xref: /freebsd/sys/dev/my/if_my.c (revision b0d29bc47dba79f6f38e67eabadfb4b32ffd9390)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Written by: yen_cw@myson.com.tw
5  * Copyright (c) 2002 Myson Technology Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/queue.h>
43 #include <sys/types.h>
44 #include <sys/module.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 
48 #define NBPFILTER	1
49 
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_dl.h>
57 #include <net/bpf.h>
58 
59 #include <vm/vm.h>		/* for vtophys */
60 #include <vm/pmap.h>		/* for vtophys */
61 #include <machine/bus.h>
62 #include <machine/resource.h>
63 #include <sys/bus.h>
64 #include <sys/rman.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 /*
70  * #define MY_USEIOSPACE
71  */
72 
73 static int      MY_USEIOSPACE = 1;
74 
75 #ifdef MY_USEIOSPACE
76 #define MY_RES                  SYS_RES_IOPORT
77 #define MY_RID                  MY_PCI_LOIO
78 #else
79 #define MY_RES                  SYS_RES_MEMORY
80 #define MY_RID                  MY_PCI_LOMEM
81 #endif
82 
83 
84 #include <dev/my/if_myreg.h>
85 
86 /*
87  * Various supported device vendors/types and their names.
88  */
89 struct my_type *my_info_tmp;
90 static struct my_type my_devs[] = {
91 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
92 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
93 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
94 	{0, 0, NULL}
95 };
96 
97 /*
98  * Various supported PHY vendors/types and their names. Note that this driver
99  * will work with pretty much any MII-compliant PHY, so failure to positively
100  * identify the chip is not a fatal error.
101  */
102 static struct my_type my_phys[] = {
103 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
104 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
105 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
106 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
107 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
108 	{0, 0, "<MII-compliant physical interface>"}
109 };
110 
111 static int      my_probe(device_t);
112 static int      my_attach(device_t);
113 static int      my_detach(device_t);
114 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
115 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
116 static void     my_rxeof(struct my_softc *);
117 static void     my_txeof(struct my_softc *);
118 static void     my_txeoc(struct my_softc *);
119 static void     my_intr(void *);
120 static void     my_start(struct ifnet *);
121 static void     my_start_locked(struct ifnet *);
122 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
123 static void     my_init(void *);
124 static void     my_init_locked(struct my_softc *);
125 static void     my_stop(struct my_softc *);
126 static void     my_autoneg_timeout(void *);
127 static void     my_watchdog(void *);
128 static int      my_shutdown(device_t);
129 static int      my_ifmedia_upd(struct ifnet *);
130 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131 static u_int16_t my_phy_readreg(struct my_softc *, int);
132 static void     my_phy_writereg(struct my_softc *, int, int);
133 static void     my_autoneg_xmit(struct my_softc *);
134 static void     my_autoneg_mii(struct my_softc *, int, int);
135 static void     my_setmode_mii(struct my_softc *, int);
136 static void     my_getmode_mii(struct my_softc *);
137 static void     my_setcfg(struct my_softc *, int);
138 static void     my_setmulti(struct my_softc *);
139 static void     my_reset(struct my_softc *);
140 static int      my_list_rx_init(struct my_softc *);
141 static int      my_list_tx_init(struct my_softc *);
142 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
143 
144 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
145 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
146 
147 static device_method_t my_methods[] = {
148 	/* Device interface */
149 	DEVMETHOD(device_probe, my_probe),
150 	DEVMETHOD(device_attach, my_attach),
151 	DEVMETHOD(device_detach, my_detach),
152 	DEVMETHOD(device_shutdown, my_shutdown),
153 
154 	DEVMETHOD_END
155 };
156 
157 static driver_t my_driver = {
158 	"my",
159 	my_methods,
160 	sizeof(struct my_softc)
161 };
162 
163 static devclass_t my_devclass;
164 
165 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
166 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, my, my_devs,
167     nitems(my_devs) - 1);
168 MODULE_DEPEND(my, pci, 1, 1, 1);
169 MODULE_DEPEND(my, ether, 1, 1, 1);
170 
171 static long
172 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
173 {
174 	long            miir;
175 	int             i;
176 	int             mask, data;
177 
178 	MY_LOCK_ASSERT(sc);
179 
180 	/* enable MII output */
181 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
182 	miir &= 0xfffffff0;
183 
184 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
185 
186 	/* send 32 1's preamble */
187 	for (i = 0; i < 32; i++) {
188 		/* low MDC; MDO is already high (miir) */
189 		miir &= ~MY_MASK_MIIR_MII_MDC;
190 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
191 
192 		/* high MDC */
193 		miir |= MY_MASK_MIIR_MII_MDC;
194 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
195 	}
196 
197 	/* calculate ST+OP+PHYAD+REGAD+TA */
198 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
199 
200 	/* sent out */
201 	mask = 0x8000;
202 	while (mask) {
203 		/* low MDC, prepare MDO */
204 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
205 		if (mask & data)
206 			miir |= MY_MASK_MIIR_MII_MDO;
207 
208 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
209 		/* high MDC */
210 		miir |= MY_MASK_MIIR_MII_MDC;
211 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
212 		DELAY(30);
213 
214 		/* next */
215 		mask >>= 1;
216 		if (mask == 0x2 && opcode == MY_OP_READ)
217 			miir &= ~MY_MASK_MIIR_MII_WRITE;
218 	}
219 
220 	return miir;
221 }
222 
223 
224 static u_int16_t
225 my_phy_readreg(struct my_softc * sc, int reg)
226 {
227 	long            miir;
228 	int             mask, data;
229 
230 	MY_LOCK_ASSERT(sc);
231 
232 	if (sc->my_info->my_did == MTD803ID)
233 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
234 	else {
235 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
236 
237 		/* read data */
238 		mask = 0x8000;
239 		data = 0;
240 		while (mask) {
241 			/* low MDC */
242 			miir &= ~MY_MASK_MIIR_MII_MDC;
243 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
244 
245 			/* read MDI */
246 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
247 			if (miir & MY_MASK_MIIR_MII_MDI)
248 				data |= mask;
249 
250 			/* high MDC, and wait */
251 			miir |= MY_MASK_MIIR_MII_MDC;
252 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
253 			DELAY(30);
254 
255 			/* next */
256 			mask >>= 1;
257 		}
258 
259 		/* low MDC */
260 		miir &= ~MY_MASK_MIIR_MII_MDC;
261 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
262 	}
263 
264 	return (u_int16_t) data;
265 }
266 
267 
268 static void
269 my_phy_writereg(struct my_softc * sc, int reg, int data)
270 {
271 	long            miir;
272 	int             mask;
273 
274 	MY_LOCK_ASSERT(sc);
275 
276 	if (sc->my_info->my_did == MTD803ID)
277 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
278 	else {
279 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
280 
281 		/* write data */
282 		mask = 0x8000;
283 		while (mask) {
284 			/* low MDC, prepare MDO */
285 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
286 			if (mask & data)
287 				miir |= MY_MASK_MIIR_MII_MDO;
288 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
289 			DELAY(1);
290 
291 			/* high MDC */
292 			miir |= MY_MASK_MIIR_MII_MDC;
293 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
294 			DELAY(1);
295 
296 			/* next */
297 			mask >>= 1;
298 		}
299 
300 		/* low MDC */
301 		miir &= ~MY_MASK_MIIR_MII_MDC;
302 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
303 	}
304 	return;
305 }
306 
307 static u_int
308 my_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
309 {
310 	uint32_t *hashes = arg;
311 	int h;
312 
313 	h = ~ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
314 	if (h < 32)
315 		hashes[0] |= (1 << h);
316 	else
317 		hashes[1] |= (1 << (h - 32));
318 
319 	return (1);
320 }
321 /*
322  * Program the 64-bit multicast hash filter.
