xref: /freebsd/sys/dev/my/if_my.c (revision f0adf7f5cdd241db2f2c817683191a6ef64a4e95)
1 /*-
2  * Written by: yen_cw@myson.com.tw
3  * Copyright (c) 2002 Myson Technology Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/types.h>
42 #include <sys/bus.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 
47 #define NBPFILTER	1
48 
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/bpf.h>
55 
56 #include <vm/vm.h>		/* for vtophys */
57 #include <vm/pmap.h>		/* for vtophys */
58 #include <machine/clock.h>	/* for DELAY */
59 #include <machine/bus_memio.h>
60 #include <machine/bus_pio.h>
61 #include <machine/bus.h>
62 #include <machine/resource.h>
63 #include <sys/bus.h>
64 #include <sys/rman.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 
72 #include "miibus_if.h"
73 
74 /*
75  * #define MY_USEIOSPACE
76  */
77 
78 static int      MY_USEIOSPACE = 1;
79 
80 #if (MY_USEIOSPACE)
81 #define MY_RES                  SYS_RES_IOPORT
82 #define MY_RID                  MY_PCI_LOIO
83 #else
84 #define MY_RES                  SYS_RES_MEMORY
85 #define MY_RID                  MY_PCI_LOMEM
86 #endif
87 
88 
89 #include <dev/my/if_myreg.h>
90 
91 #ifndef lint
92 static          const char rcsid[] =
93 "$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $";
94 #endif
95 
96 /*
97  * Various supported device vendors/types and their names.
98  */
99 struct my_type *my_info_tmp;
100 static struct my_type my_devs[] = {
101 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
102 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
103 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
104 	{0, 0, NULL}
105 };
106 
107 /*
108  * Various supported PHY vendors/types and their names. Note that this driver
109  * will work with pretty much any MII-compliant PHY, so failure to positively
110  * identify the chip is not a fatal error.
111  */
112 static struct my_type my_phys[] = {
113 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
114 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
115 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
116 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
117 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
118 	{0, 0, "<MII-compliant physical interface>"}
119 };
120 
121 static int      my_probe(device_t);
122 static int      my_attach(device_t);
123 static int      my_detach(device_t);
124 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
125 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
126 static void     my_rxeof(struct my_softc *);
127 static void     my_txeof(struct my_softc *);
128 static void     my_txeoc(struct my_softc *);
129 static void     my_intr(void *);
130 static void     my_start(struct ifnet *);
131 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
132 static void     my_init(void *);
133 static void     my_stop(struct my_softc *);
134 static void     my_watchdog(struct ifnet *);
135 static void     my_shutdown(device_t);
136 static int      my_ifmedia_upd(struct ifnet *);
137 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138 static u_int16_t my_phy_readreg(struct my_softc *, int);
139 static void     my_phy_writereg(struct my_softc *, int, int);
140 static void     my_autoneg_xmit(struct my_softc *);
141 static void     my_autoneg_mii(struct my_softc *, int, int);
142 static void     my_setmode_mii(struct my_softc *, int);
143 static void     my_getmode_mii(struct my_softc *);
144 static void     my_setcfg(struct my_softc *, int);
145 static void     my_setmulti(struct my_softc *);
146 static void     my_reset(struct my_softc *);
147 static int      my_list_rx_init(struct my_softc *);
148 static int      my_list_tx_init(struct my_softc *);
149 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
150 
151 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
152 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
153 
154 static device_method_t my_methods[] = {
155 	/* Device interface */
156 	DEVMETHOD(device_probe, my_probe),
157 	DEVMETHOD(device_attach, my_attach),
158 	DEVMETHOD(device_detach, my_detach),
159 	DEVMETHOD(device_shutdown, my_shutdown),
160 
161 	{0, 0}
162 };
163 
164 static driver_t my_driver = {
165 	"my",
166 	my_methods,
167 	sizeof(struct my_softc)
168 };
169 
170 static devclass_t my_devclass;
171 
172 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
173 MODULE_DEPEND(my, pci, 1, 1, 1);
174 MODULE_DEPEND(my, ether, 1, 1, 1);
175 
176 static long
177 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
178 {
179 	long            miir;
180 	int             i;
181 	int             mask, data;
182 
183 	MY_LOCK(sc);
184 
185 	/* enable MII output */
186 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
187 	miir &= 0xfffffff0;
188 
189 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
190 
191 	/* send 32 1's preamble */
192 	for (i = 0; i < 32; i++) {
193 		/* low MDC; MDO is already high (miir) */
194 		miir &= ~MY_MASK_MIIR_MII_MDC;
195 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
196 
197 		/* high MDC */
198 		miir |= MY_MASK_MIIR_MII_MDC;
199 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
200 	}
201 
202 	/* calculate ST+OP+PHYAD+REGAD+TA */
203 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
204 
205 	/* sent out */
206 	mask = 0x8000;
207 	while (mask) {
208 		/* low MDC, prepare MDO */
209 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
210 		if (mask & data)
211 			miir |= MY_MASK_MIIR_MII_MDO;
212 
213 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
214 		/* high MDC */
215 		miir |= MY_MASK_MIIR_MII_MDC;
216 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
217 		DELAY(30);
218 
219 		/* next */
220 		mask >>= 1;
221 		if (mask == 0x2 && opcode == MY_OP_READ)
222 			miir &= ~MY_MASK_MIIR_MII_WRITE;
223 	}
224 
225 	MY_UNLOCK(sc);
226 	return miir;
227 }
228 
229 
230 static          u_int16_t
231 my_phy_readreg(struct my_softc * sc, int reg)
232 {
233 	long            miir;
234 	int             mask, data;
235 
236 	MY_LOCK(sc);
237 
238 	if (sc->my_info->my_did == MTD803ID)
239 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
240 	else {
241 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
242 
243 		/* read data */
244 		mask = 0x8000;
245 		data = 0;
246 		while (mask) {
247 			/* low MDC */
248 			miir &= ~MY_MASK_MIIR_MII_MDC;
249 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
250 
251 			/* read MDI */
252 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
253 			if (miir & MY_MASK_MIIR_MII_MDI)
254 				data |= mask;
255 
256 			/* high MDC, and wait */
257 			miir |= MY_MASK_MIIR_MII_MDC;
258 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
259 			DELAY(30);
260 
261 			/* next */
262 			mask >>= 1;
263 		}
264 
265 		/* low MDC */
266 		miir &= ~MY_MASK_MIIR_MII_MDC;
267 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
268 	}
269 
270 	MY_UNLOCK(sc);
271 	return (u_int16_t) data;
272 }
273 
274 
275 static void
276 my_phy_writereg(struct my_softc * sc, int reg, int data)
277 {
278 	long            miir;
279 	int             mask;
280 
281 	MY_LOCK(sc);
282 
283 	if (sc->my_info->my_did == MTD803ID)
284 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
285 	else {
286 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
287 
288 		/* write data */
289 		mask = 0x8000;
290 		while (mask) {
291 			/* low MDC, prepare MDO */
292 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
293 			if (mask & data)
294 				miir |= MY_MASK_MIIR_MII_MDO;
295 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
296 			DELAY(1);
297 
298 			/* high MDC */
299 			miir |= MY_MASK_MIIR_MII_MDC;
300 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
301 			DELAY(1);
302 
303 			/* next */
304 			mask >>= 1;
305 		}
306 
307 		/* low MDC */
308 		miir &= ~MY_MASK_MIIR_MII_MDC;
309 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
310 	}
311 	MY_UNLOCK(sc);
312 	return;
313 }
314 
315 
316 /*
317  * Program the 64-bit multicast hash filter.
