xref: /freebsd/sys/dev/my/if_my.c (revision 8d20be1e22095c27faf8fe8b2f0d089739cc742e)
1 /*-
2  * Written by: yen_cw@myson.com.tw
3  * Copyright (c) 2002 Myson Technology Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/types.h>
42 #include <sys/module.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 
46 #define NBPFILTER	1
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_dl.h>
55 #include <net/bpf.h>
56 
57 #include <vm/vm.h>		/* for vtophys */
58 #include <vm/pmap.h>		/* for vtophys */
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/bus.h>
62 #include <sys/rman.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 /*
68  * #define MY_USEIOSPACE
69  */
70 
71 static int      MY_USEIOSPACE = 1;
72 
73 #ifdef MY_USEIOSPACE
74 #define MY_RES                  SYS_RES_IOPORT
75 #define MY_RID                  MY_PCI_LOIO
76 #else
77 #define MY_RES                  SYS_RES_MEMORY
78 #define MY_RID                  MY_PCI_LOMEM
79 #endif
80 
81 
82 #include <dev/my/if_myreg.h>
83 
84 #ifndef lint
85 static          const char rcsid[] =
86 "$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $";
87 #endif
88 
89 /*
90  * Various supported device vendors/types and their names.
91  */
92 struct my_type *my_info_tmp;
93 static struct my_type my_devs[] = {
94 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
95 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
96 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
97 	{0, 0, NULL}
98 };
99 
100 /*
101  * Various supported PHY vendors/types and their names. Note that this driver
102  * will work with pretty much any MII-compliant PHY, so failure to positively
103  * identify the chip is not a fatal error.
104  */
105 static struct my_type my_phys[] = {
106 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
107 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
108 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
109 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
110 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
111 	{0, 0, "<MII-compliant physical interface>"}
112 };
113 
114 static int      my_probe(device_t);
115 static int      my_attach(device_t);
116 static int      my_detach(device_t);
117 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
118 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
119 static void     my_rxeof(struct my_softc *);
120 static void     my_txeof(struct my_softc *);
121 static void     my_txeoc(struct my_softc *);
122 static void     my_intr(void *);
123 static void     my_start(struct ifnet *);
124 static void     my_start_locked(struct ifnet *);
125 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
126 static void     my_init(void *);
127 static void     my_init_locked(struct my_softc *);
128 static void     my_stop(struct my_softc *);
129 static void     my_autoneg_timeout(void *);
130 static void     my_watchdog(void *);
131 static int      my_shutdown(device_t);
132 static int      my_ifmedia_upd(struct ifnet *);
133 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
134 static u_int16_t my_phy_readreg(struct my_softc *, int);
135 static void     my_phy_writereg(struct my_softc *, int, int);
136 static void     my_autoneg_xmit(struct my_softc *);
137 static void     my_autoneg_mii(struct my_softc *, int, int);
138 static void     my_setmode_mii(struct my_softc *, int);
139 static void     my_getmode_mii(struct my_softc *);
140 static void     my_setcfg(struct my_softc *, int);
141 static void     my_setmulti(struct my_softc *);
142 static void     my_reset(struct my_softc *);
143 static int      my_list_rx_init(struct my_softc *);
144 static int      my_list_tx_init(struct my_softc *);
145 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
146 
147 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
148 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
149 
150 static device_method_t my_methods[] = {
151 	/* Device interface */
152 	DEVMETHOD(device_probe, my_probe),
153 	DEVMETHOD(device_attach, my_attach),
154 	DEVMETHOD(device_detach, my_detach),
155 	DEVMETHOD(device_shutdown, my_shutdown),
156 
157 	DEVMETHOD_END
158 };
159 
160 static driver_t my_driver = {
161 	"my",
162 	my_methods,
163 	sizeof(struct my_softc)
164 };
165 
166 static devclass_t my_devclass;
167 
168 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
169 MODULE_DEPEND(my, pci, 1, 1, 1);
170 MODULE_DEPEND(my, ether, 1, 1, 1);
171 
172 static long
173 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
174 {
175 	long            miir;
176 	int             i;
177 	int             mask, data;
178 
179 	MY_LOCK_ASSERT(sc);
180 
181 	/* enable MII output */
182 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
183 	miir &= 0xfffffff0;
184 
185 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
186 
187 	/* send 32 1's preamble */
188 	for (i = 0; i < 32; i++) {
189 		/* low MDC; MDO is already high (miir) */
190 		miir &= ~MY_MASK_MIIR_MII_MDC;
191 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
192 
193 		/* high MDC */
194 		miir |= MY_MASK_MIIR_MII_MDC;
195 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
196 	}
197 
198 	/* calculate ST+OP+PHYAD+REGAD+TA */
199 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
200 
201 	/* sent out */
202 	mask = 0x8000;
203 	while (mask) {
204 		/* low MDC, prepare MDO */
205 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
206 		if (mask & data)
207 			miir |= MY_MASK_MIIR_MII_MDO;
208 
209 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
210 		/* high MDC */
211 		miir |= MY_MASK_MIIR_MII_MDC;
212 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
213 		DELAY(30);
214 
215 		/* next */
216 		mask >>= 1;
217 		if (mask == 0x2 && opcode == MY_OP_READ)
218 			miir &= ~MY_MASK_MIIR_MII_WRITE;
219 	}
220 
221 	return miir;
222 }
223 
224 
225 static u_int16_t
226 my_phy_readreg(struct my_softc * sc, int reg)
227 {
228 	long            miir;
229 	int             mask, data;
230 
231 	MY_LOCK_ASSERT(sc);
232 
233 	if (sc->my_info->my_did == MTD803ID)
234 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
235 	else {
236 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
237 
238 		/* read data */
239 		mask = 0x8000;
240 		data = 0;
241 		while (mask) {
242 			/* low MDC */
243 			miir &= ~MY_MASK_MIIR_MII_MDC;
244 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
245 
246 			/* read MDI */
247 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
248 			if (miir & MY_MASK_MIIR_MII_MDI)
249 				data |= mask;
250 
251 			/* high MDC, and wait */
252 			miir |= MY_MASK_MIIR_MII_MDC;
253 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
254 			DELAY(30);
255 
256 			/* next */
257 			mask >>= 1;
258 		}
259 
260 		/* low MDC */
261 		miir &= ~MY_MASK_MIIR_MII_MDC;
262 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
263 	}
264 
265 	return (u_int16_t) data;
266 }
267 
268 
269 static void
270 my_phy_writereg(struct my_softc * sc, int reg, int data)
271 {
272 	long            miir;
273 	int             mask;
274 
275 	MY_LOCK_ASSERT(sc);
276 
277 	if (sc->my_info->my_did == MTD803ID)
278 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
279 	else {
280 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
281 
282 		/* write data */
283 		mask = 0x8000;
284 		while (mask) {
285 			/* low MDC, prepare MDO */
286 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
287 			if (mask & data)
288 				miir |= MY_MASK_MIIR_MII_MDO;
289 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
290 			DELAY(1);
291 
292 			/* high MDC */
293 			miir |= MY_MASK_MIIR_MII_MDC;
294 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
295 			DELAY(1);
296 
297 			/* next */
298 			mask >>= 1;
299 		}
300 
301 		/* low MDC */
302 		miir &= ~MY_MASK_MIIR_MII_MDC;
303 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
304 	}
305 	return;
306 }
307 
308 
309 /*
310  * Program the 64-bit multicast hash filter.
