1 /*- 2 * Written by: yen_cw@myson.com.tw 3 * Copyright (c) 2002 Myson Technology Inc. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification, immediately at the beginning of the file. 12 * 2. The name of the author may not be used to endorse or promote products 13 * derived from this software without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 19 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/ 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/sockio.h> 36 #include <sys/mbuf.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/queue.h> 41 #include <sys/types.h> 42 #include <sys/bus.h> 43 #include <sys/module.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 47 #define NBPFILTER 1 48 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 #include <net/if_dl.h> 55 #include <net/bpf.h> 56 57 #include <vm/vm.h> /* for vtophys */ 58 #include <vm/pmap.h> /* for vtophys */ 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/bus.h> 62 #include <sys/rman.h> 63 64 #include <dev/pci/pcireg.h> 65 #include <dev/pci/pcivar.h> 66 67 #include <dev/mii/mii.h> 68 #include <dev/mii/miivar.h> 69 70 #include "miibus_if.h" 71 72 /* 73 * #define MY_USEIOSPACE 74 */ 75 76 static int MY_USEIOSPACE = 1; 77 78 #ifdef MY_USEIOSPACE 79 #define MY_RES SYS_RES_IOPORT 80 #define MY_RID MY_PCI_LOIO 81 #else 82 #define MY_RES SYS_RES_MEMORY 83 #define MY_RID MY_PCI_LOMEM 84 #endif 85 86 87 #include <dev/my/if_myreg.h> 88 89 #ifndef lint 90 static const char rcsid[] = 91 "$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $"; 92 #endif 93 94 /* 95 * Various supported device vendors/types and their names. 96 */ 97 struct my_type *my_info_tmp; 98 static struct my_type my_devs[] = { 99 {MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"}, 100 {MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"}, 101 {MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"}, 102 {0, 0, NULL} 103 }; 104 105 /* 106 * Various supported PHY vendors/types and their names. Note that this driver 107 * will work with pretty much any MII-compliant PHY, so failure to positively 108 * identify the chip is not a fatal error. 109 */ 110 static struct my_type my_phys[] = { 111 {MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"}, 112 {SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"}, 113 {AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"}, 114 {MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"}, 115 {LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"}, 116 {0, 0, "<MII-compliant physical interface>"} 117 }; 118 119 static int my_probe(device_t); 120 static int my_attach(device_t); 121 static int my_detach(device_t); 122 static int my_newbuf(struct my_softc *, struct my_chain_onefrag *); 123 static int my_encap(struct my_softc *, struct my_chain *, struct mbuf *); 124 static void my_rxeof(struct my_softc *); 125 static void my_txeof(struct my_softc *); 126 static void my_txeoc(struct my_softc *); 127 static void my_intr(void *); 128 static void my_start(struct ifnet *); 129 static void my_start_locked(struct ifnet *); 130 static int my_ioctl(struct ifnet *, u_long, caddr_t); 131 static void my_init(void *); 132 static void my_init_locked(struct my_softc *); 133 static void my_stop(struct my_softc *); 134 static void my_watchdog(struct ifnet *); 135 static void my_shutdown(device_t); 136 static int my_ifmedia_upd(struct ifnet *); 137 static void my_ifmedia_sts(struct ifnet *, struct ifmediareq *); 138 static u_int16_t my_phy_readreg(struct my_softc *, int); 139 static void my_phy_writereg(struct my_softc *, int, int); 140 static void my_autoneg_xmit(struct my_softc *); 141 static void my_autoneg_mii(struct my_softc *, int, int); 142 static void my_setmode_mii(struct my_softc *, int); 143 static void my_getmode_mii(struct my_softc *); 144 static void my_setcfg(struct my_softc *, int); 145 static void my_setmulti(struct my_softc *); 146 static void my_reset(struct my_softc *); 147 static int my_list_rx_init(struct my_softc *); 148 static int my_list_tx_init(struct my_softc *); 149 static long my_send_cmd_to_phy(struct my_softc *, int, int); 150 151 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) 152 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) 153 154 static device_method_t my_methods[] = { 155 /* Device interface */ 156 DEVMETHOD(device_probe, my_probe), 157 DEVMETHOD(device_attach, my_attach), 158 DEVMETHOD(device_detach, my_detach), 159 DEVMETHOD(device_shutdown, my_shutdown), 160 161 {0, 0} 162 }; 163 164 static driver_t my_driver = { 165 "my", 166 my_methods, 167 sizeof(struct my_softc) 168 }; 169 170 static devclass_t my_devclass; 171 172 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0); 173 MODULE_DEPEND(my, pci, 1, 1, 1); 174 MODULE_DEPEND(my, ether, 1, 1, 1); 175 176 static long 177 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad) 178 { 179 long miir; 180 int i; 181 int mask, data; 182 183 MY_LOCK_ASSERT(sc); 184 185 /* enable MII output */ 186 miir = CSR_READ_4(sc, MY_MANAGEMENT); 187 miir &= 0xfffffff0; 188 189 miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO; 190 191 /* send 32 1's preamble */ 192 for (i = 0; i < 32; i++) { 193 /* low MDC; MDO is already high (miir) */ 194 miir &= ~MY_MASK_MIIR_MII_MDC; 195 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 196 197 /* high MDC */ 198 miir |= MY_MASK_MIIR_MII_MDC; 199 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 200 } 201 202 /* calculate ST+OP+PHYAD+REGAD+TA */ 203 data = opcode | (sc->my_phy_addr << 7) | (regad << 2); 204 205 /* sent out */ 206 mask = 0x8000; 207 while (mask) { 208 /* low MDC, prepare MDO */ 209 miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO); 210 if (mask & data) 211 miir |= MY_MASK_MIIR_MII_MDO; 212 213 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 214 /* high MDC */ 215 miir |= MY_MASK_MIIR_MII_MDC; 216 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 217 DELAY(30); 218 219 /* next */ 220 mask >>= 1; 221 if (mask == 0x2 && opcode == MY_OP_READ) 222 miir &= ~MY_MASK_MIIR_MII_WRITE; 223 } 224 225 