318  */
319 static void
320 my_setmulti(struct my_softc * sc)
321 {
322 	struct ifnet   *ifp;
323 	int             h = 0;
324 	u_int32_t       hashes[2] = {0, 0};
325 	struct ifmultiaddr *ifma;
326 	u_int32_t       rxfilt;
327 	int             mcnt = 0;
328 
329 	MY_LOCK(sc);
330 
331 	ifp = &sc->arpcom.ac_if;
332 
333 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
334 
335 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
336 		rxfilt |= MY_AM;
337 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
338 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
339 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
340 
341 		MY_UNLOCK(sc);
342 
343 		return;
344 	}
345 	/* first, zot all the existing hash bits */
346 	CSR_WRITE_4(sc, MY_MAR0, 0);
347 	CSR_WRITE_4(sc, MY_MAR1, 0);
348 
349 	/* now program new ones */
350 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
351 		if (ifma->ifma_addr->sa_family != AF_LINK)
352 			continue;
353 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
354 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
355 		if (h < 32)
356 			hashes[0] |= (1 << h);
357 		else
358 			hashes[1] |= (1 << (h - 32));
359 		mcnt++;
360 	}
361 
362 	if (mcnt)
363 		rxfilt |= MY_AM;
364 	else
365 		rxfilt &= ~MY_AM;
366 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
367 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
368 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
369 	MY_UNLOCK(sc);
370 	return;
371 }
372 
373 /*
374  * Initiate an autonegotiation session.
375  */
376 static void
377 my_autoneg_xmit(struct my_softc * sc)
378 {
379 	u_int16_t       phy_sts = 0;
380 
381 	MY_LOCK(sc);
382 
383 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
384 	DELAY(500);
385 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
386 
387 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
388 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
389 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
390 
391 	MY_UNLOCK(sc);
392 	return;
393 }
394 
395 
396 /*
397  * Invoke autonegotiation on a PHY.
398  */
399 static void
400 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
401 {
402 	u_int16_t       phy_sts = 0, media, advert, ability;
403 	u_int16_t       ability2 = 0;
404 	struct ifnet   *ifp;
405 	struct ifmedia *ifm;
406 
407 	MY_LOCK(sc);
408 
409 	ifm = &sc->ifmedia;
410 	ifp = &sc->arpcom.ac_if;
411 
412 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
413 
414 #ifndef FORCE_AUTONEG_TFOUR
415 	/*
416 	 * First, see if autoneg is supported. If not, there's no point in
417 	 * continuing.
418 	 */
419 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
420 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
421 		if (verbose)
422 			printf("my%d: autonegotiation not supported\n",
423 			    sc->my_unit);
424 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
425 		MY_UNLOCK(sc);
426 		return;
427 	}
428 #endif
429 	switch (flag) {
430 	case MY_FLAG_FORCEDELAY:
431 		/*
432 		 * XXX Never use this option anywhere but in the probe
433 		 * routine: making the kernel stop dead in its tracks for
434 		 * three whole seconds after we've gone multi-user is really
435 		 * bad manners.
436 		 */
437 		my_autoneg_xmit(sc);
438 		DELAY(5000000);
439 		break;
440 	case MY_FLAG_SCHEDDELAY:
441 		/*
442 		 * Wait for the transmitter to go idle before starting an
443 		 * autoneg session, otherwise my_start() may clobber our
444 		 * timeout, and we don't want to allow transmission during an
445 		 * autoneg session since that can screw it up.
446 		 */
447 		if (sc->my_cdata.my_tx_head != NULL) {
448 			sc->my_want_auto = 1;
449 			MY_UNLOCK(sc);
450 			return;
451 		}
452 		my_autoneg_xmit(sc);
453 		ifp->if_timer = 5;
454 		sc->my_autoneg = 1;
455 		sc->my_want_auto = 0;
456 		MY_UNLOCK(sc);
457 		return;
458 	case MY_FLAG_DELAYTIMEO:
459 		ifp->if_timer = 0;
460 		sc->my_autoneg = 0;
461 		break;
462 	default:
463 		printf("my%d: invalid autoneg flag: %d\n", sc->my_unit, flag);
464 		MY_UNLOCK(sc);
465 		return;
466 	}
467 
468 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
469 		if (verbose)
470 			printf("my%d: autoneg complete, ", sc->my_unit);
471 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
472 	} else {
473 		if (verbose)
474 			printf("my%d: autoneg not complete, ", sc->my_unit);
475 	}
476 
477 	media = my_phy_readreg(sc, PHY_BMCR);
478 
479 	/* Link is good. Report modes and set duplex mode. */
480 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
481 		if (verbose)
482 			printf("my%d: link status good. ", sc->my_unit);
483 		advert = my_phy_readreg(sc, PHY_ANAR);
484 		ability = my_phy_readreg(sc, PHY_LPAR);
485 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
486 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
487 			ability2 = my_phy_readreg(sc, PHY_1000SR);
488 			if (ability2 & PHY_1000SR_1000BTXFULL) {
489 				advert = 0;
490 				ability = 0;
491 				/*
492 				 * this version did not support 1000M,
493 				 * ifm->ifm_media =
494 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
495 				 */
496 				ifm->ifm_media =
497 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
498 				media &= ~PHY_BMCR_SPEEDSEL;
499 				media |= PHY_BMCR_1000;
500 				media |= PHY_BMCR_DUPLEX;
501 				printf("(full-duplex, 1000Mbps)\n");
502 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
503 				advert = 0;
504 				ability = 0;
505 				/*
506 				 * this version did not support 1000M,
507 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
508 				 */
509 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
510 				media &= ~PHY_BMCR_SPEEDSEL;
511 				media &= ~PHY_BMCR_DUPLEX;
512 				media |= PHY_BMCR_1000;
513 				printf("(half-duplex, 1000Mbps)\n");
514 			}
515 		}
516 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
517 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
518 			media |= PHY_BMCR_SPEEDSEL;
519 			media &= ~PHY_BMCR_DUPLEX;
520 			printf("(100baseT4)\n");
521 		} else if (advert & PHY_ANAR_100BTXFULL &&
522 			   ability & PHY_ANAR_100BTXFULL) {
523 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
524 			media |= PHY_BMCR_SPEEDSEL;
525 			media |= PHY_BMCR_DUPLEX;
526 			printf("(full-duplex, 100Mbps)\n");
527 		} else if (advert & PHY_ANAR_100BTXHALF &&
528 			   ability & PHY_ANAR_100BTXHALF) {
529 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
530 			media |= PHY_BMCR_SPEEDSEL;
531 			media &= ~PHY_BMCR_DUPLEX;
532 			printf("(half-duplex, 100Mbps)\n");
533 		} else if (advert & PHY_ANAR_10BTFULL &&
534 			   ability & PHY_ANAR_10BTFULL) {
535 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
536 			media &= ~PHY_BMCR_SPEEDSEL;
537 			media |= PHY_BMCR_DUPLEX;
538 			printf("(full-duplex, 10Mbps)\n");
539 		} else if (advert) {
540 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
541 			media &= ~PHY_BMCR_SPEEDSEL;
542 			media &= ~PHY_BMCR_DUPLEX;
543 			printf("(half-duplex, 10Mbps)\n");
544 		}
545 		media &= ~PHY_BMCR_AUTONEGENBL;
546 
547 		/* Set ASIC's duplex mode to match the PHY. */
548 		my_phy_writereg(sc, PHY_BMCR, media);
549 		my_setcfg(sc, media);
550 	} else {
551 		if (verbose)
552 			printf("my%d: no carrier\n", sc->my_unit);
553 	}
554 
555 	my_init(sc);
556 	if (sc->my_tx_pend) {
557 		sc->my_autoneg = 0;
558 		sc->my_tx_pend = 0;
559 		my_start(ifp);
560 	}
561 	MY_UNLOCK(sc);
562 	return;
563 }
564 
565 /*
566  * To get PHY ability.
