xref: /freebsd/sys/dev/neta/if_mvneta.c (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 /*
2  * Copyright (c) 2017 Stormshield.
3  * Copyright (c) 2017 Semihalf.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/endian.h>
35 #include <sys/mbuf.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/smp.h>
43 #include <sys/taskqueue.h>
44 #ifdef MVNETA_KTR
45 #include <sys/ktr.h>
46 #endif
47 
48 #include <net/ethernet.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp_lro.h>
61 
62 #include <sys/sockio.h>
63 #include <sys/bus.h>
64 #include <machine/bus.h>
65 #include <sys/rman.h>
66 #include <machine/resource.h>
67 
68 #if defined(__aarch64__)
69 #include <dev/extres/clk/clk.h>
70 #endif
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/mdio/mdio.h>
76 
77 #include <arm/mv/mvvar.h>
78 
79 #if !defined(__aarch64__)
80 #include <arm/mv/mvreg.h>
81 #include <arm/mv/mvwin.h>
82 #endif
83 
84 #include "if_mvnetareg.h"
85 #include "if_mvnetavar.h"
86 
87 #include "miibus_if.h"
88 #include "mdio_if.h"
89 
90 #ifdef MVNETA_DEBUG
91 #define	STATIC /* nothing */
92 #else
93 #define	STATIC static
94 #endif
95 
96 #define	DASSERT(x) KASSERT((x), (#x))
97 
98 #define	A3700_TCLK_250MHZ		250000000
99 
100 /* Device Register Initialization */
101 STATIC int mvneta_initreg(struct ifnet *);
102 
103 /* Descriptor Ring Control for each of queues */
104 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
105 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
106 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
107 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
108 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
109 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
110 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
111 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
112 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 STATIC int mvneta_dma_create(struct mvneta_softc *);
114 
115 /* Rx/Tx Queue Control */
116 STATIC int mvneta_rx_queue_init(struct ifnet *, int);
117 STATIC int mvneta_tx_queue_init(struct ifnet *, int);
118 STATIC int mvneta_rx_queue_enable(struct ifnet *, int);
119 STATIC int mvneta_tx_queue_enable(struct ifnet *, int);
120 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
121 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
122 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
123 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
124 
125 /* Interrupt Handlers */
126 STATIC void mvneta_disable_intr(struct mvneta_softc *);
127 STATIC void mvneta_enable_intr(struct mvneta_softc *);
128 STATIC void mvneta_rxtxth_intr(void *);
129 STATIC int mvneta_misc_intr(struct mvneta_softc *);
130 STATIC void mvneta_tick(void *);
131 /* struct ifnet and mii callbacks*/
132 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
133 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
134 #ifdef MVNETA_MULTIQUEUE
135 STATIC int mvneta_transmit(struct ifnet *, struct mbuf *);
136 #else /* !MVNETA_MULTIQUEUE */
137 STATIC void mvneta_start(struct ifnet *);
138 #endif
139 STATIC void mvneta_qflush(struct ifnet *);
140 STATIC void mvneta_tx_task(void *, int);
141 STATIC int mvneta_ioctl(struct ifnet *, u_long, caddr_t);
142 STATIC void mvneta_init(void *);
143 STATIC void mvneta_init_locked(void *);
144 STATIC void mvneta_stop(struct mvneta_softc *);
145 STATIC void mvneta_stop_locked(struct mvneta_softc *);
146 STATIC int mvneta_mediachange(struct ifnet *);
147 STATIC void mvneta_mediastatus(struct ifnet *, struct ifmediareq *);
148 STATIC void mvneta_portup(struct mvneta_softc *);
149 STATIC void mvneta_portdown(struct mvneta_softc *);
150 
151 /* Link State Notify */
152 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
153 STATIC int mvneta_update_media(struct mvneta_softc *, int);
154 STATIC void mvneta_adjust_link(struct mvneta_softc *);
155 STATIC void mvneta_update_eee(struct mvneta_softc *);
156 STATIC void mvneta_update_fc(struct mvneta_softc *);
157 STATIC void mvneta_link_isr(struct mvneta_softc *);
158 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
159 STATIC void mvneta_linkup(struct mvneta_softc *);
160 STATIC void mvneta_linkdown(struct mvneta_softc *);
161 STATIC void mvneta_linkreset(struct mvneta_softc *);
162 
163 /* Tx Subroutines */
164 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
165 STATIC void mvneta_tx_set_csumflag(struct ifnet *,
166     struct mvneta_tx_desc *, struct mbuf *);
167 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
168 STATIC void mvneta_tx_drain(struct mvneta_softc *);
169 
170 /* Rx Subroutines */
171 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
172 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
173 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
174 STATIC void mvneta_rx_set_csumflag(struct ifnet *,
175     struct mvneta_rx_desc *, struct mbuf *);
176 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
177 
178 /* MAC address filter */
179 STATIC void mvneta_filter_setup(struct mvneta_softc *);
180 
181 /* sysctl(9) */
182 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
183 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
184 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
185 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
186 
187 /* MIB */
188 STATIC void mvneta_clear_mib(struct mvneta_softc *);
189 STATIC uint64_t mvneta_read_mib(struct mvneta_softc *, int);
190 STATIC void mvneta_update_mib(struct mvneta_softc *);
191 
192 /* Switch */
193 STATIC boolean_t mvneta_has_switch(device_t);
194 
195 #define	mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
196 #define	mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
197 
198 STATIC struct mtx mii_mutex;
199 STATIC int mii_init = 0;
200 
201 /* Device */
202 STATIC int mvneta_detach(device_t);
203 /* MII */
204 STATIC int mvneta_miibus_readreg(device_t, int, int);
205 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
206 
207 static device_method_t mvneta_methods[] = {
208 	/* Device interface */
209 	DEVMETHOD(device_detach,	mvneta_detach),
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,       mvneta_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,      mvneta_miibus_writereg),
213 	/* MDIO interface */
214 	DEVMETHOD(mdio_readreg,		mvneta_miibus_readreg),
215 	DEVMETHOD(mdio_writereg,	mvneta_miibus_writereg),
216 
217 	/* End */
218 	DEVMETHOD_END
219 };
220 
221 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
222 
223 DRIVER_MODULE(miibus, mvneta, miibus_driver, 0, 0);
224 DRIVER_MODULE(mdio, mvneta, mdio_driver, 0, 0);
225 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
226 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
227 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
228 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
229 
230 /*
231  * List of MIB register and names
232  */
233 enum mvneta_mib_idx
234 {
235 	MVNETA_MIB_RX_GOOD_OCT_IDX,
236 	MVNETA_MIB_RX_BAD_OCT_IDX,
237 	MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
238 	MVNETA_MIB_RX_GOOD_FRAME_IDX,
239 	MVNETA_MIB_RX_BAD_FRAME_IDX,
240 	MVNETA_MIB_RX_BCAST_FRAME_IDX,
241 	MVNETA_MIB_RX_MCAST_FRAME_IDX,
242 	MVNETA_MIB_RX_FRAME64_OCT_IDX,
243 	MVNETA_MIB_RX_FRAME127_OCT_IDX,
244 	MVNETA_MIB_RX_FRAME255_OCT_IDX,
245 	MVNETA_MIB_RX_FRAME511_OCT_IDX,
246 	MVNETA_MIB_RX_FRAME1023_OCT_IDX,
247 	MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
248 	MVNETA_MIB_TX_GOOD_OCT_IDX,
249 	MVNETA_MIB_TX_GOOD_FRAME_IDX,
250 	MVNETA_MIB_TX_EXCES_COL_IDX,
251 	MVNETA_MIB_TX_MCAST_FRAME_IDX,
252 	MVNETA_MIB_TX_BCAST_FRAME_IDX,
253 	MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
254 	MVNETA_MIB_FC_SENT_IDX,
255 	MVNETA_MIB_FC_GOOD_IDX,
256 	MVNETA_MIB_FC_BAD_IDX,
257 	MVNETA_MIB_PKT_UNDERSIZE_IDX,
258 	MVNETA_MIB_PKT_FRAGMENT_IDX,
259 	MVNETA_MIB_PKT_OVERSIZE_IDX,
260 	MVNETA_MIB_PKT_JABBER_IDX,
261 	MVNETA_MIB_MAC_RX_ERR_IDX,
262 	MVNETA_MIB_MAC_CRC_ERR_IDX,
263 	MVNETA_MIB_MAC_COL_IDX,
264 	MVNETA_MIB_MAC_LATE_COL_IDX,
265 };
266 
267 STATIC struct mvneta_mib_def {
268 	uint32_t regnum;
269 	int reg64;
270 	const char *sysctl_name;
271 	const char *desc;
272 } mvneta_mib_list[] = {
273 	[MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
274 	    "rx_good_oct", "Good Octets Rx"},
275 	[MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
276 	    "rx_bad_oct", "Bad  Octets Rx"},
277 	[MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
278 	    "tx_mac_err", "MAC Transmit Error"},
279 	[MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
280 	    "rx_good_frame", "Good Frames Rx"},
281 	[MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
282 	    "rx_bad_frame", "Bad Frames Rx"},
283 	[MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
284 	    "rx_bcast_frame", "Broadcast Frames Rx"},
285 	[MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
286 	    "rx_mcast_frame", "Multicast Frames Rx"},
287 	[MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
288 	    "rx_frame_1_64", "Frame Size    1 -   64"},
289 	[MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
290 	    "rx_frame_65_127", "Frame Size   65 -  127"},
291 	[MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
292 	    "rx_frame_128_255", "Frame Size  128 -  255"},
293 	[MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
294 	    "rx_frame_256_511", "Frame Size  256 -  511"},
295 	[MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
296 	    "rx_frame_512_1023", "Frame Size  512 - 1023"},
297 	[MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
298 	    "rx_fame_1024_max", "Frame Size 1024 -  Max"},
299 	[MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
300 	    "tx_good_oct", "Good Octets Tx"},
301 	[MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
302 	    "tx_good_frame", "Good Frames Tx"},
303 	[MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
304 	    "tx_exces_collision", "Excessive Collision"},
305 	[MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
306 	    "tx_mcast_frame", "Multicast Frames Tx"},
307 	[MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
308 	    "tx_bcast_frame", "Broadcast Frames Tx"},
309 	[MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
310 	    "tx_mac_ctl_err", "Unknown MAC Control"},
311 	[MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
312 	    "fc_tx", "Flow Control Tx"},
313 	[MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
314 	    "fc_rx_good", "Good Flow Control Rx"},
315 	[MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
316 	    "fc_rx_bad", "Bad Flow Control Rx"},
317 	[MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
318 	    "pkt_undersize", "Undersized Packets Rx"},
319 	[MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
320 	    "pkt_fragment", "Fragmented Packets Rx"},
321 	[MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
322 	    "pkt_oversize", "Oversized Packets Rx"},
323 	[MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
324 	    "pkt_jabber", "Jabber Packets Rx"},
325 	[MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
326 	    "mac_rx_err", "MAC Rx Errors"},
327 	[MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
328 	    "mac_crc_err", "MAC CRC Errors"},
329 	[MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
330 	    "mac_collision", "MAC Collision"},
331 	[MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
332 	    "mac_late_collision", "MAC Late Collision"},
333 };
334 
335 static struct resource_spec res_spec[] = {
336 	{ SYS_RES_MEMORY, 0, RF_ACTIVE },
337 	{ SYS_RES_IRQ, 0, RF_ACTIVE },
338 	{ -1, 0}
339 };
340 
341 static struct {
342 	driver_intr_t *handler;
343 	char * description;
344 } mvneta_intrs[] = {
345 	{ mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
346 };
347 
348 static int
349 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
350 {
351 	unsigned int mac_h;
352 	unsigned int mac_l;
353 
354 	mac_l = (addr[4] << 8) | (addr[5]);
355 	mac_h = (addr[0] << 24) | (addr[1] << 16) |
356 	    (addr[2] << 8) | (addr[3] << 0);
357 
358 	MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
359 	MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
360 	return (0);
361 }
362 
363 static int
364 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
365 {
366 	uint32_t mac_l, mac_h;
367 
368 #ifdef FDT
369 	if (mvneta_fdt_mac_address(sc, addr) == 0)
370 		return (0);
371 #endif
372 	/*
373 	 * Fall back -- use the currently programmed address.
374 	 */
375 	mac_l = MVNETA_READ(sc, MVNETA_MACAL);
376 	mac_h = MVNETA_READ(sc, MVNETA_MACAH);
377 	if (mac_l == 0 && mac_h == 0) {
378 		/*
379 		 * Generate pseudo-random MAC.
380 		 * Set lower part to random number | unit number.
381 		 */
382 		mac_l = arc4random() & ~0xff;
383 		mac_l |= device_get_unit(sc->dev) & 0xff;
384 		mac_h = arc4random();
385 		mac_h &= ~(3 << 24);	/* Clear multicast and LAA bits */
386 		if (bootverbose) {
387 			device_printf(sc->dev,
388 			    "Could not acquire MAC address. "
389 			    "Using randomized one.\n");
390 		}
391 	}
392 
393 	addr[0] = (mac_h & 0xff000000) >> 24;
394 	addr[1] = (mac_h & 0x00ff0000) >> 16;
395 	addr[2] = (mac_h & 0x0000ff00) >> 8;
396 	addr[3] = (mac_h & 0x000000ff);
397 	addr[4] = (mac_l & 0x0000ff00) >> 8;
398 	addr[5] = (mac_l & 0x000000ff);
399 	return (0);
400 }
401 
402 STATIC boolean_t
403 mvneta_has_switch(device_t self)
404 {
405 #ifdef FDT
406 	return (mvneta_has_switch_fdt(self));
407 #endif
408 
409 	return (false);
410 }
411 
412 STATIC int
413 mvneta_dma_create(struct mvneta_softc *sc)
414 {
415 	size_t maxsize, maxsegsz;
416 	size_t q;
417 	int error;
418 
419 	/*
420 	 * Create Tx DMA
421 	 */
422 	maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
423 
424 	error = bus_dma_tag_create(
425 	    bus_get_dma_tag(sc->dev),		/* parent */
426 	    16, 0,                              /* alignment, boundary */
427 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
428 	    BUS_SPACE_MAXADDR,                  /* highaddr */
429 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
430 	    maxsize,				/* maxsize */
431 	    1,					/* nsegments */
432 	    maxsegsz,				/* maxsegsz */
433 	    0,					/* flags */
434 	    NULL, NULL,				/* lockfunc, lockfuncarg */
435 	    &sc->tx_dtag);			/* dmat */
436 	if (error != 0) {
437 		device_printf(sc->dev,
438 		    "Failed to create DMA tag for Tx descriptors.\n");
439 		goto fail;
440 	}
441 	error = bus_dma_tag_create(
442 	    bus_get_dma_tag(sc->dev),		/* parent */
443 	    1, 0,				/* alignment, boundary */
444 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
445 	    BUS_SPACE_MAXADDR,			/* highaddr */
446 	    NULL, NULL,				/* filtfunc, filtfuncarg */
447 	    MVNETA_MAX_FRAME,			/* maxsize */
448 	    MVNETA_TX_SEGLIMIT,			/* nsegments */
449 	    MVNETA_MAX_FRAME,			/* maxsegsz */
450 	    BUS_DMA_ALLOCNOW,			/* flags */
451 	    NULL, NULL,				/* lockfunc, lockfuncarg */
452 	    &sc->txmbuf_dtag);
453 	if (error != 0) {
454 		device_printf(sc->dev,
455 		    "Failed to create DMA tag for Tx mbufs.\n");
456 		goto fail;
457 	}
458 
459 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
460 		error = mvneta_ring_alloc_tx_queue(sc, q);
461 		if (error != 0) {
462 			device_printf(sc->dev,
463 			    "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
464 			goto fail;
465 		}
466 	}
467 
468 	/*
469 	 * Create Rx DMA.
