xref: /freebsd/sys/dev/neta/if_mvneta.c (revision 40427cca7a9ae77b095936fb1954417c290cfb17)
1 /*
2  * Copyright (c) 2017 Stormshield.
3  * Copyright (c) 2017 Semihalf.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/endian.h>
35 #include <sys/mbuf.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/smp.h>
43 #include <sys/taskqueue.h>
44 #ifdef MVNETA_KTR
45 #include <sys/ktr.h>
46 #endif
47 
48 #include <net/ethernet.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp_lro.h>
61 
62 #include <sys/sockio.h>
63 #include <sys/bus.h>
64 #include <machine/bus.h>
65 #include <sys/rman.h>
66 #include <machine/resource.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 
71 #include <dev/ofw/openfirm.h>
72 #include <dev/ofw/ofw_bus.h>
73 #include <dev/ofw/ofw_bus_subr.h>
74 
75 #include <dev/mdio/mdio.h>
76 
77 #include <arm/mv/mvvar.h>
78 
79 #if !defined(__aarch64__)
80 #include <arm/mv/mvreg.h>
81 #include <arm/mv/mvwin.h>
82 #endif
83 
84 #include "if_mvnetareg.h"
85 #include "if_mvnetavar.h"
86 
87 #include "miibus_if.h"
88 #include "mdio_if.h"
89 
90 #ifdef MVNETA_DEBUG
91 #define	STATIC /* nothing */
92 #else
93 #define	STATIC static
94 #endif
95 
96 #define	DASSERT(x) KASSERT((x), (#x))
97 
98 #define	A3700_TCLK_250MHZ		250000000
99 
100 STATIC uint32_t
101 mvneta_get_clk()
102 {
103 #if defined(__aarch64__)
104 	return (A3700_TCLK_250MHZ);
105 #else
106 	return (get_tclk());
107 #endif
108 }
109 
110 /* Device Register Initialization */
111 STATIC int mvneta_initreg(struct ifnet *);
112 
113 /* Descriptor Ring Control for each of queues */
114 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
115 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
116 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
117 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
118 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
119 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
120 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
121 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
122 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
123 STATIC int mvneta_dma_create(struct mvneta_softc *);
124 
125 /* Rx/Tx Queue Control */
126 STATIC int mvneta_rx_queue_init(struct ifnet *, int);
127 STATIC int mvneta_tx_queue_init(struct ifnet *, int);
128 STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
129 STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
130 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
131 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
132 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
133 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
134 
135 /* Interrupt Handlers */
136 STATIC void mvneta_disable_intr(struct mvneta_softc *);
137 STATIC void mvneta_enable_intr(struct mvneta_softc *);
138 STATIC void mvneta_rxtxth_intr(void *);
139 STATIC int mvneta_misc_intr(struct mvneta_softc *);
140 STATIC void mvneta_tick(void *);
141 /* struct ifnet and mii callbacks*/
142 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
143 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
144 #ifdef MVNETA_MULTIQUEUE
145 STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
146 #else /* !MVNETA_MULTIQUEUE */
147 STATIC void mvneta_start(struct ifnet *);
148 #endif
149 STATIC void mvneta_qflush(struct ifnet *);
150 STATIC void mvneta_tx_task(void *, int);
151 STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
152 STATIC void mvneta_init(void *);
153 STATIC void mvneta_init_locked(void *);
154 STATIC void mvneta_stop(struct mvneta_softc *);
155 STATIC void mvneta_stop_locked(struct mvneta_softc *);
156 STATIC int mvneta_mediachange(struct ifnet *);
157 STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
158 STATIC void mvneta_portup(struct mvneta_softc *);
159 STATIC void mvneta_portdown(struct mvneta_softc *);
160 
161 /* Link State Notify */
162 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
163 STATIC int mvneta_update_media(struct mvneta_softc *, int);
164 STATIC void mvneta_adjust_link(struct mvneta_softc *);
165 STATIC void mvneta_update_eee(struct mvneta_softc *);
166 STATIC void mvneta_update_fc(struct mvneta_softc *);
167 STATIC void mvneta_link_isr(struct mvneta_softc *);
168 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
169 STATIC void mvneta_linkup(struct mvneta_softc *);
170 STATIC void mvneta_linkdown(struct mvneta_softc *);
171 STATIC void mvneta_linkreset(struct mvneta_softc *);
172 
173 /* Tx Subroutines */
174 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
175 STATIC void mvneta_tx_set_csumflag(struct ifnet *,
176     struct mvneta_tx_desc *, struct mbuf *);
177 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
178 STATIC void mvneta_tx_drain(struct mvneta_softc *);
179 
180 /* Rx Subroutines */
181 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
182 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
183 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
184 STATIC void mvneta_rx_set_csumflag(struct ifnet *,
185     struct mvneta_rx_desc *, struct mbuf *);
186 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
187 
188 /* MAC address filter */
189 STATIC void mvneta_filter_setup(struct mvneta_softc *);
190 
191 /* sysctl(9) */
192 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
193 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
194 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
195 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
196 
197 /* MIB */
198 STATIC void mvneta_clear_mib(struct mvneta_softc *);
199 STATIC void mvneta_update_mib(struct mvneta_softc *);
200 
201 /* Switch */
202 STATIC boolean_t mvneta_has_switch(device_t);
203 
204 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
205 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
206 
207 STATIC struct mtx mii_mutex;
208 STATIC int mii_init = 0;
209 
210 /* Device */
211 STATIC int mvneta_detach(device_t);
212 /* MII */
213 STATIC int mvneta_miibus_readreg(device_t, int, int);
214 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
215 
216 static device_method_t mvneta_methods[] = {
217 	/* Device interface */
218 	DEVMETHOD(device_detach,	mvneta_detach),
219 	/* MII interface */
220 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
221 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
222 	/* MDIO interface */
223 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
224 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
225 
226 	/* End */
227 	DEVMETHOD_END
228 };
229 
230 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
231 
232 DRIVER_MODULE(miibus, mvneta, miibus_driver, miibus_devclass, 0, 0);
233 DRIVER_MODULE(mdio, mvneta, mdio_driver, mdio_devclass, 0, 0);
234 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
235 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
236 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
237 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
238 
239 /*
240  * List of MIB register and names
241  */
242 enum mvneta_mib_idx
243 {
244 	MVNETA_MIB_RX_GOOD_OCT_IDX,
245 	MVNETA_MIB_RX_BAD_OCT_IDX,
246 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
247 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
248 	MVNETA_MIB_RX_BAD_FRAME_IDX,
249 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
250 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
251 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
252 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
253 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
254 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
255 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
256 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
257 	MVNETA_MIB_TX_GOOD_OCT_IDX,
258 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
259 	MVNETA_MIB_TX_EXCES_COL_IDX,
260 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
261 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
262 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
263 	MVNETA_MIB_FC_SENT_IDX,
264 	MVNETA_MIB_FC_GOOD_IDX,
265 	MVNETA_MIB_FC_BAD_IDX,
266 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
267 	MVNETA_MIB_PKT_FRAGMENT_IDX,
268 	MVNETA_MIB_PKT_OVERSIZE_IDX,
269 	MVNETA_MIB_PKT_JABBER_IDX,
270 	MVNETA_MIB_MAC_RX_ERR_IDX,
271 	MVNETA_MIB_MAC_CRC_ERR_IDX,
272 	MVNETA_MIB_MAC_COL_IDX,
273 	MVNETA_MIB_MAC_LATE_COL_IDX,
274 };
275 
276 STATIC struct mvneta_mib_def {
277 	uint32_t regnum;
278 	int reg64;
279 	const char *sysctl_name;
280 	const char *desc;
281 } mvneta_mib_list[] = {
282 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
283 	    "rx_good_oct", "Good Octets Rx"},
284 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
285 	    "rx_bad_oct", "Bad  Octets Rx"},
286 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
287 	    "tx_mac_err", "MAC Transmit Error"},
288 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
289 	    "rx_good_frame", "Good Frames Rx"},
290 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
291 	    "rx_bad_frame", "Bad Frames Rx"},
292 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
293 	    "rx_bcast_frame", "Broadcast Frames Rx"},
294 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
295 	    "rx_mcast_frame", "Multicast Frames Rx"},
296 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
297 	    "rx_frame_1_64", "Frame Size    1 -   64"},
298 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
299 	    "rx_frame_65_127", "Frame Size   65 -  127"},
300 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
301 	    "rx_frame_128_255", "Frame Size  128 -  255"},
302 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
303 	    "rx_frame_256_511", "Frame Size  256 -  511"},
304 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
305 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
306 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
307 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
308 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
309 	    "tx_good_oct", "Good Octets Tx"},
310 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
311 	    "tx_good_frame", "Good Frames Tx"},
312 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
313 	    "tx_exces_collision", "Excessive Collision"},
314 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
315 	    "tx_mcast_frame", "Multicast Frames Tx"},
316 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
317 	    "tx_bcast_frame", "Broadcast Frames Tx"},
318 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
319 	    "tx_mac_ctl_err", "Unknown MAC Control"},
320 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
321 	    "fc_tx", "Flow Control Tx"},
322 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
323 	    "fc_rx_good", "Good Flow Control Rx"},
324 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
325 	    "fc_rx_bad", "Bad Flow Control Rx"},
326 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
327 	    "pkt_undersize", "Undersized Packets Rx"},
328 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
329 	    "pkt_fragment", "Fragmented Packets Rx"},
330 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
331 	    "pkt_oversize", "Oversized Packets Rx"},
332 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
333 	    "pkt_jabber", "Jabber Packets Rx"},
334 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
335 	    "mac_rx_err", "MAC Rx Errors"},
336 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
337 	    "mac_crc_err", "MAC CRC Errors"},
338 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
339 	    "mac_collision", "MAC Collision"},
340 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
341 	    "mac_late_collision", "MAC Late Collision"},
342 };
343 
344 static struct resource_spec res_spec[] = {
345 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
346 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
347 	{ -1, 0}
348 };
349 
350 static struct {
351 	driver_intr_t *handler;
352 	char * description;
353 } mvneta_intrs[] = {
354 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
355 };
356 
357 static int
358 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
359 {
360 	unsigned int mac_h;
361 	unsigned int mac_l;
362 
363 	mac_l = (addr[4] << 8) | (addr[5]);
364 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
365 	    (addr[2] << 8) | (addr[3] << 0);
366 
367 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
368 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
369 	return (0);
370 }
371 
372 static int
373 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
374 {
375 	uint32_t mac_l, mac_h;
376 
377 #ifdef FDT
378 	if (mvneta_fdt_mac_address(sc, addr) == 0)
379 		return (0);
380 #endif
381 	/*
382 	 * Fall back -- use the currently programmed address.
383 	 */
384 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
385 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
386 	if (mac_l == 0 && mac_h == 0) {
387 		/*
388 		 * Generate pseudo-random MAC.
389 		 * Set lower part to random number | unit number.
390 		 */
391 		mac_l = arc4random() & ~0xff;
392 		mac_l |= device_get_unit(sc->dev) & 0xff;
393 		mac_h = arc4random();
394 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
395 		if (bootverbose) {
396 			device_printf(sc->dev,
397 			    "Could not acquire MAC address. "
398 			    "Using randomized one.\n");
399 		}
400 	}
401 
402 	addr[0] = (mac_h & 0xff000000) >> 24;
403 	addr[1] = (mac_h & 0x00ff0000) >> 16;
404 	addr[2] = (mac_h & 0x0000ff00) >> 8;
405 	addr[3] = (mac_h & 0x000000ff);
406 	addr[4] = (mac_l & 0x0000ff00) >> 8;
407 	addr[5] = (mac_l & 0x000000ff);
408 	return (0);
409 }
410 
411 STATIC boolean_t
412 mvneta_has_switch(device_t self)
413 {
414 	phandle_t node, switch_node, switch_eth, switch_eth_handle;
415 
416 	node = ofw_bus_get_node(self);
417 	switch_node =
418 	    ofw_bus_find_compatible(OF_finddevice("/"), "marvell,dsa");
419 	switch_eth = 0;
420 
421 	OF_getencprop(switch_node, "dsa,ethernet",
422 	    (void*)&switch_eth_handle, sizeof(switch_eth_handle));
423 
424 	if (switch_eth_handle > 0)
425 		switch_eth = OF_node_from_xref(switch_eth_handle);
426 
427 	/* Return true if dsa,ethernet cell points to us */
428 	return (node == switch_eth);
429 }
430 
431 STATIC int
432 mvneta_dma_create(struct mvneta_softc *sc)
433 {
434 	size_t maxsize, maxsegsz;
435 	size_t q;
436 	int error;
437 
438 	/*
439 	 * Create Tx DMA
440 	 */
441 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
442 
443 	error = bus_dma_tag_create(
444 	    bus_get_dma_tag(sc->dev),		/* parent */
445 	    16, 0,                              /* alignment, boundary */
446 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
447 	    BUS_SPACE_MAXADDR,                  /* highaddr */
448 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
449 	    maxsize,				/* maxsize */
450 	    1,					/* nsegments */
451 	    maxsegsz,				/* maxsegsz */
452 	    0,					/* flags */
453 	    NULL, NULL,				/* lockfunc, lockfuncarg */
454 	    &sc->tx_dtag);			/* dmat */
455 	if (error != 0) {
456 		device_printf(sc->dev,
457 		    "Failed to create DMA tag for Tx descriptors.\n");
458 		goto fail;
459 	}
460 	error = bus_dma_tag_create(
461 	    bus_get_dma_tag(sc->dev),		/* parent */
462 	    1, 0,				/* alignment, boundary */
463 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
464 	    BUS_SPACE_MAXADDR,			/* highaddr */
465 	    NULL, NULL,				/* filtfunc, filtfuncarg */
466 	    MVNETA_PACKET_SIZE,			/* maxsize */
467 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
468 	    MVNETA_PACKET_SIZE,			/* maxsegsz */
469 	    BUS_DMA_ALLOCNOW,			/* flags */
470 	    NULL, NULL,				/* lockfunc, lockfuncarg */
471 	    &sc->txmbuf_dtag);
472 	if (error != 0) {
473 		device_printf(sc->dev,
474 		    "Failed to create DMA tag for Tx mbufs.\n");
475 		goto fail;
476 	}
477 
478 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
479 		error = mvneta_ring_alloc_tx_queue(sc, q);
480 		if (error != 0) {
481 			device_printf(sc->dev,
482 			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
483 			goto fail;
484 		}
485 	}
486 
487 	/*
488 	 * Create Rx DMA.