return miir; 226 } 227 228 229 static u_int16_t 230 my_phy_readreg(struct my_softc * sc, int reg) 231 { 232 long miir; 233 int mask, data; 234 235 MY_LOCK_ASSERT(sc); 236 237 if (sc->my_info->my_did == MTD803ID) 238 data = CSR_READ_2(sc, MY_PHYBASE + reg * 2); 239 else { 240 miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg); 241 242 /* read data */ 243 mask = 0x8000; 244 data = 0; 245 while (mask) { 246 /* low MDC */ 247 miir &= ~MY_MASK_MIIR_MII_MDC; 248 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 249 250 /* read MDI */ 251 miir = CSR_READ_4(sc, MY_MANAGEMENT); 252 if (miir & MY_MASK_MIIR_MII_MDI) 253 data |= mask; 254 255 /* high MDC, and wait */ 256 miir |= MY_MASK_MIIR_MII_MDC; 257 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 258 DELAY(30); 259 260 /* next */ 261 mask >>= 1; 262 } 263 264 /* low MDC */ 265 miir &= ~MY_MASK_MIIR_MII_MDC; 266 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 267 } 268 269 return (u_int16_t) data; 270 } 271 272 273 static void 274 my_phy_writereg(struct my_softc * sc, int reg, int data) 275 { 276 long miir; 277 int mask; 278 279 MY_LOCK_ASSERT(sc); 280 281 if (sc->my_info->my_did == MTD803ID) 282 CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data); 283 else { 284 miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg); 285 286 /* write data */ 287 mask = 0x8000; 288 while (mask) { 289 /* low MDC, prepare MDO */ 290 miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO); 291 if (mask & data) 292 miir |= MY_MASK_MIIR_MII_MDO; 293 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 294 DELAY(1); 295 296 /* high MDC */ 297 miir |= MY_MASK_MIIR_MII_MDC; 298 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 299 DELAY(1); 300 301 /* next */ 302 mask >>= 1; 303 } 304 305 /* low MDC */ 306 miir &= ~MY_MASK_MIIR_MII_MDC; 307 CSR_WRITE_4(sc, MY_MANAGEMENT, miir); 308 } 309 return; 310 } 311 312 313 /* 314 * Program the 64-bit multicast hash filter. 315 */ 316 static void 317 my_setmulti(struct my_softc * sc) 318 { 319 struct ifnet *ifp; 320 int h = 0; 321 u_int32_t hashes[2] = {0, 0}; 322 struct ifmultiaddr *ifma; 323 u_int32_t rxfilt; 324 int mcnt = 0; 325 326 MY_LOCK_ASSERT(sc); 327 328 ifp = sc->my_ifp; 329 330 rxfilt = CSR_READ_4(sc, MY_TCRRCR); 331 332 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 333 rxfilt |= MY_AM; 334 CSR_WRITE_4(sc, MY_TCRRCR, rxfilt); 335 CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF); 336 CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF); 337 338 return; 339 } 340 /* first, zot all the existing hash bits */ 341 CSR_WRITE_4(sc, MY_MAR0, 0); 342 CSR_WRITE_4(sc, MY_MAR1, 0); 343 344 /* now program new ones */ 345 IF_ADDR_LOCK(ifp); 346 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 347 if (ifma->ifma_addr->sa_family != AF_LINK) 348 continue; 349 h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *) 350 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 351 if (h < 32) 352 hashes[0] |= (1 << h); 353 else 354 hashes[1] |= (1 << (h - 32)); 355 mcnt++; 356 } 357 IF_ADDR_UNLOCK(ifp); 358 359 if (mcnt) 360 rxfilt |= MY_AM; 361 else 362 rxfilt &= ~MY_AM; 363 CSR_WRITE_4(sc, MY_MAR0, hashes[0]); 364 CSR_WRITE_4(sc, MY_MAR1, hashes[1]); 365 CSR_WRITE_4(sc, MY_TCRRCR, rxfilt); 366 return; 367 } 368 369 /* 370 * Initiate an autonegotiation session. 371 */ 372 static void 373 my_autoneg_xmit(struct my_softc * sc) 374 { 375 u_int16_t phy_sts = 0; 376 377 MY_LOCK_ASSERT(sc); 378 379 my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); 380 DELAY(500); 381 while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); 382 383 phy_sts = my_phy_readreg(sc, PHY_BMCR); 384 phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR; 385 my_phy_writereg(sc, PHY_BMCR, phy_sts); 386 387 return; 388 } 389 390 391 /* 392 * Invoke autonegotiation on a PHY. 393 */ 394 static void 395 my_autoneg_mii(struct my_softc * sc, int flag, int verbose) 396 { 397 u_int16_t phy_sts = 0, media, advert, ability; 398 u_int16_t ability2 = 0; 399 struct ifnet *ifp; 400 struct ifmedia *ifm; 401 402 MY_LOCK_ASSERT(sc); 403 404 ifm = &sc->ifmedia; 405 ifp = sc->my_ifp; 406 407 ifm->ifm_media = IFM_ETHER | IFM_AUTO; 408 409 #ifndef FORCE_AUTONEG_TFOUR 410 /* 411 * First, see if autoneg is supported. If not, there's no point in 412 * continuing. 413 */ 414 phy_sts = my_phy_readreg(sc, PHY_BMSR); 415 if (!(phy_sts & PHY_BMSR_CANAUTONEG)) { 416 if (verbose) 417 device_printf(sc->my_dev, 418 "autonegotiation not supported\n"); 419 ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX; 420 return; 421 } 422 #endif 423 switch (flag) { 424 case MY_FLAG_FORCEDELAY: 425 /* 426 * XXX Never use this option anywhere but in the probe 427 * routine: making the kernel stop dead in its tracks for 428 * three whole seconds after we've gone multi-user is really 429 * bad manners. 430 */ 431 my_autoneg_xmit(sc); 432 DELAY(5000000); 433 break; 434 case MY_FLAG_SCHEDDELAY: 435 /* 436 * Wait for the transmitter to go idle before starting an 437 * autoneg session, otherwise my_start() may clobber our 438 * timeout, and we don't want to allow transmission during an 439 * autoneg session since that can screw it up. 440 */ 441 if (sc->my_cdata.my_tx_head != NULL) { 442 sc->my_want_auto = 1; 443 MY_UNLOCK(sc); 444 return; 445 } 446 my_autoneg_xmit(sc); 447 ifp->if_timer = 5; 448 sc->my_autoneg = 1; 449 sc->my_want_auto = 0; 450 return; 451 case MY_FLAG_DELAYTIMEO: 452 ifp->if_timer = 0; 453 sc->my_autoneg = 0; 454 break; 455 default: 456 device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag); 457 return; 458 } 459 460 if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) { 461 if (verbose) 462 device_printf(sc->my_dev, "autoneg complete, "); 463 phy_sts = my_phy_readreg(sc, PHY_BMSR); 464 } else { 465 if (verbose) 466 device_printf(sc->my_dev, "autoneg not complete, "); 467 } 468 469 media = my_phy_readreg(sc, PHY_BMCR); 470 471 /* Link is good. Report modes and set duplex mode. */ 472 if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) { 473 if (verbose) 474 