xref: /freebsd/sys/dev/my/if_my.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Written by: yen_cw@myson.com.tw
3  * Copyright (c) 2002 Myson Technology Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/types.h>
42 #include <sys/bus.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 
47 #define NBPFILTER	1
48 
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_dl.h>
55 #include <net/bpf.h>
56 
57 #include <vm/vm.h>		/* for vtophys */
58 #include <vm/pmap.h>		/* for vtophys */
59 #include <machine/clock.h>	/* for DELAY */
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/bus.h>
63 #include <sys/rman.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70 
71 #include "miibus_if.h"
72 
73 /*
74  * #define MY_USEIOSPACE
75  */
76 
77 static int      MY_USEIOSPACE = 1;
78 
79 #ifdef MY_USEIOSPACE
80 #define MY_RES                  SYS_RES_IOPORT
81 #define MY_RID                  MY_PCI_LOIO
82 #else
83 #define MY_RES                  SYS_RES_MEMORY
84 #define MY_RID                  MY_PCI_LOMEM
85 #endif
86 
87 
88 #include <dev/my/if_myreg.h>
89 
90 #ifndef lint
91 static          const char rcsid[] =
92 "$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $";
93 #endif
94 
95 /*
96  * Various supported device vendors/types and their names.
97  */
98 struct my_type *my_info_tmp;
99 static struct my_type my_devs[] = {
100 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
101 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
102 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
103 	{0, 0, NULL}
104 };
105 
106 /*
107  * Various supported PHY vendors/types and their names. Note that this driver
108  * will work with pretty much any MII-compliant PHY, so failure to positively
109  * identify the chip is not a fatal error.
110  */
111 static struct my_type my_phys[] = {
112 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
113 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
114 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
115 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
116 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
117 	{0, 0, "<MII-compliant physical interface>"}
118 };
119 
120 static int      my_probe(device_t);
121 static int      my_attach(device_t);
122 static int      my_detach(device_t);
123 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
124 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
125 static void     my_rxeof(struct my_softc *);
126 static void     my_txeof(struct my_softc *);
127 static void     my_txeoc(struct my_softc *);
128 static void     my_intr(void *);
129 static void     my_start(struct ifnet *);
130 static void     my_start_locked(struct ifnet *);
131 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
132 static void     my_init(void *);
133 static void     my_init_locked(struct my_softc *);
134 static void     my_stop(struct my_softc *);
135 static void     my_watchdog(struct ifnet *);
136 static void     my_shutdown(device_t);
137 static int      my_ifmedia_upd(struct ifnet *);
138 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
139 static u_int16_t my_phy_readreg(struct my_softc *, int);
140 static void     my_phy_writereg(struct my_softc *, int, int);
141 static void     my_autoneg_xmit(struct my_softc *);
142 static void     my_autoneg_mii(struct my_softc *, int, int);
143 static void     my_setmode_mii(struct my_softc *, int);
144 static void     my_getmode_mii(struct my_softc *);
145 static void     my_setcfg(struct my_softc *, int);
146 static void     my_setmulti(struct my_softc *);
147 static void     my_reset(struct my_softc *);
148 static int      my_list_rx_init(struct my_softc *);
149 static int      my_list_tx_init(struct my_softc *);
150 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
151 
152 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
153 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
154 
155 static device_method_t my_methods[] = {
156 	/* Device interface */
157 	DEVMETHOD(device_probe, my_probe),
158 	DEVMETHOD(device_attach, my_attach),
159 	DEVMETHOD(device_detach, my_detach),
160 	DEVMETHOD(device_shutdown, my_shutdown),
161 
162 	{0, 0}
163 };
164 
165 static driver_t my_driver = {
166 	"my",
167 	my_methods,
168 	sizeof(struct my_softc)
169 };
170 
171 static devclass_t my_devclass;
172 
173 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
174 MODULE_DEPEND(my, pci, 1, 1, 1);
175 MODULE_DEPEND(my, ether, 1, 1, 1);
176 
177 static long
178 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
179 {
180 	long            miir;
181 	int             i;
182 	int             mask, data;
183 
184 	MY_LOCK_ASSERT(sc);
185 
186 	/* enable MII output */
187 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
188 	miir &= 0xfffffff0;
189 
190 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
191 
192 	/* send 32 1's preamble */
193 	for (i = 0; i < 32; i++) {
194 		/* low MDC; MDO is already high (miir) */
195 		miir &= ~MY_MASK_MIIR_MII_MDC;
196 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
197 
198 		/* high MDC */
199 		miir |= MY_MASK_MIIR_MII_MDC;
200 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
201 	}
202 
203 	/* calculate ST+OP+PHYAD+REGAD+TA */
204 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
205 
206 	/* sent out */
207 	mask = 0x8000;
208 	while (mask) {
209 		/* low MDC, prepare MDO */
210 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
211 		if (mask & data)
212 			miir |= MY_MASK_MIIR_MII_MDO;
213 
214 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
215 		/* high MDC */
216 		miir |= MY_MASK_MIIR_MII_MDC;
217 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
218 		DELAY(30);
219 
220 		/* next */
221 		mask >>= 1;
222 		if (mask == 0x2 && opcode == MY_OP_READ)
223 			miir &= ~MY_MASK_MIIR_MII_WRITE;
224 	}
225 
226 	return miir;
227 }
228 
229 
230 static u_int16_t
231 my_phy_readreg(struct my_softc * sc, int reg)
232 {
233 	long            miir;
234 	int             mask, data;
235 
236 	MY_LOCK_ASSERT(sc);
237 
238 	if (sc->my_info->my_did == MTD803ID)
239 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
240 	else {
241 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
242 
243 		/* read data */
244 		mask = 0x8000;
245 		data = 0;
246 		while (mask) {
247 			/* low MDC */
248 			miir &= ~MY_MASK_MIIR_MII_MDC;
249 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
250 
251 			/* read MDI */
252 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
253 			if (miir & MY_MASK_MIIR_MII_MDI)
254 				data |= mask;
255 
256 			/* high MDC, and wait */
257 			miir |= MY_MASK_MIIR_MII_MDC;
258 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
259 			DELAY(30);
260 
261 			/* next */
262 			mask >>= 1;
263 		}
264 
265 		/* low MDC */
266 		miir &= ~MY_MASK_MIIR_MII_MDC;
267 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
268 	}
269 
270 	return (u_int16_t) data;
271 }
272 
273 
274 static void
275 my_phy_writereg(struct my_softc * sc, int reg, int data)
276 {
277 	long            miir;
278 	int             mask;
279 
280 	MY_LOCK_ASSERT(sc);
281 
282 	if (sc->my_info->my_did == MTD803ID)
283 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
284 	else {
285 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
286 
287 		/* write data */
288 		mask = 0x8000;
289 		while (mask) {
290 			/* low MDC, prepare MDO */
291 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
292 			if (mask & data)
293 				miir |= MY_MASK_MIIR_MII_MDO;
294 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
295 			DELAY(1);
296 
297 			/* high MDC */
298 			miir |= MY_MASK_MIIR_MII_MDC;
299 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
300 			DELAY(1);
301 
302 			/* next */
303 			mask >>= 1;
304 		}
305 
306 		/* low MDC */
307 		miir &= ~MY_MASK_MIIR_MII_MDC;
308 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
309 	}
310 	return;
311 }
312 
313 
314 /*
315  * Program the 64-bit multicast hash filter.