470 	 */
471 	/* Create tag for Rx descripors */
472 	error = bus_dma_tag_create(
473 	    bus_get_dma_tag(sc->dev),		/* parent */
474 	    32, 0,                              /* alignment, boundary */
475 	    BUS_SPACE_MAXADDR_32BIT,            /* lowaddr */
476 	    BUS_SPACE_MAXADDR,                  /* highaddr */
477 	    NULL, NULL,                         /* filtfunc, filtfuncarg */
478 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
479 	    1,					/* nsegments */
480 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
481 	    0,					/* flags */
482 	    NULL, NULL,				/* lockfunc, lockfuncarg */
483 	    &sc->rx_dtag);			/* dmat */
484 	if (error != 0) {
485 		device_printf(sc->dev,
486 		    "Failed to create DMA tag for Rx descriptors.\n");
487 		goto fail;
488 	}
489 
490 	/* Create tag for Rx buffers */
491 	error = bus_dma_tag_create(
492 	    bus_get_dma_tag(sc->dev),		/* parent */
493 	    32, 0,				/* alignment, boundary */
494 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
495 	    BUS_SPACE_MAXADDR,			/* highaddr */
496 	    NULL, NULL,				/* filtfunc, filtfuncarg */
497 	    MVNETA_MAX_FRAME, 1,		/* maxsize, nsegments */
498 	    MVNETA_MAX_FRAME,			/* maxsegsz */
499 	    0,					/* flags */
500 	    NULL, NULL,				/* lockfunc, lockfuncarg */
501 	    &sc->rxbuf_dtag);			/* dmat */
502 	if (error != 0) {
503 		device_printf(sc->dev,
504 		    "Failed to create DMA tag for Rx buffers.\n");
505 		goto fail;
506 	}
507 
508 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
509 		if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
510 			device_printf(sc->dev,
511 			    "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
512 			goto fail;
513 		}
514 	}
515 
516 	return (0);
517 fail:
518 	mvneta_detach(sc->dev);
519 
520 	return (error);
521 }
522 
523 /* ARGSUSED */
524 int
525 mvneta_attach(device_t self)
526 {
527 	struct mvneta_softc *sc;
528 	struct ifnet *ifp;
529 	device_t child;
530 	int ifm_target;
531 	int q, error;
532 #if !defined(__aarch64__)
533 	uint32_t reg;
534 #endif
535 #if defined(__aarch64__)
536 	clk_t clk;
537 #endif
538 	sc = device_get_softc(self);
539 	sc->dev = self;
540 
541 	mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
542 
543 	error = bus_alloc_resources(self, res_spec, sc->res);
544 	if (error) {
545 		device_printf(self, "could not allocate resources\n");
546 		return (ENXIO);
547 	}
548 
549 	sc->version = MVNETA_READ(sc, MVNETA_PV);
550 	device_printf(self, "version is %x\n", sc->version);
551 	callout_init(&sc->tick_ch, 0);
552 
553 	/*
554 	 * make sure DMA engines are in reset state
555 	 */
556 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
557 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
558 
559 #if defined(__aarch64__)
560 	error = clk_get_by_ofw_index(sc->dev, ofw_bus_get_node(sc->dev), 0,
561 	    &clk);
562 	if (error != 0) {
563 		device_printf(sc->dev,
564 			"Cannot get clock, using default frequency: %d\n",
565 			A3700_TCLK_250MHZ);
566 		sc->clk_freq = A3700_TCLK_250MHZ;
567 	} else {
568 		error = clk_get_freq(clk, &sc->clk_freq);
569 		if (error != 0) {
570 			device_printf(sc->dev,
571 				"Cannot obtain frequency from parent clock\n");
572 			bus_release_resources(sc->dev, res_spec, sc->res);
573 			return (error);
574 		}
575 	}
576 #else
577 	sc->clk_freq = get_tclk();
578 #endif
579 
580 #if !defined(__aarch64__)
581 	/*
582 	 * Disable port snoop for buffers and descriptors
583 	 * to avoid L2 caching of both without DRAM copy.
584 	 * Obtain coherency settings from the first MBUS
585 	 * window attribute.
586 	 */
587 	if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
588 		reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
589 		reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
590 		reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
591 		MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
592 	}
593 #endif
594 
595 	error = bus_setup_intr(self, sc->res[1],
596 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
597 	    &sc->ih_cookie[0]);
598 	if (error) {
599 		device_printf(self, "could not setup %s\n",
600 		    mvneta_intrs[0].description);
601 		mvneta_detach(self);
602 		return (error);
603 	}
604 
605 	/*
606 	 * MAC address
607 	 */
608 	if (mvneta_get_mac_address(sc, sc->enaddr)) {
609 		device_printf(self, "no mac address.\n");
610 		return (ENXIO);
611 	}
612 	mvneta_set_mac_address(sc, sc->enaddr);
613 
614 	mvneta_disable_intr(sc);
615 
616 	/* Allocate network interface */
617 	ifp = sc->ifp = if_alloc(IFT_ETHER);
618 	if (ifp == NULL) {
619 		device_printf(self, "if_alloc() failed\n");
620 		mvneta_detach(self);
621 		return (ENOMEM);
622 	}
623 	if_initname(ifp, device_get_name(self), device_get_unit(self));
624 
625 	/*
626 	 * We can support 802.1Q VLAN-sized frames and jumbo
627 	 * Ethernet frames.
628 	 */
629 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU;
630 
631 	ifp->if_softc = sc;
632 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
633 #ifdef MVNETA_MULTIQUEUE
634 	ifp->if_transmit = mvneta_transmit;
635 	ifp->if_qflush = mvneta_qflush;
636 #else /* !MVNETA_MULTIQUEUE */
637 	ifp->if_start = mvneta_start;
638 	ifp->if_snd.ifq_drv_maxlen = MVNETA_TX_RING_CNT - 1;
639 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
640 	IFQ_SET_READY(&ifp->if_snd);
641 #endif
642 	ifp->if_init = mvneta_init;
643 	ifp->if_ioctl = mvneta_ioctl;
644 
645 	/*
646 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
647 	 */
648 	ifp->if_capabilities |= IFCAP_HWCSUM;
649 
650 	/*
651 	 * As VLAN hardware tagging is not supported
652 	 * but is necessary to perform VLAN hardware checksums,
653 	 * it is done in the driver
654 	 */
655 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
656 
657 	/*
658 	 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
659 	 */
660 	ifp->if_capabilities &= ~IFCAP_HWCSUM_IPV6;
661 	ifp->if_capenable = ifp->if_capabilities;
662 
663 	/*
664 	 * Disabled option(s):
665 	 * - Support for Large Receive Offload
666 	 */
667 	ifp->if_capabilities |= IFCAP_LRO;
668 
669 	ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
670 
671 	sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */
672 
673 	/*
674 	 * Device DMA Buffer allocation.
675 	 * Handles resource deallocation in case of failure.
676 	 */
677 	error = mvneta_dma_create(sc);
678 	if (error != 0) {
679 		mvneta_detach(self);
680 		return (error);
681 	}
682 
683 	/* Initialize queues */
684 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
685 		error = mvneta_ring_init_tx_queue(sc, q);
686 		if (error != 0) {
687 			mvneta_detach(self);
688 			return (error);
689 		}
690 	}
691 
692 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
693 		error = mvneta_ring_init_rx_queue(sc, q);
694 		if (error != 0) {
695 			mvneta_detach(self);
696 			return (error);
697 		}
698 	}
699 
700 	/*
701 	 * Enable DMA engines and Initialize Device Registers.
702 	 */
703 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
704 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
705 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
706 	mvneta_sc_lock(sc);
707 	mvneta_filter_setup(sc);
708 	mvneta_sc_unlock(sc);
709 	mvneta_initreg(ifp);
710 
711 	/*
712 	 * Now MAC is working, setup MII.
713 	 */
714 	if (mii_init == 0) {
715 		/*
716 		 * MII bus is shared by all MACs and all PHYs in SoC.
717 		 * serializing the bus access should be safe.
718 		 */
719 		mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
720 		mii_init = 1;
721 	}
722 
723 	/* Attach PHY(s) */
724 	if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
725 		error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
726 		    mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
727 		    MII_OFFSET_ANY, 0);
728 		if (error != 0) {
729 			device_printf(self, "MII attach failed, error: %d\n",
730 			    error);
731 			ether_ifdetach(sc->ifp);
732 			mvneta_detach(self);
733 			return (error);
734 		}
735 		sc->mii = device_get_softc(sc->miibus);
736 		sc->phy_attached = 1;
737 
738 		/* Disable auto-negotiation in MAC - rely on PHY layer */
739 		mvneta_update_autoneg(sc, FALSE);
740 	} else if (sc->use_inband_status == TRUE) {
741 		/* In-band link status */
742 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
743 		    mvneta_mediastatus);
744 
745 		/* Configure media */
746 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
747 		    0, NULL);
748 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
749 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
750 		    0, NULL);
751 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
752 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
753 		    0, NULL);
754 		ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
755 		ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
756 
757 		/* Enable auto-negotiation */
758 		mvneta_update_autoneg(sc, TRUE);
759 
760 		mvneta_sc_lock(sc);
761 		if (MVNETA_IS_LINKUP(sc))
762 			mvneta_linkup(sc);
763 		else
764 			mvneta_linkdown(sc);
765 		mvneta_sc_unlock(sc);
766 
767 	} else {
768 		/* Fixed-link, use predefined values */
769 		mvneta_update_autoneg(sc, FALSE);
770 		ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
771 		    mvneta_mediastatus);
772 
773 		ifm_target = IFM_ETHER;
774 		switch (sc->phy_speed) {
775 		case 2500:
776 			if (sc->phy_mode != MVNETA_PHY_SGMII &&
777 			    sc->phy_mode != MVNETA_PHY_QSGMII) {
778 				device_printf(self,
779 				    "2.5G speed can work only in (Q)SGMII mode\n");
780 				ether_ifdetach(sc->ifp);
781 				mvneta_detach(self);
782 				return (ENXIO);
783 			}
784 			ifm_target |= IFM_2500_T;
785 			break;
786 		case 1000:
787 			ifm_target |= IFM_1000_T;
788 			break;
789 		case 100:
790 			ifm_target |= IFM_100_TX;
791 			break;
792 		case 10:
793 			ifm_target |= IFM_10_T;
794 			break;
795 		default:
796 			ether_ifdetach(sc->ifp);
797 			mvneta_detach(self);
798 			return (ENXIO);
799 		}
800 
801 		if (sc->phy_fdx)
802 			ifm_target |= IFM_FDX;
803 		else
804 			ifm_target |= IFM_HDX;
805 
806 		ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
807 		ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
808 		if_link_state_change(sc->ifp, LINK_STATE_UP);
809 
810 		if (mvneta_has_switch(self)) {
811 			if (bootverbose)
812 				device_printf(self, "This device is attached to a switch\n");
813 			child = device_add_child(sc->dev, "mdio", -1);
814 			if (child == NULL) {
815 				ether_ifdetach(sc->ifp);
816 				mvneta_detach(self);
817 				return (ENXIO);
818 			}
819 			bus_generic_attach(sc->dev);
820 			bus_generic_attach(child);
821 		}
822 
823 		/* Configure MAC media */
824 		mvneta_update_media(sc, ifm_target);
825 	}
826 
827 	ether_ifattach(ifp, sc->enaddr);
828 
829 	callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
830 
831 	sysctl_mvneta_init(sc);
832 
833 	return (0);
834 }
835 
836 STATIC int
837 mvneta_detach(device_t dev)
838 {
839 	struct mvneta_softc *sc;
840 	int q;
841 
842 	sc = device_get_softc(dev);
843 
844 	if (device_is_attached(dev)) {
845 		mvneta_stop(sc);
846 		callout_drain(&sc->tick_ch);
847 		ether_ifdetach(sc->ifp);
848 	}
849 
850 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
851 		mvneta_ring_dealloc_rx_queue(sc, q);
852 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
853 		mvneta_ring_dealloc_tx_queue(sc, q);
854 
855 	device_delete_children(dev);
856 
857 	if (sc->ih_cookie[0] != NULL)
858 		bus_teardown_intr(dev, sc->res[1], sc->ih_cookie[0]);
859 
860 	if (sc->tx_dtag != NULL)
861 		bus_dma_tag_destroy(sc->tx_dtag);
862 	if (sc->rx_dtag != NULL)
863 		bus_dma_tag_destroy(sc->rx_dtag);
864 	if (sc->txmbuf_dtag != NULL)
865 		bus_dma_tag_destroy(sc->txmbuf_dtag);
866 	if (sc->rxbuf_dtag != NULL)
867 		bus_dma_tag_destroy(sc->rxbuf_dtag);
868 
869 	bus_release_resources(dev, res_spec, sc->res);
870 
871 	if (sc->ifp)
872 		if_free(sc->ifp);
873 
874 	if (mtx_initialized(&sc->mtx))
875 		mtx_destroy(&sc->mtx);
876 
877 	return (0);
878 }
879 
880 /*
881  * MII
882  */
883 STATIC int
884 mvneta_miibus_readreg(device_t dev, int phy, int reg)
885 {
886 	struct mvneta_softc *sc;
887 	struct ifnet *ifp;
888 	uint32_t smi, val;
889 	int i;
890 
891 	sc = device_get_softc(dev);
892 	ifp = sc->ifp;
893 
894 	mtx_lock(&mii_mutex);
895 
896 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
897 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
898 			break;
899 		DELAY(1);
900 	}
901 	if (i == MVNETA_PHY_TIMEOUT) {
902 		if_printf(ifp, "SMI busy timeout\n");
903 		mtx_unlock(&mii_mutex);
904 		return (-1);
905 	}
906 
907 	smi = MVNETA_SMI_PHYAD(phy) |
908 	    MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
909 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
910 
911 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
912 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
913 			break;
914 		DELAY(1);
915 	}
916 
917 	if (i == MVNETA_PHY_TIMEOUT) {
918 		if_printf(ifp, "SMI busy timeout\n");
919 		mtx_unlock(&mii_mutex);
920 		return (-1);
921 	}
922 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
923 		smi = MVNETA_READ(sc, MVNETA_SMI);
