xref: /freebsd/sys/dev/my/if_my.c (revision bb15ca603fa442c72dde3f3cb8b46db6970e3950)
1 /*-
2  * Written by: yen_cw@myson.com.tw
3  * Copyright (c) 2002 Myson Technology Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/types.h>
42 #include <sys/module.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 
46 #define NBPFILTER	1
47 
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/ethernet.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_dl.h>
54 #include <net/bpf.h>
55 
56 #include <vm/vm.h>		/* for vtophys */
57 #include <vm/pmap.h>		/* for vtophys */
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/bus.h>
61 #include <sys/rman.h>
62 
63 #include <dev/pci/pcireg.h>
64 #include <dev/pci/pcivar.h>
65 
66 /*
67  * #define MY_USEIOSPACE
68  */
69 
70 static int      MY_USEIOSPACE = 1;
71 
72 #ifdef MY_USEIOSPACE
73 #define MY_RES                  SYS_RES_IOPORT
74 #define MY_RID                  MY_PCI_LOIO
75 #else
76 #define MY_RES                  SYS_RES_MEMORY
77 #define MY_RID                  MY_PCI_LOMEM
78 #endif
79 
80 
81 #include <dev/my/if_myreg.h>
82 
83 #ifndef lint
84 static          const char rcsid[] =
85 "$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $";
86 #endif
87 
88 /*
89  * Various supported device vendors/types and their names.
90  */
91 struct my_type *my_info_tmp;
92 static struct my_type my_devs[] = {
93 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
94 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
95 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
96 	{0, 0, NULL}
97 };
98 
99 /*
100  * Various supported PHY vendors/types and their names. Note that this driver
101  * will work with pretty much any MII-compliant PHY, so failure to positively
102  * identify the chip is not a fatal error.
103  */
104 static struct my_type my_phys[] = {
105 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
106 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
107 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
108 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
109 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
110 	{0, 0, "<MII-compliant physical interface>"}
111 };
112 
113 static int      my_probe(device_t);
114 static int      my_attach(device_t);
115 static int      my_detach(device_t);
116 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
117 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
118 static void     my_rxeof(struct my_softc *);
119 static void     my_txeof(struct my_softc *);
120 static void     my_txeoc(struct my_softc *);
121 static void     my_intr(void *);
122 static void     my_start(struct ifnet *);
123 static void     my_start_locked(struct ifnet *);
124 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
125 static void     my_init(void *);
126 static void     my_init_locked(struct my_softc *);
127 static void     my_stop(struct my_softc *);
128 static void     my_autoneg_timeout(void *);
129 static void     my_watchdog(void *);
130 static int      my_shutdown(device_t);
131 static int      my_ifmedia_upd(struct ifnet *);
132 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
133 static u_int16_t my_phy_readreg(struct my_softc *, int);
134 static void     my_phy_writereg(struct my_softc *, int, int);
135 static void     my_autoneg_xmit(struct my_softc *);
136 static void     my_autoneg_mii(struct my_softc *, int, int);
137 static void     my_setmode_mii(struct my_softc *, int);
138 static void     my_getmode_mii(struct my_softc *);
139 static void     my_setcfg(struct my_softc *, int);
140 static void     my_setmulti(struct my_softc *);
141 static void     my_reset(struct my_softc *);
142 static int      my_list_rx_init(struct my_softc *);
143 static int      my_list_tx_init(struct my_softc *);
144 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
145 
146 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
147 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
148 
149 static device_method_t my_methods[] = {
150 	/* Device interface */
151 	DEVMETHOD(device_probe, my_probe),
152 	DEVMETHOD(device_attach, my_attach),
153 	DEVMETHOD(device_detach, my_detach),
154 	DEVMETHOD(device_shutdown, my_shutdown),
155 
156 	{0, 0}
157 };
158 
159 static driver_t my_driver = {
160 	"my",
161 	my_methods,
162 	sizeof(struct my_softc)
163 };
164 
165 static devclass_t my_devclass;
166 
167 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
168 MODULE_DEPEND(my, pci, 1, 1, 1);
169 MODULE_DEPEND(my, ether, 1, 1, 1);
170 
171 static long
172 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
173 {
174 	long            miir;
175 	int             i;
176 	int             mask, data;
177 
178 	MY_LOCK_ASSERT(sc);
179 
180 	/* enable MII output */
181 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
182 	miir &= 0xfffffff0;
183 
184 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
185 
186 	/* send 32 1's preamble */
187 	for (i = 0; i < 32; i++) {
188 		/* low MDC; MDO is already high (miir) */
189 		miir &= ~MY_MASK_MIIR_MII_MDC;
190 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
191 
192 		/* high MDC */
193 		miir |= MY_MASK_MIIR_MII_MDC;
194 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
195 	}
196 
197 	/* calculate ST+OP+PHYAD+REGAD+TA */
198 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
199 
200 	/* sent out */
201 	mask = 0x8000;
202 	while (mask) {
203 		/* low MDC, prepare MDO */
204 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
205 		if (mask & data)
206 			miir |= MY_MASK_MIIR_MII_MDO;
207 
208 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
209 		/* high MDC */
210 		miir |= MY_MASK_MIIR_MII_MDC;
211 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
212 		DELAY(30);
213 
214 		/* next */
215 		mask >>= 1;
216 		if (mask == 0x2 && opcode == MY_OP_READ)
217 			miir &= ~MY_MASK_MIIR_MII_WRITE;
218 	}
219 
220 	return miir;
221 }
222 
223 
224 static u_int16_t
225 my_phy_readreg(struct my_softc * sc, int reg)
226 {
227 	long            miir;
228 	int             mask, data;
229 
230 	MY_LOCK_ASSERT(sc);
231 
232 	if (sc->my_info->my_did == MTD803ID)
233 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
234 	else {
235 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
236 
237 		/* read data */
238 		mask = 0x8000;
239 		data = 0;
240 		while (mask) {
241 			/* low MDC */
242 			miir &= ~MY_MASK_MIIR_MII_MDC;
243 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
244 
245 			/* read MDI */
246 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
247 			if (miir & MY_MASK_MIIR_MII_MDI)
248 				data |= mask;
249 
250 			/* high MDC, and wait */
251 			miir |= MY_MASK_MIIR_MII_MDC;
252 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
253 			DELAY(30);
254 
255 			/* next */
256 			mask >>= 1;
257 		}
258 
259 		/* low MDC */
260 		miir &= ~MY_MASK_MIIR_MII_MDC;
261 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
262 	}
263 
264 	return (u_int16_t) data;
265 }
266 
267 
268 static void
269 my_phy_writereg(struct my_softc * sc, int reg, int data)
270 {
271 	long            miir;
272 	int             mask;
273 
274 	MY_LOCK_ASSERT(sc);
275 
276 	if (sc->my_info->my_did == MTD803ID)
277 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
278 	else {
279 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
280 
281 		/* write data */
282 		mask = 0x8000;
283 		while (mask) {
284 			/* low MDC, prepare MDO */
285 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
286 			if (mask & data)
287 				miir |= MY_MASK_MIIR_MII_MDO;
288 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
289 			DELAY(1);
290 
291 			/* high MDC */
292 			miir |= MY_MASK_MIIR_MII_MDC;
293 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
294 			DELAY(1);
295 
296 			/* next */
297 			mask >>= 1;
298 		}
299 
300 		/* low MDC */
301 		miir &= ~MY_MASK_MIIR_MII_MDC;
302 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
303 	}
304 	return;
305 }
306 
307 
308 /*
309  * Program the 64-bit multicast hash filter.