316  */
317 static void
318 my_setmulti(struct my_softc * sc)
319 {
320 	struct ifnet   *ifp;
321 	int             h = 0;
322 	u_int32_t       hashes[2] = {0, 0};
323 	struct ifmultiaddr *ifma;
324 	u_int32_t       rxfilt;
325 	int             mcnt = 0;
326 
327 	MY_LOCK_ASSERT(sc);
328 
329 	ifp = sc->my_ifp;
330 
331 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
332 
333 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
334 		rxfilt |= MY_AM;
335 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
336 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
337 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
338 
339 		return;
340 	}
341 	/* first, zot all the existing hash bits */
342 	CSR_WRITE_4(sc, MY_MAR0, 0);
343 	CSR_WRITE_4(sc, MY_MAR1, 0);
344 
345 	/* now program new ones */
346 	IF_ADDR_LOCK(ifp);
347 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
348 		if (ifma->ifma_addr->sa_family != AF_LINK)
349 			continue;
350 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
351 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
352 		if (h < 32)
353 			hashes[0] |= (1 << h);
354 		else
355 			hashes[1] |= (1 << (h - 32));
356 		mcnt++;
357 	}
358 	IF_ADDR_UNLOCK(ifp);
359 
360 	if (mcnt)
361 		rxfilt |= MY_AM;
362 	else
363 		rxfilt &= ~MY_AM;
364 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
365 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
366 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
367 	return;
368 }
369 
370 /*
371  * Initiate an autonegotiation session.
372  */
373 static void
374 my_autoneg_xmit(struct my_softc * sc)
375 {
376 	u_int16_t       phy_sts = 0;
377 
378 	MY_LOCK_ASSERT(sc);
379 
380 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
381 	DELAY(500);
382 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
383 
384 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
385 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
386 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
387 
388 	return;
389 }
390 
391 
392 /*
393  * Invoke autonegotiation on a PHY.
394  */
395 static void
396 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
397 {
398 	u_int16_t       phy_sts = 0, media, advert, ability;
399 	u_int16_t       ability2 = 0;
400 	struct ifnet   *ifp;
401 	struct ifmedia *ifm;
402 
403 	MY_LOCK_ASSERT(sc);
404 
405 	ifm = &sc->ifmedia;
406 	ifp = sc->my_ifp;
407 
408 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
409 
410 #ifndef FORCE_AUTONEG_TFOUR
411 	/*
412 	 * First, see if autoneg is supported. If not, there's no point in
413 	 * continuing.
414 	 */
415 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
416 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
417 		if (verbose)
418 			if_printf(ifp, "autonegotiation not supported\n");
419 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
420 		return;
421 	}
422 #endif
423 	switch (flag) {
424 	case MY_FLAG_FORCEDELAY:
425 		/*
426 		 * XXX Never use this option anywhere but in the probe
427 		 * routine: making the kernel stop dead in its tracks for
428 		 * three whole seconds after we've gone multi-user is really
429 		 * bad manners.
430 		 */
431 		my_autoneg_xmit(sc);
432 		DELAY(5000000);
433 		break;
434 	case MY_FLAG_SCHEDDELAY:
435 		/*
436 		 * Wait for the transmitter to go idle before starting an
437 		 * autoneg session, otherwise my_start() may clobber our
438 		 * timeout, and we don't want to allow transmission during an
439 		 * autoneg session since that can screw it up.
440 		 */
441 		if (sc->my_cdata.my_tx_head != NULL) {
442 			sc->my_want_auto = 1;
443 			MY_UNLOCK(sc);
444 			return;
445 		}
446 		my_autoneg_xmit(sc);
447 		ifp->if_timer = 5;
448 		sc->my_autoneg = 1;
449 		sc->my_want_auto = 0;
450 		return;
451 	case MY_FLAG_DELAYTIMEO:
452 		ifp->if_timer = 0;
453 		sc->my_autoneg = 0;
454 		break;
455 	default:
456 		if_printf(ifp, "invalid autoneg flag: %d\n", flag);
457 		return;
458 	}
459 
460 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
461 		if (verbose)
462 			if_printf(ifp, "autoneg complete, ");
463 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
464 	} else {
465 		if (verbose)
466 			if_printf(ifp, "autoneg not complete, ");
467 	}
468 
469 	media = my_phy_readreg(sc, PHY_BMCR);
470 
471 	/* Link is good. Report modes and set duplex mode. */
472 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
473 		if (verbose)
474 			if_printf(ifp, "link status good. ");
475 		advert = my_phy_readreg(sc, PHY_ANAR);
476 		ability = my_phy_readreg(sc, PHY_LPAR);
477 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
478 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
479 			ability2 = my_phy_readreg(sc, PHY_1000SR);
480 			if (ability2 & PHY_1000SR_1000BTXFULL) {
481 				advert = 0;
482 				ability = 0;
483 				/*
484 				 * this version did not support 1000M,
485 				 * ifm->ifm_media =
486 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
487 				 */
488 				ifm->ifm_media =
489 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
490 				media &= ~PHY_BMCR_SPEEDSEL;
491 				media |= PHY_BMCR_1000;
492 				media |= PHY_BMCR_DUPLEX;
493 				printf("(full-duplex, 1000Mbps)\n");
494 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
495 				advert = 0;
496 				ability = 0;
497 				/*