323  */
324 static void
325 my_setmulti(struct my_softc * sc)
326 {
327 	struct ifnet   *ifp;
328 	u_int32_t       hashes[2] = {0, 0};
329 	u_int32_t       rxfilt;
330 
331 	MY_LOCK_ASSERT(sc);
332 
333 	ifp = sc->my_ifp;
334 
335 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
336 
337 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
338 		rxfilt |= MY_AM;
339 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
340 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
341 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
342 
343 		return;
344 	}
345 	/* first, zot all the existing hash bits */
346 	CSR_WRITE_4(sc, MY_MAR0, 0);
347 	CSR_WRITE_4(sc, MY_MAR1, 0);
348 
349 	/* now program new ones */
350 	if (if_foreach_llmaddr(ifp, my_hash_maddr, hashes) > 0)
351 		rxfilt |= MY_AM;
352 	else
353 		rxfilt &= ~MY_AM;
354 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
355 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
356 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
357 }
358 
359 /*
360  * Initiate an autonegotiation session.
361  */
362 static void
363 my_autoneg_xmit(struct my_softc * sc)
364 {
365 	u_int16_t       phy_sts = 0;
366 
367 	MY_LOCK_ASSERT(sc);
368 
369 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
370 	DELAY(500);
371 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
372 
373 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
374 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
375 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
376 
377 	return;
378 }
379 
380 static void
381 my_autoneg_timeout(void *arg)
382 {
383 	struct my_softc *sc;
384 
385 	sc = arg;
386 	MY_LOCK_ASSERT(sc);
387 	my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
388 }
389 
390 /*
391  * Invoke autonegotiation on a PHY.
392  */
393 static void
394 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
395 {
396 	u_int16_t       phy_sts = 0, media, advert, ability;
397 	u_int16_t       ability2 = 0;
398 	struct ifnet   *ifp;
399 	struct ifmedia *ifm;
400 
401 	MY_LOCK_ASSERT(sc);
402 
403 	ifm = &sc->ifmedia;
404 	ifp = sc->my_ifp;
405 
406 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
407 
408 #ifndef FORCE_AUTONEG_TFOUR
409 	/*
410 	 * First, see if autoneg is supported. If not, there's no point in
411 	 * continuing.
412 	 */
413 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
414 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
415 		if (verbose)
416 			device_printf(sc->my_dev,
417 			    "autonegotiation not supported\n");
418 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
419 		return;
420 	}
421 #endif
422 	switch (flag) {
423 	case MY_FLAG_FORCEDELAY:
424 		/*
425 		 * XXX Never use this option anywhere but in the probe
426 		 * routine: making the kernel stop dead in its tracks for
427 		 * three whole seconds after we've gone multi-user is really
428 		 * bad manners.
429 		 */
430 		my_autoneg_xmit(sc);
431 		DELAY(5000000);
432 		break;
433 	case MY_FLAG_SCHEDDELAY:
434 		/*
435 		 * Wait for the transmitter to go idle before starting an
436 		 * autoneg session, otherwise my_start() may clobber our
437 		 * timeout, and we don't want to allow transmission during an
438 		 * autoneg session since that can screw it up.
439 		 */
440 		if (sc->my_cdata.my_tx_head != NULL) {
441 			sc->my_want_auto = 1;
442 			MY_UNLOCK(sc);
443 			return;
444 		}
445 		my_autoneg_xmit(sc);
446 		callout_reset(&sc->my_autoneg_timer, hz * 5, my_autoneg_timeout,
447 		    sc);
448 		sc->my_autoneg = 1;
449 		sc->my_want_auto = 0;
450 		return;
451 	case MY_FLAG_DELAYTIMEO:
452 		callout_stop(&sc->my_autoneg_timer);
453 		sc->my_autoneg = 0;
454 		break;
455 	default:
456 		device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag);
457 		return;
458 	}
459 
460 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
461 		if (verbose)
462 			device_printf(sc->my_dev, "autoneg complete, ");
463 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
464 	} else {
465 		if (verbose)
466 			device_printf(sc->my_dev, "autoneg not complete, ");
467 	}
468 
469 	media = my_phy_readreg(sc, PHY_BMCR);
470 
471 	/* Link is good. Report modes and set duplex mode. */
472 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
473 		if (verbose)
474 			device_printf(sc->my_dev, "link status good. ");
475 		advert = my_phy_readreg(sc, PHY_ANAR);
476 		ability = my_phy_readreg(sc, PHY_LPAR);
477 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
478 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
479 			ability2 = my_phy_readreg(sc, PHY_1000SR);
480 			if (ability2 & PHY_1000SR_1000BTXFULL) {
481 				advert = 0;
482 				ability = 0;
483 				/*
484 				 * this version did not support 1000M,
485 				 * ifm->ifm_media =
486 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
487 				 */
488 				ifm->ifm_media =
489 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
490 				media &= ~PHY_BMCR_SPEEDSEL;
491 				media |= PHY_BMCR_1000;
492 				media |= PHY_BMCR_DUPLEX;
493 				printf("(full-duplex, 1000Mbps)\n");
494 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
495 				advert = 0;
496 				ability = 0;
497 				/*
498 				 * this version did not support 1000M,
499 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
500 				 */
501 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
