFS);
1122 		}
1123 		mvneta_rx_unlockq(sc, q);
1124 	}
1125 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1126 		mvneta_tx_lockq(sc, q);
1127 		if (mvneta_tx_queue_init(ifp, q) != 0) {
1128 			device_printf(sc->dev,
1129 			    "initialization failed: cannot initialize queue\n");
1130 			mvneta_tx_unlockq(sc, q);
1131 			return (ENOBUFS);
1132 		}
1133 		mvneta_tx_unlockq(sc, q);
1134 	}
1135 
1136 	/*
1137 	 * Ethernet Unit Control - disable automatic PHY management by HW.
1138 	 * In case the port uses SMI-controlled PHY, poll its status with
1139 	 * mii_tick() and update MAC settings accordingly.
1140 	 */
1141 	reg = MVNETA_READ(sc, MVNETA_EUC);
1142 	reg &= ~MVNETA_EUC_POLLING;
1143 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1144 
1145 	/* EEE: Low Power Idle */
1146 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1147 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1148 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1149 
1150 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1151 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1152 
1153 	reg = MVNETA_LPIC2_MUSTSET;
1154 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1155 
1156 	/* Port MAC Control set 0 */
1157 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1158 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1159 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
1160 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1161 
1162 	/* Port MAC Control set 2 */
1163 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1164 	switch (sc->phy_mode) {
1165 	case MVNETA_PHY_QSGMII:
1166 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1167 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1168 		break;
1169 	case MVNETA_PHY_SGMII:
1170 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1171 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1172 		break;
1173 	case MVNETA_PHY_RGMII:
1174 	case MVNETA_PHY_RGMII_ID:
1175 		reg |= MVNETA_PMACC2_RGMIIEN;
1176 		break;
1177 	}
1178 	reg |= MVNETA_PMACC2_MUSTSET;
1179 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1180 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1181 
1182 	/* Port Configuration Extended: enable Tx CRC generation */
1183 	reg = MVNETA_READ(sc, MVNETA_PXCX);
1184 	reg &= ~MVNETA_PXCX_TXCRCDIS;
1185 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1186 
1187 	/* clear MIB counter registers(clear by read) */
1188 	mvneta_sc_lock(sc);
1189 	mvneta_clear_mib(sc);
1190 	mvneta_sc_unlock(sc);
1191 
1192 	/* Set SDC register except IPGINT bits */
1193 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1194 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1195 	reg |= MVNETA_SDC_BLMR;
1196 	reg |= MVNETA_SDC_BLMT;
1197 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1198 
1199 	return (0);
1200 }
1201 
1202 STATIC void
1203 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1204 {
1205 
1206 	if (error != 0)
1207 		return;
1208 	*(bus_addr_t *)arg = segs->ds_addr;
1209 }
1210 
1211 STATIC int
1212 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1213 {
1214 	struct mvneta_rx_ring *rx;
1215 	struct mvneta_buf *rxbuf;
1216 	bus_dmamap_t dmap;
1217 	int i, error;
1218 
1219 	if (q >= MVNETA_RX_QNUM_MAX)
1220 		return (EINVAL);
1221 
1222 	rx = MVNETA_RX_RING(sc, q);
1223 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1224 	/* Allocate DMA memory for Rx descriptors */
1225 	error = bus_dmamem_alloc(sc->rx_dtag,
1226 	    (void**)&(rx->desc),
1227 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1228 	    &rx->desc_map);
1229 	if (error != 0 || rx->desc == NULL)
1230 		goto fail;
1231 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1232 	    rx->desc,
1233 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1234 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1235 	if (error != 0)
1236 		goto fail;
1237 
1238 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1239 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1240 		if (error != 0) {
1241 			device_printf(sc->dev,
1242 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1243 			goto fail;
1244 		}
1245 		rxbuf = &rx->rxbuf[i];
1246 		rxbuf->dmap = dmap;
1247 		rxbuf->m = NULL;
1248 	}
1249 
1250 	return (0);
1251 fail:
1252 	mvneta_rx_lockq(sc, q);
1253 	mvneta_ring_flush_rx_queue(sc, q);
1254 	mvneta_rx_unlockq(sc, q);
1255 	mvneta_ring_dealloc_rx_queue(sc, q);
1256 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1257 	return (error);
1258 }
1259 
1260 STATIC int
1261 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1262 {
1263 	struct mvneta_tx_ring *tx;
1264 	int error;
1265 
1266 	if (q >= MVNETA_TX_QNUM_MAX)
1267 		return (EINVAL);
1268 	tx = MVNETA_TX_RING(sc, q);
1269 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1270 	error = bus_dmamem_alloc(sc->tx_dtag,
1271 	    (void**)&(tx->desc),
1272 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1273 	    &tx->desc_map);
1274 	if (error != 0 || tx->desc == NULL)
1275 		goto fail;
1276 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1277 	    tx->desc,
1278 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1279 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1280 	if (error != 0)
1281 		goto fail;
1282 
1283 #ifdef MVNETA_MULTIQUEUE
1284 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1285 	    &tx->ring_mtx);
1286 	if (tx->br == NULL) {
1287 		device_printf(sc->dev,
1288 		    "Could not setup buffer ring for TxQ(%d)\n", q);
1289 		error = ENOMEM;
1290 		goto fail;
1291 	}
1292 #endif
1293 
1294 	return (0);
1295 fail:
1296 	mvneta_tx_lockq(sc, q);
1297 	mvneta_ring_flush_tx_queue(sc, q);
1298 	mvneta_tx_unlockq(sc, q);
1299 	mvneta_ring_dealloc_tx_queue(sc, q);
1300 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1301 	return (error);
1302 }
1303 
1304 STATIC void
1305 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1306 {
1307 	struct mvneta_tx_ring *tx;
1308 	struct mvneta_buf *txbuf;
1309 	void *kva;
1310 	int error;
1311 	int i;
1312 
1313 	if (q >= MVNETA_TX_QNUM_MAX)
1314 		return;
1315 	tx = MVNETA_TX_RING(sc, q);
1316 
1317 	if (tx->taskq != NULL) {
1318 		/* Remove task */
1319 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1320 			taskqueue_drain(tx->taskq, &tx->task);
1321 	}
1322 #ifdef MVNETA_MULTIQUEUE
1323 	if (tx->br != NULL)
1324 		drbr_free(tx->br, M_DEVBUF);
1325 #endif
1326 
1327 	if (sc->txmbuf_dtag != NULL) {
1328 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1329 			txbuf = &tx->txbuf[i];
1330 			if (txbuf->dmap != NULL) {
1331 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1332 				    txbuf->dmap);
1333 				if (error != 0) {
1334 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1335 					    __func__, q, i);
1336 				}
1337 			}
1338 		}
1339 	}
1340 
1341 	if (tx->desc_pa != 0)
1342 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1343 
1344 	kva = (void *)tx->desc;
1345 	if (kva != NULL)
1346 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1347 
1348 	if (mtx_name(&tx->ring_mtx) != NULL)
1349 		mtx_destroy(&tx->ring_mtx);
1350 
1351 	memset(tx, 0, sizeof(*tx));
1352 }
1353 
1354 STATIC void
1355 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1356 {
1357 	struct mvneta_rx_ring *rx;
1358 	struct lro_ctrl	*lro;
1359 	void *kva;
1360 
1361 	if (q >= MVNETA_RX_QNUM_MAX)
1362 		return;
1363 
1364 	rx = MVNETA_RX_RING(sc, q);
1365 
1366 	if (rx->desc_pa != 0)
1367 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1368 
1369 	kva = (void *)rx->desc;
1370 	if (kva != NULL)
1371 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1372 
1373 	lro = &rx->lro;
1374 	tcp_lro_free(lro);
1375 
1376 	if (mtx_name(&rx->ring_mtx) != NULL)
1377 		mtx_destroy(&rx->ring_mtx);
1378 
1379 	memset(rx, 0, sizeof(*rx));
1380 }
1381 
1382 STATIC int
1383 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1384 {
1385 	struct mvneta_rx_ring *rx;
1386 	struct lro_ctrl	*lro;
1387 	int error;
1388 
1389 	if (q >= MVNETA_RX_QNUM_MAX)
1390 		return (0);
1391 
1392 	rx = MVNETA_RX_RING(sc, q);
1393 	rx->dma = rx->cpu = 0;
1394 	rx->queue_th_received = MVNETA_RXTH_COUNT;
1395 	rx->queue_th_time = (sc->clk_freq / 1000) / 10; /* 0.1 [ms] */
1396 
1397 	/* Initialize LRO */
1398 	rx->lro_enabled = FALSE;
1399 	if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
1400 		lro = &rx->lro;
1401 		error = tcp_lro_init(lro);
1402 		if (error != 0)
1403 			device_printf(sc->dev, "LRO Initialization failed!\n");
1404 		else {
1405 			rx->lro_enabled = TRUE;
1406 			lro->ifp = sc->ifp;
1407 		}
1408 	}
1409 
1410 	return (0);
1411 }
1412 
1413 STATIC int
1414 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1415 {
1416 	struct mvneta_tx_ring *tx;
1417 	struct mvneta_buf *txbuf;
1418 	int i, error;
1419 
1420 	if (q >= MVNETA_TX_QNUM_MAX)
1421 		return (0);
1422 
1423 	tx = MVNETA_TX_RING(sc, q);
1424 
1425 	/* Tx handle */
1426 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1427 		txbuf = &tx->txbuf[i];
1428 		txbuf->m = NULL;
1429 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1430 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1431 		    &txbuf->dmap);
1432 		if (error != 0) {
1433 			device_printf(sc->dev,
1434 			    "can't create dma map (tx ring %d)\n", i);
1435 			return (error);
1436 		}
1437 	}
1438 	tx->dma = tx->cpu = 0;
1439 	tx->used = 0;
1440 	tx->drv_error = 0;
1441 	tx->queue_status = MVNETA_QUEUE_DISABLED;
1442 	tx->queue_hung = FALSE;
1443 
1444 	tx->ifp = sc->ifp;
1445 	tx->qidx = q;
1446 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1447 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1448 	    taskqueue_thread_enqueue, &tx->taskq);
1449 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1450 	    device_get_nameunit(sc->dev), q);
1451 
1452 	return (0);
1453 }
1454 
1455 STATIC void
1456 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1457 {
1458 	struct mvneta_tx_ring *tx;