311  */
312 static void
313 my_setmulti(struct my_softc * sc)
314 {
315 	struct ifnet   *ifp;
316 	int             h = 0;
317 	u_int32_t       hashes[2] = {0, 0};
318 	struct ifmultiaddr *ifma;
319 	u_int32_t       rxfilt;
320 	int             mcnt = 0;
321 
322 	MY_LOCK_ASSERT(sc);
323 
324 	ifp = sc->my_ifp;
325 
326 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
327 
328 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
329 		rxfilt |= MY_AM;
330 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
331 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
332 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
333 
334 		return;
335 	}
336 	/* first, zot all the existing hash bits */
337 	CSR_WRITE_4(sc, MY_MAR0, 0);
338 	CSR_WRITE_4(sc, MY_MAR1, 0);
339 
340 	/* now program new ones */
341 	if_maddr_rlock(ifp);
342 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
343 		if (ifma->ifma_addr->sa_family != AF_LINK)
344 			continue;
345 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
346 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
347 		if (h < 32)
348 			hashes[0] |= (1 << h);
349 		else
350 			hashes[1] |= (1 << (h - 32));
351 		mcnt++;
352 	}
353 	if_maddr_runlock(ifp);
354 
355 	if (mcnt)
356 		rxfilt |= MY_AM;
357 	else
358 		rxfilt &= ~MY_AM;
359 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
360 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
361 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
362 	return;
363 }
364 
365 /*
366  * Initiate an autonegotiation session.
367  */
368 static void
369 my_autoneg_xmit(struct my_softc * sc)
370 {
371 	u_int16_t       phy_sts = 0;
372 
373 	MY_LOCK_ASSERT(sc);
374 
375 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
376 	DELAY(500);
377 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
378 
379 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
380 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
381 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
382 
383 	return;
384 }
385 
386 static void
387 my_autoneg_timeout(void *arg)
388 {
389 	struct my_softc *sc;
390 
391 	sc = arg;
392 	MY_LOCK_ASSERT(sc);
393 	my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
394 }
395 
396 /*
397  * Invoke autonegotiation on a PHY.
398  */
399 static void
400 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
401 {
402 	u_int16_t       phy_sts = 0, media, advert, ability;
403 	u_int16_t       ability2 = 0;
404 	struct ifnet   *ifp;
405 	struct ifmedia *ifm;
406 
407 	MY_LOCK_ASSERT(sc);
408 
409 	ifm = &sc->ifmedia;
410 	ifp = sc->my_ifp;
411 
412 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
413 
414 #ifndef FORCE_AUTONEG_TFOUR
415 	/*
416 	 * First, see if autoneg is supported. If not, there's no point in
417 	 * continuing.
418 	 */
419 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
420 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
421 		if (verbose)
422 			device_printf(sc->my_dev,
423 			    "autonegotiation not supported\n");
424 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
425 		return;
426 	}
427 #endif
428 	switch (flag) {
429 	case MY_FLAG_FORCEDELAY:
430 		/*
431 		 * XXX Never use this option anywhere but in the probe
432 		 * routine: making the kernel stop dead in its tracks for
433 		 * three whole seconds after we've gone multi-user is really
434 		 * bad manners.
435 		 */
436 		my_autoneg_xmit(sc);
437 		DELAY(5000000);
438 		break;
439 	case MY_FLAG_SCHEDDELAY:
440 		/*
441 		 * Wait for the transmitter to go idle before starting an
442 		 * autoneg session, otherwise my_start() may clobber our
443 		 * timeout, and we don't want to allow transmission during an
444 		 * autoneg session since that can screw it up.
445 		 */
446 		if (sc->my_cdata.my_tx_head != NULL) {
447 			sc->my_want_auto = 1;
448 			MY_UNLOCK(sc);
449 			return;
450 		}
451 		my_autoneg_xmit(sc);
452 		callout_reset(&sc->my_autoneg_timer, hz * 5, my_autoneg_timeout,
453 		    sc);
454 		sc->my_autoneg = 1;
455 		sc->my_want_auto = 0;
456 		return;
457 	case MY_FLAG_DELAYTIMEO:
458 		callout_stop(&sc->my_autoneg_timer);
459 		sc->my_autoneg = 0;
460 		break;
461 	default:
462 		device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag);
463 		return;
464 	}
465 
466 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
467 		if (verbose)
468 			device_printf(sc->my_dev, "autoneg complete, ");
469 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
470 	} else {
471 		if (verbose)
472 			device_printf(sc->my_dev, "autoneg not complete, ");
473 	}
474 
475 	media = my_phy_readreg(sc, PHY_BMCR);
476 
477 	/* Link is good. Report modes and set duplex mode. */
478 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
479 		if (verbose)
480 			device_printf(sc->my_dev, "link status good. ");
481 		advert = my_phy_readreg(sc, PHY_ANAR);
482 		ability = my_phy_readreg(sc, PHY_LPAR);
483 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
484 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
485 			ability2 = my_phy_readreg(sc, PHY_1000SR);
486 			if (ability2 & PHY_1000SR_1000BTXFULL) {
487 				advert = 0;
488 				ability = 0;
489 				/*
490 				 * this version did not support 1000M,
491 				 * ifm->ifm_media =
492 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
493 				 */
494 				ifm->ifm_media =
495 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
496 				media &= ~PHY_BMCR_SPEEDSEL;
497 				media |= PHY_BMCR_1000;
498 				media |= PHY_BMCR_DUPLEX;
499 				printf("(full-duplex, 1000Mbps)\n");
500 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