502 				media &= ~PHY_BMCR_SPEEDSEL;
503 				media &= ~PHY_BMCR_DUPLEX;
504 				media |= PHY_BMCR_1000;
505 				printf("(half-duplex, 1000Mbps)\n");
506 			}
507 		}
508 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
509 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
510 			media |= PHY_BMCR_SPEEDSEL;
511 			media &= ~PHY_BMCR_DUPLEX;
512 			printf("(100baseT4)\n");
513 		} else if (advert & PHY_ANAR_100BTXFULL &&
514 			   ability & PHY_ANAR_100BTXFULL) {
515 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
516 			media |= PHY_BMCR_SPEEDSEL;
517 			media |= PHY_BMCR_DUPLEX;
518 			printf("(full-duplex, 100Mbps)\n");
519 		} else if (advert & PHY_ANAR_100BTXHALF &&
520 			   ability & PHY_ANAR_100BTXHALF) {
521 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
522 			media |= PHY_BMCR_SPEEDSEL;
523 			media &= ~PHY_BMCR_DUPLEX;
524 			printf("(half-duplex, 100Mbps)\n");
525 		} else if (advert & PHY_ANAR_10BTFULL &&
526 			   ability & PHY_ANAR_10BTFULL) {
527 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
528 			media &= ~PHY_BMCR_SPEEDSEL;
529 			media |= PHY_BMCR_DUPLEX;
530 			printf("(full-duplex, 10Mbps)\n");
531 		} else if (advert) {
532 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
533 			media &= ~PHY_BMCR_SPEEDSEL;
534 			media &= ~PHY_BMCR_DUPLEX;
535 			printf("(half-duplex, 10Mbps)\n");
536 		}
537 		media &= ~PHY_BMCR_AUTONEGENBL;
538 
539 		/* Set ASIC's duplex mode to match the PHY. */
540 		my_phy_writereg(sc, PHY_BMCR, media);
541 		my_setcfg(sc, media);
542 	} else {
543 		if (verbose)
544 			device_printf(sc->my_dev, "no carrier\n");
545 	}
546 
547 	my_init_locked(sc);
548 	if (sc->my_tx_pend) {
549 		sc->my_autoneg = 0;
550 		sc->my_tx_pend = 0;
551 		my_start_locked(ifp);
552 	}
553 	return;
554 }
555 
556 /*
557  * To get PHY ability.
558  */
559 static void
560 my_getmode_mii(struct my_softc * sc)
561 {
562 	u_int16_t       bmsr;
563 	struct ifnet   *ifp;
564 
565 	MY_LOCK_ASSERT(sc);
566 	ifp = sc->my_ifp;
567 	bmsr = my_phy_readreg(sc, PHY_BMSR);
568 	if (bootverbose)
569 		device_printf(sc->my_dev, "PHY status word: %x\n", bmsr);
570 
571 	/* fallback */
572 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
573 
574 	if (bmsr & PHY_BMSR_10BTHALF) {
575 		if (bootverbose)
576 			device_printf(sc->my_dev,
577 			    "10Mbps half-duplex mode supported\n");
578 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
579 		    0, NULL);
580 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
581 	}
582 	if (bmsr & PHY_BMSR_10BTFULL) {
583 		if (bootverbose)
584 			device_printf(sc->my_dev,
585 			    "10Mbps full-duplex mode supported\n");
586 
587 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
588 		    0, NULL);
589 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
590 	}
591 	if (bmsr & PHY_BMSR_100BTXHALF) {
592 		if (bootverbose)
593 			device_printf(sc->my_dev,
594 			    "100Mbps half-duplex mode supported\n");
595 		ifp->if_baudrate = 100000000;
596 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
597 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
598 			    0, NULL);
599 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
600 	}
601 	if (bmsr & PHY_BMSR_100BTXFULL) {
602 		if (bootverbose)
603 			device_printf(sc->my_dev,
604 			    "100Mbps full-duplex mode supported\n");
605 		ifp->if_baudrate = 100000000;
606 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
607 		    0, NULL);
608 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
609 	}
610 	/* Some also support 100BaseT4. */
611 	if (bmsr & PHY_BMSR_100BT4) {
612 		if (bootverbose)
613 			device_printf(sc->my_dev, "100baseT4 mode supported\n");
614 		ifp->if_baudrate = 100000000;
615 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
616 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
617 #ifdef FORCE_AUTONEG_TFOUR
618 		if (bootverbose)
619 			device_printf(sc->my_dev,
620 			    "forcing on autoneg support for BT4\n");
621 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
622 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
623 #endif
624 	}
625 #if 0				/* this version did not support 1000M, */
626 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
627 		if (bootverbose)
628 			device_printf(sc->my_dev,
629 			    "1000Mbps half-duplex mode supported\n");
630 
631 		ifp->if_baudrate = 1000000000;
632 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
633 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
634 		    0, NULL);
635 		if (bootverbose)
636 			device_printf(sc->my_dev,
637 			    "1000Mbps full-duplex mode supported\n");
638 		ifp->if_baudrate = 1000000000;
639 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
640 		    0, NULL);
641 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
642 	}
643 #endif
644 	if (bmsr & PHY_BMSR_CANAUTONEG) {
645 		if (bootverbose)
646 			device_printf(sc->my_dev, "autoneg supported\n");
647 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
648 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
649 	}
650 	return;
651 }
652 
653 /*
654  * Set speed and duplex mode.
655  */
656 static void
657 my_setmode_mii(struct my_softc * sc, int media)
658 {
659 	u_int16_t       bmcr;
660 
661 	MY_LOCK_ASSERT(sc);
662 	/*
663 	 * If an autoneg session is in progress, stop it.