1459 	struct mvneta_buf *txbuf;
1460 	int i;
1461 
1462 	tx = MVNETA_TX_RING(sc, q);
1463 	KASSERT_TX_MTX(sc, q);
1464 
1465 	/* Tx handle */
1466 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1467 		txbuf = &tx->txbuf[i];
1468 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1469 		if (txbuf->m != NULL) {
1470 			m_freem(txbuf->m);
1471 			txbuf->m = NULL;
1472 		}
1473 	}
1474 	tx->dma = tx->cpu = 0;
1475 	tx->used = 0;
1476 }
1477 
1478 STATIC void
1479 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1480 {
1481 	struct mvneta_rx_ring *rx;
1482 	struct mvneta_buf *rxbuf;
1483 	int i;
1484 
1485 	rx = MVNETA_RX_RING(sc, q);
1486 	KASSERT_RX_MTX(sc, q);
1487 
1488 	/* Rx handle */
1489 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1490 		rxbuf = &rx->rxbuf[i];
1491 		mvneta_rx_buf_free(sc, rxbuf);
1492 	}
1493 	rx->dma = rx->cpu = 0;
1494 }
1495 
1496 /*
1497  * Rx/Tx Queue Control
1498  */
1499 STATIC int
1500 mvneta_rx_queue_init(struct ifnet *ifp, int q)
1501 {
1502 	struct mvneta_softc *sc;
1503 	struct mvneta_rx_ring *rx;
1504 	uint32_t reg;
1505 
1506 	sc = ifp->if_softc;
1507 	KASSERT_RX_MTX(sc, q);
1508 	rx =  MVNETA_RX_RING(sc, q);
1509 	DASSERT(rx->desc_pa != 0);
1510 
1511 	/* descriptor address */
1512 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1513 
1514 	/* Rx buffer size and descriptor ring size */
1515 	reg  = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3);
1516 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1517 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1518 #ifdef MVNETA_KTR
1519 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
1520 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1521 #endif
1522 	/* Rx packet offset address */
1523 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1524 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1525 #ifdef MVNETA_KTR
1526 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
1527 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1528 #endif
1529 
1530 	/* if DMA is not working, register is not updated */
1531 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1532 	return (0);
1533 }
1534 
1535 STATIC int
1536 mvneta_tx_queue_init(struct ifnet *ifp, int q)
1537 {
1538 	struct mvneta_softc *sc;
1539 	struct mvneta_tx_ring *tx;
1540 	uint32_t reg;
1541 
1542 	sc = ifp->if_softc;
1543 	KASSERT_TX_MTX(sc, q);
1544 	tx = MVNETA_TX_RING(sc, q);
1545 	DASSERT(tx->desc_pa != 0);
1546 
1547 	/* descriptor address */
1548 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1549 
1550 	/* descriptor ring size */
1551 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1552 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1553 
1554 	/* if DMA is not working, register is not updated */
1555 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1556 	return (0);
1557 }
1558 
1559 STATIC int
1560 mvneta_rx_queue_enable(struct ifnet *ifp, int q)
1561 {
1562 	struct mvneta_softc *sc;
1563 	struct mvneta_rx_ring *rx;
1564 	uint32_t reg;
1565 
1566 	sc = ifp->if_softc;
1567 	rx = MVNETA_RX_RING(sc, q);
1568 	KASSERT_RX_MTX(sc, q);
1569 
1570 	/* Set Rx interrupt threshold */
1571 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1572 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1573 
1574 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1575 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1576 
1577 	/* Unmask RXTX_TH Intr. */
1578 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1579 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1580 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1581 
1582 	/* Enable Rx queue */
1583 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1584 	reg |= MVNETA_RQC_ENQ(q);
1585 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1586 
1587 	rx->queue_status = MVNETA_QUEUE_WORKING;
1588 	return (0);
1589 }
1590 
1591 STATIC int
1592 mvneta_tx_queue_enable(struct ifnet *ifp, int q)
1593 {
1594 	struct mvneta_softc *sc;
1595 	struct mvneta_tx_ring *tx;
1596 
1597 	sc = ifp->if_softc;
1598 	tx = MVNETA_TX_RING(sc, q);
1599 	KASSERT_TX_MTX(sc, q);
1600 
1601 	/* Enable Tx queue */
1602 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1603 
1604 	tx->queue_status = MVNETA_QUEUE_IDLE;
1605 	tx->queue_hung = FALSE;
1606 	return (0);
1607 }
1608 
1609 STATIC __inline void
1610 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1611 {
1612 
1613 	DASSERT(q >= 0);
1614 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1615 	mtx_lock(&sc->rx_ring[q].ring_mtx);
1616 }
1617 
1618 STATIC __inline void
1619 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1620 {
1621 
1622 	DASSERT(q >= 0);
1623 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1624 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1625 }
1626 
1627 STATIC __inline int __unused
1628 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1629 {
1630 
1631 	DASSERT(q >= 0);
1632 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1633 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1634 }
1635 
1636 STATIC __inline void
1637 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1638 {
1639 
1640 	DASSERT(q >= 0);
1641 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1642 	mtx_lock(&sc->tx_ring[q].ring_mtx);
1643 }
1644 
1645 STATIC __inline void
1646 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1647 {
1648 
1649 	DASSERT(q >= 0);
1650 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1651 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1652 }
1653 
1654 /*
1655  * Interrupt Handlers
1656  */
1657 STATIC void
1658 mvneta_disable_intr(struct mvneta_softc *sc)
1659 {
1660 
1661 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1662 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1663 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1664 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1665 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1666 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1667 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1668 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1669 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1670 }
1671 
1672 STATIC void
1673 mvneta_enable_intr(struct mvneta_softc *sc)
1674 {
1675 	uint32_t reg;
1676 
1677 	/* Enable Summary Bit to check all interrupt cause. */
1678 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1679 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1680 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1681 
1682 	if (sc->use_inband_status) {
1683 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1684 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1685 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1686 	}
1687 
1688 	/* Enable All Queue Interrupt */
1689 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1690 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1691 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1692 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1693 }
1694 
1695 STATIC void
1696 mvneta_rxtxth_intr(void *arg)
1697 {
1698 	struct mvneta_softc *sc;
1699 	struct ifnet *ifp;
1700 	uint32_t ic, queues;
1701 
1702 	sc = arg;
1703 	ifp = sc->ifp;
1704 #ifdef MVNETA_KTR
1705 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
1706 #endif
1707 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1708 	if (ic == 0)
1709 		return;
1710 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1711 
1712 	/* Ack maintance interrupt first */
1713 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1714 	    sc->use_inband_status)) {
1715 		mvneta_sc_lock(sc);
1716 		mvneta_misc_intr(sc);
1717 		mvneta_sc_unlock(sc);
1718 	}
1719 	if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
1720 		return;
1721 	/* RxTxTH interrupt */
1722 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1723 	if (__predict_true(queues)) {
1724 #ifdef MVNETA_KTR
1725 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
1726 #endif
1727 		/* At the moment the driver support only one RX queue. */
1728 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1729 		mvneta_rx(sc, 0, 0);
1730 	}
1731 }
1732 
1733 STATIC int
1734 mvneta_misc_intr(struct mvneta_softc *sc)
1735 {
1736 	uint32_t ic;
1737 	int claimed = 0;
1738 
1739 #ifdef MVNETA_KTR
1740 	CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
1741 #endif
1742 	KASSERT_SC_MTX(sc);
1743 
1744 	for (;;) {
1745 		ic = MVNETA_READ(sc, MVNETA_PMIC);
1746 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1747 		if (ic == 0)
1748 			break;
1749 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1750 		claimed = 1;
1751 
1752 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1753 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1754 			mvneta_link_isr(sc);
1755 	}
1756 	return (claimed);
1757 }
1758 
1759 STATIC void
1760 mvneta_tick(void *arg)
1761 {
1762 	struct mvneta_softc *sc;
1763 	struct mvneta_tx_ring *tx;
1764 	struct mvneta_rx_ring *rx;
1765 	int q;
1766 	uint32_t fc_prev, fc_curr;
1767 
1768 	sc = arg;
1769 
1770 	/*
1771 	 * This is done before mib update to get the right stats
1772 	 * for this tick.
1773 	 */
1774 	mvneta_tx_drain(sc);
1775 
1776 	/* Extract previous flow-control frame received counter. */
1777 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1778 	/* Read mib registers (clear by read). */
1779 	mvneta_update_mib(sc);
1780 	/* Extract current flow-control frame received counter. */
1781 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1782 
1783 
1784 	if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
1785 		mvneta_sc_lock(sc);
1786 		mii_tick(sc->mii);
1787 
1788 		/* Adjust MAC settings */
1789 		mvneta_adjust_link(sc);
1790 		mvneta_sc_unlock(sc);
1791 	}
1792 
1793 	/*
1794 	 * We were unable to refill the rx queue and left the rx func, leaving
1795 	 * the ring without mbuf and no way to call the refill func.