924 		if (smi & MVNETA_SMI_READVALID)
925 			break;
926 		DELAY(1);
927 	}
928 
929 	if (i == MVNETA_PHY_TIMEOUT) {
930 		if_printf(ifp, "SMI busy timeout\n");
931 		mtx_unlock(&mii_mutex);
932 		return (-1);
933 	}
934 
935 	mtx_unlock(&mii_mutex);
936 
937 #ifdef MVNETA_KTR
938 	CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", ifp->if_xname, i,
939 	    MVNETA_PHY_TIMEOUT);
940 #endif
941 
942 	val = smi & MVNETA_SMI_DATA_MASK;
943 
944 #ifdef MVNETA_KTR
945 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname, phy,
946 	    reg, val);
947 #endif
948 	return (val);
949 }
950 
951 STATIC int
952 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
953 {
954 	struct mvneta_softc *sc;
955 	struct ifnet *ifp;
956 	uint32_t smi;
957 	int i;
958 
959 	sc = device_get_softc(dev);
960 	ifp = sc->ifp;
961 #ifdef MVNETA_KTR
962 	CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", ifp->if_xname,
963 	    phy, reg, val);
964 #endif
965 
966 	mtx_lock(&mii_mutex);
967 
968 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
969 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
970 			break;
971 		DELAY(1);
972 	}
973 	if (i == MVNETA_PHY_TIMEOUT) {
974 		if_printf(ifp, "SMI busy timeout\n");
975 		mtx_unlock(&mii_mutex);
976 		return (0);
977 	}
978 
979 	smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
980 	    MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
981 	MVNETA_WRITE(sc, MVNETA_SMI, smi);
982 
983 	for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
984 		if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
985 			break;
986 		DELAY(1);
987 	}
988 
989 	mtx_unlock(&mii_mutex);
990 
991 	if (i == MVNETA_PHY_TIMEOUT)
992 		if_printf(ifp, "phy write timed out\n");
993 
994 	return (0);
995 }
996 
997 STATIC void
998 mvneta_portup(struct mvneta_softc *sc)
999 {
1000 	int q;
1001 
1002 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1003 		mvneta_rx_lockq(sc, q);
1004 		mvneta_rx_queue_enable(sc->ifp, q);
1005 		mvneta_rx_unlockq(sc, q);
1006 	}
1007 
1008 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1009 		mvneta_tx_lockq(sc, q);
1010 		mvneta_tx_queue_enable(sc->ifp, q);
1011 		mvneta_tx_unlockq(sc, q);
1012 	}
1013 
1014 }
1015 
1016 STATIC void
1017 mvneta_portdown(struct mvneta_softc *sc)
1018 {
1019 	struct mvneta_rx_ring *rx;
1020 	struct mvneta_tx_ring *tx;
1021 	int q, cnt;
1022 	uint32_t reg;
1023 
1024 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1025 		rx = MVNETA_RX_RING(sc, q);
1026 		mvneta_rx_lockq(sc, q);
1027 		rx->queue_status = MVNETA_QUEUE_DISABLED;
1028 		mvneta_rx_unlockq(sc, q);
1029 	}
1030 
1031 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1032 		tx = MVNETA_TX_RING(sc, q);
1033 		mvneta_tx_lockq(sc, q);
1034 		tx->queue_status = MVNETA_QUEUE_DISABLED;
1035 		mvneta_tx_unlockq(sc, q);
1036 	}
1037 
1038 	/* Wait for all Rx activity to terminate. */
1039 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1040 	reg = MVNETA_RQC_DIS(reg);
1041 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1042 	cnt = 0;
1043 	do {
1044 		if (cnt >= RX_DISABLE_TIMEOUT) {
1045 			if_printf(sc->ifp,
1046 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1047 			break;
1048 		}
1049 		cnt++;
1050 		reg = MVNETA_READ(sc, MVNETA_RQC);
1051 	} while ((reg & MVNETA_RQC_EN_MASK) != 0);
1052 
1053 	/* Wait for all Tx activity to terminate. */
1054 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1055 	reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1056 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1057 
1058 	reg  = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1059 	reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1060 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1061 
1062 	reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1063 	reg = MVNETA_TQC_DIS(reg);
1064 	MVNETA_WRITE(sc, MVNETA_TQC, reg);
1065 	cnt = 0;
1066 	do {
1067 		if (cnt >= TX_DISABLE_TIMEOUT) {
1068 			if_printf(sc->ifp,
1069 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1070 			break;
1071 		}
1072 		cnt++;
1073 		reg = MVNETA_READ(sc, MVNETA_TQC);
1074 	} while ((reg & MVNETA_TQC_EN_MASK) != 0);
1075 
1076 	/* Wait for all Tx FIFO is empty */
1077 	cnt = 0;
1078 	do {
1079 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1080 			if_printf(sc->ifp,
1081 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1082 			break;
1083 		}
1084 		cnt++;
1085 		reg = MVNETA_READ(sc, MVNETA_PS0);
1086 	} while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1087 	    ((reg & MVNETA_PS0_TXINPROG) != 0));
1088 }
1089 
1090 /*
1091  * Device Register Initialization
1092  *  reset device registers to device driver default value.
1093  *  the device is not enabled here.
1094  */
1095 STATIC int
1096 mvneta_initreg(struct ifnet *ifp)
1097 {
1098 	struct mvneta_softc *sc;
1099 	int q;
1100 	uint32_t reg;
1101 
1102 	sc = ifp->if_softc;
1103 #ifdef MVNETA_KTR
1104 	CTR1(KTR_SPARE2, "%s initializing device register", ifp->if_xname);
1105 #endif
1106 
1107 	/* Disable Legacy WRR, Disable EJP, Release from reset. */
1108 	MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1109 	/* Enable mbus retry. */
1110 	MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1111 
1112 	/* Init TX/RX Queue Registers */
1113 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1114 		mvneta_rx_lockq(sc, q);
1115 		if (mvneta_rx_queue_init(ifp, q) != 0) {
1116 			device_printf(sc->dev,
1117 			    "initialization failed: cannot initialize queue\n");
1118 			mvneta_rx_unlockq(sc, q);
1119 			return (ENOBUFS);
1120 		}
1121 		mvneta_rx_unlockq(sc, q);
1122 	}
1123 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1124 		mvneta_tx_lockq(sc, q);
1125 		if (mvneta_tx_queue_init(ifp, q) != 0) {
1126 			device_printf(sc->dev,
1127 			    "initialization failed: cannot initialize queue\n");
1128 			mvneta_tx_unlockq(sc, q);
1129 			return (ENOBUFS);
1130 		}
1131 		mvneta_tx_unlockq(sc, q);
1132 	}
1133 
1134 	/*
1135 	 * Ethernet Unit Control - disable automatic PHY management by HW.
1136 	 * In case the port uses SMI-controlled PHY, poll its status with
1137 	 * mii_tick() and update MAC settings accordingly.
1138 	 */
1139 	reg = MVNETA_READ(sc, MVNETA_EUC);
1140 	reg &= ~MVNETA_EUC_POLLING;
1141 	MVNETA_WRITE(sc, MVNETA_EUC, reg);
1142 
1143 	/* EEE: Low Power Idle */
1144 	reg  = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1145 	reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1146 	MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1147 
1148 	reg  = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1149 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1150 
1151 	reg = MVNETA_LPIC2_MUSTSET;
1152 	MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1153 
1154 	/* Port MAC Control set 0 */
1155 	reg  = MVNETA_PMACC0_MUSTSET;	/* must write 0x1 */
1156 	reg &= ~MVNETA_PMACC0_PORTEN;	/* port is still disabled */
1157 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
1158 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1159 
1160 	/* Port MAC Control set 2 */
1161 	reg = MVNETA_READ(sc, MVNETA_PMACC2);
1162 	switch (sc->phy_mode) {
1163 	case MVNETA_PHY_QSGMII:
1164 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1165 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1166 		break;
1167 	case MVNETA_PHY_SGMII:
1168 		reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1169 		MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1170 		break;
1171 	case MVNETA_PHY_RGMII:
1172 	case MVNETA_PHY_RGMII_ID:
1173 		reg |= MVNETA_PMACC2_RGMIIEN;
1174 		break;
1175 	}
1176 	reg |= MVNETA_PMACC2_MUSTSET;
1177 	reg &= ~MVNETA_PMACC2_PORTMACRESET;
1178 	MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1179 
1180 	/* Port Configuration Extended: enable Tx CRC generation */
1181 	reg = MVNETA_READ(sc, MVNETA_PXCX);
1182 	reg &= ~MVNETA_PXCX_TXCRCDIS;
1183 	MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1184 
1185 	/* clear MIB counter registers(clear by read) */
1186 	mvneta_sc_lock(sc);
1187 	mvneta_clear_mib(sc);
1188 	mvneta_sc_unlock(sc);
1189 
1190 	/* Set SDC register except IPGINT bits */
1191 	reg  = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1192 	reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1193 	reg |= MVNETA_SDC_BLMR;
1194 	reg |= MVNETA_SDC_BLMT;
1195 	MVNETA_WRITE(sc, MVNETA_SDC, reg);
1196 
1197 	return (0);
1198 }
1199 
1200 STATIC void
1201 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1202 {
1203 
1204 	if (error != 0)
1205 		return;
1206 	*(bus_addr_t *)arg = segs->ds_addr;
1207 }
1208 
1209 STATIC int
1210 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1211 {
1212 	struct mvneta_rx_ring *rx;
1213 	struct mvneta_buf *rxbuf;
1214 	bus_dmamap_t dmap;
1215 	int i, error;
1216 
1217 	if (q >= MVNETA_RX_QNUM_MAX)
1218 		return (EINVAL);
1219 
1220 	rx = MVNETA_RX_RING(sc, q);
1221 	mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1222 	/* Allocate DMA memory for Rx descriptors */
1223 	error = bus_dmamem_alloc(sc->rx_dtag,
1224 	    (void**)&(rx->desc),
1225 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1226 	    &rx->desc_map);
1227 	if (error != 0 || rx->desc == NULL)
1228 		goto fail;
1229 	error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1230 	    rx->desc,
1231 	    sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1232 	    mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1233 	if (error != 0)
1234 		goto fail;
1235 
1236 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1237 		error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1238 		if (error != 0) {
1239 			device_printf(sc->dev,
1240 			    "Failed to create DMA map for Rx buffer num: %d\n", i);
1241 			goto fail;
1242 		}
1243 		rxbuf = &rx->rxbuf[i];
1244 		rxbuf->dmap = dmap;
1245 		rxbuf->m = NULL;
1246 	}
1247 
1248 	return (0);
1249 fail:
1250 	mvneta_rx_lockq(sc, q);
1251 	mvneta_ring_flush_rx_queue(sc, q);
1252 	mvneta_rx_unlockq(sc, q);
1253 	mvneta_ring_dealloc_rx_queue(sc, q);
1254 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1255 	return (error);
1256 }
1257 
1258 STATIC int
1259 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1260 {
1261 	struct mvneta_tx_ring *tx;
1262 	int error;
1263 
1264 	if (q >= MVNETA_TX_QNUM_MAX)
1265 		return (EINVAL);
1266 	tx = MVNETA_TX_RING(sc, q);
1267 	mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1268 	error = bus_dmamem_alloc(sc->tx_dtag,
1269 	    (void**)&(tx->desc),
1270 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1271 	    &tx->desc_map);
1272 	if (error != 0 || tx->desc == NULL)
1273 		goto fail;
1274 	error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1275 	    tx->desc,
1276 	    sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1277 	    mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1278 	if (error != 0)
1279 		goto fail;
1280 
1281 #ifdef MVNETA_MULTIQUEUE
1282 	tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1283 	    &tx->ring_mtx);
1284 	if (tx->br == NULL) {
1285 		device_printf(sc->dev,
1286 		    "Could not setup buffer ring for TxQ(%d)\n", q);
1287 		error = ENOMEM;
1288 		goto fail;
1289 	}
1290 #endif
1291 
1292 	return (0);
1293 fail:
1294 	mvneta_tx_lockq(sc, q);
1295 	mvneta_ring_flush_tx_queue(sc, q);
1296 	mvneta_tx_unlockq(sc, q);
1297 	mvneta_ring_dealloc_tx_queue(sc, q);
1298 	device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1299 	return (error);
1300 }
1301 
1302 STATIC void
1303 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1304 {
1305 	struct mvneta_tx_ring *tx;
1306 	struct mvneta_buf *txbuf;
1307 	void *kva;
1308 	int error;
1309 	int i;
1310 
1311 	if (q >= MVNETA_TX_QNUM_MAX)
1312 		return;
1313 	tx = MVNETA_TX_RING(sc, q);
1314 
1315 	if (tx->taskq != NULL) {
1316 		/* Remove task */
1317 		while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1318 			taskqueue_drain(tx->taskq, &tx->task);
1319 	}
1320 #ifdef MVNETA_MULTIQUEUE
1321 	if (tx->br != NULL)
1322 		drbr_free(tx->br, M_DEVBUF);
1323 #endif
1324 
1325 	if (sc->txmbuf_dtag != NULL) {
1326 		for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1327 			txbuf = &tx->txbuf[i];
1328 			if (txbuf->dmap != NULL) {
1329 				error = bus_dmamap_destroy(sc->txmbuf_dtag,
1330 				    txbuf->dmap);
1331 				if (error != 0) {
1332 					panic("%s: map busy for Tx descriptor (Q%d, %d)",
1333 					    __func__, q, i);
1334 				}
1335 			}
1336 		}
1337 	}
1338 
1339 	if (tx->desc_pa != 0)
1340 		bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1341 
1342 	kva = (void *)tx->desc;
1343 	if (kva != NULL)
1344 		bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1345 
1346 	if (mtx_name(&tx->ring_mtx) != NULL)
1347 		mtx_destroy(&tx->ring_mtx);
1348 
1349 	memset(tx, 0, sizeof(*tx));
1350 }
1351 
1352 STATIC void
1353 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1354 {
1355 	struct mvneta_rx_ring *rx;
1356 	struct lro_ctrl	*lro;
1357 	void *kva;
1358 
1359 	if (q >= MVNETA_RX_QNUM_MAX)
1360 		return;
1361 
1362 	rx = MVNETA_RX_RING(sc, q);
1363 
1364 	if (rx->desc_pa != 0)
1365 		bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1366 