664 	 */
665 	if (sc->my_autoneg) {
666 		device_printf(sc->my_dev, "canceling autoneg session\n");
667 		callout_stop(&sc->my_autoneg_timer);
668 		sc->my_autoneg = sc->my_want_auto = 0;
669 		bmcr = my_phy_readreg(sc, PHY_BMCR);
670 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
671 		my_phy_writereg(sc, PHY_BMCR, bmcr);
672 	}
673 	device_printf(sc->my_dev, "selecting MII, ");
674 	bmcr = my_phy_readreg(sc, PHY_BMCR);
675 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
676 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
677 
678 #if 0				/* this version did not support 1000M, */
679 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
680 		printf("1000Mbps/T4, half-duplex\n");
681 		bmcr &= ~PHY_BMCR_SPEEDSEL;
682 		bmcr &= ~PHY_BMCR_DUPLEX;
683 		bmcr |= PHY_BMCR_1000;
684 	}
685 #endif
686 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
687 		printf("100Mbps/T4, half-duplex\n");
688 		bmcr |= PHY_BMCR_SPEEDSEL;
689 		bmcr &= ~PHY_BMCR_DUPLEX;
690 	}
691 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
692 		printf("100Mbps, ");
693 		bmcr |= PHY_BMCR_SPEEDSEL;
694 	}
695 	if (IFM_SUBTYPE(media) == IFM_10_T) {
696 		printf("10Mbps, ");
697 		bmcr &= ~PHY_BMCR_SPEEDSEL;
698 	}
699 	if ((media & IFM_GMASK) == IFM_FDX) {
700 		printf("full duplex\n");
701 		bmcr |= PHY_BMCR_DUPLEX;
702 	} else {
703 		printf("half duplex\n");
704 		bmcr &= ~PHY_BMCR_DUPLEX;
705 	}
706 	my_phy_writereg(sc, PHY_BMCR, bmcr);
707 	my_setcfg(sc, bmcr);
708 	return;
709 }
710 
711 /*
712  * The Myson manual states that in order to fiddle with the 'full-duplex' and
713  * '100Mbps' bits in the netconfig register, we first have to put the
714  * transmit and/or receive logic in the idle state.
715  */
716 static void
717 my_setcfg(struct my_softc * sc, int bmcr)
718 {
719 	int             i, restart = 0;
720 
721 	MY_LOCK_ASSERT(sc);
722 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
723 		restart = 1;
724 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
725 		for (i = 0; i < MY_TIMEOUT; i++) {
726 			DELAY(10);
727 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
728 			    (MY_TXRUN | MY_RXRUN)))
729 				break;
730 		}
731 		if (i == MY_TIMEOUT)
732 			device_printf(sc->my_dev,
733 			    "failed to force tx and rx to idle \n");
734 	}
735 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
736 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
737 	if (bmcr & PHY_BMCR_1000)
738 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
739 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
740 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
741 	if (bmcr & PHY_BMCR_DUPLEX)
742 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
743 	else
744 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
745 	if (restart)
746 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
747 	return;
748 }
749 
750 static void
751 my_reset(struct my_softc * sc)
752 {
753 	int    i;
754 
755 	MY_LOCK_ASSERT(sc);
756 	MY_SETBIT(sc, MY_BCR, MY_SWR);
757 	for (i = 0; i < MY_TIMEOUT; i++) {
758 		DELAY(10);
759 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
760 			break;
761 	}
762 	if (i == MY_TIMEOUT)
763 		device_printf(sc->my_dev, "reset never completed!\n");
764 
765 	/* Wait a little while for the chip to get its brains in order. */
766 	DELAY(1000);
767 	return;
768 }
769 
770 /*
771  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
772  * list and return a device name if we find a match.
773  */
774 static int
775 my_probe(device_t dev)
776 {
777 	struct my_type *t;
778 
779 	t = my_devs;
780 	while (t->my_name != NULL) {
781 		if ((pci_get_vendor(dev) == t->my_vid) &&
782 		    (pci_get_device(dev) == t->my_did)) {
783 			device_set_desc(dev, t->my_name);
784 			my_info_tmp = t;
785 			return (BUS_PROBE_DEFAULT);
786 		}
787 		t++;
788 	}
789 	return (ENXIO);
790 }
791 
792 /*
793  * Attach the interface. Allocate softc structures, do ifmedia setup and
794  * ethernet/BPF attach.
795  */
796 static int
797 my_attach(device_t dev)
798 {
799 	int             i;
800 	u_char          eaddr[ETHER_ADDR_LEN];
801 	u_int32_t       iobase;
802 	struct my_softc *sc;
803 	struct ifnet   *ifp;
804 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
805 	unsigned int    round;
806 	caddr_t         roundptr;
807 	struct my_type *p;
808 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
809 	int             rid, error = 0;
810 
811 	sc = device_get_softc(dev);
812 	sc->my_dev = dev;
813 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
814 	    MTX_DEF);
815 	callout_init_mtx(&sc->my_autoneg_timer, &sc->my_mtx, 0);
816 	callout_init_mtx(&sc->my_watchdog, &sc->my_mtx, 0);
817 
818 	/*
819 	 * Map control/status registers.
820 	 */
821 	pci_enable_busmaster(dev);
822 
823 	if (my_info_tmp->my_did == MTD800ID) {
824 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
825 		if (iobase & 0x300)
826 			MY_USEIOSPACE = 0;
827 	}
828 
829 	rid = MY_RID;
830 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
831 
832 	if (sc->my_res == NULL) {
833 		device_printf(dev, "couldn't map ports/memory\n");
834 		error = ENXIO;
835 		goto destroy_mutex;
836 	}
837 	sc->my_btag = rman_get_bustag(sc->my_res);
838 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
839 
840 	rid = 0;
841 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
842 					    RF_SHAREABLE | RF_ACTIVE);
843 
844 	if (sc->my_irq == NULL) {
845 		device_printf(dev, "couldn't map interrupt\n");
846 		error = ENXIO;
847 		goto release_io;
848 	}
849 
850 	sc->my_info = my_info_tmp;
851 
852 	/* Reset the adapter. */
853 	MY_LOCK(sc);
854 	my_reset(sc);
855 	MY_UNLOCK(sc);
856 
857 	/*
858 	 * Get station address
859 	 */
860 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
861 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
862 
863 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
864 				  M_DEVBUF, M_NOWAIT);
865 	if (sc->my_ldata_ptr == NULL) {
866 		device_printf(dev, "no memory for list buffers!\n");
867 		error = ENXIO;
868 		goto release_irq;
869 	}
870 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
871 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
872 	roundptr = sc->my_ldata_ptr;
873 	for (i = 0; i < 8; i++) {
874 		if (round % 8) {
875 			round++;
876 			roundptr++;
877 		} else
878 			break;
879 	}
880 	sc->my_ldata = (struct my_list_data *) roundptr;