device_printf(sc->my_dev, "link status good. "); 475 advert = my_phy_readreg(sc, PHY_ANAR); 476 ability = my_phy_readreg(sc, PHY_LPAR); 477 if ((sc->my_pinfo->my_vid == MarvellPHYID0) || 478 (sc->my_pinfo->my_vid == LevelOnePHYID0)) { 479 ability2 = my_phy_readreg(sc, PHY_1000SR); 480 if (ability2 & PHY_1000SR_1000BTXFULL) { 481 advert = 0; 482 ability = 0; 483 /* 484 * this version did not support 1000M, 485 * ifm->ifm_media = 486 * IFM_ETHER|IFM_1000_T|IFM_FDX; 487 */ 488 ifm->ifm_media = 489 IFM_ETHER | IFM_100_TX | IFM_FDX; 490 media &= ~PHY_BMCR_SPEEDSEL; 491 media |= PHY_BMCR_1000; 492 media |= PHY_BMCR_DUPLEX; 493 printf("(full-duplex, 1000Mbps)\n"); 494 } else if (ability2 & PHY_1000SR_1000BTXHALF) { 495 advert = 0; 496 ability = 0; 497 /* 498 * this version did not support 1000M, 499 * ifm->ifm_media = IFM_ETHER|IFM_1000_T; 500 */ 501 ifm->ifm_media = IFM_ETHER | IFM_100_TX; 502 media &= ~PHY_BMCR_SPEEDSEL; 503 media &= ~PHY_BMCR_DUPLEX; 504 media |= PHY_BMCR_1000; 505 printf("(half-duplex, 1000Mbps)\n"); 506 } 507 } 508 if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { 509 ifm->ifm_media = IFM_ETHER | IFM_100_T4; 510 media |= PHY_BMCR_SPEEDSEL; 511 media &= ~PHY_BMCR_DUPLEX; 512 printf("(100baseT4)\n"); 513 } else if (advert & PHY_ANAR_100BTXFULL && 514 ability & PHY_ANAR_100BTXFULL) { 515 ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX; 516 media |= PHY_BMCR_SPEEDSEL; 517 media |= PHY_BMCR_DUPLEX; 518 printf("(full-duplex, 100Mbps)\n"); 519 } else if (advert & PHY_ANAR_100BTXHALF && 520 ability & PHY_ANAR_100BTXHALF) { 521 ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX; 522 media |= PHY_BMCR_SPEEDSEL; 523 media &= ~PHY_BMCR_DUPLEX; 524 printf("(half-duplex, 100Mbps)\n"); 525 } else if (advert & PHY_ANAR_10BTFULL && 526 ability & PHY_ANAR_10BTFULL) { 527 ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX; 528 media &= ~PHY_BMCR_SPEEDSEL; 529 media |= PHY_BMCR_DUPLEX; 530 printf("(full-duplex, 10Mbps)\n"); 531 } else if (advert) { 532 ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX; 533 media &= ~PHY_BMCR_SPEEDSEL; 534 media &= ~PHY_BMCR_DUPLEX; 535 printf("(half-duplex, 10Mbps)\n"); 536 } 537 media &= ~PHY_BMCR_AUTONEGENBL; 538 539 /* Set ASIC's duplex mode to match the PHY. */ 540 my_phy_writereg(sc, PHY_BMCR, media); 541 my_setcfg(sc, media); 542 } else { 543 if (verbose) 544 device_printf(sc->my_dev, "no carrier\n"); 545 } 546 547 my_init_locked(sc); 548 if (sc->my_tx_pend) { 549 sc->my_autoneg = 0; 550 sc->my_tx_pend = 0; 551 my_start_locked(ifp); 552 } 553 return; 554 } 555 556 /* 557 * To get PHY ability. 558 */ 559 static void 560 my_getmode_mii(struct my_softc * sc) 561 { 562 u_int16_t bmsr; 563 struct ifnet *ifp; 564 565 MY_LOCK_ASSERT(sc); 566 ifp = sc->my_ifp; 567 bmsr = my_phy_readreg(sc, PHY_BMSR); 568 if (bootverbose) 569 device_printf(sc->my_dev, "PHY status word: %x\n", bmsr); 570 571 /* fallback */ 572 sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX; 573 574 if (bmsr & PHY_BMSR_10BTHALF) { 575 if (bootverbose) 576 device_printf(sc->my_dev, 577 "10Mbps half-duplex mode supported\n"); 578 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX, 579 0, NULL); 580 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL); 581 } 582 if (bmsr & PHY_BMSR_10BTFULL) { 583 if (bootverbose) 584 device_printf(sc->my_dev, 585 "10Mbps full-duplex mode supported\n"); 586 587 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX, 588 0, NULL); 589 sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX; 590 } 591 if (bmsr & PHY_BMSR_100BTXHALF) { 592 if (bootverbose) 593 device_printf(sc->my_dev, 594 "100Mbps half-duplex mode supported\n"); 595 ifp->if_baudrate = 100000000; 596 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL); 597 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX, 598 0, NULL); 599 sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX; 600 } 601 if (bmsr & PHY_BMSR_100BTXFULL) { 602 if (bootverbose) 603 device_printf(sc->my_dev, 604 "100Mbps full-duplex mode supported\n"); 605 ifp->if_baudrate = 100000000; 606 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX, 607 0, NULL); 608 sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX; 609 } 610 /* Some also support 100BaseT4. */ 611 if (bmsr & PHY_BMSR_100BT4) { 612 if (bootverbose) 613 device_printf(sc->my_dev, "100baseT4 mode supported\n"); 614 ifp->if_baudrate = 100000000; 615 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL); 616 sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4; 617 #ifdef FORCE_AUTONEG_TFOUR 618 if (bootverbose) 619 device_printf(sc->my_dev, 620 "forcing on autoneg support for BT4\n"); 621 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL): 622 sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO; 623 #endif 624 } 625 #if 0 /* this version did not support 1000M, */ 626 if (sc->my_pinfo->my_vid == MarvellPHYID0) { 627 if (bootverbose) 628 device_printf(sc->my_dev, 629 "1000Mbps half-duplex mode supported\n"); 630 631 ifp->if_baudrate = 1000000000; 632 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL); 633 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX, 634 0, NULL); 635 if (bootverbose) 636 device_printf(sc->my_dev, 637 "1000Mbps full-duplex mode supported\n"); 638 ifp->if_baudrate = 1000000000; 639 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX, 640 0, NULL); 641 sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX; 642 } 643 #endif 644 if (bmsr & PHY_BMSR_CANAUTONEG) { 645 if (bootverbose) 646 device_printf(sc->my_dev, "autoneg supported\n"); 647 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 648 sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO; 649 } 650 return; 651 } 652 653 /* 654 * Set speed and duplex mode. 655 */ 656 static void 657 my_setmode_mii(struct my_softc * sc, int media) 658 { 659 u_int16_t bmcr; 660 struct ifnet *ifp; 661 662 MY_LOCK_ASSERT(sc); 663 ifp = sc->my_ifp; 664 /* 665 * If an autoneg session is in progress, stop it. 666 */ 667 if (sc->my_autoneg) { 668 device_printf(sc->my_dev, "canceling autoneg session\n"); 669 ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0; 670 bmcr = my_phy_readreg(sc, PHY_BMCR); 671 bmcr &= ~PHY_BMCR_AUTONEGENBL; 672 my_phy_writereg(sc, PHY_BMCR, bmcr); 673 } 674 device_printf(sc->my_dev, "selecting MII, "); 675 bmcr = my_phy_readreg(sc, PHY_BMCR); 676 bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 | 677 PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK); 678 679 #if 0 /* this version did not support 1000M, */ 680 if (IFM_SUBTYPE(media) == IFM_1000_T) { 681 printf("1000Mbps/T4, half-duplex\n"); 682 bmcr &= ~PHY_BMCR_SPEEDSEL; 683 bmcr &= ~PHY_BMCR_DUPLEX; 684 bmcr |= PHY_BMCR_1000; 685 } 686 #endif 687 if (IFM_SUBTYPE(media) == IFM_100_T4) { 688 printf("100Mbps/T4, half-duplex\n"); 689 bmcr |= PHY_BMCR_SPEEDSEL; 690 bmcr &= ~PHY_BMCR_DUPLEX; 691 } 692 if (IFM_SUBTYPE(media) == IFM_100_TX) { 693 printf("100Mbps, "); 694 bmcr |= PHY_BMCR_SPEEDSEL; 695 } 696 if (IFM_SUBTYPE(media) == IFM_10_T) { 697 printf("10Mbps, "); 698 bmcr &= ~PHY_BMCR_SPEEDSEL; 699 } 700 if ((media & IFM_GMASK) == IFM_FDX) { 701 printf("full duplex\n"); 702 bmcr |= PHY_BMCR_DUPLEX; 703 } else { 704 printf("half duplex\n"); 705 bmcr &= ~PHY_BMCR_DUPLEX; 706 } 707 my_phy_writereg(sc, PHY_BMCR, bmcr); 708 my_setcfg(sc, bmcr); 709 return; 710 } 711 712 /* 713 * The Myson manual states that in order to fiddle with the 'full-duplex' and 714 * '100Mbps' bits in the netconfig register, we first have to put the 715 * transmit and/or receive logic in the idle state. 716 */ 717 static void 718 my_setcfg(struct my_softc * sc, int bmcr) 719 { 720 int i, restart = 0; 721 722 MY_LOCK_ASSERT(sc); 723 if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) { 724 restart = 1; 725 MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE)); 726 for (i = 0; i < MY_TIMEOUT; i++) { 727 DELAY(10); 728 if (!(CSR_READ_4(sc, MY_TCRRCR) & 729 (MY_TXRUN | MY_RXRUN))) 730 break; 731 } 732 if (i == MY_TIMEOUT) 733 device_printf(sc->my_dev, 734 "failed to force tx and rx to idle \n"); 735 } 736 MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000); 737 MY_CLRBIT(sc, MY_TCRRCR, MY_PS10); 738 if (bmcr & PHY_BMCR_1000) 739 MY_SETBIT(sc, MY_TCRRCR, MY_PS1000); 740 else if (!(bmcr & PHY_BMCR_SPEEDSEL)) 741 MY_SETBIT(sc, MY_TCRRCR, MY_PS10); 742 if (bmcr & PHY_BMCR_DUPLEX) 743 MY_SETBIT(sc, MY_TCRRCR, MY_FD); 744 else 745 MY_CLRBIT(sc, MY_TCRRCR, MY_FD); 746 if (restart) 747 MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE); 748 return; 749 } 750 751 static void 752 my_reset(struct my_softc * sc) 753 { 754 register int i; 755 756 MY_LOCK_ASSERT(sc); 757 MY_SETBIT(sc, MY_BCR, MY_SWR); 758 for (i = 0; i < MY_TIMEOUT; i++) { 759 DELAY(10); 760 if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR)) 761 break; 762 } 763 if (i == MY_TIMEOUT) 764 device_printf(sc->my_dev, "reset never completed!\n"); 765 766 /* Wait a little while for the chip to get its brains in order. */ 767 DELAY(1000); 768 return; 769 } 770 771 /* 772 * Probe for a Myson chip. Check the PCI vendor and device IDs against our 773 * list and return a device name if we find a match. 774 */ 775 static int 776 my_probe(device_t dev) 777 { 778 struct my_type *t; 779 780 t = my_devs; 781 while (t->my_name != NULL) { 782 if ((pci_get_vendor(dev) == t->my_vid) && 783 (pci_get_device(dev) == t->my_did)) { 784 device_set_desc(dev, t->my_name); 785 my_info_tmp = t; 786 return (BUS_PROBE_DEFAULT); 787 } 788 t++; 789 } 790 return (ENXIO); 791 } 792 793 /* 794 * Attach the interface. Allocate softc structures, do ifmedia setup and 795 * ethernet/BPF attach. 796 */ 797 static int 798 my_attach(device_t dev) 799 { 800 int i; 801 u_char eaddr[ETHER_ADDR_LEN]; 802 u_int32_t iobase; 803 struct my_softc *sc; 804 struct ifnet *ifp; 805 int media = IFM_ETHER | IFM_100_TX | IFM_FDX; 806 unsigned int round; 807 caddr_t roundptr; 808 struct my_type *p; 809 u_int16_t phy_vid, phy_did, phy_sts = 0; 810 int rid, error = 0; 811 812 sc = device_get_softc(dev); 813 sc->my_dev = dev; 814 mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 815 MTX_DEF); 816 817 /* 818 * Map control/status registers. 819 */ 820 pci_enable_busmaster(dev); 821 822 if (my_info_tmp->my_did == MTD800ID) { 823 iobase = pci_read_config(dev, MY_PCI_LOIO, 4); 824 if (iobase & 0x300) 825 MY_USEIOSPACE = 0; 826 } 827 828 rid = MY_RID; 829 sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE); 830 831 if (sc->my_res == NULL) { 832 device_printf(dev, "couldn't map ports/memory\n"); 833 error = ENXIO; 834 goto destroy_mutex; 835 } 836 sc->my_btag = rman_get_bustag(sc->my_res); 837 sc->my_bhandle = rman_get_bushandle(sc->my_res); 838 839 rid = 0; 840 sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 841 RF_SHAREABLE | RF_ACTIVE); 842 843 if (sc->my_irq == NULL) { 844 device_printf(dev, "couldn't map interrupt\n"); 845 error = ENXIO; 846 goto release_io; 847 } 848 849 sc->my_info = my_info_tmp; 850 851 /* Reset the adapter. */ 852 MY_LOCK(sc); 853 my_reset(sc); 854 MY_UNLOCK(sc); 855 856 /* 857 * Get station address 858 */ 859 for (i = 0; i < ETHER_ADDR_LEN; ++i) 860 eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i); 861 862 sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8, 863 M_DEVBUF, M_NOWAIT); 864 if (sc->my_ldata_ptr == NULL) { 865 device_printf(dev, "no memory for list buffers!