1367 	kva = (void *)rx->desc;
1368 	if (kva != NULL)
1369 		bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1370 
1371 	lro = &rx->lro;
1372 	tcp_lro_free(lro);
1373 
1374 	if (mtx_name(&rx->ring_mtx) != NULL)
1375 		mtx_destroy(&rx->ring_mtx);
1376 
1377 	memset(rx, 0, sizeof(*rx));
1378 }
1379 
1380 STATIC int
1381 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1382 {
1383 	struct mvneta_rx_ring *rx;
1384 	struct lro_ctrl	*lro;
1385 	int error;
1386 
1387 	if (q >= MVNETA_RX_QNUM_MAX)
1388 		return (0);
1389 
1390 	rx = MVNETA_RX_RING(sc, q);
1391 	rx->dma = rx->cpu = 0;
1392 	rx->queue_th_received = MVNETA_RXTH_COUNT;
1393 	rx->queue_th_time = (sc->clk_freq / 1000) / 10; /* 0.1 [ms] */
1394 
1395 	/* Initialize LRO */
1396 	rx->lro_enabled = FALSE;
1397 	if ((sc->ifp->if_capenable & IFCAP_LRO) != 0) {
1398 		lro = &rx->lro;
1399 		error = tcp_lro_init(lro);
1400 		if (error != 0)
1401 			device_printf(sc->dev, "LRO Initialization failed!\n");
1402 		else {
1403 			rx->lro_enabled = TRUE;
1404 			lro->ifp = sc->ifp;
1405 		}
1406 	}
1407 
1408 	return (0);
1409 }
1410 
1411 STATIC int
1412 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1413 {
1414 	struct mvneta_tx_ring *tx;
1415 	struct mvneta_buf *txbuf;
1416 	int i, error;
1417 
1418 	if (q >= MVNETA_TX_QNUM_MAX)
1419 		return (0);
1420 
1421 	tx = MVNETA_TX_RING(sc, q);
1422 
1423 	/* Tx handle */
1424 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1425 		txbuf = &tx->txbuf[i];
1426 		txbuf->m = NULL;
1427 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1428 		error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1429 		    &txbuf->dmap);
1430 		if (error != 0) {
1431 			device_printf(sc->dev,
1432 			    "can't create dma map (tx ring %d)\n", i);
1433 			return (error);
1434 		}
1435 	}
1436 	tx->dma = tx->cpu = 0;
1437 	tx->used = 0;
1438 	tx->drv_error = 0;
1439 	tx->queue_status = MVNETA_QUEUE_DISABLED;
1440 	tx->queue_hung = FALSE;
1441 
1442 	tx->ifp = sc->ifp;
1443 	tx->qidx = q;
1444 	TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1445 	tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1446 	    taskqueue_thread_enqueue, &tx->taskq);
1447 	taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1448 	    device_get_nameunit(sc->dev), q);
1449 
1450 	return (0);
1451 }
1452 
1453 STATIC void
1454 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1455 {
1456 	struct mvneta_tx_ring *tx;
1457 	struct mvneta_buf *txbuf;
1458 	int i;
1459 
1460 	tx = MVNETA_TX_RING(sc, q);
1461 	KASSERT_TX_MTX(sc, q);
1462 
1463 	/* Tx handle */
1464 	for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1465 		txbuf = &tx->txbuf[i];
1466 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1467 		if (txbuf->m != NULL) {
1468 			m_freem(txbuf->m);
1469 			txbuf->m = NULL;
1470 		}
1471 	}
1472 	tx->dma = tx->cpu = 0;
1473 	tx->used = 0;
1474 }
1475 
1476 STATIC void
1477 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1478 {
1479 	struct mvneta_rx_ring *rx;
1480 	struct mvneta_buf *rxbuf;
1481 	int i;
1482 
1483 	rx = MVNETA_RX_RING(sc, q);
1484 	KASSERT_RX_MTX(sc, q);
1485 
1486 	/* Rx handle */
1487 	for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1488 		rxbuf = &rx->rxbuf[i];
1489 		mvneta_rx_buf_free(sc, rxbuf);
1490 	}
1491 	rx->dma = rx->cpu = 0;
1492 }
1493 
1494 /*
1495  * Rx/Tx Queue Control
1496  */
1497 STATIC int
1498 mvneta_rx_queue_init(struct ifnet *ifp, int q)
1499 {
1500 	struct mvneta_softc *sc;
1501 	struct mvneta_rx_ring *rx;
1502 	uint32_t reg;
1503 
1504 	sc = ifp->if_softc;
1505 	KASSERT_RX_MTX(sc, q);
1506 	rx =  MVNETA_RX_RING(sc, q);
1507 	DASSERT(rx->desc_pa != 0);
1508 
1509 	/* descriptor address */
1510 	MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1511 
1512 	/* Rx buffer size and descriptor ring size */
1513 	reg  = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3);
1514 	reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1515 	MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1516 #ifdef MVNETA_KTR
1517 	CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", ifp->if_xname, q,
1518 	    MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1519 #endif
1520 	/* Rx packet offset address */
1521 	reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1522 	MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1523 #ifdef MVNETA_KTR
1524 	CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", ifp->if_xname, q,
1525 	    MVNETA_READ(sc, MVNETA_PRXC(q)));
1526 #endif
1527 
1528 	/* if DMA is not working, register is not updated */
1529 	DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1530 	return (0);
1531 }
1532 
1533 STATIC int
1534 mvneta_tx_queue_init(struct ifnet *ifp, int q)
1535 {
1536 	struct mvneta_softc *sc;
1537 	struct mvneta_tx_ring *tx;
1538 	uint32_t reg;
1539 
1540 	sc = ifp->if_softc;
1541 	KASSERT_TX_MTX(sc, q);
1542 	tx = MVNETA_TX_RING(sc, q);
1543 	DASSERT(tx->desc_pa != 0);
1544 
1545 	/* descriptor address */
1546 	MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1547 
1548 	/* descriptor ring size */
1549 	reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1550 	MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1551 
1552 	/* if DMA is not working, register is not updated */
1553 	DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1554 	return (0);
1555 }
1556 
1557 STATIC int
1558 mvneta_rx_queue_enable(struct ifnet *ifp, int q)
1559 {
1560 	struct mvneta_softc *sc;
1561 	struct mvneta_rx_ring *rx;
1562 	uint32_t reg;
1563 
1564 	sc = ifp->if_softc;
1565 	rx = MVNETA_RX_RING(sc, q);
1566 	KASSERT_RX_MTX(sc, q);
1567 
1568 	/* Set Rx interrupt threshold */
1569 	reg  = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1570 	MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1571 
1572 	reg  = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1573 	MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1574 
1575 	/* Unmask RXTX_TH Intr. */
1576 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1577 	reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1578 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1579 
1580 	/* Enable Rx queue */
1581 	reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1582 	reg |= MVNETA_RQC_ENQ(q);
1583 	MVNETA_WRITE(sc, MVNETA_RQC, reg);
1584 
1585 	rx->queue_status = MVNETA_QUEUE_WORKING;
1586 	return (0);
1587 }
1588 
1589 STATIC int
1590 mvneta_tx_queue_enable(struct ifnet *ifp, int q)
1591 {
1592 	struct mvneta_softc *sc;
1593 	struct mvneta_tx_ring *tx;
1594 
1595 	sc = ifp->if_softc;
1596 	tx = MVNETA_TX_RING(sc, q);
1597 	KASSERT_TX_MTX(sc, q);
1598 
1599 	/* Enable Tx queue */
1600 	MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1601 
1602 	tx->queue_status = MVNETA_QUEUE_IDLE;
1603 	tx->queue_hung = FALSE;
1604 	return (0);
1605 }
1606 
1607 STATIC __inline void
1608 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1609 {
1610 
1611 	DASSERT(q >= 0);
1612 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1613 	mtx_lock(&sc->rx_ring[q].ring_mtx);
1614 }
1615 
1616 STATIC __inline void
1617 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1618 {
1619 
1620 	DASSERT(q >= 0);
1621 	DASSERT(q < MVNETA_RX_QNUM_MAX);
1622 	mtx_unlock(&sc->rx_ring[q].ring_mtx);
1623 }
1624 
1625 STATIC __inline int __unused
1626 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1627 {
1628 
1629 	DASSERT(q >= 0);
1630 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1631 	return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1632 }
1633 
1634 STATIC __inline void
1635 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1636 {
1637 
1638 	DASSERT(q >= 0);
1639 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1640 	mtx_lock(&sc->tx_ring[q].ring_mtx);
1641 }
1642 
1643 STATIC __inline void
1644 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1645 {
1646 
1647 	DASSERT(q >= 0);
1648 	DASSERT(q < MVNETA_TX_QNUM_MAX);
1649 	mtx_unlock(&sc->tx_ring[q].ring_mtx);
1650 }
1651 
1652 /*
1653  * Interrupt Handlers
1654  */
1655 STATIC void
1656 mvneta_disable_intr(struct mvneta_softc *sc)
1657 {
1658 
1659 	MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1660 	MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1661 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1662 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1663 	MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1664 	MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1665 	MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1666 	MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1667 	MVNETA_WRITE(sc, MVNETA_PIE, 0);
1668 }
1669 
1670 STATIC void
1671 mvneta_enable_intr(struct mvneta_softc *sc)
1672 {
1673 	uint32_t reg;
1674 
1675 	/* Enable Summary Bit to check all interrupt cause. */
1676 	reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1677 	reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1678 	MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1679 
1680 	if (!sc->phy_attached || sc->use_inband_status) {
1681 		/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1682 		MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1683 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1684 	}
1685 
1686 	/* Enable All Queue Interrupt */
1687 	reg  = MVNETA_READ(sc, MVNETA_PIE);
1688 	reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1689 	reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1690 	MVNETA_WRITE(sc, MVNETA_PIE, reg);
1691 }
1692 
1693 STATIC void
1694 mvneta_rxtxth_intr(void *arg)
1695 {
1696 	struct mvneta_softc *sc;
1697 	struct ifnet *ifp;
1698 	uint32_t ic, queues;
1699 
1700 	sc = arg;
1701 	ifp = sc->ifp;
1702 #ifdef MVNETA_KTR
1703 	CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", ifp->if_xname);
1704 #endif
1705 	ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1706 	if (ic == 0)
1707 		return;
1708 	MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1709 
1710 	/* Ack maintenance interrupt first */
1711 	if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1712 	    (!sc->phy_attached || sc->use_inband_status))) {
1713 		mvneta_sc_lock(sc);
1714 		mvneta_misc_intr(sc);
1715 		mvneta_sc_unlock(sc);
1716 	}
1717 	if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
1718 		return;
1719 	/* RxTxTH interrupt */
1720 	queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1721 	if (__predict_true(queues)) {
1722 #ifdef MVNETA_KTR
1723 		CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", ifp->if_xname);
1724 #endif
1725 		/* At the moment the driver support only one RX queue. */
1726 		DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1727 		mvneta_rx(sc, 0, 0);
1728 	}
1729 }
1730 
1731 STATIC int
1732 mvneta_misc_intr(struct mvneta_softc *sc)
1733 {
1734 	uint32_t ic;
1735 	int claimed = 0;
1736 
1737 #ifdef MVNETA_KTR
1738 	CTR1(KTR_SPARE2, "%s got MISC_INTR", sc->ifp->if_xname);
1739 #endif
1740 	KASSERT_SC_MTX(sc);
1741 
1742 	for (;;) {
1743 		ic = MVNETA_READ(sc, MVNETA_PMIC);
1744 		ic &= MVNETA_READ(sc, MVNETA_PMIM);
1745 		if (ic == 0)
1746 			break;
1747 		MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1748 		claimed = 1;
1749 
1750 		if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1751 		    MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1752 			mvneta_link_isr(sc);
1753 	}
1754 	return (claimed);
1755 }
1756 
1757 STATIC void
1758 mvneta_tick(void *arg)
1759 {
1760 	struct mvneta_softc *sc;
1761 	struct mvneta_tx_ring *tx;
1762 	struct mvneta_rx_ring *rx;
1763 	int q;
1764 	uint32_t fc_prev, fc_curr;
1765 
1766 	sc = arg;
1767 
1768 	/*
1769 	 * This is done before mib update to get the right stats
1770 	 * for this tick.
1771 	 */
1772 	mvneta_tx_drain(sc);
1773 
1774 	/* Extract previous flow-control frame received counter. */
1775 	fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1776 	/* Read mib registers (clear by read). */
1777 	mvneta_update_mib(sc);
1778 	/* Extract current flow-control frame received counter. */
1779 	fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1780 
1781 
1782 	if (sc->phy_attached && sc->ifp->if_flags & IFF_UP) {
1783 		mvneta_sc_lock(sc);
1784 		mii_tick(sc->mii);
1785 
1786 		/* Adjust MAC settings */
1787 		mvneta_adjust_link(sc);
1788 		mvneta_sc_unlock(sc);
1789 	}
1790 
1791 	/*
1792 	 * We were unable to refill the rx queue and left the rx func, leaving
1793 	 * the ring without mbuf and no way to call the refill func.
1794 	 */
1795 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1796 		rx = MVNETA_RX_RING(sc, q);
1797 		if (rx->needs_refill == TRUE) {
1798 			mvneta_rx_lockq(sc, q);
1799 			mvneta_rx_queue_refill(sc, q);
1800 			mvneta_rx_unlockq(sc, q);
1801 		}
1802 	}
1803 
1804 	/*
1805 	 * Watchdog:
1806 	 * - check if queue is mark as hung.
1807 	 * - ignore hung status if we received some pause frame
1808 	 *   as hardware may have paused packet transmit.
1809 	 */
1810 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1811 		/*
1812 		 * We should take queue lock, but as we only read
1813 		 * queue status we can do it without lock, we may
1814 		 * only missdetect queue status for one tick.