1796 	 */
1797 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1798 		rx = MVNETA_RX_RING(sc, q);
1799 		if (rx->needs_refill == TRUE) {
1800 			mvneta_rx_lockq(sc, q);
1801 			mvneta_rx_queue_refill(sc, q);
1802 			mvneta_rx_unlockq(sc, q);
1803 		}
1804 	}
1805 
1806 	/*
1807 	 * Watchdog:
1808 	 * - check if queue is mark as hung.
1809 	 * - ignore hung status if we received some pause frame
1810 	 *   as hardware may have paused packet transmit.
1811 	 */
1812 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1813 		/*
1814 		 * We should take queue lock, but as we only read
1815 		 * queue status we can do it without lock, we may
1816 		 * only missdetect queue status for one tick.
1817 		 */
1818 		tx = MVNETA_TX_RING(sc, q);
1819 
1820 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1821 			goto timeout;
1822 	}
1823 
1824 	callout_schedule(&sc->tick_ch, hz);
1825 	return;
1826 
1827 timeout:
1828 	if_printf(sc->ifp, "watchdog timeout\n");
1829 
1830 	mvneta_sc_lock(sc);
1831 	sc->counter_watchdog++;
1832 	sc->counter_watchdog_mib++;
1833 	/* Trigger reinitialize sequence. */
1834 	mvneta_stop_locked(sc);
1835 	mvneta_init_locked(sc);
1836 	mvneta_sc_unlock(sc);
1837 }
1838 
1839 STATIC void
1840 mvneta_qflush(struct ifnet *ifp)
1841 {
1842 #ifdef MVNETA_MULTIQUEUE
1843 	struct mvneta_softc *sc;
1844 	struct mvneta_tx_ring *tx;
1845 	struct mbuf *m;
1846 	size_t q;
1847 
1848 	sc = ifp->if_softc;
1849 
1850 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1851 		tx = MVNETA_TX_RING(sc, q);
1852 		mvneta_tx_lockq(sc, q);
1853 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1854 			m_freem(m);
1855 		mvneta_tx_unlockq(sc, q);
1856 	}
1857 #endif
1858 	if_qflush(ifp);
1859 }
1860 
1861 STATIC void
1862 mvneta_tx_task(void *arg, int pending)
1863 {
1864 	struct mvneta_softc *sc;
1865 	struct mvneta_tx_ring *tx;
1866 	struct ifnet *ifp;
1867 	int error;
1868 
1869 	tx = arg;
1870 	ifp = tx->ifp;
1871 	sc = ifp->if_softc;
1872 
1873 	mvneta_tx_lockq(sc, tx->qidx);
1874 	error = mvneta_xmit_locked(sc, tx->qidx);
1875 	mvneta_tx_unlockq(sc, tx->qidx);
1876 
1877 	/* Try again */
1878 	if (__predict_false(error != 0 && error != ENETDOWN)) {
1879 		pause("mvneta_tx_task_sleep", 1);
1880 		taskqueue_enqueue(tx->taskq, &tx->task);
1881 	}
1882 }
1883 
1884 STATIC int
1885 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1886 {
1887 	struct mvneta_tx_ring *tx;
1888 	struct ifnet *ifp;
1889 	int error;
1890 
1891 	KASSERT_TX_MTX(sc, q);
1892 	tx = MVNETA_TX_RING(sc, q);
1893 	error = 0;
1894 
1895 	ifp = sc->ifp;
1896 
1897 	/* Dont enqueue packet if the queue is disabled. */
1898 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1899 		m_freem(*m);
1900 		*m = NULL;
1901 		return (ENETDOWN);
1902 	}
1903 
1904 	/* Reclaim mbuf if above threshold. */
1905 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1906 		mvneta_tx_queue_complete(sc, q);
1907 
1908 	/* Do not call transmit path if queue is already too full. */
1909 	if (__predict_false(tx->used >
1910 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1911 		return (ENOBUFS);
1912 
1913 	error = mvneta_tx_queue(sc, m, q);
1914 	if (__predict_false(error != 0))
1915 		return (error);
1916 
1917 	/* Send a copy of the frame to the BPF listener */
1918 	ETHER_BPF_MTAP(ifp, *m);
1919 
1920 	/* Set watchdog on */
1921 	tx->watchdog_time = ticks;
1922 	tx->queue_status = MVNETA_QUEUE_WORKING;
1923 
1924 	return (error);
1925 }
1926 
1927 #ifdef MVNETA_MULTIQUEUE
1928 STATIC int
1929 mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
1930 {
1931 	struct mvneta_softc *sc;
1932 	struct mvneta_tx_ring *tx;
1933 	int error;
1934 	int q;
1935 
1936 	sc = ifp->if_softc;
1937 
1938 	/* Use default queue if there is no flow id as thread can migrate. */
1939 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1940 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1941 	else
1942 		q = 0;
1943 
1944 	tx = MVNETA_TX_RING(sc, q);
1945 
1946 	/* If buf_ring is full start transmit immediatly. */
1947 	if (buf_ring_full(tx->br)) {
1948 		mvneta_tx_lockq(sc, q);
1949 		mvneta_xmit_locked(sc, q);
1950 		mvneta_tx_unlockq(sc, q);
1951 	}
1952 
1953 	/*
1954 	 * If the buf_ring is empty we will not reorder packets.
1955 	 * If the lock is available transmit without using buf_ring.
1956 	 */
1957 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1958 		error = mvneta_xmitfast_locked(sc, q, &m);
1959 		mvneta_tx_unlockq(sc, q);
1960 		if (__predict_true(error == 0))
1961 			return (0);
1962 
1963 		/* Transmit can fail in fastpath. */
1964 		if (__predict_false(m == NULL))
1965 			return (error);
1966 	}
1967 
1968 	/* Enqueue then schedule taskqueue. */
1969 	error = drbr_enqueue(ifp, tx->br, m);
1970 	if (__predict_false(error != 0))
1971 		return (error);
1972 
1973 	taskqueue_enqueue(tx->taskq, &tx->task);
1974 	return (0);
1975 }
1976 
1977 STATIC int
1978 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1979 {
1980 	struct ifnet *ifp;
1981 	struct mvneta_tx_ring *tx;
1982 	struct mbuf *m;
1983 	int error;
1984 
1985 	KASSERT_TX_MTX(sc, q);
1986 	ifp = sc->ifp;
1987 	tx = MVNETA_TX_RING(sc, q);
1988 	error = 0;
1989 
1990 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
1991 		error = mvneta_xmitfast_locked(sc, q, &m);
1992 		if (__predict_false(error != 0)) {
1993 			if (m != NULL)
1994 				drbr_putback(ifp, tx->br, m);
1995 			else
1996 				drbr_advance(ifp, tx->br);
1997 			break;
1998 		}
1999 		drbr_advance(ifp, tx->br);
2000 	}
2001 
2002 	return (error);
2003 }
2004 #else /* !MVNETA_MULTIQUEUE */
2005 STATIC void
2006 mvneta_start(struct ifnet *ifp)
2007 {
2008 	struct mvneta_softc *sc;
2009 	struct mvneta_tx_ring *tx;
2010 	int error;
2011 
2012 	sc = ifp->if_softc;
2013 	tx = MVNETA_TX_RING(sc, 0);
2014 
2015 	mvneta_tx_lockq(sc, 0);
2016 	error = mvneta_xmit_locked(sc, 0);
2017 	mvneta_tx_unlockq(sc, 0);
2018 	/* Handle retransmit in the background taskq. */
2019 	if (__predict_false(error != 0 && error != ENETDOWN))
2020 		taskqueue_enqueue(tx->taskq, &tx->task);
2021 }
2022 
2023 STATIC int
2024 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2025 {
2026 	struct ifnet *ifp;
2027 	struct mvneta_tx_ring *tx;
2028 	struct mbuf *m;
2029 	int error;
2030 
2031 	KASSERT_TX_MTX(sc, q);
2032 	ifp = sc->ifp;
2033 	tx = MVNETA_TX_RING(sc, 0);
2034 	error = 0;
2035 
2036 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
2037 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2038 		if (m == NULL)
2039 			break;
2040 
2041 		error = mvneta_xmitfast_locked(sc, q, &m);
2042 		if (__predict_false(error != 0)) {
2043 			if (m != NULL)
2044 				IFQ_DRV_PREPEND(&ifp->if_snd, m);
2045 			break;
2046 		}
2047 	}
2048 
2049 	return (error);
2050 }
2051 #endif
2052 
2053 STATIC int
2054 mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2055 {
2056 	struct mvneta_softc *sc;
2057 	struct mvneta_rx_ring *rx;
2058 	struct ifreq *ifr;
2059 	int error, mask;
2060 	uint32_t flags;
2061 	int q;
2062 
2063 	error = 0;
2064 	sc = ifp->if_softc;
2065 	ifr = (struct ifreq *)data;
2066 	switch (cmd) {
2067 	case SIOCSIFFLAGS:
2068 		mvneta_sc_lock(sc);
2069 		if (ifp->if_flags & IFF_UP) {
2070 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2071 				flags = ifp->if_flags ^ sc->mvneta_if_flags;
2072 
2073 				if (flags != 0)
2074 					sc->mvneta_if_flags = ifp->if_flags;
2075 
2076 				if ((flags & IFF_PROMISC) != 0)
2077 					mvneta_filter_setup(sc);
2078 			} else {
2079 				mvneta_init_locked(sc);
2080 				sc->mvneta_if_flags = ifp->if_flags;
2081 				if (sc->phy_attached)
2082 					mii_mediachg(sc->mii);
2083 				mvneta_sc_unlock(sc);
2084 				break;
2085 			}
2086 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2087 			mvneta_stop_locked(sc);
2088 
2089 		sc->mvneta_if_flags = ifp->if_flags;
2090 		mvneta_sc_unlock(sc);
2091 		break;
2092 	case SIOCSIFCAP:
2093 		if (ifp->if_mtu > sc->tx_csum_limit &&
2094 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2095 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2096 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2097 		if (mask & IFCAP_HWCSUM) {
2098 			ifp->if_capenable &= ~IFCAP_HWCSUM;
2099 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
2100 			if (ifp->if_capenable & IFCAP_TXCSUM)
2101 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2102 				    CSUM_UDP;
2103 			else
2104 				ifp->if_hwassist = 0;
2105 		}
2106 		if (mask & IFCAP_LRO) {
2107 			mvneta_sc_lock(sc);
2108 			ifp->if_capenable ^= IFCAP_LRO;
2109 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2110 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2111 					rx = MVNETA_RX_RING(sc, q);
2112 					rx->lro_enabled = !rx->lro_enabled;
2113 				}
2114 			}
2115 			mvneta_sc_unlock(sc);
2116 		}
2117 		VLAN_CAPABILITIES(ifp);
2118 		break;
2119 	case SIOCSIFMEDIA:
2120 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2121 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2122 		    (ifr->ifr_media & IFM_FDX) == 0) {
2123 			device_printf(sc->dev,
2124 			    "%s half-duplex unsupported\n",
2125 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2126 			    "1000Base-T" :
2127 			    "2500Base-T");
2128 			error = EINVAL;
2129 			break;
2130 		}
2131 	case SIOCGIFMEDIA: /* FALLTHROUGH */
2132 	case SIOCGIFXMEDIA:
2133 		if (!sc->phy_attached)
2134 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2135 			    cmd);
2136 		else
2137 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2138 			    cmd);
2139 		break;
2140 	case SIOCSIFMTU:
2141 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2142 		    MVNETA_ETHER_SIZE) {
2143 			error = EINVAL;
2144 		} else {
2145 			ifp->if_mtu = ifr->ifr_mtu;
2146 			mvneta_sc_lock(sc);
2147 			if (ifp->if_mtu + MVNETA_ETHER_SIZE <= MCLBYTES) {
2148 				sc->rx_frame_size = MCLBYTES;
2149 			} else {
2150 				sc->rx_frame_size = MJUM9BYTES;
2151 			}
2152 			if (ifp->if_mtu > sc->tx_csum_limit) {
2153 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2154 				ifp->if_hwassist = 0;
2155 			} else {
2156 				ifp->if_capenable |= IFCAP_TXCSUM;
2157 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2158 					CSUM_UDP;
2159 			}
2160 			/*
2161 			 * Reinitialize RX queues.