498 				 * this version did not support 1000M,
499 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
500 				 */
501 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
502 				media &= ~PHY_BMCR_SPEEDSEL;
503 				media &= ~PHY_BMCR_DUPLEX;
504 				media |= PHY_BMCR_1000;
505 				printf("(half-duplex, 1000Mbps)\n");
506 			}
507 		}
508 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
509 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
510 			media |= PHY_BMCR_SPEEDSEL;
511 			media &= ~PHY_BMCR_DUPLEX;
512 			printf("(100baseT4)\n");
513 		} else if (advert & PHY_ANAR_100BTXFULL &&
514 			   ability & PHY_ANAR_100BTXFULL) {
515 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
516 			media |= PHY_BMCR_SPEEDSEL;
517 			media |= PHY_BMCR_DUPLEX;
518 			printf("(full-duplex, 100Mbps)\n");
519 		} else if (advert & PHY_ANAR_100BTXHALF &&
520 			   ability & PHY_ANAR_100BTXHALF) {
521 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
522 			media |= PHY_BMCR_SPEEDSEL;
523 			media &= ~PHY_BMCR_DUPLEX;
524 			printf("(half-duplex, 100Mbps)\n");
525 		} else if (advert & PHY_ANAR_10BTFULL &&
526 			   ability & PHY_ANAR_10BTFULL) {
527 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
528 			media &= ~PHY_BMCR_SPEEDSEL;
529 			media |= PHY_BMCR_DUPLEX;
530 			printf("(full-duplex, 10Mbps)\n");
531 		} else if (advert) {
532 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
533 			media &= ~PHY_BMCR_SPEEDSEL;
534 			media &= ~PHY_BMCR_DUPLEX;
535 			printf("(half-duplex, 10Mbps)\n");
536 		}
537 		media &= ~PHY_BMCR_AUTONEGENBL;
538 
539 		/* Set ASIC's duplex mode to match the PHY. */
540 		my_phy_writereg(sc, PHY_BMCR, media);
541 		my_setcfg(sc, media);
542 	} else {
543 		if (verbose)
544 			if_printf(ifp, "no carrier\n");
545 	}
546 
547 	my_init_locked(sc);
548 	if (sc->my_tx_pend) {
549 		sc->my_autoneg = 0;
550 		sc->my_tx_pend = 0;
551 		my_start_locked(ifp);
552 	}
553 	return;
554 }
555 
556 /*
557  * To get PHY ability.
558  */
559 static void
560 my_getmode_mii(struct my_softc * sc)
561 {
562 	u_int16_t       bmsr;
563 	struct ifnet   *ifp;
564 
565 	MY_LOCK_ASSERT(sc);
566 	ifp = sc->my_ifp;
567 	bmsr = my_phy_readreg(sc, PHY_BMSR);
568 	if (bootverbose)
569 		if_printf(ifp, "PHY status word: %x\n", bmsr);
570 
571 	/* fallback */
572 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
573 
574 	if (bmsr & PHY_BMSR_10BTHALF) {
575 		if (bootverbose)
576 			if_printf(ifp, "10Mbps half-duplex mode supported\n");
577 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
578 		    0, NULL);
579 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
580 	}
581 	if (bmsr & PHY_BMSR_10BTFULL) {
582 		if (bootverbose)
583 			if_printf(ifp, "10Mbps full-duplex mode supported\n");
584 
585 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
586 		    0, NULL);
587 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
588 	}
589 	if (bmsr & PHY_BMSR_100BTXHALF) {
590 		if (bootverbose)
591 			if_printf(ifp, "100Mbps half-duplex mode supported\n");
592 		ifp->if_baudrate = 100000000;
593 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
594 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
595 			    0, NULL);
596 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
597 	}
598 	if (bmsr & PHY_BMSR_100BTXFULL) {
599 		if (bootverbose)
600 			if_printf(ifp, "100Mbps full-duplex mode supported\n");
601 		ifp->if_baudrate = 100000000;
602 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
603 		    0, NULL);
604 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
605 	}
606 	/* Some also support 100BaseT4. */
607 	if (bmsr & PHY_BMSR_100BT4) {
608 		if (bootverbose)
609 			if_printf(ifp, "100baseT4 mode supported\n");
610 		ifp->if_baudrate = 100000000;
611 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
612 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
613 #ifdef FORCE_AUTONEG_TFOUR
614 		if (bootverbose)
615 			if_printf(ifp, "forcing on autoneg support for BT4\n");
616 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
617 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
618 #endif
619 	}
620 #if 0				/* this version did not support 1000M, */
621 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
622 		if (bootverbose)
623 			if_printf(ifp, "1000Mbps half-duplex mode supported\n");
624 
625 		ifp->if_baudrate = 1000000000;
626 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
627 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
628 		    0, NULL);
629 		if (bootverbose)
630 			if_printf(ifp, "1000Mbps full-duplex mode supported\n");
631 		ifp->if_baudrate = 1000000000;
632 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
633 		    0, NULL);
634 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
635 	}
636 #endif
637 	if (bmsr & PHY_BMSR_CANAUTONEG) {
638 		if (bootverbose)
639 			if_printf(ifp, "autoneg supported\n");
640 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
641 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
642 	}
643 	return;
644 }
645 
646 /*
647  * Set speed and duplex mode.
648  */
649 static void
650 my_setmode_mii(struct my_softc * sc, int media)
651 {
652 	u_int16_t       bmcr;
653 	struct ifnet   *ifp;
654 
655 	MY_LOCK_ASSERT(sc);
656 	ifp = sc->my_ifp;
657 	/*
658 	 * If an autoneg session is in progress, stop it.