310  */
311 static void
312 my_setmulti(struct my_softc * sc)
313 {
314 	struct ifnet   *ifp;
315 	int             h = 0;
316 	u_int32_t       hashes[2] = {0, 0};
317 	struct ifmultiaddr *ifma;
318 	u_int32_t       rxfilt;
319 	int             mcnt = 0;
320 
321 	MY_LOCK_ASSERT(sc);
322 
323 	ifp = sc->my_ifp;
324 
325 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
326 
327 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
328 		rxfilt |= MY_AM;
329 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
330 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
331 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
332 
333 		return;
334 	}
335 	/* first, zot all the existing hash bits */
336 	CSR_WRITE_4(sc, MY_MAR0, 0);
337 	CSR_WRITE_4(sc, MY_MAR1, 0);
338 
339 	/* now program new ones */
340 	if_maddr_rlock(ifp);
341 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
342 		if (ifma->ifma_addr->sa_family != AF_LINK)
343 			continue;
344 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
345 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
346 		if (h < 32)
347 			hashes[0] |= (1 << h);
348 		else
349 			hashes[1] |= (1 << (h - 32));
350 		mcnt++;
351 	}
352 	if_maddr_runlock(ifp);
353 
354 	if (mcnt)
355 		rxfilt |= MY_AM;
356 	else
357 		rxfilt &= ~MY_AM;
358 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
359 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
360 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
361 	return;
362 }
363 
364 /*
365  * Initiate an autonegotiation session.
366  */
367 static void
368 my_autoneg_xmit(struct my_softc * sc)
369 {
370 	u_int16_t       phy_sts = 0;
371 
372 	MY_LOCK_ASSERT(sc);
373 
374 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
375 	DELAY(500);
376 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
377 
378 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
379 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
380 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
381 
382 	return;
383 }
384 
385 static void
386 my_autoneg_timeout(void *arg)
387 {
388 	struct my_softc *sc;
389 
390 	sc = arg;
391 	MY_LOCK_ASSERT(sc);
392 	my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
393 }
394 
395 /*
396  * Invoke autonegotiation on a PHY.
397  */
398 static void
399 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
400 {
401 	u_int16_t       phy_sts = 0, media, advert, ability;
402 	u_int16_t       ability2 = 0;
403 	struct ifnet   *ifp;
404 	struct ifmedia *ifm;
405 
406 	MY_LOCK_ASSERT(sc);
407 
408 	ifm = &sc->ifmedia;
409 	ifp = sc->my_ifp;
410 
411 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
412 
413 #ifndef FORCE_AUTONEG_TFOUR
414 	/*
415 	 * First, see if autoneg is supported. If not, there's no point in
416 	 * continuing.
417 	 */
418 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
419 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
420 		if (verbose)
421 			device_printf(sc->my_dev,
422 			    "autonegotiation not supported\n");
423 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
424 		return;
425 	}
426 #endif
427 	switch (flag) {
428 	case MY_FLAG_FORCEDELAY:
429 		/*
430 		 * XXX Never use this option anywhere but in the probe
431 		 * routine: making the kernel stop dead in its tracks for
432 		 * three whole seconds after we've gone multi-user is really
433 		 * bad manners.
434 		 */
435 		my_autoneg_xmit(sc);
436 		DELAY(5000000);
437 		break;
438 	case MY_FLAG_SCHEDDELAY:
439 		/*
440 		 * Wait for the transmitter to go idle before starting an
441 		 * autoneg session, otherwise my_start() may clobber our
442 		 * timeout, and we don't want to allow transmission during an
443 		 * autoneg session since that can screw it up.
444 		 */
445 		if (sc->my_cdata.my_tx_head != NULL) {
446 			sc->my_want_auto = 1;
447 			MY_UNLOCK(sc);
448 			return;
449 		}
450 		my_autoneg_xmit(sc);
451 		callout_reset(&sc->my_autoneg_timer, hz * 5, my_autoneg_timeout,
452 		    sc);
453 		sc->my_autoneg = 1;
454 		sc->my_want_auto = 0;
455 		return;
456 	case MY_FLAG_DELAYTIMEO:
457 		callout_stop(&sc->my_autoneg_timer);
458 		sc->my_autoneg = 0;
459 		break;
460 	default:
461 		device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag);
462 		return;
463 	}
464 
465 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
466 		if (verbose)
467 			device_printf(sc->my_dev, "autoneg complete, ");
468 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
469 	} else {
470 		if (verbose)
471 			device_printf(sc->my_dev, "autoneg not complete, ");
472 	}
473 
474 	media = my_phy_readreg(sc, PHY_BMCR);
475 
476 	/* Link is good. Report modes and set duplex mode. */
477 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
478 		if (verbose)
479 			device_printf(sc->my_dev, "link status good. ");
480 		advert = my_phy_readreg(sc, PHY_ANAR);
481 		ability = my_phy_readreg(sc, PHY_LPAR);
482 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
483 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
484 			ability2 = my_phy_readreg(sc, PHY_1000SR);
485 			if (ability2 & PHY_1000SR_1000BTXFULL) {
486 				advert = 0;
487 				ability = 0;
488 				/*
489 				 * this version did not support 1000M,
490 				 * ifm->ifm_media =
491 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
492 				 */
493 				ifm->ifm_media =
494 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
495 				media &= ~PHY_BMCR_SPEEDSEL;
496 				media |= PHY_BMCR_1000;
497 				media |= PHY_BMCR_DUPLEX;
498 				printf("(full-duplex, 1000Mbps)\n");
499 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
