xref: /freebsd/sys/dev/my/if_my.c (revision fd4fafa8732203a3e20f5404a65de83d37687e3a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Written by: yen_cw@myson.com.tw
5  * Copyright (c) 2002 Myson Technology Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/queue.h>
40 #include <sys/types.h>
41 #include <sys/module.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 
45 #define NBPFILTER	1
46 
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_arp.h>
50 #include <net/ethernet.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_dl.h>
54 #include <net/bpf.h>
55 
56 #include <vm/vm.h>		/* for vtophys */
57 #include <vm/pmap.h>		/* for vtophys */
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/bus.h>
61 #include <sys/rman.h>
62 
63 #include <dev/pci/pcireg.h>
64 #include <dev/pci/pcivar.h>
65 
66 /*
67  * #define MY_USEIOSPACE
68  */
69 
70 static int      MY_USEIOSPACE = 1;
71 
72 #ifdef MY_USEIOSPACE
73 #define MY_RES                  SYS_RES_IOPORT
74 #define MY_RID                  MY_PCI_LOIO
75 #else
76 #define MY_RES                  SYS_RES_MEMORY
77 #define MY_RID                  MY_PCI_LOMEM
78 #endif
79 
80 #include <dev/my/if_myreg.h>
81 
82 /*
83  * Various supported device vendors/types and their names.
84  */
85 struct my_type *my_info_tmp;
86 static struct my_type my_devs[] = {
87 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
88 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
89 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
90 	{0, 0, NULL}
91 };
92 
93 /*
94  * Various supported PHY vendors/types and their names. Note that this driver
95  * will work with pretty much any MII-compliant PHY, so failure to positively
96  * identify the chip is not a fatal error.
97  */
98 static struct my_type my_phys[] = {
99 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
100 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
101 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
102 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
103 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
104 	{0, 0, "<MII-compliant physical interface>"}
105 };
106 
107 static int      my_probe(device_t);
108 static int      my_attach(device_t);
109 static int      my_detach(device_t);
110 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
111 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
112 static void     my_rxeof(struct my_softc *);
113 static void     my_txeof(struct my_softc *);
114 static void     my_txeoc(struct my_softc *);
115 static void     my_intr(void *);
116 static void     my_start(if_t);
117 static void     my_start_locked(if_t);
118 static int      my_ioctl(if_t, u_long, caddr_t);
119 static void     my_init(void *);
120 static void     my_init_locked(struct my_softc *);
121 static void     my_stop(struct my_softc *);
122 static void     my_autoneg_timeout(void *);
123 static void     my_watchdog(void *);
124 static int      my_shutdown(device_t);
125 static int      my_ifmedia_upd(if_t);
126 static void     my_ifmedia_sts(if_t, struct ifmediareq *);
127 static u_int16_t my_phy_readreg(struct my_softc *, int);
128 static void     my_phy_writereg(struct my_softc *, int, int);
129 static void     my_autoneg_xmit(struct my_softc *);
130 static void     my_autoneg_mii(struct my_softc *, int, int);
131 static void     my_setmode_mii(struct my_softc *, int);
132 static void     my_getmode_mii(struct my_softc *);
133 static void     my_setcfg(struct my_softc *, int);
134 static void     my_setmulti(struct my_softc *);
135 static void     my_reset(struct my_softc *);
136 static int      my_list_rx_init(struct my_softc *);
137 static int      my_list_tx_init(struct my_softc *);
138 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
139 
140 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
141 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
142 
143 static device_method_t my_methods[] = {
144 	/* Device interface */
145 	DEVMETHOD(device_probe, my_probe),
146 	DEVMETHOD(device_attach, my_attach),
147 	DEVMETHOD(device_detach, my_detach),
148 	DEVMETHOD(device_shutdown, my_shutdown),
149 
150 	DEVMETHOD_END
151 };
152 
153 static driver_t my_driver = {
154 	"my",
155 	my_methods,
156 	sizeof(struct my_softc)
157 };
158 
159 DRIVER_MODULE(my, pci, my_driver, 0, 0);
160 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, my, my_devs,
161     nitems(my_devs) - 1);
162 MODULE_DEPEND(my, pci, 1, 1, 1);
163 MODULE_DEPEND(my, ether, 1, 1, 1);
164 
165 static long
166 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
167 {
168 	long            miir;
169 	int             i;
170 	int             mask, data;
171 
172 	MY_LOCK_ASSERT(sc);
173 
174 	/* enable MII output */
175 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
176 	miir &= 0xfffffff0;
177 
178 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
179 
180 	/* send 32 1's preamble */
181 	for (i = 0; i < 32; i++) {
182 		/* low MDC; MDO is already high (miir) */
183 		miir &= ~MY_MASK_MIIR_MII_MDC;
184 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
185 
186 		/* high MDC */
187 		miir |= MY_MASK_MIIR_MII_MDC;
188 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
189 	}
190 
191 	/* calculate ST+OP+PHYAD+REGAD+TA */
192 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
193 
194 	/* sent out */
195 	mask = 0x8000;
196 	while (mask) {
197 		/* low MDC, prepare MDO */
198 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
199 		if (mask & data)
200 			miir |= MY_MASK_MIIR_MII_MDO;
201 
202 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
203 		/* high MDC */
204 		miir |= MY_MASK_MIIR_MII_MDC;
205 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
206 		DELAY(30);
207 
208 		/* next */
209 		mask >>= 1;
210 		if (mask == 0x2 && opcode == MY_OP_READ)
211 			miir &= ~MY_MASK_MIIR_MII_WRITE;
212 	}
213 
214 	return miir;
215 }
216 
217 static u_int16_t
218 my_phy_readreg(struct my_softc * sc, int reg)
219 {
220 	long            miir;
221 	int             mask, data;
222 
223 	MY_LOCK_ASSERT(sc);
224 
225 	if (sc->my_info->my_did == MTD803ID)
226 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
227 	else {
228 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
229 
230 		/* read data */
231 		mask = 0x8000;
232 		data = 0;
233 		while (mask) {
234 			/* low MDC */
235 			miir &= ~MY_MASK_MIIR_MII_MDC;
236 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
237 
238 			/* read MDI */
239 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
240 			if (miir & MY_MASK_MIIR_MII_MDI)
241 				data |= mask;
242 
243 			/* high MDC, and wait */
244 			miir |= MY_MASK_MIIR_MII_MDC;
245 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
246 			DELAY(30);
247 
248 			/* next */
249 			mask >>= 1;
250 		}
251 
252 		/* low MDC */
253 		miir &= ~MY_MASK_MIIR_MII_MDC;
254 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
255 	}
256 
257 	return (u_int16_t) data;
258 }
259 
260 static void
261 my_phy_writereg(struct my_softc * sc, int reg, int data)
262 {
263 	long            miir;
264 	int             mask;
265 
266 	MY_LOCK_ASSERT(sc);
267 
268 	if (sc->my_info->my_did == MTD803ID)
269 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
270 	else {
271 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
272 
273 		/* write data */
274 		mask = 0x8000;
275 		while (mask) {
276 			/* low MDC, prepare MDO */
277 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
278 			if (mask & data)
279 				miir |= MY_MASK_MIIR_MII_MDO;
280 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
281 			DELAY(1);
282 
283 			/* high MDC */
284 			miir |= MY_MASK_MIIR_MII_MDC;
285 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
286 			DELAY(1);
287 
288 			/* next */
289 			mask >>= 1;
290 		}
291 
292 		/* low MDC */
293 		miir &= ~MY_MASK_MIIR_MII_MDC;
294 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
295 	}
296 	return;
297 }
298 
299 static u_int
300 my_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
301 {
302 	uint32_t *hashes = arg;
303 	int h;
304 
305 	h = ~ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
306 	if (h < 32)
307 		hashes[0] |= (1 << h);
308 	else
309 		hashes[1] |= (1 << (h - 32));
310 
311 	return (1);
312 }
313 /*
314  * Program the 64-bit multicast hash filter.