2162 			 * We need to update RX descriptor size.
2163 			 */
2164 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2165 				mvneta_stop_locked(sc);
2166 
2167 			for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2168 				mvneta_rx_lockq(sc, q);
2169 				if (mvneta_rx_queue_init(ifp, q) != 0) {
2170 					device_printf(sc->dev,
2171 					    "initialization failed:"
2172 					    " cannot initialize queue\n");
2173 					mvneta_rx_unlockq(sc, q);
2174 					error = ENOBUFS;
2175 					break;
2176 				}
2177 				mvneta_rx_unlockq(sc, q);
2178 			}
2179 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2180 				mvneta_init_locked(sc);
2181 
2182 			mvneta_sc_unlock(sc);
2183                 }
2184                 break;
2185 
2186 	default:
2187 		error = ether_ioctl(ifp, cmd, data);
2188 		break;
2189 	}
2190 
2191 	return (error);
2192 }
2193 
2194 STATIC void
2195 mvneta_init_locked(void *arg)
2196 {
2197 	struct mvneta_softc *sc;
2198 	struct ifnet *ifp;
2199 	uint32_t reg;
2200 	int q, cpu;
2201 
2202 	sc = arg;
2203 	ifp = sc->ifp;
2204 
2205 	if (!device_is_attached(sc->dev) ||
2206 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2207 		return;
2208 
2209 	mvneta_disable_intr(sc);
2210 	callout_stop(&sc->tick_ch);
2211 
2212 	/* Get the latest mac address */
2213 	bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
2214 	mvneta_set_mac_address(sc, sc->enaddr);
2215 	mvneta_filter_setup(sc);
2216 
2217 	/* Start DMA Engine */
2218 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2219 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2220 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2221 
2222 	/* Enable port */
2223 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2224 	reg |= MVNETA_PMACC0_PORTEN;
2225 	reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK;
2226 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
2227 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2228 
2229 	/* Allow access to each TXQ/RXQ from both CPU's */
2230 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2231 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2232 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2233 
2234 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2235 		mvneta_rx_lockq(sc, q);
2236 		mvneta_rx_queue_refill(sc, q);
2237 		mvneta_rx_unlockq(sc, q);
2238 	}
2239 
2240 	if (!sc->phy_attached)
2241 		mvneta_linkup(sc);
2242 
2243 	/* Enable interrupt */
2244 	mvneta_enable_intr(sc);
2245 
2246 	/* Set Counter */
2247 	callout_schedule(&sc->tick_ch, hz);
2248 
2249 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2250 }
2251 
2252 STATIC void
2253 mvneta_init(void *arg)
2254 {
2255 	struct mvneta_softc *sc;
2256 
2257 	sc = arg;
2258 	mvneta_sc_lock(sc);
2259 	mvneta_init_locked(sc);
2260 	if (sc->phy_attached)
2261 		mii_mediachg(sc->mii);
2262 	mvneta_sc_unlock(sc);
2263 }
2264 
2265 /* ARGSUSED */
2266 STATIC void
2267 mvneta_stop_locked(struct mvneta_softc *sc)
2268 {
2269 	struct ifnet *ifp;
2270 	struct mvneta_rx_ring *rx;
2271 	struct mvneta_tx_ring *tx;
2272 	uint32_t reg;
2273 	int q;
2274 
2275 	ifp = sc->ifp;
2276 	if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2277 		return;
2278 
2279 	mvneta_disable_intr(sc);
2280 
2281 	callout_stop(&sc->tick_ch);
2282 
2283 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2284 
2285 	/* Link down */
2286 	if (sc->linkup == TRUE)
2287 		mvneta_linkdown(sc);
2288 
2289 	/* Reset the MAC Port Enable bit */
2290 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2291 	reg &= ~MVNETA_PMACC0_PORTEN;
2292 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2293 
2294 	/* Disable each of queue */
2295 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2296 		rx = MVNETA_RX_RING(sc, q);
2297 
2298 		mvneta_rx_lockq(sc, q);
2299 		mvneta_ring_flush_rx_queue(sc, q);
2300 		mvneta_rx_unlockq(sc, q);
2301 	}
2302 
2303 	/*
2304 	 * Hold Reset state of DMA Engine
2305 	 * (must write 0x0 to restart it)
2306 	 */
2307 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2308 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2309 
2310 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2311 		tx = MVNETA_TX_RING(sc, q);
2312 
2313 		mvneta_tx_lockq(sc, q);
2314 		mvneta_ring_flush_tx_queue(sc, q);
2315 		mvneta_tx_unlockq(sc, q);
2316 	}
2317 }
2318 
2319 STATIC void
2320 mvneta_stop(struct mvneta_softc *sc)
2321 {
2322 
2323 	mvneta_sc_lock(sc);
2324 	mvneta_stop_locked(sc);
2325 	mvneta_sc_unlock(sc);
2326 }
2327 
2328 STATIC int
2329 mvneta_mediachange(struct ifnet *ifp)
2330 {
2331 	struct mvneta_softc *sc;
2332 
2333 	sc = ifp->if_softc;
2334 
2335 	if (!sc->phy_attached && !sc->use_inband_status) {
2336 		/* We shouldn't be here */
2337 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2338 		return (0);
2339 	}
2340 
2341 	if (sc->use_inband_status) {
2342 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2343 		return (0);
2344 	}
2345 
2346 	mvneta_sc_lock(sc);
2347 
2348 	/* Update PHY */
2349 	mii_mediachg(sc->mii);
2350 
2351 	mvneta_sc_unlock(sc);
2352 
2353 	return (0);
2354 }
2355 
2356 STATIC void
2357 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2358 {
2359 	uint32_t psr;
2360 
2361 	psr = MVNETA_READ(sc, MVNETA_PSR);
2362 
2363 	/* Speed */
2364 	if (psr & MVNETA_PSR_GMIISPEED)
2365 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2366 	else if (psr & MVNETA_PSR_MIISPEED)
2367 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2368 	else if (psr & MVNETA_PSR_LINKUP)
2369 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2370 
2371 	/* Duplex */
2372 	if (psr & MVNETA_PSR_FULLDX)
2373 		ifmr->ifm_active |= IFM_FDX;
2374 
2375 	/* Link */
2376 	ifmr->ifm_status = IFM_AVALID;
2377 	if (psr & MVNETA_PSR_LINKUP)
2378 		ifmr->ifm_status |= IFM_ACTIVE;
2379 }
2380 
2381 STATIC void
2382 mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2383 {
2384 	struct mvneta_softc *sc;
2385 	struct mii_data *mii;
2386 
2387 	sc = ifp->if_softc;
2388 
2389 	if (!sc->phy_attached && !sc->use_inband_status) {
2390 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2391 		return;
2392 	}
2393 
2394 	mvneta_sc_lock(sc);
2395 
2396 	if (sc->use_inband_status) {
2397 		mvneta_get_media(sc, ifmr);
2398 		mvneta_sc_unlock(sc);
2399 		return;
2400 	}
2401 
2402 	mii = sc->mii;
2403 	mii_pollstat(mii);
2404 
2405 	ifmr->ifm_active = mii->mii_media_active;
2406 	ifmr->ifm_status = mii->mii_media_status;
2407 
2408 	mvneta_sc_unlock(sc);
2409 }
2410 
2411 /*
2412  * Link State Notify
2413  */
2414 STATIC void
2415 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2416 {
2417 	int reg;
2418 
2419 	if (enable) {
2420 		reg = MVNETA_READ(sc, MVNETA_PANC);
2421 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2422 		    MVNETA_PANC_ANFCEN);
2423 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2424 		    MVNETA_PANC_INBANDANEN;
2425 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2426 
2427 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2428 		reg |= MVNETA_PMACC2_INBANDANMODE;
2429 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2430 
2431 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2432 		reg |= MVNETA_PSOMSCD_ENABLE;
2433 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2434 	} else {
2435 		reg = MVNETA_READ(sc, MVNETA_PANC);
2436 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2437 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2438 		    MVNETA_PANC_INBANDANEN);
2439 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2440 
2441 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2442 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2443 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2444 
2445 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2446 		reg &= ~MVNETA_PSOMSCD_ENABLE;
2447 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2448 	}
2449 }
2450 
2451 STATIC int
2452 mvneta_update_media(struct mvneta_softc *sc, int media)
2453 {
2454 	int reg, err;
2455 	boolean_t running;
2456 
2457 	err = 0;
2458 
2459 	mvneta_sc_lock(sc);
2460 
2461 	mvneta_linkreset(sc);
2462 
2463 	running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2464 	if (running)
2465 		mvneta_stop_locked(sc);
2466 
2467 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2468 
2469 	if (sc->use_inband_status)
2470 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2471 
2472 	mvneta_update_eee(sc);
2473 	mvneta_update_fc(sc);
2474 
2475 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2476 		reg = MVNETA_READ(sc, MVNETA_PANC);
2477 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2478 		    MVNETA_PANC_SETMIISPEED |
2479 		    MVNETA_PANC_SETFULLDX);
2480 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2481 		    IFM_SUBTYPE(media) == IFM_2500_T) {