1815 		 */
1816 		tx = MVNETA_TX_RING(sc, q);
1817 
1818 		if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1819 			goto timeout;
1820 	}
1821 
1822 	callout_schedule(&sc->tick_ch, hz);
1823 	return;
1824 
1825 timeout:
1826 	if_printf(sc->ifp, "watchdog timeout\n");
1827 
1828 	mvneta_sc_lock(sc);
1829 	sc->counter_watchdog++;
1830 	sc->counter_watchdog_mib++;
1831 	/* Trigger reinitialize sequence. */
1832 	mvneta_stop_locked(sc);
1833 	mvneta_init_locked(sc);
1834 	mvneta_sc_unlock(sc);
1835 }
1836 
1837 STATIC void
1838 mvneta_qflush(struct ifnet *ifp)
1839 {
1840 #ifdef MVNETA_MULTIQUEUE
1841 	struct mvneta_softc *sc;
1842 	struct mvneta_tx_ring *tx;
1843 	struct mbuf *m;
1844 	size_t q;
1845 
1846 	sc = ifp->if_softc;
1847 
1848 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1849 		tx = MVNETA_TX_RING(sc, q);
1850 		mvneta_tx_lockq(sc, q);
1851 		while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1852 			m_freem(m);
1853 		mvneta_tx_unlockq(sc, q);
1854 	}
1855 #endif
1856 	if_qflush(ifp);
1857 }
1858 
1859 STATIC void
1860 mvneta_tx_task(void *arg, int pending)
1861 {
1862 	struct mvneta_softc *sc;
1863 	struct mvneta_tx_ring *tx;
1864 	struct ifnet *ifp;
1865 	int error;
1866 
1867 	tx = arg;
1868 	ifp = tx->ifp;
1869 	sc = ifp->if_softc;
1870 
1871 	mvneta_tx_lockq(sc, tx->qidx);
1872 	error = mvneta_xmit_locked(sc, tx->qidx);
1873 	mvneta_tx_unlockq(sc, tx->qidx);
1874 
1875 	/* Try again */
1876 	if (__predict_false(error != 0 && error != ENETDOWN)) {
1877 		pause("mvneta_tx_task_sleep", 1);
1878 		taskqueue_enqueue(tx->taskq, &tx->task);
1879 	}
1880 }
1881 
1882 STATIC int
1883 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1884 {
1885 	struct mvneta_tx_ring *tx;
1886 	struct ifnet *ifp;
1887 	int error;
1888 
1889 	KASSERT_TX_MTX(sc, q);
1890 	tx = MVNETA_TX_RING(sc, q);
1891 	error = 0;
1892 
1893 	ifp = sc->ifp;
1894 
1895 	/* Dont enqueue packet if the queue is disabled. */
1896 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1897 		m_freem(*m);
1898 		*m = NULL;
1899 		return (ENETDOWN);
1900 	}
1901 
1902 	/* Reclaim mbuf if above threshold. */
1903 	if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1904 		mvneta_tx_queue_complete(sc, q);
1905 
1906 	/* Do not call transmit path if queue is already too full. */
1907 	if (__predict_false(tx->used >
1908 	    MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1909 		return (ENOBUFS);
1910 
1911 	error = mvneta_tx_queue(sc, m, q);
1912 	if (__predict_false(error != 0))
1913 		return (error);
1914 
1915 	/* Send a copy of the frame to the BPF listener */
1916 	ETHER_BPF_MTAP(ifp, *m);
1917 
1918 	/* Set watchdog on */
1919 	tx->watchdog_time = ticks;
1920 	tx->queue_status = MVNETA_QUEUE_WORKING;
1921 
1922 	return (error);
1923 }
1924 
1925 #ifdef MVNETA_MULTIQUEUE
1926 STATIC int
1927 mvneta_transmit(struct ifnet *ifp, struct mbuf *m)
1928 {
1929 	struct mvneta_softc *sc;
1930 	struct mvneta_tx_ring *tx;
1931 	int error;
1932 	int q;
1933 
1934 	sc = ifp->if_softc;
1935 
1936 	/* Use default queue if there is no flow id as thread can migrate. */
1937 	if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1938 		q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1939 	else
1940 		q = 0;
1941 
1942 	tx = MVNETA_TX_RING(sc, q);
1943 
1944 	/* If buf_ring is full start transmit immediately. */
1945 	if (buf_ring_full(tx->br)) {
1946 		mvneta_tx_lockq(sc, q);
1947 		mvneta_xmit_locked(sc, q);
1948 		mvneta_tx_unlockq(sc, q);
1949 	}
1950 
1951 	/*
1952 	 * If the buf_ring is empty we will not reorder packets.
1953 	 * If the lock is available transmit without using buf_ring.
1954 	 */
1955 	if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1956 		error = mvneta_xmitfast_locked(sc, q, &m);
1957 		mvneta_tx_unlockq(sc, q);
1958 		if (__predict_true(error == 0))
1959 			return (0);
1960 
1961 		/* Transmit can fail in fastpath. */
1962 		if (__predict_false(m == NULL))
1963 			return (error);
1964 	}
1965 
1966 	/* Enqueue then schedule taskqueue. */
1967 	error = drbr_enqueue(ifp, tx->br, m);
1968 	if (__predict_false(error != 0))
1969 		return (error);
1970 
1971 	taskqueue_enqueue(tx->taskq, &tx->task);
1972 	return (0);
1973 }
1974 
1975 STATIC int
1976 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1977 {
1978 	struct ifnet *ifp;
1979 	struct mvneta_tx_ring *tx;
1980 	struct mbuf *m;
1981 	int error;
1982 
1983 	KASSERT_TX_MTX(sc, q);
1984 	ifp = sc->ifp;
1985 	tx = MVNETA_TX_RING(sc, q);
1986 	error = 0;
1987 
1988 	while ((m = drbr_peek(ifp, tx->br)) != NULL) {
1989 		error = mvneta_xmitfast_locked(sc, q, &m);
1990 		if (__predict_false(error != 0)) {
1991 			if (m != NULL)
1992 				drbr_putback(ifp, tx->br, m);
1993 			else
1994 				drbr_advance(ifp, tx->br);
1995 			break;
1996 		}
1997 		drbr_advance(ifp, tx->br);
1998 	}
1999 
2000 	return (error);
2001 }
2002 #else /* !MVNETA_MULTIQUEUE */
2003 STATIC void
2004 mvneta_start(struct ifnet *ifp)
2005 {
2006 	struct mvneta_softc *sc;
2007 	struct mvneta_tx_ring *tx;
2008 	int error;
2009 
2010 	sc = ifp->if_softc;
2011 	tx = MVNETA_TX_RING(sc, 0);
2012 
2013 	mvneta_tx_lockq(sc, 0);
2014 	error = mvneta_xmit_locked(sc, 0);
2015 	mvneta_tx_unlockq(sc, 0);
2016 	/* Handle retransmit in the background taskq. */
2017 	if (__predict_false(error != 0 && error != ENETDOWN))
2018 		taskqueue_enqueue(tx->taskq, &tx->task);
2019 }
2020 
2021 STATIC int
2022 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2023 {
2024 	struct ifnet *ifp;
2025 	struct mbuf *m;
2026 	int error;
2027 
2028 	KASSERT_TX_MTX(sc, q);
2029 	ifp = sc->ifp;
2030 	error = 0;
2031 
2032 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
2033 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2034 		if (m == NULL)
2035 			break;
2036 
2037 		error = mvneta_xmitfast_locked(sc, q, &m);
2038 		if (__predict_false(error != 0)) {
2039 			if (m != NULL)
2040 				IFQ_DRV_PREPEND(&ifp->if_snd, m);
2041 			break;
2042 		}
2043 	}
2044 
2045 	return (error);
2046 }
2047 #endif
2048 
2049 STATIC int
2050 mvneta_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2051 {
2052 	struct mvneta_softc *sc;
2053 	struct mvneta_rx_ring *rx;
2054 	struct ifreq *ifr;
2055 	int error, mask;
2056 	uint32_t flags;
2057 	int q;
2058 
2059 	error = 0;
2060 	sc = ifp->if_softc;
2061 	ifr = (struct ifreq *)data;
2062 	switch (cmd) {
2063 	case SIOCSIFFLAGS:
2064 		mvneta_sc_lock(sc);
2065 		if (ifp->if_flags & IFF_UP) {
2066 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2067 				flags = ifp->if_flags ^ sc->mvneta_if_flags;
2068 
2069 				if (flags != 0)
2070 					sc->mvneta_if_flags = ifp->if_flags;
2071 
2072 				if ((flags & IFF_PROMISC) != 0)
2073 					mvneta_filter_setup(sc);
2074 			} else {
2075 				mvneta_init_locked(sc);
2076 				sc->mvneta_if_flags = ifp->if_flags;
2077 				if (sc->phy_attached)
2078 					mii_mediachg(sc->mii);
2079 				mvneta_sc_unlock(sc);
2080 				break;
2081 			}
2082 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2083 			mvneta_stop_locked(sc);
2084 
2085 		sc->mvneta_if_flags = ifp->if_flags;
2086 		mvneta_sc_unlock(sc);
2087 		break;
2088 	case SIOCSIFCAP:
2089 		if (ifp->if_mtu > sc->tx_csum_limit &&
2090 		    ifr->ifr_reqcap & IFCAP_TXCSUM)
2091 			ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2092 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2093 		if (mask & IFCAP_HWCSUM) {
2094 			ifp->if_capenable &= ~IFCAP_HWCSUM;
2095 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
2096 			if (ifp->if_capenable & IFCAP_TXCSUM)
2097 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2098 				    CSUM_UDP;
2099 			else
2100 				ifp->if_hwassist = 0;
2101 		}
2102 		if (mask & IFCAP_LRO) {
2103 			mvneta_sc_lock(sc);
2104 			ifp->if_capenable ^= IFCAP_LRO;
2105 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2106 				for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2107 					rx = MVNETA_RX_RING(sc, q);
2108 					rx->lro_enabled = !rx->lro_enabled;
2109 				}
2110 			}
2111 			mvneta_sc_unlock(sc);
2112 		}
2113 		VLAN_CAPABILITIES(ifp);
2114 		break;
2115 	case SIOCSIFMEDIA:
2116 		if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2117 		    IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2118 		    (ifr->ifr_media & IFM_FDX) == 0) {
2119 			device_printf(sc->dev,
2120 			    "%s half-duplex unsupported\n",
2121 			    IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2122 			    "1000Base-T" :
2123 			    "2500Base-T");
2124 			error = EINVAL;
2125 			break;
2126 		}
2127 	case SIOCGIFMEDIA: /* FALLTHROUGH */
2128 	case SIOCGIFXMEDIA:
2129 		if (!sc->phy_attached)
2130 			error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2131 			    cmd);
2132 		else
2133 			error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2134 			    cmd);
2135 		break;
2136 	case SIOCSIFMTU:
2137 		if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2138 		    MVNETA_ETHER_SIZE) {
2139 			error = EINVAL;
2140 		} else {
2141 			ifp->if_mtu = ifr->ifr_mtu;
2142 			mvneta_sc_lock(sc);
2143 			if (ifp->if_mtu + MVNETA_ETHER_SIZE <= MCLBYTES) {
2144 				sc->rx_frame_size = MCLBYTES;
2145 			} else {
2146 				sc->rx_frame_size = MJUM9BYTES;
2147 			}
2148 			if (ifp->if_mtu > sc->tx_csum_limit) {
2149 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2150 				ifp->if_hwassist = 0;
2151 			} else {
2152 				ifp->if_capenable |= IFCAP_TXCSUM;
2153 				ifp->if_hwassist = CSUM_IP | CSUM_TCP |
2154 					CSUM_UDP;
2155 			}
2156 			/*
2157 			 * Reinitialize RX queues.
2158 			 * We need to update RX descriptor size.