315  */
316 static void
317 my_setmulti(struct my_softc * sc)
318 {
319 	if_t		ifp;
320 	u_int32_t       hashes[2] = {0, 0};
321 	u_int32_t       rxfilt;
322 
323 	MY_LOCK_ASSERT(sc);
324 
325 	ifp = sc->my_ifp;
326 
327 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
328 
329 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
330 		rxfilt |= MY_AM;
331 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
332 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
333 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
334 
335 		return;
336 	}
337 	/* first, zot all the existing hash bits */
338 	CSR_WRITE_4(sc, MY_MAR0, 0);
339 	CSR_WRITE_4(sc, MY_MAR1, 0);
340 
341 	/* now program new ones */
342 	if (if_foreach_llmaddr(ifp, my_hash_maddr, hashes) > 0)
343 		rxfilt |= MY_AM;
344 	else
345 		rxfilt &= ~MY_AM;
346 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
347 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
348 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
349 }
350 
351 /*
352  * Initiate an autonegotiation session.
353  */
354 static void
355 my_autoneg_xmit(struct my_softc * sc)
356 {
357 	u_int16_t       phy_sts = 0;
358 
359 	MY_LOCK_ASSERT(sc);
360 
361 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
362 	DELAY(500);
363 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
364 
365 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
366 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
367 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
368 
369 	return;
370 }
371 
372 static void
373 my_autoneg_timeout(void *arg)
374 {
375 	struct my_softc *sc;
376 
377 	sc = arg;
378 	MY_LOCK_ASSERT(sc);
379 	my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
380 }
381 
382 /*
383  * Invoke autonegotiation on a PHY.
384  */
385 static void
386 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
387 {
388 	u_int16_t       phy_sts = 0, media, advert, ability;
389 	u_int16_t       ability2 = 0;
390 	if_t		ifp;
391 	struct ifmedia *ifm;
392 
393 	MY_LOCK_ASSERT(sc);
394 
395 	ifm = &sc->ifmedia;
396 	ifp = sc->my_ifp;
397 
398 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
399 
400 #ifndef FORCE_AUTONEG_TFOUR
401 	/*
402 	 * First, see if autoneg is supported. If not, there's no point in
403 	 * continuing.
404 	 */
405 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
406 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
407 		if (verbose)
408 			device_printf(sc->my_dev,
409 			    "autonegotiation not supported\n");
410 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
411 		return;
412 	}
413 #endif
414 	switch (flag) {
415 	case MY_FLAG_FORCEDELAY:
416 		/*
417 		 * XXX Never use this option anywhere but in the probe
418 		 * routine: making the kernel stop dead in its tracks for
419 		 * three whole seconds after we've gone multi-user is really
420 		 * bad manners.
421 		 */
422 		my_autoneg_xmit(sc);
423 		DELAY(5000000);
424 		break;
425 	case MY_FLAG_SCHEDDELAY:
426 		/*
427 		 * Wait for the transmitter to go idle before starting an
428 		 * autoneg session, otherwise my_start() may clobber our
429 		 * timeout, and we don't want to allow transmission during an
430 		 * autoneg session since that can screw it up.
431 		 */
432 		if (sc->my_cdata.my_tx_head != NULL) {
433 			sc->my_want_auto = 1;
434 			MY_UNLOCK(sc);
435 			return;
436 		}
437 		my_autoneg_xmit(sc);
438 		callout_reset(&sc->my_autoneg_timer, hz * 5, my_autoneg_timeout,
439 		    sc);
440 		sc->my_autoneg = 1;
441 		sc->my_want_auto = 0;
442 		return;
443 	case MY_FLAG_DELAYTIMEO:
444 		callout_stop(&sc->my_autoneg_timer);
445 		sc->my_autoneg = 0;
446 		break;
447 	default:
448 		device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag);
449 		return;
450 	}
451 
452 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
453 		if (verbose)
454 			device_printf(sc->my_dev, "autoneg complete, ");
455 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
456 	} else {
457 		if (verbose)
458 			device_printf(sc->my_dev, "autoneg not complete, ");
459 	}
460 
461 	media = my_phy_readreg(sc, PHY_BMCR);
462 
463 	/* Link is good. Report modes and set duplex mode. */
464 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
465 		if (verbose)
466 			device_printf(sc->my_dev, "link status good. ");
467 		advert = my_phy_readreg(sc, PHY_ANAR);
468 		ability = my_phy_readreg(sc, PHY_LPAR);
469 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
470 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
471 			ability2 = my_phy_readreg(sc, PHY_1000SR);
472 			if (ability2 & PHY_1000SR_1000BTXFULL) {
473 				advert = 0;
474 				ability = 0;
475 				/*
476 				 * this version did not support 1000M,
477 				 * ifm->ifm_media =
478 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
479 				 */
480 				ifm->ifm_media =
481 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
482 				media &= ~PHY_BMCR_SPEEDSEL;
483 				media |= PHY_BMCR_1000;
484 				media |= PHY_BMCR_DUPLEX;
485 				printf("(full-duplex, 1000Mbps)\n");
486 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
487 				advert = 0;
488 				ability = 0;
489 				/*
490 				 * this version did not support 1000M,
491 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
492 				 */
493 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