500 				advert = 0;
501 				ability = 0;
502 				/*
503 				 * this version did not support 1000M,
504 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
505 				 */
506 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
507 				media &= ~PHY_BMCR_SPEEDSEL;
508 				media &= ~PHY_BMCR_DUPLEX;
509 				media |= PHY_BMCR_1000;
510 				printf("(half-duplex, 1000Mbps)\n");
511 			}
512 		}
513 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
514 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
515 			media |= PHY_BMCR_SPEEDSEL;
516 			media &= ~PHY_BMCR_DUPLEX;
517 			printf("(100baseT4)\n");
518 		} else if (advert & PHY_ANAR_100BTXFULL &&
519 			   ability & PHY_ANAR_100BTXFULL) {
520 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
521 			media |= PHY_BMCR_SPEEDSEL;
522 			media |= PHY_BMCR_DUPLEX;
523 			printf("(full-duplex, 100Mbps)\n");
524 		} else if (advert & PHY_ANAR_100BTXHALF &&
525 			   ability & PHY_ANAR_100BTXHALF) {
526 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
527 			media |= PHY_BMCR_SPEEDSEL;
528 			media &= ~PHY_BMCR_DUPLEX;
529 			printf("(half-duplex, 100Mbps)\n");
530 		} else if (advert & PHY_ANAR_10BTFULL &&
531 			   ability & PHY_ANAR_10BTFULL) {
532 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
533 			media &= ~PHY_BMCR_SPEEDSEL;
534 			media |= PHY_BMCR_DUPLEX;
535 			printf("(full-duplex, 10Mbps)\n");
536 		} else if (advert) {
537 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
538 			media &= ~PHY_BMCR_SPEEDSEL;
539 			media &= ~PHY_BMCR_DUPLEX;
540 			printf("(half-duplex, 10Mbps)\n");
541 		}
542 		media &= ~PHY_BMCR_AUTONEGENBL;
543 
544 		/* Set ASIC's duplex mode to match the PHY. */
545 		my_phy_writereg(sc, PHY_BMCR, media);
546 		my_setcfg(sc, media);
547 	} else {
548 		if (verbose)
549 			device_printf(sc->my_dev, "no carrier\n");
550 	}
551 
552 	my_init_locked(sc);
553 	if (sc->my_tx_pend) {
554 		sc->my_autoneg = 0;
555 		sc->my_tx_pend = 0;
556 		my_start_locked(ifp);
557 	}
558 	return;
559 }
560 
561 /*
562  * To get PHY ability.
563  */
564 static void
565 my_getmode_mii(struct my_softc * sc)
566 {
567 	u_int16_t       bmsr;
568 	struct ifnet   *ifp;
569 
570 	MY_LOCK_ASSERT(sc);
571 	ifp = sc->my_ifp;
572 	bmsr = my_phy_readreg(sc, PHY_BMSR);
573 	if (bootverbose)
574 		device_printf(sc->my_dev, "PHY status word: %x\n", bmsr);
575 
576 	/* fallback */
577 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
578 
579 	if (bmsr & PHY_BMSR_10BTHALF) {
580 		if (bootverbose)
581 			device_printf(sc->my_dev,
582 			    "10Mbps half-duplex mode supported\n");
583 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
584 		    0, NULL);
585 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
586 	}
587 	if (bmsr & PHY_BMSR_10BTFULL) {
588 		if (bootverbose)
589 			device_printf(sc->my_dev,
590 			    "10Mbps full-duplex mode supported\n");
591 
592 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
593 		    0, NULL);
594 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
595 	}
596 	if (bmsr & PHY_BMSR_100BTXHALF) {
597 		if (bootverbose)
598 			device_printf(sc->my_dev,
599 			    "100Mbps half-duplex mode supported\n");
600 		ifp->if_baudrate = 100000000;
601 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
602 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
603 			    0, NULL);
604 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
605 	}
606 	if (bmsr & PHY_BMSR_100BTXFULL) {
607 		if (bootverbose)
608 			device_printf(sc->my_dev,
609 			    "100Mbps full-duplex mode supported\n");
610 		ifp->if_baudrate = 100000000;
611 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
612 		    0, NULL);
613 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
614 	}
615 	/* Some also support 100BaseT4. */
616 	if (bmsr & PHY_BMSR_100BT4) {
617 		if (bootverbose)
618 			device_printf(sc->my_dev, "100baseT4 mode supported\n");
619 		ifp->if_baudrate = 100000000;
620 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
621 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
622 #ifdef FORCE_AUTONEG_TFOUR
623 		if (bootverbose)
624 			device_printf(sc->my_dev,
625 			    "forcing on autoneg support for BT4\n");
626 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
627 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
628 #endif
629 	}
630 #if 0				/* this version did not support 1000M, */
631 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
632 		if (bootverbose)
633 			device_printf(sc->my_dev,
634 			    "1000Mbps half-duplex mode supported\n");
635 
636 		ifp->if_baudrate = 1000000000;
637 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
638 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
639 		    0, NULL);
640 		if (bootverbose)
641 			device_printf(sc->my_dev,
642 			    "1000Mbps full-duplex mode supported\n");
643 		ifp->if_baudrate = 1000000000;
644 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
645 		    0, NULL);
646 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
647 	}
648 #endif
649 	if (bmsr & PHY_BMSR_CANAUTONEG) {
650 		if (bootverbose)
651 			device_printf(sc->my_dev, "autoneg supported\n");
652 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
653 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
654 	}
655 	return;
656 }
657 
658 /*
659  * Set speed and duplex mode.
660  */
661 static void
662 my_setmode_mii(struct my_softc * sc, int media)
663 {
664 	u_int16_t       bmcr;
665 	struct ifnet   *ifp;
666 
667 	MY_LOCK_ASSERT(sc);
668 	ifp = sc->my_ifp;
669 	/*
670 	 * If an autoneg session is in progress, stop it.