567  */
568 static void
569 my_getmode_mii(struct my_softc * sc)
570 {
571 	u_int16_t       bmsr;
572 	struct ifnet   *ifp;
573 
574 	MY_LOCK(sc);
575 	ifp = &sc->arpcom.ac_if;
576 	bmsr = my_phy_readreg(sc, PHY_BMSR);
577 	if (bootverbose)
578 		printf("my%d: PHY status word: %x\n", sc->my_unit, bmsr);
579 
580 	/* fallback */
581 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
582 
583 	if (bmsr & PHY_BMSR_10BTHALF) {
584 		if (bootverbose)
585 			printf("my%d: 10Mbps half-duplex mode supported\n",
586 			       sc->my_unit);
587 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
588 		    0, NULL);
589 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
590 	}
591 	if (bmsr & PHY_BMSR_10BTFULL) {
592 		if (bootverbose)
593 			printf("my%d: 10Mbps full-duplex mode supported\n",
594 			    sc->my_unit);
595 
596 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
597 		    0, NULL);
598 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
599 	}
600 	if (bmsr & PHY_BMSR_100BTXHALF) {
601 		if (bootverbose)
602 			printf("my%d: 100Mbps half-duplex mode supported\n",
603 			       sc->my_unit);
604 		ifp->if_baudrate = 100000000;
605 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
606 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
607 			    0, NULL);
608 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
609 	}
610 	if (bmsr & PHY_BMSR_100BTXFULL) {
611 		if (bootverbose)
612 			printf("my%d: 100Mbps full-duplex mode supported\n",
613 			    sc->my_unit);
614 		ifp->if_baudrate = 100000000;
615 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
616 		    0, NULL);
617 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
618 	}
619 	/* Some also support 100BaseT4. */
620 	if (bmsr & PHY_BMSR_100BT4) {
621 		if (bootverbose)
622 			printf("my%d: 100baseT4 mode supported\n", sc->my_unit);
623 		ifp->if_baudrate = 100000000;
624 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
625 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
626 #ifdef FORCE_AUTONEG_TFOUR
627 		if (bootverbose)
628 			printf("my%d: forcing on autoneg support for BT4\n",
629 			    sc->my_unit);
630 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
631 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
632 #endif
633 	}
634 #if 0				/* this version did not support 1000M, */
635 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
636 		if (bootverbose)
637 			printf("my%d: 1000Mbps half-duplex mode supported\n",
638 			       sc->my_unit);
639 
640 		ifp->if_baudrate = 1000000000;
641 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
642 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
643 		    0, NULL);
644 		if (bootverbose)
645 			printf("my%d: 1000Mbps full-duplex mode supported\n",
646 			   sc->my_unit);
647 		ifp->if_baudrate = 1000000000;
648 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
649 		    0, NULL);
650 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
651 	}
652 #endif
653 	if (bmsr & PHY_BMSR_CANAUTONEG) {
654 		if (bootverbose)
655 			printf("my%d: autoneg supported\n", sc->my_unit);
656 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
657 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
658 	}
659 	MY_UNLOCK(sc);
660 	return;
661 }
662 
663 /*
664  * Set speed and duplex mode.
665  */
666 static void
667 my_setmode_mii(struct my_softc * sc, int media)
668 {
669 	u_int16_t       bmcr;
670 	struct ifnet   *ifp;
671 
672 	MY_LOCK(sc);
673 	ifp = &sc->arpcom.ac_if;
674 	/*
675 	 * If an autoneg session is in progress, stop it.
676 	 */
677 	if (sc->my_autoneg) {
678 		printf("my%d: canceling autoneg session\n", sc->my_unit);
679 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
680 		bmcr = my_phy_readreg(sc, PHY_BMCR);
681 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
682 		my_phy_writereg(sc, PHY_BMCR, bmcr);
683 	}
684 	printf("my%d: selecting MII, ", sc->my_unit);
685 	bmcr = my_phy_readreg(sc, PHY_BMCR);
686 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
687 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
688 
689 #if 0				/* this version did not support 1000M, */
690 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
691 		printf("1000Mbps/T4, half-duplex\n");
692 		bmcr &= ~PHY_BMCR_SPEEDSEL;
693 		bmcr &= ~PHY_BMCR_DUPLEX;
694 		bmcr |= PHY_BMCR_1000;
695 	}
696 #endif
697 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
698 		printf("100Mbps/T4, half-duplex\n");
699 		bmcr |= PHY_BMCR_SPEEDSEL;
700 		bmcr &= ~PHY_BMCR_DUPLEX;
701 	}
702 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
703 		printf("100Mbps, ");
704 		bmcr |= PHY_BMCR_SPEEDSEL;
705 	}
706 	if (IFM_SUBTYPE(media) == IFM_10_T) {
707 		printf("10Mbps, ");
708 		bmcr &= ~PHY_BMCR_SPEEDSEL;
709 	}
710 	if ((media & IFM_GMASK) == IFM_FDX) {
711 		printf("full duplex\n");
712 		bmcr |= PHY_BMCR_DUPLEX;
713 	} else {
714 		printf("half duplex\n");
715 		bmcr &= ~PHY_BMCR_DUPLEX;
716 	}
717 	my_phy_writereg(sc, PHY_BMCR, bmcr);
718 	my_setcfg(sc, bmcr);
719 	MY_UNLOCK(sc);
720 	return;
721 }
722 
723 /*
724  * The Myson manual states that in order to fiddle with the 'full-duplex' and
725  * '100Mbps' bits in the netconfig register, we first have to put the
726  * transmit and/or receive logic in the idle state.