494 				media &= ~PHY_BMCR_SPEEDSEL;
495 				media &= ~PHY_BMCR_DUPLEX;
496 				media |= PHY_BMCR_1000;
497 				printf("(half-duplex, 1000Mbps)\n");
498 			}
499 		}
500 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
501 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
502 			media |= PHY_BMCR_SPEEDSEL;
503 			media &= ~PHY_BMCR_DUPLEX;
504 			printf("(100baseT4)\n");
505 		} else if (advert & PHY_ANAR_100BTXFULL &&
506 			   ability & PHY_ANAR_100BTXFULL) {
507 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
508 			media |= PHY_BMCR_SPEEDSEL;
509 			media |= PHY_BMCR_DUPLEX;
510 			printf("(full-duplex, 100Mbps)\n");
511 		} else if (advert & PHY_ANAR_100BTXHALF &&
512 			   ability & PHY_ANAR_100BTXHALF) {
513 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
514 			media |= PHY_BMCR_SPEEDSEL;
515 			media &= ~PHY_BMCR_DUPLEX;
516 			printf("(half-duplex, 100Mbps)\n");
517 		} else if (advert & PHY_ANAR_10BTFULL &&
518 			   ability & PHY_ANAR_10BTFULL) {
519 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
520 			media &= ~PHY_BMCR_SPEEDSEL;
521 			media |= PHY_BMCR_DUPLEX;
522 			printf("(full-duplex, 10Mbps)\n");
523 		} else if (advert) {
524 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
525 			media &= ~PHY_BMCR_SPEEDSEL;
526 			media &= ~PHY_BMCR_DUPLEX;
527 			printf("(half-duplex, 10Mbps)\n");
528 		}
529 		media &= ~PHY_BMCR_AUTONEGENBL;
530 
531 		/* Set ASIC's duplex mode to match the PHY. */
532 		my_phy_writereg(sc, PHY_BMCR, media);
533 		my_setcfg(sc, media);
534 	} else {
535 		if (verbose)
536 			device_printf(sc->my_dev, "no carrier\n");
537 	}
538 
539 	my_init_locked(sc);
540 	if (sc->my_tx_pend) {
541 		sc->my_autoneg = 0;
542 		sc->my_tx_pend = 0;
543 		my_start_locked(ifp);
544 	}
545 	return;
546 }
547 
548 /*
549  * To get PHY ability.
550  */
551 static void
552 my_getmode_mii(struct my_softc * sc)
553 {
554 	u_int16_t       bmsr;
555 	if_t		ifp;
556 
557 	MY_LOCK_ASSERT(sc);
558 	ifp = sc->my_ifp;
559 	bmsr = my_phy_readreg(sc, PHY_BMSR);
560 	if (bootverbose)
561 		device_printf(sc->my_dev, "PHY status word: %x\n", bmsr);
562 
563 	/* fallback */
564 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
565 
566 	if (bmsr & PHY_BMSR_10BTHALF) {
567 		if (bootverbose)
568 			device_printf(sc->my_dev,
569 			    "10Mbps half-duplex mode supported\n");
570 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
571 		    0, NULL);
572 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
573 	}
574 	if (bmsr & PHY_BMSR_10BTFULL) {
575 		if (bootverbose)
576 			device_printf(sc->my_dev,
577 			    "10Mbps full-duplex mode supported\n");
578 
579 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
580 		    0, NULL);
581 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
582 	}
583 	if (bmsr & PHY_BMSR_100BTXHALF) {
584 		if (bootverbose)
585 			device_printf(sc->my_dev,
586 			    "100Mbps half-duplex mode supported\n");
587 		if_setbaudrate(ifp, 100000000);
588 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
589 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
590 			    0, NULL);
591 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
592 	}
593 	if (bmsr & PHY_BMSR_100BTXFULL) {
594 		if (bootverbose)
595 			device_printf(sc->my_dev,
596 			    "100Mbps full-duplex mode supported\n");
597 		if_setbaudrate(ifp, 100000000);
598 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
599 		    0, NULL);
600 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
601 	}
602 	/* Some also support 100BaseT4. */
603 	if (bmsr & PHY_BMSR_100BT4) {
604 		if (bootverbose)
605 			device_printf(sc->my_dev, "100baseT4 mode supported\n");
606 		if_setbaudrate(ifp, 100000000);
607 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
608 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
609 #ifdef FORCE_AUTONEG_TFOUR
610 		if (bootverbose)
611 			device_printf(sc->my_dev,
612 			    "forcing on autoneg support for BT4\n");
613 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
614 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
615 #endif
616 	}
617 #if 0				/* this version did not support 1000M, */
618 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
619 		if (bootverbose)
620 			device_printf(sc->my_dev,
621 			    "1000Mbps half-duplex mode supported\n");
622 
623 		if_setbaudrate(ifp, 1000000000);
624 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
625 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
626 		    0, NULL);
627 		if (bootverbose)
628 			device_printf(sc->my_dev,
629 			    "1000Mbps full-duplex mode supported\n");
630 		if_setbaudrate(ifp, 1000000000);
631 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
632 		    0, NULL);
633 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
634 	}
635 #endif
636 	if (bmsr & PHY_BMSR_CANAUTONEG) {
637 		if (bootverbose)
638 			device_printf(sc->my_dev, "autoneg supported\n");
639 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
640 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
641 	}
642 	return;
643 }
644 
645 /*
646  * Set speed and duplex mode.
647  */
648 static void
649 my_setmode_mii(struct my_softc * sc, int media)
650 {
651 	u_int16_t       bmcr;
652 
653 	MY_LOCK_ASSERT(sc);
654 	/*
655 	 * If an autoneg session is in progress, stop it.