671 	 */
672 	if (sc->my_autoneg) {
673 		device_printf(sc->my_dev, "canceling autoneg session\n");
674 		callout_stop(&sc->my_autoneg_timer);
675 		sc->my_autoneg = sc->my_want_auto = 0;
676 		bmcr = my_phy_readreg(sc, PHY_BMCR);
677 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
678 		my_phy_writereg(sc, PHY_BMCR, bmcr);
679 	}
680 	device_printf(sc->my_dev, "selecting MII, ");
681 	bmcr = my_phy_readreg(sc, PHY_BMCR);
682 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
683 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
684 
685 #if 0				/* this version did not support 1000M, */
686 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
687 		printf("1000Mbps/T4, half-duplex\n");
688 		bmcr &= ~PHY_BMCR_SPEEDSEL;
689 		bmcr &= ~PHY_BMCR_DUPLEX;
690 		bmcr |= PHY_BMCR_1000;
691 	}
692 #endif
693 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
694 		printf("100Mbps/T4, half-duplex\n");
695 		bmcr |= PHY_BMCR_SPEEDSEL;
696 		bmcr &= ~PHY_BMCR_DUPLEX;
697 	}
698 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
699 		printf("100Mbps, ");
700 		bmcr |= PHY_BMCR_SPEEDSEL;
701 	}
702 	if (IFM_SUBTYPE(media) == IFM_10_T) {
703 		printf("10Mbps, ");
704 		bmcr &= ~PHY_BMCR_SPEEDSEL;
705 	}
706 	if ((media & IFM_GMASK) == IFM_FDX) {
707 		printf("full duplex\n");
708 		bmcr |= PHY_BMCR_DUPLEX;
709 	} else {
710 		printf("half duplex\n");
711 		bmcr &= ~PHY_BMCR_DUPLEX;
712 	}
713 	my_phy_writereg(sc, PHY_BMCR, bmcr);
714 	my_setcfg(sc, bmcr);
715 	return;
716 }
717 
718 /*
719  * The Myson manual states that in order to fiddle with the 'full-duplex' and
720  * '100Mbps' bits in the netconfig register, we first have to put the
721  * transmit and/or receive logic in the idle state.
722  */
723 static void
724 my_setcfg(struct my_softc * sc, int bmcr)
725 {
726 	int             i, restart = 0;
727 
728 	MY_LOCK_ASSERT(sc);
729 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
730 		restart = 1;
731 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
732 		for (i = 0; i < MY_TIMEOUT; i++) {
733 			DELAY(10);
734 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
735 			    (MY_TXRUN | MY_RXRUN)))
736 				break;
737 		}
738 		if (i == MY_TIMEOUT)
739 			device_printf(sc->my_dev,
740 			    "failed to force tx and rx to idle \n");
741 	}
742 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
743 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
744 	if (bmcr & PHY_BMCR_1000)
745 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
746 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
747 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
748 	if (bmcr & PHY_BMCR_DUPLEX)
749 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
750 	else
751 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
752 	if (restart)
753 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
754 	return;
755 }
756 
757 static void
758 my_reset(struct my_softc * sc)
759 {
760 	register int    i;
761 
762 	MY_LOCK_ASSERT(sc);
763 	MY_SETBIT(sc, MY_BCR, MY_SWR);
764 	for (i = 0; i < MY_TIMEOUT; i++) {
765 		DELAY(10);
766 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
767 			break;
768 	}
769 	if (i == MY_TIMEOUT)
770 		device_printf(sc->my_dev, "reset never completed!\n");
771 
772 	/* Wait a little while for the chip to get its brains in order. */
773 	DELAY(1000);
774 	return;
775 }
776 
777 /*
778  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
779  * list and return a device name if we find a match.
780  */
781 static int
782 my_probe(device_t dev)
783 {
784 	struct my_type *t;
785 
786 	t = my_devs;
787 	while (t->my_name != NULL) {
788 		if ((pci_get_vendor(dev) == t->my_vid) &&
789 		    (pci_get_device(dev) == t->my_did)) {
790 			device_set_desc(dev, t->my_name);
791 			my_info_tmp = t;
792 			return (BUS_PROBE_DEFAULT);
793 		}
794 		t++;
795 	}
796 	return (ENXIO);
797 }
798 
799 /*
800  * Attach the interface. Allocate softc structures, do ifmedia setup and
801  * ethernet/BPF attach.
802  */
803 static int
804 my_attach(device_t dev)
805 {
806 	int             i;
807 	u_char          eaddr[ETHER_ADDR_LEN];
808 	u_int32_t       iobase;
809 	struct my_softc *sc;
810 	struct ifnet   *ifp;
811 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
812 	unsigned int    round;
813 	caddr_t         roundptr;
814 	struct my_type *p;
815 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
816 	int             rid, error = 0;
817 
818 	sc = device_get_softc(dev);
819 	sc->my_dev = dev;
820 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
821 	    MTX_DEF);
822 	callout_init_mtx(&sc->my_autoneg_timer, &sc->my_mtx, 0);
823 	callout_init_mtx(&sc->my_watchdog, &sc->my_mtx, 0);
824 
825 	/*
826 	 * Map control/status registers.
827 	 */
828 	pci_enable_busmaster(dev);
829 
830 	if (my_info_tmp->my_did == MTD800ID) {
831 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
832 		if (iobase & 0x300)
833 			MY_USEIOSPACE = 0;
834 	}
835 
836 	rid = MY_RID;
837 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
838 
839 	if (sc->my_res == NULL) {
840 		device_printf(dev, "couldn't map ports/memory\n");
841 		error = ENXIO;
842 		goto destroy_mutex;
843 	}
844 	sc->my_btag = rman_get_bustag(sc->my_res);
845 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
846 
847 	rid = 0;
848 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
849 					    RF_SHAREABLE | RF_ACTIVE);
850 
851 	if (sc->my_irq == NULL) {
852 		device_printf(dev, "couldn't map interrupt\n");
853 		error = ENXIO;
854 		goto release_io;
855 	}
856 
857 	sc->my_info = my_info_tmp;
858 
859 	/* Reset the adapter. */
860 	MY_LOCK(sc);
861 	my_reset(sc);
862 	MY_UNLOCK(sc);
863 
864 	/*
865 	 * Get station address
866 	 */
867 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
868 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
869 
870 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
871 				  M_DEVBUF, M_NOWAIT);
872 	if (sc->my_ldata_ptr == NULL) {
873 		device_printf(dev, "no memory for list buffers!\n");
874 		error = ENXIO;
875 		goto release_irq;
876 	}
877 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
878 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
879 	roundptr = sc->my_ldata_ptr;
880 	for (i = 0; i < 8; i++) {
881 		if (round % 8) {
882 			round++;
883 			roundptr++;
884 		} else
885 			break;
886 	}
887 	sc->my_ldata = (struct my_list_data *) roundptr;