\n"); 866 error = ENXIO; 867 goto release_irq; 868 } 869 sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr; 870 round = (uintptr_t)sc->my_ldata_ptr & 0xF; 871 roundptr = sc->my_ldata_ptr; 872 for (i = 0; i < 8; i++) { 873 if (round % 8) { 874 round++; 875 roundptr++; 876 } else 877 break; 878 } 879 sc->my_ldata = (struct my_list_data *) roundptr; 880 bzero(sc->my_ldata, sizeof(struct my_list_data)); 881 882 ifp = sc->my_ifp = if_alloc(IFT_ETHER); 883 if (ifp == NULL) { 884 device_printf(dev, "can not if_alloc()\n"); 885 error = ENOSPC; 886 goto free_ldata; 887 } 888 ifp->if_softc = sc; 889 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 890 ifp->if_mtu = ETHERMTU; 891 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 892 ifp->if_ioctl = my_ioctl; 893 ifp->if_start = my_start; 894 ifp->if_watchdog = my_watchdog; 895 ifp->if_init = my_init; 896 ifp->if_baudrate = 10000000; 897 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 898 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 899 IFQ_SET_READY(&ifp->if_snd); 900 901 if (sc->my_info->my_did == MTD803ID) 902 sc->my_pinfo = my_phys; 903 else { 904 if (bootverbose) 905 device_printf(dev, "probing for a PHY\n"); 906 MY_LOCK(sc); 907 for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) { 908 if (bootverbose) 909 device_printf(dev, "checking address: %d\n", i); 910 sc->my_phy_addr = i; 911 phy_sts = my_phy_readreg(sc, PHY_BMSR); 912 if ((phy_sts != 0) && (phy_sts != 0xffff)) 913 break; 914 else 915 phy_sts = 0; 916 } 917 if (phy_sts) { 918 phy_vid = my_phy_readreg(sc, PHY_VENID); 919 phy_did = my_phy_readreg(sc, PHY_DEVID); 920 if (bootverbose) { 921 device_printf(dev, "found PHY at address %d, ", 922 sc->my_phy_addr); 923 printf("vendor id: %x device id: %x\n", 924 phy_vid, phy_did); 925 } 926 p = my_phys; 927 while (p->my_vid) { 928 if (phy_vid == p->my_vid) { 929 sc->my_pinfo = p; 930 break; 931 } 932 p++; 933 } 934 if (sc->my_pinfo == NULL) 935 sc->my_pinfo = &my_phys[PHY_UNKNOWN]; 936 if (bootverbose) 937 device_printf(dev, "PHY type: %s\n", 938 sc->my_pinfo->my_name); 939 } else { 940 MY_UNLOCK(sc); 941 device_printf(dev, "MII without any phy!\n"); 942 error = ENXIO; 943 goto free_if; 944 } 945 MY_UNLOCK(sc); 946 } 947 948 /* Do ifmedia setup. */ 949 ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts); 950 MY_LOCK(sc); 951 my_getmode_mii(sc); 952 my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1); 953 media = sc->ifmedia.ifm_media; 954 my_stop(sc); 955 MY_UNLOCK(sc); 956 ifmedia_set(&sc->ifmedia, media); 957 958 ether_ifattach(ifp, eaddr); 959 960 error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE, 961 NULL, my_intr, sc, &sc->my_intrhand); 962 963 if (error) { 964 device_printf(dev, "couldn't set up irq\n"); 965 goto detach_if; 966 } 967 968 return (0); 969 970 detach_if: 971 ether_ifdetach(ifp); 972 free_if: 973 if_free(ifp); 974 free_ldata: 975 free(sc->my_ldata_ptr, M_DEVBUF); 976 release_irq: 977 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq); 978 release_io: 979 bus_release_resource(dev, MY_RES, MY_RID, sc->my_res); 980 destroy_mutex: 981 mtx_destroy(&sc->my_mtx); 982 return (error); 983 } 984 985 static int 986 my_detach(device_t dev) 987 { 988 struct my_softc *sc; 989 struct ifnet *ifp; 990 991 sc = device_get_softc(dev); 992 MY_LOCK(sc); 993 my_stop(sc); 994 MY_UNLOCK(sc); 995 bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand); 996 997 ifp = sc->my_ifp; 998 ether_ifdetach(ifp); 999 if_free(ifp); 1000 free(sc->my_ldata_ptr, M_DEVBUF); 1001 1002 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq); 1003 bus_release_resource(dev, MY_RES, MY_RID, sc->my_res); 1004 mtx_destroy(&sc->my_mtx); 1005 return (0); 1006 } 1007 1008 1009 /* 1010 * Initialize the transmit descriptors. 1011 */ 1012 static int 1013 my_list_tx_init(struct my_softc * sc) 1014 { 1015 struct my_chain_data *cd; 1016 struct my_list_data *ld; 1017 int i; 1018 1019 MY_LOCK_ASSERT(sc); 1020 cd = &sc->my_cdata; 1021 ld = sc->my_ldata; 1022 for (i = 0; i < MY_TX_LIST_CNT; i++) { 1023 cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i]; 1024 if (i == (MY_TX_LIST_CNT - 1)) 1025 cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0]; 1026 else 1027 cd->my_tx_chain[i].my_nextdesc = 1028 &cd->my_tx_chain[i + 1]; 1029 } 1030 cd->my_tx_free = &cd->my_tx_chain[0]; 1031 cd->my_tx_tail = cd->my_tx_head = NULL; 1032 return (0); 1033 } 1034 1035 /* 1036 * Initialize the RX descriptors and allocate mbufs for them. Note that we 1037 * arrange the descriptors in a closed ring, so that the last descriptor 1038 * points back to the first. 1039 */ 1040 static int 1041 my_list_rx_init(struct my_softc * sc) 1042 { 1043 struct my_chain_data *cd; 1044 struct my_list_data *ld; 1045 int i; 1046 1047 MY_LOCK_ASSERT(sc); 1048 cd = &sc->my_cdata; 1049 ld = sc->my_ldata; 1050 for (i = 0; i < MY_RX_LIST_CNT; i++) { 1051 cd->my_rx_chain[i].my_ptr = 1052 (struct my_desc *) & ld->my_rx_list[i]; 1053 if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) { 1054 MY_UNLOCK(sc); 1055 return (ENOBUFS); 1056 } 1057 if (i == (MY_RX_LIST_CNT - 1)) { 1058 cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0]; 1059 ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]); 1060 } else { 1061 cd->my_rx_chain[i].my_nextdesc = 1062 &cd->my_rx_chain[i + 1]; 1063 ld->my_rx_list[i].my_next = 1064 vtophys(&ld->my_rx_list[i + 1]); 1065 } 1066 } 1067 cd->my_rx_head = &cd->my_rx_chain[0]; 1068 return (0); 1069 } 1070 1071 /* 1072 * Initialize an RX descriptor and attach an MBUF cluster. 1073 */ 1074 static int 1075 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c) 1076 { 1077 struct mbuf *m_new = NULL; 1078 1079 MY_LOCK_ASSERT(sc); 1080 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1081 if (m_new == NULL) { 1082 device_printf(sc->my_dev, 1083 "no memory for rx list -- packet dropped!\n"); 1084 return (ENOBUFS); 1085 } 1086 MCLGET(m_new, M_DONTWAIT); 1087 if (!(m_new->m_flags & M_EXT)) { 1088 device_printf(sc->my_dev, 1089 "no memory for rx list -- packet dropped!\n"); 1090 m_freem(m_new); 1091 return (ENOBUFS); 1092 } 1093 c->my_mbuf = m_new; 1094 c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t)); 1095 c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift; 1096 c->my_ptr->my_status = MY_OWNByNIC; 1097 return (0); 1098 } 1099 1100 /* 1101 * A frame has been uploaded: pass the resulting mbuf chain up to the higher 1102 * level protocols. 