489 	 */
490 	/* Create tag for Rx descripors */
491 	error = bus_dma_tag_create(
492 	    bus_get_dma_tag(sc->dev),		/* parent */
493 	    32, 0,                              /* alignment, boundary */
494 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
495 	    BUS_SPACE_MAXADDR,                  /* highaddr */
496 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
497 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
498 	    1,					/* nsegments */
499 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
500 	    0,					/* flags */
501 	    NULL, NULL,				/* lockfunc, lockfuncarg */
502 	    &sc->rx_dtag);			/* dmat */
503 	if (error != 0) {
504 		device_printf(sc->dev,
505 		    "Failed to create DMA tag for Rx descriptors.\n");
506 		goto fail;
507 	}
508 
509 	/* Create tag for Rx buffers */
510 	error = bus_dma_tag_create(
511 	    bus_get_dma_tag(sc->dev),		/* parent */
512 	    32, 0,				/* alignment, boundary */
513 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
514 	    BUS_SPACE_MAXADDR,			/* highaddr */
515 	    NULL, NULL,				/* filtfunc, filtfuncarg */
516 	    MVNETA_PACKET_SIZE, 1,		/* maxsize, nsegments */
517 	    MVNETA_PACKET_SIZE,			/* maxsegsz */
518 	    0,					/* flags */
519 	    NULL, NULL,				/* lockfunc, lockfuncarg */
520 	    &sc->rxbuf_dtag);			/* dmat */
521 	if (error != 0) {
522 		device_printf(sc->dev,
523 		    "Failed to create DMA tag for Rx buffers.\n");
524 		goto fail;
525 	}
526 
527 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
528 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
529 			device_printf(sc->dev,
530 			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
531 			goto fail;
532 		}
533 	}
534 
535 	return (0);
536 fail:
537 	mvneta_detach(sc->dev);
538 
539 	return (error);
540 }
541 
542 /* ARGSUSED */
543 int
544 mvneta_attach(device_t self)
545 {
546 	struct mvneta_softc *sc;
547 	struct ifnet *ifp;
548 	device_t child;
549 	int ifm_target;
550 	int q, error;
551 #if !defined(__aarch64__)
552 	uint32_t reg;
553 #endif
554 
555 	sc = device_get_softc(self);
556 	sc->dev = self;
557 
558 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
559 
560 	error = bus_alloc_resources(self, res_spec, sc->res);
561 	if (error) {
562 		device_printf(self, "could not allocate resources\n");
563 		return (ENXIO);
564 	}
565 
566 	sc->version = MVNETA_READ(sc, MVNETA_PV);
567 	device_printf(self, "version is %x\n", sc->version);
568 	callout_init(&sc->tick_ch, 0);
569 
570 	/*
571 	 * make sure DMA engines are in reset state
572 	 */
573 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
574 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
575 
576 #if !defined(__aarch64__)
577 	/*
578 	 * Disable port snoop for buffers and descriptors
579 	 * to avoid L2 caching of both without DRAM copy.
580 	 * Obtain coherency settings from the first MBUS
581 	 * window attribute.
582 	 */
583 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
584 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
585 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
586 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
587 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
588 	}
589 #endif
590 
591 	/*
592 	 * MAC address
593 	 */
594 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
595 		device_printf(self, "no mac address.\n");
596 		return (ENXIO);
597 	}
598 	mvneta_set_mac_address(sc, sc->enaddr);
599 
600 	mvneta_disable_intr(sc);
601 
602 	/* Allocate network interface */
603 	ifp = sc->ifp = if_alloc(IFT_ETHER);
604 	if (ifp == NULL) {
605 		device_printf(self, "if_alloc() failed\n");
606 		mvneta_detach(self);
607 		return (ENOMEM);
608 	}
609 	if_initname(ifp, device_get_name(self), device_get_unit(self));
610 
611 	/*
612 	 * We can support 802.1Q VLAN-sized frames and jumbo
613 	 * Ethernet frames.
614 	 */
615 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
616 
617 	ifp->if_softc = sc;
618 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
619 #ifdef MVNETA_MULTIQUEUE
620 	ifp->if_transmit = mvneta_transmit;
621 	ifp->if_qflush = mvneta_qflush;
622 #else /* !MVNETA_MULTIQUEUE */
623 	ifp->if_start = mvneta_start;
624 	ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
625 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
626 	IFQ_SET_READY(&ifp->if_snd);
627 #endif
628 	ifp->if_init = mvneta_init;
629 	ifp->if_ioctl = mvneta_ioctl;
630 
631 	/*
632 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
633 	 */
634 	ifp->if_capabilities |= IFCAP_HWCSUM;
635 
636 	/*
637 	 * As VLAN hardware tagging is not supported
638 	 * but is necessary to perform VLAN hardware checksums,
639 	 * it is done in the driver
640 	 */
641 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
642 
643 	/*
644 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
645 	 */
646 	ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
647 	ifp->if_capenable = ifp->if_capabilities;
648 
649 	/*
650 	 * Disabled option(s):
651 	 * - Support for Large Receive Offload
652 	 */
653 	ifp->if_capabilities |= IFCAP_LRO;
654 
655 	ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
656 
657 	/*
658 	 * Device DMA Buffer allocation.
659 	 * Handles resource deallocation in case of failure.
660 	 */
661 	error = mvneta_dma_create(sc);
662 	if (error != 0) {
663 		mvneta_detach(self);
664 		return (error);
665 	}
666 
667 	/* Initialize queues */
668 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
669 		error = mvneta_ring_init_tx_queue(sc, q);
670 		if (error != 0) {
671 			mvneta_detach(self);
672 			return (error);
673 		}
674 	}
675 
676 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
677 		error = mvneta_ring_init_rx_queue(sc, q);
678 		if (error != 0) {
679 			mvneta_detach(self);
680 			return (error);
681 		}
682 	}
683 
684 	ether_ifattach(ifp, sc->enaddr);
685 
686 	/*
687 	 * Enable DMA engines and Initialize Device Registers.
688 	 */
689 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
690 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
691 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
692 	mvneta_sc_lock(sc);
693 	mvneta_filter_setup(sc);
694 	mvneta_sc_unlock(sc);
695 	mvneta_initreg(ifp);
696 
697 	/*
698 	 * Now MAC is working, setup MII.
699 	 */
700 	if (mii_init == 0) {
701 		/*
702 		 * MII bus is shared by all MACs and all PHYs in SoC.
703 		 * serializing the bus access should be safe.
704 		 */
705 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
706 		mii_init = 1;
707 	}
708 
709 	/* Attach PHY(s) */
710 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
711 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
712 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
713 		    MII_OFFSET_ANY, 0);
714 		if (error != 0) {
715 			if (bootverbose) {
716 				device_printf(self,
717 				    "MII attach failed, error: %d\n", error);
718 			}
719 			ether_ifdetach(sc->ifp);
720 			mvneta_detach(self);
721 			return (error);
722 		}
723 		sc->mii = device_get_softc(sc->miibus);
724 		sc->phy_attached = 1;
725 
726 		/* Disable auto-negotiation in MAC - rely on PHY layer */
727 		mvneta_update_autoneg(sc, FALSE);
728 	} else if (sc->use_inband_status == TRUE) {
729 		/* In-band link status */
730 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
731 		    mvneta_mediastatus);
732 
733 		/* Configure media */
734 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
735 		    0, NULL);
736 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
737 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
738 		    0, NULL);
739 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
740 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
741 		    0, NULL);
742 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
743 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
744 
745 		/* Enable auto-negotiation */
746 		mvneta_update_autoneg(sc, TRUE);
747 
748 		mvneta_sc_lock(sc);
749 		if (MVNETA_IS_LINKUP(sc))
750 			mvneta_linkup(sc);
751 		else
752 			mvneta_linkdown(sc);
753 		mvneta_sc_unlock(sc);
754 
755 	} else {
756 		/* Fixed-link, use predefined values */
757 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
758 		    mvneta_mediastatus);
759 
760 		ifm_target = IFM_ETHER;
761 		switch (sc->phy_speed) {
762 		case 2500:
763 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
764 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
765 				device_printf(self,
766 				    "2.5G speed can work only in (Q)SGMII mode\n");
767 				ether_ifdetach(sc->ifp);
768 				mvneta_detach(self);
769 				return (ENXIO);
770 			}
771 			ifm_target |= IFM_2500_T;
772 			break;
773 		case 1000:
774 			ifm_target |= IFM_1000_T;
775 			break;
776 		case 100:
777 			ifm_target |= IFM_100_TX;
778 			break;
779 		case 10:
780 			ifm_target |= IFM_10_T;
781 			break;
782 		default:
783 			ether_ifdetach(sc->ifp);
784 			mvneta_detach(self);
785 			return (ENXIO);
786 		}
787 
788 		if (sc->phy_fdx)
789 			ifm_target |= IFM_FDX;
790 		else
791 			ifm_target |= IFM_HDX;
792 
793 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
794 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
795 		if_link_state_change(sc->ifp, LINK_STATE_UP);
796 
797 		if (mvneta_has_switch(self)) {
798 			child = device_add_child(sc->dev, "mdio", -1);
799 			if (child == NULL) {
800 				ether_ifdetach(sc->ifp);
801 				mvneta_detach(self);
802 				return (ENXIO);
803 			}
804 			bus_generic_attach(sc->dev);
805 			bus_generic_attach(child);
806 		}
807 
808 		/* Configure MAC media */
809 		mvneta_update_media(sc, ifm_target);
810 	}
811 
812 	sysctl_mvneta_init(sc);
813 
814 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
815 
816 	error = bus_setup_intr(self, sc->res[1],
817 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
818 	    &sc->ih_cookie[0]);
819 	if (error) {
820 		device_printf(self, "could not setup %s\n",
821 		    mvneta_intrs[0].description);
822 		ether_ifdetach(sc->ifp);
823 		mvneta_detach(self);
824 		return (error);
825 	}
826 
827 	return (0);
828 }
829 
830 STATIC int
831 mvneta_detach(device_t dev)
832 {
833 	struct mvneta_softc *sc;
834 	struct ifnet *ifp;
835 	int q;
836 
837 	sc = device_get_softc(dev);
838 	ifp = sc->ifp;
839 
840 	mvneta_stop(sc);
841 	/* Detach network interface */
842 	if (sc->ifp)
843 		if_free(sc->ifp);
844 
845 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
846 		mvneta_ring_dealloc_rx_queue(sc, q);
847 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
848 		mvneta_ring_dealloc_tx_queue(sc, q);
849 
850 	if (sc->tx_dtag != NULL)
851 		bus_dma_tag_destroy(sc->tx_dtag);
852 	if (sc->rx_dtag != NULL)
853 		bus_dma_tag_destroy(sc->rx_dtag);
854 	if (sc->txmbuf_dtag != NULL)
855 		bus_dma_tag_destroy(sc->txmbuf_dtag);
856 
857 	bus_release_resources(dev, res_spec, sc->res);
858 	return (0);
859 }
860 
861 /*
862  * MII
863  */
864 STATIC int
865 mvneta_miibus_readreg(device_t dev, int phy, int reg)
866 {
867 	struct mvneta_softc *sc;
868 	struct ifnet *ifp;
869 	uint32_t smi, val;
870 	int i;
871 
872 	sc = device_get_softc(dev);
873 	ifp = sc->ifp;
874 
875 	mtx_lock(&mii_mutex);
876 
877 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
878 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
879 			break;
880 		DELAY(1);
881 	}
882 	if (i == MVNETA_PHY_TIMEOUT) {
883 		if_printf(ifp, "SMI busy timeout\n");
884 		mtx_unlock(&mii_mutex);
885 		return (-1);
886 	}
887 
888 	smi = MVNETA_SMI_PHYAD(phy) |
889 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
890 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
891 
892 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
893 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
894 			break;
895 		DELAY(1);
896 	}
897 
898 	if (i == MVNETA_PHY_TIMEOUT) {
899 		if_printf(ifp, "SMI busy timeout\n");
900 		mtx_unlock(&mii_mutex);
901 		return (-1);
902 	}
903 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
904 		smi = MVNETA_READ(sc, MVNETA_SMI);
905 		if (smi & MVNETA_SMI_READVALID)
906 			break;
907 		DELAY(1);
908 	}
909 
910 	if (i == MVNETA_PHY_TIMEOUT) {