656 	 */
657 	if (sc->my_autoneg) {
658 		device_printf(sc->my_dev, "canceling autoneg session\n");
659 		callout_stop(&sc->my_autoneg_timer);
660 		sc->my_autoneg = sc->my_want_auto = 0;
661 		bmcr = my_phy_readreg(sc, PHY_BMCR);
662 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
663 		my_phy_writereg(sc, PHY_BMCR, bmcr);
664 	}
665 	device_printf(sc->my_dev, "selecting MII, ");
666 	bmcr = my_phy_readreg(sc, PHY_BMCR);
667 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
668 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
669 
670 #if 0				/* this version did not support 1000M, */
671 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
672 		printf("1000Mbps/T4, half-duplex\n");
673 		bmcr &= ~PHY_BMCR_SPEEDSEL;
674 		bmcr &= ~PHY_BMCR_DUPLEX;
675 		bmcr |= PHY_BMCR_1000;
676 	}
677 #endif
678 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
679 		printf("100Mbps/T4, half-duplex\n");
680 		bmcr |= PHY_BMCR_SPEEDSEL;
681 		bmcr &= ~PHY_BMCR_DUPLEX;
682 	}
683 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
684 		printf("100Mbps, ");
685 		bmcr |= PHY_BMCR_SPEEDSEL;
686 	}
687 	if (IFM_SUBTYPE(media) == IFM_10_T) {
688 		printf("10Mbps, ");
689 		bmcr &= ~PHY_BMCR_SPEEDSEL;
690 	}
691 	if ((media & IFM_GMASK) == IFM_FDX) {
692 		printf("full duplex\n");
693 		bmcr |= PHY_BMCR_DUPLEX;
694 	} else {
695 		printf("half duplex\n");
696 		bmcr &= ~PHY_BMCR_DUPLEX;
697 	}
698 	my_phy_writereg(sc, PHY_BMCR, bmcr);
699 	my_setcfg(sc, bmcr);
700 	return;
701 }
702 
703 /*
704  * The Myson manual states that in order to fiddle with the 'full-duplex' and
705  * '100Mbps' bits in the netconfig register, we first have to put the
706  * transmit and/or receive logic in the idle state.
707  */
708 static void
709 my_setcfg(struct my_softc * sc, int bmcr)
710 {
711 	int             i, restart = 0;
712 
713 	MY_LOCK_ASSERT(sc);
714 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
715 		restart = 1;
716 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
717 		for (i = 0; i < MY_TIMEOUT; i++) {
718 			DELAY(10);
719 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
720 			    (MY_TXRUN | MY_RXRUN)))
721 				break;
722 		}
723 		if (i == MY_TIMEOUT)
724 			device_printf(sc->my_dev,
725 			    "failed to force tx and rx to idle \n");
726 	}
727 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
728 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
729 	if (bmcr & PHY_BMCR_1000)
730 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
731 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
732 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
733 	if (bmcr & PHY_BMCR_DUPLEX)
734 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
735 	else
736 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
737 	if (restart)
738 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
739 	return;
740 }
741 
742 static void
743 my_reset(struct my_softc * sc)
744 {
745 	int    i;
746 
747 	MY_LOCK_ASSERT(sc);
748 	MY_SETBIT(sc, MY_BCR, MY_SWR);
749 	for (i = 0; i < MY_TIMEOUT; i++) {
750 		DELAY(10);
751 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
752 			break;
753 	}
754 	if (i == MY_TIMEOUT)
755 		device_printf(sc->my_dev, "reset never completed!\n");
756 
757 	/* Wait a little while for the chip to get its brains in order. */
758 	DELAY(1000);
759 	return;
760 }
761 
762 /*
763  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
764  * list and return a device name if we find a match.
765  */
766 static int
767 my_probe(device_t dev)
768 {
769 	struct my_type *t;
770 
771 	t = my_devs;
772 	while (t->my_name != NULL) {
773 		if ((pci_get_vendor(dev) == t->my_vid) &&
774 		    (pci_get_device(dev) == t->my_did)) {
775 			device_set_desc(dev, t->my_name);
776 			my_info_tmp = t;
777 			return (BUS_PROBE_DEFAULT);
778 		}
779 		t++;
780 	}
781 	return (ENXIO);
782 }
783 
784 /*
785  * Attach the interface. Allocate softc structures, do ifmedia setup and
786  * ethernet/BPF attach.
787  */
788 static int
789 my_attach(device_t dev)
790 {
791 	int             i;
792 	u_char          eaddr[ETHER_ADDR_LEN];
793 	u_int32_t       iobase;
794 	struct my_softc *sc;
795 	if_t		ifp;
796 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
797 	unsigned int    round;
798 	caddr_t         roundptr;
799 	struct my_type *p;
800 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
801 	int             rid, error = 0;
802 
803 	sc = device_get_softc(dev);
804 	sc->my_dev = dev;
805 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
806 	    MTX_DEF);
807 	callout_init_mtx(&sc->my_autoneg_timer, &sc->my_mtx, 0);
808 	callout_init_mtx(&sc->my_watchdog, &sc->my_mtx, 0);
809 
810 	/*
811 	 * Map control/status registers.
812 	 */
813 	pci_enable_busmaster(dev);
814 
815 	if (my_info_tmp->my_did == MTD800ID) {
816 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
817 		if (iobase & 0x300)
818 			MY_USEIOSPACE = 0;
819 	}
820 
821 	rid = MY_RID;
822 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
823 
824 	if (sc->my_res == NULL) {
825 		device_printf(dev, "couldn't map ports/memory\n");
826 		error = ENXIO;
827 		goto destroy_mutex;
828 	}
829 	sc->my_btag = rman_get_bustag(sc->my_res);
830 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
831 
832 	rid = 0;
833 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
834 					    RF_SHAREABLE | RF_ACTIVE);
835 
836 	if (sc->my_irq == NULL) {
837 		device_printf(dev, "couldn't map interrupt\n");
838 		error = ENXIO;
839 		goto release_io;
840 	}
841 
842 	sc->my_info = my_info_tmp;
843 
844 	/* Reset the adapter. */
845 	MY_LOCK(sc);
846 	my_reset(sc);
847 	MY_UNLOCK(sc);
848 
849 	/*
850 	 * Get station address
851 	 */
852 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
853 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
854 
855 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
856 				  M_DEVBUF, M_NOWAIT);
857 	if (sc->my_ldata_ptr == NULL) {
858 		device_printf(dev, "no memory for list buffers!\n");
859 		error = ENXIO;
860 		goto release_irq;
861 	}
862 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
863 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
864 	roundptr = sc->my_ldata_ptr;
865 	for (i = 0; i < 8; i++) {
866 		if (round % 8) {
867 			round++;
868 			roundptr++;
869 		} else
