xref: /freebsd/sys/dev/my/if_my.c (revision 6d732c66bca5da4d261577aad2c8ea84519b0bea)
1 /*-
2  * Written by: yen_cw@myson.com.tw
3  * Copyright (c) 2002 Myson Technology Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/types.h>
42 #include <sys/module.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 
46 #define NBPFILTER	1
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_dl.h>
55 #include <net/bpf.h>
56 
57 #include <vm/vm.h>		/* for vtophys */
58 #include <vm/pmap.h>		/* for vtophys */
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/bus.h>
62 #include <sys/rman.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 /*
68  * #define MY_USEIOSPACE
69  */
70 
71 static int      MY_USEIOSPACE = 1;
72 
73 #ifdef MY_USEIOSPACE
74 #define MY_RES                  SYS_RES_IOPORT
75 #define MY_RID                  MY_PCI_LOIO
76 #else
77 #define MY_RES                  SYS_RES_MEMORY
78 #define MY_RID                  MY_PCI_LOMEM
79 #endif
80 
81 
82 #include <dev/my/if_myreg.h>
83 
84 /*
85  * Various supported device vendors/types and their names.
86  */
87 struct my_type *my_info_tmp;
88 static struct my_type my_devs[] = {
89 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
90 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
91 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
92 	{0, 0, NULL}
93 };
94 
95 /*
96  * Various supported PHY vendors/types and their names. Note that this driver
97  * will work with pretty much any MII-compliant PHY, so failure to positively
98  * identify the chip is not a fatal error.
99  */
100 static struct my_type my_phys[] = {
101 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
102 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
103 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
104 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
105 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
106 	{0, 0, "<MII-compliant physical interface>"}
107 };
108 
109 static int      my_probe(device_t);
110 static int      my_attach(device_t);
111 static int      my_detach(device_t);
112 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
113 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
114 static void     my_rxeof(struct my_softc *);
115 static void     my_txeof(struct my_softc *);
116 static void     my_txeoc(struct my_softc *);
117 static void     my_intr(void *);
118 static void     my_start(struct ifnet *);
119 static void     my_start_locked(struct ifnet *);
120 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
121 static void     my_init(void *);
122 static void     my_init_locked(struct my_softc *);
123 static void     my_stop(struct my_softc *);
124 static void     my_autoneg_timeout(void *);
125 static void     my_watchdog(void *);
126 static int      my_shutdown(device_t);
127 static int      my_ifmedia_upd(struct ifnet *);
128 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
129 static u_int16_t my_phy_readreg(struct my_softc *, int);
130 static void     my_phy_writereg(struct my_softc *, int, int);
131 static void     my_autoneg_xmit(struct my_softc *);
132 static void     my_autoneg_mii(struct my_softc *, int, int);
133 static void     my_setmode_mii(struct my_softc *, int);
134 static void     my_getmode_mii(struct my_softc *);
135 static void     my_setcfg(struct my_softc *, int);
136 static void     my_setmulti(struct my_softc *);
137 static void     my_reset(struct my_softc *);
138 static int      my_list_rx_init(struct my_softc *);
139 static int      my_list_tx_init(struct my_softc *);
140 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
141 
142 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
143 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
144 
145 static device_method_t my_methods[] = {
146 	/* Device interface */
147 	DEVMETHOD(device_probe, my_probe),
148 	DEVMETHOD(device_attach, my_attach),
149 	DEVMETHOD(device_detach, my_detach),
150 	DEVMETHOD(device_shutdown, my_shutdown),
151 
152 	DEVMETHOD_END
153 };
154 
155 static driver_t my_driver = {
156 	"my",
157 	my_methods,
158 	sizeof(struct my_softc)
159 };
160 
161 static devclass_t my_devclass;
162 
163 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
164 MODULE_DEPEND(my, pci, 1, 1, 1);
165 MODULE_DEPEND(my, ether, 1, 1, 1);
166 
167 static long
168 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
169 {
170 	long            miir;
171 	int             i;
172 	int             mask, data;
173 
174 	MY_LOCK_ASSERT(sc);
175 
176 	/* enable MII output */
177 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
178 	miir &= 0xfffffff0;
179 
180 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
181 
182 	/* send 32 1's preamble */
183 	for (i = 0; i < 32; i++) {
184 		/* low MDC; MDO is already high (miir) */
185 		miir &= ~MY_MASK_MIIR_MII_MDC;
186 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
187 
188 		/* high MDC */
189 		miir |= MY_MASK_MIIR_MII_MDC;
190 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
191 	}
192 
193 	/* calculate ST+OP+PHYAD+REGAD+TA */
194 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
195 
196 	/* sent out */
197 	mask = 0x8000;
198 	while (mask) {
199 		/* low MDC, prepare MDO */
200 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
201 		if (mask & data)
202 			miir |= MY_MASK_MIIR_MII_MDO;
203 
204 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
205 		/* high MDC */
206 		miir |= MY_MASK_MIIR_MII_MDC;
207 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
208 		DELAY(30);
209 
210 		/* next */
211 		mask >>= 1;
212 		if (mask == 0x2 && opcode == MY_OP_READ)
213 			miir &= ~MY_MASK_MIIR_MII_WRITE;
214 	}
215 
216 	return miir;
217 }
218 
219 
220 static u_int16_t
221 my_phy_readreg(struct my_softc * sc, int reg)
222 {
223 	long            miir;
224 	int             mask, data;
225 
226 	MY_LOCK_ASSERT(sc);
227 
228 	if (sc->my_info->my_did == MTD803ID)
229 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
230 	else {
231 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
232 
233 		/* read data */
234 		mask = 0x8000;
235 		data = 0;
236 		while (mask) {
237 			/* low MDC */
238 			miir &= ~MY_MASK_MIIR_MII_MDC;
239 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
240 
241 			/* read MDI */
242 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
243 			if (miir & MY_MASK_MIIR_MII_MDI)
244 				data |= mask;
245 
246 			/* high MDC, and wait */
247 			miir |= MY_MASK_MIIR_MII_MDC;
248 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
249 			DELAY(30);
250 
251 			/* next */
252 			mask >>= 1;
253 		}
254 
255 		/* low MDC */
256 		miir &= ~MY_MASK_MIIR_MII_MDC;
257 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
258 	}
259 
260 	return (u_int16_t) data;
261 }
262 
263 
264 static void
265 my_phy_writereg(struct my_softc * sc, int reg, int data)
266 {
267 	long            miir;
268 	int             mask;
269 
270 	MY_LOCK_ASSERT(sc);
271 
272 	if (sc->my_info->my_did == MTD803ID)
273 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
274 	else {
275 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
276 
277 		/* write data */
278 		mask = 0x8000;
279 		while (mask) {
280 			/* low MDC, prepare MDO */
281 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
282 			if (mask & data)
283 				miir |= MY_MASK_MIIR_MII_MDO;
284 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
285 			DELAY(1);
286 
287 			/* high MDC */
288 			miir |= MY_MASK_MIIR_MII_MDC;
289 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
290 			DELAY(1);
291 
292 			/* next */
293 			mask >>= 1;
294 		}
295 
296 		/* low MDC */
297 		miir &= ~MY_MASK_MIIR_MII_MDC;
298 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
299 	}
300 	return;
301 }
302 
303 
304 /*
305  * Program the 64-bit multicast hash filter.