911 		if_printf(ifp, "SMI busy timeout\n");
912 		mtx_unlock(&mii_mutex);
913 		return (-1);
914 	}
915 
916 	mtx_unlock(&mii_mutex);
917 
918 #ifdef MVNETA_KTR
919 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
920 	    MVNETA_PHY_TIMEOUT);
921 #endif
922 
923 	val = smi & MVNETA_SMI_DATA_MASK;
924 
925 #ifdef MVNETA_KTR
926 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
927 	    reg, val);
928 #endif
929 	return (val);
930 }
931 
932 STATIC int
933 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
934 {
935 	struct mvneta_softc *sc;
936 	struct ifnet *ifp;
937 	uint32_t smi;
938 	int i;
939 
940 	sc = device_get_softc(dev);
941 	ifp = sc->ifp;
942 #ifdef MVNETA_KTR
943 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
944 	    phy, reg, val);
945 #endif
946 
947 	mtx_lock(&mii_mutex);
948 
949 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
950 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
951 			break;
952 		DELAY(1);
953 	}
954 	if (i == MVNETA_PHY_TIMEOUT) {
955 		if_printf(ifp, "SMI busy timeout\n");
956 		mtx_unlock(&mii_mutex);
957 		return (0);
958 	}
959 
960 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
961 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
962 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
963 
964 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
965 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
966 			break;
967 		DELAY(1);
968 	}
969 
970 	mtx_unlock(&mii_mutex);
971 
972 	if (i == MVNETA_PHY_TIMEOUT)
973 		if_printf(ifp, "phy write timed out\n");
974 
975 	return (0);
976 }
977 
978 STATIC void
979 mvneta_portup(struct mvneta_softc *sc)
980 {
981 	int q;
982 
983 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
984 		mvneta_rx_lockq(sc, q);
985 		mvneta_rx_queue_enable(sc->ifp, q);
986 		mvneta_rx_unlockq(sc, q);
987 	}
988 
989 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
990 		mvneta_tx_lockq(sc, q);
991 		mvneta_tx_queue_enable(sc->ifp, q);
992 		mvneta_tx_unlockq(sc, q);
993 	}
994 
995 }
996 
997 STATIC void
998 mvneta_portdown(struct mvneta_softc *sc)
999 {
1000 	struct mvneta_rx_ring *rx;
1001 	struct mvneta_tx_ring *tx;
1002 	int q, cnt;
1003 	uint32_t reg;
1004 
1005 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1006 		rx = MVNETA_RX_RING(sc, q);
1007 		mvneta_rx_lockq(sc, q);
1008 		rx->queue_status = MVNETA_QUEUE_DISABLED;
1009 		mvneta_rx_unlockq(sc, q);
1010 	}
1011 
1012 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1013 		tx = MVNETA_TX_RING(sc, q);
1014 		mvneta_tx_lockq(sc, q);
1015 		tx->queue_status = MVNETA_QUEUE_DISABLED;
1016 		mvneta_tx_unlockq(sc, q);
1017 	}
1018 
1019 	/* Wait for all Rx activity to terminate. */
1020 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1021 	reg = MVNETA_RQC_DIS(reg);
1022 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1023 	cnt = 0;
1024 	do {
1025 		if (cnt >= RX_DISABLE_TIMEOUT) {
1026 			if_printf(sc->ifp,
1027 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1028 			break;
1029 		}
1030 		cnt++;
1031 		reg = MVNETA_READ(sc, MVNETA_RQC);
1032 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1033 
1034 	/* Wait for all Tx activity to terminate. */
1035 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1036 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1037 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1038 
1039 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1040 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1041 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1042 
1043 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1044 	reg = MVNETA_TQC_DIS(reg);
1045 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1046 	cnt = 0;
1047 	do {
1048 		if (cnt >= TX_DISABLE_TIMEOUT) {
1049 			if_printf(sc->ifp,
1050 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1051 			break;
1052 		}
1053 		cnt++;
1054 		reg = MVNETA_READ(sc, MVNETA_TQC);
1055 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1056 
1057 	/* Wait for all Tx FIFO is empty */
1058 	cnt = 0;
1059 	do {
1060 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1061 			if_printf(sc->ifp,
1062 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1063 			break;
1064 		}
1065 		cnt++;
1066 		reg = MVNETA_READ(sc, MVNETA_PS0);
1067 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1068 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1069 }
1070 
1071 /*
1072  * Device Register Initialization
1073  *  reset device registers to device driver default value.
1074  *  the device is not enabled here.
1075  */
1076 STATIC int
1077 mvneta_initreg(struct ifnet *ifp)
1078 {
1079 	struct mvneta_softc *sc;
1080 	int q, i;
1081 	uint32_t reg;
1082 
1083 	sc = ifp->if_softc;
1084 #ifdef MVNETA_KTR
1085 	CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
1086 #endif
1087 
1088 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1089 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1090 	/* Enable mbus retry. */
1091 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1092 
1093 	/* Init TX/RX Queue Registers */
1094 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1095 		mvneta_rx_lockq(sc, q);
1096 		if (mvneta_rx_queue_init(ifp, q) != 0) {
1097 			device_printf(sc->dev,
1098 			    "initialization failed: cannot initialize queue\n");
1099 			mvneta_rx_unlockq(sc, q);
1100 			return (ENOBUFS);
1101 		}
1102 		mvneta_rx_unlockq(sc, q);
1103 	}
1104 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1105 		mvneta_tx_lockq(sc, q);
1106 		if (mvneta_tx_queue_init(ifp, q) != 0) {
1107 			device_printf(sc->dev,
1108 			    "initialization failed: cannot initialize queue\n");
1109 			mvneta_tx_unlockq(sc, q);
1110 			return (ENOBUFS);
1111 		}
1112 		mvneta_tx_unlockq(sc, q);
1113 	}
1114 
1115 	/*
1116 	 * Ethernet Unit Control - disable automatic PHY management by HW.
1117 	 * In case the port uses SMI-controlled PHY, poll its status with
1118 	 * mii_tick() and update MAC settings accordingly.
1119 	 */
1120 	reg = MVNETA_READ(sc, MVNETA_EUC);
1121 	reg &= ~MVNETA_EUC_POLLING;
1122 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1123 
1124 	/* EEE: Low Power Idle */
1125 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1126 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1127 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1128 
1129 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1130 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1131 
1132 	reg = MVNETA_LPIC2_MUSTSET;
1133 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1134 
1135 	/* Port MAC Control set 0 */
1136 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1137 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1138 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(MVNETA_MAX_FRAME);
1139 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1140 
1141 	/* Port MAC Control set 2 */
1142 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1143 	switch (sc->phy_mode) {
1144 	case MVNETA_PHY_QSGMII:
1145 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1146 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1147 		break;
1148 	case MVNETA_PHY_SGMII:
1149 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1150 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1151 		break;
1152 	case MVNETA_PHY_RGMII:
1153 	case MVNETA_PHY_RGMII_ID:
1154 		reg |= MVNETA_PMACC2_RGMIIEN;
1155 		break;
1156 	}
1157 	reg |= MVNETA_PMACC2_MUSTSET;
1158 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1159 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1160 
1161 	/* Port Configuration Extended: enable Tx CRC generation */
1162 	reg = MVNETA_READ(sc, MVNETA_PXCX);
1163 	reg &= ~MVNETA_PXCX_TXCRCDIS;
1164 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1165 
1166 	/* clear MIB counter registers(clear by read) */
1167 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
1168 		if (mvneta_mib_list[i].reg64)
1169 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
1170 		else
1171 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
1172 	}
1173 	MVNETA_READ(sc, MVNETA_PDFC);
1174 	MVNETA_READ(sc, MVNETA_POFC);
1175 
1176 	/* Set SDC register except IPGINT bits */
1177 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1178 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1179 	reg |= MVNETA_SDC_BLMR;
1180 	reg |= MVNETA_SDC_BLMT;
1181 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1182 
1183 	return (0);
1184 }
1185 
1186 STATIC void
1187 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1188 {
1189 
1190 	if (error != 0)
1191 		return;
1192 	*(bus_addr_t *)arg = segs->ds_addr;
1193 }
1194 
1195 STATIC int
1196 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1197 {
1198 	struct mvneta_rx_ring *rx;
1199 	struct mvneta_buf *rxbuf;
1200 	bus_dmamap_t dmap;
1201 	int i, error;
1202 
1203 	if (q >= MVNETA_RX_QNUM_MAX)
1204 		return (EINVAL);
1205 
1206 	rx = MVNETA_RX_RING(sc, q);
1207 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1208 	/* Allocate DMA memory for Rx descriptors */
1209 	error = bus_dmamem_alloc(sc->rx_dtag,
1210 	    (void**)&(rx->desc),
1211 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1212 	    &rx->desc_map);
1213 	if (error != 0 || rx->desc == NULL)
1214 		goto fail;
1215 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1216 	    rx->desc,
1217 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1218 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1219 	if (error != 0)
1220 		goto fail;
1221 
1222 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1223 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1224 		if (error != 0) {
1225 			device_printf(sc->dev,
1226 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1227 			goto fail;
1228 		}
1229 		rxbuf = &rx->rxbuf[i];
1230 		rxbuf->dmap = dmap;
1231 		rxbuf->m = NULL;
1232 	}
1233 
1234 	return (0);
1235 fail:
1236 	mvneta_ring_dealloc_rx_queue(sc, q);
1237 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1238 	return (error);
1239 }
1240 
1241 STATIC int
1242 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1243 {
1244 	struct mvneta_tx_ring *tx;
1245 	int error;
1246 
1247 	if (q >= MVNETA_TX_QNUM_MAX)
1248 		return (EINVAL);
1249 	tx = MVNETA_TX_RING(sc, q);
1250 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1251 	error = bus_dmamem_alloc(sc->tx_dtag,
1252 	    (void**)&(tx->desc),
1253 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1254 	    &tx->desc_map);
1255 	if (error != 0 || tx->desc == NULL)
1256 		goto fail;
1257 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1258 	    tx->desc,
1259 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1260 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1261 	if (error != 0)
1262 		goto fail;
1263 
1264 #ifdef MVNETA_MULTIQUEUE
1265 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1266 	    &tx->ring_mtx);
1267 	if (tx->br == NULL) {
1268 		device_printf(sc->dev,
1269 		    "Could not setup buffer ring for TxQ(%d)\n", q);
1270 		error = ENOMEM;
1271 		goto fail;
1272 	}
1273 #endif
1274 
1275 	return (0);
1276 fail:
1277 	mvneta_ring_dealloc_tx_queue(sc, q);
1278 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1279 	return (error);
1280 }
1281 
1282 STATIC void
1283 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1284 {
1285 	struct mvneta_tx_ring *tx;
1286 	struct mvneta_buf *txbuf;
1287 	void *kva;
1288 	int error;
1289 	int i;
1290 
1291 	if (q >= MVNETA_TX_QNUM_MAX)
1292 		return;
1293 	tx = MVNETA_TX_RING(sc, q);
1294 
1295 	if (tx->taskq != NULL) {
1296 		/* Remove task */
1297 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1298 			taskqueue_drain(tx->taskq, &tx->task);
1299 	}
1300 #ifdef MVNETA_MULTIQUEUE
1301 	if (tx->br != NULL)
1302 		drbr_free(tx->br, M_DEVBUF);
1303 #endif
1304 
1305 	if (sc->txmbuf_dtag != NULL) {
1306 		if (mtx_name(&tx->ring_mtx) != NULL) {
1307 			/*
1308 			 * It is assumed that maps are being loaded after mutex
1309 			 * is initialized. Therefore we can skip unloading maps
1310 			 * when mutex is empty.