659 	 */
660 	if (sc->my_autoneg) {
661 		if_printf(ifp, "canceling autoneg session\n");
662 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
663 		bmcr = my_phy_readreg(sc, PHY_BMCR);
664 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
665 		my_phy_writereg(sc, PHY_BMCR, bmcr);
666 	}
667 	if_printf(ifp, "selecting MII, ");
668 	bmcr = my_phy_readreg(sc, PHY_BMCR);
669 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
670 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
671 
672 #if 0				/* this version did not support 1000M, */
673 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
674 		printf("1000Mbps/T4, half-duplex\n");
675 		bmcr &= ~PHY_BMCR_SPEEDSEL;
676 		bmcr &= ~PHY_BMCR_DUPLEX;
677 		bmcr |= PHY_BMCR_1000;
678 	}
679 #endif
680 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
681 		printf("100Mbps/T4, half-duplex\n");
682 		bmcr |= PHY_BMCR_SPEEDSEL;
683 		bmcr &= ~PHY_BMCR_DUPLEX;
684 	}
685 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
686 		printf("100Mbps, ");
687 		bmcr |= PHY_BMCR_SPEEDSEL;
688 	}
689 	if (IFM_SUBTYPE(media) == IFM_10_T) {
690 		printf("10Mbps, ");
691 		bmcr &= ~PHY_BMCR_SPEEDSEL;
692 	}
693 	if ((media & IFM_GMASK) == IFM_FDX) {
694 		printf("full duplex\n");
695 		bmcr |= PHY_BMCR_DUPLEX;
696 	} else {
697 		printf("half duplex\n");
698 		bmcr &= ~PHY_BMCR_DUPLEX;
699 	}
700 	my_phy_writereg(sc, PHY_BMCR, bmcr);
701 	my_setcfg(sc, bmcr);
702 	return;
703 }
704 
705 /*
706  * The Myson manual states that in order to fiddle with the 'full-duplex' and
707  * '100Mbps' bits in the netconfig register, we first have to put the
708  * transmit and/or receive logic in the idle state.
709  */
710 static void
711 my_setcfg(struct my_softc * sc, int bmcr)
712 {
713 	int             i, restart = 0;
714 
715 	MY_LOCK_ASSERT(sc);
716 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
717 		restart = 1;
718 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
719 		for (i = 0; i < MY_TIMEOUT; i++) {
720 			DELAY(10);
721 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
722 			    (MY_TXRUN | MY_RXRUN)))
723 				break;
724 		}
725 		if (i == MY_TIMEOUT)
726 			if_printf(sc->my_ifp,
727 			    "failed to force tx and rx to idle \n");
728 	}
729 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
730 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
731 	if (bmcr & PHY_BMCR_1000)
732 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
733 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
734 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
735 	if (bmcr & PHY_BMCR_DUPLEX)
736 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
737 	else
738 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
739 	if (restart)
740 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
741 	return;
742 }
743 
744 static void
745 my_reset(struct my_softc * sc)
746 {
747 	register int    i;
748 
749 	MY_LOCK_ASSERT(sc);
750 	MY_SETBIT(sc, MY_BCR, MY_SWR);
751 	for (i = 0; i < MY_TIMEOUT; i++) {
752 		DELAY(10);
753 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
754 			break;
755 	}
756 	if (i == MY_TIMEOUT)
757 		if_printf(sc->my_ifp, "reset never completed!\n");
758 
759 	/* Wait a little while for the chip to get its brains in order. */
760 	DELAY(1000);
761 	return;
762 }
763 
764 /*
765  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
766  * list and return a device name if we find a match.
767  */
768 static int
769 my_probe(device_t dev)
770 {
771 	struct my_type *t;
772 
773 	t = my_devs;
774 	while (t->my_name != NULL) {
775 		if ((pci_get_vendor(dev) == t->my_vid) &&
776 		    (pci_get_device(dev) == t->my_did)) {
777 			device_set_desc(dev, t->my_name);
778 			my_info_tmp = t;
779 			return (BUS_PROBE_DEFAULT);
780 		}
781 		t++;
782 	}
783 	return (ENXIO);
784 }
785 
786 /*
787  * Attach the interface. Allocate softc structures, do ifmedia setup and
788  * ethernet/BPF attach.
789  */
790 static int
791 my_attach(device_t dev)
792 {
793 	int             i;
794 	u_char          eaddr[ETHER_ADDR_LEN];
795 	u_int32_t       iobase;
796 	struct my_softc *sc;
797 	struct ifnet   *ifp;
798 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
799 	unsigned int    round;
800 	caddr_t         roundptr;
801 	struct my_type *p;
802 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
803 	int             rid, error = 0;
804 
805 	sc = device_get_softc(dev);
806 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
807 	    MTX_DEF);
808 
809 	/*
810 	 * Map control/status registers.
811 	 */
812 	pci_enable_busmaster(dev);
813 
814 	if (my_info_tmp->my_did == MTD800ID) {
815 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
816 		if (iobase & 0x300)
817 			MY_USEIOSPACE = 0;
818 	}
819 
820 	rid = MY_RID;
821 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
822 
823 	if (sc->my_res == NULL) {
824 		device_printf(dev, "couldn't map ports/memory\n");
825 		error = ENXIO;
826 		goto destroy_mutex;
827 	}
828 	sc->my_btag = rman_get_bustag(sc->my_res);
829 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
830 
831 	rid = 0;
832 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
833 					    RF_SHAREABLE | RF_ACTIVE);
834 
835 	if (sc->my_irq == NULL) {
836 		device_printf(dev, "couldn't map interrupt\n");
837 		error = ENXIO;
838 		goto release_io;
839 	}
840 
841 	sc->my_info = my_info_tmp;
842 
843 	/* Reset the adapter. */
844 	MY_LOCK(sc);
845 	my_reset(sc);
846 	MY_UNLOCK(sc);
847 
848 	/*
849 	 * Get station address
850 	 */
851 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
852 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
853 
854 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
855 				  M_DEVBUF, M_NOWAIT);
856 	if (sc->my_ldata_ptr == NULL) {
857 		device_printf(dev, "no memory for list buffers!\n");
858 		error = ENXIO;
859 		goto release_irq;
860 	}
861 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
862 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
863 	roundptr = sc->my_ldata_ptr;
864 	for (i = 0; i < 8; i++) {
865 		if (round % 8) {
866 			round++;
867 			roundptr++;
868 		} else
869 			break;
870 	}
871 	sc->my_ldata = (struct my_list_data *) roundptr;
872 	bzero(sc->my_ldata, sizeof(struct my_list_data));