1103 */ 1104 static void 1105 my_rxeof(struct my_softc * sc) 1106 { 1107 struct ether_header *eh; 1108 struct mbuf *m; 1109 struct ifnet *ifp; 1110 struct my_chain_onefrag *cur_rx; 1111 int total_len = 0; 1112 u_int32_t rxstat; 1113 1114 MY_LOCK_ASSERT(sc); 1115 ifp = sc->my_ifp; 1116 while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status) 1117 & MY_OWNByNIC)) { 1118 cur_rx = sc->my_cdata.my_rx_head; 1119 sc->my_cdata.my_rx_head = cur_rx->my_nextdesc; 1120 1121 if (rxstat & MY_ES) { /* error summary: give up this rx pkt */ 1122 ifp->if_ierrors++; 1123 cur_rx->my_ptr->my_status = MY_OWNByNIC; 1124 continue; 1125 } 1126 /* No errors; receive the packet. */ 1127 total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift; 1128 total_len -= ETHER_CRC_LEN; 1129 1130 if (total_len < MINCLSIZE) { 1131 m = m_devget(mtod(cur_rx->my_mbuf, char *), 1132 total_len, 0, ifp, NULL); 1133 cur_rx->my_ptr->my_status = MY_OWNByNIC; 1134 if (m == NULL) { 1135 ifp->if_ierrors++; 1136 continue; 1137 } 1138 } else { 1139 m = cur_rx->my_mbuf; 1140 /* 1141 * Try to conjure up a new mbuf cluster. If that 1142 * fails, it means we have an out of memory condition 1143 * and should leave the buffer in place and continue. 1144 * This will result in a lost packet, but there's 1145 * little else we can do in this situation. 1146 */ 1147 if (my_newbuf(sc, cur_rx) == ENOBUFS) { 1148 ifp->if_ierrors++; 1149 cur_rx->my_ptr->my_status = MY_OWNByNIC; 1150 continue; 1151 } 1152 m->m_pkthdr.rcvif = ifp; 1153 m->m_pkthdr.len = m->m_len = total_len; 1154 } 1155 ifp->if_ipackets++; 1156 eh = mtod(m, struct ether_header *); 1157 #if NBPFILTER > 0 1158 /* 1159 * Handle BPF listeners. Let the BPF user see the packet, but 1160 * don't pass it up to the ether_input() layer unless it's a 1161 * broadcast packet, multicast packet, matches our ethernet 1162 * address or the interface is in promiscuous mode. 1163 */ 1164 if (bpf_peers_present(ifp->if_bpf)) { 1165 bpf_mtap(ifp->if_bpf, m); 1166 if (ifp->if_flags & IFF_PROMISC && 1167 (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp), 1168 ETHER_ADDR_LEN) && 1169 (eh->ether_dhost[0] & 1) == 0)) { 1170 m_freem(m); 1171 continue; 1172 } 1173 } 1174 #endif 1175 MY_UNLOCK(sc); 1176 (*ifp->if_input)(ifp, m); 1177 MY_LOCK(sc); 1178 } 1179 return; 1180 } 1181 1182 1183 /* 1184 * A frame was downloaded to the chip. It's safe for us to clean up the list 1185 * buffers. 1186 */ 1187 static void 1188 my_txeof(struct my_softc * sc) 1189 { 1190 struct my_chain *cur_tx; 1191 struct ifnet *ifp; 1192 1193 MY_LOCK_ASSERT(sc); 1194 ifp = sc->my_ifp; 1195 /* Clear the timeout timer. */ 1196 ifp->if_timer = 0; 1197 if (sc->my_cdata.my_tx_head == NULL) { 1198 return; 1199 } 1200 /* 1201 * Go through our tx list and free mbufs for those frames that have 1202 * been transmitted. 1203 */ 1204 while (sc->my_cdata.my_tx_head->my_mbuf != NULL) { 1205 u_int32_t txstat; 1206 1207 cur_tx = sc->my_cdata.my_tx_head; 1208 txstat = MY_TXSTATUS(cur_tx); 1209 if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT) 1210 break; 1211 if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) { 1212 if (txstat & MY_TXERR) { 1213 ifp->if_oerrors++; 1214 if (txstat & MY_EC) /* excessive collision */ 1215 ifp->if_collisions++; 1216 if (txstat & MY_LC) /* late collision */ 1217 ifp->if_collisions++; 1218 } 1219 ifp->if_collisions += (txstat & MY_NCRMASK) >> 1220 MY_NCRShift; 1221 } 1222 ifp->if_opackets++; 1223 m_freem(cur_tx->my_mbuf); 1224 cur_tx->my_mbuf = NULL; 1225 if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) { 1226 sc->my_cdata.my_tx_head = NULL; 1227 sc->my_cdata.my_tx_tail = NULL; 1228 break; 1229 } 1230 sc->my_cdata.my_tx_head = cur_tx->my_nextdesc; 1231 } 1232 if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) { 1233 ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask); 1234 } 1235 return; 1236 } 1237 1238 /* 1239 * TX 'end of channel' interrupt handler. 1240 */ 1241 static void 1242 my_txeoc(struct my_softc * sc) 1243 { 1244 struct ifnet *ifp; 1245 1246 MY_LOCK_ASSERT(sc); 1247 ifp = sc->my_ifp; 1248 ifp->if_timer = 0; 1249 if (sc->my_cdata.my_tx_head == NULL) { 1250 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1251 sc->my_cdata.my_tx_tail = NULL; 1252 if (sc->my_want_auto) 1253 my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1); 1254 } else { 1255 if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) { 1256 MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC; 1257 ifp->if_timer = 5; 1258 CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF); 1259 } 1260 } 1261 return; 1262 } 1263 1264 static void 1265 my_intr(void *arg) 1266 { 1267 struct my_softc *sc; 1268 struct ifnet *ifp; 1269 u_int32_t status; 1270 1271 sc = arg; 1272 MY_LOCK(sc); 1273 ifp = sc->my_ifp; 1274 if (!(ifp->if_flags & IFF_UP)) { 1275 MY_UNLOCK(sc); 1276 return; 1277 } 1278 /* Disable interrupts. */ 1279 CSR_WRITE_4(sc, MY_IMR, 0x00000000); 1280 1281 for (;;) { 1282 status = CSR_READ_4(sc, MY_ISR); 1283 status &= MY_INTRS; 1284 if (status) 1285 CSR_WRITE_4(sc, MY_ISR, status); 1286 else 1287 break; 1288 1289 if (status & MY_RI) /* receive interrupt */ 1290 my_rxeof(sc); 1291 1292 if ((status & MY_RBU) || (status & MY_RxErr)) { 1293 /* rx buffer unavailable or rx error */ 1294 ifp->if_ierrors++; 1295 #ifdef foo 1296 my_stop(sc); 1297 my_reset(sc); 1298 my_init_locked(sc); 1299 #endif 1300 } 1301 if (status & MY_TI) /* tx interrupt */ 1302 my_txeof(sc); 1303 if (status & MY_ETI) /* tx early interrupt */ 1304 my_txeof(sc); 1305 if (status & MY_TBU) /* tx buffer unavailable */ 1306 my_txeoc(sc); 1307 1308 #if 0 /* 90/1/18 delete */ 1309 if (status & MY_FBE) { 1310 my_reset(sc); 1311 my_init_locked(sc); 1312 } 1313 #endif 1314 1315 } 1316 1317 /* Re-enable interrupts. */ 1318 CSR_WRITE_4(sc, MY_IMR, MY_INTRS); 1319 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1320 my_start_locked(ifp); 1321 MY_UNLOCK(sc); 1322 return; 1323 } 1324 1325 /* 1326 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1327 * pointers to the fragment pointers. 1328 */ 1329 static int 1330 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head) 1331 { 1332 struct my_desc *f = NULL; 1333 int total_len; 1334 struct mbuf *m, *m_new = NULL; 1335 1336 MY_LOCK_ASSERT(sc); 1337 /* calculate the total tx pkt length */ 1338 total_len = 0; 1339 for (m = m_head; m != NULL; m = m->m_next) 1340 total_len += m->m_len; 1341 /* 1342 * Start packing the mbufs in this chain into the fragment pointers. 