306  */
307 static void
308 my_setmulti(struct my_softc * sc)
309 {
310 	struct ifnet   *ifp;
311 	int             h = 0;
312 	u_int32_t       hashes[2] = {0, 0};
313 	struct ifmultiaddr *ifma;
314 	u_int32_t       rxfilt;
315 	int             mcnt = 0;
316 
317 	MY_LOCK_ASSERT(sc);
318 
319 	ifp = sc->my_ifp;
320 
321 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
322 
323 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
324 		rxfilt |= MY_AM;
325 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
326 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
327 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
328 
329 		return;
330 	}
331 	/* first, zot all the existing hash bits */
332 	CSR_WRITE_4(sc, MY_MAR0, 0);
333 	CSR_WRITE_4(sc, MY_MAR1, 0);
334 
335 	/* now program new ones */
336 	if_maddr_rlock(ifp);
337 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
338 		if (ifma->ifma_addr->sa_family != AF_LINK)
339 			continue;
340 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
341 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
342 		if (h < 32)
343 			hashes[0] |= (1 << h);
344 		else
345 			hashes[1] |= (1 << (h - 32));
346 		mcnt++;
347 	}
348 	if_maddr_runlock(ifp);
349 
350 	if (mcnt)
351 		rxfilt |= MY_AM;
352 	else
353 		rxfilt &= ~MY_AM;
354 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
355 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
356 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
357 	return;
358 }
359 
360 /*
361  * Initiate an autonegotiation session.
362  */
363 static void
364 my_autoneg_xmit(struct my_softc * sc)
365 {
366 	u_int16_t       phy_sts = 0;
367 
368 	MY_LOCK_ASSERT(sc);
369 
370 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
371 	DELAY(500);
372 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
373 
374 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
375 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
376 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
377 
378 	return;
379 }
380 
381 static void
382 my_autoneg_timeout(void *arg)
383 {
384 	struct my_softc *sc;
385 
386 	sc = arg;
387 	MY_LOCK_ASSERT(sc);
388 	my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
389 }
390 
391 /*
392  * Invoke autonegotiation on a PHY.
393  */
394 static void
395 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
396 {
397 	u_int16_t       phy_sts = 0, media, advert, ability;
398 	u_int16_t       ability2 = 0;
399 	struct ifnet   *ifp;
400 	struct ifmedia *ifm;
401 
402 	MY_LOCK_ASSERT(sc);
403 
404 	ifm = &sc->ifmedia;
405 	ifp = sc->my_ifp;
406 
407 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
408 
409 #ifndef FORCE_AUTONEG_TFOUR
410 	/*
411 	 * First, see if autoneg is supported. If not, there's no point in
412 	 * continuing.
413 	 */
414 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
415 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
416 		if (verbose)
417 			device_printf(sc->my_dev,
418 			    "autonegotiation not supported\n");
419 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
420 		return;
421 	}
422 #endif
423 	switch (flag) {
424 	case MY_FLAG_FORCEDELAY:
425 		/*
426 		 * XXX Never use this option anywhere but in the probe
427 		 * routine: making the kernel stop dead in its tracks for
428 		 * three whole seconds after we've gone multi-user is really
429 		 * bad manners.
430 		 */
431 		my_autoneg_xmit(sc);
432 		DELAY(5000000);
433 		break;
434 	case MY_FLAG_SCHEDDELAY:
435 		/*
436 		 * Wait for the transmitter to go idle before starting an
437 		 * autoneg session, otherwise my_start() may clobber our
438 		 * timeout, and we don't want to allow transmission during an
439 		 * autoneg session since that can screw it up.
440 		 */
441 		if (sc->my_cdata.my_tx_head != NULL) {
442 			sc->my_want_auto = 1;
443 			MY_UNLOCK(sc);
444 			return;
445 		}
446 		my_autoneg_xmit(sc);
447 		callout_reset(&sc->my_autoneg_timer, hz * 5, my_autoneg_timeout,
448 		    sc);
449 		sc->my_autoneg = 1;
450 		sc->my_want_auto = 0;
451 		return;
452 	case MY_FLAG_DELAYTIMEO:
453 		callout_stop(&sc->my_autoneg_timer);
454 		sc->my_autoneg = 0;
455 		break;
456 	default:
457 		device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag);
458 		return;
459 	}
460 
461 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
462 		if (verbose)
463 			device_printf(sc->my_dev, "autoneg complete, ");
464 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
465 	} else {
466 		if (verbose)
467 			device_printf(sc->my_dev, "autoneg not complete, ");
468 	}
469 
470 	media = my_phy_readreg(sc, PHY_BMCR);
471 
472 	/* Link is good. Report modes and set duplex mode. */
473 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
474 		if (verbose)
475 			device_printf(sc->my_dev, "link status good. ");
476 		advert = my_phy_readreg(sc, PHY_ANAR);
477 		ability = my_phy_readreg(sc, PHY_LPAR);
478 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
479 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
480 			ability2 = my_phy_readreg(sc, PHY_1000SR);
481 			if (ability2 & PHY_1000SR_1000BTXFULL) {
482 				advert = 0;
483 				ability = 0;
484 				/*
485 				 * this version did not support 1000M,
486 				 * ifm->ifm_media =
487 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
488 				 */
489 				ifm->ifm_media =
490 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
491 				media &= ~PHY_BMCR_SPEEDSEL;
492 				media |= PHY_BMCR_1000;
493 				media |= PHY_BMCR_DUPLEX;
494 				printf("(full-duplex, 1000Mbps)\n");
495 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