873 
874 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
875 	if (ifp == NULL) {
876 		device_printf(dev, "can not if_alloc()\n");
877 		error = ENOSPC;
878 		goto free_ldata;
879 	}
880 	ifp->if_softc = sc;
881 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
882 	ifp->if_mtu = ETHERMTU;
883 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
884 	ifp->if_ioctl = my_ioctl;
885 	ifp->if_start = my_start;
886 	ifp->if_watchdog = my_watchdog;
887 	ifp->if_init = my_init;
888 	ifp->if_baudrate = 10000000;
889 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
890 
891 	if (sc->my_info->my_did == MTD803ID)
892 		sc->my_pinfo = my_phys;
893 	else {
894 		if (bootverbose)
895 			device_printf(dev, "probing for a PHY\n");
896 		MY_LOCK(sc);
897 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
898 			if (bootverbose)
899 				device_printf(dev, "checking address: %d\n", i);
900 			sc->my_phy_addr = i;
901 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
902 			if ((phy_sts != 0) && (phy_sts != 0xffff))
903 				break;
904 			else
905 				phy_sts = 0;
906 		}
907 		if (phy_sts) {
908 			phy_vid = my_phy_readreg(sc, PHY_VENID);
909 			phy_did = my_phy_readreg(sc, PHY_DEVID);
910 			if (bootverbose) {
911 				device_printf(dev, "found PHY at address %d, ",
912 				    sc->my_phy_addr);
913 				printf("vendor id: %x device id: %x\n",
914 				    phy_vid, phy_did);
915 			}
916 			p = my_phys;
917 			while (p->my_vid) {
918 				if (phy_vid == p->my_vid) {
919 					sc->my_pinfo = p;
920 					break;
921 				}
922 				p++;
923 			}
924 			if (sc->my_pinfo == NULL)
925 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
926 			if (bootverbose)
927 				device_printf(dev, "PHY type: %s\n",
928 				       sc->my_pinfo->my_name);
929 		} else {
930 			MY_UNLOCK(sc);
931 			device_printf(dev, "MII without any phy!\n");
932 			error = ENXIO;
933 			goto free_if;
934 		}
935 		MY_UNLOCK(sc);
936 	}
937 
938 	/* Do ifmedia setup. */
939 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
940 	MY_LOCK(sc);
941 	my_getmode_mii(sc);
942 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
943 	media = sc->ifmedia.ifm_media;
944 	my_stop(sc);
945 	MY_UNLOCK(sc);
946 	ifmedia_set(&sc->ifmedia, media);
947 
948 	ether_ifattach(ifp, eaddr);
949 
950 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
951 			       my_intr, sc, &sc->my_intrhand);
952 
953 	if (error) {
954 		device_printf(dev, "couldn't set up irq\n");
955 		goto detach_if;
956 	}
957 
958 	return (0);
959 
960 detach_if:
961 	ether_ifdetach(ifp);
962 free_if:
963 	if_free(ifp);
964 free_ldata:
965 	free(sc->my_ldata_ptr, M_DEVBUF);
966 release_irq:
967 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
968 release_io:
969 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
970 destroy_mutex:
971 	mtx_destroy(&sc->my_mtx);
972 	return (error);
973 }
974 
975 static int
976 my_detach(device_t dev)
977 {
978 	struct my_softc *sc;
979 	struct ifnet   *ifp;
980 
981 	sc = device_get_softc(dev);
982 	MY_LOCK(sc);
983 	my_stop(sc);
984 	MY_UNLOCK(sc);
985 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
986 
987 	ifp = sc->my_ifp;
988 	ether_ifdetach(ifp);
989 	if_free(ifp);
990 	free(sc->my_ldata_ptr, M_DEVBUF);
991 
992 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
993 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
994 	mtx_destroy(&sc->my_mtx);
995 	return (0);
996 }
997 
998 
999 /*
1000  * Initialize the transmit descriptors.
1001  */
1002 static int
1003 my_list_tx_init(struct my_softc * sc)
1004 {
1005 	struct my_chain_data *cd;
1006 	struct my_list_data *ld;
1007 	int             i;
1008 
1009 	MY_LOCK_ASSERT(sc);
1010 	cd = &sc->my_cdata;
1011 	ld = sc->my_ldata;
1012 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1013 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1014 		if (i == (MY_TX_LIST_CNT - 1))
1015 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1016 		else
1017 			cd->my_tx_chain[i].my_nextdesc =
1018 			    &cd->my_tx_chain[i + 1];
1019 	}
1020 	cd->my_tx_free = &cd->my_tx_chain[0];
1021 	cd->my_tx_tail = cd->my_tx_head = NULL;
1022 	return (0);
1023 }
1024 
1025 /*
1026  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1027  * arrange the descriptors in a closed ring, so that the last descriptor
1028  * points back to the first.
1029  */
1030 static int
1031 my_list_rx_init(struct my_softc * sc)
1032 {
1033 	struct my_chain_data *cd;
1034 	struct my_list_data *ld;
1035 	int             i;
1036 
1037 	MY_LOCK_ASSERT(sc);
1038 	cd = &sc->my_cdata;
1039 	ld = sc->my_ldata;
1040 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1041 		cd->my_rx_chain[i].my_ptr =
1042 		    (struct my_desc *) & ld->my_rx_list[i];
1043 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1044 			MY_UNLOCK(sc);
1045 			return (ENOBUFS);
1046 		}
1047 		if (i == (MY_RX_LIST_CNT - 1)) {
1048 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1049 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1050 		} else {
1051 			cd->my_rx_chain[i].my_nextdesc =
1052 			    &cd->my_rx_chain[i + 1];
1053 			ld->my_rx_list[i].my_next =
1054 			    vtophys(&ld->my_rx_list[i + 1]);
1055 		}
1056 	}
1057 	cd->my_rx_head = &cd->my_rx_chain[0];
1058 	return (0);
1059 }
1060 
1061 /*
1062  * Initialize an RX descriptor and attach an MBUF cluster.
1063  */
1064 static int
1065 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1066 {
1067 	struct mbuf    *m_new = NULL;
1068 
1069 	MY_LOCK_ASSERT(sc);
1070 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1071 	if (m_new == NULL) {
1072 		if_printf(sc->my_ifp,
1073 		    "no memory for rx list -- packet dropped!\n");
1074 		return (ENOBUFS);
1075 	}
1076 	MCLGET(m_new, M_DONTWAIT);
1077 	if (!(m_new->m_flags & M_EXT)) {
1078 		if_printf(sc->my_ifp,
1079 		    "no memory for rx list -- packet dropped!\n");
1080 		m_freem(m_new);
1081 		return (ENOBUFS);
1082 	}
1083 	c->my_mbuf = m_new;
1084 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1085 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1086 	c->my_ptr->my_status = MY_OWNByNIC;
1087 	return (0);
1088 }
1089 
1090 /*
1091  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1092  * level protocols.