1311 			 */
1312 			mvneta_tx_lockq(sc, q);
1313 			mvneta_ring_flush_tx_queue(sc, q);
1314 			mvneta_tx_unlockq(sc, q);
1315 		}
1316 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1317 			txbuf = &tx->txbuf[i];
1318 			if (txbuf->dmap != NULL) {
1319 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1320 				    txbuf->dmap);
1321 				if (error != 0) {
1322 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1323 					    __func__, q, i);
1324 				}
1325 			}
1326 		}
1327 	}
1328 
1329 	if (tx->desc_pa != 0)
1330 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1331 
1332 	kva = (void *)tx->desc;
1333 	if (kva != NULL)
1334 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1335 
1336 	if (mtx_name(&tx->ring_mtx) != NULL)
1337 		mtx_destroy(&tx->ring_mtx);
1338 
1339 	memset(tx, 0, sizeof(*tx));
1340 }
1341 
1342 STATIC void
1343 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1344 {
1345 	struct mvneta_rx_ring *rx;
1346 	struct lro_ctrl	*lro;
1347 	void *kva;
1348 
1349 	if (q >= MVNETA_RX_QNUM_MAX)
1350 		return;
1351 
1352 	rx = MVNETA_RX_RING(sc, q);
1353 
1354 	mvneta_ring_flush_rx_queue(sc, q);
1355 
1356 	if (rx->desc_pa != 0)
1357 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1358 
1359 	kva = (void *)rx->desc;
1360 	if (kva != NULL)
1361 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1362 
1363 	lro = &rx->lro;
1364 	tcp_lro_free(lro);
1365 
1366 	if (mtx_name(&rx->ring_mtx) != NULL)
1367 		mtx_destroy(&rx->ring_mtx);
1368 
1369 	memset(rx, 0, sizeof(*rx));
1370 }
1371 
1372 STATIC int
1373 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1374 {
1375 	struct mvneta_rx_ring *rx;
1376 	struct lro_ctrl	*lro;
1377 	int error;
1378 
1379 	if (q >= MVNETA_RX_QNUM_MAX)
1380 		return (0);
1381 
1382 	rx = MVNETA_RX_RING(sc, q);
1383 	rx->dma = rx->cpu = 0;
1384 	rx->queue_th_received = MVNETA_RXTH_COUNT;
1385 	rx->queue_th_time = (mvneta_get_clk() / 1000) / 10; /* 0.1 [ms] */
1386 
1387 	/* Initialize LRO */
1388 	rx->lro_enabled = FALSE;
1389 	if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
1390 		lro = &rx->lro;
1391 		error = tcp_lro_init(lro);
1392 		if (error != 0)
1393 			device_printf(sc->dev, "LRO Initialization failed!\n");
1394 		else {
1395 			rx->lro_enabled = TRUE;
1396 			lro->ifp = sc->ifp;
1397 		}
1398 	}
1399 
1400 	return (0);
1401 }
1402 
1403 STATIC int
1404 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1405 {
1406 	struct mvneta_tx_ring *tx;
1407 	struct mvneta_buf *txbuf;
1408 	int i, error;
1409 
1410 	if (q >= MVNETA_TX_QNUM_MAX)
1411 		return (0);
1412 
1413 	tx = MVNETA_TX_RING(sc, q);
1414 
1415 	/* Tx handle */
1416 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1417 		txbuf = &tx->txbuf[i];
1418 		txbuf->m = NULL;
1419 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1420 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1421 		    &txbuf->dmap);
1422 		if (error != 0) {
1423 			device_printf(sc->dev,
1424 			    "can't create dma map (tx ring %d)\n", i);
1425 			return (error);
1426 		}
1427 	}
1428 	tx->dma = tx->cpu = 0;
1429 	tx->used = 0;
1430 	tx->drv_error = 0;
1431 	tx->queue_status = MVNETA_QUEUE_DISABLED;
1432 	tx->queue_hung = FALSE;
1433 
1434 	tx->ifp = sc->ifp;
1435 	tx->qidx = q;
1436 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1437 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1438 	    taskqueue_thread_enqueue, &tx->taskq);
1439 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1440 	    device_get_nameunit(sc->dev), q);
1441 
1442 	return (0);
1443 }
1444 
1445 STATIC void
1446 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1447 {
1448 	struct mvneta_tx_ring *tx;
1449 	struct mvneta_buf *txbuf;
1450 	int i;
1451 
1452 	tx = MVNETA_TX_RING(sc, q);
1453 	KASSERT_TX_MTX(sc, q);
1454 
1455 	/* Tx handle */
1456 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1457 		txbuf = &tx->txbuf[i];
1458 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1459 		if (txbuf->m != NULL) {
1460 			m_freem(txbuf->m);
1461 			txbuf->m = NULL;
1462 		}
1463 	}
1464 	tx->dma = tx->cpu = 0;
1465 	tx->used = 0;
1466 }
1467 
1468 STATIC void
1469 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1470 {
1471 	struct mvneta_rx_ring *rx;
1472 	struct mvneta_buf *rxbuf;
1473 	int i;
1474 
1475 	rx = MVNETA_RX_RING(sc, q);
1476 	KASSERT_RX_MTX(sc, q);
1477 
1478 	/* Rx handle */
1479 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1480 		rxbuf = &rx->rxbuf[i];
1481 		mvneta_rx_buf_free(sc, rxbuf);
1482 	}
1483 	rx->dma = rx->cpu = 0;
1484 }
1485 
1486 /*
1487  * Rx/Tx Queue Control
1488  */
1489 STATIC int
1490 mvneta_rx_queue_init(struct ifnet *ifp, int q)
1491 {
1492 	struct mvneta_softc *sc;
1493 	struct mvneta_rx_ring *rx;
1494 	uint32_t reg;
1495 
1496 	sc = ifp->if_softc;
1497 	KASSERT_RX_MTX(sc, q);
1498 	rx =  MVNETA_RX_RING(sc, q);
1499 	DASSERT(rx->desc_pa != 0);
1500 
1501 	/* descriptor address */
1502 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1503 
1504 	/* Rx buffer size and descriptor ring size */
1505 	reg  = MVNETA_PRXDQS_BUFFERSIZE(MVNETA_PACKET_SIZE >> 3);
1506 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1507 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1508 #ifdef MVNETA_KTR
1509 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
1510 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1511 #endif
1512 	/* Rx packet offset address */
1513 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1514 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1515 #ifdef MVNETA_KTR
1516 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
1517 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1518 #endif
1519 
1520 	/* if DMA is not working, register is not updated */
1521 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1522 	return (0);
1523 }
1524 
1525 STATIC int
1526 mvneta_tx_queue_init(struct ifnet *ifp, int q)
1527 {
1528 	struct mvneta_softc *sc;
1529 	struct mvneta_tx_ring *tx;
1530 	uint32_t reg;
1531 
1532 	sc = ifp->if_softc;
1533 	KASSERT_TX_MTX(sc, q);
1534 	tx = MVNETA_TX_RING(sc, q);
1535 	DASSERT(tx->desc_pa != 0);
1536 
1537 	/* descriptor address */
1538 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1539 
1540 	/* descriptor ring size */
1541 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1542 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1543 
1544 	/* if DMA is not working, register is not updated */
1545 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1546 	return (0);
1547 }
1548 
1549 STATIC int
1550 mvneta_rx_queue_enable(struct ifnet *ifp, int q)
1551 {
1552 	struct mvneta_softc *sc;
1553 	struct mvneta_rx_ring *rx;
1554 	uint32_t reg;
1555 
1556 	sc = ifp->if_softc;
1557 	rx = MVNETA_RX_RING(sc, q);
1558 	KASSERT_RX_MTX(sc, q);
1559 
1560 	/* Set Rx interrupt threshold */
1561 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1562 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1563 
1564 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1565 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1566 
1567 	/* Unmask RXTX_TH Intr. */
1568 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1569 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1570 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1571 
1572 	/* Enable Rx queue */
1573 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1574 	reg |= MVNETA_RQC_ENQ(q);
1575 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1576 
1577 	rx->queue_status = MVNETA_QUEUE_WORKING;
1578 	return (0);
1579 }
1580 
1581 STATIC int
1582 mvneta_tx_queue_enable(struct ifnet *ifp, int q)
1583 {
1584 	struct mvneta_softc *sc;
1585 	struct mvneta_tx_ring *tx;
1586 
1587 	sc = ifp->if_softc;
1588 	tx = MVNETA_TX_RING(sc, q);
1589 	KASSERT_TX_MTX(sc, q);
1590 
1591 	/* Enable Tx queue */
1592 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1593 
1594 	tx->queue_status = MVNETA_QUEUE_IDLE;
1595 	tx->queue_hung = FALSE;
1596 	return (0);
1597 }
1598 
1599 STATIC __inline void
1600 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1601 {
1602 
1603 	DASSERT(q >= 0);
1604 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1605 	mtx_lock(&sc->rx_ring[q].ring_mtx);
1606 }
1607 
1608 STATIC __inline void
1609 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1610 {
1611 
1612 	DASSERT(q >= 0);
1613 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1614 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1615 }
1616 
1617 STATIC __inline int __unused
1618 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1619 {
1620 
1621 	DASSERT(q >= 0);
1622 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1623 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1624 }
1625 
1626 STATIC __inline void
1627 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1628 {
1629 
1630 	DASSERT(q >= 0);
1631 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1632 	mtx_lock(&sc->tx_ring[q].ring_mtx);
1633 }
1634 
1635 STATIC __inline void
1636 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1637 {
1638 
1639 	DASSERT(q >= 0);
1640 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1641 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1642 }
1643 
1644 /*
1645  * Interrupt Handlers
1646  */
1647 STATIC void
1648 mvneta_disable_intr(struct mvneta_softc *sc)
1649 {
1650 
1651 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1652 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1653 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1654 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1655 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1656 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1657 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1658 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1659 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1660 }
1661 
1662 STATIC void
1663 mvneta_enable_intr(struct mvneta_softc *sc)
1664 {
1665 	uint32_t reg;
1666 
1667 	/* Enable Summary Bit to check all interrupt cause. */
1668 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1669 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1670 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1671 
1672 	if (sc->use_inband_status) {
1673 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1674 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1675 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1676 	}
1677 
1678 	/* Enable All Queue Interrupt */
1679 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1680 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1681 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1682 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1683 }
1684 
1685 STATIC void
1686 mvneta_rxtxth_intr(void *arg)
1687 {
1688 	struct mvneta_softc *sc;
1689 	struct ifnet *ifp;
1690 	uint32_t ic, queues;
1691 
1692 	sc = arg;
1693 	ifp = sc->ifp;
1694 #ifdef MVNETA_KTR
1695 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
1696 #endif
1697 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1698 	if (ic == 0)
1699 		return;
1700 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1701 
1702 	/* Ack maintance interrupt first */
1703 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1704 	    sc->use_inband_status)) {
1705 		mvneta_sc_lock(sc);
1706 		mvneta_misc_intr(sc);
1707 		mvneta_sc_unlock(sc);
1708 	}
1709 	if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
1710 		return;
1711 	/* RxTxTH interrupt */
1712 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1713 	if (__predict_true(queues)) {
1714 #ifdef MVNETA_KTR
1715 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
1716 #endif
1717 		/* At the moment the driver support only one RX queue. */
1718 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1719 		mvneta_rx(sc, 0, 0);
1720 	}
1721 }
1722 
1723 STATIC int
1724 mvneta_misc_intr(struct mvneta_softc *sc)
1725 {
1726 	uint32_t ic;
1727 	int claimed = 0;
1728 
1729 #ifdef MVNETA_KTR
1730 	CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
1731 #endif
1732 	KASSERT_SC_MTX(sc);
1733 
1734 	for (;;) {
1735 		ic = MVNETA_READ(sc, MVNETA_PMIC);
1736 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1737 		if (ic == 0)
1738 			break;
1739 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1740 		claimed = 1;
1741 
1742 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1743 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1744 			mvneta_link_isr(sc);
1745 	}
1746 	return (claimed);
1747 }
1748 
1749 STATIC void
1750 mvneta_tick(void *arg)
1751 {
1752 	struct mvneta_softc *sc;
1753 	struct mvneta_tx_ring *tx;
1754 	struct mvneta_rx_ring *rx;
1755 	int q;
1756 	uint32_t fc_prev, fc_curr;
1757 
1758 	sc = arg;
1759 
1760 	/*
1761 	 * This is done before mib update to get the right stats
1762 	 * for this tick.
1763 	 */
1764 	mvneta_tx_drain(sc);
1765 
1766 	/* Extract previous flow-control frame received counter. */
1767 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1768 	/* Read mib registers (clear by read). */
1769 	mvneta_update_mib(sc);
1770 	/* Extract current flow-control frame received counter. */
1771 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1772 
1773 
1774 	if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
1775 		mvneta_sc_lock(sc);
1776 		mii_tick(sc->mii);
1777 
1778 		/* Adjust MAC settings */
1779 		mvneta_adjust_link(sc);
1780 		mvneta_sc_unlock(sc);
1781 	}
1782 
1783 	/*
1784 	 * We were unable to refill the rx queue and left the rx func, leaving
1785 	 * the ring without mbuf and no way to call the refill func.
1786 	 */
1787 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1788 		rx = MVNETA_RX_RING(sc, q);
1789 		if (rx->needs_refill == TRUE) {
1790 			mvneta_rx_lockq(sc, q);
1791 			mvneta_rx_queue_refill(sc, q);
1792 			mvneta_rx_unlockq(sc, q);
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * Watchdog:
1798 	 * - check if queue is mark as hung.
1799 	 * - ignore hung status if we received some pause frame
1800 	 *   as hardware may have paused packet transmit.
1801 	 */
1802 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1803 		/*
1804 		 * We should take queue lock, but as we only read
1805 		 * queue status we can do it without lock, we may
1806 		 * only missdetect queue status for one tick.