2482 			if ((media & IFM_FDX) == 0) {
2483 				device_printf(sc->dev,
2484 				    "%s half-duplex unsupported\n",
2485 				    IFM_SUBTYPE(media) == IFM_1000_T ?
2486 				    "1000Base-T" :
2487 				    "2500Base-T");
2488 				err = EINVAL;
2489 				goto out;
2490 			}
2491 			reg |= MVNETA_PANC_SETGMIISPEED;
2492 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2493 			reg |= MVNETA_PANC_SETMIISPEED;
2494 
2495 		if (media & IFM_FDX)
2496 			reg |= MVNETA_PANC_SETFULLDX;
2497 
2498 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2499 	}
2500 out:
2501 	if (running)
2502 		mvneta_init_locked(sc);
2503 	mvneta_sc_unlock(sc);
2504 	return (err);
2505 }
2506 
2507 STATIC void
2508 mvneta_adjust_link(struct mvneta_softc *sc)
2509 {
2510 	boolean_t phy_linkup;
2511 	int reg;
2512 
2513 	/* Update eee/fc */
2514 	mvneta_update_eee(sc);
2515 	mvneta_update_fc(sc);
2516 
2517 	/* Check for link change */
2518 	phy_linkup = (sc->mii->mii_media_status &
2519 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2520 
2521 	if (sc->linkup != phy_linkup)
2522 		mvneta_linkupdate(sc, phy_linkup);
2523 
2524 	/* Don't update media on disabled link */
2525 	if (!phy_linkup)
2526 		return;
2527 
2528 	/* Check for media type change */
2529 	if (sc->mvneta_media != sc->mii->mii_media_active) {
2530 		sc->mvneta_media = sc->mii->mii_media_active;
2531 
2532 		reg = MVNETA_READ(sc, MVNETA_PANC);
2533 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2534 		    MVNETA_PANC_SETMIISPEED |
2535 		    MVNETA_PANC_SETFULLDX);
2536 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2537 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2538 			reg |= MVNETA_PANC_SETGMIISPEED;
2539 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2540 			reg |= MVNETA_PANC_SETMIISPEED;
2541 
2542 		if (sc->mvneta_media & IFM_FDX)
2543 			reg |= MVNETA_PANC_SETFULLDX;
2544 
2545 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2546 	}
2547 }
2548 
2549 STATIC void
2550 mvneta_link_isr(struct mvneta_softc *sc)
2551 {
2552 	int linkup;
2553 
2554 	KASSERT_SC_MTX(sc);
2555 
2556 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2557 	if (sc->linkup == linkup)
2558 		return;
2559 
2560 	if (linkup == TRUE)
2561 		mvneta_linkup(sc);
2562 	else
2563 		mvneta_linkdown(sc);
2564 
2565 #ifdef DEBUG
2566 	device_printf(sc->dev,
2567 	    "%s: link %s\n", sc->ifp->if_xname, linkup ? "up" : "down");
2568 #endif
2569 }
2570 
2571 STATIC void
2572 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2573 {
2574 
2575 	KASSERT_SC_MTX(sc);
2576 
2577 	if (linkup == TRUE)
2578 		mvneta_linkup(sc);
2579 	else
2580 		mvneta_linkdown(sc);
2581 
2582 #ifdef DEBUG
2583 	device_printf(sc->dev,
2584 	    "%s: link %s\n", sc->ifp->if_xname, linkup ? "up" : "down");
2585 #endif
2586 }
2587 
2588 STATIC void
2589 mvneta_update_eee(struct mvneta_softc *sc)
2590 {
2591 	uint32_t reg;
2592 
2593 	KASSERT_SC_MTX(sc);
2594 
2595 	/* set EEE parameters */
2596 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2597 	if (sc->cf_lpi)
2598 		reg |= MVNETA_LPIC1_LPIRE;
2599 	else
2600 		reg &= ~MVNETA_LPIC1_LPIRE;
2601 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2602 }
2603 
2604 STATIC void
2605 mvneta_update_fc(struct mvneta_softc *sc)
2606 {
2607 	uint32_t reg;
2608 
2609 	KASSERT_SC_MTX(sc);
2610 
2611 	reg  = MVNETA_READ(sc, MVNETA_PANC);
2612 	if (sc->cf_fc) {
2613 		/* Flow control negotiation */
2614 		reg |= MVNETA_PANC_PAUSEADV;
2615 		reg |= MVNETA_PANC_ANFCEN;
2616 	} else {
2617 		/* Disable flow control negotiation */
2618 		reg &= ~MVNETA_PANC_PAUSEADV;
2619 		reg &= ~MVNETA_PANC_ANFCEN;
2620 	}
2621 
2622 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2623 }
2624 
2625 STATIC void
2626 mvneta_linkup(struct mvneta_softc *sc)
2627 {
2628 	uint32_t reg;
2629 
2630 	KASSERT_SC_MTX(sc);
2631 
2632 	if (!sc->use_inband_status) {
2633 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2634 		reg |= MVNETA_PANC_FORCELINKPASS;
2635 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2636 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2637 	}
2638 
2639 	mvneta_qflush(sc->ifp);
2640 	mvneta_portup(sc);
2641 	sc->linkup = TRUE;
2642 	if_link_state_change(sc->ifp, LINK_STATE_UP);
2643 }
2644 
2645 STATIC void
2646 mvneta_linkdown(struct mvneta_softc *sc)
2647 {
2648 	uint32_t reg;
2649 
2650 	KASSERT_SC_MTX(sc);
2651 
2652 	if (!sc->use_inband_status) {
2653 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2654 		reg &= ~MVNETA_PANC_FORCELINKPASS;
2655 		reg |= MVNETA_PANC_FORCELINKFAIL;
2656 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2657 	}
2658 
2659 	mvneta_portdown(sc);
2660 	mvneta_qflush(sc->ifp);
2661 	sc->linkup = FALSE;
2662 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2663 }
2664 
2665 STATIC void
2666 mvneta_linkreset(struct mvneta_softc *sc)
2667 {
2668 	struct mii_softc *mii;
2669 
2670 	if (sc->phy_attached) {
2671 		/* Force reset PHY */
2672 		mii = LIST_FIRST(&sc->mii->mii_phys);
2673 		if (mii)
2674 			mii_phy_reset(mii);
2675 	}
2676 }
2677 
2678 /*
2679  * Tx Subroutines
2680  */
2681 STATIC int
2682 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2683 {
2684 	struct ifnet *ifp;
2685 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2686 	struct mbuf *mtmp, *mbuf;
2687 	struct mvneta_tx_ring *tx;
2688 	struct mvneta_buf *txbuf;
2689 	struct mvneta_tx_desc *t;
2690 	uint32_t ptxsu;
2691 	int start, used, error, i, txnsegs;
2692 
2693 	mbuf = *mbufp;
2694 	tx = MVNETA_TX_RING(sc, q);
2695 	DASSERT(tx->used >= 0);
2696 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2697 	t = NULL;
2698 	ifp = sc->ifp;
2699 
2700 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2701 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2702 		if (mbuf == NULL) {
2703 			tx->drv_error++;
2704 			*mbufp = NULL;
2705 			return (ENOBUFS);
2706 		}
2707 		mbuf->m_flags &= ~M_VLANTAG;
2708 		*mbufp = mbuf;
2709 	}
2710 
2711 	if (__predict_false(mbuf->m_next != NULL &&
2712 	    (mbuf->m_pkthdr.csum_flags &
2713 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2714 		if (M_WRITABLE(mbuf) == 0) {
2715 			mtmp = m_dup(mbuf, M_NOWAIT);
2716 			m_freem(mbuf);
2717 			if (mtmp == NULL) {
2718 				tx->drv_error++;
2719 				*mbufp = NULL;
2720 				return (ENOBUFS);
2721 			}
2722 			*mbufp = mbuf = mtmp;
2723 		}
2724 	}
2725 
2726 	/* load mbuf using dmamap of 1st descriptor */
2727 	txbuf = &tx->txbuf[tx->cpu];
2728 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2729 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2730 	    BUS_DMA_NOWAIT);
2731 	if (__predict_false(error != 0)) {
2732 #ifdef MVNETA_KTR
2733 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
2734 #endif
2735 		/* This is the only recoverable error (except EFBIG). */
2736 		if (error != ENOMEM) {
2737 			tx->drv_error++;
2738 			m_freem(mbuf);
2739 			*mbufp = NULL;
2740 			return (ENOBUFS);
2741 		}
2742 		return (error);
2743 	}
2744 
2745 	if (__predict_false(txnsegs <= 0
2746 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2747 		/* we have no enough descriptors or mbuf is broken */
2748 #ifdef MVNETA_KTR