501 				advert = 0;
502 				ability = 0;
503 				/*
504 				 * this version did not support 1000M,
505 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
506 				 */
507 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
508 				media &= ~PHY_BMCR_SPEEDSEL;
509 				media &= ~PHY_BMCR_DUPLEX;
510 				media |= PHY_BMCR_1000;
511 				printf("(half-duplex, 1000Mbps)\n");
512 			}
513 		}
514 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
515 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
516 			media |= PHY_BMCR_SPEEDSEL;
517 			media &= ~PHY_BMCR_DUPLEX;
518 			printf("(100baseT4)\n");
519 		} else if (advert & PHY_ANAR_100BTXFULL &&
520 			   ability & PHY_ANAR_100BTXFULL) {
521 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
522 			media |= PHY_BMCR_SPEEDSEL;
523 			media |= PHY_BMCR_DUPLEX;
524 			printf("(full-duplex, 100Mbps)\n");
525 		} else if (advert & PHY_ANAR_100BTXHALF &&
526 			   ability & PHY_ANAR_100BTXHALF) {
527 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
528 			media |= PHY_BMCR_SPEEDSEL;
529 			media &= ~PHY_BMCR_DUPLEX;
530 			printf("(half-duplex, 100Mbps)\n");
531 		} else if (advert & PHY_ANAR_10BTFULL &&
532 			   ability & PHY_ANAR_10BTFULL) {
533 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
534 			media &= ~PHY_BMCR_SPEEDSEL;
535 			media |= PHY_BMCR_DUPLEX;
536 			printf("(full-duplex, 10Mbps)\n");
537 		} else if (advert) {
538 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
539 			media &= ~PHY_BMCR_SPEEDSEL;
540 			media &= ~PHY_BMCR_DUPLEX;
541 			printf("(half-duplex, 10Mbps)\n");
542 		}
543 		media &= ~PHY_BMCR_AUTONEGENBL;
544 
545 		/* Set ASIC's duplex mode to match the PHY. */
546 		my_phy_writereg(sc, PHY_BMCR, media);
547 		my_setcfg(sc, media);
548 	} else {
549 		if (verbose)
550 			device_printf(sc->my_dev, "no carrier\n");
551 	}
552 
553 	my_init_locked(sc);
554 	if (sc->my_tx_pend) {
555 		sc->my_autoneg = 0;
556 		sc->my_tx_pend = 0;
557 		my_start_locked(ifp);
558 	}
559 	return;
560 }
561 
562 /*
563  * To get PHY ability.
564  */
565 static void
566 my_getmode_mii(struct my_softc * sc)
567 {
568 	u_int16_t       bmsr;
569 	struct ifnet   *ifp;
570 
571 	MY_LOCK_ASSERT(sc);
572 	ifp = sc->my_ifp;
573 	bmsr = my_phy_readreg(sc, PHY_BMSR);
574 	if (bootverbose)
575 		device_printf(sc->my_dev, "PHY status word: %x\n", bmsr);
576 
577 	/* fallback */
578 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
579 
580 	if (bmsr & PHY_BMSR_10BTHALF) {
581 		if (bootverbose)
582 			device_printf(sc->my_dev,
583 			    "10Mbps half-duplex mode supported\n");
584 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
585 		    0, NULL);
586 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
587 	}
588 	if (bmsr & PHY_BMSR_10BTFULL) {
589 		if (bootverbose)
590 			device_printf(sc->my_dev,
591 			    "10Mbps full-duplex mode supported\n");
592 
593 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
594 		    0, NULL);
595 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
596 	}
597 	if (bmsr & PHY_BMSR_100BTXHALF) {
598 		if (bootverbose)
599 			device_printf(sc->my_dev,
600 			    "100Mbps half-duplex mode supported\n");
601 		ifp->if_baudrate = 100000000;
602 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
603 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
604 			    0, NULL);
605 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
606 	}
607 	if (bmsr & PHY_BMSR_100BTXFULL) {
608 		if (bootverbose)
609 			device_printf(sc->my_dev,
610 			    "100Mbps full-duplex mode supported\n");
611 		ifp->if_baudrate = 100000000;
612 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
613 		    0, NULL);
614 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
615 	}
616 	/* Some also support 100BaseT4. */
617 	if (bmsr & PHY_BMSR_100BT4) {
618 		if (bootverbose)
619 			device_printf(sc->my_dev, "100baseT4 mode supported\n");
620 		ifp->if_baudrate = 100000000;
621 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
622 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
623 #ifdef FORCE_AUTONEG_TFOUR
624 		if (bootverbose)
625 			device_printf(sc->my_dev,
626 			    "forcing on autoneg support for BT4\n");
627 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
628 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
629 #endif
630 	}
631 #if 0				/* this version did not support 1000M, */
632 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
633 		if (bootverbose)
634 			device_printf(sc->my_dev,
635 			    "1000Mbps half-duplex mode supported\n");
636 
637 		ifp->if_baudrate = 1000000000;
638 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
639 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
640 		    0, NULL);
641 		if (bootverbose)
642 			device_printf(sc->my_dev,
643 			    "1000Mbps full-duplex mode supported\n");
644 		ifp->if_baudrate = 1000000000;
645 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
646 		    0, NULL);
647 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
648 	}
649 #endif
650 	if (bmsr & PHY_BMSR_CANAUTONEG) {
651 		if (bootverbose)
652 			device_printf(sc->my_dev, "autoneg supported\n");
653 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
654 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
655 	}
656 	return;
657 }
658 
659 /*
660  * Set speed and duplex mode.
661  */
662 static void
663 my_setmode_mii(struct my_softc * sc, int media)
664 {
665 	u_int16_t       bmcr;
666 	struct ifnet   *ifp;
667 
668 	MY_LOCK_ASSERT(sc);
669 	ifp = sc->my_ifp;
670 	/*
671 	 * If an autoneg session is in progress, stop it.