1343 * Stop when we run out of fragments or hit the end of the mbuf 1344 * chain. 1345 */ 1346 m = m_head; 1347 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1348 if (m_new == NULL) { 1349 device_printf(sc->my_dev, "no memory for tx list"); 1350 return (1); 1351 } 1352 if (m_head->m_pkthdr.len > MHLEN) { 1353 MCLGET(m_new, M_DONTWAIT); 1354 if (!(m_new->m_flags & M_EXT)) { 1355 m_freem(m_new); 1356 device_printf(sc->my_dev, "no memory for tx list"); 1357 return (1); 1358 } 1359 } 1360 m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); 1361 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; 1362 m_freem(m_head); 1363 m_head = m_new; 1364 f = &c->my_ptr->my_frag[0]; 1365 f->my_status = 0; 1366 f->my_data = vtophys(mtod(m_new, caddr_t)); 1367 total_len = m_new->m_len; 1368 f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable; 1369 f->my_ctl |= total_len << MY_PKTShift; /* pkt size */ 1370 f->my_ctl |= total_len; /* buffer size */ 1371 /* 89/12/29 add, for mtd891 *//* [ 89? ] */ 1372 if (sc->my_info->my_did == MTD891ID) 1373 f->my_ctl |= MY_ETIControl | MY_RetryTxLC; 1374 c->my_mbuf = m_head; 1375 c->my_lastdesc = 0; 1376 MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]); 1377 return (0); 1378 } 1379 1380 /* 1381 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1382 * to the mbuf data regions directly in the transmit lists. We also save a 1383 * copy of the pointers since the transmit list fragment pointers are 1384 * physical addresses. 1385 */ 1386 static void 1387 my_start(struct ifnet * ifp) 1388 { 1389 struct my_softc *sc; 1390 1391 sc = ifp->if_softc; 1392 MY_LOCK(sc); 1393 my_start_locked(ifp); 1394 MY_UNLOCK(sc); 1395 } 1396 1397 static void 1398 my_start_locked(struct ifnet * ifp) 1399 { 1400 struct my_softc *sc; 1401 struct mbuf *m_head = NULL; 1402 struct my_chain *cur_tx = NULL, *start_tx; 1403 1404 sc = ifp->if_softc; 1405 MY_LOCK_ASSERT(sc); 1406 if (sc->my_autoneg) { 1407 sc->my_tx_pend = 1; 1408 return; 1409 } 1410 /* 1411 * Check for an available queue slot. If there are none, punt. 1412 */ 1413 if (sc->my_cdata.my_tx_free->my_mbuf != NULL) { 1414 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1415 return; 1416 } 1417 start_tx = sc->my_cdata.my_tx_free; 1418 while (sc->my_cdata.my_tx_free->my_mbuf == NULL) { 1419 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1420 if (m_head == NULL) 1421 break; 1422 1423 /* Pick a descriptor off the free list. */ 1424 cur_tx = sc->my_cdata.my_tx_free; 1425 sc->my_cdata.my_tx_free = cur_tx->my_nextdesc; 1426 1427 /* Pack the data into the descriptor. */ 1428 my_encap(sc, cur_tx, m_head); 1429 1430 if (cur_tx != start_tx) 1431 MY_TXOWN(cur_tx) = MY_OWNByNIC; 1432 #if NBPFILTER > 0 1433 /* 1434 * If there's a BPF listener, bounce a copy of this frame to 1435 * him. 1436 */ 1437 BPF_MTAP(ifp, cur_tx->my_mbuf); 1438 #endif 1439 } 1440 /* 1441 * If there are no packets queued, bail. 1442 */ 1443 if (cur_tx == NULL) { 1444 return; 1445 } 1446 /* 1447 * Place the request for the upload interrupt in the last descriptor 1448 * in the chain. This way, if we're chaining several packets at once, 1449 * we'll only get an interupt once for the whole chain rather than 1450 * once for each packet. 1451 */ 1452 MY_TXCTL(cur_tx) |= MY_TXIC; 1453 cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC; 1454 sc->my_cdata.my_tx_tail = cur_tx; 1455 if (sc->my_cdata.my_tx_head == NULL) 1456 sc->my_cdata.my_tx_head = start_tx; 1457 MY_TXOWN(start_tx) = MY_OWNByNIC; 1458 CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF); /* tx polling demand */ 1459 1460 /* 1461 * Set a timeout in case the chip goes out to lunch. 1462 */ 1463 ifp->if_timer = 5; 1464 return; 1465 } 1466 1467 static void 1468 my_init(void *xsc) 1469 { 1470 struct my_softc *sc = xsc; 1471 1472 MY_LOCK(sc); 1473 my_init_locked(sc); 1474 MY_UNLOCK(sc); 1475 } 1476 1477 static void 1478 my_init_locked(struct my_softc *sc) 1479 { 1480 struct ifnet *ifp = sc->my_ifp; 1481 u_int16_t phy_bmcr = 0; 1482 1483 MY_LOCK_ASSERT(sc); 1484 if (sc->my_autoneg) { 1485 return; 1486 } 1487 if (sc->my_pinfo != NULL) 1488 phy_bmcr = my_phy_readreg(sc, PHY_BMCR); 1489 /* 1490 * Cancel pending I/O and free all RX/TX buffers. 1491 */ 1492 my_stop(sc); 1493 my_reset(sc); 1494 1495 /* 1496 * Set cache alignment and burst length. 1497 */ 1498 #if 0 /* 89/9/1 modify, */ 1499 CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512); 1500 CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF); 1501 #endif 1502 CSR_WRITE_4(sc, MY_BCR, MY_PBL8); 1503 CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512); 1504 /* 1505 * 89/12/29 add, for mtd891, 1506 */ 1507 if (sc->my_info->my_did == MTD891ID) { 1508 MY_SETBIT(sc, MY_BCR, MY_PROG); 1509 MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced); 1510 } 1511 my_setcfg(sc, phy_bmcr); 1512 /* Init circular RX list. */ 1513 if (my_list_rx_init(sc) == ENOBUFS) { 1514 device_printf(sc->my_dev, "init failed: no memory for rx buffers\n"); 1515 my_stop(sc); 1516 return; 1517 } 1518 /* Init TX descriptors. */ 1519 my_list_tx_init(sc); 1520 1521 /* If we want promiscuous mode, set the allframes bit. */ 1522 if (ifp->if_flags & IFF_PROMISC) 1523 MY_SETBIT(sc, MY_TCRRCR, MY_PROM); 1524 else 1525 MY_CLRBIT(sc, MY_TCRRCR, MY_PROM); 1526 1527 /* 1528 * Set capture broadcast bit to capture broadcast frames. 1529 */ 1530 if (ifp->if_flags & IFF_BROADCAST) 1531 MY_SETBIT(sc, MY_TCRRCR, MY_AB); 1532 else 1533 MY_CLRBIT(sc, MY_TCRRCR, MY_AB); 1534 1535 /* 1536 * Program the multicast filter, if necessary. 1537 */ 1538 my_setmulti(sc); 1539 1540 /* 1541 * Load the address of the RX list. 1542 */ 1543 MY_CLRBIT(sc, MY_TCRRCR, MY_RE); 1544 CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0])); 1545 1546 /* 1547 * Enable interrupts. 