881 	bzero(sc->my_ldata, sizeof(struct my_list_data));
882 
883 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
884 	if (ifp == NULL) {
885 		device_printf(dev, "can not if_alloc()\n");
886 		error = ENOSPC;
887 		goto free_ldata;
888 	}
889 	ifp->if_softc = sc;
890 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
891 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
892 	ifp->if_ioctl = my_ioctl;
893 	ifp->if_start = my_start;
894 	ifp->if_init = my_init;
895 	ifp->if_baudrate = 10000000;
896 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
897 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
898 	IFQ_SET_READY(&ifp->if_snd);
899 
900 	if (sc->my_info->my_did == MTD803ID)
901 		sc->my_pinfo = my_phys;
902 	else {
903 		if (bootverbose)
904 			device_printf(dev, "probing for a PHY\n");
905 		MY_LOCK(sc);
906 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
907 			if (bootverbose)
908 				device_printf(dev, "checking address: %d\n", i);
909 			sc->my_phy_addr = i;
910 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
911 			if ((phy_sts != 0) && (phy_sts != 0xffff))
912 				break;
913 			else
914 				phy_sts = 0;
915 		}
916 		if (phy_sts) {
917 			phy_vid = my_phy_readreg(sc, PHY_VENID);
918 			phy_did = my_phy_readreg(sc, PHY_DEVID);
919 			if (bootverbose) {
920 				device_printf(dev, "found PHY at address %d, ",
921 				    sc->my_phy_addr);
922 				printf("vendor id: %x device id: %x\n",
923 				    phy_vid, phy_did);
924 			}
925 			p = my_phys;
926 			while (p->my_vid) {
927 				if (phy_vid == p->my_vid) {
928 					sc->my_pinfo = p;
929 					break;
930 				}
931 				p++;
932 			}
933 			if (sc->my_pinfo == NULL)
934 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
935 			if (bootverbose)
936 				device_printf(dev, "PHY type: %s\n",
937 				       sc->my_pinfo->my_name);
938 		} else {
939 			MY_UNLOCK(sc);
940 			device_printf(dev, "MII without any phy!\n");
941 			error = ENXIO;
942 			goto free_if;
943 		}
944 		MY_UNLOCK(sc);
945 	}
946 
947 	/* Do ifmedia setup. */
948 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
949 	MY_LOCK(sc);
950 	my_getmode_mii(sc);
951 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
952 	media = sc->ifmedia.ifm_media;
953 	my_stop(sc);
954 	MY_UNLOCK(sc);
955 	ifmedia_set(&sc->ifmedia, media);
956 
957 	ether_ifattach(ifp, eaddr);
958 
959 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
960 			       NULL, my_intr, sc, &sc->my_intrhand);
961 
962 	if (error) {
963 		device_printf(dev, "couldn't set up irq\n");
964 		goto detach_if;
965 	}
966 
967 	return (0);
968 
969 detach_if:
970 	ether_ifdetach(ifp);
971 free_if:
972 	if_free(ifp);
973 free_ldata:
974 	free(sc->my_ldata_ptr, M_DEVBUF);
975 release_irq:
976 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
977 release_io:
978 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
979 destroy_mutex:
980 	mtx_destroy(&sc->my_mtx);
981 	return (error);
982 }
983 
984 static int
985 my_detach(device_t dev)
986 {
987 	struct my_softc *sc;
988 	struct ifnet   *ifp;
989 
990 	sc = device_get_softc(dev);
991 	ifp = sc->my_ifp;
992 	ether_ifdetach(ifp);
993 	MY_LOCK(sc);
994 	my_stop(sc);
995 	MY_UNLOCK(sc);
996 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
997 	callout_drain(&sc->my_watchdog);
998 	callout_drain(&sc->my_autoneg_timer);
999 
1000 	if_free(ifp);
1001 	free(sc->my_ldata_ptr, M_DEVBUF);
1002 
1003 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1004 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1005 	mtx_destroy(&sc->my_mtx);
1006 	return (0);
1007 }
1008 
1009 
1010 /*
1011  * Initialize the transmit descriptors.
1012  */
1013 static int
1014 my_list_tx_init(struct my_softc * sc)
1015 {
1016 	struct my_chain_data *cd;
1017 	struct my_list_data *ld;
1018 	int             i;
1019 
1020 	MY_LOCK_ASSERT(sc);
1021 	cd = &sc->my_cdata;
1022 	ld = sc->my_ldata;
1023 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1024 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1025 		if (i == (MY_TX_LIST_CNT - 1))
1026 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1027 		else
1028 			cd->my_tx_chain[i].my_nextdesc =
1029 			    &cd->my_tx_chain[i + 1];
1030 	}
1031 	cd->my_tx_free = &cd->my_tx_chain[0];
1032 	cd->my_tx_tail = cd->my_tx_head = NULL;
1033 	return (0);
1034 }
1035 
1036 /*
1037  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1038  * arrange the descriptors in a closed ring, so that the last descriptor
1039  * points back to the first.
1040  */
1041 static int
1042 my_list_rx_init(struct my_softc * sc)
1043 {
1044 	struct my_chain_data *cd;
1045 	struct my_list_data *ld;
1046 	int             i;
1047 
1048 	MY_LOCK_ASSERT(sc);
1049 	cd = &sc->my_cdata;
1050 	ld = sc->my_ldata;
1051 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1052 		cd->my_rx_chain[i].my_ptr =
1053 		    (struct my_desc *) & ld->my_rx_list[i];
1054 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1055 			MY_UNLOCK(sc);
1056 			return (ENOBUFS);
1057 		}
1058 		if (i == (MY_RX_LIST_CNT - 1)) {
1059 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1060 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1061 		} else {
1062 			cd->my_rx_chain[i].my_nextdesc =
1063 			    &cd->my_rx_chain[i + 1];
1064 			ld->my_rx_list[i].my_next =
1065 			    vtophys(&ld->my_rx_list[i + 1]);
1066 		}
1067 	}
1068 	cd->my_rx_head = &cd->my_rx_chain[0];
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Initialize an RX descriptor and attach an MBUF cluster.
1074  */
1075 static int
1076 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1077 {
1078 	struct mbuf    *m_new = NULL;
1079 
1080 	MY_LOCK_ASSERT(sc);
1081 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1082 	if (m_new == NULL) {
1083 		device_printf(sc->my_dev,
1084 		    "no memory for rx list -- packet dropped!\n");
1085 		return (ENOBUFS);
1086 	}
1087 	if (!(MCLGET(m_new, M_NOWAIT))) {
1088 		device_printf(sc->my_dev,
1089 		    "no memory for rx list -- packet dropped!\n");
1090 		m_freem(m_new);
1091 		return (ENOBUFS);
1092 	}
1093 	c->my_mbuf = m_new;
1094 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1095 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1096 	c->my_ptr->my_status = MY_OWNByNIC;
1097 	return (0);
1098 }
1099 
1100 /*
1101  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1102  * level protocols.