672 	 */
673 	if (sc->my_autoneg) {
674 		device_printf(sc->my_dev, "canceling autoneg session\n");
675 		callout_stop(&sc->my_autoneg_timer);
676 		sc->my_autoneg = sc->my_want_auto = 0;
677 		bmcr = my_phy_readreg(sc, PHY_BMCR);
678 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
679 		my_phy_writereg(sc, PHY_BMCR, bmcr);
680 	}
681 	device_printf(sc->my_dev, "selecting MII, ");
682 	bmcr = my_phy_readreg(sc, PHY_BMCR);
683 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
684 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
685 
686 #if 0				/* this version did not support 1000M, */
687 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
688 		printf("1000Mbps/T4, half-duplex\n");
689 		bmcr &= ~PHY_BMCR_SPEEDSEL;
690 		bmcr &= ~PHY_BMCR_DUPLEX;
691 		bmcr |= PHY_BMCR_1000;
692 	}
693 #endif
694 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
695 		printf("100Mbps/T4, half-duplex\n");
696 		bmcr |= PHY_BMCR_SPEEDSEL;
697 		bmcr &= ~PHY_BMCR_DUPLEX;
698 	}
699 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
700 		printf("100Mbps, ");
701 		bmcr |= PHY_BMCR_SPEEDSEL;
702 	}
703 	if (IFM_SUBTYPE(media) == IFM_10_T) {
704 		printf("10Mbps, ");
705 		bmcr &= ~PHY_BMCR_SPEEDSEL;
706 	}
707 	if ((media & IFM_GMASK) == IFM_FDX) {
708 		printf("full duplex\n");
709 		bmcr |= PHY_BMCR_DUPLEX;
710 	} else {
711 		printf("half duplex\n");
712 		bmcr &= ~PHY_BMCR_DUPLEX;
713 	}
714 	my_phy_writereg(sc, PHY_BMCR, bmcr);
715 	my_setcfg(sc, bmcr);
716 	return;
717 }
718 
719 /*
720  * The Myson manual states that in order to fiddle with the 'full-duplex' and
721  * '100Mbps' bits in the netconfig register, we first have to put the
722  * transmit and/or receive logic in the idle state.
723  */
724 static void
725 my_setcfg(struct my_softc * sc, int bmcr)
726 {
727 	int             i, restart = 0;
728 
729 	MY_LOCK_ASSERT(sc);
730 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
731 		restart = 1;
732 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
733 		for (i = 0; i < MY_TIMEOUT; i++) {
734 			DELAY(10);
735 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
736 			    (MY_TXRUN | MY_RXRUN)))
737 				break;
738 		}
739 		if (i == MY_TIMEOUT)
740 			device_printf(sc->my_dev,
741 			    "failed to force tx and rx to idle \n");
742 	}
743 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
744 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
745 	if (bmcr & PHY_BMCR_1000)
746 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
747 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
748 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
749 	if (bmcr & PHY_BMCR_DUPLEX)
750 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
751 	else
752 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
753 	if (restart)
754 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
755 	return;
756 }
757 
758 static void
759 my_reset(struct my_softc * sc)
760 {
761 	register int    i;
762 
763 	MY_LOCK_ASSERT(sc);
764 	MY_SETBIT(sc, MY_BCR, MY_SWR);
765 	for (i = 0; i < MY_TIMEOUT; i++) {
766 		DELAY(10);
767 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
768 			break;
769 	}
770 	if (i == MY_TIMEOUT)
771 		device_printf(sc->my_dev, "reset never completed!\n");
772 
773 	/* Wait a little while for the chip to get its brains in order. */
774 	DELAY(1000);
775 	return;
776 }
777 
778 /*
779  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
780  * list and return a device name if we find a match.
781  */
782 static int
783 my_probe(device_t dev)
784 {
785 	struct my_type *t;
786 
787 	t = my_devs;
788 	while (t->my_name != NULL) {
789 		if ((pci_get_vendor(dev) == t->my_vid) &&
790 		    (pci_get_device(dev) == t->my_did)) {
791 			device_set_desc(dev, t->my_name);
792 			my_info_tmp = t;
793 			return (BUS_PROBE_DEFAULT);
794 		}
795 		t++;
796 	}
797 	return (ENXIO);
798 }
799 
800 /*
801  * Attach the interface. Allocate softc structures, do ifmedia setup and
802  * ethernet/BPF attach.
803  */
804 static int
805 my_attach(device_t dev)
806 {
807 	int             i;
808 	u_char          eaddr[ETHER_ADDR_LEN];
809 	u_int32_t       iobase;
810 	struct my_softc *sc;
811 	struct ifnet   *ifp;
812 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
813 	unsigned int    round;
814 	caddr_t         roundptr;
815 	struct my_type *p;
816 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
817 	int             rid, error = 0;
818 
819 	sc = device_get_softc(dev);
820 	sc->my_dev = dev;
821 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
822 	    MTX_DEF);
823 	callout_init_mtx(&sc->my_autoneg_timer, &sc->my_mtx, 0);
824 	callout_init_mtx(&sc->my_watchdog, &sc->my_mtx, 0);
825 
826 	/*
827 	 * Map control/status registers.
828 	 */
829 	pci_enable_busmaster(dev);
830 
831 	if (my_info_tmp->my_did == MTD800ID) {
832 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
833 		if (iobase & 0x300)
834 			MY_USEIOSPACE = 0;
835 	}
836 
837 	rid = MY_RID;
838 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
839 
840 	if (sc->my_res == NULL) {
841 		device_printf(dev, "couldn't map ports/memory\n");
842 		error = ENXIO;
843 		goto destroy_mutex;
844 	}
845 	sc->my_btag = rman_get_bustag(sc->my_res);
846 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
847 
848 	rid = 0;
849 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
850 					    RF_SHAREABLE | RF_ACTIVE);
851 
852 	if (sc->my_irq == NULL) {
853 		device_printf(dev, "couldn't map interrupt\n");
854 		error = ENXIO;
855 		goto release_io;
856 	}
857 
858 	sc->my_info = my_info_tmp;
859 
860 	/* Reset the adapter. */
861 	MY_LOCK(sc);
862 	my_reset(sc);
863 	MY_UNLOCK(sc);
864 
865 	/*
866 	 * Get station address
867 	 */
868 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
869 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
870 
871 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
872 				  M_DEVBUF, M_NOWAIT);
873 	if (sc->my_ldata_ptr == NULL) {
874 		device_printf(dev, "no memory for list buffers!\n");
875 		error = ENXIO;
876 		goto release_irq;
877 	}
878 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
879 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
880 	roundptr = sc->my_ldata_ptr;
881 	for (i = 0; i < 8; i++) {
882 		if (round % 8) {
883 			round++;
884 			roundptr++;
885 		} else
886 			break;
887 	}
888 	sc->my_ldata = (struct my_list_data *) roundptr;