496 				advert = 0;
497 				ability = 0;
498 				/*
499 				 * this version did not support 1000M,
500 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
501 				 */
502 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
503 				media &= ~PHY_BMCR_SPEEDSEL;
504 				media &= ~PHY_BMCR_DUPLEX;
505 				media |= PHY_BMCR_1000;
506 				printf("(half-duplex, 1000Mbps)\n");
507 			}
508 		}
509 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
510 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
511 			media |= PHY_BMCR_SPEEDSEL;
512 			media &= ~PHY_BMCR_DUPLEX;
513 			printf("(100baseT4)\n");
514 		} else if (advert & PHY_ANAR_100BTXFULL &&
515 			   ability & PHY_ANAR_100BTXFULL) {
516 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
517 			media |= PHY_BMCR_SPEEDSEL;
518 			media |= PHY_BMCR_DUPLEX;
519 			printf("(full-duplex, 100Mbps)\n");
520 		} else if (advert & PHY_ANAR_100BTXHALF &&
521 			   ability & PHY_ANAR_100BTXHALF) {
522 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
523 			media |= PHY_BMCR_SPEEDSEL;
524 			media &= ~PHY_BMCR_DUPLEX;
525 			printf("(half-duplex, 100Mbps)\n");
526 		} else if (advert & PHY_ANAR_10BTFULL &&
527 			   ability & PHY_ANAR_10BTFULL) {
528 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
529 			media &= ~PHY_BMCR_SPEEDSEL;
530 			media |= PHY_BMCR_DUPLEX;
531 			printf("(full-duplex, 10Mbps)\n");
532 		} else if (advert) {
533 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
534 			media &= ~PHY_BMCR_SPEEDSEL;
535 			media &= ~PHY_BMCR_DUPLEX;
536 			printf("(half-duplex, 10Mbps)\n");
537 		}
538 		media &= ~PHY_BMCR_AUTONEGENBL;
539 
540 		/* Set ASIC's duplex mode to match the PHY. */
541 		my_phy_writereg(sc, PHY_BMCR, media);
542 		my_setcfg(sc, media);
543 	} else {
544 		if (verbose)
545 			device_printf(sc->my_dev, "no carrier\n");
546 	}
547 
548 	my_init_locked(sc);
549 	if (sc->my_tx_pend) {
550 		sc->my_autoneg = 0;
551 		sc->my_tx_pend = 0;
552 		my_start_locked(ifp);
553 	}
554 	return;
555 }
556 
557 /*
558  * To get PHY ability.
559  */
560 static void
561 my_getmode_mii(struct my_softc * sc)
562 {
563 	u_int16_t       bmsr;
564 	struct ifnet   *ifp;
565 
566 	MY_LOCK_ASSERT(sc);
567 	ifp = sc->my_ifp;
568 	bmsr = my_phy_readreg(sc, PHY_BMSR);
569 	if (bootverbose)
570 		device_printf(sc->my_dev, "PHY status word: %x\n", bmsr);
571 
572 	/* fallback */
573 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
574 
575 	if (bmsr & PHY_BMSR_10BTHALF) {
576 		if (bootverbose)
577 			device_printf(sc->my_dev,
578 			    "10Mbps half-duplex mode supported\n");
579 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
580 		    0, NULL);
581 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
582 	}
583 	if (bmsr & PHY_BMSR_10BTFULL) {
584 		if (bootverbose)
585 			device_printf(sc->my_dev,
586 			    "10Mbps full-duplex mode supported\n");
587 
588 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
589 		    0, NULL);
590 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
591 	}
592 	if (bmsr & PHY_BMSR_100BTXHALF) {
593 		if (bootverbose)
594 			device_printf(sc->my_dev,
595 			    "100Mbps half-duplex mode supported\n");
596 		ifp->if_baudrate = 100000000;
597 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
598 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
599 			    0, NULL);
600 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
601 	}
602 	if (bmsr & PHY_BMSR_100BTXFULL) {
603 		if (bootverbose)
604 			device_printf(sc->my_dev,
605 			    "100Mbps full-duplex mode supported\n");
606 		ifp->if_baudrate = 100000000;
607 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
608 		    0, NULL);
609 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
610 	}
611 	/* Some also support 100BaseT4. */
612 	if (bmsr & PHY_BMSR_100BT4) {
613 		if (bootverbose)
614 			device_printf(sc->my_dev, "100baseT4 mode supported\n");
615 		ifp->if_baudrate = 100000000;
616 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
617 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
618 #ifdef FORCE_AUTONEG_TFOUR
619 		if (bootverbose)
620 			device_printf(sc->my_dev,
621 			    "forcing on autoneg support for BT4\n");
622 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
623 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
624 #endif
625 	}
626 #if 0				/* this version did not support 1000M, */
627 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
628 		if (bootverbose)
629 			device_printf(sc->my_dev,
630 			    "1000Mbps half-duplex mode supported\n");
631 
632 		ifp->if_baudrate = 1000000000;
633 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
634 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
635 		    0, NULL);
636 		if (bootverbose)
637 			device_printf(sc->my_dev,
638 			    "1000Mbps full-duplex mode supported\n");
639 		ifp->if_baudrate = 1000000000;
640 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
641 		    0, NULL);
642 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
643 	}
644 #endif
645 	if (bmsr & PHY_BMSR_CANAUTONEG) {
646 		if (bootverbose)
647 			device_printf(sc->my_dev, "autoneg supported\n");
648 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
649 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
650 	}
651 	return;
652 }
653 
654 /*
655  * Set speed and duplex mode.
656  */
657 static void
658 my_setmode_mii(struct my_softc * sc, int media)
659 {
660 	u_int16_t       bmcr;
661 	struct ifnet   *ifp;
662 
663 	MY_LOCK_ASSERT(sc);
664 	ifp = sc->my_ifp;
665 	/*
666 	 * If an autoneg session is in progress, stop it.