1093  */
1094 static void
1095 my_rxeof(struct my_softc * sc)
1096 {
1097 	struct ether_header *eh;
1098 	struct mbuf    *m;
1099 	struct ifnet   *ifp;
1100 	struct my_chain_onefrag *cur_rx;
1101 	int             total_len = 0;
1102 	u_int32_t       rxstat;
1103 
1104 	MY_LOCK_ASSERT(sc);
1105 	ifp = sc->my_ifp;
1106 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1107 	    & MY_OWNByNIC)) {
1108 		cur_rx = sc->my_cdata.my_rx_head;
1109 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1110 
1111 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1112 			ifp->if_ierrors++;
1113 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1114 			continue;
1115 		}
1116 		/* No errors; receive the packet. */
1117 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1118 		total_len -= ETHER_CRC_LEN;
1119 
1120 		if (total_len < MINCLSIZE) {
1121 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1122 			    total_len, 0, ifp, NULL);
1123 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1124 			if (m == NULL) {
1125 				ifp->if_ierrors++;
1126 				continue;
1127 			}
1128 		} else {
1129 			m = cur_rx->my_mbuf;
1130 			/*
1131 			 * Try to conjure up a new mbuf cluster. If that
1132 			 * fails, it means we have an out of memory condition
1133 			 * and should leave the buffer in place and continue.
1134 			 * This will result in a lost packet, but there's
1135 			 * little else we can do in this situation.
1136 			 */
1137 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1138 				ifp->if_ierrors++;
1139 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1140 				continue;
1141 			}
1142 			m->m_pkthdr.rcvif = ifp;
1143 			m->m_pkthdr.len = m->m_len = total_len;
1144 		}
1145 		ifp->if_ipackets++;
1146 		eh = mtod(m, struct ether_header *);
1147 #if NBPFILTER > 0
1148 		/*
1149 		 * Handle BPF listeners. Let the BPF user see the packet, but
1150 		 * don't pass it up to the ether_input() layer unless it's a
1151 		 * broadcast packet, multicast packet, matches our ethernet
1152 		 * address or the interface is in promiscuous mode.
1153 		 */
1154 		if (ifp->if_bpf) {
1155 			BPF_MTAP(ifp, m);
1156 			if (ifp->if_flags & IFF_PROMISC &&
1157 			    (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
1158 				ETHER_ADDR_LEN) &&
1159 			     (eh->ether_dhost[0] & 1) == 0)) {
1160 				m_freem(m);
1161 				continue;
1162 			}
1163 		}
1164 #endif
1165 		MY_UNLOCK(sc);
1166 		(*ifp->if_input)(ifp, m);
1167 		MY_LOCK(sc);
1168 	}
1169 	return;
1170 }
1171 
1172 
1173 /*
1174  * A frame was downloaded to the chip. It's safe for us to clean up the list
1175  * buffers.
1176  */
1177 static void
1178 my_txeof(struct my_softc * sc)
1179 {
1180 	struct my_chain *cur_tx;
1181 	struct ifnet   *ifp;
1182 
1183 	MY_LOCK_ASSERT(sc);
1184 	ifp = sc->my_ifp;
1185 	/* Clear the timeout timer. */
1186 	ifp->if_timer = 0;
1187 	if (sc->my_cdata.my_tx_head == NULL) {
1188 		return;
1189 	}
1190 	/*
1191 	 * Go through our tx list and free mbufs for those frames that have
1192 	 * been transmitted.
1193 	 */
1194 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1195 		u_int32_t       txstat;
1196 
1197 		cur_tx = sc->my_cdata.my_tx_head;
1198 		txstat = MY_TXSTATUS(cur_tx);
1199 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1200 			break;
1201 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1202 			if (txstat & MY_TXERR) {
1203 				ifp->if_oerrors++;
1204 				if (txstat & MY_EC) /* excessive collision */
1205 					ifp->if_collisions++;
1206 				if (txstat & MY_LC)	/* late collision */
1207 					ifp->if_collisions++;
1208 			}
1209 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1210 			    MY_NCRShift;
1211 		}
1212 		ifp->if_opackets++;
1213 		m_freem(cur_tx->my_mbuf);
1214 		cur_tx->my_mbuf = NULL;
1215 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1216 			sc->my_cdata.my_tx_head = NULL;
1217 			sc->my_cdata.my_tx_tail = NULL;
1218 			break;
1219 		}
1220 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1221 	}
1222 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1223 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1224 	}
1225 	return;
1226 }
1227 
1228 /*
1229  * TX 'end of channel' interrupt handler.
1230  */
1231 static void
1232 my_txeoc(struct my_softc * sc)
1233 {
1234 	struct ifnet   *ifp;
1235 
1236 	MY_LOCK_ASSERT(sc);
1237 	ifp = sc->my_ifp;
1238 	ifp->if_timer = 0;
1239 	if (sc->my_cdata.my_tx_head == NULL) {
1240 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1241 		sc->my_cdata.my_tx_tail = NULL;
1242 		if (sc->my_want_auto)
1243 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1244 	} else {
1245 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1246 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1247 			ifp->if_timer = 5;
1248 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1249 		}
1250 	}
1251 	return;
1252 }
1253 
1254 static void
1255 my_intr(void *arg)
1256 {
1257 	struct my_softc *sc;
1258 	struct ifnet   *ifp;
1259 	u_int32_t       status;
1260 
1261 	sc = arg;
1262 	MY_LOCK(sc);
1263 	ifp = sc->my_ifp;
1264 	if (!(ifp->if_flags & IFF_UP)) {
1265 		MY_UNLOCK(sc);
1266 		return;
1267 	}
1268 	/* Disable interrupts. */
1269 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1270 
1271 	for (;;) {
1272 		status = CSR_READ_4(sc, MY_ISR);
1273 		status &= MY_INTRS;
1274 		if (status)
1275 			CSR_WRITE_4(sc, MY_ISR, status);
1276 		else
1277 			break;
1278 
1279 		if (status & MY_RI)	/* receive interrupt */
1280 			my_rxeof(sc);
1281 
1282 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1283 			/* rx buffer unavailable or rx error */
1284 			ifp->if_ierrors++;
1285 #ifdef foo
1286 			my_stop(sc);
1287 			my_reset(sc);
1288 			my_init_locked(sc);
1289 #endif
1290 		}
1291 		if (status & MY_TI)	/* tx interrupt */
1292 			my_txeof(sc);
1293 		if (status & MY_ETI)	/* tx early interrupt */
1294 			my_txeof(sc);
1295 		if (status & MY_TBU)	/* tx buffer unavailable */
1296 			my_txeoc(sc);
1297 
1298 #if 0				/* 90/1/18 delete */
1299 		if (status & MY_FBE) {
1300 			my_reset(sc);
1301 			my_init_locked(sc);
1302 		}
1303 #endif
1304 
1305 	}
1306 
1307 	/* Re-enable interrupts. */
1308 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1309 	if (ifp->if_snd.ifq_head != NULL)
1310 		my_start_locked(ifp);
1311 	MY_UNLOCK(sc);
1312 	return;
1313 }
1314 
1315 /*
1316  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1317  * pointers to the fragment pointers.