2159 			 */
2160 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2161 				mvneta_stop_locked(sc);
2162 
2163 			for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2164 				mvneta_rx_lockq(sc, q);
2165 				if (mvneta_rx_queue_init(ifp, q) != 0) {
2166 					device_printf(sc->dev,
2167 					    "initialization failed:"
2168 					    " cannot initialize queue\n");
2169 					mvneta_rx_unlockq(sc, q);
2170 					error = ENOBUFS;
2171 					break;
2172 				}
2173 				mvneta_rx_unlockq(sc, q);
2174 			}
2175 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2176 				mvneta_init_locked(sc);
2177 
2178 			mvneta_sc_unlock(sc);
2179                 }
2180                 break;
2181 
2182 	default:
2183 		error = ether_ioctl(ifp, cmd, data);
2184 		break;
2185 	}
2186 
2187 	return (error);
2188 }
2189 
2190 STATIC void
2191 mvneta_init_locked(void *arg)
2192 {
2193 	struct mvneta_softc *sc;
2194 	struct ifnet *ifp;
2195 	uint32_t reg;
2196 	int q, cpu;
2197 
2198 	sc = arg;
2199 	ifp = sc->ifp;
2200 
2201 	if (!device_is_attached(sc->dev) ||
2202 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2203 		return;
2204 
2205 	mvneta_disable_intr(sc);
2206 	callout_stop(&sc->tick_ch);
2207 
2208 	/* Get the latest mac address */
2209 	bcopy(IF_LLADDR(ifp), sc->enaddr, ETHER_ADDR_LEN);
2210 	mvneta_set_mac_address(sc, sc->enaddr);
2211 	mvneta_filter_setup(sc);
2212 
2213 	/* Start DMA Engine */
2214 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2215 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2216 	MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2217 
2218 	/* Enable port */
2219 	reg  = MVNETA_READ(sc, MVNETA_PMACC0);
2220 	reg |= MVNETA_PMACC0_PORTEN;
2221 	reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK;
2222 	reg |= MVNETA_PMACC0_FRAMESIZELIMIT(ifp->if_mtu + MVNETA_ETHER_SIZE);
2223 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2224 
2225 	/* Allow access to each TXQ/RXQ from both CPU's */
2226 	for (cpu = 0; cpu < mp_ncpus; ++cpu)
2227 		MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2228 		    MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2229 
2230 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2231 		mvneta_rx_lockq(sc, q);
2232 		mvneta_rx_queue_refill(sc, q);
2233 		mvneta_rx_unlockq(sc, q);
2234 	}
2235 
2236 	if (!sc->phy_attached)
2237 		mvneta_linkup(sc);
2238 
2239 	/* Enable interrupt */
2240 	mvneta_enable_intr(sc);
2241 
2242 	/* Set Counter */
2243 	callout_schedule(&sc->tick_ch, hz);
2244 
2245 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2246 }
2247 
2248 STATIC void
2249 mvneta_init(void *arg)
2250 {
2251 	struct mvneta_softc *sc;
2252 
2253 	sc = arg;
2254 	mvneta_sc_lock(sc);
2255 	mvneta_init_locked(sc);
2256 	if (sc->phy_attached)
2257 		mii_mediachg(sc->mii);
2258 	mvneta_sc_unlock(sc);
2259 }
2260 
2261 /* ARGSUSED */
2262 STATIC void
2263 mvneta_stop_locked(struct mvneta_softc *sc)
2264 {
2265 	struct ifnet *ifp;
2266 	uint32_t reg;
2267 	int q;
2268 
2269 	ifp = sc->ifp;
2270 	if (ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2271 		return;
2272 
2273 	mvneta_disable_intr(sc);
2274 
2275 	callout_stop(&sc->tick_ch);
2276 
2277 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2278 
2279 	/* Link down */
2280 	if (sc->linkup == TRUE)
2281 		mvneta_linkdown(sc);
2282 
2283 	/* Reset the MAC Port Enable bit */
2284 	reg = MVNETA_READ(sc, MVNETA_PMACC0);
2285 	reg &= ~MVNETA_PMACC0_PORTEN;
2286 	MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2287 
2288 	/* Disable each of queue */
2289 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2290 		mvneta_rx_lockq(sc, q);
2291 		mvneta_ring_flush_rx_queue(sc, q);
2292 		mvneta_rx_unlockq(sc, q);
2293 	}
2294 
2295 	/*
2296 	 * Hold Reset state of DMA Engine
2297 	 * (must write 0x0 to restart it)
2298 	 */
2299 	MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2300 	MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2301 
2302 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2303 		mvneta_tx_lockq(sc, q);
2304 		mvneta_ring_flush_tx_queue(sc, q);
2305 		mvneta_tx_unlockq(sc, q);
2306 	}
2307 }
2308 
2309 STATIC void
2310 mvneta_stop(struct mvneta_softc *sc)
2311 {
2312 
2313 	mvneta_sc_lock(sc);
2314 	mvneta_stop_locked(sc);
2315 	mvneta_sc_unlock(sc);
2316 }
2317 
2318 STATIC int
2319 mvneta_mediachange(struct ifnet *ifp)
2320 {
2321 	struct mvneta_softc *sc;
2322 
2323 	sc = ifp->if_softc;
2324 
2325 	if (!sc->phy_attached && !sc->use_inband_status) {
2326 		/* We shouldn't be here */
2327 		if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2328 		return (0);
2329 	}
2330 
2331 	if (sc->use_inband_status) {
2332 		mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2333 		return (0);
2334 	}
2335 
2336 	mvneta_sc_lock(sc);
2337 
2338 	/* Update PHY */
2339 	mii_mediachg(sc->mii);
2340 
2341 	mvneta_sc_unlock(sc);
2342 
2343 	return (0);
2344 }
2345 
2346 STATIC void
2347 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2348 {
2349 	uint32_t psr;
2350 
2351 	psr = MVNETA_READ(sc, MVNETA_PSR);
2352 
2353 	/* Speed */
2354 	if (psr & MVNETA_PSR_GMIISPEED)
2355 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2356 	else if (psr & MVNETA_PSR_MIISPEED)
2357 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2358 	else if (psr & MVNETA_PSR_LINKUP)
2359 		ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2360 
2361 	/* Duplex */
2362 	if (psr & MVNETA_PSR_FULLDX)
2363 		ifmr->ifm_active |= IFM_FDX;
2364 
2365 	/* Link */
2366 	ifmr->ifm_status = IFM_AVALID;
2367 	if (psr & MVNETA_PSR_LINKUP)
2368 		ifmr->ifm_status |= IFM_ACTIVE;
2369 }
2370 
2371 STATIC void
2372 mvneta_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2373 {
2374 	struct mvneta_softc *sc;
2375 	struct mii_data *mii;
2376 
2377 	sc = ifp->if_softc;
2378 
2379 	if (!sc->phy_attached && !sc->use_inband_status) {
2380 		ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2381 		return;
2382 	}
2383 
2384 	mvneta_sc_lock(sc);
2385 
2386 	if (sc->use_inband_status) {
2387 		mvneta_get_media(sc, ifmr);
2388 		mvneta_sc_unlock(sc);
2389 		return;
2390 	}
2391 
2392 	mii = sc->mii;
2393 	mii_pollstat(mii);
2394 
2395 	ifmr->ifm_active = mii->mii_media_active;
2396 	ifmr->ifm_status = mii->mii_media_status;
2397 
2398 	mvneta_sc_unlock(sc);
2399 }
2400 
2401 /*
2402  * Link State Notify
2403  */
2404 STATIC void
2405 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2406 {
2407 	int reg;
2408 
2409 	if (enable) {
2410 		reg = MVNETA_READ(sc, MVNETA_PANC);
2411 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2412 		    MVNETA_PANC_ANFCEN);
2413 		reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2414 		    MVNETA_PANC_INBANDANEN;
2415 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2416 
2417 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2418 		reg |= MVNETA_PMACC2_INBANDANMODE;
2419 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2420 
2421 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2422 		reg |= MVNETA_PSOMSCD_ENABLE;
2423 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2424 	} else {
2425 		reg = MVNETA_READ(sc, MVNETA_PANC);
2426 		reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2427 		    MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2428 		    MVNETA_PANC_INBANDANEN);
2429 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2430 
2431 		reg = MVNETA_READ(sc, MVNETA_PMACC2);
2432 		reg &= ~MVNETA_PMACC2_INBANDANMODE;
2433 		MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2434 
2435 		reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2436 		reg &= ~MVNETA_PSOMSCD_ENABLE;
2437 		MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2438 	}
2439 }
2440 
2441 STATIC int
2442 mvneta_update_media(struct mvneta_softc *sc, int media)
2443 {
2444 	int reg, err;
2445 	boolean_t running;
2446 
2447 	err = 0;
2448 
2449 	mvneta_sc_lock(sc);
2450 
2451 	mvneta_linkreset(sc);
2452 
2453 	running = (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2454 	if (running)
2455 		mvneta_stop_locked(sc);
2456 
2457 	sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2458 
2459 	if (!sc->phy_attached || sc->use_inband_status)
2460 		mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2461 
2462 	mvneta_update_eee(sc);
2463 	mvneta_update_fc(sc);
2464 
2465 	if (IFM_SUBTYPE(media) != IFM_AUTO) {
2466 		reg = MVNETA_READ(sc, MVNETA_PANC);
2467 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2468 		    MVNETA_PANC_SETMIISPEED |
2469 		    MVNETA_PANC_SETFULLDX);
2470 		if (IFM_SUBTYPE(media) == IFM_1000_T ||
2471 		    IFM_SUBTYPE(media) == IFM_2500_T) {
2472 			if ((media & IFM_FDX) == 0) {
2473 				device_printf(sc->dev,
2474 				    "%s half-duplex unsupported\n",
2475 				    IFM_SUBTYPE(media) == IFM_1000_T ?
2476 				    "1000Base-T" :
2477 				    "2500Base-T");
2478 				err = EINVAL;
2479 				goto out;
2480 			}
2481 			reg |= MVNETA_PANC_SETGMIISPEED;
2482 		} else if (IFM_SUBTYPE(media) == IFM_100_TX)
2483 			reg |= MVNETA_PANC_SETMIISPEED;
2484 
2485 		if (media & IFM_FDX)
2486 			reg |= MVNETA_PANC_SETFULLDX;
2487 
2488 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2489 	}
2490 out:
2491 	if (running)
2492 		mvneta_init_locked(sc);
2493 	mvneta_sc_unlock(sc);
2494 	return (err);
2495 }
2496 
2497 STATIC void
2498 mvneta_adjust_link(struct mvneta_softc *sc)
2499 {
2500 	boolean_t phy_linkup;
2501 	int reg;
2502 
2503 	/* Update eee/fc */
2504 	mvneta_update_eee(sc);
2505 	mvneta_update_fc(sc);
2506 
2507 	/* Check for link change */
2508 	phy_linkup = (sc->mii->mii_media_status &
2509 	    (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2510 
2511 	if (sc->linkup != phy_linkup)
2512 		mvneta_linkupdate(sc, phy_linkup);
2513 
2514 	/* Don't update media on disabled link */
2515 	if (!phy_linkup)
2516 		return;
2517 
2518 	/* Check for media type change */
2519 	if (sc->mvneta_media != sc->mii->mii_media_active) {
2520 		sc->mvneta_media = sc->mii->mii_media_active;
2521 
2522 		reg = MVNETA_READ(sc, MVNETA_PANC);
2523 		reg &= ~(MVNETA_PANC_SETGMIISPEED |
2524 		    MVNETA_PANC_SETMIISPEED |
2525 		    MVNETA_PANC_SETFULLDX);
2526 		if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2527 		    IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2528 			reg |= MVNETA_PANC_SETGMIISPEED;
2529 		} else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2530 			reg |= MVNETA_PANC_SETMIISPEED;
2531 
2532 		if (sc->mvneta_media & IFM_FDX)
2533 			reg |= MVNETA_PANC_SETFULLDX;
2534 
2535 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2536 	}
2537 }
2538 
2539 STATIC void
2540 mvneta_link_isr(struct mvneta_softc *sc)
2541 {
2542 	int linkup;
2543 
2544 	KASSERT_SC_MTX(sc);
2545 
2546 	linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2547 	if (sc->linkup == linkup)
2548 		return;
2549 
2550 	if (linkup == TRUE)
2551 		mvneta_linkup(sc);
2552 	else
2553 		mvneta_linkdown(sc);
2554 
2555 #ifdef DEBUG
2556 	device_printf(sc->dev,
2557 	    "%s: link %s\n", sc->ifp->if_xname, linkup ? "up" : "down");
2558 #endif
2559 }
2560 
2561 STATIC void
2562 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2563 {
2564 
2565 	KASSERT_SC_MTX(sc);
2566 
2567 	if (linkup == TRUE)
2568 		mvneta_linkup(sc);
2569 	else
2570 		mvneta_linkdown(sc);
2571 
2572 #ifdef DEBUG
2573 	device_printf(sc->dev,
2574 	    "%s: link %s\n", sc->ifp->if_xname, linkup ? "up" : "down");
2575 #endif
2576 }
2577 
2578 STATIC void
2579 mvneta_update_eee(struct mvneta_softc *sc)
2580 {
2581 	uint32_t reg;
2582 
2583 	KASSERT_SC_MTX(sc);
2584 
2585 	/* set EEE parameters */
2586 	reg = MVNETA_READ(sc, MVNETA_LPIC1);
2587 	if (sc->cf_lpi)
2588 		reg |= MVNETA_LPIC1_LPIRE;
2589 	else
2590 		reg &= ~MVNETA_LPIC1_LPIRE;
2591 	MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2592 }
2593 
2594 STATIC void
2595 mvneta_update_fc(struct mvneta_softc *sc)
2596 {
2597 	uint32_t reg;
2598 
2599 	KASSERT_SC_MTX(sc);
2600 
2601 	reg  = MVNETA_READ(sc, MVNETA_PANC);
2602 	if (sc->cf_fc) {
2603 		/* Flow control negotiation */
2604 		reg |= MVNETA_PANC_PAUSEADV;
2605 		reg |= MVNETA_PANC_ANFCEN;
2606 	} else {
2607 		/* Disable flow control negotiation */
2608 		reg &= ~MVNETA_PANC_PAUSEADV;
2609 		reg &= ~MVNETA_PANC_ANFCEN;
2610 	}
2611 
2612 	MVNETA_WRITE(sc, MVNETA_PANC, reg);
2613 }
2614 
2615 STATIC void
2616 mvneta_linkup(struct mvneta_softc *sc)
2617 {
2618 	uint32_t reg;
2619 
2620 	KASSERT_SC_MTX(sc);
2621 
2622 	if (!sc->phy_attached || !sc->use_inband_status) {
2623 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2624 		reg |= MVNETA_PANC_FORCELINKPASS;
2625 		reg &= ~MVNETA_PANC_FORCELINKFAIL;
2626 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2627 	}
2628 
2629 	mvneta_qflush(sc->ifp);
2630 	mvneta_portup(sc);
2631 	sc->linkup = TRUE;
2632 	if_link_state_change(sc->ifp, LINK_STATE_UP);
2633 }
2634 
2635 STATIC void
2636 mvneta_linkdown(struct mvneta_softc *sc)
2637 {
2638 	uint32_t reg;
2639 
2640 	KASSERT_SC_MTX(sc);
2641 
2642 	if (!sc->phy_attached || !sc->use_inband_status) {
2643 		reg  = MVNETA_READ(sc, MVNETA_PANC);
2644 		reg &= ~MVNETA_PANC_FORCELINKPASS;
2645 		reg |= MVNETA_PANC_FORCELINKFAIL;
2646 		MVNETA_WRITE(sc, MVNETA_PANC, reg);
2647 	}
2648 
2649 	mvneta_portdown(sc);