870 			break;
871 	}
872 	sc->my_ldata = (struct my_list_data *) roundptr;
873 	bzero(sc->my_ldata, sizeof(struct my_list_data));
874 
875 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
876 	if (ifp == NULL) {
877 		device_printf(dev, "can not if_alloc()\n");
878 		error = ENOSPC;
879 		goto free_ldata;
880 	}
881 	if_setsoftc(ifp, sc);
882 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
883 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
884 	if_setioctlfn(ifp, my_ioctl);
885 	if_setstartfn(ifp, my_start);
886 	if_setinitfn(ifp, my_init);
887 	if_setbaudrate(ifp, 10000000);
888 	if_setsendqlen(ifp, ifqmaxlen);
889 	if_setsendqready(ifp);
890 
891 	if (sc->my_info->my_did == MTD803ID)
892 		sc->my_pinfo = my_phys;
893 	else {
894 		if (bootverbose)
895 			device_printf(dev, "probing for a PHY\n");
896 		MY_LOCK(sc);
897 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
898 			if (bootverbose)
899 				device_printf(dev, "checking address: %d\n", i);
900 			sc->my_phy_addr = i;
901 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
902 			if ((phy_sts != 0) && (phy_sts != 0xffff))
903 				break;
904 			else
905 				phy_sts = 0;
906 		}
907 		if (phy_sts) {
908 			phy_vid = my_phy_readreg(sc, PHY_VENID);
909 			phy_did = my_phy_readreg(sc, PHY_DEVID);
910 			if (bootverbose) {
911 				device_printf(dev, "found PHY at address %d, ",
912 				    sc->my_phy_addr);
913 				printf("vendor id: %x device id: %x\n",
914 				    phy_vid, phy_did);
915 			}
916 			p = my_phys;
917 			while (p->my_vid) {
918 				if (phy_vid == p->my_vid) {
919 					sc->my_pinfo = p;
920 					break;
921 				}
922 				p++;
923 			}
924 			if (sc->my_pinfo == NULL)
925 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
926 			if (bootverbose)
927 				device_printf(dev, "PHY type: %s\n",
928 				       sc->my_pinfo->my_name);
929 		} else {
930 			MY_UNLOCK(sc);
931 			device_printf(dev, "MII without any phy!\n");
932 			error = ENXIO;
933 			goto free_if;
934 		}
935 		MY_UNLOCK(sc);
936 	}
937 
938 	/* Do ifmedia setup. */
939 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
940 	MY_LOCK(sc);
941 	my_getmode_mii(sc);
942 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
943 	media = sc->ifmedia.ifm_media;
944 	my_stop(sc);
945 	MY_UNLOCK(sc);
946 	ifmedia_set(&sc->ifmedia, media);
947 
948 	ether_ifattach(ifp, eaddr);
949 
950 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
951 			       NULL, my_intr, sc, &sc->my_intrhand);
952 
953 	if (error) {
954 		device_printf(dev, "couldn't set up irq\n");
955 		goto detach_if;
956 	}
957 
958 	return (0);
959 
960 detach_if:
961 	ether_ifdetach(ifp);
962 free_if:
963 	if_free(ifp);
964 free_ldata:
965 	free(sc->my_ldata_ptr, M_DEVBUF);
966 release_irq:
967 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
968 release_io:
969 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
970 destroy_mutex:
971 	mtx_destroy(&sc->my_mtx);
972 	return (error);
973 }
974 
975 static int
976 my_detach(device_t dev)
977 {
978 	struct my_softc *sc;
979 	if_t		ifp;
980 
981 	sc = device_get_softc(dev);
982 	ifp = sc->my_ifp;
983 	ether_ifdetach(ifp);
984 	MY_LOCK(sc);
985 	my_stop(sc);
986 	MY_UNLOCK(sc);
987 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
988 	callout_drain(&sc->my_watchdog);
989 	callout_drain(&sc->my_autoneg_timer);
990 
991 	if_free(ifp);
992 	free(sc->my_ldata_ptr, M_DEVBUF);
993 
994 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
995 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
996 	mtx_destroy(&sc->my_mtx);
997 	return (0);
998 }
999 
1000 /*
1001  * Initialize the transmit descriptors.
1002  */
1003 static int
1004 my_list_tx_init(struct my_softc * sc)
1005 {
1006 	struct my_chain_data *cd;
1007 	struct my_list_data *ld;
1008 	int             i;
1009 
1010 	MY_LOCK_ASSERT(sc);
1011 	cd = &sc->my_cdata;
1012 	ld = sc->my_ldata;
1013 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1014 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1015 		if (i == (MY_TX_LIST_CNT - 1))
1016 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1017 		else
1018 			cd->my_tx_chain[i].my_nextdesc =
1019 			    &cd->my_tx_chain[i + 1];
1020 	}
1021 	cd->my_tx_free = &cd->my_tx_chain[0];
1022 	cd->my_tx_tail = cd->my_tx_head = NULL;
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1028  * arrange the descriptors in a closed ring, so that the last descriptor
1029  * points back to the first.
1030  */
1031 static int
1032 my_list_rx_init(struct my_softc * sc)
1033 {
1034 	struct my_chain_data *cd;
1035 	struct my_list_data *ld;
1036 	int             i;
1037 
1038 	MY_LOCK_ASSERT(sc);
1039 	cd = &sc->my_cdata;
1040 	ld = sc->my_ldata;
1041 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1042 		cd->my_rx_chain[i].my_ptr =
1043 		    (struct my_desc *) & ld->my_rx_list[i];
1044 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1045 			MY_UNLOCK(sc);
1046 			return (ENOBUFS);
1047 		}
1048 		if (i == (MY_RX_LIST_CNT - 1)) {
1049 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1050 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1051 		} else {
1052 			cd->my_rx_chain[i].my_nextdesc =
1053 			    &cd->my_rx_chain[i + 1];
1054 			ld->my_rx_list[i].my_next =
1055 			    vtophys(&ld->my_rx_list[i + 1]);
1056 		}
1057 	}
1058 	cd->my_rx_head = &cd->my_rx_chain[0];
1059 	return (0);
1060 }
1061 
1062 /*
1063  * Initialize an RX descriptor and attach an MBUF cluster.
1064  */
1065 static int
1066 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1067 {
1068 	struct mbuf    *m_new = NULL;
1069 
1070 	MY_LOCK_ASSERT(sc);
1071 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1072 	if (m_new == NULL) {
1073 		device_printf(sc->my_dev,
1074 		    "no memory for rx list -- packet dropped!\n");
1075 		return (ENOBUFS);
1076 	}
1077 	if (!(MCLGET(m_new, M_NOWAIT))) {
1078 		device_printf(sc->my_dev,
1079 		    "no memory for rx list -- packet dropped!\n");
1080 		m_freem(m_new);
1081 		return (ENOBUFS);
1082 	}
1083 	c->my_mbuf = m_new;
1084 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1085 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1086 	c->my_ptr->my_status = MY_OWNByNIC;
1087 	return (0);
1088 }
1089 
1090 /*
1091  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1092  * level protocols.