1318  */
1319 static int
1320 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1321 {
1322 	struct my_desc *f = NULL;
1323 	int             total_len;
1324 	struct mbuf    *m, *m_new = NULL;
1325 
1326 	MY_LOCK_ASSERT(sc);
1327 	/* calculate the total tx pkt length */
1328 	total_len = 0;
1329 	for (m = m_head; m != NULL; m = m->m_next)
1330 		total_len += m->m_len;
1331 	/*
1332 	 * Start packing the mbufs in this chain into the fragment pointers.
1333 	 * Stop when we run out of fragments or hit the end of the mbuf
1334 	 * chain.
1335 	 */
1336 	m = m_head;
1337 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1338 	if (m_new == NULL) {
1339 		if_printf(sc->my_ifp, "no memory for tx list");
1340 		return (1);
1341 	}
1342 	if (m_head->m_pkthdr.len > MHLEN) {
1343 		MCLGET(m_new, M_DONTWAIT);
1344 		if (!(m_new->m_flags & M_EXT)) {
1345 			m_freem(m_new);
1346 			if_printf(sc->my_ifp, "no memory for tx list");
1347 			return (1);
1348 		}
1349 	}
1350 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1351 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1352 	m_freem(m_head);
1353 	m_head = m_new;
1354 	f = &c->my_ptr->my_frag[0];
1355 	f->my_status = 0;
1356 	f->my_data = vtophys(mtod(m_new, caddr_t));
1357 	total_len = m_new->m_len;
1358 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1359 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1360 	f->my_ctl |= total_len;	/* buffer size */
1361 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1362 	if (sc->my_info->my_did == MTD891ID)
1363 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1364 	c->my_mbuf = m_head;
1365 	c->my_lastdesc = 0;
1366 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1367 	return (0);
1368 }
1369 
1370 /*
1371  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1372  * to the mbuf data regions directly in the transmit lists. We also save a
1373  * copy of the pointers since the transmit list fragment pointers are
1374  * physical addresses.
1375  */
1376 static void
1377 my_start(struct ifnet * ifp)
1378 {
1379 	struct my_softc *sc;
1380 
1381 	sc = ifp->if_softc;
1382 	MY_LOCK(sc);
1383 	my_start_locked(ifp);
1384 	MY_UNLOCK(sc);
1385 }
1386 
1387 static void
1388 my_start_locked(struct ifnet * ifp)
1389 {
1390 	struct my_softc *sc;
1391 	struct mbuf    *m_head = NULL;
1392 	struct my_chain *cur_tx = NULL, *start_tx;
1393 
1394 	sc = ifp->if_softc;
1395 	MY_LOCK_ASSERT(sc);
1396 	if (sc->my_autoneg) {
1397 		sc->my_tx_pend = 1;
1398 		return;
1399 	}
1400 	/*
1401 	 * Check for an available queue slot. If there are none, punt.
1402 	 */
1403 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1404 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1405 		return;
1406 	}
1407 	start_tx = sc->my_cdata.my_tx_free;
1408 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1409 		IF_DEQUEUE(&ifp->if_snd, m_head);
1410 		if (m_head == NULL)
1411 			break;
1412 
1413 		/* Pick a descriptor off the free list. */
1414 		cur_tx = sc->my_cdata.my_tx_free;
1415 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1416 
1417 		/* Pack the data into the descriptor. */
1418 		my_encap(sc, cur_tx, m_head);
1419 
1420 		if (cur_tx != start_tx)
1421 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1422 #if NBPFILTER > 0
1423 		/*
1424 		 * If there's a BPF listener, bounce a copy of this frame to
1425 		 * him.
1426 		 */
1427 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1428 #endif
1429 	}
1430 	/*
1431 	 * If there are no packets queued, bail.
1432 	 */
1433 	if (cur_tx == NULL) {
1434 		return;
1435 	}
1436 	/*
1437 	 * Place the request for the upload interrupt in the last descriptor
1438 	 * in the chain. This way, if we're chaining several packets at once,
1439 	 * we'll only get an interupt once for the whole chain rather than
1440 	 * once for each packet.
1441 	 */
1442 	MY_TXCTL(cur_tx) |= MY_TXIC;
1443 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1444 	sc->my_cdata.my_tx_tail = cur_tx;
1445 	if (sc->my_cdata.my_tx_head == NULL)
1446 		sc->my_cdata.my_tx_head = start_tx;
1447 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1448 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1449 
1450 	/*
1451 	 * Set a timeout in case the chip goes out to lunch.
1452 	 */
1453 	ifp->if_timer = 5;
1454 	return;
1455 }
1456 
1457 static void
1458 my_init(void *xsc)
1459 {
1460 	struct my_softc *sc = xsc;
1461 
1462 	MY_LOCK(sc);
1463 	my_init_locked(sc);
1464 	MY_UNLOCK(sc);
1465 }
1466 
1467 static void
1468 my_init_locked(struct my_softc *sc)
1469 {
1470 	struct ifnet   *ifp = sc->my_ifp;
1471 	u_int16_t       phy_bmcr = 0;
1472 
1473 	MY_LOCK_ASSERT(sc);
1474 	if (sc->my_autoneg) {
1475 		return;
1476 	}
1477 	if (sc->my_pinfo != NULL)
1478 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1479 	/*
1480 	 * Cancel pending I/O and free all RX/TX buffers.
1481 	 */
1482 	my_stop(sc);
1483 	my_reset(sc);
1484 
1485 	/*
1486 	 * Set cache alignment and burst length.
1487 	 */
1488 #if 0				/* 89/9/1 modify,  */
1489 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1490 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1491 #endif
1492 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1493 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1494 	/*
1495 	 * 89/12/29 add, for mtd891,
1496 	 */
1497 	if (sc->my_info->my_did == MTD891ID) {
1498 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1499 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1500 	}
1501 	my_setcfg(sc, phy_bmcr);
1502 	/* Init circular RX list. */
1503 	if (my_list_rx_init(sc) == ENOBUFS) {
1504 		if_printf(ifp, "init failed: no memory for rx buffers\n");
1505 		my_stop(sc);
1506 		return;
1507 	}
1508 	/* Init TX descriptors. */
1509 	my_list_tx_init(sc);
1510 
1511 	/* If we want promiscuous mode, set the allframes bit. */
1512 	if (ifp->if_flags & IFF_PROMISC)
1513 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1514 	else
1515 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1516 
1517 	/*
1518 	 * Set capture broadcast bit to capture broadcast frames.