889 	bzero(sc->my_ldata, sizeof(struct my_list_data));
890 
891 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
892 	if (ifp == NULL) {
893 		device_printf(dev, "can not if_alloc()\n");
894 		error = ENOSPC;
895 		goto free_ldata;
896 	}
897 	ifp->if_softc = sc;
898 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
899 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
900 	ifp->if_ioctl = my_ioctl;
901 	ifp->if_start = my_start;
902 	ifp->if_init = my_init;
903 	ifp->if_baudrate = 10000000;
904 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
905 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
906 	IFQ_SET_READY(&ifp->if_snd);
907 
908 	if (sc->my_info->my_did == MTD803ID)
909 		sc->my_pinfo = my_phys;
910 	else {
911 		if (bootverbose)
912 			device_printf(dev, "probing for a PHY\n");
913 		MY_LOCK(sc);
914 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
915 			if (bootverbose)
916 				device_printf(dev, "checking address: %d\n", i);
917 			sc->my_phy_addr = i;
918 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
919 			if ((phy_sts != 0) && (phy_sts != 0xffff))
920 				break;
921 			else
922 				phy_sts = 0;
923 		}
924 		if (phy_sts) {
925 			phy_vid = my_phy_readreg(sc, PHY_VENID);
926 			phy_did = my_phy_readreg(sc, PHY_DEVID);
927 			if (bootverbose) {
928 				device_printf(dev, "found PHY at address %d, ",
929 				    sc->my_phy_addr);
930 				printf("vendor id: %x device id: %x\n",
931 				    phy_vid, phy_did);
932 			}
933 			p = my_phys;
934 			while (p->my_vid) {
935 				if (phy_vid == p->my_vid) {
936 					sc->my_pinfo = p;
937 					break;
938 				}
939 				p++;
940 			}
941 			if (sc->my_pinfo == NULL)
942 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
943 			if (bootverbose)
944 				device_printf(dev, "PHY type: %s\n",
945 				       sc->my_pinfo->my_name);
946 		} else {
947 			MY_UNLOCK(sc);
948 			device_printf(dev, "MII without any phy!\n");
949 			error = ENXIO;
950 			goto free_if;
951 		}
952 		MY_UNLOCK(sc);
953 	}
954 
955 	/* Do ifmedia setup. */
956 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
957 	MY_LOCK(sc);
958 	my_getmode_mii(sc);
959 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
960 	media = sc->ifmedia.ifm_media;
961 	my_stop(sc);
962 	MY_UNLOCK(sc);
963 	ifmedia_set(&sc->ifmedia, media);
964 
965 	ether_ifattach(ifp, eaddr);
966 
967 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
968 			       NULL, my_intr, sc, &sc->my_intrhand);
969 
970 	if (error) {
971 		device_printf(dev, "couldn't set up irq\n");
972 		goto detach_if;
973 	}
974 
975 	return (0);
976 
977 detach_if:
978 	ether_ifdetach(ifp);
979 free_if:
980 	if_free(ifp);
981 free_ldata:
982 	free(sc->my_ldata_ptr, M_DEVBUF);
983 release_irq:
984 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
985 release_io:
986 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
987 destroy_mutex:
988 	mtx_destroy(&sc->my_mtx);
989 	return (error);
990 }
991 
992 static int
993 my_detach(device_t dev)
994 {
995 	struct my_softc *sc;
996 	struct ifnet   *ifp;
997 
998 	sc = device_get_softc(dev);
999 	ifp = sc->my_ifp;
1000 	ether_ifdetach(ifp);
1001 	MY_LOCK(sc);
1002 	my_stop(sc);
1003 	MY_UNLOCK(sc);
1004 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
1005 	callout_drain(&sc->my_watchdog);
1006 	callout_drain(&sc->my_autoneg_timer);
1007 
1008 	if_free(ifp);
1009 	free(sc->my_ldata_ptr, M_DEVBUF);
1010 
1011 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1012 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1013 	mtx_destroy(&sc->my_mtx);
1014 	return (0);
1015 }
1016 
1017 
1018 /*
1019  * Initialize the transmit descriptors.
1020  */
1021 static int
1022 my_list_tx_init(struct my_softc * sc)
1023 {
1024 	struct my_chain_data *cd;
1025 	struct my_list_data *ld;
1026 	int             i;
1027 
1028 	MY_LOCK_ASSERT(sc);
1029 	cd = &sc->my_cdata;
1030 	ld = sc->my_ldata;
1031 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1032 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1033 		if (i == (MY_TX_LIST_CNT - 1))
1034 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1035 		else
1036 			cd->my_tx_chain[i].my_nextdesc =
1037 			    &cd->my_tx_chain[i + 1];
1038 	}
1039 	cd->my_tx_free = &cd->my_tx_chain[0];
1040 	cd->my_tx_tail = cd->my_tx_head = NULL;
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1046  * arrange the descriptors in a closed ring, so that the last descriptor
1047  * points back to the first.
1048  */
1049 static int
1050 my_list_rx_init(struct my_softc * sc)
1051 {
1052 	struct my_chain_data *cd;
1053 	struct my_list_data *ld;
1054 	int             i;
1055 
1056 	MY_LOCK_ASSERT(sc);
1057 	cd = &sc->my_cdata;
1058 	ld = sc->my_ldata;
1059 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1060 		cd->my_rx_chain[i].my_ptr =
1061 		    (struct my_desc *) & ld->my_rx_list[i];
1062 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1063 			MY_UNLOCK(sc);
1064 			return (ENOBUFS);
1065 		}
1066 		if (i == (MY_RX_LIST_CNT - 1)) {
1067 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1068 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1069 		} else {
1070 			cd->my_rx_chain[i].my_nextdesc =
1071 			    &cd->my_rx_chain[i + 1];
1072 			ld->my_rx_list[i].my_next =
1073 			    vtophys(&ld->my_rx_list[i + 1]);
1074 		}
1075 	}
1076 	cd->my_rx_head = &cd->my_rx_chain[0];
1077 	return (0);
1078 }
1079 
1080 /*
1081  * Initialize an RX descriptor and attach an MBUF cluster.
1082  */
1083 static int
1084 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1085 {
1086 	struct mbuf    *m_new = NULL;
1087 
1088 	MY_LOCK_ASSERT(sc);
1089 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1090 	if (m_new == NULL) {
1091 		device_printf(sc->my_dev,
1092 		    "no memory for rx list -- packet dropped!\n");
1093 		return (ENOBUFS);
1094 	}
1095 	MCLGET(m_new, M_NOWAIT);
1096 	if (!(m_new->m_flags & M_EXT)) {
1097 		device_printf(sc->my_dev,
1098 		    "no memory for rx list -- packet dropped!\n");
1099 		m_freem(m_new);
1100 		return (ENOBUFS);
1101 	}
1102 	c->my_mbuf = m_new;
1103 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1104 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1105 	c->my_ptr->my_status = MY_OWNByNIC;
1106 	return (0);
1107 }
1108 
1109 /*
1110  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1111  * level protocols.