727  */
728 static void
729 my_setcfg(struct my_softc * sc, int bmcr)
730 {
731 	int             i, restart = 0;
732 
733 	MY_LOCK(sc);
734 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
735 		restart = 1;
736 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
737 		for (i = 0; i < MY_TIMEOUT; i++) {
738 			DELAY(10);
739 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
740 			    (MY_TXRUN | MY_RXRUN)))
741 				break;
742 		}
743 		if (i == MY_TIMEOUT)
744 			printf("my%d: failed to force tx and rx to idle \n",
745 			    sc->my_unit);
746 	}
747 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
748 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
749 	if (bmcr & PHY_BMCR_1000)
750 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
751 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
752 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
753 	if (bmcr & PHY_BMCR_DUPLEX)
754 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
755 	else
756 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
757 	if (restart)
758 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
759 	MY_UNLOCK(sc);
760 	return;
761 }
762 
763 static void
764 my_reset(struct my_softc * sc)
765 {
766 	register int    i;
767 
768 	MY_LOCK(sc);
769 	MY_SETBIT(sc, MY_BCR, MY_SWR);
770 	for (i = 0; i < MY_TIMEOUT; i++) {
771 		DELAY(10);
772 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
773 			break;
774 	}
775 	if (i == MY_TIMEOUT)
776 		printf("m0x%d: reset never completed!\n", sc->my_unit);
777 
778 	/* Wait a little while for the chip to get its brains in order. */
779 	DELAY(1000);
780 	MY_UNLOCK(sc);
781 	return;
782 }
783 
784 /*
785  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
786  * list and return a device name if we find a match.
787  */
788 static int
789 my_probe(device_t dev)
790 {
791 	struct my_type *t;
792 
793 	t = my_devs;
794 	while (t->my_name != NULL) {
795 		if ((pci_get_vendor(dev) == t->my_vid) &&
796 		    (pci_get_device(dev) == t->my_did)) {
797 			device_set_desc(dev, t->my_name);
798 			my_info_tmp = t;
799 			return (0);
800 		}
801 		t++;
802 	}
803 	return (ENXIO);
804 }
805 
806 /*
807  * Attach the interface. Allocate softc structures, do ifmedia setup and
808  * ethernet/BPF attach.
809  */
810 static int
811 my_attach(device_t dev)
812 {
813 	int             s, i;
814 	u_char          eaddr[ETHER_ADDR_LEN];
815 	u_int32_t       command, iobase;
816 	struct my_softc *sc;
817 	struct ifnet   *ifp;
818 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
819 	unsigned int    round;
820 	caddr_t         roundptr;
821 	struct my_type *p;
822 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
823 	int             rid, unit, error = 0;
824 
825 	s = splimp();
826 	sc = device_get_softc(dev);
827 	unit = device_get_unit(dev);
828 	if (sc == NULL) {
829 		printf("my%d: no memory for softc struct!\n", unit);
830 		error = ENXIO;
831 		goto fail;
832 
833 	}
834 	bzero(sc, sizeof(struct my_softc));
835 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
836 	    MTX_DEF | MTX_RECURSE);
837 	MY_LOCK(sc);
838 
839 	/*
840 	 * Map control/status registers.
841 	 */
842 #if 0
843 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
844 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
845 	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command & 0x000000ff, 4);
846 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
847 #endif
848 	command = pci_read_config(dev, PCIR_COMMAND, 4);
849 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
850 	pci_write_config(dev, PCIR_COMMAND, command & 0x000000ff, 4);
851 	command = pci_read_config(dev, PCIR_COMMAND, 4);
852 
853 	if (my_info_tmp->my_did == MTD800ID) {
854 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
855 		if (iobase & 0x300)
856 			MY_USEIOSPACE = 0;
857 	}
858 	if (MY_USEIOSPACE) {
859 		if (!(command & PCIM_CMD_PORTEN)) {
860 			printf("my%d: failed to enable I/O ports!\n", unit);
861 			free(sc, M_DEVBUF);
862 			error = ENXIO;
863 			goto fail;
864 		}
865 #if 0
866 		if (!pci_map_port(config_id, MY_PCI_LOIO, (u_int16_t *) & (sc->my_bhandle))) {
867 			printf("my%d: couldn't map ports\n", unit);
868 			error = ENXIO;
869 			goto fail;
870 		}
871 
872 		sc->my_btag = I386_BUS_SPACE_IO;
873 #endif
874 	} else {
875 		if (!(command & PCIM_CMD_MEMEN)) {
876 			printf("my%d: failed to enable memory mapping!\n",
877 			    unit);
878 			error = ENXIO;
879 			goto fail;
880 		}
881 #if 0
882 		 if (!pci_map_mem(config_id, MY_PCI_LOMEM, &vbase, &pbase)) {
883 			printf ("my%d: couldn't map memory\n", unit);
884 			error = ENXIO;
885 			goto fail;
886 		}
887 		sc->my_btag = I386_BUS_SPACE_MEM;
888 		sc->my_bhandle = vbase;
889 #endif
890 	}
891 
892 	rid = MY_RID;
893 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
894 
895 	if (sc->my_res == NULL) {
896 		printf("my%d: couldn't map ports/memory\n", unit);
897 		error = ENXIO;
898 		goto fail;
899 	}
900 	sc->my_btag = rman_get_bustag(sc->my_res);
901 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
902 
903 	rid = 0;
904 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
905 					    RF_SHAREABLE | RF_ACTIVE);
906 
907 	if (sc->my_irq == NULL) {
908 		printf("my%d: couldn't map interrupt\n", unit);
909 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
910 		error = ENXIO;
911 		goto fail;
912 	}
913 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET,
914 			       my_intr, sc, &sc->my_intrhand);
915 
916 	if (error) {
917 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
918 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
919 		printf("my%d: couldn't set up irq\n", unit);
920 		goto fail;
921 	}
922 	callout_handle_init(&sc->my_stat_ch);
923 
924 	sc->my_info = my_info_tmp;
925 
926 	/* Reset the adapter. */
927 	my_reset(sc);
928 
929 	/*
930 	 * Get station address
931 	 */
932 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