888 	bzero(sc->my_ldata, sizeof(struct my_list_data));
889 
890 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
891 	if (ifp == NULL) {
892 		device_printf(dev, "can not if_alloc()\n");
893 		error = ENOSPC;
894 		goto free_ldata;
895 	}
896 	ifp->if_softc = sc;
897 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
898 	ifp->if_mtu = ETHERMTU;
899 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
900 	ifp->if_ioctl = my_ioctl;
901 	ifp->if_start = my_start;
902 	ifp->if_init = my_init;
903 	ifp->if_baudrate = 10000000;
904 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
905 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
906 	IFQ_SET_READY(&ifp->if_snd);
907 
908 	if (sc->my_info->my_did == MTD803ID)
909 		sc->my_pinfo = my_phys;
910 	else {
911 		if (bootverbose)
912 			device_printf(dev, "probing for a PHY\n");
913 		MY_LOCK(sc);
914 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
915 			if (bootverbose)
916 				device_printf(dev, "checking address: %d\n", i);
917 			sc->my_phy_addr = i;
918 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
919 			if ((phy_sts != 0) && (phy_sts != 0xffff))
920 				break;
921 			else
922 				phy_sts = 0;
923 		}
924 		if (phy_sts) {
925 			phy_vid = my_phy_readreg(sc, PHY_VENID);
926 			phy_did = my_phy_readreg(sc, PHY_DEVID);
927 			if (bootverbose) {
928 				device_printf(dev, "found PHY at address %d, ",
929 				    sc->my_phy_addr);
930 				printf("vendor id: %x device id: %x\n",
931 				    phy_vid, phy_did);
932 			}
933 			p = my_phys;
934 			while (p->my_vid) {
935 				if (phy_vid == p->my_vid) {
936 					sc->my_pinfo = p;
937 					break;
938 				}
939 				p++;
940 			}
941 			if (sc->my_pinfo == NULL)
942 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
943 			if (bootverbose)
944 				device_printf(dev, "PHY type: %s\n",
945 				       sc->my_pinfo->my_name);
946 		} else {
947 			MY_UNLOCK(sc);
948 			device_printf(dev, "MII without any phy!\n");
949 			error = ENXIO;
950 			goto free_if;
951 		}
952 		MY_UNLOCK(sc);
953 	}
954 
955 	/* Do ifmedia setup. */
956 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
957 	MY_LOCK(sc);
958 	my_getmode_mii(sc);
959 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
960 	media = sc->ifmedia.ifm_media;
961 	my_stop(sc);
962 	MY_UNLOCK(sc);
963 	ifmedia_set(&sc->ifmedia, media);
964 
965 	ether_ifattach(ifp, eaddr);
966 
967 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
968 			       NULL, my_intr, sc, &sc->my_intrhand);
969 
970 	if (error) {
971 		device_printf(dev, "couldn't set up irq\n");
972 		goto detach_if;
973 	}
974 
975 	return (0);
976 
977 detach_if:
978 	ether_ifdetach(ifp);
979 free_if:
980 	if_free(ifp);
981 free_ldata:
982 	free(sc->my_ldata_ptr, M_DEVBUF);
983 release_irq:
984 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
985 release_io:
986 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
987 destroy_mutex:
988 	mtx_destroy(&sc->my_mtx);
989 	return (error);
990 }
991 
992 static int
993 my_detach(device_t dev)
994 {
995 	struct my_softc *sc;
996 	struct ifnet   *ifp;
997 
998 	sc = device_get_softc(dev);
999 	ifp = sc->my_ifp;
1000 	ether_ifdetach(ifp);
1001 	MY_LOCK(sc);
1002 	my_stop(sc);
1003 	MY_UNLOCK(sc);
1004 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
1005 	callout_drain(&sc->my_watchdog);
1006 	callout_drain(&sc->my_autoneg_timer);
1007 
1008 	if_free(ifp);
1009 	free(sc->my_ldata_ptr, M_DEVBUF);
1010 
1011 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1012 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1013 	mtx_destroy(&sc->my_mtx);
1014 	return (0);
1015 }
1016 
1017 
1018 /*
1019  * Initialize the transmit descriptors.
1020  */
1021 static int
1022 my_list_tx_init(struct my_softc * sc)
1023 {
1024 	struct my_chain_data *cd;
1025 	struct my_list_data *ld;
1026 	int             i;
1027 
1028 	MY_LOCK_ASSERT(sc);
1029 	cd = &sc->my_cdata;
1030 	ld = sc->my_ldata;
1031 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1032 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1033 		if (i == (MY_TX_LIST_CNT - 1))
1034 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1035 		else
1036 			cd->my_tx_chain[i].my_nextdesc =
1037 			    &cd->my_tx_chain[i + 1];
1038 	}
1039 	cd->my_tx_free = &cd->my_tx_chain[0];
1040 	cd->my_tx_tail = cd->my_tx_head = NULL;
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1046  * arrange the descriptors in a closed ring, so that the last descriptor
1047  * points back to the first.
1048  */
1049 static int
1050 my_list_rx_init(struct my_softc * sc)
1051 {
1052 	struct my_chain_data *cd;
1053 	struct my_list_data *ld;
1054 	int             i;
1055 
1056 	MY_LOCK_ASSERT(sc);
1057 	cd = &sc->my_cdata;
1058 	ld = sc->my_ldata;
1059 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1060 		cd->my_rx_chain[i].my_ptr =
1061 		    (struct my_desc *) & ld->my_rx_list[i];
1062 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1063 			MY_UNLOCK(sc);
1064 			return (ENOBUFS);
1065 		}
1066 		if (i == (MY_RX_LIST_CNT - 1)) {
1067 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1068 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1069 		} else {
1070 			cd->my_rx_chain[i].my_nextdesc =
1071 			    &cd->my_rx_chain[i + 1];
1072 			ld->my_rx_list[i].my_next =
1073 			    vtophys(&ld->my_rx_list[i + 1]);
1074 		}
1075 	}
1076 	cd->my_rx_head = &cd->my_rx_chain[0];
1077 	return (0);
1078 }
1079 
1080 /*
1081  * Initialize an RX descriptor and attach an MBUF cluster.
1082  */
1083 static int
1084 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1085 {
1086 	struct mbuf    *m_new = NULL;
1087 
1088 	MY_LOCK_ASSERT(sc);
1089 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1090 	if (m_new == NULL) {
1091 		device_printf(sc->my_dev,
1092 		    "no memory for rx list -- packet dropped!\n");
1093 		return (ENOBUFS);
1094 	}
1095 	MCLGET(m_new, M_DONTWAIT);
1096 	if (!(m_new->m_flags & M_EXT)) {
1097 		device_printf(sc->my_dev,
1098 		    "no memory for rx list -- packet dropped!\n");
1099 		m_freem(m_new);
1100 		return (ENOBUFS);
1101 	}
1102 	c->my_mbuf = m_new;
1103 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1104 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1105 	c->my_ptr->my_status = MY_OWNByNIC;
1106 	return (0);
1107 }
1108 
1109 /*
1110  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1111  * level protocols.