1112  */
1113 static void
1114 my_rxeof(struct my_softc * sc)
1115 {
1116 	struct ether_header *eh;
1117 	struct mbuf    *m;
1118 	struct ifnet   *ifp;
1119 	struct my_chain_onefrag *cur_rx;
1120 	int             total_len = 0;
1121 	u_int32_t       rxstat;
1122 
1123 	MY_LOCK_ASSERT(sc);
1124 	ifp = sc->my_ifp;
1125 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1126 	    & MY_OWNByNIC)) {
1127 		cur_rx = sc->my_cdata.my_rx_head;
1128 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1129 
1130 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1131 			ifp->if_ierrors++;
1132 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1133 			continue;
1134 		}
1135 		/* No errors; receive the packet. */
1136 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1137 		total_len -= ETHER_CRC_LEN;
1138 
1139 		if (total_len < MINCLSIZE) {
1140 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1141 			    total_len, 0, ifp, NULL);
1142 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1143 			if (m == NULL) {
1144 				ifp->if_ierrors++;
1145 				continue;
1146 			}
1147 		} else {
1148 			m = cur_rx->my_mbuf;
1149 			/*
1150 			 * Try to conjure up a new mbuf cluster. If that
1151 			 * fails, it means we have an out of memory condition
1152 			 * and should leave the buffer in place and continue.
1153 			 * This will result in a lost packet, but there's
1154 			 * little else we can do in this situation.
1155 			 */
1156 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1157 				ifp->if_ierrors++;
1158 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1159 				continue;
1160 			}
1161 			m->m_pkthdr.rcvif = ifp;
1162 			m->m_pkthdr.len = m->m_len = total_len;
1163 		}
1164 		ifp->if_ipackets++;
1165 		eh = mtod(m, struct ether_header *);
1166 #if NBPFILTER > 0
1167 		/*
1168 		 * Handle BPF listeners. Let the BPF user see the packet, but
1169 		 * don't pass it up to the ether_input() layer unless it's a
1170 		 * broadcast packet, multicast packet, matches our ethernet
1171 		 * address or the interface is in promiscuous mode.
1172 		 */
1173 		if (bpf_peers_present(ifp->if_bpf)) {
1174 			bpf_mtap(ifp->if_bpf, m);
1175 			if (ifp->if_flags & IFF_PROMISC &&
1176 			    (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
1177 				ETHER_ADDR_LEN) &&
1178 			     (eh->ether_dhost[0] & 1) == 0)) {
1179 				m_freem(m);
1180 				continue;
1181 			}
1182 		}
1183 #endif
1184 		MY_UNLOCK(sc);
1185 		(*ifp->if_input)(ifp, m);
1186 		MY_LOCK(sc);
1187 	}
1188 	return;
1189 }
1190 
1191 
1192 /*
1193  * A frame was downloaded to the chip. It's safe for us to clean up the list
1194  * buffers.
1195  */
1196 static void
1197 my_txeof(struct my_softc * sc)
1198 {
1199 	struct my_chain *cur_tx;
1200 	struct ifnet   *ifp;
1201 
1202 	MY_LOCK_ASSERT(sc);
1203 	ifp = sc->my_ifp;
1204 	/* Clear the timeout timer. */
1205 	sc->my_timer = 0;
1206 	if (sc->my_cdata.my_tx_head == NULL) {
1207 		return;
1208 	}
1209 	/*
1210 	 * Go through our tx list and free mbufs for those frames that have
1211 	 * been transmitted.
1212 	 */
1213 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1214 		u_int32_t       txstat;
1215 
1216 		cur_tx = sc->my_cdata.my_tx_head;
1217 		txstat = MY_TXSTATUS(cur_tx);
1218 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1219 			break;
1220 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1221 			if (txstat & MY_TXERR) {
1222 				ifp->if_oerrors++;
1223 				if (txstat & MY_EC) /* excessive collision */
1224 					ifp->if_collisions++;
1225 				if (txstat & MY_LC)	/* late collision */
1226 					ifp->if_collisions++;
1227 			}
1228 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1229 			    MY_NCRShift;
1230 		}
1231 		ifp->if_opackets++;
1232 		m_freem(cur_tx->my_mbuf);
1233 		cur_tx->my_mbuf = NULL;
1234 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1235 			sc->my_cdata.my_tx_head = NULL;
1236 			sc->my_cdata.my_tx_tail = NULL;
1237 			break;
1238 		}
1239 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1240 	}
1241 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1242 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1243 	}
1244 	return;
1245 }
1246 
1247 /*
1248  * TX 'end of channel' interrupt handler.
1249  */
1250 static void
1251 my_txeoc(struct my_softc * sc)
1252 {
1253 	struct ifnet   *ifp;
1254 
1255 	MY_LOCK_ASSERT(sc);
1256 	ifp = sc->my_ifp;
1257 	sc->my_timer = 0;
1258 	if (sc->my_cdata.my_tx_head == NULL) {
1259 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1260 		sc->my_cdata.my_tx_tail = NULL;
1261 		if (sc->my_want_auto)
1262 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1263 	} else {
1264 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1265 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1266 			sc->my_timer = 5;
1267 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1268 		}
1269 	}
1270 	return;
1271 }
1272 
1273 static void
1274 my_intr(void *arg)
1275 {
1276 	struct my_softc *sc;
1277 	struct ifnet   *ifp;
1278 	u_int32_t       status;
1279 
1280 	sc = arg;
1281 	MY_LOCK(sc);
1282 	ifp = sc->my_ifp;
1283 	if (!(ifp->if_flags & IFF_UP)) {
1284 		MY_UNLOCK(sc);
1285 		return;
1286 	}
1287 	/* Disable interrupts. */
1288 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1289 
1290 	for (;;) {
1291 		status = CSR_READ_4(sc, MY_ISR);
1292 		status &= MY_INTRS;
1293 		if (status)
1294 			CSR_WRITE_4(sc, MY_ISR, status);
1295 		else
1296 			break;
1297 
1298 		if (status & MY_RI)	/* receive interrupt */
1299 			my_rxeof(sc);
1300 
1301 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1302 			/* rx buffer unavailable or rx error */
1303 			ifp->if_ierrors++;
1304 #ifdef foo
1305 			my_stop(sc);
1306 			my_reset(sc);
1307 			my_init_locked(sc);
1308 #endif
1309 		}
1310 		if (status & MY_TI)	/* tx interrupt */
1311 			my_txeof(sc);
1312 		if (status & MY_ETI)	/* tx early interrupt */
1313 			my_txeof(sc);
1314 		if (status & MY_TBU)	/* tx buffer unavailable */
1315 			my_txeoc(sc);
1316 
1317 #if 0				/* 90/1/18 delete */
1318 		if (status & MY_FBE) {
1319 			my_reset(sc);
1320 			my_init_locked(sc);
1321 		}
1322 #endif
1323 
1324 	}
1325 
1326 	/* Re-enable interrupts. */
1327 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1328 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1329 		my_start_locked(ifp);
1330 	MY_UNLOCK(sc);
1331 	return;
1332 }
1333 
1334 /*
1335  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1336  * pointers to the fragment pointers.