1093  */
1094 static void
1095 my_rxeof(struct my_softc * sc)
1096 {
1097 	struct ether_header *eh;
1098 	struct mbuf    *m;
1099 	if_t		ifp;
1100 	struct my_chain_onefrag *cur_rx;
1101 	int             total_len = 0;
1102 	u_int32_t       rxstat;
1103 
1104 	MY_LOCK_ASSERT(sc);
1105 	ifp = sc->my_ifp;
1106 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1107 	    & MY_OWNByNIC)) {
1108 		cur_rx = sc->my_cdata.my_rx_head;
1109 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1110 
1111 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1112 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1113 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1114 			continue;
1115 		}
1116 		/* No errors; receive the packet. */
1117 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1118 		total_len -= ETHER_CRC_LEN;
1119 
1120 		if (total_len < MINCLSIZE) {
1121 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1122 			    total_len, 0, ifp, NULL);
1123 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1124 			if (m == NULL) {
1125 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1126 				continue;
1127 			}
1128 		} else {
1129 			m = cur_rx->my_mbuf;
1130 			/*
1131 			 * Try to conjure up a new mbuf cluster. If that
1132 			 * fails, it means we have an out of memory condition
1133 			 * and should leave the buffer in place and continue.
1134 			 * This will result in a lost packet, but there's
1135 			 * little else we can do in this situation.
1136 			 */
1137 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1138 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1139 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1140 				continue;
1141 			}
1142 			m->m_pkthdr.rcvif = ifp;
1143 			m->m_pkthdr.len = m->m_len = total_len;
1144 		}
1145 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1146 		eh = mtod(m, struct ether_header *);
1147 #if NBPFILTER > 0
1148 		/*
1149 		 * Handle BPF listeners. Let the BPF user see the packet, but
1150 		 * don't pass it up to the ether_input() layer unless it's a
1151 		 * broadcast packet, multicast packet, matches our ethernet
1152 		 * address or the interface is in promiscuous mode.
1153 		 */
1154 		if (bpf_peers_present_if(ifp)) {
1155 			bpf_mtap_if(ifp, m);
1156 			if (if_getflags(ifp) & IFF_PROMISC &&
1157 			    (bcmp(eh->ether_dhost, if_getlladdr(sc->my_ifp),
1158 				ETHER_ADDR_LEN) &&
1159 			     (eh->ether_dhost[0] & 1) == 0)) {
1160 				m_freem(m);
1161 				continue;
1162 			}
1163 		}
1164 #endif
1165 		MY_UNLOCK(sc);
1166 		if_input(ifp, m);
1167 		MY_LOCK(sc);
1168 	}
1169 	return;
1170 }
1171 
1172 /*
1173  * A frame was downloaded to the chip. It's safe for us to clean up the list
1174  * buffers.
1175  */
1176 static void
1177 my_txeof(struct my_softc * sc)
1178 {
1179 	struct my_chain *cur_tx;
1180 	if_t		ifp;
1181 
1182 	MY_LOCK_ASSERT(sc);
1183 	ifp = sc->my_ifp;
1184 	/* Clear the timeout timer. */
1185 	sc->my_timer = 0;
1186 	if (sc->my_cdata.my_tx_head == NULL) {
1187 		return;
1188 	}
1189 	/*
1190 	 * Go through our tx list and free mbufs for those frames that have
1191 	 * been transmitted.
1192 	 */
1193 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1194 		u_int32_t       txstat;
1195 
1196 		cur_tx = sc->my_cdata.my_tx_head;
1197 		txstat = MY_TXSTATUS(cur_tx);
1198 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1199 			break;
1200 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1201 			if (txstat & MY_TXERR) {
1202 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1203 				if (txstat & MY_EC) /* excessive collision */
1204 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1205 				if (txstat & MY_LC)	/* late collision */
1206 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1207 			}
1208 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1209 			    (txstat & MY_NCRMASK) >> MY_NCRShift);
1210 		}
1211 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1212 		m_freem(cur_tx->my_mbuf);
1213 		cur_tx->my_mbuf = NULL;
1214 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1215 			sc->my_cdata.my_tx_head = NULL;
1216 			sc->my_cdata.my_tx_tail = NULL;
1217 			break;
1218 		}
1219 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1220 	}
1221 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1222 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (CSR_READ_4(sc, MY_TSR) & MY_NCRMask));
1223 	}
1224 	return;
1225 }
1226 
1227 /*
1228  * TX 'end of channel' interrupt handler.
1229  */
1230 static void
1231 my_txeoc(struct my_softc * sc)
1232 {
1233 	if_t		ifp;
1234 
1235 	MY_LOCK_ASSERT(sc);
1236 	ifp = sc->my_ifp;
1237 	sc->my_timer = 0;
1238 	if (sc->my_cdata.my_tx_head == NULL) {
1239 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1240 		sc->my_cdata.my_tx_tail = NULL;
1241 		if (sc->my_want_auto)
1242 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1243 	} else {
1244 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1245 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1246 			sc->my_timer = 5;
1247 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1248 		}
1249 	}
1250 	return;
1251 }
1252 
1253 static void
1254 my_intr(void *arg)
1255 {
1256 	struct my_softc *sc;
1257 	if_t		ifp;
1258 	u_int32_t       status;
1259 
1260 	sc = arg;
1261 	MY_LOCK(sc);
1262 	ifp = sc->my_ifp;
1263 	if (!(if_getflags(ifp) & IFF_UP)) {
1264 		MY_UNLOCK(sc);
1265 		return;
1266 	}
1267 	/* Disable interrupts. */
1268 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1269 
1270 	for (;;) {
1271 		status = CSR_READ_4(sc, MY_ISR);
1272 		status &= MY_INTRS;
1273 		if (status)
1274 			CSR_WRITE_4(sc, MY_ISR, status);
1275 		else
1276 			break;
1277 
1278 		if (status & MY_RI)	/* receive interrupt */
1279 			my_rxeof(sc);
1280 
1281 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1282 			/* rx buffer unavailable or rx error */
1283 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1284 #ifdef foo
1285 			my_stop(sc);
1286 			my_reset(sc);
1287 			my_init_locked(sc);
1288 #endif
1289 		}
1290 		if (status & MY_TI)	/* tx interrupt */
1291 			my_txeof(sc);
1292 		if (status & MY_ETI)	/* tx early interrupt */
1293 			my_txeof(sc);
1294 		if (status & MY_TBU)	/* tx buffer unavailable */
1295 			my_txeoc(sc);
1296 
1297 #if 0				/* 90/1/18 delete */
1298 		if (status & MY_FBE) {
1299 			my_reset(sc);
1300 			my_init_locked(sc);
1301 		}
1302 #endif
1303 	}
1304 
1305 	/* Re-enable interrupts. */
1306 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1307 	if (!if_sendq_empty(ifp))
1308 		my_start_locked(ifp);
1309 	MY_UNLOCK(sc);
1310 	return;
1311 }
1312 
1313 /*
1314  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1315  * pointers to the fragment pointers.