933 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
934 
935 	sc->my_unit = unit;
936 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
937 
938 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
939 				  M_DEVBUF, M_NOWAIT);
940 	if (sc->my_ldata_ptr == NULL) {
941 		free(sc, M_DEVBUF);
942 		printf("my%d: no memory for list buffers!\n", unit);
943 		error = ENXIO;
944 		goto fail;
945 	}
946 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
947 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
948 	roundptr = sc->my_ldata_ptr;
949 	for (i = 0; i < 8; i++) {
950 		if (round % 8) {
951 			round++;
952 			roundptr++;
953 		} else
954 			break;
955 	}
956 	sc->my_ldata = (struct my_list_data *) roundptr;
957 	bzero(sc->my_ldata, sizeof(struct my_list_data));
958 
959 	ifp = &sc->arpcom.ac_if;
960 	ifp->if_softc = sc;
961 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
962 	ifp->if_mtu = ETHERMTU;
963 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
964 	ifp->if_ioctl = my_ioctl;
965 	ifp->if_start = my_start;
966 	ifp->if_watchdog = my_watchdog;
967 	ifp->if_init = my_init;
968 	ifp->if_baudrate = 10000000;
969 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
970 
971 	if (sc->my_info->my_did == MTD803ID)
972 		sc->my_pinfo = my_phys;
973 	else {
974 		if (bootverbose)
975 			printf("my%d: probing for a PHY\n", sc->my_unit);
976 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
977 			if (bootverbose)
978 				printf("my%d: checking address: %d\n",
979 				    sc->my_unit, i);
980 			sc->my_phy_addr = i;
981 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
982 			if ((phy_sts != 0) && (phy_sts != 0xffff))
983 				break;
984 			else
985 				phy_sts = 0;
986 		}
987 		if (phy_sts) {
988 			phy_vid = my_phy_readreg(sc, PHY_VENID);
989 			phy_did = my_phy_readreg(sc, PHY_DEVID);
990 			if (bootverbose) {
991 				printf("my%d: found PHY at address %d, ",
992 				    sc->my_unit, sc->my_phy_addr);
993 				printf("vendor id: %x device id: %x\n",
994 				    phy_vid, phy_did);
995 			}
996 			p = my_phys;
997 			while (p->my_vid) {
998 				if (phy_vid == p->my_vid) {
999 					sc->my_pinfo = p;
1000 					break;
1001 				}
1002 				p++;
1003 			}
1004 			if (sc->my_pinfo == NULL)
1005 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
1006 			if (bootverbose)
1007 				printf("my%d: PHY type: %s\n",
1008 				       sc->my_unit, sc->my_pinfo->my_name);
1009 		} else {
1010 			printf("my%d: MII without any phy!\n", sc->my_unit);
1011 			error = ENXIO;
1012 			goto fail;
1013 		}
1014 	}
1015 
1016 	/* Do ifmedia setup. */
1017 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
1018 	my_getmode_mii(sc);
1019 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
1020 	media = sc->ifmedia.ifm_media;
1021 	my_stop(sc);
1022 	ifmedia_set(&sc->ifmedia, media);
1023 
1024 	ether_ifattach(ifp, eaddr);
1025 
1026 #if 0
1027 	at_shutdown(my_shutdown, sc, SHUTDOWN_POST_SYNC);
1028 	shutdownhook_establish(my_shutdown, sc);
1029 #endif
1030 
1031 	MY_UNLOCK(sc);
1032 	return (0);
1033 
1034 fail:
1035 	MY_UNLOCK(sc);
1036 	mtx_destroy(&sc->my_mtx);
1037 	splx(s);
1038 	return (error);
1039 }
1040 
1041 static int
1042 my_detach(device_t dev)
1043 {
1044 	struct my_softc *sc;
1045 	struct ifnet   *ifp;
1046 	int             s;
1047 
1048 	s = splimp();
1049 	sc = device_get_softc(dev);
1050 	MY_LOCK(sc);
1051 	ifp = &sc->arpcom.ac_if;
1052 	ether_ifdetach(ifp);
1053 	my_stop(sc);
1054 
1055 #if 0
1056 	bus_generic_detach(dev);
1057 	device_delete_child(dev, sc->rl_miibus);
1058 #endif
1059 
1060 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
1061 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1062 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1063 #if 0
1064 	contigfree(sc->my_cdata.my_rx_buf, MY_RXBUFLEN + 32, M_DEVBUF);
1065 #endif
1066 	free(sc, M_DEVBUF);
1067 	MY_UNLOCK(sc);
1068 	splx(s);
1069 	mtx_destroy(&sc->my_mtx);
1070 	return (0);
1071 }
1072 
1073 
1074 /*
1075  * Initialize the transmit descriptors.
1076  */
1077 static int
1078 my_list_tx_init(struct my_softc * sc)
1079 {
1080 	struct my_chain_data *cd;
1081 	struct my_list_data *ld;
1082 	int             i;
1083 
1084 	MY_LOCK(sc);
1085 	cd = &sc->my_cdata;
1086 	ld = sc->my_ldata;
1087 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1088 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1089 		if (i == (MY_TX_LIST_CNT - 1))
1090 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1091 		else
1092 			cd->my_tx_chain[i].my_nextdesc =
1093 			    &cd->my_tx_chain[i + 1];
1094 	}
1095 	cd->my_tx_free = &cd->my_tx_chain[0];
1096 	cd->my_tx_tail = cd->my_tx_head = NULL;
1097 	MY_UNLOCK(sc);
1098 	return (0);
1099 }
1100 
1101 /*
1102  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1103  * arrange the descriptors in a closed ring, so that the last descriptor
1104  * points back to the first.
1105  */
1106 static int
1107 my_list_rx_init(struct my_softc * sc)
1108 {
1109 	struct my_chain_data *cd;
1110 	struct my_list_data *ld;
1111 	int             i;
1112 
1113 	MY_LOCK(sc);
1114 	cd = &sc->my_cdata;
1115 	ld = sc->my_ldata;
1116 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1117 		cd->my_rx_chain[i].my_ptr =
1118 		    (struct my_desc *) & ld->my_rx_list[i];
1119 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1120 			MY_UNLOCK(sc);
1121 			return (ENOBUFS);
1122 		}
1123 		if (i == (MY_RX_LIST_CNT - 1)) {
1124 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1125 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1126 		} else {
1127 			cd->my_rx_chain[i].my_nextdesc =
1128 			    &cd->my_rx_chain[i + 1];
1129 			ld->my_rx_list[i].my_next =
1130 			    vtophys(&ld->my_rx_list[i + 1]);
1131 		}
1132 	}
1133 	cd->my_rx_head = &cd->my_rx_chain[0];
1134 	MY_UNLOCK(sc);
1135 	return (0);
1136 }
1137 
1138 /*
1139  * Initialize an RX descriptor and attach an MBUF cluster.