1337  */
1338 static int
1339 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1340 {
1341 	struct my_desc *f = NULL;
1342 	int             total_len;
1343 	struct mbuf    *m, *m_new = NULL;
1344 
1345 	MY_LOCK_ASSERT(sc);
1346 	/* calculate the total tx pkt length */
1347 	total_len = 0;
1348 	for (m = m_head; m != NULL; m = m->m_next)
1349 		total_len += m->m_len;
1350 	/*
1351 	 * Start packing the mbufs in this chain into the fragment pointers.
1352 	 * Stop when we run out of fragments or hit the end of the mbuf
1353 	 * chain.
1354 	 */
1355 	m = m_head;
1356 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1357 	if (m_new == NULL) {
1358 		device_printf(sc->my_dev, "no memory for tx list");
1359 		return (1);
1360 	}
1361 	if (m_head->m_pkthdr.len > MHLEN) {
1362 		MCLGET(m_new, M_NOWAIT);
1363 		if (!(m_new->m_flags & M_EXT)) {
1364 			m_freem(m_new);
1365 			device_printf(sc->my_dev, "no memory for tx list");
1366 			return (1);
1367 		}
1368 	}
1369 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1370 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1371 	m_freem(m_head);
1372 	m_head = m_new;
1373 	f = &c->my_ptr->my_frag[0];
1374 	f->my_status = 0;
1375 	f->my_data = vtophys(mtod(m_new, caddr_t));
1376 	total_len = m_new->m_len;
1377 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1378 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1379 	f->my_ctl |= total_len;	/* buffer size */
1380 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1381 	if (sc->my_info->my_did == MTD891ID)
1382 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1383 	c->my_mbuf = m_head;
1384 	c->my_lastdesc = 0;
1385 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1386 	return (0);
1387 }
1388 
1389 /*
1390  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1391  * to the mbuf data regions directly in the transmit lists. We also save a
1392  * copy of the pointers since the transmit list fragment pointers are
1393  * physical addresses.
1394  */
1395 static void
1396 my_start(struct ifnet * ifp)
1397 {
1398 	struct my_softc *sc;
1399 
1400 	sc = ifp->if_softc;
1401 	MY_LOCK(sc);
1402 	my_start_locked(ifp);
1403 	MY_UNLOCK(sc);
1404 }
1405 
1406 static void
1407 my_start_locked(struct ifnet * ifp)
1408 {
1409 	struct my_softc *sc;
1410 	struct mbuf    *m_head = NULL;
1411 	struct my_chain *cur_tx = NULL, *start_tx;
1412 
1413 	sc = ifp->if_softc;
1414 	MY_LOCK_ASSERT(sc);
1415 	if (sc->my_autoneg) {
1416 		sc->my_tx_pend = 1;
1417 		return;
1418 	}
1419 	/*
1420 	 * Check for an available queue slot. If there are none, punt.
1421 	 */
1422 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1423 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1424 		return;
1425 	}
1426 	start_tx = sc->my_cdata.my_tx_free;
1427 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1428 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1429 		if (m_head == NULL)
1430 			break;
1431 
1432 		/* Pick a descriptor off the free list. */
1433 		cur_tx = sc->my_cdata.my_tx_free;
1434 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1435 
1436 		/* Pack the data into the descriptor. */
1437 		my_encap(sc, cur_tx, m_head);
1438 
1439 		if (cur_tx != start_tx)
1440 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1441 #if NBPFILTER > 0
1442 		/*
1443 		 * If there's a BPF listener, bounce a copy of this frame to
1444 		 * him.
1445 		 */
1446 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1447 #endif
1448 	}
1449 	/*
1450 	 * If there are no packets queued, bail.
1451 	 */
1452 	if (cur_tx == NULL) {
1453 		return;
1454 	}
1455 	/*
1456 	 * Place the request for the upload interrupt in the last descriptor
1457 	 * in the chain. This way, if we're chaining several packets at once,
1458 	 * we'll only get an interrupt once for the whole chain rather than
1459 	 * once for each packet.
1460 	 */
1461 	MY_TXCTL(cur_tx) |= MY_TXIC;
1462 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1463 	sc->my_cdata.my_tx_tail = cur_tx;
1464 	if (sc->my_cdata.my_tx_head == NULL)
1465 		sc->my_cdata.my_tx_head = start_tx;
1466 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1467 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1468 
1469 	/*
1470 	 * Set a timeout in case the chip goes out to lunch.
1471 	 */
1472 	sc->my_timer = 5;
1473 	return;
1474 }
1475 
1476 static void
1477 my_init(void *xsc)
1478 {
1479 	struct my_softc *sc = xsc;
1480 
1481 	MY_LOCK(sc);
1482 	my_init_locked(sc);
1483 	MY_UNLOCK(sc);
1484 }
1485 
1486 static void
1487 my_init_locked(struct my_softc *sc)
1488 {
1489 	struct ifnet   *ifp = sc->my_ifp;
1490 	u_int16_t       phy_bmcr = 0;
1491 
1492 	MY_LOCK_ASSERT(sc);
1493 	if (sc->my_autoneg) {
1494 		return;
1495 	}
1496 	if (sc->my_pinfo != NULL)
1497 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1498 	/*
1499 	 * Cancel pending I/O and free all RX/TX buffers.
1500 	 */
1501 	my_stop(sc);
1502 	my_reset(sc);
1503 
1504 	/*
1505 	 * Set cache alignment and burst length.
1506 	 */
1507 #if 0				/* 89/9/1 modify,  */
1508 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1509 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1510 #endif
1511 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1512 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1513 	/*
1514 	 * 89/12/29 add, for mtd891,
1515 	 */
1516 	if (sc->my_info->my_did == MTD891ID) {
1517 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1518 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1519 	}
1520 	my_setcfg(sc, phy_bmcr);
1521 	/* Init circular RX list. */
1522 	if (my_list_rx_init(sc) == ENOBUFS) {
1523 		device_printf(sc->my_dev, "init failed: no memory for rx buffers\n");
1524 		my_stop(sc);
1525 		return;
1526 	}
1527 	/* Init TX descriptors. */
1528 	my_list_tx_init(sc);
1529 
1530 	/* If we want promiscuous mode, set the allframes bit. */
1531 	if (ifp->if_flags & IFF_PROMISC)
1532 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1533 	else
1534 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1535 
1536 	/*
1537 	 * Set capture broadcast bit to capture broadcast frames.