1548 */ 1549 CSR_WRITE_4(sc, MY_IMR, MY_INTRS); 1550 CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF); 1551 1552 /* Enable receiver and transmitter. */ 1553 MY_SETBIT(sc, MY_TCRRCR, MY_RE); 1554 MY_CLRBIT(sc, MY_TCRRCR, MY_TE); 1555 CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0])); 1556 MY_SETBIT(sc, MY_TCRRCR, MY_TE); 1557 1558 /* Restore state of BMCR */ 1559 if (sc->my_pinfo != NULL) 1560 my_phy_writereg(sc, PHY_BMCR, phy_bmcr); 1561 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1562 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1563 return; 1564 } 1565 1566 /* 1567 * Set media options. 1568 */ 1569 1570 static int 1571 my_ifmedia_upd(struct ifnet * ifp) 1572 { 1573 struct my_softc *sc; 1574 struct ifmedia *ifm; 1575 1576 sc = ifp->if_softc; 1577 MY_LOCK(sc); 1578 ifm = &sc->ifmedia; 1579 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 1580 MY_UNLOCK(sc); 1581 return (EINVAL); 1582 } 1583 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) 1584 my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1); 1585 else 1586 my_setmode_mii(sc, ifm->ifm_media); 1587 MY_UNLOCK(sc); 1588 return (0); 1589 } 1590 1591 /* 1592 * Report current media status. 1593 */ 1594 1595 static void 1596 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr) 1597 { 1598 struct my_softc *sc; 1599 u_int16_t advert = 0, ability = 0; 1600 1601 sc = ifp->if_softc; 1602 MY_LOCK(sc); 1603 ifmr->ifm_active = IFM_ETHER; 1604 if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) { 1605 #if 0 /* this version did not support 1000M, */ 1606 if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000) 1607 ifmr->ifm_active = IFM_ETHER | IFM_1000TX; 1608 #endif 1609 if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL) 1610 ifmr->ifm_active = IFM_ETHER | IFM_100_TX; 1611 else 1612 ifmr->ifm_active = IFM_ETHER | IFM_10_T; 1613 if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX) 1614 ifmr->ifm_active |= IFM_FDX; 1615 else 1616 ifmr->ifm_active |= IFM_HDX; 1617 1618 MY_UNLOCK(sc); 1619 return; 1620 } 1621 ability = my_phy_readreg(sc, PHY_LPAR); 1622 advert = my_phy_readreg(sc, PHY_ANAR); 1623 1624 #if 0 /* this version did not support 1000M, */ 1625 if (sc->my_pinfo->my_vid = MarvellPHYID0) { 1626 ability2 = my_phy_readreg(sc, PHY_1000SR); 1627 if (ability2 & PHY_1000SR_1000BTXFULL) { 1628 advert = 0; 1629 ability = 0; 1630 ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX; 1631 } else if (ability & PHY_1000SR_1000BTXHALF) { 1632 advert = 0; 1633 ability = 0; 1634 ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX; 1635 } 1636 } 1637 #endif 1638 if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) 1639 ifmr->ifm_active = IFM_ETHER | IFM_100_T4; 1640 else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) 1641 ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1642 else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) 1643 ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX; 1644 else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) 1645 ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX; 1646 else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF) 1647 ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX; 1648 MY_UNLOCK(sc); 1649 return; 1650 } 1651 1652 static int 1653 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data) 1654 { 1655 struct my_softc *sc = ifp->if_softc; 1656 struct ifreq *ifr = (struct ifreq *) data; 1657 int error; 1658 1659 switch (command) { 1660 case SIOCSIFFLAGS: 1661 MY_LOCK(sc); 1662 if (ifp->if_flags & IFF_UP) 1663 my_init_locked(sc); 1664 else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1665 my_stop(sc); 1666 MY_UNLOCK(sc); 1667 error = 0; 1668 break; 1669 case SIOCADDMULTI: 1670 case SIOCDELMULTI: 1671 MY_LOCK(sc); 1672 my_setmulti(sc); 1673 MY_UNLOCK(sc); 1674 error = 0; 1675 break; 1676 case SIOCGIFMEDIA: 1677 case SIOCSIFMEDIA: 1678 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 1679 break; 1680 default: 1681 error = ether_ioctl(ifp, command, data); 1682 break; 1683 } 1684 return (error); 1685 } 1686 1687 static void 1688 my_watchdog(struct ifnet * ifp) 1689 { 1690 struct my_softc *sc; 1691 1692 sc = ifp->if_softc; 1693 MY_LOCK(sc); 1694 if (sc->my_autoneg) { 1695 my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1); 1696 MY_UNLOCK(sc); 1697 return; 1698 } 1699 ifp->if_oerrors++; 1700 if_printf(ifp, "watchdog timeout\n"); 1701 if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT)) 1702 if_printf(ifp, "no carrier - transceiver cable problem?\n"); 1703 my_stop(sc); 1704 my_reset(sc); 1705 my_init_locked(sc); 1706 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1707 my_start_locked(ifp); 1708 MY_LOCK(sc); 1709 return; 1710 } 1711 1712 1713 /* 1714 * Stop the adapter and free any mbufs allocated to the RX and TX lists. 1715 */ 1716 static void 1717 my_stop(struct my_softc * sc) 1718 { 1719 register int i; 1720 struct ifnet *ifp; 1721 1722 MY_LOCK_ASSERT(sc); 1723 ifp = sc->my_ifp; 1724 ifp->if_timer = 0; 1725 1726 MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE)); 1727 CSR_WRITE_4(sc, MY_IMR, 0x00000000); 1728 CSR_WRITE_4(sc, MY_TXLBA, 0x00000000); 1729 CSR_WRITE_4(sc, MY_RXLBA, 0x00000000); 1730 1731 /* 1732 * Free data in the RX lists. 1733 */ 1734 for (i = 0; i < MY_RX_LIST_CNT; i++) { 1735 if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) { 1736 m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf); 1737 sc->my_cdata.my_rx_chain[i].my_mbuf = NULL; 1738 } 1739 } 1740 bzero((char *)&sc->my_ldata->my_rx_list, 1741 sizeof(sc->my_ldata->my_rx_list)); 1742 /* 1743 * Free the TX list buffers. 1744 */ 1745 for (i = 0; i < MY_TX_LIST_CNT; i++) { 1746 if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) { 1747 m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf); 1748 sc->my_cdata.my_tx_chain[i].my_mbuf = NULL; 1749 } 1750 } 1751 bzero((char *)&sc->my_ldata->my_tx_list, 1752 sizeof(sc->my_ldata->my_tx_list)); 1753 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1754 return; 1755 } 1756 1757 /* 1758 * Stop all chip I/O so that the kernel's probe routines don't get confused 1759 * by errant DMAs when rebooting. 1760 */ 1761 static void 1762 my_shutdown(device_t dev) 1763 { 1764 struct my_softc *sc; 1765 1766 sc = device_get_softc(dev); 1767 MY_LOCK(sc); 1768 my_stop(sc); 1769 MY_UNLOCK(sc); 1770 return; 1771 } 1772