1519 	 */
1520 	if (ifp->if_flags & IFF_BROADCAST)
1521 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1522 	else
1523 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1524 
1525 	/*
1526 	 * Program the multicast filter, if necessary.
1527 	 */
1528 	my_setmulti(sc);
1529 
1530 	/*
1531 	 * Load the address of the RX list.
1532 	 */
1533 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1534 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1535 
1536 	/*
1537 	 * Enable interrupts.
1538 	 */
1539 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1540 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1541 
1542 	/* Enable receiver and transmitter. */
1543 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1544 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1545 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1546 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1547 
1548 	/* Restore state of BMCR */
1549 	if (sc->my_pinfo != NULL)
1550 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1551 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1552 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1553 	return;
1554 }
1555 
1556 /*
1557  * Set media options.
1558  */
1559 
1560 static int
1561 my_ifmedia_upd(struct ifnet * ifp)
1562 {
1563 	struct my_softc *sc;
1564 	struct ifmedia *ifm;
1565 
1566 	sc = ifp->if_softc;
1567 	MY_LOCK(sc);
1568 	ifm = &sc->ifmedia;
1569 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1570 		MY_UNLOCK(sc);
1571 		return (EINVAL);
1572 	}
1573 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1574 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1575 	else
1576 		my_setmode_mii(sc, ifm->ifm_media);
1577 	MY_UNLOCK(sc);
1578 	return (0);
1579 }
1580 
1581 /*
1582  * Report current media status.
1583  */
1584 
1585 static void
1586 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1587 {
1588 	struct my_softc *sc;
1589 	u_int16_t advert = 0, ability = 0;
1590 
1591 	sc = ifp->if_softc;
1592 	MY_LOCK(sc);
1593 	ifmr->ifm_active = IFM_ETHER;
1594 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1595 #if 0				/* this version did not support 1000M, */
1596 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1597 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1598 #endif
1599 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1600 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1601 		else
1602 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1603 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1604 			ifmr->ifm_active |= IFM_FDX;
1605 		else
1606 			ifmr->ifm_active |= IFM_HDX;
1607 
1608 		MY_UNLOCK(sc);
1609 		return;
1610 	}
1611 	ability = my_phy_readreg(sc, PHY_LPAR);
1612 	advert = my_phy_readreg(sc, PHY_ANAR);
1613 
1614 #if 0				/* this version did not support 1000M, */
1615 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1616 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1617 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1618 			advert = 0;
1619 			ability = 0;
1620 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1621 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1622 			advert = 0;
1623 			ability = 0;
1624 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1625 		}
1626 	}
1627 #endif
1628 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1629 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1630 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1631 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1632 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1633 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1634 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1635 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1636 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1637 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1638 	MY_UNLOCK(sc);
1639 	return;
1640 }
1641 
1642 static int
1643 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1644 {
1645 	struct my_softc *sc = ifp->if_softc;
1646 	struct ifreq   *ifr = (struct ifreq *) data;
1647 	int             error;
1648 
1649 	switch (command) {
1650 	case SIOCSIFFLAGS:
1651 		MY_LOCK(sc);
1652 		if (ifp->if_flags & IFF_UP)
1653 			my_init_locked(sc);
1654 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1655 			my_stop(sc);
1656 		MY_UNLOCK(sc);
1657 		error = 0;
1658 		break;
1659 	case SIOCADDMULTI:
1660 	case SIOCDELMULTI:
1661 		MY_LOCK(sc);
1662 		my_setmulti(sc);
1663 		MY_UNLOCK(sc);
1664 		error = 0;
1665 		break;
1666 	case SIOCGIFMEDIA:
1667 	case SIOCSIFMEDIA:
1668 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1669 		break;
1670 	default:
1671 		error = ether_ioctl(ifp, command, data);
1672 		break;
1673 	}
1674 	return (error);
1675 }
1676 
1677 static void
1678 my_watchdog(struct ifnet * ifp)
1679 {
1680 	struct my_softc *sc;
1681 
1682 	sc = ifp->if_softc;
1683 	MY_LOCK(sc);
1684 	if (sc->my_autoneg) {
1685 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1686 		MY_UNLOCK(sc);
1687 		return;
1688 	}
1689 	ifp->if_oerrors++;
1690 	if_printf(ifp, "watchdog timeout\n");
1691 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1692 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1693 	my_stop(sc);
1694 	my_reset(sc);
1695 	my_init_locked(sc);
1696 	if (ifp->if_snd.ifq_head != NULL)
1697 		my_start_locked(ifp);
1698 	MY_LOCK(sc);
1699 	return;
1700 }
1701 
1702 
1703 /*
1704  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1705  */
1706 static void
1707 my_stop(struct my_softc * sc)
1708 {
1709 	register int    i;
1710 	struct ifnet   *ifp;
1711 
1712 	MY_LOCK_ASSERT(sc);
1713 	ifp = sc->my_ifp;
1714 	ifp->if_timer = 0;
1715 
1716 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1717 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1718 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1719 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1720 
1721 	/*
1722 	 * Free data in the RX lists.
1723 	 */
1724 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1725 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1726 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1727 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1728 		}
1729 	}
1730 	bzero((char *)&sc->my_ldata->my_rx_list,
1731 	    sizeof(sc->my_ldata->my_rx_list));
1732 	/*
1733 	 * Free the TX list buffers.
1734 	 */
1735 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1736 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1737 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1738 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1739 		}
1740 	}
1741 	bzero((char *)&sc->my_ldata->my_tx_list,
1742 	    sizeof(sc->my_ldata->my_tx_list));
1743 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1744 	return;
1745 }
1746 
1747 /*
1748  * Stop all chip I/O so that the kernel's probe routines don't get confused
1749  * by errant DMAs when rebooting.
1750  */
1751 static void
1752 my_shutdown(device_t dev)
1753 {
1754 	struct my_softc *sc;
1755 
1756 	sc = device_get_softc(dev);
1757 	MY_LOCK(sc);
1758 	my_stop(sc);
1759 	MY_UNLOCK(sc);
1760 	return;
1761 }
1762