667 	 */
668 	if (sc->my_autoneg) {
669 		device_printf(sc->my_dev, "canceling autoneg session\n");
670 		callout_stop(&sc->my_autoneg_timer);
671 		sc->my_autoneg = sc->my_want_auto = 0;
672 		bmcr = my_phy_readreg(sc, PHY_BMCR);
673 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
674 		my_phy_writereg(sc, PHY_BMCR, bmcr);
675 	}
676 	device_printf(sc->my_dev, "selecting MII, ");
677 	bmcr = my_phy_readreg(sc, PHY_BMCR);
678 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
679 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
680 
681 #if 0				/* this version did not support 1000M, */
682 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
683 		printf("1000Mbps/T4, half-duplex\n");
684 		bmcr &= ~PHY_BMCR_SPEEDSEL;
685 		bmcr &= ~PHY_BMCR_DUPLEX;
686 		bmcr |= PHY_BMCR_1000;
687 	}
688 #endif
689 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
690 		printf("100Mbps/T4, half-duplex\n");
691 		bmcr |= PHY_BMCR_SPEEDSEL;
692 		bmcr &= ~PHY_BMCR_DUPLEX;
693 	}
694 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
695 		printf("100Mbps, ");
696 		bmcr |= PHY_BMCR_SPEEDSEL;
697 	}
698 	if (IFM_SUBTYPE(media) == IFM_10_T) {
699 		printf("10Mbps, ");
700 		bmcr &= ~PHY_BMCR_SPEEDSEL;
701 	}
702 	if ((media & IFM_GMASK) == IFM_FDX) {
703 		printf("full duplex\n");
704 		bmcr |= PHY_BMCR_DUPLEX;
705 	} else {
706 		printf("half duplex\n");
707 		bmcr &= ~PHY_BMCR_DUPLEX;
708 	}
709 	my_phy_writereg(sc, PHY_BMCR, bmcr);
710 	my_setcfg(sc, bmcr);
711 	return;
712 }
713 
714 /*
715  * The Myson manual states that in order to fiddle with the 'full-duplex' and
716  * '100Mbps' bits in the netconfig register, we first have to put the
717  * transmit and/or receive logic in the idle state.
718  */
719 static void
720 my_setcfg(struct my_softc * sc, int bmcr)
721 {
722 	int             i, restart = 0;
723 
724 	MY_LOCK_ASSERT(sc);
725 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
726 		restart = 1;
727 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
728 		for (i = 0; i < MY_TIMEOUT; i++) {
729 			DELAY(10);
730 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
731 			    (MY_TXRUN | MY_RXRUN)))
732 				break;
733 		}
734 		if (i == MY_TIMEOUT)
735 			device_printf(sc->my_dev,
736 			    "failed to force tx and rx to idle \n");
737 	}
738 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
739 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
740 	if (bmcr & PHY_BMCR_1000)
741 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
742 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
743 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
744 	if (bmcr & PHY_BMCR_DUPLEX)
745 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
746 	else
747 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
748 	if (restart)
749 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
750 	return;
751 }
752 
753 static void
754 my_reset(struct my_softc * sc)
755 {
756 	register int    i;
757 
758 	MY_LOCK_ASSERT(sc);
759 	MY_SETBIT(sc, MY_BCR, MY_SWR);
760 	for (i = 0; i < MY_TIMEOUT; i++) {
761 		DELAY(10);
762 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
763 			break;
764 	}
765 	if (i == MY_TIMEOUT)
766 		device_printf(sc->my_dev, "reset never completed!\n");
767 
768 	/* Wait a little while for the chip to get its brains in order. */
769 	DELAY(1000);
770 	return;
771 }
772 
773 /*
774  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
775  * list and return a device name if we find a match.
776  */
777 static int
778 my_probe(device_t dev)
779 {
780 	struct my_type *t;
781 
782 	t = my_devs;
783 	while (t->my_name != NULL) {
784 		if ((pci_get_vendor(dev) == t->my_vid) &&
785 		    (pci_get_device(dev) == t->my_did)) {
786 			device_set_desc(dev, t->my_name);
787 			my_info_tmp = t;
788 			return (BUS_PROBE_DEFAULT);
789 		}
790 		t++;
791 	}
792 	return (ENXIO);
793 }
794 
795 /*
796  * Attach the interface. Allocate softc structures, do ifmedia setup and
797  * ethernet/BPF attach.
798  */
799 static int
800 my_attach(device_t dev)
801 {
802 	int             i;
803 	u_char          eaddr[ETHER_ADDR_LEN];
804 	u_int32_t       iobase;
805 	struct my_softc *sc;
806 	struct ifnet   *ifp;
807 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
808 	unsigned int    round;
809 	caddr_t         roundptr;
810 	struct my_type *p;
811 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
812 	int             rid, error = 0;
813 
814 	sc = device_get_softc(dev);
815 	sc->my_dev = dev;
816 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
817 	    MTX_DEF);
818 	callout_init_mtx(&sc->my_autoneg_timer, &sc->my_mtx, 0);
819 	callout_init_mtx(&sc->my_watchdog, &sc->my_mtx, 0);
820 
821 	/*
822 	 * Map control/status registers.
823 	 */
824 	pci_enable_busmaster(dev);
825 
826 	if (my_info_tmp->my_did == MTD800ID) {
827 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
828 		if (iobase & 0x300)
829 			MY_USEIOSPACE = 0;
830 	}
831 
832 	rid = MY_RID;
833 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
834 
835 	if (sc->my_res == NULL) {
836 		device_printf(dev, "couldn't map ports/memory\n");
837 		error = ENXIO;
838 		goto destroy_mutex;
839 	}
840 	sc->my_btag = rman_get_bustag(sc->my_res);
841 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
842 
843 	rid = 0;
844 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
845 					    RF_SHAREABLE | RF_ACTIVE);
846 
847 	if (sc->my_irq == NULL) {
848 		device_printf(dev, "couldn't map interrupt\n");
849 		error = ENXIO;
850 		goto release_io;
851 	}
852 
853 	sc->my_info = my_info_tmp;
854 
855 	/* Reset the adapter. */
856 	MY_LOCK(sc);
857 	my_reset(sc);
858 	MY_UNLOCK(sc);
859 
860 	/*
861 	 * Get station address
862 	 */
863 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
864 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
865 
866 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
867 				  M_DEVBUF, M_NOWAIT);
868 	if (sc->my_ldata_ptr == NULL) {
869 		device_printf(dev, "no memory for list buffers!\n");
870 		error = ENXIO;
871 		goto release_irq;
872 	}
873 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
874 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
875 	roundptr = sc->my_ldata_ptr;
876 	for (i = 0; i < 8; i++) {
877 		if (round % 8) {
878 			round++;
879 			roundptr++;
880 		} else
881 			break;
882 	}
883 	sc->my_ldata = (struct my_list_data *) roundptr;