1140  */
1141 static int
1142 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1143 {
1144 	struct mbuf    *m_new = NULL;
1145 
1146 	MY_LOCK(sc);
1147 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1148 	if (m_new == NULL) {
1149 		printf("my%d: no memory for rx list -- packet dropped!\n",
1150 		       sc->my_unit);
1151 		MY_UNLOCK(sc);
1152 		return (ENOBUFS);
1153 	}
1154 	MCLGET(m_new, M_DONTWAIT);
1155 	if (!(m_new->m_flags & M_EXT)) {
1156 		printf("my%d: no memory for rx list -- packet dropped!\n",
1157 		       sc->my_unit);
1158 		m_freem(m_new);
1159 		MY_UNLOCK(sc);
1160 		return (ENOBUFS);
1161 	}
1162 	c->my_mbuf = m_new;
1163 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1164 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1165 	c->my_ptr->my_status = MY_OWNByNIC;
1166 	MY_UNLOCK(sc);
1167 	return (0);
1168 }
1169 
1170 /*
1171  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1172  * level protocols.
1173  */
1174 static void
1175 my_rxeof(struct my_softc * sc)
1176 {
1177 	struct ether_header *eh;
1178 	struct mbuf    *m;
1179 	struct ifnet   *ifp;
1180 	struct my_chain_onefrag *cur_rx;
1181 	int             total_len = 0;
1182 	u_int32_t       rxstat;
1183 
1184 	MY_LOCK(sc);
1185 	ifp = &sc->arpcom.ac_if;
1186 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1187 	    & MY_OWNByNIC)) {
1188 		cur_rx = sc->my_cdata.my_rx_head;
1189 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1190 
1191 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1192 			ifp->if_ierrors++;
1193 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1194 			continue;
1195 		}
1196 		/* No errors; receive the packet. */
1197 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1198 		total_len -= ETHER_CRC_LEN;
1199 
1200 		if (total_len < MINCLSIZE) {
1201 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1202 			    total_len, 0, ifp, NULL);
1203 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1204 			if (m == NULL) {
1205 				ifp->if_ierrors++;
1206 				continue;
1207 			}
1208 		} else {
1209 			m = cur_rx->my_mbuf;
1210 			/*
1211 			 * Try to conjure up a new mbuf cluster. If that
1212 			 * fails, it means we have an out of memory condition
1213 			 * and should leave the buffer in place and continue.
1214 			 * This will result in a lost packet, but there's
1215 			 * little else we can do in this situation.
1216 			 */
1217 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1218 				ifp->if_ierrors++;
1219 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1220 				continue;
1221 			}
1222 			m->m_pkthdr.rcvif = ifp;
1223 			m->m_pkthdr.len = m->m_len = total_len;
1224 		}
1225 		ifp->if_ipackets++;
1226 		eh = mtod(m, struct ether_header *);
1227 #if NBPFILTER > 0
1228 		/*
1229 		 * Handle BPF listeners. Let the BPF user see the packet, but
1230 		 * don't pass it up to the ether_input() layer unless it's a
1231 		 * broadcast packet, multicast packet, matches our ethernet
1232 		 * address or the interface is in promiscuous mode.
1233 		 */
1234 		if (ifp->if_bpf) {
1235 			BPF_MTAP(ifp, m);
1236 			if (ifp->if_flags & IFF_PROMISC &&
1237 			    (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1238 				ETHER_ADDR_LEN) &&
1239 			     (eh->ether_dhost[0] & 1) == 0)) {
1240 				m_freem(m);
1241 				continue;
1242 			}
1243 		}
1244 #endif
1245 		MY_UNLOCK(sc);
1246 		(*ifp->if_input)(ifp, m);
1247 		MY_LOCK(sc);
1248 	}
1249 	MY_UNLOCK(sc);
1250 	return;
1251 }
1252 
1253 
1254 /*
1255  * A frame was downloaded to the chip. It's safe for us to clean up the list
1256  * buffers.
1257  */
1258 static void
1259 my_txeof(struct my_softc * sc)
1260 {
1261 	struct my_chain *cur_tx;
1262 	struct ifnet   *ifp;
1263 
1264 	MY_LOCK(sc);
1265 	ifp = &sc->arpcom.ac_if;
1266 	/* Clear the timeout timer. */
1267 	ifp->if_timer = 0;
1268 	if (sc->my_cdata.my_tx_head == NULL) {
1269 		MY_UNLOCK(sc);
1270 		return;
1271 	}
1272 	/*
1273 	 * Go through our tx list and free mbufs for those frames that have
1274 	 * been transmitted.
1275 	 */
1276 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1277 		u_int32_t       txstat;
1278 
1279 		cur_tx = sc->my_cdata.my_tx_head;
1280 		txstat = MY_TXSTATUS(cur_tx);
1281 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1282 			break;
1283 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1284 			if (txstat & MY_TXERR) {
1285 				ifp->if_oerrors++;
1286 				if (txstat & MY_EC) /* excessive collision */
1287 					ifp->if_collisions++;
1288 				if (txstat & MY_LC)	/* late collision */
1289 					ifp->if_collisions++;
1290 			}
1291 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1292 			    MY_NCRShift;
1293 		}
1294 		ifp->if_opackets++;
1295 		m_freem(cur_tx->my_mbuf);
1296 		cur_tx->my_mbuf = NULL;
1297 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1298 			sc->my_cdata.my_tx_head = NULL;
1299 			sc->my_cdata.my_tx_tail = NULL;
1300 			break;
1301 		}
1302 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1303 	}
1304 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1305 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1306 	}
1307 	MY_UNLOCK(sc);
1308 	return;
1309 }
1310 
1311 /*
1312  * TX 'end of channel' interrupt handler.
1313  */
1314 static void
1315 my_txeoc(struct my_softc * sc)
1316 {
1317 	struct ifnet   *ifp;
1318 
1319 	MY_LOCK(sc);
1320 	ifp = &sc->arpcom.ac_if;
1321 	ifp->if_timer = 0;
1322 	if (sc->my_cdata.my_tx_head == NULL) {
1323 		ifp->if_flags &= ~IFF_OACTIVE;
1324 		sc->my_cdata.my_tx_tail = NULL;
1325 		if (sc->my_want_auto)
1326 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1327 	} else {
1328 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1329 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1330 			ifp->if_timer = 5;
1331 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1332 		}
1333 	}
1334 	MY_UNLOCK(sc);
1335 	return;
1336 }
1337 
1338 static void
1339 my_intr(void *arg)
1340 {
1341 	struct my_softc *sc;
1342 	struct ifnet   *ifp;
1343 	u_int32_t       status;
1344 
1345 	sc = arg;
1346 	MY_LOCK(sc);
1347 	ifp = &sc->arpcom.ac_if;
1348 	if (!(ifp->if_flags & IFF_UP)) {
1349 		MY_UNLOCK(sc);
1350 		return;
1351 	}
1352 	/* Disable interrupts. */
1353 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1354 
1355 	for (;;) {
1356 		status = CSR_READ_4(sc, MY_ISR);
1357 		status &= MY_INTRS;
1358 		if (status)
1359 			CSR_WRITE_4(sc, MY_ISR, status);
1360 		else
1361 			break;
1362 
1363 		if (status & MY_RI)	/* receive interrupt */
1364 			my_rxeof(sc);
1365 
1366 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1367 			/* rx buffer unavailable or rx error */
1368 			ifp->if_ierrors++;
1369 #ifdef foo
1370 			my_stop(sc);
1371 			my_reset(sc);
1372 			my_init(sc);
1373 #endif
1374 		}
1375 		if (status & MY_TI)	/* tx interrupt */
1376 			my_txeof(sc);
1377 		if (status & MY_ETI)	/* tx early interrupt */
1378 			my_txeof(sc);
1379 		if (status & MY_TBU)	/* tx buffer unavailable */
1380 			my_txeoc(sc);
1381 
1382 #if 0				/* 90/1/18 delete */
1383 		if (status & MY_FBE) {
1384 			my_reset(sc);
1385 			my_init(sc);
1386 		}
1387 #endif
1388 
1389 	}
1390 
1391 	/* Re-enable interrupts. */
1392 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1393 	if (ifp->if_snd.ifq_head != NULL)
1394 		my_start(ifp);
1395 	MY_UNLOCK(sc);
1396 	return;
1397 }
1398 
1399 /*
1400  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1401  * pointers to the fragment pointers.