1807 		 */
1808 		tx = MVNETA_TX_RING(sc, q);
1809 
1810 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1811 			goto timeout;
1812 	}
1813 
1814 	callout_schedule(&sc->tick_ch, hz);
1815 	return;
1816 
1817 timeout:
1818 	if_printf(sc->ifp, "watchdog timeout\n");
1819 
1820 	mvneta_sc_lock(sc);
1821 	sc->counter_watchdog++;
1822 	sc->counter_watchdog_mib++;
1823 	/* Trigger reinitialize sequence. */
1824 	mvneta_stop_locked(sc);
1825 	mvneta_init_locked(sc);
1826 	mvneta_sc_unlock(sc);
1827 }
1828 
1829 STATIC void
1830 mvneta_qflush(struct ifnet *ifp)
1831 {
1832 #ifdef MVNETA_MULTIQUEUE
1833 	struct mvneta_softc *sc;
1834 	struct mvneta_tx_ring *tx;
1835 	struct mbuf *m;
1836 	size_t q;
1837 
1838 	sc = ifp->if_softc;
1839 
1840 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1841 		tx = MVNETA_TX_RING(sc, q);
1842 		mvneta_tx_lockq(sc, q);
1843 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1844 			m_freem(m);
1845 		mvneta_tx_unlockq(sc, q);
1846 	}
1847 #endif
1848 	if_qflush(ifp);
1849 }
1850 
1851 STATIC void
1852 mvneta_tx_task(void *arg, int pending)
1853 {
1854 	struct mvneta_softc *sc;
1855 	struct mvneta_tx_ring *tx;
1856 	struct ifnet *ifp;
1857 	int error;
1858 
1859 	tx = arg;
1860 	ifp = tx->ifp;
1861 	sc = ifp->if_softc;
1862 
1863 	mvneta_tx_lockq(sc, tx->qidx);
1864 	error = mvneta_xmit_locked(sc, tx->qidx);
1865 	mvneta_tx_unlockq(sc, tx->qidx);
1866 
1867 	/* Try again */
1868 	if (__predict_false(error != 0 && error != ENETDOWN)) {
1869 		pause("mvneta_tx_task_sleep", 1);
1870 		taskqueue_enqueue(tx->taskq, &tx->task);
1871 	}
1872 }
1873 
1874 STATIC int
1875 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1876 {
1877 	struct mvneta_tx_ring *tx;
1878 	struct ifnet *ifp;
1879 	int error;
1880 
1881 	KASSERT_TX_MTX(sc, q);
1882 	tx = MVNETA_TX_RING(sc, q);
1883 	error = 0;
1884 
1885 	ifp = sc->ifp;
1886 
1887 	/* Dont enqueue packet if the queue is disabled. */
1888 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1889 		m_freem(*m);
1890 		*m = NULL;
1891 		return (ENETDOWN);
1892 	}
1893 
1894 	/* Reclaim mbuf if above threshold. */
1895 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1896 		mvneta_tx_queue_complete(sc, q);
1897 
1898 	/* Do not call transmit path if queue is already too full. */
1899 	if (__predict_false(tx->used >
1900 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1901 		return (ENOBUFS);
1902 
1903 	error = mvneta_tx_queue(sc, m, q);
1904 	if (__predict_false(error != 0))
1905 		return (error);
1906 
1907 	/* Send a copy of the frame to the BPF listener */
1908 	ETHER_BPF_MTAP(ifp, *m);
1909 
1910 	/* Set watchdog on */
1911 	tx->watchdog_time = ticks;
1912 	tx->queue_status = MVNETA_QUEUE_WORKING;
1913 
1914 	return (error);
1915 }
1916 
1917 #ifdef MVNETA_MULTIQUEUE
1918 STATIC int
1919 mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
1920 {
1921 	struct mvneta_softc *sc;
1922 	struct mvneta_tx_ring *tx;
1923 	int error;
1924 	int q;
1925 
1926 	sc = ifp->if_softc;
1927 
1928 	/* Use default queue if there is no flow id as thread can migrate. */
1929 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1930 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1931 	else
1932 		q = 0;
1933 
1934 	tx = MVNETA_TX_RING(sc, q);
1935 
1936 	/* If buf_ring is full start transmit immediatly. */
1937 	if (buf_ring_full(tx->br)) {
1938 		mvneta_tx_lockq(sc, q);
1939 		mvneta_xmit_locked(sc, q);
1940 		mvneta_tx_unlockq(sc, q);
1941 	}
1942 
1943 	/*
1944 	 * If the buf_ring is empty we will not reorder packets.
1945 	 * If the lock is available transmit without using buf_ring.
1946 	 */
1947 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1948 		error = mvneta_xmitfast_locked(sc, q, &m);
1949 		mvneta_tx_unlockq(sc, q);
1950 		if (__predict_true(error == 0))
1951 			return (0);
1952 
1953 		/* Transmit can fail in fastpath. */
1954 		if (__predict_false(m == NULL))
1955 			return (error);
1956 	}
1957 
1958 	/* Enqueue then schedule taskqueue. */
1959 	error = drbr_enqueue(ifp, tx->br, m);
1960 	if (__predict_false(error != 0))
1961 		return (error);
1962 
1963 	taskqueue_enqueue(tx->taskq, &tx->task);
1964 	return (0);
1965 }
1966 
1967 STATIC int
1968 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1969 {
1970 	struct ifnet *ifp;
1971 	struct mvneta_tx_ring *tx;
1972 	struct mbuf *m;
1973 	int error;
1974 
1975 	KASSERT_TX_MTX(sc, q);
1976 	ifp = sc->ifp;
1977 	tx = MVNETA_TX_RING(sc, q);
1978 	error = 0;
1979 
1980 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
1981 		error = mvneta_xmitfast_locked(sc, q, &m);
1982 		if (__predict_false(error != 0)) {
1983 			if (m != NULL)
1984 				drbr_putback(ifp, tx->br, m);
1985 			else
1986 				drbr_advance(ifp, tx->br);
1987 			break;
1988 		}
1989 		drbr_advance(ifp, tx->br);
1990 	}
1991 
1992 	return (error);
1993 }
1994 #else /* !MVNETA_MULTIQUEUE */
1995 STATIC void
1996 mvneta_start(struct ifnet *ifp)
1997 {
1998 	struct mvneta_softc *sc;
1999 	struct mvneta_tx_ring *tx;
2000 	int error;
2001 
2002 	sc = ifp->if_softc;
2003 	tx = MVNETA_TX_RING(sc, 0);
2004 
2005 	mvneta_tx_lockq(sc, 0);
2006 	error = mvneta_xmit_locked(sc, 0);
2007 	mvneta_tx_unlockq(sc, 0);
2008 	/* Handle retransmit in the background taskq. */
2009 	if (__predict_false(error != 0 && error != ENETDOWN))
2010 		taskqueue_enqueue(tx->taskq, &tx->task);
2011 }
2012 
2013 STATIC int
2014 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2015 {
2016 	struct ifnet *ifp;
2017 	struct mvneta_tx_ring *tx;
2018 	struct mbuf *m;
2019 	int error;
2020 
2021 	KASSERT_TX_MTX(sc, q);
2022 	ifp = sc->ifp;
2023 	tx = MVNETA_TX_RING(sc, 0);
2024 	error = 0;
2025 
2026 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
2027 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2028 		if (m == NULL)
2029 			break;
2030 
2031 		error = mvneta_xmitfast_locked(sc, q, &m);
2032 		if (__predict_false(error != 0)) {
2033 			if (m != NULL)
2034 				IFQ_DRV_PREPEND(&ifp->if_snd, m);
2035 			break;
2036 		}
2037 	}
2038 
2039 	return (error);
2040 }
2041 #endif
2042 
2043 STATIC int
2044 mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2045 {
2046 	struct mvneta_softc *sc;
2047 	struct mvneta_rx_ring *rx;
2048 	struct ifreq *ifr;
2049 	int error, mask;
2050 	uint32_t flags;
2051 	int q;
2052 
2053 	error = 0;
2054 	sc = ifp->if_softc;
2055 	ifr = (struct ifreq *)data;
2056 	switch (cmd) {
2057 	case SIOCSIFFLAGS:
2058 		mvneta_sc_lock(sc);
2059 		if (ifp->if_flags & IFF_UP) {
2060 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2061 				flags = ifp->if_flags ^ sc->mvneta_if_flags;
2062 
2063 				if (flags != 0)
2064 					sc->mvneta_if_flags = ifp->if_flags;
2065 
2066 				if ((flags & IFF_PROMISC) != 0)
2067 					mvneta_filter_setup(sc);
2068 			} else {
2069 				mvneta_init_locked(sc);
2070 				sc->mvneta_if_flags = ifp->if_flags;
2071 				if (sc->phy_attached)
2072 					mii_mediachg(sc->mii);
2073 				mvneta_sc_unlock(sc);
2074 				break;
2075 			}
2076 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2077 			mvneta_stop_locked(sc);
2078 
2079 		sc->mvneta_if_flags = ifp->if_flags;
2080 		mvneta_sc_unlock(sc);
2081 		break;
2082 	case SIOCSIFCAP:
2083 		if (ifp->if_mtu > MVNETA_MAX_CSUM_MTU &&
2084 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2085 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2086 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2087 		if (mask & IFCAP_HWCSUM) {
2088 			ifp->if_capenable &= ~IFCAP_HWCSUM;
2089 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
2090 			if (ifp->if_capenable & IFCAP_TXCSUM)
2091 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2092 				    CSUM_UDP;
2093 			else
2094 				ifp->if_hwassist = 0;
2095 		}
2096 		if (mask & IFCAP_LRO) {
2097 			mvneta_sc_lock(sc);
2098 			ifp->if_capenable ^= IFCAP_LRO;
2099 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2100 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2101 					rx = MVNETA_RX_RING(sc, q);
2102 					rx->lro_enabled = !rx->lro_enabled;
2103 				}
2104 			}
2105 			mvneta_sc_unlock(sc);
2106 		}
2107 		VLAN_CAPABILITIES(ifp);
2108 		break;
2109 	case SIOCSIFMEDIA:
2110 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2111 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2112 		    (ifr->ifr_media & IFM_FDX) == 0) {
2113 			device_printf(sc->dev,
2114 			    "%s half-duplex unsupported\n",
2115 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2116 			    "1000Base-T" :
2117 			    "2500Base-T");
2118 			error = EINVAL;
2119 			break;
2120 		}
2121 	case SIOCGIFMEDIA: /* FALLTHROUGH */
2122 	case SIOCGIFXMEDIA:
2123 		if (!sc->phy_attached)
2124 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2125 			    cmd);
2126 		else
2127 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2128 			    cmd);
2129 		break;
2130 	case SIOCSIFMTU:
2131 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2132 		    MVNETA_ETHER_SIZE) {
2133 			error = EINVAL;
2134 		} else {
2135 			ifp->if_mtu = ifr->ifr_mtu;
2136 			mvneta_sc_lock(sc);
2137 			if (ifp->if_mtu > MVNETA_MAX_CSUM_MTU) {
2138 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2139 				ifp->if_hwassist = 0;
2140 			} else {
2141 				ifp->if_capenable |= IFCAP_TXCSUM;
2142 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2143 					CSUM_UDP;
2144 			}
2145 
2146 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2147 				/* Trigger reinitialize sequence */
2148 				mvneta_stop_locked(sc);
2149 				mvneta_init_locked(sc);
2150 			}
2151 			mvneta_sc_unlock(sc);
2152                 }
2153                 break;
2154 
2155 	default:
2156 		error = ether_ioctl(ifp, cmd, data);
2157 		break;
2158 	}
2159 
2160 	return (error);
2161 }
2162 
2163 STATIC void
2164 mvneta_init_locked(void *arg)
2165 {
2166 	struct mvneta_softc *sc;
2167 	struct ifnet *ifp;
2168 	uint32_t reg;
2169 	int q, cpu;
2170 
2171 	sc = arg;
2172 	ifp = sc->ifp;
2173 
2174 	if (!device_is_attached(sc->dev) ||
2175 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2176 		return;
2177 
2178 	mvneta_disable_intr(sc);
2179 	callout_stop(&sc->tick_ch);
2180 
2181 	/* Get the latest mac address */
2182 	bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
2183 	mvneta_set_mac_address(sc, sc->enaddr);
2184 	mvneta_filter_setup(sc);
2185 
2186 	/* Start DMA Engine */
2187 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2188 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2189 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2190 
2191 	/* Enable port */
2192 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2193 	reg |= MVNETA_PMACC0_PORTEN;
2194 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2195 
2196 	/* Allow access to each TXQ/RXQ from both CPU's */
2197 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2198 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2199 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2200 
2201 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2202 		mvneta_rx_lockq(sc, q);
2203 		mvneta_rx_queue_refill(sc, q);
2204 		mvneta_rx_unlockq(sc, q);
2205 	}
2206 
2207 	if (!sc->phy_attached)
2208 		mvneta_linkup(sc);
2209 
2210 	/* Enable interrupt */
2211 	mvneta_enable_intr(sc);
2212 
2213 	/* Set Counter */
2214 	callout_schedule(&sc->tick_ch, hz);
2215 
2216 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2217 }
2218 
2219 STATIC void
2220 mvneta_init(void *arg)
2221 {
2222 	struct mvneta_softc *sc;
2223 
2224 	sc = arg;
2225 	mvneta_sc_lock(sc);
2226 	mvneta_init_locked(sc);
2227 	if (sc->phy_attached)
2228 		mii_mediachg(sc->mii);
2229 	mvneta_sc_unlock(sc);
2230 }
2231 
2232 /* ARGSUSED */
2233 STATIC void
2234 mvneta_stop_locked(struct mvneta_softc *sc)