884 	bzero(sc->my_ldata, sizeof(struct my_list_data));
885 
886 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
887 	if (ifp == NULL) {
888 		device_printf(dev, "can not if_alloc()\n");
889 		error = ENOSPC;
890 		goto free_ldata;
891 	}
892 	ifp->if_softc = sc;
893 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
894 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
895 	ifp->if_ioctl = my_ioctl;
896 	ifp->if_start = my_start;
897 	ifp->if_init = my_init;
898 	ifp->if_baudrate = 10000000;
899 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
900 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
901 	IFQ_SET_READY(&ifp->if_snd);
902 
903 	if (sc->my_info->my_did == MTD803ID)
904 		sc->my_pinfo = my_phys;
905 	else {
906 		if (bootverbose)
907 			device_printf(dev, "probing for a PHY\n");
908 		MY_LOCK(sc);
909 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
910 			if (bootverbose)
911 				device_printf(dev, "checking address: %d\n", i);
912 			sc->my_phy_addr = i;
913 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
914 			if ((phy_sts != 0) && (phy_sts != 0xffff))
915 				break;
916 			else
917 				phy_sts = 0;
918 		}
919 		if (phy_sts) {
920 			phy_vid = my_phy_readreg(sc, PHY_VENID);
921 			phy_did = my_phy_readreg(sc, PHY_DEVID);
922 			if (bootverbose) {
923 				device_printf(dev, "found PHY at address %d, ",
924 				    sc->my_phy_addr);
925 				printf("vendor id: %x device id: %x\n",
926 				    phy_vid, phy_did);
927 			}
928 			p = my_phys;
929 			while (p->my_vid) {
930 				if (phy_vid == p->my_vid) {
931 					sc->my_pinfo = p;
932 					break;
933 				}
934 				p++;
935 			}
936 			if (sc->my_pinfo == NULL)
937 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
938 			if (bootverbose)
939 				device_printf(dev, "PHY type: %s\n",
940 				       sc->my_pinfo->my_name);
941 		} else {
942 			MY_UNLOCK(sc);
943 			device_printf(dev, "MII without any phy!\n");
944 			error = ENXIO;
945 			goto free_if;
946 		}
947 		MY_UNLOCK(sc);
948 	}
949 
950 	/* Do ifmedia setup. */
951 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
952 	MY_LOCK(sc);
953 	my_getmode_mii(sc);
954 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
955 	media = sc->ifmedia.ifm_media;
956 	my_stop(sc);
957 	MY_UNLOCK(sc);
958 	ifmedia_set(&sc->ifmedia, media);
959 
960 	ether_ifattach(ifp, eaddr);
961 
962 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
963 			       NULL, my_intr, sc, &sc->my_intrhand);
964 
965 	if (error) {
966 		device_printf(dev, "couldn't set up irq\n");
967 		goto detach_if;
968 	}
969 
970 	return (0);
971 
972 detach_if:
973 	ether_ifdetach(ifp);
974 free_if:
975 	if_free(ifp);
976 free_ldata:
977 	free(sc->my_ldata_ptr, M_DEVBUF);
978 release_irq:
979 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
980 release_io:
981 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
982 destroy_mutex:
983 	mtx_destroy(&sc->my_mtx);
984 	return (error);
985 }
986 
987 static int
988 my_detach(device_t dev)
989 {
990 	struct my_softc *sc;
991 	struct ifnet   *ifp;
992 
993 	sc = device_get_softc(dev);
994 	ifp = sc->my_ifp;
995 	ether_ifdetach(ifp);
996 	MY_LOCK(sc);
997 	my_stop(sc);
998 	MY_UNLOCK(sc);
999 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
1000 	callout_drain(&sc->my_watchdog);
1001 	callout_drain(&sc->my_autoneg_timer);
1002 
1003 	if_free(ifp);
1004 	free(sc->my_ldata_ptr, M_DEVBUF);
1005 
1006 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1007 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1008 	mtx_destroy(&sc->my_mtx);
1009 	return (0);
1010 }
1011 
1012 
1013 /*
1014  * Initialize the transmit descriptors.
1015  */
1016 static int
1017 my_list_tx_init(struct my_softc * sc)
1018 {
1019 	struct my_chain_data *cd;
1020 	struct my_list_data *ld;
1021 	int             i;
1022 
1023 	MY_LOCK_ASSERT(sc);
1024 	cd = &sc->my_cdata;
1025 	ld = sc->my_ldata;
1026 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1027 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1028 		if (i == (MY_TX_LIST_CNT - 1))
1029 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1030 		else
1031 			cd->my_tx_chain[i].my_nextdesc =
1032 			    &cd->my_tx_chain[i + 1];
1033 	}
1034 	cd->my_tx_free = &cd->my_tx_chain[0];
1035 	cd->my_tx_tail = cd->my_tx_head = NULL;
1036 	return (0);
1037 }
1038 
1039 /*
1040  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1041  * arrange the descriptors in a closed ring, so that the last descriptor
1042  * points back to the first.
1043  */
1044 static int
1045 my_list_rx_init(struct my_softc * sc)
1046 {
1047 	struct my_chain_data *cd;
1048 	struct my_list_data *ld;
1049 	int             i;
1050 
1051 	MY_LOCK_ASSERT(sc);
1052 	cd = &sc->my_cdata;
1053 	ld = sc->my_ldata;
1054 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1055 		cd->my_rx_chain[i].my_ptr =
1056 		    (struct my_desc *) & ld->my_rx_list[i];
1057 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1058 			MY_UNLOCK(sc);
1059 			return (ENOBUFS);
1060 		}
1061 		if (i == (MY_RX_LIST_CNT - 1)) {
1062 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1063 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1064 		} else {
1065 			cd->my_rx_chain[i].my_nextdesc =
1066 			    &cd->my_rx_chain[i + 1];
1067 			ld->my_rx_list[i].my_next =
1068 			    vtophys(&ld->my_rx_list[i + 1]);
1069 		}
1070 	}
1071 	cd->my_rx_head = &cd->my_rx_chain[0];
1072 	return (0);
1073 }
1074 
1075 /*
1076  * Initialize an RX descriptor and attach an MBUF cluster.
1077  */
1078 static int
1079 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1080 {
1081 	struct mbuf    *m_new = NULL;
1082 
1083 	MY_LOCK_ASSERT(sc);
1084 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1085 	if (m_new == NULL) {
1086 		device_printf(sc->my_dev,
1087 		    "no memory for rx list -- packet dropped!\n");
1088 		return (ENOBUFS);
1089 	}
1090 	MCLGET(m_new, M_NOWAIT);
1091 	if (!(m_new->m_flags & M_EXT)) {
1092 		device_printf(sc->my_dev,
1093 		    "no memory for rx list -- packet dropped!\n");
1094 		m_freem(m_new);
1095 		return (ENOBUFS);
1096 	}
1097 	c->my_mbuf = m_new;
1098 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1099 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1100 	c->my_ptr->my_status = MY_OWNByNIC;
1101 	return (0);
1102 }
1103 
1104 /*
1105  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1106  * level protocols.