1402  */
1403 static int
1404 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1405 {
1406 	struct my_desc *f = NULL;
1407 	int             total_len;
1408 	struct mbuf    *m, *m_new = NULL;
1409 
1410 	MY_LOCK(sc);
1411 	/* calculate the total tx pkt length */
1412 	total_len = 0;
1413 	for (m = m_head; m != NULL; m = m->m_next)
1414 		total_len += m->m_len;
1415 	/*
1416 	 * Start packing the mbufs in this chain into the fragment pointers.
1417 	 * Stop when we run out of fragments or hit the end of the mbuf
1418 	 * chain.
1419 	 */
1420 	m = m_head;
1421 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1422 	if (m_new == NULL) {
1423 		printf("my%d: no memory for tx list", sc->my_unit);
1424 		MY_UNLOCK(sc);
1425 		return (1);
1426 	}
1427 	if (m_head->m_pkthdr.len > MHLEN) {
1428 		MCLGET(m_new, M_DONTWAIT);
1429 		if (!(m_new->m_flags & M_EXT)) {
1430 			m_freem(m_new);
1431 			printf("my%d: no memory for tx list", sc->my_unit);
1432 			MY_UNLOCK(sc);
1433 			return (1);
1434 		}
1435 	}
1436 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1437 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1438 	m_freem(m_head);
1439 	m_head = m_new;
1440 	f = &c->my_ptr->my_frag[0];
1441 	f->my_status = 0;
1442 	f->my_data = vtophys(mtod(m_new, caddr_t));
1443 	total_len = m_new->m_len;
1444 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1445 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1446 	f->my_ctl |= total_len;	/* buffer size */
1447 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1448 	if (sc->my_info->my_did == MTD891ID)
1449 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1450 	c->my_mbuf = m_head;
1451 	c->my_lastdesc = 0;
1452 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1453 	MY_UNLOCK(sc);
1454 	return (0);
1455 }
1456 
1457 /*
1458  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1459  * to the mbuf data regions directly in the transmit lists. We also save a
1460  * copy of the pointers since the transmit list fragment pointers are
1461  * physical addresses.
1462  */
1463 static void
1464 my_start(struct ifnet * ifp)
1465 {
1466 	struct my_softc *sc;
1467 	struct mbuf    *m_head = NULL;
1468 	struct my_chain *cur_tx = NULL, *start_tx;
1469 
1470 	sc = ifp->if_softc;
1471 	MY_LOCK(sc);
1472 	if (sc->my_autoneg) {
1473 		sc->my_tx_pend = 1;
1474 		MY_UNLOCK(sc);
1475 		return;
1476 	}
1477 	/*
1478 	 * Check for an available queue slot. If there are none, punt.
1479 	 */
1480 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1481 		ifp->if_flags |= IFF_OACTIVE;
1482 		MY_UNLOCK(sc);
1483 		return;
1484 	}
1485 	start_tx = sc->my_cdata.my_tx_free;
1486 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1487 		IF_DEQUEUE(&ifp->if_snd, m_head);
1488 		if (m_head == NULL)
1489 			break;
1490 
1491 		/* Pick a descriptor off the free list. */
1492 		cur_tx = sc->my_cdata.my_tx_free;
1493 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1494 
1495 		/* Pack the data into the descriptor. */
1496 		my_encap(sc, cur_tx, m_head);
1497 
1498 		if (cur_tx != start_tx)
1499 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1500 #if NBPFILTER > 0
1501 		/*
1502 		 * If there's a BPF listener, bounce a copy of this frame to
1503 		 * him.
1504 		 */
1505 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1506 #endif
1507 	}
1508 	/*
1509 	 * If there are no packets queued, bail.
1510 	 */
1511 	if (cur_tx == NULL) {
1512 		MY_UNLOCK(sc);
1513 		return;
1514 	}
1515 	/*
1516 	 * Place the request for the upload interrupt in the last descriptor
1517 	 * in the chain. This way, if we're chaining several packets at once,
1518 	 * we'll only get an interupt once for the whole chain rather than
1519 	 * once for each packet.
1520 	 */
1521 	MY_TXCTL(cur_tx) |= MY_TXIC;
1522 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1523 	sc->my_cdata.my_tx_tail = cur_tx;
1524 	if (sc->my_cdata.my_tx_head == NULL)
1525 		sc->my_cdata.my_tx_head = start_tx;
1526 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1527 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1528 
1529 	/*
1530 	 * Set a timeout in case the chip goes out to lunch.
1531 	 */
1532 	ifp->if_timer = 5;
1533 	MY_UNLOCK(sc);
1534 	return;
1535 }
1536 
1537 static void
1538 my_init(void *xsc)
1539 {
1540 	struct my_softc *sc = xsc;
1541 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1542 	int             s;
1543 	u_int16_t       phy_bmcr = 0;
1544 
1545 	MY_LOCK(sc);
1546 	if (sc->my_autoneg) {
1547 		MY_UNLOCK(sc);
1548 		return;
1549 	}
1550 	s = splimp();
1551 	if (sc->my_pinfo != NULL)
1552 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1553 	/*
1554 	 * Cancel pending I/O and free all RX/TX buffers.
1555 	 */
1556 	my_stop(sc);
1557 	my_reset(sc);
1558 
1559 	/*
1560 	 * Set cache alignment and burst length.