2235 {
2236 	struct ifnet *ifp;
2237 	struct mvneta_rx_ring *rx;
2238 	struct mvneta_tx_ring *tx;
2239 	uint32_t reg;
2240 	int q;
2241 
2242 	ifp = sc->ifp;
2243 	if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2244 		return;
2245 
2246 	mvneta_disable_intr(sc);
2247 
2248 	callout_stop(&sc->tick_ch);
2249 
2250 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2251 
2252 	/* Link down */
2253 	if (sc->linkup == TRUE)
2254 		mvneta_linkdown(sc);
2255 
2256 	/* Reset the MAC Port Enable bit */
2257 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2258 	reg &= ~MVNETA_PMACC0_PORTEN;
2259 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2260 
2261 	/* Disable each of queue */
2262 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2263 		rx = MVNETA_RX_RING(sc, q);
2264 
2265 		mvneta_rx_lockq(sc, q);
2266 		mvneta_ring_flush_rx_queue(sc, q);
2267 		mvneta_rx_unlockq(sc, q);
2268 	}
2269 
2270 	/*
2271 	 * Hold Reset state of DMA Engine
2272 	 * (must write 0x0 to restart it)
2273 	 */
2274 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2275 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2276 
2277 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2278 		tx = MVNETA_TX_RING(sc, q);
2279 
2280 		mvneta_tx_lockq(sc, q);
2281 		mvneta_ring_flush_tx_queue(sc, q);
2282 		mvneta_tx_unlockq(sc, q);
2283 	}
2284 }
2285 
2286 STATIC void
2287 mvneta_stop(struct mvneta_softc *sc)
2288 {
2289 
2290 	mvneta_sc_lock(sc);
2291 	mvneta_stop_locked(sc);
2292 	mvneta_sc_unlock(sc);
2293 }
2294 
2295 STATIC int
2296 mvneta_mediachange(struct ifnet *ifp)
2297 {
2298 	struct mvneta_softc *sc;
2299 
2300 	sc = ifp->if_softc;
2301 
2302 	if (!sc->phy_attached && !sc->use_inband_status) {
2303 		/* We shouldn't be here */
2304 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2305 		return (0);
2306 	}
2307 
2308 	if (sc->use_inband_status) {
2309 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2310 		return (0);
2311 	}
2312 
2313 	mvneta_sc_lock(sc);
2314 
2315 	/* Update PHY */
2316 	mii_mediachg(sc->mii);
2317 
2318 	mvneta_sc_unlock(sc);
2319 
2320 	return (0);
2321 }
2322 
2323 STATIC void
2324 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2325 {
2326 	uint32_t psr;
2327 
2328 	psr = MVNETA_READ(sc, MVNETA_PSR);
2329 
2330 	/* Speed */
2331 	if (psr & MVNETA_PSR_GMIISPEED)
2332 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2333 	else if (psr & MVNETA_PSR_MIISPEED)
2334 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2335 	else if (psr & MVNETA_PSR_LINKUP)
2336 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2337 
2338 	/* Duplex */
2339 	if (psr & MVNETA_PSR_FULLDX)
2340 		ifmr->ifm_active |= IFM_FDX;
2341 
2342 	/* Link */
2343 	ifmr->ifm_status = IFM_AVALID;
2344 	if (psr & MVNETA_PSR_LINKUP)
2345 		ifmr->ifm_status |= IFM_ACTIVE;
2346 }
2347 
2348 STATIC void
2349 mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2350 {
2351 	struct mvneta_softc *sc;
2352 	struct mii_data *mii;
2353 
2354 	sc = ifp->if_softc;
2355 
2356 	if (!sc->phy_attached && !sc->use_inband_status) {
2357 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2358 		return;
2359 	}
2360 
2361 	mvneta_sc_lock(sc);
2362 
2363 	if (sc->use_inband_status) {
2364 		mvneta_get_media(sc, ifmr);
2365 		mvneta_sc_unlock(sc);
2366 		return;
2367 	}
2368 
2369 	mii = sc->mii;
2370 	mii_pollstat(mii);
2371 
2372 	ifmr->ifm_active = mii->mii_media_active;
2373 	ifmr->ifm_status = mii->mii_media_status;
2374 
2375 	mvneta_sc_unlock(sc);
2376 }
2377 
2378 /*
2379  * Link State Notify
2380  */
2381 STATIC void
2382 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2383 {
2384 	int reg;
2385 
2386 	if (enable) {
2387 		reg = MVNETA_READ(sc, MVNETA_PANC);
2388 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2389 		    MVNETA_PANC_ANFCEN);
2390 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2391 		    MVNETA_PANC_INBANDANEN;
2392 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2393 
2394 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2395 		reg |= MVNETA_PMACC2_INBANDANMODE;
2396 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2397 
2398 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2399 		reg |= MVNETA_PSOMSCD_ENABLE;
2400 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2401 	} else {
2402 		reg = MVNETA_READ(sc, MVNETA_PANC);
2403 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2404 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2405 		    MVNETA_PANC_INBANDANEN);
2406 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2407 
2408 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2409 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2410 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2411 
2412 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2413 		reg &= ~MVNETA_PSOMSCD_ENABLE;
2414 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2415 	}
2416 }
2417 
2418 STATIC int
2419 mvneta_update_media(struct mvneta_softc *sc, int media)
2420 {
2421 	int reg, err;
2422 	boolean_t running;
2423 
2424 	err = 0;
2425 
2426 	mvneta_sc_lock(sc);
2427 
2428 	mvneta_linkreset(sc);
2429 
2430 	running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2431 	if (running)
2432 		mvneta_stop_locked(sc);
2433 
2434 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2435 
2436 	if (sc->use_inband_status)
2437 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2438 
2439 	mvneta_update_eee(sc);
2440 	mvneta_update_fc(sc);
2441 
2442 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2443 		reg = MVNETA_READ(sc, MVNETA_PANC);
2444 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2445 		    MVNETA_PANC_SETMIISPEED |
2446 		    MVNETA_PANC_SETFULLDX);
2447 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2448 		    IFM_SUBTYPE(media) == IFM_2500_T) {
2449 			if ((media & IFM_FDX) == 0) {
2450 				device_printf(sc->dev,
2451 				    "%s half-duplex unsupported\n",
2452 				    IFM_SUBTYPE(media) == IFM_1000_T ?
2453 				    "1000Base-T" :
2454 				    "2500Base-T");
2455 				err = EINVAL;
2456 				goto out;
2457 			}
2458 			reg |= MVNETA_PANC_SETGMIISPEED;
2459 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2460 			reg |= MVNETA_PANC_SETMIISPEED;
2461 
2462 		if (media & IFM_FDX)
2463 			reg |= MVNETA_PANC_SETFULLDX;
2464 
2465 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2466 	}
2467 out:
2468 	if (running)
2469 		mvneta_init_locked(sc);
2470 	mvneta_sc_unlock(sc);
2471 	return (err);
2472 }
2473 
2474 STATIC void
2475 mvneta_adjust_link(struct mvneta_softc *sc)
2476 {
2477 	boolean_t phy_linkup;
2478 	int reg;
2479 
2480 	/* Update eee/fc */
2481 	mvneta_update_eee(sc);
2482 	mvneta_update_fc(sc);
2483 
2484 	/* Check for link change */
2485 	phy_linkup = (sc->mii->mii_media_status &
2486 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2487 
2488 	if (sc->linkup != phy_linkup)
2489 		mvneta_linkupdate(sc, phy_linkup);
2490 
2491 	/* Don't update media on disabled link */
2492 	if (!phy_linkup)
2493 		return;
2494 
2495 	/* Check for media type change */
2496 	if (sc->mvneta_media != sc->mii->mii_media_active) {
2497 		sc->mvneta_media = sc->mii->mii_media_active;
2498 
2499 		reg = MVNETA_READ(sc, MVNETA_PANC);
2500 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2501 		    MVNETA_PANC_SETMIISPEED |
2502 		    MVNETA_PANC_SETFULLDX);
2503 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2504 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2505 			reg |= MVNETA_PANC_SETGMIISPEED;
2506 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2507 			reg |= MVNETA_PANC_SETMIISPEED;
2508 
2509 		if (sc->mvneta_media & IFM_FDX)
2510 			reg |= MVNETA_PANC_SETFULLDX;
2511 
2512 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2513 	}
2514 }
2515 
2516 STATIC void
2517 mvneta_link_isr(struct mvneta_softc *sc)
2518 {
2519 	int linkup;
2520 
2521 	KASSERT_SC_MTX(sc);
2522 
2523 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2524 	if (sc->linkup == linkup)
2525 		return;
2526 
2527 	if (linkup == TRUE)
2528 		mvneta_linkup(sc);
2529 	else
2530 		mvneta_linkdown(sc);
2531 
2532 #ifdef DEBUG
2533 	log(LOG_DEBUG,
2534 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2535 #endif
2536 }
2537 
2538 STATIC void
2539 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2540 {
2541 
2542 	KASSERT_SC_MTX(sc);
2543 
2544 	if (linkup == TRUE)
2545 		mvneta_linkup(sc);
2546 	else
2547 		mvneta_linkdown(sc);
2548 
2549 #ifdef DEBUG
2550 	log(LOG_DEBUG,
2551 	    "%s: link %s\n", device_xname(sc->dev), linkup ? "up" : "down");
2552 #endif
2553 }
2554 
2555 STATIC void
2556 mvneta_update_eee(struct mvneta_softc *sc)
2557 {
2558 	uint32_t reg;
2559 
2560 	KASSERT_SC_MTX(sc);
2561 
2562 	/* set EEE parameters */
2563 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2564 	if (sc->cf_lpi)
2565 		reg |= MVNETA_LPIC1_LPIRE;
2566 	else
2567 		reg &= ~MVNETA_LPIC1_LPIRE;
2568 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2569 }
2570 
2571 STATIC void
2572 mvneta_update_fc(struct mvneta_softc *sc)
2573 {
2574 	uint32_t reg;
2575 
2576 	KASSERT_SC_MTX(sc);
2577 
2578 	reg  = MVNETA_READ(sc, MVNETA_PANC);
2579 	if (sc->cf_fc) {
2580 		/* Flow control negotiation */
2581 		reg |= MVNETA_PANC_PAUSEADV;
2582 		reg |= MVNETA_PANC_ANFCEN;
2583 	} else {
2584 		/* Disable flow control negotiation */
2585 		reg &= ~MVNETA_PANC_PAUSEADV;
2586 		reg &= ~MVNETA_PANC_ANFCEN;
2587 	}
2588 
2589 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2590 }
2591 
2592 STATIC void
2593 mvneta_linkup(struct mvneta_softc *sc)
2594 {
2595 	uint32_t reg;
2596 
2597 	KASSERT_SC_MTX(sc);
2598 
2599 	if (!sc->use_inband_status) {
2600 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2601 		reg |= MVNETA_PANC_FORCELINKPASS;
2602 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2603 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2604 	}
2605 
2606 	mvneta_qflush(sc->ifp);
2607 	mvneta_portup(sc);
2608 	sc->linkup = TRUE;
2609 	if_link_state_change(sc->ifp, LINK_STATE_UP);
2610 }
2611 
2612 STATIC void
2613 mvneta_linkdown(struct mvneta_softc *sc)
2614 {
2615 	uint32_t reg;
2616 
2617 	KASSERT_SC_MTX(sc);
2618 
2619 	if (!sc->use_inband_status) {
2620 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2621 		reg &= ~MVNETA_PANC_FORCELINKPASS;
2622 		reg |= MVNETA_PANC_FORCELINKFAIL;
2623 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2624 	}
2625 
2626 	mvneta_portdown(sc);
2627 	mvneta_qflush(sc->ifp);
2628 	sc->linkup = FALSE;
2629 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2630 }
2631 
2632 STATIC void
2633 mvneta_linkreset(struct mvneta_softc *sc)
2634 {
2635 	struct mii_softc *mii;
2636 
2637 	if (sc->phy_attached) {
2638 		/* Force reset PHY */
2639 		mii = LIST_FIRST(&sc->mii->mii_phys);
2640 		if (mii)
2641 			mii_phy_reset(mii);
2642 	}
2643 }
2644 
2645 /*
2646  * Tx Subroutines
2647  */
2648 STATIC int
2649 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2650 {
2651 	struct ifnet *ifp;
2652 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2653 	struct mbuf *mtmp, *mbuf;
2654 	struct mvneta_tx_ring *tx;
2655 	struct mvneta_buf *txbuf;
2656 	struct mvneta_tx_desc *t;
2657 	uint32_t ptxsu;
2658 	int start, used, error, i, txnsegs;
2659 
2660 	mbuf = *mbufp;
2661 	tx = MVNETA_TX_RING(sc, q);
2662 	DASSERT(tx->used >= 0);
2663 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2664 	t = NULL;
2665 	ifp = sc->ifp;
2666 
2667 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2668 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2669 		if (mbuf == NULL) {
2670 			tx->drv_error++;
2671 			*mbufp = NULL;
2672 			return (ENOBUFS);
2673 		}