1107  */
1108 static void
1109 my_rxeof(struct my_softc * sc)
1110 {
1111 	struct ether_header *eh;
1112 	struct mbuf    *m;
1113 	struct ifnet   *ifp;
1114 	struct my_chain_onefrag *cur_rx;
1115 	int             total_len = 0;
1116 	u_int32_t       rxstat;
1117 
1118 	MY_LOCK_ASSERT(sc);
1119 	ifp = sc->my_ifp;
1120 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1121 	    & MY_OWNByNIC)) {
1122 		cur_rx = sc->my_cdata.my_rx_head;
1123 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1124 
1125 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1126 			ifp->if_ierrors++;
1127 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1128 			continue;
1129 		}
1130 		/* No errors; receive the packet. */
1131 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1132 		total_len -= ETHER_CRC_LEN;
1133 
1134 		if (total_len < MINCLSIZE) {
1135 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1136 			    total_len, 0, ifp, NULL);
1137 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1138 			if (m == NULL) {
1139 				ifp->if_ierrors++;
1140 				continue;
1141 			}
1142 		} else {
1143 			m = cur_rx->my_mbuf;
1144 			/*
1145 			 * Try to conjure up a new mbuf cluster. If that
1146 			 * fails, it means we have an out of memory condition
1147 			 * and should leave the buffer in place and continue.
1148 			 * This will result in a lost packet, but there's
1149 			 * little else we can do in this situation.
1150 			 */
1151 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1152 				ifp->if_ierrors++;
1153 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1154 				continue;
1155 			}
1156 			m->m_pkthdr.rcvif = ifp;
1157 			m->m_pkthdr.len = m->m_len = total_len;
1158 		}
1159 		ifp->if_ipackets++;
1160 		eh = mtod(m, struct ether_header *);
1161 #if NBPFILTER > 0
1162 		/*
1163 		 * Handle BPF listeners. Let the BPF user see the packet, but
1164 		 * don't pass it up to the ether_input() layer unless it's a
1165 		 * broadcast packet, multicast packet, matches our ethernet
1166 		 * address or the interface is in promiscuous mode.
1167 		 */
1168 		if (bpf_peers_present(ifp->if_bpf)) {
1169 			bpf_mtap(ifp->if_bpf, m);
1170 			if (ifp->if_flags & IFF_PROMISC &&
1171 			    (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
1172 				ETHER_ADDR_LEN) &&
1173 			     (eh->ether_dhost[0] & 1) == 0)) {
1174 				m_freem(m);
1175 				continue;
1176 			}
1177 		}
1178 #endif
1179 		MY_UNLOCK(sc);
1180 		(*ifp->if_input)(ifp, m);
1181 		MY_LOCK(sc);
1182 	}
1183 	return;
1184 }
1185 
1186 
1187 /*
1188  * A frame was downloaded to the chip. It's safe for us to clean up the list
1189  * buffers.
1190  */
1191 static void
1192 my_txeof(struct my_softc * sc)
1193 {
1194 	struct my_chain *cur_tx;
1195 	struct ifnet   *ifp;
1196 
1197 	MY_LOCK_ASSERT(sc);
1198 	ifp = sc->my_ifp;
1199 	/* Clear the timeout timer. */
1200 	sc->my_timer = 0;
1201 	if (sc->my_cdata.my_tx_head == NULL) {
1202 		return;
1203 	}
1204 	/*
1205 	 * Go through our tx list and free mbufs for those frames that have
1206 	 * been transmitted.
1207 	 */
1208 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1209 		u_int32_t       txstat;
1210 
1211 		cur_tx = sc->my_cdata.my_tx_head;
1212 		txstat = MY_TXSTATUS(cur_tx);
1213 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1214 			break;
1215 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1216 			if (txstat & MY_TXERR) {
1217 				ifp->if_oerrors++;
1218 				if (txstat & MY_EC) /* excessive collision */
1219 					ifp->if_collisions++;
1220 				if (txstat & MY_LC)	/* late collision */
1221 					ifp->if_collisions++;
1222 			}
1223 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1224 			    MY_NCRShift;
1225 		}
1226 		ifp->if_opackets++;
1227 		m_freem(cur_tx->my_mbuf);
1228 		cur_tx->my_mbuf = NULL;
1229 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1230 			sc->my_cdata.my_tx_head = NULL;
1231 			sc->my_cdata.my_tx_tail = NULL;
1232 			break;
1233 		}
1234 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1235 	}
1236 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1237 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1238 	}
1239 	return;
1240 }
1241 
1242 /*
1243  * TX 'end of channel' interrupt handler.
1244  */
1245 static void
1246 my_txeoc(struct my_softc * sc)
1247 {
1248 	struct ifnet   *ifp;
1249 
1250 	MY_LOCK_ASSERT(sc);
1251 	ifp = sc->my_ifp;
1252 	sc->my_timer = 0;
1253 	if (sc->my_cdata.my_tx_head == NULL) {
1254 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1255 		sc->my_cdata.my_tx_tail = NULL;
1256 		if (sc->my_want_auto)
1257 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1258 	} else {
1259 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1260 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1261 			sc->my_timer = 5;
1262 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1263 		}
1264 	}
1265 	return;
1266 }
1267 
1268 static void
1269 my_intr(void *arg)
1270 {
1271 	struct my_softc *sc;
1272 	struct ifnet   *ifp;
1273 	u_int32_t       status;
1274 
1275 	sc = arg;
1276 	MY_LOCK(sc);
1277 	ifp = sc->my_ifp;
1278 	if (!(ifp->if_flags & IFF_UP)) {
1279 		MY_UNLOCK(sc);
1280 		return;
1281 	}
1282 	/* Disable interrupts. */
1283 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1284 
1285 	for (;;) {
1286 		status = CSR_READ_4(sc, MY_ISR);
1287 		status &= MY_INTRS;
1288 		if (status)
1289 			CSR_WRITE_4(sc, MY_ISR, status);
1290 		else
1291 			break;
1292 
1293 		if (status & MY_RI)	/* receive interrupt */
1294 			my_rxeof(sc);
1295 
1296 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1297 			/* rx buffer unavailable or rx error */
1298 			ifp->if_ierrors++;
1299 #ifdef foo
1300 			my_stop(sc);
1301 			my_reset(sc);
1302 			my_init_locked(sc);
1303 #endif
1304 		}
1305 		if (status & MY_TI)	/* tx interrupt */
1306 			my_txeof(sc);
1307 		if (status & MY_ETI)	/* tx early interrupt */
1308 			my_txeof(sc);
1309 		if (status & MY_TBU)	/* tx buffer unavailable */
1310 			my_txeoc(sc);
1311 
1312 #if 0				/* 90/1/18 delete */
1313 		if (status & MY_FBE) {
1314 			my_reset(sc);
1315 			my_init_locked(sc);
1316 		}
1317 #endif
1318 
1319 	}
1320 
1321 	/* Re-enable interrupts. */
1322 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1323 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1324 		my_start_locked(ifp);
1325 	MY_UNLOCK(sc);
1326 	return;
1327 }
1328 
1329 /*
1330  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1331  * pointers to the fragment pointers.