2650 	mvneta_qflush(sc->ifp);
2651 	sc->linkup = FALSE;
2652 	if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2653 }
2654 
2655 STATIC void
2656 mvneta_linkreset(struct mvneta_softc *sc)
2657 {
2658 	struct mii_softc *mii;
2659 
2660 	if (sc->phy_attached) {
2661 		/* Force reset PHY */
2662 		mii = LIST_FIRST(&sc->mii->mii_phys);
2663 		if (mii)
2664 			mii_phy_reset(mii);
2665 	}
2666 }
2667 
2668 /*
2669  * Tx Subroutines
2670  */
2671 STATIC int
2672 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2673 {
2674 	struct ifnet *ifp;
2675 	bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2676 	struct mbuf *mtmp, *mbuf;
2677 	struct mvneta_tx_ring *tx;
2678 	struct mvneta_buf *txbuf;
2679 	struct mvneta_tx_desc *t;
2680 	uint32_t ptxsu;
2681 	int used, error, i, txnsegs;
2682 
2683 	mbuf = *mbufp;
2684 	tx = MVNETA_TX_RING(sc, q);
2685 	DASSERT(tx->used >= 0);
2686 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2687 	t = NULL;
2688 	ifp = sc->ifp;
2689 
2690 	if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2691 		mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2692 		if (mbuf == NULL) {
2693 			tx->drv_error++;
2694 			*mbufp = NULL;
2695 			return (ENOBUFS);
2696 		}
2697 		mbuf->m_flags &= ~M_VLANTAG;
2698 		*mbufp = mbuf;
2699 	}
2700 
2701 	if (__predict_false(mbuf->m_next != NULL &&
2702 	    (mbuf->m_pkthdr.csum_flags &
2703 	    (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2704 		if (M_WRITABLE(mbuf) == 0) {
2705 			mtmp = m_dup(mbuf, M_NOWAIT);
2706 			m_freem(mbuf);
2707 			if (mtmp == NULL) {
2708 				tx->drv_error++;
2709 				*mbufp = NULL;
2710 				return (ENOBUFS);
2711 			}
2712 			*mbufp = mbuf = mtmp;
2713 		}
2714 	}
2715 
2716 	/* load mbuf using dmamap of 1st descriptor */
2717 	txbuf = &tx->txbuf[tx->cpu];
2718 	error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2719 	    txbuf->dmap, mbuf, txsegs, &txnsegs,
2720 	    BUS_DMA_NOWAIT);
2721 	if (__predict_false(error != 0)) {
2722 #ifdef MVNETA_KTR
2723 		CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", ifp->if_xname, q, error);
2724 #endif
2725 		/* This is the only recoverable error (except EFBIG). */
2726 		if (error != ENOMEM) {
2727 			tx->drv_error++;
2728 			m_freem(mbuf);
2729 			*mbufp = NULL;
2730 			return (ENOBUFS);
2731 		}
2732 		return (error);
2733 	}
2734 
2735 	if (__predict_false(txnsegs <= 0
2736 	    || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2737 		/* we have no enough descriptors or mbuf is broken */
2738 #ifdef MVNETA_KTR
2739 		CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2740 		    ifp->if_xname, q, txnsegs);
2741 #endif
2742 		bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2743 		return (ENOBUFS);
2744 	}
2745 	DASSERT(txbuf->m == NULL);
2746 
2747 	/* remember mbuf using 1st descriptor */
2748 	txbuf->m = mbuf;
2749 	bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2750 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2751 
2752 	/* load to tx descriptors */
2753 	used = 0;
2754 	for (i = 0; i < txnsegs; i++) {
2755 		t = &tx->desc[tx->cpu];
2756 		t->command = 0;
2757 		t->l4ichk = 0;
2758 		t->flags = 0;
2759 		if (__predict_true(i == 0)) {
2760 			/* 1st descriptor */
2761 			t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2762 			t->command |= MVNETA_TX_CMD_F;
2763 			mvneta_tx_set_csumflag(ifp, t, mbuf);
2764 		}
2765 		t->bufptr_pa = txsegs[i].ds_addr;
2766 		t->bytecnt = txsegs[i].ds_len;
2767 		tx->cpu = tx_counter_adv(tx->cpu, 1);
2768 
2769 		tx->used++;
2770 		used++;
2771 	}
2772 	/* t is last descriptor here */
2773 	DASSERT(t != NULL);
2774 	t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2775 
2776 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2777 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2778 
2779 	while (__predict_false(used > 255)) {
2780 		ptxsu = MVNETA_PTXSU_NOWD(255);
2781 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2782 		used -= 255;
2783 	}
2784 	if (__predict_true(used > 0)) {
2785 		ptxsu = MVNETA_PTXSU_NOWD(used);
2786 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2787 	}
2788 	return (0);
2789 }
2790 
2791 STATIC void
2792 mvneta_tx_set_csumflag(struct ifnet *ifp,
2793     struct mvneta_tx_desc *t, struct mbuf *m)
2794 {
2795 	struct ether_header *eh;
2796 	struct ether_vlan_header *evh;
2797 	int csum_flags;
2798 	uint32_t iphl, ipoff;
2799 	struct ip *ip;
2800 
2801 	iphl = ipoff = 0;
2802 	csum_flags = ifp->if_hwassist & m->m_pkthdr.csum_flags;
2803 	eh = mtod(m, struct ether_header *);
2804 
2805 	switch (ntohs(eh->ether_type)) {
2806 	case ETHERTYPE_IP:
2807 		ipoff = ETHER_HDR_LEN;
2808 		break;
2809 	case ETHERTYPE_VLAN:
2810 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2811 		evh = mtod(m, struct ether_vlan_header *);
2812 		if (ntohs(evh->evl_proto) == ETHERTYPE_VLAN)
2813 			ipoff += ETHER_VLAN_ENCAP_LEN;
2814 		break;
2815 	default:
2816 		csum_flags = 0;
2817 	}
2818 
2819 	if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2820 		ip = (struct ip *)(m->m_data + ipoff);
2821 		iphl = ip->ip_hl<<2;
2822 		t->command |= MVNETA_TX_CMD_L3_IP4;
2823 	} else {
2824 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2825 		return;
2826 	}
2827 
2828 
2829 	/* L3 */
2830 	if (csum_flags & CSUM_IP) {
2831 		t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2832 	}
2833 
2834 	/* L4 */
2835 	if (csum_flags & CSUM_IP_TCP) {
2836 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2837 		t->command |= MVNETA_TX_CMD_L4_TCP;
2838 	} else if (csum_flags & CSUM_IP_UDP) {
2839 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2840 		t->command |= MVNETA_TX_CMD_L4_UDP;
2841 	} else
2842 		t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2843 
2844 	t->l4ichk = 0;
2845 	t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2846 	t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2847 }
2848 
2849 STATIC void
2850 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2851 {
2852 	struct mvneta_tx_ring *tx;
2853 	struct mvneta_buf *txbuf;
2854 	struct mvneta_tx_desc *t __diagused;
2855 	uint32_t ptxs, ptxsu, ndesc;
2856 	int i;
2857 
2858 	KASSERT_TX_MTX(sc, q);
2859 
2860 	tx = MVNETA_TX_RING(sc, q);
2861 	if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2862 		return;
2863 
2864 	ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2865 	ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2866 
2867 	if (__predict_false(ndesc == 0)) {
2868 		if (tx->used == 0)
2869 			tx->queue_status = MVNETA_QUEUE_IDLE;
2870 		else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2871 		    ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2872 			tx->queue_hung = TRUE;
2873 		return;
2874 	}
2875 
2876 #ifdef MVNETA_KTR
2877 	CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2878 	    sc->ifp->if_xname, q, ndesc);
2879 #endif
2880 
2881 	bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2882 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2883 
2884 	for (i = 0; i < ndesc; i++) {
2885 		t = &tx->desc[tx->dma];
2886 #ifdef MVNETA_KTR
2887 		if (t->flags & MVNETA_TX_F_ES)
2888 			CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2889 			    sc->ifp->if_xname, q, tx->dma);
2890 #endif
2891 		txbuf = &tx->txbuf[tx->dma];
2892 		if (__predict_true(txbuf->m != NULL)) {
2893 			DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2894 			bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2895 			m_freem(txbuf->m);
2896 			txbuf->m = NULL;
2897 		}
2898 		else
2899 			DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2900 		tx->dma = tx_counter_adv(tx->dma, 1);
2901 		tx->used--;
2902 	}
2903 	DASSERT(tx->used >= 0);
2904 	DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2905 	while (__predict_false(ndesc > 255)) {
2906 		ptxsu = MVNETA_PTXSU_NORB(255);
2907 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2908 		ndesc -= 255;
2909 	}
2910 	if (__predict_true(ndesc > 0)) {
2911 		ptxsu = MVNETA_PTXSU_NORB(ndesc);
2912 		MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2913 	}
2914 #ifdef MVNETA_KTR
2915 	CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2916 	    sc->ifp->if_xname, q, tx->cpu, tx->dma, tx->used);
2917 #endif
2918 
2919 	tx->watchdog_time = ticks;
2920 
2921 	if (tx->used == 0)
2922 		tx->queue_status = MVNETA_QUEUE_IDLE;
2923 }
2924 
2925 /*
2926  * Do a final TX complete when TX is idle.
2927  */
2928 STATIC void
2929 mvneta_tx_drain(struct mvneta_softc *sc)
2930 {
2931 	struct mvneta_tx_ring *tx;
2932 	int q;
2933 
2934 	/*
2935 	 * Handle trailing mbuf on TX queue.
2936 	 * Check is done lockess to avoid TX path contention.
2937 	 */
2938 	for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2939 		tx = MVNETA_TX_RING(sc, q);
2940 		if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2941 		    tx->used > 0) {
2942 			mvneta_tx_lockq(sc, q);
2943 			mvneta_tx_queue_complete(sc, q);
2944 			mvneta_tx_unlockq(sc, q);
2945 		}
2946 	}
2947 }
2948 
2949 /*
2950  * Rx Subroutines
2951  */
2952 STATIC int
2953 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2954 {
2955 	uint32_t prxs, npkt;
2956 	int more;
2957 
2958 	more = 0;
2959 	mvneta_rx_lockq(sc, q);
2960 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2961 	npkt = MVNETA_PRXS_GET_ODC(prxs);
2962 	if (__predict_false(npkt == 0))
2963 		goto out;
2964 
2965 	if (count > 0 && npkt > count) {
2966 		more = 1;
2967 		npkt = count;
2968 	}
2969 	mvneta_rx_queue(sc, q, npkt);
2970 out:
2971 	mvneta_rx_unlockq(sc, q);
2972 	return more;
2973 }
2974 
2975 /*
2976  * Helper routine for updating PRXSU register of a given queue.
2977  * Handles number of processed descriptors bigger than maximum acceptable value.
2978  */
2979 STATIC __inline void
2980 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
2981 {
2982 	uint32_t prxsu;
2983 
2984 	while (__predict_false(processed > 255)) {
2985 		prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2986 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2987 		processed -= 255;
2988 	}
2989 	prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
2990 	MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2991 }
2992 
2993 static __inline void
2994 mvneta_prefetch(void *p)
2995 {
2996 
2997 	__builtin_prefetch(p);
2998 }
2999 
3000 STATIC void
3001 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
3002 {
3003 	struct ifnet *ifp;
3004 	struct mvneta_rx_ring *rx;
3005 	struct mvneta_rx_desc *r;
3006 	struct mvneta_buf *rxbuf;
3007 	struct mbuf *m;
3008 	struct lro_ctrl *lro;
3009 	struct lro_entry *queued;
3010 	void *pktbuf;
3011 	int i, pktlen, processed, ndma;
3012 
3013 	KASSERT_RX_MTX(sc, q);
3014 
3015 	ifp = sc->ifp;
3016 	rx = MVNETA_RX_RING(sc, q);
3017 	processed = 0;
3018 
3019 	if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3020 		return;
3021 
3022 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
3023 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3024 
3025 	for (i = 0; i < npkt; i++) {
3026 		/* Prefetch next desc, rxbuf. */
3027 		ndma = rx_counter_adv(rx->dma, 1);
3028 		mvneta_prefetch(&rx->desc[ndma]);
3029 		mvneta_prefetch(&rx->rxbuf[ndma]);
3030 
3031 		/* get descriptor and packet */
3032 		r = &rx->desc[rx->dma];
3033 		rxbuf = &rx->rxbuf[rx->dma];
3034 		m = rxbuf->m;
3035 		rxbuf->m = NULL;
3036 		DASSERT(m != NULL);
3037 		bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3038 		    BUS_DMASYNC_POSTREAD);
3039 		bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3040 		/* Prefetch mbuf header. */
3041 		mvneta_prefetch(m);
3042 
3043 		processed++;
3044 		/* Drop desc with error status or not in a single buffer. */
3045 		DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3046 		    (MVNETA_RX_F|MVNETA_RX_L));
3047 		if (__predict_false((r->status & MVNETA_RX_ES) ||
3048 		    (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3049 		    (MVNETA_RX_F|MVNETA_RX_L)))
3050 			goto rx_error;
3051 
3052 		/*
3053 		 * [ OFF | MH | PKT | CRC ]
3054 		 * bytecnt cover MH, PKT, CRC
3055 		 */
3056 		pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3057 		pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3058                     MVNETA_HWHEADER_SIZE;
3059 
3060 		/* Prefetch mbuf data. */
3061 		mvneta_prefetch(pktbuf);
3062 
3063 		/* Write value to mbuf (avoid read). */
3064 		m->m_data = pktbuf;
3065 		m->m_len = m->m_pkthdr.len = pktlen;
3066 		m->m_pkthdr.rcvif = ifp;
3067 		mvneta_rx_set_csumflag(ifp, r, m);
3068 
3069 		/* Increase rx_dma before releasing the lock. */
3070 		rx->dma = ndma;
3071 
3072 		if (__predict_false(rx->lro_enabled &&
3073 		    ((r->status & MVNETA_RX_L3_IP) != 0) &&
3074 		    ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3075 		    (m->m_pkthdr.csum_flags &
3076 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3077 		    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3078 			if (rx->lro.lro_cnt != 0) {
3079 				if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3080 					goto rx_done;
3081 			}
3082 		}
3083 
3084 		mvneta_rx_unlockq(sc, q);
3085 		(*ifp->if_input)(ifp, m);
3086 		mvneta_rx_lockq(sc, q);
3087 		/*
3088 		 * Check whether this queue has been disabled in the
3089 		 * meantime. If yes, then clear LRO and exit.