2749 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2750 		    ifp->if_xname, q, txnsegs);
2751 #endif
2752 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2753 		return (ENOBUFS);
2754 	}
2755 	DASSERT(txbuf->m == NULL);
2756 
2757 	/* remember mbuf using 1st descriptor */
2758 	txbuf->m = mbuf;
2759 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2760 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2761 
2762 	/* load to tx descriptors */
2763 	start = tx->cpu;
2764 	used = 0;
2765 	for (i = 0; i < txnsegs; i++) {
2766 		t = &tx->desc[tx->cpu];
2767 		t->command = 0;
2768 		t->l4ichk = 0;
2769 		t->flags = 0;
2770 		if (__predict_true(i == 0)) {
2771 			/* 1st descriptor */
2772 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2773 			t->command |= MVNETA_TX_CMD_F;
2774 			mvneta_tx_set_csumflag(ifp, t, mbuf);
2775 		}
2776 		t->bufptr_pa = txsegs[i].ds_addr;
2777 		t->bytecnt = txsegs[i].ds_len;
2778 		tx->cpu = tx_counter_adv(tx->cpu, 1);
2779 
2780 		tx->used++;
2781 		used++;
2782 	}
2783 	/* t is last descriptor here */
2784 	DASSERT(t != NULL);
2785 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2786 
2787 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2788 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2789 
2790 	while (__predict_false(used > 255)) {
2791 		ptxsu = MVNETA_PTXSU_NOWD(255);
2792 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2793 		used -= 255;
2794 	}
2795 	if (__predict_true(used > 0)) {
2796 		ptxsu = MVNETA_PTXSU_NOWD(used);
2797 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2798 	}
2799 	return (0);
2800 }
2801 
2802 STATIC void
2803 mvneta_tx_set_csumflag(struct ifnet *ifp,
2804     struct mvneta_tx_desc *t, struct mbuf *m)
2805 {
2806 	struct ether_header *eh;
2807 	struct ether_vlan_header *evh;
2808 	int csum_flags;
2809 	uint32_t iphl, ipoff;
2810 	struct ip *ip;
2811 
2812 	iphl = ipoff = 0;
2813 	csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
2814 	eh = mtod(m, struct ether_header *);
2815 
2816 	switch (ntohs(eh->ether_type)) {
2817 	case ETHERTYPE_IP:
2818 		ipoff = ETHER_HDR_LEN;
2819 		break;
2820 	case ETHERTYPE_VLAN:
2821 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2822 		evh = mtod(m, struct ether_vlan_header *);
2823 		if (ntohs(evh->evl_proto) == ETHERTYPE_VLAN)
2824 			ipoff += ETHER_VLAN_ENCAP_LEN;
2825 		break;
2826 	default:
2827 		csum_flags = 0;
2828 	}
2829 
2830 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2831 		ip = (struct ip *)(m->m_data + ipoff);
2832 		iphl = ip->ip_hl<<2;
2833 		t->command |= MVNETA_TX_CMD_L3_IP4;
2834 	} else {
2835 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2836 		return;
2837 	}
2838 
2839 
2840 	/* L3 */
2841 	if (csum_flags & CSUM_IP) {
2842 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2843 	}
2844 
2845 	/* L4 */
2846 	if (csum_flags & CSUM_IP_TCP) {
2847 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2848 		t->command |= MVNETA_TX_CMD_L4_TCP;
2849 	} else if (csum_flags & CSUM_IP_UDP) {
2850 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2851 		t->command |= MVNETA_TX_CMD_L4_UDP;
2852 	} else
2853 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2854 
2855 	t->l4ichk = 0;
2856 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2857 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2858 }
2859 
2860 STATIC void
2861 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2862 {
2863 	struct mvneta_tx_ring *tx;
2864 	struct mvneta_buf *txbuf;
2865 	struct mvneta_tx_desc *t;
2866 	uint32_t ptxs, ptxsu, ndesc;
2867 	int i;
2868 
2869 	KASSERT_TX_MTX(sc, q);
2870 
2871 	tx = MVNETA_TX_RING(sc, q);
2872 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2873 		return;
2874 
2875 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2876 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2877 
2878 	if (__predict_false(ndesc == 0)) {
2879 		if (tx->used == 0)
2880 			tx->queue_status = MVNETA_QUEUE_IDLE;
2881 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2882 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2883 			tx->queue_hung = TRUE;
2884 		return;
2885 	}
2886 
2887 #ifdef MVNETA_KTR
2888 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2889 	    sc->ifp->if_xname, q, ndesc);
2890 #endif
2891 
2892 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2893 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2894 
2895 	for (i = 0; i < ndesc; i++) {
2896 		t = &tx->desc[tx->dma];
2897 #ifdef MVNETA_KTR
2898 		if (t->flags & MVNETA_TX_F_ES)
2899 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2900 			    sc->ifp->if_xname, q, tx->dma);
2901 #endif
2902 		txbuf = &tx->txbuf[tx->dma];
2903 		if (__predict_true(txbuf->m != NULL)) {
2904 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2905 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2906 			m_freem(txbuf->m);
2907 			txbuf->m = NULL;
2908 		}
2909 		else
2910 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2911 		tx->dma = tx_counter_adv(tx->dma, 1);
2912 		tx->used--;
2913 	}
2914 	DASSERT(tx->used >= 0);
2915 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2916 	while (__predict_false(ndesc > 255)) {
2917 		ptxsu = MVNETA_PTXSU_NORB(255);
2918 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2919 		ndesc -= 255;
2920 	}
2921 	if (__predict_true(ndesc > 0)) {
2922 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2923 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2924 	}
2925 #ifdef MVNETA_KTR
2926 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2927 	    sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
2928 #endif
2929 
2930 	tx->watchdog_time = ticks;
2931 
2932 	if (tx->used == 0)
2933 		tx->queue_status = MVNETA_QUEUE_IDLE;
2934 }
2935 
2936 /*
2937  * Do a final TX complete when TX is idle.
2938  */
2939 STATIC void
2940 mvneta_tx_drain(struct mvneta_softc *sc)
2941 {
2942 	struct mvneta_tx_ring *tx;
2943 	int q;
2944 
2945 	/*
2946 	 * Handle trailing mbuf on TX queue.
2947 	 * Check is done lockess to avoid TX path contention.
2948 	 */
2949 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2950 		tx = MVNETA_TX_RING(sc, q);
2951 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2952 		    tx->used > 0) {
2953 			mvneta_tx_lockq(sc, q);
2954 			mvneta_tx_queue_complete(sc, q);
2955 			mvneta_tx_unlockq(sc, q);
2956 		}
2957 	}
2958 }
2959 
2960 /*
2961  * Rx Subroutines
2962  */
2963 STATIC int
2964 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2965 {
2966 	uint32_t prxs, npkt;
2967 	int more;
2968 
2969 	more = 0;
2970 	mvneta_rx_lockq(sc, q);
2971 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2972 	npkt = MVNETA_PRXS_GET_ODC(prxs);
2973 	if (__predict_false(npkt == 0))
2974 		goto out;
2975 
2976 	if (count > 0 && npkt > count) {
2977 		more = 1;
2978 		npkt = count;
2979 	}
2980 	mvneta_rx_queue(sc, q, npkt);
2981 out:
2982 	mvneta_rx_unlockq(sc, q);
2983 	return more;
2984 }
2985 
2986 /*
2987  * Helper routine for updating PRXSU register of a given queue.
2988  * Handles number of processed descriptors bigger than maximum acceptable value.