1332  */
1333 static int
1334 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1335 {
1336 	struct my_desc *f = NULL;
1337 	int             total_len;
1338 	struct mbuf    *m, *m_new = NULL;
1339 
1340 	MY_LOCK_ASSERT(sc);
1341 	/* calculate the total tx pkt length */
1342 	total_len = 0;
1343 	for (m = m_head; m != NULL; m = m->m_next)
1344 		total_len += m->m_len;
1345 	/*
1346 	 * Start packing the mbufs in this chain into the fragment pointers.
1347 	 * Stop when we run out of fragments or hit the end of the mbuf
1348 	 * chain.
1349 	 */
1350 	m = m_head;
1351 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1352 	if (m_new == NULL) {
1353 		device_printf(sc->my_dev, "no memory for tx list");
1354 		return (1);
1355 	}
1356 	if (m_head->m_pkthdr.len > MHLEN) {
1357 		MCLGET(m_new, M_NOWAIT);
1358 		if (!(m_new->m_flags & M_EXT)) {
1359 			m_freem(m_new);
1360 			device_printf(sc->my_dev, "no memory for tx list");
1361 			return (1);
1362 		}
1363 	}
1364 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1365 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1366 	m_freem(m_head);
1367 	m_head = m_new;
1368 	f = &c->my_ptr->my_frag[0];
1369 	f->my_status = 0;
1370 	f->my_data = vtophys(mtod(m_new, caddr_t));
1371 	total_len = m_new->m_len;
1372 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1373 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1374 	f->my_ctl |= total_len;	/* buffer size */
1375 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1376 	if (sc->my_info->my_did == MTD891ID)
1377 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1378 	c->my_mbuf = m_head;
1379 	c->my_lastdesc = 0;
1380 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1381 	return (0);
1382 }
1383 
1384 /*
1385  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1386  * to the mbuf data regions directly in the transmit lists. We also save a
1387  * copy of the pointers since the transmit list fragment pointers are
1388  * physical addresses.
1389  */
1390 static void
1391 my_start(struct ifnet * ifp)
1392 {
1393 	struct my_softc *sc;
1394 
1395 	sc = ifp->if_softc;
1396 	MY_LOCK(sc);
1397 	my_start_locked(ifp);
1398 	MY_UNLOCK(sc);
1399 }
1400 
1401 static void
1402 my_start_locked(struct ifnet * ifp)
1403 {
1404 	struct my_softc *sc;
1405 	struct mbuf    *m_head = NULL;
1406 	struct my_chain *cur_tx = NULL, *start_tx;
1407 
1408 	sc = ifp->if_softc;
1409 	MY_LOCK_ASSERT(sc);
1410 	if (sc->my_autoneg) {
1411 		sc->my_tx_pend = 1;
1412 		return;
1413 	}
1414 	/*
1415 	 * Check for an available queue slot. If there are none, punt.
1416 	 */
1417 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1418 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1419 		return;
1420 	}
1421 	start_tx = sc->my_cdata.my_tx_free;
1422 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1423 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1424 		if (m_head == NULL)
1425 			break;
1426 
1427 		/* Pick a descriptor off the free list. */
1428 		cur_tx = sc->my_cdata.my_tx_free;
1429 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1430 
1431 		/* Pack the data into the descriptor. */
1432 		my_encap(sc, cur_tx, m_head);
1433 
1434 		if (cur_tx != start_tx)
1435 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1436 #if NBPFILTER > 0
1437 		/*
1438 		 * If there's a BPF listener, bounce a copy of this frame to
1439 		 * him.
1440 		 */
1441 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1442 #endif
1443 	}
1444 	/*
1445 	 * If there are no packets queued, bail.
1446 	 */
1447 	if (cur_tx == NULL) {
1448 		return;
1449 	}
1450 	/*
1451 	 * Place the request for the upload interrupt in the last descriptor
1452 	 * in the chain. This way, if we're chaining several packets at once,
1453 	 * we'll only get an interrupt once for the whole chain rather than
1454 	 * once for each packet.
1455 	 */
1456 	MY_TXCTL(cur_tx) |= MY_TXIC;
1457 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1458 	sc->my_cdata.my_tx_tail = cur_tx;
1459 	if (sc->my_cdata.my_tx_head == NULL)
1460 		sc->my_cdata.my_tx_head = start_tx;
1461 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1462 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1463 
1464 	/*
1465 	 * Set a timeout in case the chip goes out to lunch.
1466 	 */
1467 	sc->my_timer = 5;
1468 	return;
1469 }
1470 
1471 static void
1472 my_init(void *xsc)
1473 {
1474 	struct my_softc *sc = xsc;
1475 
1476 	MY_LOCK(sc);
1477 	my_init_locked(sc);
1478 	MY_UNLOCK(sc);
1479 }
1480 
1481 static void
1482 my_init_locked(struct my_softc *sc)
1483 {
1484 	struct ifnet   *ifp = sc->my_ifp;
1485 	u_int16_t       phy_bmcr = 0;
1486 
1487 	MY_LOCK_ASSERT(sc);
1488 	if (sc->my_autoneg) {
1489 		return;
1490 	}
1491 	if (sc->my_pinfo != NULL)
1492 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1493 	/*
1494 	 * Cancel pending I/O and free all RX/TX buffers.
1495 	 */
1496 	my_stop(sc);
1497 	my_reset(sc);
1498 
1499 	/*
1500 	 * Set cache alignment and burst length.
1501 	 */
1502 #if 0				/* 89/9/1 modify,  */
1503 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1504 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1505 #endif
1506 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1507 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1508 	/*
1509 	 * 89/12/29 add, for mtd891,
1510 	 */
1511 	if (sc->my_info->my_did == MTD891ID) {
1512 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1513 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1514 	}
1515 	my_setcfg(sc, phy_bmcr);
1516 	/* Init circular RX list. */
1517 	if (my_list_rx_init(sc) == ENOBUFS) {
1518 		device_printf(sc->my_dev, "init failed: no memory for rx buffers\n");
1519 		my_stop(sc);
1520 		return;
1521 	}
1522 	/* Init TX descriptors. */
1523 	my_list_tx_init(sc);
1524 
1525 	/* If we want promiscuous mode, set the allframes bit. */
1526 	if (ifp->if_flags & IFF_PROMISC)
1527 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1528 	else
1529 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1530 
1531 	/*
1532 	 * Set capture broadcast bit to capture broadcast frames.