1103  */
1104 static void
1105 my_rxeof(struct my_softc * sc)
1106 {
1107 	struct ether_header *eh;
1108 	struct mbuf    *m;
1109 	struct ifnet   *ifp;
1110 	struct my_chain_onefrag *cur_rx;
1111 	int             total_len = 0;
1112 	u_int32_t       rxstat;
1113 
1114 	MY_LOCK_ASSERT(sc);
1115 	ifp = sc->my_ifp;
1116 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1117 	    & MY_OWNByNIC)) {
1118 		cur_rx = sc->my_cdata.my_rx_head;
1119 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1120 
1121 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1122 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1123 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1124 			continue;
1125 		}
1126 		/* No errors; receive the packet. */
1127 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1128 		total_len -= ETHER_CRC_LEN;
1129 
1130 		if (total_len < MINCLSIZE) {
1131 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1132 			    total_len, 0, ifp, NULL);
1133 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1134 			if (m == NULL) {
1135 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1136 				continue;
1137 			}
1138 		} else {
1139 			m = cur_rx->my_mbuf;
1140 			/*
1141 			 * Try to conjure up a new mbuf cluster. If that
1142 			 * fails, it means we have an out of memory condition
1143 			 * and should leave the buffer in place and continue.
1144 			 * This will result in a lost packet, but there's
1145 			 * little else we can do in this situation.
1146 			 */
1147 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1148 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1149 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1150 				continue;
1151 			}
1152 			m->m_pkthdr.rcvif = ifp;
1153 			m->m_pkthdr.len = m->m_len = total_len;
1154 		}
1155 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1156 		eh = mtod(m, struct ether_header *);
1157 #if NBPFILTER > 0
1158 		/*
1159 		 * Handle BPF listeners. Let the BPF user see the packet, but
1160 		 * don't pass it up to the ether_input() layer unless it's a
1161 		 * broadcast packet, multicast packet, matches our ethernet
1162 		 * address or the interface is in promiscuous mode.
1163 		 */
1164 		if (bpf_peers_present(ifp->if_bpf)) {
1165 			bpf_mtap(ifp->if_bpf, m);
1166 			if (ifp->if_flags & IFF_PROMISC &&
1167 			    (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
1168 				ETHER_ADDR_LEN) &&
1169 			     (eh->ether_dhost[0] & 1) == 0)) {
1170 				m_freem(m);
1171 				continue;
1172 			}
1173 		}
1174 #endif
1175 		MY_UNLOCK(sc);
1176 		(*ifp->if_input)(ifp, m);
1177 		MY_LOCK(sc);
1178 	}
1179 	return;
1180 }
1181 
1182 
1183 /*
1184  * A frame was downloaded to the chip. It's safe for us to clean up the list
1185  * buffers.
1186  */
1187 static void
1188 my_txeof(struct my_softc * sc)
1189 {
1190 	struct my_chain *cur_tx;
1191 	struct ifnet   *ifp;
1192 
1193 	MY_LOCK_ASSERT(sc);
1194 	ifp = sc->my_ifp;
1195 	/* Clear the timeout timer. */
1196 	sc->my_timer = 0;
1197 	if (sc->my_cdata.my_tx_head == NULL) {
1198 		return;
1199 	}
1200 	/*
1201 	 * Go through our tx list and free mbufs for those frames that have
1202 	 * been transmitted.
1203 	 */
1204 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1205 		u_int32_t       txstat;
1206 
1207 		cur_tx = sc->my_cdata.my_tx_head;
1208 		txstat = MY_TXSTATUS(cur_tx);
1209 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1210 			break;
1211 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1212 			if (txstat & MY_TXERR) {
1213 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1214 				if (txstat & MY_EC) /* excessive collision */
1215 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1216 				if (txstat & MY_LC)	/* late collision */
1217 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1218 			}
1219 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1220 			    (txstat & MY_NCRMASK) >> MY_NCRShift);
1221 		}
1222 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1223 		m_freem(cur_tx->my_mbuf);
1224 		cur_tx->my_mbuf = NULL;
1225 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1226 			sc->my_cdata.my_tx_head = NULL;
1227 			sc->my_cdata.my_tx_tail = NULL;
1228 			break;
1229 		}
1230 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1231 	}
1232 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1233 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (CSR_READ_4(sc, MY_TSR) & MY_NCRMask));
1234 	}
1235 	return;
1236 }
1237 
1238 /*
1239  * TX 'end of channel' interrupt handler.
1240  */
1241 static void
1242 my_txeoc(struct my_softc * sc)
1243 {
1244 	struct ifnet   *ifp;
1245 
1246 	MY_LOCK_ASSERT(sc);
1247 	ifp = sc->my_ifp;
1248 	sc->my_timer = 0;
1249 	if (sc->my_cdata.my_tx_head == NULL) {
1250 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1251 		sc->my_cdata.my_tx_tail = NULL;
1252 		if (sc->my_want_auto)
1253 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1254 	} else {
1255 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1256 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1257 			sc->my_timer = 5;
1258 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1259 		}
1260 	}
1261 	return;
1262 }
1263 
1264 static void
1265 my_intr(void *arg)
1266 {
1267 	struct my_softc *sc;
1268 	struct ifnet   *ifp;
1269 	u_int32_t       status;
1270 
1271 	sc = arg;
1272 	MY_LOCK(sc);
1273 	ifp = sc->my_ifp;
1274 	if (!(ifp->if_flags & IFF_UP)) {
1275 		MY_UNLOCK(sc);
1276 		return;
1277 	}
1278 	/* Disable interrupts. */
1279 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1280 
1281 	for (;;) {
1282 		status = CSR_READ_4(sc, MY_ISR);
1283 		status &= MY_INTRS;
1284 		if (status)
1285 			CSR_WRITE_4(sc, MY_ISR, status);
1286 		else
1287 			break;
1288 
1289 		if (status & MY_RI)	/* receive interrupt */
1290 			my_rxeof(sc);
1291 
1292 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1293 			/* rx buffer unavailable or rx error */
1294 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1295 #ifdef foo
1296 			my_stop(sc);
1297 			my_reset(sc);
1298 			my_init_locked(sc);
1299 #endif
1300 		}
1301 		if (status & MY_TI)	/* tx interrupt */
1302 			my_txeof(sc);
1303 		if (status & MY_ETI)	/* tx early interrupt */
1304 			my_txeof(sc);
1305 		if (status & MY_TBU)	/* tx buffer unavailable */
1306 			my_txeoc(sc);
1307 
1308 #if 0				/* 90/1/18 delete */
1309 		if (status & MY_FBE) {
1310 			my_reset(sc);
1311 			my_init_locked(sc);
1312 		}
1313 #endif
1314 
1315 	}
1316 
1317 	/* Re-enable interrupts. */
1318 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1319 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1320 		my_start_locked(ifp);
1321 	MY_UNLOCK(sc);
1322 	return;
1323 }
1324 
1325 /*
1326  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1327  * pointers to the fragment pointers.