1112  */
1113 static void
1114 my_rxeof(struct my_softc * sc)
1115 {
1116 	struct ether_header *eh;
1117 	struct mbuf    *m;
1118 	struct ifnet   *ifp;
1119 	struct my_chain_onefrag *cur_rx;
1120 	int             total_len = 0;
1121 	u_int32_t       rxstat;
1122 
1123 	MY_LOCK_ASSERT(sc);
1124 	ifp = sc->my_ifp;
1125 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1126 	    & MY_OWNByNIC)) {
1127 		cur_rx = sc->my_cdata.my_rx_head;
1128 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1129 
1130 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1131 			ifp->if_ierrors++;
1132 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1133 			continue;
1134 		}
1135 		/* No errors; receive the packet. */
1136 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1137 		total_len -= ETHER_CRC_LEN;
1138 
1139 		if (total_len < MINCLSIZE) {
1140 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1141 			    total_len, 0, ifp, NULL);
1142 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1143 			if (m == NULL) {
1144 				ifp->if_ierrors++;
1145 				continue;
1146 			}
1147 		} else {
1148 			m = cur_rx->my_mbuf;
1149 			/*
1150 			 * Try to conjure up a new mbuf cluster. If that
1151 			 * fails, it means we have an out of memory condition
1152 			 * and should leave the buffer in place and continue.
1153 			 * This will result in a lost packet, but there's
1154 			 * little else we can do in this situation.
1155 			 */
1156 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1157 				ifp->if_ierrors++;
1158 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1159 				continue;
1160 			}
1161 			m->m_pkthdr.rcvif = ifp;
1162 			m->m_pkthdr.len = m->m_len = total_len;
1163 		}
1164 		ifp->if_ipackets++;
1165 		eh = mtod(m, struct ether_header *);
1166 #if NBPFILTER > 0
1167 		/*
1168 		 * Handle BPF listeners. Let the BPF user see the packet, but
1169 		 * don't pass it up to the ether_input() layer unless it's a
1170 		 * broadcast packet, multicast packet, matches our ethernet
1171 		 * address or the interface is in promiscuous mode.
1172 		 */
1173 		if (bpf_peers_present(ifp->if_bpf)) {
1174 			bpf_mtap(ifp->if_bpf, m);
1175 			if (ifp->if_flags & IFF_PROMISC &&
1176 			    (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
1177 				ETHER_ADDR_LEN) &&
1178 			     (eh->ether_dhost[0] & 1) == 0)) {
1179 				m_freem(m);
1180 				continue;
1181 			}
1182 		}
1183 #endif
1184 		MY_UNLOCK(sc);
1185 		(*ifp->if_input)(ifp, m);
1186 		MY_LOCK(sc);
1187 	}
1188 	return;
1189 }
1190 
1191 
1192 /*
1193  * A frame was downloaded to the chip. It's safe for us to clean up the list
1194  * buffers.
1195  */
1196 static void
1197 my_txeof(struct my_softc * sc)
1198 {
1199 	struct my_chain *cur_tx;
1200 	struct ifnet   *ifp;
1201 
1202 	MY_LOCK_ASSERT(sc);
1203 	ifp = sc->my_ifp;
1204 	/* Clear the timeout timer. */
1205 	sc->my_timer = 0;
1206 	if (sc->my_cdata.my_tx_head == NULL) {
1207 		return;
1208 	}
1209 	/*
1210 	 * Go through our tx list and free mbufs for those frames that have
1211 	 * been transmitted.
1212 	 */
1213 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1214 		u_int32_t       txstat;
1215 
1216 		cur_tx = sc->my_cdata.my_tx_head;
1217 		txstat = MY_TXSTATUS(cur_tx);
1218 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1219 			break;
1220 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1221 			if (txstat & MY_TXERR) {
1222 				ifp->if_oerrors++;
1223 				if (txstat & MY_EC) /* excessive collision */
1224 					ifp->if_collisions++;
1225 				if (txstat & MY_LC)	/* late collision */
1226 					ifp->if_collisions++;
1227 			}
1228 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1229 			    MY_NCRShift;
1230 		}
1231 		ifp->if_opackets++;
1232 		m_freem(cur_tx->my_mbuf);
1233 		cur_tx->my_mbuf = NULL;
1234 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1235 			sc->my_cdata.my_tx_head = NULL;
1236 			sc->my_cdata.my_tx_tail = NULL;
1237 			break;
1238 		}
1239 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1240 	}
1241 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1242 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1243 	}
1244 	return;
1245 }
1246 
1247 /*
1248  * TX 'end of channel' interrupt handler.
1249  */
1250 static void
1251 my_txeoc(struct my_softc * sc)
1252 {
1253 	struct ifnet   *ifp;
1254 
1255 	MY_LOCK_ASSERT(sc);
1256 	ifp = sc->my_ifp;
1257 	sc->my_timer = 0;
1258 	if (sc->my_cdata.my_tx_head == NULL) {
1259 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1260 		sc->my_cdata.my_tx_tail = NULL;
1261 		if (sc->my_want_auto)
1262 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1263 	} else {
1264 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1265 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1266 			sc->my_timer = 5;
1267 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1268 		}
1269 	}
1270 	return;
1271 }
1272 
1273 static void
1274 my_intr(void *arg)
1275 {
1276 	struct my_softc *sc;
1277 	struct ifnet   *ifp;
1278 	u_int32_t       status;
1279 
1280 	sc = arg;
1281 	MY_LOCK(sc);
1282 	ifp = sc->my_ifp;
1283 	if (!(ifp->if_flags & IFF_UP)) {
1284 		MY_UNLOCK(sc);
1285 		return;
1286 	}
1287 	/* Disable interrupts. */
1288 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1289 
1290 	for (;;) {
1291 		status = CSR_READ_4(sc, MY_ISR);
1292 		status &= MY_INTRS;
1293 		if (status)
1294 			CSR_WRITE_4(sc, MY_ISR, status);
1295 		else
1296 			break;
1297 
1298 		if (status & MY_RI)	/* receive interrupt */
1299 			my_rxeof(sc);
1300 
1301 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1302 			/* rx buffer unavailable or rx error */
1303 			ifp->if_ierrors++;
1304 #ifdef foo
1305 			my_stop(sc);
1306 			my_reset(sc);
1307 			my_init_locked(sc);
1308 #endif
1309 		}
1310 		if (status & MY_TI)	/* tx interrupt */
1311 			my_txeof(sc);
1312 		if (status & MY_ETI)	/* tx early interrupt */
1313 			my_txeof(sc);
1314 		if (status & MY_TBU)	/* tx buffer unavailable */
1315 			my_txeoc(sc);
1316 
1317 #if 0				/* 90/1/18 delete */
1318 		if (status & MY_FBE) {
1319 			my_reset(sc);
1320 			my_init_locked(sc);
1321 		}
1322 #endif
1323 
1324 	}
1325 
1326 	/* Re-enable interrupts. */
1327 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1328 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1329 		my_start_locked(ifp);
1330 	MY_UNLOCK(sc);
1331 	return;
1332 }
1333 
1334 /*
1335  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1336  * pointers to the fragment pointers.