2989  */
2990 STATIC __inline void
2991 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
2992 {
2993 	uint32_t prxsu;
2994 
2995 	while (__predict_false(processed > 255)) {
2996 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2997 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2998 		processed -= 255;
2999 	}
3000 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
3001 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3002 }
3003 
3004 static __inline void
3005 mvneta_prefetch(void *p)
3006 {
3007 
3008 	__builtin_prefetch(p);
3009 }
3010 
3011 STATIC void
3012 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
3013 {
3014 	struct ifnet *ifp;
3015 	struct mvneta_rx_ring *rx;
3016 	struct mvneta_rx_desc *r;
3017 	struct mvneta_buf *rxbuf;
3018 	struct mbuf *m;
3019 	struct lro_ctrl *lro;
3020 	struct lro_entry *queued;
3021 	void *pktbuf;
3022 	int i, pktlen, processed, ndma;
3023 
3024 	KASSERT_RX_MTX(sc, q);
3025 
3026 	ifp = sc->ifp;
3027 	rx = MVNETA_RX_RING(sc, q);
3028 	processed = 0;
3029 
3030 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3031 		return;
3032 
3033 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
3034 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3035 
3036 	for (i = 0; i < npkt; i++) {
3037 		/* Prefetch next desc, rxbuf. */
3038 		ndma = rx_counter_adv(rx->dma, 1);
3039 		mvneta_prefetch(&rx->desc[ndma]);
3040 		mvneta_prefetch(&rx->rxbuf[ndma]);
3041 
3042 		/* get descriptor and packet */
3043 		r = &rx->desc[rx->dma];
3044 		rxbuf = &rx->rxbuf[rx->dma];
3045 		m = rxbuf->m;
3046 		rxbuf->m = NULL;
3047 		DASSERT(m != NULL);
3048 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3049 		    BUS_DMASYNC_POSTREAD);
3050 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3051 		/* Prefetch mbuf header. */
3052 		mvneta_prefetch(m);
3053 
3054 		processed++;
3055 		/* Drop desc with error status or not in a single buffer. */
3056 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3057 		    (MVNETA_RX_F|MVNETA_RX_L));
3058 		if (__predict_false((r->status & MVNETA_RX_ES) ||
3059 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3060 		    (MVNETA_RX_F|MVNETA_RX_L)))
3061 			goto rx_error;
3062 
3063 		/*
3064 		 * [ OFF | MH | PKT | CRC ]
3065 		 * bytecnt cover MH, PKT, CRC
3066 		 */
3067 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3068 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3069                     MVNETA_HWHEADER_SIZE;
3070 
3071 		/* Prefetch mbuf data. */
3072 		mvneta_prefetch(pktbuf);
3073 
3074 		/* Write value to mbuf (avoid read). */
3075 		m->m_data = pktbuf;
3076 		m->m_len = m->m_pkthdr.len = pktlen;
3077 		m->m_pkthdr.rcvif = ifp;
3078 		mvneta_rx_set_csumflag(ifp, r, m);
3079 
3080 		/* Increase rx_dma before releasing the lock. */
3081 		rx->dma = ndma;
3082 
3083 		if (__predict_false(rx->lro_enabled &&
3084 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3085 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3086 		    (m->m_pkthdr.csum_flags &
3087 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3088 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3089 			if (rx->lro.lro_cnt != 0) {
3090 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3091 					goto rx_done;
3092 			}
3093 		}
3094 
3095 		mvneta_rx_unlockq(sc, q);
3096 		(*ifp->if_input)(ifp, m);
3097 		mvneta_rx_lockq(sc, q);
3098 		/*
3099 		 * Check whether this queue has been disabled in the
3100 		 * meantime. If yes, then clear LRO and exit.
3101 		 */
3102 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3103 			goto rx_lro;
3104 rx_done:
3105 		/* Refresh receive ring to avoid stall and minimize jitter. */
3106 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3107 			mvneta_prxsu_update(sc, q, processed);
3108 			mvneta_rx_queue_refill(sc, q);
3109 			processed = 0;
3110 		}
3111 		continue;
3112 rx_error:
3113 		m_freem(m);
3114 		rx->dma = ndma;
3115 		/* Refresh receive ring to avoid stall and minimize jitter. */
3116 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3117 			mvneta_prxsu_update(sc, q, processed);
3118 			mvneta_rx_queue_refill(sc, q);
3119 			processed = 0;
3120 		}
3121 	}
3122 #ifdef MVNETA_KTR
3123 	CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
3124 #endif
3125 	/* DMA status update */
3126 	mvneta_prxsu_update(sc, q, processed);
3127 	/* Refill the rest of buffers if there are any to refill */
3128 	mvneta_rx_queue_refill(sc, q);
3129 
3130 rx_lro:
3131 	/*
3132 	 * Flush any outstanding LRO work
3133 	 */
3134 	lro = &rx->lro;
3135 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3136 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3137 		tcp_lro_flush(lro, queued);
3138 	}
3139 }
3140 
3141 STATIC void
3142 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3143 {
3144 
3145 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3146 	/* This will remove all data at once */
3147 	m_freem(rxbuf->m);
3148 }
3149 
3150 STATIC void
3151 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3152 {
3153 	struct mvneta_rx_ring *rx;
3154 	struct mvneta_rx_desc *r;
3155 	struct mvneta_buf *rxbuf;
3156 	bus_dma_segment_t segs;
3157 	struct mbuf *m;
3158 	uint32_t prxs, prxsu, ndesc;
3159 	int npkt, refill, nsegs, error;
3160 
3161 	KASSERT_RX_MTX(sc, q);
3162 
3163 	rx = MVNETA_RX_RING(sc, q);
3164 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3165 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3166 	refill = MVNETA_RX_RING_CNT - ndesc;
3167 #ifdef MVNETA_KTR
3168 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
3169 	    refill);
3170 #endif
3171 	if (__predict_false(refill <= 0))
3172 		return;
3173 
3174 	for (npkt = 0; npkt < refill; npkt++) {
3175 		rxbuf = &rx->rxbuf[rx->cpu];
3176 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size);
3177 		if (__predict_false(m == NULL)) {
3178 			error = ENOBUFS;
3179 			break;
3180 		}
3181 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3182 
3183 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3184 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3185 		if (__predict_false(error != 0 || nsegs != 1)) {
3186 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3187 			m_freem(m);
3188 			break;
3189 		}
3190 
3191 		/* Add the packet to the ring */
3192 		rxbuf->m = m;
3193 		r = &rx->desc[rx->cpu];
3194 		r->bufptr_pa = segs.ds_addr;
3195 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3196 
3197 		rx->cpu = rx_counter_adv(rx->cpu, 1);
3198 	}
3199 	if (npkt == 0) {
3200 		if (refill == MVNETA_RX_RING_CNT)
3201 			rx->needs_refill = TRUE;
3202 		return;
3203 	}
3204 
3205 	rx->needs_refill = FALSE;
3206 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3207 
3208 	while (__predict_false(npkt > 255)) {
3209 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3210 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3211 		npkt -= 255;
3212 	}
3213 	if (__predict_true(npkt > 0)) {
3214 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3215 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3216 	}
3217 }
3218 
3219 STATIC __inline void
3220 mvneta_rx_set_csumflag(struct ifnet *ifp,
3221     struct mvneta_rx_desc *r, struct mbuf *m)
3222 {
3223 	uint32_t csum_flags;
3224 
3225 	csum_flags = 0;
3226 	if (__predict_false((r->status &
3227 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3228 		return; /* not a IP packet */
3229 
3230 	/* L3 */
3231 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3232 	    MVNETA_RX_IP_HEADER_OK))
3233 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3234 
3235 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3236 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3237 		/* L4 */
3238 		switch (r->status & MVNETA_RX_L4_MASK) {
3239 		case MVNETA_RX_L4_TCP:
3240 		case MVNETA_RX_L4_UDP:
3241 			csum_flags |= CSUM_L4_CALC;
3242 			if (__predict_true((r->status &
3243 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3244 				csum_flags |= CSUM_L4_VALID;
3245 				m->m_pkthdr.csum_data = htons(0xffff);
3246 			}
3247 			break;
3248 		case MVNETA_RX_L4_OTH:
3249 		default:
3250 			break;
3251 		}
3252 	}
3253 	m->m_pkthdr.csum_flags = csum_flags;
3254 }
3255 
3256 /*
3257  * MAC address filter
3258  */
3259 STATIC void
3260 mvneta_filter_setup(struct mvneta_softc *sc)
3261 {
3262 	struct ifnet *ifp;
3263 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3264 	uint32_t pxc;
3265 	int i;
3266 
3267 	KASSERT_SC_MTX(sc);
3268 
3269 	memset(dfut, 0, sizeof(dfut));
3270 	memset(dfsmt, 0, sizeof(dfsmt));
3271 	memset(dfomt, 0, sizeof(dfomt));
3272 
3273 	ifp = sc->ifp;
3274 	ifp->if_flags |= IFF_ALLMULTI;
3275 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
3276 		for (i = 0; i < MVNETA_NDFSMT; i++) {
3277 			dfsmt[i] = dfomt[i] =
3278 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3279 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3280 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3281 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3282 		}
3283 	}
3284 
3285 	pxc = MVNETA_READ(sc, MVNETA_PXC);
3286 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3287 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3288 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3289 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3290 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3291 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3292 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3293 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3294 	if (ifp->if_flags & IFF_BROADCAST) {
3295 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3296 	}
3297 	if (ifp->if_flags & IFF_PROMISC) {
3298 		pxc |= MVNETA_PXC_UPM;
3299 	}
3300 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3301 
3302 	/* Set Destination Address Filter Unicast Table */
3303 	if (ifp->if_flags & IFF_PROMISC) {
3304 		/* pass all unicast addresses */
3305 		for (i = 0; i < MVNETA_NDFUT; i++) {
3306 			dfut[i] =
3307 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3308 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3309 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3310 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3311 		}