1328  */
1329 static int
1330 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1331 {
1332 	struct my_desc *f = NULL;
1333 	int             total_len;
1334 	struct mbuf    *m, *m_new = NULL;
1335 
1336 	MY_LOCK_ASSERT(sc);
1337 	/* calculate the total tx pkt length */
1338 	total_len = 0;
1339 	for (m = m_head; m != NULL; m = m->m_next)
1340 		total_len += m->m_len;
1341 	/*
1342 	 * Start packing the mbufs in this chain into the fragment pointers.
1343 	 * Stop when we run out of fragments or hit the end of the mbuf
1344 	 * chain.
1345 	 */
1346 	m = m_head;
1347 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1348 	if (m_new == NULL) {
1349 		device_printf(sc->my_dev, "no memory for tx list");
1350 		return (1);
1351 	}
1352 	if (m_head->m_pkthdr.len > MHLEN) {
1353 		if (!(MCLGET(m_new, M_NOWAIT))) {
1354 			m_freem(m_new);
1355 			device_printf(sc->my_dev, "no memory for tx list");
1356 			return (1);
1357 		}
1358 	}
1359 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1360 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1361 	m_freem(m_head);
1362 	m_head = m_new;
1363 	f = &c->my_ptr->my_frag[0];
1364 	f->my_status = 0;
1365 	f->my_data = vtophys(mtod(m_new, caddr_t));
1366 	total_len = m_new->m_len;
1367 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1368 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1369 	f->my_ctl |= total_len;	/* buffer size */
1370 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1371 	if (sc->my_info->my_did == MTD891ID)
1372 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1373 	c->my_mbuf = m_head;
1374 	c->my_lastdesc = 0;
1375 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1376 	return (0);
1377 }
1378 
1379 /*
1380  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1381  * to the mbuf data regions directly in the transmit lists. We also save a
1382  * copy of the pointers since the transmit list fragment pointers are
1383  * physical addresses.
1384  */
1385 static void
1386 my_start(struct ifnet * ifp)
1387 {
1388 	struct my_softc *sc;
1389 
1390 	sc = ifp->if_softc;
1391 	MY_LOCK(sc);
1392 	my_start_locked(ifp);
1393 	MY_UNLOCK(sc);
1394 }
1395 
1396 static void
1397 my_start_locked(struct ifnet * ifp)
1398 {
1399 	struct my_softc *sc;
1400 	struct mbuf    *m_head = NULL;
1401 	struct my_chain *cur_tx = NULL, *start_tx;
1402 
1403 	sc = ifp->if_softc;
1404 	MY_LOCK_ASSERT(sc);
1405 	if (sc->my_autoneg) {
1406 		sc->my_tx_pend = 1;
1407 		return;
1408 	}
1409 	/*
1410 	 * Check for an available queue slot. If there are none, punt.
1411 	 */
1412 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1413 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1414 		return;
1415 	}
1416 	start_tx = sc->my_cdata.my_tx_free;
1417 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1418 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1419 		if (m_head == NULL)
1420 			break;
1421 
1422 		/* Pick a descriptor off the free list. */
1423 		cur_tx = sc->my_cdata.my_tx_free;
1424 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1425 
1426 		/* Pack the data into the descriptor. */
1427 		my_encap(sc, cur_tx, m_head);
1428 
1429 		if (cur_tx != start_tx)
1430 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1431 #if NBPFILTER > 0
1432 		/*
1433 		 * If there's a BPF listener, bounce a copy of this frame to
1434 		 * him.
1435 		 */
1436 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1437 #endif
1438 	}
1439 	/*
1440 	 * If there are no packets queued, bail.
1441 	 */
1442 	if (cur_tx == NULL) {
1443 		return;
1444 	}
1445 	/*
1446 	 * Place the request for the upload interrupt in the last descriptor
1447 	 * in the chain. This way, if we're chaining several packets at once,
1448 	 * we'll only get an interrupt once for the whole chain rather than
1449 	 * once for each packet.
1450 	 */
1451 	MY_TXCTL(cur_tx) |= MY_TXIC;
1452 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1453 	sc->my_cdata.my_tx_tail = cur_tx;
1454 	if (sc->my_cdata.my_tx_head == NULL)
1455 		sc->my_cdata.my_tx_head = start_tx;
1456 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1457 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1458 
1459 	/*
1460 	 * Set a timeout in case the chip goes out to lunch.
1461 	 */
1462 	sc->my_timer = 5;
1463 	return;
1464 }
1465 
1466 static void
1467 my_init(void *xsc)
1468 {
1469 	struct my_softc *sc = xsc;
1470 
1471 	MY_LOCK(sc);
1472 	my_init_locked(sc);
1473 	MY_UNLOCK(sc);
1474 }
1475 
1476 static void
1477 my_init_locked(struct my_softc *sc)
1478 {
1479 	struct ifnet   *ifp = sc->my_ifp;
1480 	u_int16_t       phy_bmcr = 0;
1481 
1482 	MY_LOCK_ASSERT(sc);
1483 	if (sc->my_autoneg) {
1484 		return;
1485 	}
1486 	if (sc->my_pinfo != NULL)
1487 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1488 	/*
1489 	 * Cancel pending I/O and free all RX/TX buffers.
1490 	 */
1491 	my_stop(sc);
1492 	my_reset(sc);
1493 
1494 	/*
1495 	 * Set cache alignment and burst length.
1496 	 */
1497 #if 0				/* 89/9/1 modify,  */
1498 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1499 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1500 #endif
1501 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1502 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1503 	/*
1504 	 * 89/12/29 add, for mtd891,
1505 	 */
1506 	if (sc->my_info->my_did == MTD891ID) {
1507 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1508 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1509 	}
1510 	my_setcfg(sc, phy_bmcr);
1511 	/* Init circular RX list. */
1512 	if (my_list_rx_init(sc) == ENOBUFS) {
1513 		device_printf(sc->my_dev, "init failed: no memory for rx buffers\n");
1514 		my_stop(sc);
1515 		return;
1516 	}
1517 	/* Init TX descriptors. */
1518 	my_list_tx_init(sc);
1519 
1520 	/* If we want promiscuous mode, set the allframes bit. */
1521 	if (ifp->if_flags & IFF_PROMISC)
1522 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1523 	else
1524 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1525 
1526 	/*
1527 	 * Set capture broadcast bit to capture broadcast frames.