1337  */
1338 static int
1339 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1340 {
1341 	struct my_desc *f = NULL;
1342 	int             total_len;
1343 	struct mbuf    *m, *m_new = NULL;
1344 
1345 	MY_LOCK_ASSERT(sc);
1346 	/* calculate the total tx pkt length */
1347 	total_len = 0;
1348 	for (m = m_head; m != NULL; m = m->m_next)
1349 		total_len += m->m_len;
1350 	/*
1351 	 * Start packing the mbufs in this chain into the fragment pointers.
1352 	 * Stop when we run out of fragments or hit the end of the mbuf
1353 	 * chain.
1354 	 */
1355 	m = m_head;
1356 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1357 	if (m_new == NULL) {
1358 		device_printf(sc->my_dev, "no memory for tx list");
1359 		return (1);
1360 	}
1361 	if (m_head->m_pkthdr.len > MHLEN) {
1362 		MCLGET(m_new, M_DONTWAIT);
1363 		if (!(m_new->m_flags & M_EXT)) {
1364 			m_freem(m_new);
1365 			device_printf(sc->my_dev, "no memory for tx list");
1366 			return (1);
1367 		}
1368 	}
1369 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1370 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1371 	m_freem(m_head);
1372 	m_head = m_new;
1373 	f = &c->my_ptr->my_frag[0];
1374 	f->my_status = 0;
1375 	f->my_data = vtophys(mtod(m_new, caddr_t));
1376 	total_len = m_new->m_len;
1377 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1378 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1379 	f->my_ctl |= total_len;	/* buffer size */
1380 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1381 	if (sc->my_info->my_did == MTD891ID)
1382 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1383 	c->my_mbuf = m_head;
1384 	c->my_lastdesc = 0;
1385 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1386 	return (0);
1387 }
1388 
1389 /*
1390  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1391  * to the mbuf data regions directly in the transmit lists. We also save a
1392  * copy of the pointers since the transmit list fragment pointers are
1393  * physical addresses.
1394  */
1395 static void
1396 my_start(struct ifnet * ifp)
1397 {
1398 	struct my_softc *sc;
1399 
1400 	sc = ifp->if_softc;
1401 	MY_LOCK(sc);
1402 	my_start_locked(ifp);
1403 	MY_UNLOCK(sc);
1404 }
1405 
1406 static void
1407 my_start_locked(struct ifnet * ifp)
1408 {
1409 	struct my_softc *sc;
1410 	struct mbuf    *m_head = NULL;
1411 	struct my_chain *cur_tx = NULL, *start_tx;
1412 
1413 	sc = ifp->if_softc;
1414 	MY_LOCK_ASSERT(sc);
1415 	if (sc->my_autoneg) {
1416 		sc->my_tx_pend = 1;
1417 		return;
1418 	}
1419 	/*
1420 	 * Check for an available queue slot. If there are none, punt.
1421 	 */
1422 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1423 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1424 		return;
1425 	}
1426 	start_tx = sc->my_cdata.my_tx_free;
1427 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1428 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1429 		if (m_head == NULL)
1430 			break;
1431 
1432 		/* Pick a descriptor off the free list. */
1433 		cur_tx = sc->my_cdata.my_tx_free;
1434 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1435 
1436 		/* Pack the data into the descriptor. */
1437 		my_encap(sc, cur_tx, m_head);
1438 
1439 		if (cur_tx != start_tx)
1440 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1441 #if NBPFILTER > 0
1442 		/*
1443 		 * If there's a BPF listener, bounce a copy of this frame to
1444 		 * him.
1445 		 */
1446 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1447 #endif
1448 	}
1449 	/*
1450 	 * If there are no packets queued, bail.
1451 	 */
1452 	if (cur_tx == NULL) {
1453 		return;
1454 	}
1455 	/*
1456 	 * Place the request for the upload interrupt in the last descriptor
1457 	 * in the chain. This way, if we're chaining several packets at once,
1458 	 * we'll only get an interrupt once for the whole chain rather than
1459 	 * once for each packet.
1460 	 */
1461 	MY_TXCTL(cur_tx) |= MY_TXIC;
1462 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1463 	sc->my_cdata.my_tx_tail = cur_tx;
1464 	if (sc->my_cdata.my_tx_head == NULL)
1465 		sc->my_cdata.my_tx_head = start_tx;
1466 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1467 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1468 
1469 	/*
1470 	 * Set a timeout in case the chip goes out to lunch.
1471 	 */
1472 	sc->my_timer = 5;
1473 	return;
1474 }
1475 
1476 static void
1477 my_init(void *xsc)
1478 {
1479 	struct my_softc *sc = xsc;
1480 
1481 	MY_LOCK(sc);
1482 	my_init_locked(sc);
1483 	MY_UNLOCK(sc);
1484 }
1485 
1486 static void
1487 my_init_locked(struct my_softc *sc)
1488 {
1489 	struct ifnet   *ifp = sc->my_ifp;
1490 	u_int16_t       phy_bmcr = 0;
1491 
1492 	MY_LOCK_ASSERT(sc);
1493 	if (sc->my_autoneg) {
1494 		return;
1495 	}
1496 	if (sc->my_pinfo != NULL)
1497 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1498 	/*
1499 	 * Cancel pending I/O and free all RX/TX buffers.
1500 	 */
1501 	my_stop(sc);
1502 	my_reset(sc);
1503 
1504 	/*
1505 	 * Set cache alignment and burst length.
1506 	 */
1507 #if 0				/* 89/9/1 modify,  */
1508 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1509 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1510 #endif
1511 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1512 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1513 	/*
1514 	 * 89/12/29 add, for mtd891,
1515 	 */
1516 	if (sc->my_info->my_did == MTD891ID) {
1517 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1518 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1519 	}
1520 	my_setcfg(sc, phy_bmcr);
1521 	/* Init circular RX list. */
1522 	if (my_list_rx_init(sc) == ENOBUFS) {
1523 		device_printf(sc->my_dev, "init failed: no memory for rx buffers\n");
1524 		my_stop(sc);
1525 		return;
1526 	}
1527 	/* Init TX descriptors. */
1528 	my_list_tx_init(sc);
1529 
1530 	/* If we want promiscuous mode, set the allframes bit. */
1531 	if (ifp->if_flags & IFF_PROMISC)
1532 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1533 	else
1534 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1535 
1536 	/*
1537 	 * Set capture broadcast bit to capture broadcast frames.