1533 	 */
1534 	if (ifp->if_flags & IFF_BROADCAST)
1535 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1536 	else
1537 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1538 
1539 	/*
1540 	 * Program the multicast filter, if necessary.
1541 	 */
1542 	my_setmulti(sc);
1543 
1544 	/*
1545 	 * Load the address of the RX list.
1546 	 */
1547 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1548 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1549 
1550 	/*
1551 	 * Enable interrupts.
1552 	 */
1553 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1554 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1555 
1556 	/* Enable receiver and transmitter. */
1557 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1558 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1559 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1560 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1561 
1562 	/* Restore state of BMCR */
1563 	if (sc->my_pinfo != NULL)
1564 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1565 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1566 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1567 
1568 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1569 	return;
1570 }
1571 
1572 /*
1573  * Set media options.
1574  */
1575 
1576 static int
1577 my_ifmedia_upd(struct ifnet * ifp)
1578 {
1579 	struct my_softc *sc;
1580 	struct ifmedia *ifm;
1581 
1582 	sc = ifp->if_softc;
1583 	MY_LOCK(sc);
1584 	ifm = &sc->ifmedia;
1585 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1586 		MY_UNLOCK(sc);
1587 		return (EINVAL);
1588 	}
1589 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1590 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1591 	else
1592 		my_setmode_mii(sc, ifm->ifm_media);
1593 	MY_UNLOCK(sc);
1594 	return (0);
1595 }
1596 
1597 /*
1598  * Report current media status.
1599  */
1600 
1601 static void
1602 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1603 {
1604 	struct my_softc *sc;
1605 	u_int16_t advert = 0, ability = 0;
1606 
1607 	sc = ifp->if_softc;
1608 	MY_LOCK(sc);
1609 	ifmr->ifm_active = IFM_ETHER;
1610 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1611 #if 0				/* this version did not support 1000M, */
1612 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1613 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1614 #endif
1615 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1616 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1617 		else
1618 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1619 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1620 			ifmr->ifm_active |= IFM_FDX;
1621 		else
1622 			ifmr->ifm_active |= IFM_HDX;
1623 
1624 		MY_UNLOCK(sc);
1625 		return;
1626 	}
1627 	ability = my_phy_readreg(sc, PHY_LPAR);
1628 	advert = my_phy_readreg(sc, PHY_ANAR);
1629 
1630 #if 0				/* this version did not support 1000M, */
1631 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1632 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1633 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1634 			advert = 0;
1635 			ability = 0;
1636 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1637 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1638 			advert = 0;
1639 			ability = 0;
1640 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1641 		}
1642 	}
1643 #endif
1644 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1645 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1646 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1647 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1648 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1649 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1650 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1651 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1652 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1653 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1654 	MY_UNLOCK(sc);
1655 	return;
1656 }
1657 
1658 static int
1659 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1660 {
1661 	struct my_softc *sc = ifp->if_softc;
1662 	struct ifreq   *ifr = (struct ifreq *) data;
1663 	int             error;
1664 
1665 	switch (command) {
1666 	case SIOCSIFFLAGS:
1667 		MY_LOCK(sc);
1668 		if (ifp->if_flags & IFF_UP)
1669 			my_init_locked(sc);
1670 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1671 			my_stop(sc);
1672 		MY_UNLOCK(sc);
1673 		error = 0;
1674 		break;
1675 	case SIOCADDMULTI:
1676 	case SIOCDELMULTI:
1677 		MY_LOCK(sc);
1678 		my_setmulti(sc);
1679 		MY_UNLOCK(sc);
1680 		error = 0;
1681 		break;
1682 	case SIOCGIFMEDIA:
1683 	case SIOCSIFMEDIA:
1684 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1685 		break;
1686 	default:
1687 		error = ether_ioctl(ifp, command, data);
1688 		break;
1689 	}
1690 	return (error);
1691 }
1692 
1693 static void
1694 my_watchdog(void *arg)
1695 {
1696 	struct my_softc *sc;
1697 	struct ifnet *ifp;
1698 
1699 	sc = arg;
1700 	MY_LOCK_ASSERT(sc);
1701 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1702 	if (sc->my_timer == 0 || --sc->my_timer > 0)
1703 		return;
1704 
1705 	ifp = sc->my_ifp;
1706 	ifp->if_oerrors++;
1707 	if_printf(ifp, "watchdog timeout\n");
1708 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1709 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1710 	my_stop(sc);
1711 	my_reset(sc);
1712 	my_init_locked(sc);
1713 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1714 		my_start_locked(ifp);
1715 }
1716 
1717 
1718 /*
1719  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1720  */
1721 static void
1722 my_stop(struct my_softc * sc)
1723 {
1724 	register int    i;
1725 	struct ifnet   *ifp;
1726 
1727 	MY_LOCK_ASSERT(sc);
1728 	ifp = sc->my_ifp;
1729 
1730 	callout_stop(&sc->my_autoneg_timer);
1731 	callout_stop(&sc->my_watchdog);
1732 
1733 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1734 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1735 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1736 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1737 
1738 	/*
1739 	 * Free data in the RX lists.
1740 	 */
1741 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1742 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1743 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1744 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1745 		}
1746 	}
1747 	bzero((char *)&sc->my_ldata->my_rx_list,
1748 	    sizeof(sc->my_ldata->my_rx_list));
1749 	/*
1750 	 * Free the TX list buffers.
1751 	 */
1752 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1753 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1754 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1755 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1756 		}
1757 	}
1758 	bzero((char *)&sc->my_ldata->my_tx_list,
1759 	    sizeof(sc->my_ldata->my_tx_list));
1760 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1761 	return;
1762 }
1763 
1764 /*
1765  * Stop all chip I/O so that the kernel's probe routines don't get confused
1766  * by errant DMAs when rebooting.
1767  */
1768 static int
1769 my_shutdown(device_t dev)
1770 {
1771 	struct my_softc *sc;
1772 
1773 	sc = device_get_softc(dev);
1774 	MY_LOCK(sc);
1775 	my_stop(sc);
1776 	MY_UNLOCK(sc);
1777 	return 0;
1778 }
1779