1528 	 */
1529 	if (ifp->if_flags & IFF_BROADCAST)
1530 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1531 	else
1532 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1533 
1534 	/*
1535 	 * Program the multicast filter, if necessary.
1536 	 */
1537 	my_setmulti(sc);
1538 
1539 	/*
1540 	 * Load the address of the RX list.
1541 	 */
1542 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1543 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1544 
1545 	/*
1546 	 * Enable interrupts.
1547 	 */
1548 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1549 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1550 
1551 	/* Enable receiver and transmitter. */
1552 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1553 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1554 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1555 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1556 
1557 	/* Restore state of BMCR */
1558 	if (sc->my_pinfo != NULL)
1559 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1560 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1561 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1562 
1563 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1564 	return;
1565 }
1566 
1567 /*
1568  * Set media options.
1569  */
1570 
1571 static int
1572 my_ifmedia_upd(struct ifnet * ifp)
1573 {
1574 	struct my_softc *sc;
1575 	struct ifmedia *ifm;
1576 
1577 	sc = ifp->if_softc;
1578 	MY_LOCK(sc);
1579 	ifm = &sc->ifmedia;
1580 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1581 		MY_UNLOCK(sc);
1582 		return (EINVAL);
1583 	}
1584 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1585 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1586 	else
1587 		my_setmode_mii(sc, ifm->ifm_media);
1588 	MY_UNLOCK(sc);
1589 	return (0);
1590 }
1591 
1592 /*
1593  * Report current media status.
1594  */
1595 
1596 static void
1597 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1598 {
1599 	struct my_softc *sc;
1600 	u_int16_t advert = 0, ability = 0;
1601 
1602 	sc = ifp->if_softc;
1603 	MY_LOCK(sc);
1604 	ifmr->ifm_active = IFM_ETHER;
1605 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1606 #if 0				/* this version did not support 1000M, */
1607 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1608 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1609 #endif
1610 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1611 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1612 		else
1613 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1614 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1615 			ifmr->ifm_active |= IFM_FDX;
1616 		else
1617 			ifmr->ifm_active |= IFM_HDX;
1618 
1619 		MY_UNLOCK(sc);
1620 		return;
1621 	}
1622 	ability = my_phy_readreg(sc, PHY_LPAR);
1623 	advert = my_phy_readreg(sc, PHY_ANAR);
1624 
1625 #if 0				/* this version did not support 1000M, */
1626 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1627 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1628 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1629 			advert = 0;
1630 			ability = 0;
1631 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1632 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1633 			advert = 0;
1634 			ability = 0;
1635 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1636 		}
1637 	}
1638 #endif
1639 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1640 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1641 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1642 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1643 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1644 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1645 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1646 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1647 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1648 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1649 	MY_UNLOCK(sc);
1650 	return;
1651 }
1652 
1653 static int
1654 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1655 {
1656 	struct my_softc *sc = ifp->if_softc;
1657 	struct ifreq   *ifr = (struct ifreq *) data;
1658 	int             error;
1659 
1660 	switch (command) {
1661 	case SIOCSIFFLAGS:
1662 		MY_LOCK(sc);
1663 		if (ifp->if_flags & IFF_UP)
1664 			my_init_locked(sc);
1665 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1666 			my_stop(sc);
1667 		MY_UNLOCK(sc);
1668 		error = 0;
1669 		break;
1670 	case SIOCADDMULTI:
1671 	case SIOCDELMULTI:
1672 		MY_LOCK(sc);
1673 		my_setmulti(sc);
1674 		MY_UNLOCK(sc);
1675 		error = 0;
1676 		break;
1677 	case SIOCGIFMEDIA:
1678 	case SIOCSIFMEDIA:
1679 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1680 		break;
1681 	default:
1682 		error = ether_ioctl(ifp, command, data);
1683 		break;
1684 	}
1685 	return (error);
1686 }
1687 
1688 static void
1689 my_watchdog(void *arg)
1690 {
1691 	struct my_softc *sc;
1692 	struct ifnet *ifp;
1693 
1694 	sc = arg;
1695 	MY_LOCK_ASSERT(sc);
1696 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1697 	if (sc->my_timer == 0 || --sc->my_timer > 0)
1698 		return;
1699 
1700 	ifp = sc->my_ifp;
1701 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1702 	if_printf(ifp, "watchdog timeout\n");
1703 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1704 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1705 	my_stop(sc);
1706 	my_reset(sc);
1707 	my_init_locked(sc);
1708 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1709 		my_start_locked(ifp);
1710 }
1711 
1712 
1713 /*
1714  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1715  */
1716 static void
1717 my_stop(struct my_softc * sc)
1718 {
1719 	int    i;
1720 	struct ifnet   *ifp;
1721 
1722 	MY_LOCK_ASSERT(sc);
1723 	ifp = sc->my_ifp;
1724 
1725 	callout_stop(&sc->my_autoneg_timer);
1726 	callout_stop(&sc->my_watchdog);
1727 
1728 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1729 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1730 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1731 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1732 
1733 	/*
1734 	 * Free data in the RX lists.
1735 	 */
1736 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1737 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1738 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1739 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1740 		}
1741 	}
1742 	bzero((char *)&sc->my_ldata->my_rx_list,
1743 	    sizeof(sc->my_ldata->my_rx_list));
1744 	/*
1745 	 * Free the TX list buffers.
1746 	 */
1747 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1748 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1749 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1750 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1751 		}
1752 	}
1753 	bzero((char *)&sc->my_ldata->my_tx_list,
1754 	    sizeof(sc->my_ldata->my_tx_list));
1755 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1756 	return;
1757 }
1758 
1759 /*
1760  * Stop all chip I/O so that the kernel's probe routines don't get confused
1761  * by errant DMAs when rebooting.
1762  */
1763 static int
1764 my_shutdown(device_t dev)
1765 {
1766 	struct my_softc *sc;
1767 
1768 	sc = device_get_softc(dev);
1769 	MY_LOCK(sc);
1770 	my_stop(sc);
1771 	MY_UNLOCK(sc);
1772 	return 0;
1773 }
1774