2674 		mbuf->m_flags &= ~M_VLANTAG;
2675 		*mbufp = mbuf;
2676 	}
2677 
2678 	if (__predict_false(mbuf->m_next != NULL &&
2679 	    (mbuf->m_pkthdr.csum_flags &
2680 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2681 		if (M_WRITABLE(mbuf) == 0) {
2682 			mtmp = m_dup(mbuf, M_NOWAIT);
2683 			m_freem(mbuf);
2684 			if (mtmp == NULL) {
2685 				tx->drv_error++;
2686 				*mbufp = NULL;
2687 				return (ENOBUFS);
2688 			}
2689 			*mbufp = mbuf = mtmp;
2690 		}
2691 	}
2692 
2693 	/* load mbuf using dmamap of 1st descriptor */
2694 	txbuf = &tx->txbuf[tx->cpu];
2695 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2696 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2697 	    BUS_DMA_NOWAIT);
2698 	if (__predict_false(error != 0)) {
2699 #ifdef MVNETA_KTR
2700 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
2701 #endif
2702 		/* This is the only recoverable error (except EFBIG). */
2703 		if (error != ENOMEM) {
2704 			tx->drv_error++;
2705 			m_freem(mbuf);
2706 			*mbufp = NULL;
2707 			return (ENOBUFS);
2708 		}
2709 		return (error);
2710 	}
2711 
2712 	if (__predict_false(txnsegs <= 0
2713 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2714 		/* we have no enough descriptors or mbuf is broken */
2715 #ifdef MVNETA_KTR
2716 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2717 		    ifp->if_xname, q, txnsegs);
2718 #endif
2719 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2720 		return (ENOBUFS);
2721 	}
2722 	DASSERT(txbuf->m == NULL);
2723 
2724 	/* remember mbuf using 1st descriptor */
2725 	txbuf->m = mbuf;
2726 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2727 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2728 
2729 	/* load to tx descriptors */
2730 	start = tx->cpu;
2731 	used = 0;
2732 	for (i = 0; i < txnsegs; i++) {
2733 		t = &tx->desc[tx->cpu];
2734 		t->command = 0;
2735 		t->l4ichk = 0;
2736 		t->flags = 0;
2737 		if (__predict_true(i == 0)) {
2738 			/* 1st descriptor */
2739 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2740 			t->command |= MVNETA_TX_CMD_F;
2741 			mvneta_tx_set_csumflag(ifp, t, mbuf);
2742 		}
2743 		t->bufptr_pa = txsegs[i].ds_addr;
2744 		t->bytecnt = txsegs[i].ds_len;
2745 		tx->cpu = tx_counter_adv(tx->cpu, 1);
2746 
2747 		tx->used++;
2748 		used++;
2749 	}
2750 	/* t is last descriptor here */
2751 	DASSERT(t != NULL);
2752 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2753 
2754 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2755 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2756 
2757 	while (__predict_false(used > 255)) {
2758 		ptxsu = MVNETA_PTXSU_NOWD(255);
2759 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2760 		used -= 255;
2761 	}
2762 	if (__predict_true(used > 0)) {
2763 		ptxsu = MVNETA_PTXSU_NOWD(used);
2764 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2765 	}
2766 	return (0);
2767 }
2768 
2769 STATIC void
2770 mvneta_tx_set_csumflag(struct ifnet *ifp,
2771     struct mvneta_tx_desc *t, struct mbuf *m)
2772 {
2773 	struct ether_header *eh;
2774 	int csum_flags;
2775 	uint32_t iphl, ipoff;
2776 	struct ip *ip;
2777 
2778 	iphl = ipoff = 0;
2779 	csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
2780 	eh = mtod(m, struct ether_header *);
2781 	switch (ntohs(eh->ether_type)) {
2782 	case ETHERTYPE_IP:
2783 		ipoff = ETHER_HDR_LEN;
2784 		break;
2785 	case ETHERTYPE_IPV6:
2786 		return;
2787 	case ETHERTYPE_VLAN:
2788 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2789 		break;
2790 	}
2791 
2792 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2793 		ip = (struct ip *)(m->m_data + ipoff);
2794 		iphl = ip->ip_hl<<2;
2795 		t->command |= MVNETA_TX_CMD_L3_IP4;
2796 	} else {
2797 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2798 		return;
2799 	}
2800 
2801 
2802 	/* L3 */
2803 	if (csum_flags & CSUM_IP) {
2804 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2805 	}
2806 
2807 	/* L4 */
2808 	if (csum_flags & CSUM_IP_TCP) {
2809 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2810 		t->command |= MVNETA_TX_CMD_L4_TCP;
2811 	} else if (csum_flags & CSUM_IP_UDP) {
2812 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2813 		t->command |= MVNETA_TX_CMD_L4_UDP;
2814 	} else
2815 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2816 
2817 	t->l4ichk = 0;
2818 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2819 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2820 }
2821 
2822 STATIC void
2823 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2824 {
2825 	struct mvneta_tx_ring *tx;
2826 	struct mvneta_buf *txbuf;
2827 	struct mvneta_tx_desc *t;
2828 	uint32_t ptxs, ptxsu, ndesc;
2829 	int i;
2830 
2831 	KASSERT_TX_MTX(sc, q);
2832 
2833 	tx = MVNETA_TX_RING(sc, q);
2834 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2835 		return;
2836 
2837 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2838 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2839 
2840 	if (__predict_false(ndesc == 0)) {
2841 		if (tx->used == 0)
2842 			tx->queue_status = MVNETA_QUEUE_IDLE;
2843 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2844 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2845 			tx->queue_hung = TRUE;
2846 		return;
2847 	}
2848 
2849 #ifdef MVNETA_KTR
2850 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2851 	    sc->ifp->if_xname, q, ndesc);
2852 #endif
2853 
2854 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2855 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2856 
2857 	for (i = 0; i < ndesc; i++) {
2858 		t = &tx->desc[tx->dma];
2859 #ifdef MVNETA_KTR
2860 		if (t->flags & MVNETA_TX_F_ES)
2861 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2862 			    sc->ifp->if_xname, q, tx->dma);
2863 #endif
2864 		txbuf = &tx->txbuf[tx->dma];
2865 		if (__predict_true(txbuf->m != NULL)) {
2866 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2867 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2868 			m_freem(txbuf->m);
2869 			txbuf->m = NULL;
2870 		}
2871 		else
2872 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2873 		tx->dma = tx_counter_adv(tx->dma, 1);
2874 		tx->used--;
2875 	}
2876 	DASSERT(tx->used >= 0);
2877 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2878 	while (__predict_false(ndesc > 255)) {
2879 		ptxsu = MVNETA_PTXSU_NORB(255);
2880 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2881 		ndesc -= 255;
2882 	}
2883 	if (__predict_true(ndesc > 0)) {
2884 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2885 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2886 	}
2887 #ifdef MVNETA_KTR
2888 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2889 	    sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
2890 #endif
2891 
2892 	tx->watchdog_time = ticks;
2893 
2894 	if (tx->used == 0)
2895 		tx->queue_status = MVNETA_QUEUE_IDLE;
2896 }
2897 
2898 /*
2899  * Do a final TX complete when TX is idle.
2900  */
2901 STATIC void
2902 mvneta_tx_drain(struct mvneta_softc *sc)
2903 {
2904 	struct mvneta_tx_ring *tx;
2905 	int q;
2906 
2907 	/*
2908 	 * Handle trailing mbuf on TX queue.
2909 	 * Check is done lockess to avoid TX path contention.
2910 	 */
2911 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2912 		tx = MVNETA_TX_RING(sc, q);
2913 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2914 		    tx->used > 0) {
2915 			mvneta_tx_lockq(sc, q);
2916 			mvneta_tx_queue_complete(sc, q);
2917 			mvneta_tx_unlockq(sc, q);
2918 		}
2919 	}
2920 }
2921 
2922 /*
2923  * Rx Subroutines
2924  */
2925 STATIC int
2926 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2927 {
2928 	uint32_t prxs, npkt;
2929 	int more;
2930 
2931 	more = 0;
2932 	mvneta_rx_lockq(sc, q);
2933 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2934 	npkt = MVNETA_PRXS_GET_ODC(prxs);
2935 	if (__predict_false(npkt == 0))
2936 		goto out;
2937 
2938 	if (count > 0 && npkt > count) {
2939 		more = 1;
2940 		npkt = count;
2941 	}
2942 	mvneta_rx_queue(sc, q, npkt);
2943 out:
2944 	mvneta_rx_unlockq(sc, q);
2945 	return more;
2946 }
2947 
2948 /*
2949  * Helper routine for updating PRXSU register of a given queue.
2950  * Handles number of processed descriptors bigger than maximum acceptable value.
2951  */
2952 STATIC __inline void
2953 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
2954 {
2955 	uint32_t prxsu;
2956 
2957 	while (__predict_false(processed > 255)) {
2958 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2959 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2960 		processed -= 255;
2961 	}
2962 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
2963 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2964 }
2965 
2966 static __inline void
2967 mvneta_prefetch(void *p)
2968 {
2969 
2970 	__builtin_prefetch(p);
2971 }
2972 
2973 STATIC void
2974 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
2975 {
2976 	struct ifnet *ifp;
2977 	struct mvneta_rx_ring *rx;
2978 	struct mvneta_rx_desc *r;
2979 	struct mvneta_buf *rxbuf;
2980 	struct mbuf *m;
2981 	struct lro_ctrl *lro;
2982 	struct lro_entry *queued;
2983 	void *pktbuf;
2984 	int i, pktlen, processed, ndma;
2985 
2986 	KASSERT_RX_MTX(sc, q);
2987 
2988 	ifp = sc->ifp;
2989 	rx = MVNETA_RX_RING(sc, q);
2990 	processed = 0;
2991 
2992 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
2993 		return;
2994 
2995 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
2996 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2997 
2998 	for (i = 0; i < npkt; i++) {
2999 		/* Prefetch next desc, rxbuf. */
3000 		ndma = rx_counter_adv(rx->dma, 1);
3001 		mvneta_prefetch(&rx->desc[ndma]);
3002 		mvneta_prefetch(&rx->rxbuf[ndma]);
3003 
3004 		/* get descriptor and packet */
3005 		r = &rx->desc[rx->dma];
3006 		rxbuf = &rx->rxbuf[rx->dma];
3007 		m = rxbuf->m;
3008 		rxbuf->m = NULL;
3009 		DASSERT(m != NULL);
3010 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3011 		    BUS_DMASYNC_POSTREAD);
3012 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3013 		/* Prefetch mbuf header. */
3014 		mvneta_prefetch(m);
3015 
3016 		processed++;
3017 		/* Drop desc with error status or not in a single buffer. */
3018 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3019 		    (MVNETA_RX_F|MVNETA_RX_L));
3020 		if (__predict_false((r->status & MVNETA_RX_ES) ||
3021 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3022 		    (MVNETA_RX_F|MVNETA_RX_L)))
3023 			goto rx_error;
3024 
3025 		/*
3026 		 * [ OFF | MH | PKT | CRC ]
3027 		 * bytecnt cover MH, PKT, CRC
3028 		 */
3029 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3030 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3031                     MVNETA_HWHEADER_SIZE;
3032 
3033 		/* Prefetch mbuf data. */
3034 		mvneta_prefetch(pktbuf);
3035 
3036 		/* Write value to mbuf (avoid read). */
3037 		m->m_data = pktbuf;
3038 		m->m_len = m->m_pkthdr.len = pktlen;
3039 		m->m_pkthdr.rcvif = ifp;
3040 		mvneta_rx_set_csumflag(ifp, r, m);
3041 
3042 		/* Increase rx_dma before releasing the lock. */
3043 		rx->dma = ndma;
3044 
3045 		if (__predict_false(rx->lro_enabled &&
3046 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3047 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3048 		    (m->m_pkthdr.csum_flags &
3049 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3050 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3051 			if (rx->lro.lro_cnt != 0) {
3052 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3053 					goto rx_done;
3054 			}
3055 		}
3056 
3057 		mvneta_rx_unlockq(sc, q);
3058 		(*ifp->if_input)(ifp, m);
3059 		mvneta_rx_lockq(sc, q);
3060 		/*
3061 		 * Check whether this queue has been disabled in the
3062 		 * meantime. If yes, then clear LRO and exit.