1316  */
1317 static int
1318 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1319 {
1320 	struct my_desc *f = NULL;
1321 	int             total_len;
1322 	struct mbuf    *m, *m_new = NULL;
1323 
1324 	MY_LOCK_ASSERT(sc);
1325 	/* calculate the total tx pkt length */
1326 	total_len = 0;
1327 	for (m = m_head; m != NULL; m = m->m_next)
1328 		total_len += m->m_len;
1329 	/*
1330 	 * Start packing the mbufs in this chain into the fragment pointers.
1331 	 * Stop when we run out of fragments or hit the end of the mbuf
1332 	 * chain.
1333 	 */
1334 	m = m_head;
1335 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1336 	if (m_new == NULL) {
1337 		device_printf(sc->my_dev, "no memory for tx list");
1338 		return (1);
1339 	}
1340 	if (m_head->m_pkthdr.len > MHLEN) {
1341 		if (!(MCLGET(m_new, M_NOWAIT))) {
1342 			m_freem(m_new);
1343 			device_printf(sc->my_dev, "no memory for tx list");
1344 			return (1);
1345 		}
1346 	}
1347 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1348 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1349 	m_freem(m_head);
1350 	m_head = m_new;
1351 	f = &c->my_ptr->my_frag[0];
1352 	f->my_status = 0;
1353 	f->my_data = vtophys(mtod(m_new, caddr_t));
1354 	total_len = m_new->m_len;
1355 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1356 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1357 	f->my_ctl |= total_len;	/* buffer size */
1358 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1359 	if (sc->my_info->my_did == MTD891ID)
1360 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1361 	c->my_mbuf = m_head;
1362 	c->my_lastdesc = 0;
1363 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1364 	return (0);
1365 }
1366 
1367 /*
1368  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1369  * to the mbuf data regions directly in the transmit lists. We also save a
1370  * copy of the pointers since the transmit list fragment pointers are
1371  * physical addresses.
1372  */
1373 static void
1374 my_start(if_t ifp)
1375 {
1376 	struct my_softc *sc;
1377 
1378 	sc = if_getsoftc(ifp);
1379 	MY_LOCK(sc);
1380 	my_start_locked(ifp);
1381 	MY_UNLOCK(sc);
1382 }
1383 
1384 static void
1385 my_start_locked(if_t ifp)
1386 {
1387 	struct my_softc *sc;
1388 	struct mbuf    *m_head = NULL;
1389 	struct my_chain *cur_tx = NULL, *start_tx;
1390 
1391 	sc = if_getsoftc(ifp);
1392 	MY_LOCK_ASSERT(sc);
1393 	if (sc->my_autoneg) {
1394 		sc->my_tx_pend = 1;
1395 		return;
1396 	}
1397 	/*
1398 	 * Check for an available queue slot. If there are none, punt.
1399 	 */
1400 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1401 		if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1402 		return;
1403 	}
1404 	start_tx = sc->my_cdata.my_tx_free;
1405 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1406 		m_head = if_dequeue(ifp);
1407 		if (m_head == NULL)
1408 			break;
1409 
1410 		/* Pick a descriptor off the free list. */
1411 		cur_tx = sc->my_cdata.my_tx_free;
1412 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1413 
1414 		/* Pack the data into the descriptor. */
1415 		my_encap(sc, cur_tx, m_head);
1416 
1417 		if (cur_tx != start_tx)
1418 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1419 #if NBPFILTER > 0
1420 		/*
1421 		 * If there's a BPF listener, bounce a copy of this frame to
1422 		 * him.
1423 		 */
1424 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1425 #endif
1426 	}
1427 	/*
1428 	 * If there are no packets queued, bail.
1429 	 */
1430 	if (cur_tx == NULL) {
1431 		return;
1432 	}
1433 	/*
1434 	 * Place the request for the upload interrupt in the last descriptor
1435 	 * in the chain. This way, if we're chaining several packets at once,
1436 	 * we'll only get an interrupt once for the whole chain rather than
1437 	 * once for each packet.
1438 	 */
1439 	MY_TXCTL(cur_tx) |= MY_TXIC;
1440 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1441 	sc->my_cdata.my_tx_tail = cur_tx;
1442 	if (sc->my_cdata.my_tx_head == NULL)
1443 		sc->my_cdata.my_tx_head = start_tx;
1444 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1445 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1446 
1447 	/*
1448 	 * Set a timeout in case the chip goes out to lunch.
1449 	 */
1450 	sc->my_timer = 5;
1451 	return;
1452 }
1453 
1454 static void
1455 my_init(void *xsc)
1456 {
1457 	struct my_softc *sc = xsc;
1458 
1459 	MY_LOCK(sc);
1460 	my_init_locked(sc);
1461 	MY_UNLOCK(sc);
1462 }
1463 
1464 static void
1465 my_init_locked(struct my_softc *sc)
1466 {
1467 	if_t		ifp = sc->my_ifp;
1468 	u_int16_t       phy_bmcr = 0;
1469 
1470 	MY_LOCK_ASSERT(sc);
1471 	if (sc->my_autoneg) {
1472 		return;
1473 	}
1474 	if (sc->my_pinfo != NULL)
1475 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1476 	/*
1477 	 * Cancel pending I/O and free all RX/TX buffers.
1478 	 */
1479 	my_stop(sc);
1480 	my_reset(sc);
1481 
1482 	/*
1483 	 * Set cache alignment and burst length.
1484 	 */
1485 #if 0				/* 89/9/1 modify,  */
1486 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1487 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1488 #endif
1489 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1490 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1491 	/*
1492 	 * 89/12/29 add, for mtd891,
1493 	 */
1494 	if (sc->my_info->my_did == MTD891ID) {
1495 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1496 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1497 	}
1498 	my_setcfg(sc, phy_bmcr);
1499 	/* Init circular RX list. */
1500 	if (my_list_rx_init(sc) == ENOBUFS) {
1501 		device_printf(sc->my_dev, "init failed: no memory for rx buffers\n");
1502 		my_stop(sc);
1503 		return;
1504 	}
1505 	/* Init TX descriptors. */
1506 	my_list_tx_init(sc);
1507 
1508 	/* If we want promiscuous mode, set the allframes bit. */
1509 	if (if_getflags(ifp) & IFF_PROMISC)
1510 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1511 	else
1512 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1513 
1514 	/*
1515 	 * Set capture broadcast bit to capture broadcast frames.