3312 	} else {
3313 		i = sc->enaddr[5] & 0xf;		/* last nibble */
3314 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3315 	}
3316 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3317 
3318 	/* Set Destination Address Filter Multicast Tables */
3319 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3320 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3321 }
3322 
3323 /*
3324  * sysctl(9)
3325  */
3326 STATIC int
3327 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3328 {
3329 	struct mvneta_sysctl_mib *arg;
3330 	struct mvneta_softc *sc;
3331 	uint64_t val;
3332 
3333 	arg = (struct mvneta_sysctl_mib *)arg1;
3334 	if (arg == NULL)
3335 		return (EINVAL);
3336 
3337 	sc = arg->sc;
3338 	if (sc == NULL)
3339 		return (EINVAL);
3340 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3341 		return (EINVAL);
3342 
3343 	mvneta_sc_lock(sc);
3344 	val = arg->counter;
3345 	mvneta_sc_unlock(sc);
3346 	return sysctl_handle_64(oidp, &val, 0, req);
3347 }
3348 
3349 
3350 STATIC int
3351 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3352 {
3353 	struct mvneta_softc *sc;
3354 	int err, val;
3355 
3356 	val = 0;
3357 	sc = (struct mvneta_softc *)arg1;
3358 	if (sc == NULL)
3359 		return (EINVAL);
3360 
3361 	err = sysctl_handle_int(oidp, &val, 0, req);
3362 	if (err != 0)
3363 		return (err);
3364 
3365 	if (val < 0 || val > 1)
3366 		return (EINVAL);
3367 
3368 	if (val == 1) {
3369 		mvneta_sc_lock(sc);
3370 		mvneta_clear_mib(sc);
3371 		mvneta_sc_unlock(sc);
3372 	}
3373 
3374 	return (0);
3375 }
3376 
3377 STATIC int
3378 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3379 {
3380 	struct mvneta_sysctl_queue *arg;
3381 	struct mvneta_rx_ring *rx;
3382 	struct mvneta_softc *sc;
3383 	uint32_t reg, time_mvtclk;
3384 	int err, time_us;
3385 
3386 	rx = NULL;
3387 	arg = (struct mvneta_sysctl_queue *)arg1;
3388 	if (arg == NULL)
3389 		return (EINVAL);
3390 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3391 		return (EINVAL);
3392 	if (arg->rxtx != MVNETA_SYSCTL_RX)
3393 		return (EINVAL);
3394 
3395 	sc = arg->sc;
3396 	if (sc == NULL)
3397 		return (EINVAL);
3398 
3399 	/* read queue length */
3400 	mvneta_sc_lock(sc);
3401 	mvneta_rx_lockq(sc, arg->queue);
3402 	rx = MVNETA_RX_RING(sc, arg->queue);
3403 	time_mvtclk = rx->queue_th_time;
3404 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / sc->clk_freq;
3405 	mvneta_rx_unlockq(sc, arg->queue);
3406 	mvneta_sc_unlock(sc);
3407 
3408 	err = sysctl_handle_int(oidp, &time_us, 0, req);
3409 	if (err != 0)
3410 		return (err);
3411 
3412 	mvneta_sc_lock(sc);
3413 	mvneta_rx_lockq(sc, arg->queue);
3414 
3415 	/* update queue length (0[sec] - 1[sec]) */
3416 	if (time_us < 0 || time_us > (1000 * 1000)) {
3417 		mvneta_rx_unlockq(sc, arg->queue);
3418 		mvneta_sc_unlock(sc);
3419 		return (EINVAL);
3420 	}
3421 	time_mvtclk = sc->clk_freq * (uint64_t)time_us / (1000ULL * 1000ULL);
3422 	rx->queue_th_time = time_mvtclk;
3423 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3424 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3425 	mvneta_rx_unlockq(sc, arg->queue);
3426 	mvneta_sc_unlock(sc);
3427 
3428 	return (0);
3429 }
3430 
3431 STATIC void
3432 sysctl_mvneta_init(struct mvneta_softc *sc)
3433 {
3434 	struct sysctl_ctx_list *ctx;
3435 	struct sysctl_oid_list *children;
3436 	struct sysctl_oid_list *rxchildren;
3437 	struct sysctl_oid_list *qchildren, *mchildren;
3438 	struct sysctl_oid *tree;
3439 	int i, q;
3440 	struct mvneta_sysctl_queue *rxarg;
3441 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
3442 	static const char *sysctl_queue_names[] = {
3443 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3444 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3445 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3446 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3447 	};
3448 #undef MVNETA_SYSCTL_NAME
3449 
3450 #ifndef NO_SYSCTL_DESCR
3451 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3452 	static const char *sysctl_queue_descrs[] = {
3453 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3454 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3455 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3456 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3457 	};
3458 #undef MVNETA_SYSCTL_DESCR
3459 #endif
3460 
3461 
3462 	ctx = device_get_sysctl_ctx(sc->dev);
3463 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3464 
3465 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3466 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX");
3467 	rxchildren = SYSCTL_CHILDREN(tree);
3468 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3469 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB");
3470 	mchildren = SYSCTL_CHILDREN(tree);
3471 
3472 
3473 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3474 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3475 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3476 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3477 
3478 	/*
3479 	 * MIB access
3480 	 */
3481 	/* dev.mvneta.[unit].mib.<mibs> */
3482 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3483 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3484 
3485 		mib_arg->sc = sc;
3486 		mib_arg->index = i;
3487 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3488 		    mvneta_mib_list[i].sysctl_name,
3489 		    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
3490 		    (void *)mib_arg, 0, sysctl_read_mib, "I",
3491 		    mvneta_mib_list[i].desc);
3492 	}
3493 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3494 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3495 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3496 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3497 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3498 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3499 
3500 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3501 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3502 	    (void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters");
3503 
3504 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3505 		rxarg = &sc->sysctl_rx_queue[q];
3506 
3507 		rxarg->sc = sc;
3508 		rxarg->queue = q;
3509 		rxarg->rxtx = MVNETA_SYSCTL_RX;
3510 
3511 		/* hw.mvneta.mvneta[unit].rx.[queue] */
3512 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3513 		    sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3514 		    sysctl_queue_descrs[q]);
3515 		qchildren = SYSCTL_CHILDREN(tree);
3516 
3517 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3518 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3519 		    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0,
3520 		    sysctl_set_queue_rxthtime, "I",
3521 		    "interrupt coalescing threshold timer [us]");
3522 	}
3523 }
3524 
3525 /*
3526  * MIB
3527  */
3528 STATIC uint64_t
3529 mvneta_read_mib(struct mvneta_softc *sc, int index)
3530 {
3531 	struct mvneta_mib_def *mib;
3532 	uint64_t val;
3533 
3534 	mib = &mvneta_mib_list[index];
3535 	val = MVNETA_READ_MIB(sc, mib->regnum);
3536 	if (mib->reg64)
3537 		val |= (uint64_t)MVNETA_READ_MIB(sc, mib->regnum + 4) << 32;
3538 	return (val);
3539 }
3540 
3541 STATIC void
3542 mvneta_clear_mib(struct mvneta_softc *sc)
3543 {
3544 	int i;
3545 
3546 	KASSERT_SC_MTX(sc);
3547 
3548 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3549 		(void)mvneta_read_mib(sc, i);
3550 		sc->sysctl_mib[i].counter = 0;
3551 	}
3552 	MVNETA_READ(sc, MVNETA_PDFC);
3553 	sc->counter_pdfc = 0;
3554 	MVNETA_READ(sc, MVNETA_POFC);
3555 	sc->counter_pofc = 0;
3556 	sc->counter_watchdog = 0;
3557 }
3558 
3559 STATIC void
3560 mvneta_update_mib(struct mvneta_softc *sc)
3561 {
3562 	struct mvneta_tx_ring *tx;
3563 	int i;
3564 	uint64_t val;
3565 	uint32_t reg;
3566 
3567 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3568 
3569 		val = mvneta_read_mib(sc, i);
3570 		if (val == 0)
3571 			continue;
3572 
3573 		sc->sysctl_mib[i].counter += val;
3574 		switch (mvneta_mib_list[i].regnum) {
3575 			case MVNETA_MIB_RX_GOOD_OCT:
3576 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3577 				break;
3578 			case MVNETA_MIB_RX_BAD_FRAME:
3579 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3580 				break;
3581 			case MVNETA_MIB_RX_GOOD_FRAME:
3582 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3583 				break;
3584 			case MVNETA_MIB_RX_MCAST_FRAME:
3585 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3586 				break;
3587 			case MVNETA_MIB_TX_GOOD_OCT:
3588 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3589 				break;
3590 			case MVNETA_MIB_TX_GOOD_FRAME:
3591 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3592 				break;
3593 			case MVNETA_MIB_TX_MCAST_FRAME:
3594 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3595 				break;
3596 			case MVNETA_MIB_MAC_COL:
3597 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3598 				break;
3599 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3600 			case MVNETA_MIB_TX_EXCES_COL:
3601 			case MVNETA_MIB_MAC_LATE_COL:
3602 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3603 				break;
3604 		}
3605 	}
3606 
3607 	reg = MVNETA_READ(sc, MVNETA_PDFC);
3608 	sc->counter_pdfc += reg;
3609 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3610 	reg = MVNETA_READ(sc, MVNETA_POFC);
3611 	sc->counter_pofc += reg;
3612 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3613 
3614 	/* TX watchdog. */
3615 	if (sc->counter_watchdog_mib > 0) {
3616 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3617 		sc->counter_watchdog_mib = 0;
3618 	}
3619 	/*
3620 	 * TX driver errors:
3621 	 * We do not take queue locks to not disrupt TX path.
3622 	 * We may only miss one drv error which will be fixed at
3623 	 * next mib update. We may also clear counter when TX path
3624 	 * is incrementing it but we only do it if counter was not zero
3625 	 * thus we may only loose one error.
3626 	 */
3627 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3628 		tx = MVNETA_TX_RING(sc, i);
3629 
3630 		if (tx->drv_error > 0) {
3631 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3632 			tx->drv_error = 0;
3633 		}
3634 	}
3635 }
3636