3063 		 */
3064 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3065 			goto rx_lro;
3066 rx_done:
3067 		/* Refresh receive ring to avoid stall and minimize jitter. */
3068 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3069 			mvneta_prxsu_update(sc, q, processed);
3070 			mvneta_rx_queue_refill(sc, q);
3071 			processed = 0;
3072 		}
3073 		continue;
3074 rx_error:
3075 		m_freem(m);
3076 		rx->dma = ndma;
3077 		/* Refresh receive ring to avoid stall and minimize jitter. */
3078 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3079 			mvneta_prxsu_update(sc, q, processed);
3080 			mvneta_rx_queue_refill(sc, q);
3081 			processed = 0;
3082 		}
3083 	}
3084 #ifdef MVNETA_KTR
3085 	CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
3086 #endif
3087 	/* DMA status update */
3088 	mvneta_prxsu_update(sc, q, processed);
3089 	/* Refill the rest of buffers if there are any to refill */
3090 	mvneta_rx_queue_refill(sc, q);
3091 
3092 rx_lro:
3093 	/*
3094 	 * Flush any outstanding LRO work
3095 	 */
3096 	lro = &rx->lro;
3097 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3098 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3099 		tcp_lro_flush(lro, queued);
3100 	}
3101 }
3102 
3103 STATIC void
3104 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3105 {
3106 
3107 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3108 	/* This will remove all data at once */
3109 	m_freem(rxbuf->m);
3110 }
3111 
3112 STATIC void
3113 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3114 {
3115 	struct mvneta_rx_ring *rx;
3116 	struct mvneta_rx_desc *r;
3117 	struct mvneta_buf *rxbuf;
3118 	bus_dma_segment_t segs;
3119 	struct mbuf *m;
3120 	uint32_t prxs, prxsu, ndesc;
3121 	int npkt, refill, nsegs, error;
3122 
3123 	KASSERT_RX_MTX(sc, q);
3124 
3125 	rx = MVNETA_RX_RING(sc, q);
3126 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3127 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3128 	refill = MVNETA_RX_RING_CNT - ndesc;
3129 #ifdef MVNETA_KTR
3130 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
3131 	    refill);
3132 #endif
3133 	if (__predict_false(refill <= 0))
3134 		return;
3135 
3136 	for (npkt = 0; npkt < refill; npkt++) {
3137 		rxbuf = &rx->rxbuf[rx->cpu];
3138 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3139 		if (__predict_false(m == NULL)) {
3140 			error = ENOBUFS;
3141 			break;
3142 		}
3143 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3144 
3145 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3146 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3147 		if (__predict_false(error != 0 || nsegs != 1)) {
3148 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3149 			m_freem(m);
3150 			break;
3151 		}
3152 
3153 		/* Add the packet to the ring */
3154 		rxbuf->m = m;
3155 		r = &rx->desc[rx->cpu];
3156 		r->bufptr_pa = segs.ds_addr;
3157 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3158 
3159 		rx->cpu = rx_counter_adv(rx->cpu, 1);
3160 	}
3161 	if (npkt == 0) {
3162 		if (refill == MVNETA_RX_RING_CNT)
3163 			rx->needs_refill = TRUE;
3164 		return;
3165 	}
3166 
3167 	rx->needs_refill = FALSE;
3168 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3169 
3170 	while (__predict_false(npkt > 255)) {
3171 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3172 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3173 		npkt -= 255;
3174 	}
3175 	if (__predict_true(npkt > 0)) {
3176 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3177 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3178 	}
3179 }
3180 
3181 STATIC __inline void
3182 mvneta_rx_set_csumflag(struct ifnet *ifp,
3183     struct mvneta_rx_desc *r, struct mbuf *m)
3184 {
3185 	uint32_t csum_flags;
3186 
3187 	csum_flags = 0;
3188 	if (__predict_false((r->status &
3189 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3190 		return; /* not a IP packet */
3191 
3192 	/* L3 */
3193 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3194 	    MVNETA_RX_IP_HEADER_OK))
3195 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3196 
3197 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3198 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3199 		/* L4 */
3200 		switch (r->status & MVNETA_RX_L4_MASK) {
3201 		case MVNETA_RX_L4_TCP:
3202 		case MVNETA_RX_L4_UDP:
3203 			csum_flags |= CSUM_L4_CALC;
3204 			if (__predict_true((r->status &
3205 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3206 				csum_flags |= CSUM_L4_VALID;
3207 				m->m_pkthdr.csum_data = htons(0xffff);
3208 			}
3209 			break;
3210 		case MVNETA_RX_L4_OTH:
3211 		default:
3212 			break;
3213 		}
3214 	}
3215 	m->m_pkthdr.csum_flags = csum_flags;
3216 }
3217 
3218 /*
3219  * MAC address filter
3220  */
3221 STATIC void
3222 mvneta_filter_setup(struct mvneta_softc *sc)
3223 {
3224 	struct ifnet *ifp;
3225 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3226 	uint32_t pxc;
3227 	int i;
3228 
3229 	KASSERT_SC_MTX(sc);
3230 
3231 	memset(dfut, 0, sizeof(dfut));
3232 	memset(dfsmt, 0, sizeof(dfsmt));
3233 	memset(dfomt, 0, sizeof(dfomt));
3234 
3235 	ifp = sc->ifp;
3236 	ifp->if_flags |= IFF_ALLMULTI;
3237 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
3238 		for (i = 0; i < MVNETA_NDFSMT; i++) {
3239 			dfsmt[i] = dfomt[i] =
3240 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3241 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3242 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3243 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3244 		}
3245 	}
3246 
3247 	pxc = MVNETA_READ(sc, MVNETA_PXC);
3248 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3249 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3250 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3251 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3252 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3253 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3254 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3255 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3256 	if (ifp->if_flags & IFF_BROADCAST) {
3257 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3258 	}
3259 	if (ifp->if_flags & IFF_PROMISC) {
3260 		pxc |= MVNETA_PXC_UPM;
3261 	}
3262 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3263 
3264 	/* Set Destination Address Filter Unicast Table */
3265 	if (ifp->if_flags & IFF_PROMISC) {
3266 		/* pass all unicast addresses */
3267 		for (i = 0; i < MVNETA_NDFUT; i++) {
3268 			dfut[i] =
3269 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3270 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3271 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3272 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3273 		}
3274 	} else {
3275 		i = sc->enaddr[5] & 0xf;		/* last nibble */
3276 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3277 	}
3278 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3279 
3280 	/* Set Destination Address Filter Multicast Tables */
3281 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3282 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3283 }
3284 
3285 /*
3286  * sysctl(9)
3287  */
3288 STATIC int
3289 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3290 {
3291 	struct mvneta_sysctl_mib *arg;
3292 	struct mvneta_softc *sc;
3293 	uint64_t val;
3294 
3295 	arg = (struct mvneta_sysctl_mib *)arg1;
3296 	if (arg == NULL)
3297 		return (EINVAL);
3298 
3299 	sc = arg->sc;
3300 	if (sc == NULL)
3301 		return (EINVAL);
3302 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3303 		return (EINVAL);
3304 
3305 	mvneta_sc_lock(sc);
3306 	val = arg->counter;
3307 	mvneta_sc_unlock(sc);
3308 	return sysctl_handle_64(oidp, &val, 0, req);
3309 }
3310 
3311 
3312 STATIC int
3313 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3314 {
3315 	struct mvneta_softc *sc;
3316 	int err, val;
3317 
3318 	val = 0;
3319 	sc = (struct mvneta_softc *)arg1;
3320 	if (sc == NULL)
3321 		return (EINVAL);
3322 
3323 	err = sysctl_handle_int(oidp, &val, 0, req);
3324 	if (err != 0)
3325 		return (err);
3326 
3327 	if (val < 0 || val > 1)
3328 		return (EINVAL);
3329 
3330 	if (val == 1) {
3331 		mvneta_sc_lock(sc);
3332 		mvneta_clear_mib(sc);
3333 		mvneta_sc_unlock(sc);
3334 	}
3335 
3336 	return (0);
3337 }
3338 
3339 STATIC int
3340 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3341 {
3342 	struct mvneta_sysctl_queue *arg;
3343 	struct mvneta_rx_ring *rx;
3344 	struct mvneta_softc *sc;
3345 	uint32_t reg, time_mvtclk;
3346 	int err, time_us;
3347 
3348 	rx = NULL;
3349 	arg = (struct mvneta_sysctl_queue *)arg1;
3350 	if (arg == NULL)
3351 		return (EINVAL);
3352 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3353 		return (EINVAL);
3354 	if (arg->rxtx != MVNETA_SYSCTL_RX)
3355 		return (EINVAL);
3356 
3357 	sc = arg->sc;
3358 	if (sc == NULL)
3359 		return (EINVAL);
3360 
3361 	/* read queue length */
3362 	mvneta_sc_lock(sc);
3363 	mvneta_rx_lockq(sc, arg->queue);
3364 	rx = MVNETA_RX_RING(sc, arg->queue);
3365 	time_mvtclk = rx->queue_th_time;
3366 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvneta_get_clk();
3367 	mvneta_rx_unlockq(sc, arg->queue);
3368 	mvneta_sc_unlock(sc);
3369 
3370 	err = sysctl_handle_int(oidp, &time_us, 0, req);
3371 	if (err != 0)
3372 		return (err);
3373 
3374 	mvneta_sc_lock(sc);
3375 	mvneta_rx_lockq(sc, arg->queue);
3376 
3377 	/* update queue length (0[sec] - 1[sec]) */
3378 	if (time_us < 0 || time_us > (1000 * 1000)) {
3379 		mvneta_rx_unlockq(sc, arg->queue);
3380 		mvneta_sc_unlock(sc);
3381 		return (EINVAL);
3382 	}
3383 	time_mvtclk =
3384 	    (uint64_t)mvneta_get_clk() * (uint64_t)time_us / (1000ULL * 1000ULL);
3385 	rx->queue_th_time = time_mvtclk;
3386 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3387 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3388 	mvneta_rx_unlockq(sc, arg->queue);
3389 	mvneta_sc_unlock(sc);
3390 
3391 	return (0);
3392 }
3393 
3394 STATIC void
3395 sysctl_mvneta_init(struct mvneta_softc *sc)
3396 {
3397 	struct sysctl_ctx_list *ctx;
3398 	struct sysctl_oid_list *children;
3399 	struct sysctl_oid_list *rxchildren;
3400 	struct sysctl_oid_list *qchildren, *mchildren;
3401 	struct sysctl_oid *tree;
3402 	int i, q;
3403 	struct mvneta_sysctl_queue *rxarg;
3404 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
3405 	static const char *sysctl_queue_names[] = {
3406 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3407 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3408 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3409 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3410 	};
3411 #undef MVNETA_SYSCTL_NAME
3412 
3413 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3414 	static const char *sysctl_queue_descrs[] = {
3415 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3416 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3417 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3418 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3419 	};
3420 #undef MVNETA_SYSCTL_DESCR
3421 
3422 
3423 	ctx = device_get_sysctl_ctx(sc->dev);
3424 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3425 
3426 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3427 	    CTLFLAG_RD, 0, "NETA RX");
3428 	rxchildren = SYSCTL_CHILDREN(tree);
3429 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3430 	    CTLFLAG_RD, 0, "NETA MIB");
3431 	mchildren = SYSCTL_CHILDREN(tree);
3432 
3433 
3434 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3435 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3436 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3437 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3438 
3439 	/*
3440 	 * MIB access
3441 	 */
3442 	/* dev.mvneta.[unit].mib.<mibs> */
3443 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3444 		const char *name = mvneta_mib_list[i].sysctl_name;
3445 		const char *desc = mvneta_mib_list[i].desc;
3446 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3447 
3448 		mib_arg->sc = sc;
3449 		mib_arg->index = i;
3450 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, name,
3451 		    CTLTYPE_U64|CTLFLAG_RD, (void *)mib_arg, 0,
3452 		    sysctl_read_mib, "I", desc);
3453 	}
3454 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3455 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3456 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3457 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3458 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3459 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3460 
3461 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3462 	    CTLTYPE_INT|CTLFLAG_RW, (void *)sc, 0,
3463 	    sysctl_clear_mib, "I", "Reset MIB counters");
3464 
3465 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3466 		rxarg = &sc->sysctl_rx_queue[q];
3467 
3468 		rxarg->sc = sc;
3469 		rxarg->queue = q;
3470 		rxarg->rxtx = MVNETA_SYSCTL_RX;
3471 
3472 		/* hw.mvneta.mvneta[unit].rx.[queue] */
3473 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3474 		    sysctl_queue_names[q], CTLFLAG_RD, 0,
3475 		    sysctl_queue_descrs[q]);
3476 		qchildren = SYSCTL_CHILDREN(tree);
3477 
3478 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3479 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3480 		    CTLTYPE_UINT | CTLFLAG_RW, rxarg, 0,
3481 		    sysctl_set_queue_rxthtime, "I",
3482 		    "interrupt coalescing threshold timer [us]");
3483 	}
3484 }
3485 
3486 /*
3487  * MIB
3488  */
3489 STATIC void
3490 mvneta_clear_mib(struct mvneta_softc *sc)
3491 {
3492 	int i;
3493 
3494 	KASSERT_SC_MTX(sc);
3495 
3496 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3497 		if (mvneta_mib_list[i].reg64)
3498 			MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
3499 		else
3500 			MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
3501 		sc->sysctl_mib[i].counter = 0;
3502 	}
3503 	MVNETA_READ(sc, MVNETA_PDFC);
3504 	sc->counter_pdfc = 0;
3505 	MVNETA_READ(sc, MVNETA_POFC);
3506 	sc->counter_pofc = 0;
3507 	sc->counter_watchdog = 0;
3508 }
3509 
3510 STATIC void
3511 mvneta_update_mib(struct mvneta_softc *sc)
3512 {
3513 	struct mvneta_tx_ring *tx;
3514 	int i;
3515 	uint64_t val;
3516 	uint32_t reg;
3517 
3518 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3519 
3520 		if (mvneta_mib_list[i].reg64)
3521 			val = MVNETA_READ_MIB_8(sc, mvneta_mib_list[i].regnum);
3522 		else
3523 			val = MVNETA_READ_MIB_4(sc, mvneta_mib_list[i].regnum);
3524 
3525 		if (val == 0)
3526 			continue;
3527 
3528 		sc->sysctl_mib[i].counter += val;
3529 		switch (mvneta_mib_list[i].regnum) {
3530 			case MVNETA_MIB_RX_GOOD_OCT:
3531 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3532 				break;
3533 			case MVNETA_MIB_RX_BAD_FRAME:
3534 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3535 				break;
3536 			case MVNETA_MIB_RX_GOOD_FRAME:
3537 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3538 				break;
3539 			case MVNETA_MIB_RX_MCAST_FRAME:
3540 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3541 				break;
3542 			case MVNETA_MIB_TX_GOOD_OCT:
3543 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3544 				break;
3545 			case MVNETA_MIB_TX_GOOD_FRAME:
3546 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3547 				break;
3548 			case MVNETA_MIB_TX_MCAST_FRAME:
3549 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3550 				break;
3551 			case MVNETA_MIB_MAC_COL:
3552 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3553 				break;
3554 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3555 			case MVNETA_MIB_TX_EXCES_COL:
3556 			case MVNETA_MIB_MAC_LATE_COL:
3557 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3558 				break;
3559 		}
3560 	}
3561 
3562 	reg = MVNETA_READ(sc, MVNETA_PDFC);
3563 	sc->counter_pdfc += reg;
3564 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3565 	reg = MVNETA_READ(sc, MVNETA_POFC);
3566 	sc->counter_pofc += reg;
3567 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3568 
3569 	/* TX watchdog. */
3570 	if (sc->counter_watchdog_mib > 0) {
3571 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3572 		sc->counter_watchdog_mib = 0;
3573 	}
3574 	/*
3575 	 * TX driver errors:
3576 	 * We do not take queue locks to not disrupt TX path.
3577 	 * We may only miss one drv error which will be fixed at
3578 	 * next mib update. We may also clear counter when TX path
3579 	 * is incrementing it but we only do it if counter was not zero
3580 	 * thus we may only loose one error.
3581 	 */
3582 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3583 		tx = MVNETA_TX_RING(sc, i);
3584 
3585 		if (tx->drv_error > 0) {
3586 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3587 			tx->drv_error = 0;
3588 		}
3589 	}
3590 }
3591