1561 	 */
1562 #if 0				/* 89/9/1 modify,  */
1563 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1564 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1565 #endif
1566 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1567 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1568 	/*
1569 	 * 89/12/29 add, for mtd891,
1570 	 */
1571 	if (sc->my_info->my_did == MTD891ID) {
1572 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1573 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1574 	}
1575 	my_setcfg(sc, phy_bmcr);
1576 	/* Init circular RX list. */
1577 	if (my_list_rx_init(sc) == ENOBUFS) {
1578 		printf("my%d: init failed: no memory for rx buffers\n",
1579 		    sc->my_unit);
1580 		my_stop(sc);
1581 		(void)splx(s);
1582 		MY_UNLOCK(sc);
1583 		return;
1584 	}
1585 	/* Init TX descriptors. */
1586 	my_list_tx_init(sc);
1587 
1588 	/* If we want promiscuous mode, set the allframes bit. */
1589 	if (ifp->if_flags & IFF_PROMISC)
1590 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1591 	else
1592 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1593 
1594 	/*
1595 	 * Set capture broadcast bit to capture broadcast frames.
1596 	 */
1597 	if (ifp->if_flags & IFF_BROADCAST)
1598 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1599 	else
1600 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1601 
1602 	/*
1603 	 * Program the multicast filter, if necessary.
1604 	 */
1605 	my_setmulti(sc);
1606 
1607 	/*
1608 	 * Load the address of the RX list.
1609 	 */
1610 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1611 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1612 
1613 	/*
1614 	 * Enable interrupts.
1615 	 */
1616 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1617 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1618 
1619 	/* Enable receiver and transmitter. */
1620 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1621 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1622 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1623 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1624 
1625 	/* Restore state of BMCR */
1626 	if (sc->my_pinfo != NULL)
1627 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1628 	ifp->if_flags |= IFF_RUNNING;
1629 	ifp->if_flags &= ~IFF_OACTIVE;
1630 	(void)splx(s);
1631 	MY_UNLOCK(sc);
1632 	return;
1633 }
1634 
1635 /*
1636  * Set media options.
1637  */
1638 
1639 static int
1640 my_ifmedia_upd(struct ifnet * ifp)
1641 {
1642 	struct my_softc *sc;
1643 	struct ifmedia *ifm;
1644 
1645 	sc = ifp->if_softc;
1646 	MY_LOCK(sc);
1647 	ifm = &sc->ifmedia;
1648 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1649 		MY_UNLOCK(sc);
1650 		return (EINVAL);
1651 	}
1652 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1653 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1654 	else
1655 		my_setmode_mii(sc, ifm->ifm_media);
1656 	MY_UNLOCK(sc);
1657 	return (0);
1658 }
1659 
1660 /*
1661  * Report current media status.
1662  */
1663 
1664 static void
1665 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1666 {
1667 	struct my_softc *sc;
1668 	u_int16_t advert = 0, ability = 0;
1669 
1670 	sc = ifp->if_softc;
1671 	MY_LOCK(sc);
1672 	ifmr->ifm_active = IFM_ETHER;
1673 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1674 #if 0				/* this version did not support 1000M, */
1675 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1676 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1677 #endif
1678 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1679 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1680 		else
1681 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1682 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1683 			ifmr->ifm_active |= IFM_FDX;
1684 		else
1685 			ifmr->ifm_active |= IFM_HDX;
1686 
1687 		MY_UNLOCK(sc);
1688 		return;
1689 	}
1690 	ability = my_phy_readreg(sc, PHY_LPAR);
1691 	advert = my_phy_readreg(sc, PHY_ANAR);
1692 
1693 #if 0				/* this version did not support 1000M, */
1694 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1695 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1696 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1697 			advert = 0;
1698 			ability = 0;
1699 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1700 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1701 			advert = 0;
1702 			ability = 0;
1703 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1704 		}
1705 	}
1706 #endif
1707 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1708 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1709 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1710 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1711 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1712 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1713 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1714 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1715 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1716 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1717 	MY_UNLOCK(sc);
1718 	return;
1719 }
1720 
1721 static int
1722 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1723 {
1724 	struct my_softc *sc = ifp->if_softc;
1725 	struct ifreq   *ifr = (struct ifreq *) data;
1726 	int             s, error = 0;
1727 
1728 	s = splimp();
1729 	MY_LOCK(sc);
1730 	switch (command) {
1731 	case SIOCSIFFLAGS:
1732 		if (ifp->if_flags & IFF_UP)
1733 			my_init(sc);
1734 		else if (ifp->if_flags & IFF_RUNNING)
1735 			my_stop(sc);
1736 		error = 0;
1737 		break;
1738 	case SIOCADDMULTI:
1739 	case SIOCDELMULTI:
1740 		my_setmulti(sc);
1741 		error = 0;
1742 		break;
1743 	case SIOCGIFMEDIA:
1744 	case SIOCSIFMEDIA:
1745 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1746 		break;
1747 	default:
1748 		error = ether_ioctl(ifp, command, data);
1749 		break;
1750 	}
1751 	MY_UNLOCK(sc);
1752 	(void)splx(s);
1753 	return (error);
1754 }
1755 
1756 static void
1757 my_watchdog(struct ifnet * ifp)
1758 {
1759 	struct my_softc *sc;
1760 
1761 	sc = ifp->if_softc;
1762 	MY_LOCK(sc);
1763 	if (sc->my_autoneg) {
1764 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1765 		MY_UNLOCK(sc);
1766 		return;
1767 	}
1768 	ifp->if_oerrors++;
1769 	printf("my%d: watchdog timeout\n", sc->my_unit);
1770 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1771 		printf("my%d: no carrier - transceiver cable problem?\n",
1772 		    sc->my_unit);
1773 	my_stop(sc);
1774 	my_reset(sc);
1775 	my_init(sc);
1776 	if (ifp->if_snd.ifq_head != NULL)
1777 		my_start(ifp);
1778 	MY_LOCK(sc);
1779 	return;
1780 }
1781 
1782 
1783 /*
1784  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1785  */
1786 static void
1787 my_stop(struct my_softc * sc)
1788 {
1789 	register int    i;
1790 	struct ifnet   *ifp;
1791 
1792 	MY_LOCK(sc);
1793 	ifp = &sc->arpcom.ac_if;
1794 	ifp->if_timer = 0;
1795 
1796 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1797 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1798 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1799 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1800 
1801 	/*
1802 	 * Free data in the RX lists.
1803 	 */
1804 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1805 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1806 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1807 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1808 		}
1809 	}
1810 	bzero((char *)&sc->my_ldata->my_rx_list,
1811 	    sizeof(sc->my_ldata->my_rx_list));
1812 	/*
1813 	 * Free the TX list buffers.
1814 	 */
1815 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1816 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1817 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1818 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1819 		}
1820 	}
1821 	bzero((char *)&sc->my_ldata->my_tx_list,
1822 	    sizeof(sc->my_ldata->my_tx_list));
1823 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1824 	MY_UNLOCK(sc);
1825 	return;
1826 }
1827 
1828 /*
1829  * Stop all chip I/O so that the kernel's probe routines don't get confused
1830  * by errant DMAs when rebooting.
1831  */
1832 static void
1833 my_shutdown(device_t dev)
1834 {
1835 	struct my_softc *sc;
1836 
1837 	sc = device_get_softc(dev);
1838 	my_stop(sc);
1839 	return;
1840 }
1841