3090 		 */
3091 		if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3092 			goto rx_lro;
3093 rx_done:
3094 		/* Refresh receive ring to avoid stall and minimize jitter. */
3095 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3096 			mvneta_prxsu_update(sc, q, processed);
3097 			mvneta_rx_queue_refill(sc, q);
3098 			processed = 0;
3099 		}
3100 		continue;
3101 rx_error:
3102 		m_freem(m);
3103 		rx->dma = ndma;
3104 		/* Refresh receive ring to avoid stall and minimize jitter. */
3105 		if (processed >= MVNETA_RX_REFILL_COUNT) {
3106 			mvneta_prxsu_update(sc, q, processed);
3107 			mvneta_rx_queue_refill(sc, q);
3108 			processed = 0;
3109 		}
3110 	}
3111 #ifdef MVNETA_KTR
3112 	CTR3(KTR_SPARE2, "%s:%u %u packets received", ifp->if_xname, q, npkt);
3113 #endif
3114 	/* DMA status update */
3115 	mvneta_prxsu_update(sc, q, processed);
3116 	/* Refill the rest of buffers if there are any to refill */
3117 	mvneta_rx_queue_refill(sc, q);
3118 
3119 rx_lro:
3120 	/*
3121 	 * Flush any outstanding LRO work
3122 	 */
3123 	lro = &rx->lro;
3124 	while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3125 		LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3126 		tcp_lro_flush(lro, queued);
3127 	}
3128 }
3129 
3130 STATIC void
3131 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3132 {
3133 
3134 	bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3135 	/* This will remove all data at once */
3136 	m_freem(rxbuf->m);
3137 }
3138 
3139 STATIC void
3140 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3141 {
3142 	struct mvneta_rx_ring *rx;
3143 	struct mvneta_rx_desc *r;
3144 	struct mvneta_buf *rxbuf;
3145 	bus_dma_segment_t segs;
3146 	struct mbuf *m;
3147 	uint32_t prxs, prxsu, ndesc;
3148 	int npkt, refill, nsegs, error;
3149 
3150 	KASSERT_RX_MTX(sc, q);
3151 
3152 	rx = MVNETA_RX_RING(sc, q);
3153 	prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3154 	ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3155 	refill = MVNETA_RX_RING_CNT - ndesc;
3156 #ifdef MVNETA_KTR
3157 	CTR3(KTR_SPARE2, "%s:%u refill %u packets", sc->ifp->if_xname, q,
3158 	    refill);
3159 #endif
3160 	if (__predict_false(refill <= 0))
3161 		return;
3162 
3163 	for (npkt = 0; npkt < refill; npkt++) {
3164 		rxbuf = &rx->rxbuf[rx->cpu];
3165 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size);
3166 		if (__predict_false(m == NULL)) {
3167 			error = ENOBUFS;
3168 			break;
3169 		}
3170 		m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3171 
3172 		error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3173 		    m, &segs, &nsegs, BUS_DMA_NOWAIT);
3174 		if (__predict_false(error != 0 || nsegs != 1)) {
3175 			KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3176 			m_freem(m);
3177 			break;
3178 		}
3179 
3180 		/* Add the packet to the ring */
3181 		rxbuf->m = m;
3182 		r = &rx->desc[rx->cpu];
3183 		r->bufptr_pa = segs.ds_addr;
3184 		rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3185 
3186 		rx->cpu = rx_counter_adv(rx->cpu, 1);
3187 	}
3188 	if (npkt == 0) {
3189 		if (refill == MVNETA_RX_RING_CNT)
3190 			rx->needs_refill = TRUE;
3191 		return;
3192 	}
3193 
3194 	rx->needs_refill = FALSE;
3195 	bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3196 
3197 	while (__predict_false(npkt > 255)) {
3198 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3199 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3200 		npkt -= 255;
3201 	}
3202 	if (__predict_true(npkt > 0)) {
3203 		prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3204 		MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3205 	}
3206 }
3207 
3208 STATIC __inline void
3209 mvneta_rx_set_csumflag(struct ifnet *ifp,
3210     struct mvneta_rx_desc *r, struct mbuf *m)
3211 {
3212 	uint32_t csum_flags;
3213 
3214 	csum_flags = 0;
3215 	if (__predict_false((r->status &
3216 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3217 		return; /* not a IP packet */
3218 
3219 	/* L3 */
3220 	if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3221 	    MVNETA_RX_IP_HEADER_OK))
3222 		csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3223 
3224 	if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3225 	    (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3226 		/* L4 */
3227 		switch (r->status & MVNETA_RX_L4_MASK) {
3228 		case MVNETA_RX_L4_TCP:
3229 		case MVNETA_RX_L4_UDP:
3230 			csum_flags |= CSUM_L4_CALC;
3231 			if (__predict_true((r->status &
3232 			    MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3233 				csum_flags |= CSUM_L4_VALID;
3234 				m->m_pkthdr.csum_data = htons(0xffff);
3235 			}
3236 			break;
3237 		case MVNETA_RX_L4_OTH:
3238 		default:
3239 			break;
3240 		}
3241 	}
3242 	m->m_pkthdr.csum_flags = csum_flags;
3243 }
3244 
3245 /*
3246  * MAC address filter
3247  */
3248 STATIC void
3249 mvneta_filter_setup(struct mvneta_softc *sc)
3250 {
3251 	struct ifnet *ifp;
3252 	uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3253 	uint32_t pxc;
3254 	int i;
3255 
3256 	KASSERT_SC_MTX(sc);
3257 
3258 	memset(dfut, 0, sizeof(dfut));
3259 	memset(dfsmt, 0, sizeof(dfsmt));
3260 	memset(dfomt, 0, sizeof(dfomt));
3261 
3262 	ifp = sc->ifp;
3263 	ifp->if_flags |= IFF_ALLMULTI;
3264 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
3265 		for (i = 0; i < MVNETA_NDFSMT; i++) {
3266 			dfsmt[i] = dfomt[i] =
3267 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3268 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3269 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3270 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3271 		}
3272 	}
3273 
3274 	pxc = MVNETA_READ(sc, MVNETA_PXC);
3275 	pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3276 	    MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3277 	pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3278 	pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3279 	pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3280 	pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3281 	pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3282 	pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3283 	if (ifp->if_flags & IFF_BROADCAST) {
3284 		pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3285 	}
3286 	if (ifp->if_flags & IFF_PROMISC) {
3287 		pxc |= MVNETA_PXC_UPM;
3288 	}
3289 	MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3290 
3291 	/* Set Destination Address Filter Unicast Table */
3292 	if (ifp->if_flags & IFF_PROMISC) {
3293 		/* pass all unicast addresses */
3294 		for (i = 0; i < MVNETA_NDFUT; i++) {
3295 			dfut[i] =
3296 			    MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3297 			    MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3298 			    MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3299 			    MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3300 		}
3301 	} else {
3302 		i = sc->enaddr[5] & 0xf;		/* last nibble */
3303 		dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3304 	}
3305 	MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3306 
3307 	/* Set Destination Address Filter Multicast Tables */
3308 	MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3309 	MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3310 }
3311 
3312 /*
3313  * sysctl(9)
3314  */
3315 STATIC int
3316 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3317 {
3318 	struct mvneta_sysctl_mib *arg;
3319 	struct mvneta_softc *sc;
3320 	uint64_t val;
3321 
3322 	arg = (struct mvneta_sysctl_mib *)arg1;
3323 	if (arg == NULL)
3324 		return (EINVAL);
3325 
3326 	sc = arg->sc;
3327 	if (sc == NULL)
3328 		return (EINVAL);
3329 	if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3330 		return (EINVAL);
3331 
3332 	mvneta_sc_lock(sc);
3333 	val = arg->counter;
3334 	mvneta_sc_unlock(sc);
3335 	return sysctl_handle_64(oidp, &val, 0, req);
3336 }
3337 
3338 
3339 STATIC int
3340 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3341 {
3342 	struct mvneta_softc *sc;
3343 	int err, val;
3344 
3345 	val = 0;
3346 	sc = (struct mvneta_softc *)arg1;
3347 	if (sc == NULL)
3348 		return (EINVAL);
3349 
3350 	err = sysctl_handle_int(oidp, &val, 0, req);
3351 	if (err != 0)
3352 		return (err);
3353 
3354 	if (val < 0 || val > 1)
3355 		return (EINVAL);
3356 
3357 	if (val == 1) {
3358 		mvneta_sc_lock(sc);
3359 		mvneta_clear_mib(sc);
3360 		mvneta_sc_unlock(sc);
3361 	}
3362 
3363 	return (0);
3364 }
3365 
3366 STATIC int
3367 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3368 {
3369 	struct mvneta_sysctl_queue *arg;
3370 	struct mvneta_rx_ring *rx;
3371 	struct mvneta_softc *sc;
3372 	uint32_t reg, time_mvtclk;
3373 	int err, time_us;
3374 
3375 	rx = NULL;
3376 	arg = (struct mvneta_sysctl_queue *)arg1;
3377 	if (arg == NULL)
3378 		return (EINVAL);
3379 	if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3380 		return (EINVAL);
3381 	if (arg->rxtx != MVNETA_SYSCTL_RX)
3382 		return (EINVAL);
3383 
3384 	sc = arg->sc;
3385 	if (sc == NULL)
3386 		return (EINVAL);
3387 
3388 	/* read queue length */
3389 	mvneta_sc_lock(sc);
3390 	mvneta_rx_lockq(sc, arg->queue);
3391 	rx = MVNETA_RX_RING(sc, arg->queue);
3392 	time_mvtclk = rx->queue_th_time;
3393 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / sc->clk_freq;
3394 	mvneta_rx_unlockq(sc, arg->queue);
3395 	mvneta_sc_unlock(sc);
3396 
3397 	err = sysctl_handle_int(oidp, &time_us, 0, req);
3398 	if (err != 0)
3399 		return (err);
3400 
3401 	mvneta_sc_lock(sc);
3402 	mvneta_rx_lockq(sc, arg->queue);
3403 
3404 	/* update queue length (0[sec] - 1[sec]) */
3405 	if (time_us < 0 || time_us > (1000 * 1000)) {
3406 		mvneta_rx_unlockq(sc, arg->queue);
3407 		mvneta_sc_unlock(sc);
3408 		return (EINVAL);
3409 	}
3410 	time_mvtclk = sc->clk_freq * (uint64_t)time_us / (1000ULL * 1000ULL);
3411 	rx->queue_th_time = time_mvtclk;
3412 	reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3413 	MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3414 	mvneta_rx_unlockq(sc, arg->queue);
3415 	mvneta_sc_unlock(sc);
3416 
3417 	return (0);
3418 }
3419 
3420 STATIC void
3421 sysctl_mvneta_init(struct mvneta_softc *sc)
3422 {
3423 	struct sysctl_ctx_list *ctx;
3424 	struct sysctl_oid_list *children;
3425 	struct sysctl_oid_list *rxchildren;
3426 	struct sysctl_oid_list *qchildren, *mchildren;
3427 	struct sysctl_oid *tree;
3428 	int i, q;
3429 	struct mvneta_sysctl_queue *rxarg;
3430 #define	MVNETA_SYSCTL_NAME(num) "queue" # num
3431 	static const char *sysctl_queue_names[] = {
3432 		MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3433 		MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3434 		MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3435 		MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3436 	};
3437 #undef MVNETA_SYSCTL_NAME
3438 
3439 #ifndef NO_SYSCTL_DESCR
3440 #define	MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3441 	static const char *sysctl_queue_descrs[] = {
3442 		MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3443 		MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3444 		MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3445 		MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3446 	};
3447 #undef MVNETA_SYSCTL_DESCR
3448 #endif
3449 
3450 
3451 	ctx = device_get_sysctl_ctx(sc->dev);
3452 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3453 
3454 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3455 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX");
3456 	rxchildren = SYSCTL_CHILDREN(tree);
3457 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3458 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB");
3459 	mchildren = SYSCTL_CHILDREN(tree);
3460 
3461 
3462 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3463 	    CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3464 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3465 	    CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3466 
3467 	/*
3468 	 * MIB access
3469 	 */
3470 	/* dev.mvneta.[unit].mib.<mibs> */
3471 	for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3472 		struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3473 
3474 		mib_arg->sc = sc;
3475 		mib_arg->index = i;
3476 		SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3477 		    mvneta_mib_list[i].sysctl_name,
3478 		    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
3479 		    (void *)mib_arg, 0, sysctl_read_mib, "I",
3480 		    mvneta_mib_list[i].desc);
3481 	}
3482 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3483 	    CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3484 	SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3485 	    CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3486 	SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3487 	    CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3488 
3489 	SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3490 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3491 	    (void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters");
3492 
3493 	for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3494 		rxarg = &sc->sysctl_rx_queue[q];
3495 
3496 		rxarg->sc = sc;
3497 		rxarg->queue = q;
3498 		rxarg->rxtx = MVNETA_SYSCTL_RX;
3499 
3500 		/* hw.mvneta.mvneta[unit].rx.[queue] */
3501 		tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3502 		    sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3503 		    sysctl_queue_descrs[q]);
3504 		qchildren = SYSCTL_CHILDREN(tree);
3505 
3506 		/* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3507 		SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3508 		    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0,
3509 		    sysctl_set_queue_rxthtime, "I",
3510 		    "interrupt coalescing threshold timer [us]");
3511 	}
3512 }
3513 
3514 /*
3515  * MIB
3516  */
3517 STATIC uint64_t
3518 mvneta_read_mib(struct mvneta_softc *sc, int index)
3519 {
3520 	struct mvneta_mib_def *mib;
3521 	uint64_t val;
3522 
3523 	mib = &mvneta_mib_list[index];
3524 	val = MVNETA_READ_MIB(sc, mib->regnum);
3525 	if (mib->reg64)
3526 		val |= (uint64_t)MVNETA_READ_MIB(sc, mib->regnum + 4) << 32;
3527 	return (val);
3528 }
3529 
3530 STATIC void
3531 mvneta_clear_mib(struct mvneta_softc *sc)
3532 {
3533 	int i;
3534 
3535 	KASSERT_SC_MTX(sc);
3536 
3537 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3538 		(void)mvneta_read_mib(sc, i);
3539 		sc->sysctl_mib[i].counter = 0;
3540 	}
3541 	MVNETA_READ(sc, MVNETA_PDFC);
3542 	sc->counter_pdfc = 0;
3543 	MVNETA_READ(sc, MVNETA_POFC);
3544 	sc->counter_pofc = 0;
3545 	sc->counter_watchdog = 0;
3546 }
3547 
3548 STATIC void
3549 mvneta_update_mib(struct mvneta_softc *sc)
3550 {
3551 	struct mvneta_tx_ring *tx;
3552 	int i;
3553 	uint64_t val;
3554 	uint32_t reg;
3555 
3556 	for (i = 0; i < nitems(mvneta_mib_list); i++) {
3557 
3558 		val = mvneta_read_mib(sc, i);
3559 		if (val == 0)
3560 			continue;
3561 
3562 		sc->sysctl_mib[i].counter += val;
3563 		switch (mvneta_mib_list[i].regnum) {
3564 			case MVNETA_MIB_RX_GOOD_OCT:
3565 				if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3566 				break;
3567 			case MVNETA_MIB_RX_BAD_FRAME:
3568 				if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3569 				break;
3570 			case MVNETA_MIB_RX_GOOD_FRAME:
3571 				if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3572 				break;
3573 			case MVNETA_MIB_RX_MCAST_FRAME:
3574 				if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3575 				break;
3576 			case MVNETA_MIB_TX_GOOD_OCT:
3577 				if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3578 				break;
3579 			case MVNETA_MIB_TX_GOOD_FRAME:
3580 				if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3581 				break;
3582 			case MVNETA_MIB_TX_MCAST_FRAME:
3583 				if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3584 				break;
3585 			case MVNETA_MIB_MAC_COL:
3586 				if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3587 				break;
3588 			case MVNETA_MIB_TX_MAC_TRNS_ERR:
3589 			case MVNETA_MIB_TX_EXCES_COL:
3590 			case MVNETA_MIB_MAC_LATE_COL:
3591 				if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3592 				break;
3593 		}
3594 	}
3595 
3596 	reg = MVNETA_READ(sc, MVNETA_PDFC);
3597 	sc->counter_pdfc += reg;
3598 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3599 	reg = MVNETA_READ(sc, MVNETA_POFC);
3600 	sc->counter_pofc += reg;
3601 	if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3602 
3603 	/* TX watchdog. */
3604 	if (sc->counter_watchdog_mib > 0) {
3605 		if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3606 		sc->counter_watchdog_mib = 0;
3607 	}
3608 	/*
3609 	 * TX driver errors:
3610 	 * We do not take queue locks to not disrupt TX path.
3611 	 * We may only miss one drv error which will be fixed at
3612 	 * next mib update. We may also clear counter when TX path
3613 	 * is incrementing it but we only do it if counter was not zero
3614 	 * thus we may only loose one error.
3615 	 */
3616 	for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3617 		tx = MVNETA_TX_RING(sc, i);
3618 
3619 		if (tx->drv_error > 0) {
3620 			if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3621 			tx->drv_error = 0;
3622 		}
3623 	}
3624 }
3625