1538 	 */
1539 	if (ifp->if_flags & IFF_BROADCAST)
1540 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1541 	else
1542 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1543 
1544 	/*
1545 	 * Program the multicast filter, if necessary.
1546 	 */
1547 	my_setmulti(sc);
1548 
1549 	/*
1550 	 * Load the address of the RX list.
1551 	 */
1552 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1553 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1554 
1555 	/*
1556 	 * Enable interrupts.
1557 	 */
1558 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1559 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1560 
1561 	/* Enable receiver and transmitter. */
1562 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1563 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1564 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1565 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1566 
1567 	/* Restore state of BMCR */
1568 	if (sc->my_pinfo != NULL)
1569 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1570 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1571 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1572 
1573 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1574 	return;
1575 }
1576 
1577 /*
1578  * Set media options.
1579  */
1580 
1581 static int
1582 my_ifmedia_upd(struct ifnet * ifp)
1583 {
1584 	struct my_softc *sc;
1585 	struct ifmedia *ifm;
1586 
1587 	sc = ifp->if_softc;
1588 	MY_LOCK(sc);
1589 	ifm = &sc->ifmedia;
1590 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1591 		MY_UNLOCK(sc);
1592 		return (EINVAL);
1593 	}
1594 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1595 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1596 	else
1597 		my_setmode_mii(sc, ifm->ifm_media);
1598 	MY_UNLOCK(sc);
1599 	return (0);
1600 }
1601 
1602 /*
1603  * Report current media status.
1604  */
1605 
1606 static void
1607 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1608 {
1609 	struct my_softc *sc;
1610 	u_int16_t advert = 0, ability = 0;
1611 
1612 	sc = ifp->if_softc;
1613 	MY_LOCK(sc);
1614 	ifmr->ifm_active = IFM_ETHER;
1615 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1616 #if 0				/* this version did not support 1000M, */
1617 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1618 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1619 #endif
1620 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1621 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1622 		else
1623 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1624 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1625 			ifmr->ifm_active |= IFM_FDX;
1626 		else
1627 			ifmr->ifm_active |= IFM_HDX;
1628 
1629 		MY_UNLOCK(sc);
1630 		return;
1631 	}
1632 	ability = my_phy_readreg(sc, PHY_LPAR);
1633 	advert = my_phy_readreg(sc, PHY_ANAR);
1634 
1635 #if 0				/* this version did not support 1000M, */
1636 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1637 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1638 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1639 			advert = 0;
1640 			ability = 0;
1641 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1642 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1643 			advert = 0;
1644 			ability = 0;
1645 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1646 		}
1647 	}
1648 #endif
1649 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1650 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1651 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1652 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1653 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1654 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1655 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1656 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1657 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1658 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1659 	MY_UNLOCK(sc);
1660 	return;
1661 }
1662 
1663 static int
1664 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1665 {
1666 	struct my_softc *sc = ifp->if_softc;
1667 	struct ifreq   *ifr = (struct ifreq *) data;
1668 	int             error;
1669 
1670 	switch (command) {
1671 	case SIOCSIFFLAGS:
1672 		MY_LOCK(sc);
1673 		if (ifp->if_flags & IFF_UP)
1674 			my_init_locked(sc);
1675 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1676 			my_stop(sc);
1677 		MY_UNLOCK(sc);
1678 		error = 0;
1679 		break;
1680 	case SIOCADDMULTI:
1681 	case SIOCDELMULTI:
1682 		MY_LOCK(sc);
1683 		my_setmulti(sc);
1684 		MY_UNLOCK(sc);
1685 		error = 0;
1686 		break;
1687 	case SIOCGIFMEDIA:
1688 	case SIOCSIFMEDIA:
1689 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1690 		break;
1691 	default:
1692 		error = ether_ioctl(ifp, command, data);
1693 		break;
1694 	}
1695 	return (error);
1696 }
1697 
1698 static void
1699 my_watchdog(void *arg)
1700 {
1701 	struct my_softc *sc;
1702 	struct ifnet *ifp;
1703 
1704 	sc = arg;
1705 	MY_LOCK_ASSERT(sc);
1706 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1707 	if (sc->my_timer == 0 || --sc->my_timer > 0)
1708 		return;
1709 
1710 	ifp = sc->my_ifp;
1711 	ifp->if_oerrors++;
1712 	if_printf(ifp, "watchdog timeout\n");
1713 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1714 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1715 	my_stop(sc);
1716 	my_reset(sc);
1717 	my_init_locked(sc);
1718 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1719 		my_start_locked(ifp);
1720 }
1721 
1722 
1723 /*
1724  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1725  */
1726 static void
1727 my_stop(struct my_softc * sc)
1728 {
1729 	register int    i;
1730 	struct ifnet   *ifp;
1731 
1732 	MY_LOCK_ASSERT(sc);
1733 	ifp = sc->my_ifp;
1734 
1735 	callout_stop(&sc->my_autoneg_timer);
1736 	callout_stop(&sc->my_watchdog);
1737 
1738 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1739 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1740 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1741 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1742 
1743 	/*
1744 	 * Free data in the RX lists.
1745 	 */
1746 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1747 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1748 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1749 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1750 		}
1751 	}
1752 	bzero((char *)&sc->my_ldata->my_rx_list,
1753 	    sizeof(sc->my_ldata->my_rx_list));
1754 	/*
1755 	 * Free the TX list buffers.
1756 	 */
1757 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1758 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1759 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1760 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1761 		}
1762 	}
1763 	bzero((char *)&sc->my_ldata->my_tx_list,
1764 	    sizeof(sc->my_ldata->my_tx_list));
1765 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1766 	return;
1767 }
1768 
1769 /*
1770  * Stop all chip I/O so that the kernel's probe routines don't get confused
1771  * by errant DMAs when rebooting.
1772  */
1773 static int
1774 my_shutdown(device_t dev)
1775 {
1776 	struct my_softc *sc;
1777 
1778 	sc = device_get_softc(dev);
1779 	MY_LOCK(sc);
1780 	my_stop(sc);
1781 	MY_UNLOCK(sc);
1782 	return 0;
1783 }
1784