1538 	 */
1539 	if (ifp->if_flags & IFF_BROADCAST)
1540 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1541 	else
1542 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1543 
1544 	/*
1545 	 * Program the multicast filter, if necessary.
1546 	 */
1547 	my_setmulti(sc);
1548 
1549 	/*
1550 	 * Load the address of the RX list.
1551 	 */
1552 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1553 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1554 
1555 	/*
1556 	 * Enable interrupts.
1557 	 */
1558 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1559 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1560 
1561 	/* Enable receiver and transmitter. */
1562 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1563 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1564 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1565 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1566 
1567 	/* Restore state of BMCR */
1568 	if (sc->my_pinfo != NULL)
1569 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1570 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1571 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1572 
1573 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1574 	return;
1575 }
1576 
1577 /*
1578  * Set media options.
1579  */
1580 
1581 static int
1582 my_ifmedia_upd(struct ifnet * ifp)
1583 {
1584 	struct my_softc *sc;
1585 	struct ifmedia *ifm;
1586 
1587 	sc = ifp->if_softc;
1588 	MY_LOCK(sc);
1589 	ifm = &sc->ifmedia;
1590 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1591 		MY_UNLOCK(sc);
1592 		return (EINVAL);
1593 	}
1594 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1595 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1596 	else
1597 		my_setmode_mii(sc, ifm->ifm_media);
1598 	MY_UNLOCK(sc);
1599 	return (0);
1600 }
1601 
1602 /*
1603  * Report current media status.
1604  */
1605 
1606 static void
1607 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1608 {
1609 	struct my_softc *sc;
1610 	u_int16_t advert = 0, ability = 0;
1611 
1612 	sc = ifp->if_softc;
1613 	MY_LOCK(sc);
1614 	ifmr->ifm_active = IFM_ETHER;
1615 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1616 #if 0				/* this version did not support 1000M, */
1617 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1618 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1619 #endif
1620 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1621 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1622 		else
1623 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1624 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1625 			ifmr->ifm_active |= IFM_FDX;
1626 		else
1627 			ifmr->ifm_active |= IFM_HDX;
1628 
1629 		MY_UNLOCK(sc);
1630 		return;
1631 	}
1632 	ability = my_phy_readreg(sc, PHY_LPAR);
1633 	advert = my_phy_readreg(sc, PHY_ANAR);
1634 
1635 #if 0				/* this version did not support 1000M, */
1636 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1637 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1638 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1639 			advert = 0;
1640 			ability = 0;
1641 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1642 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1643 			advert = 0;
1644 			ability = 0;
1645 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1646 		}
1647 	}
1648 #endif
1649 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1650 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1651 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1652 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1653 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1654 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1655 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1656 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1657 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1658 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1659 	MY_UNLOCK(sc);
1660 	return;
1661 }
1662 
1663 static int
1664 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1665 {
1666 	struct my_softc *sc = ifp->if_softc;
1667 	struct ifreq   *ifr = (struct ifreq *) data;
1668 	int             error;
1669 
1670 	switch (command) {
1671 	case SIOCSIFFLAGS:
1672 		MY_LOCK(sc);
1673 		if (ifp->if_flags & IFF_UP)
1674 			my_init_locked(sc);
1675 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1676 			my_stop(sc);
1677 		MY_UNLOCK(sc);
1678 		error = 0;
1679 		break;
1680 	case SIOCADDMULTI:
1681 	case SIOCDELMULTI:
1682 		MY_LOCK(sc);
1683 		my_setmulti(sc);
1684 		MY_UNLOCK(sc);
1685 		error = 0;
1686 		break;
1687 	case SIOCGIFMEDIA:
1688 	case SIOCSIFMEDIA:
1689 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1690 		break;
1691 	default:
1692 		error = ether_ioctl(ifp, command, data);
1693 		break;
1694 	}
1695 	return (error);
1696 }
1697 
1698 static void
1699 my_watchdog(void *arg)
1700 {
1701 	struct my_softc *sc;
1702 	struct ifnet *ifp;
1703 
1704 	sc = arg;
1705 	MY_LOCK_ASSERT(sc);
1706 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1707 	if (sc->my_timer == 0 || --sc->my_timer > 0)
1708 		return;
1709 
1710 	ifp = sc->my_ifp;
1711 	ifp->if_oerrors++;
1712 	if_printf(ifp, "watchdog timeout\n");
1713 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1714 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1715 	my_stop(sc);
1716 	my_reset(sc);
1717 	my_init_locked(sc);
1718 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1719 		my_start_locked(ifp);
1720 }
1721 
1722 
1723 /*
1724  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1725  */
1726 static void
1727 my_stop(struct my_softc * sc)
1728 {
1729 	register int    i;
1730 	struct ifnet   *ifp;
1731 
1732 	MY_LOCK_ASSERT(sc);
1733 	ifp = sc->my_ifp;
1734 
1735 	callout_stop(&sc->my_autoneg_timer);
1736 	callout_stop(&sc->my_watchdog);
1737 
1738 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1739 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1740 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1741 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1742 
1743 	/*
1744 	 * Free data in the RX lists.
1745 	 */
1746 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1747 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1748 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1749 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1750 		}
1751 	}
1752 	bzero((char *)&sc->my_ldata->my_rx_list,
1753 	    sizeof(sc->my_ldata->my_rx_list));
1754 	/*
1755 	 * Free the TX list buffers.
1756 	 */
1757 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1758 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1759 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1760 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1761 		}
1762 	}
1763 	bzero((char *)&sc->my_ldata->my_tx_list,
1764 	    sizeof(sc->my_ldata->my_tx_list));
1765 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1766 	return;
1767 }
1768 
1769 /*
1770  * Stop all chip I/O so that the kernel's probe routines don't get confused
1771  * by errant DMAs when rebooting.
1772  */
1773 static int
1774 my_shutdown(device_t dev)
1775 {
1776 	struct my_softc *sc;
1777 
1778 	sc = device_get_softc(dev);
1779 	MY_LOCK(sc);
1780 	my_stop(sc);
1781 	MY_UNLOCK(sc);
1782 	return 0;
1783 }
1784