1516 	 */
1517 	if (if_getflags(ifp) & IFF_BROADCAST)
1518 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1519 	else
1520 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1521 
1522 	/*
1523 	 * Program the multicast filter, if necessary.
1524 	 */
1525 	my_setmulti(sc);
1526 
1527 	/*
1528 	 * Load the address of the RX list.
1529 	 */
1530 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1531 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1532 
1533 	/*
1534 	 * Enable interrupts.
1535 	 */
1536 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1537 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1538 
1539 	/* Enable receiver and transmitter. */
1540 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1541 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1542 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1543 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1544 
1545 	/* Restore state of BMCR */
1546 	if (sc->my_pinfo != NULL)
1547 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1548 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1549 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1550 
1551 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1552 	return;
1553 }
1554 
1555 /*
1556  * Set media options.
1557  */
1558 
1559 static int
1560 my_ifmedia_upd(if_t ifp)
1561 {
1562 	struct my_softc *sc;
1563 	struct ifmedia *ifm;
1564 
1565 	sc = if_getsoftc(ifp);
1566 	MY_LOCK(sc);
1567 	ifm = &sc->ifmedia;
1568 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1569 		MY_UNLOCK(sc);
1570 		return (EINVAL);
1571 	}
1572 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1573 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1574 	else
1575 		my_setmode_mii(sc, ifm->ifm_media);
1576 	MY_UNLOCK(sc);
1577 	return (0);
1578 }
1579 
1580 /*
1581  * Report current media status.
1582  */
1583 
1584 static void
1585 my_ifmedia_sts(if_t ifp, struct ifmediareq * ifmr)
1586 {
1587 	struct my_softc *sc;
1588 	u_int16_t advert = 0, ability = 0;
1589 
1590 	sc = if_getsoftc(ifp);
1591 	MY_LOCK(sc);
1592 	ifmr->ifm_active = IFM_ETHER;
1593 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1594 #if 0				/* this version did not support 1000M, */
1595 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1596 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1597 #endif
1598 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1599 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1600 		else
1601 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1602 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1603 			ifmr->ifm_active |= IFM_FDX;
1604 		else
1605 			ifmr->ifm_active |= IFM_HDX;
1606 
1607 		MY_UNLOCK(sc);
1608 		return;
1609 	}
1610 	ability = my_phy_readreg(sc, PHY_LPAR);
1611 	advert = my_phy_readreg(sc, PHY_ANAR);
1612 
1613 #if 0				/* this version did not support 1000M, */
1614 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1615 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1616 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1617 			advert = 0;
1618 			ability = 0;
1619 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1620 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1621 			advert = 0;
1622 			ability = 0;
1623 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1624 		}
1625 	}
1626 #endif
1627 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1628 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1629 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1630 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1631 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1632 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1633 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1634 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1635 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1636 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1637 	MY_UNLOCK(sc);
1638 	return;
1639 }
1640 
1641 static int
1642 my_ioctl(if_t ifp, u_long command, caddr_t data)
1643 {
1644 	struct my_softc *sc = if_getsoftc(ifp);
1645 	struct ifreq   *ifr = (struct ifreq *) data;
1646 	int             error;
1647 
1648 	switch (command) {
1649 	case SIOCSIFFLAGS:
1650 		MY_LOCK(sc);
1651 		if (if_getflags(ifp) & IFF_UP)
1652 			my_init_locked(sc);
1653 		else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1654 			my_stop(sc);
1655 		MY_UNLOCK(sc);
1656 		error = 0;
1657 		break;
1658 	case SIOCADDMULTI:
1659 	case SIOCDELMULTI:
1660 		MY_LOCK(sc);
1661 		my_setmulti(sc);
1662 		MY_UNLOCK(sc);
1663 		error = 0;
1664 		break;
1665 	case SIOCGIFMEDIA:
1666 	case SIOCSIFMEDIA:
1667 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1668 		break;
1669 	default:
1670 		error = ether_ioctl(ifp, command, data);
1671 		break;
1672 	}
1673 	return (error);
1674 }
1675 
1676 static void
1677 my_watchdog(void *arg)
1678 {
1679 	struct my_softc *sc;
1680 	if_t		ifp;
1681 
1682 	sc = arg;
1683 	MY_LOCK_ASSERT(sc);
1684 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1685 	if (sc->my_timer == 0 || --sc->my_timer > 0)
1686 		return;
1687 
1688 	ifp = sc->my_ifp;
1689 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1690 	if_printf(ifp, "watchdog timeout\n");
1691 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1692 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1693 	my_stop(sc);
1694 	my_reset(sc);
1695 	my_init_locked(sc);
1696 	if (!if_sendq_empty(ifp))
1697 		my_start_locked(ifp);
1698 }
1699 
1700 /*
1701  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1702  */
1703 static void
1704 my_stop(struct my_softc * sc)
1705 {
1706 	int    i;
1707 	if_t   ifp;
1708 
1709 	MY_LOCK_ASSERT(sc);
1710 	ifp = sc->my_ifp;
1711 
1712 	callout_stop(&sc->my_autoneg_timer);
1713 	callout_stop(&sc->my_watchdog);
1714 
1715 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1716 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1717 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1718 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1719 
1720 	/*
1721 	 * Free data in the RX lists.
1722 	 */
1723 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1724 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1725 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1726 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1727 		}
1728 	}
1729 	bzero((char *)&sc->my_ldata->my_rx_list,
1730 	    sizeof(sc->my_ldata->my_rx_list));
1731 	/*
1732 	 * Free the TX list buffers.
1733 	 */
1734 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1735 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1736 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1737 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1738 		}
1739 	}
1740 	bzero((char *)&sc->my_ldata->my_tx_list,
1741 	    sizeof(sc->my_ldata->my_tx_list));
1742 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1743 	return;
1744 }
1745 
1746 /*
1747  * Stop all chip I/O so that the kernel's probe routines don't get confused
1748  * by errant DMAs when rebooting.
1749  */
1750 static int
1751 my_shutdown(device_t dev)
1752 {
1753 	struct my_softc *sc;
1754 
1755 	sc = device_get_softc(dev);
1756 	MY_LOCK(sc);
1757 	my_stop(sc);
1758 	MY_UNLOCK(sc);
1759 	return 0;
1760 }
1761