xref: /freebsd/sys/dev/my/if_my.c (revision 66c14b21d3ab0b18376563ba643ddb49b4fd33dd)
1 /*-
2  * Written by: yen_cw@myson.com.tw
3  * Copyright (c) 2002 Myson Technology Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/types.h>
42 #include <sys/bus.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 
47 #define NBPFILTER	1
48 
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_dl.h>
55 #include <net/bpf.h>
56 
57 #include <vm/vm.h>		/* for vtophys */
58 #include <vm/pmap.h>		/* for vtophys */
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/bus.h>
62 #include <sys/rman.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 
70 #include "miibus_if.h"
71 
72 /*
73  * #define MY_USEIOSPACE
74  */
75 
76 static int      MY_USEIOSPACE = 1;
77 
78 #ifdef MY_USEIOSPACE
79 #define MY_RES                  SYS_RES_IOPORT
80 #define MY_RID                  MY_PCI_LOIO
81 #else
82 #define MY_RES                  SYS_RES_MEMORY
83 #define MY_RID                  MY_PCI_LOMEM
84 #endif
85 
86 
87 #include <dev/my/if_myreg.h>
88 
89 #ifndef lint
90 static          const char rcsid[] =
91 "$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $";
92 #endif
93 
94 /*
95  * Various supported device vendors/types and their names.
96  */
97 struct my_type *my_info_tmp;
98 static struct my_type my_devs[] = {
99 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
100 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
101 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
102 	{0, 0, NULL}
103 };
104 
105 /*
106  * Various supported PHY vendors/types and their names. Note that this driver
107  * will work with pretty much any MII-compliant PHY, so failure to positively
108  * identify the chip is not a fatal error.
109  */
110 static struct my_type my_phys[] = {
111 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
112 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
113 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
114 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
115 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
116 	{0, 0, "<MII-compliant physical interface>"}
117 };
118 
119 static int      my_probe(device_t);
120 static int      my_attach(device_t);
121 static int      my_detach(device_t);
122 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
123 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
124 static void     my_rxeof(struct my_softc *);
125 static void     my_txeof(struct my_softc *);
126 static void     my_txeoc(struct my_softc *);
127 static void     my_intr(void *);
128 static void     my_start(struct ifnet *);
129 static void     my_start_locked(struct ifnet *);
130 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
131 static void     my_init(void *);
132 static void     my_init_locked(struct my_softc *);
133 static void     my_stop(struct my_softc *);
134 static void     my_watchdog(struct ifnet *);
135 static void     my_shutdown(device_t);
136 static int      my_ifmedia_upd(struct ifnet *);
137 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138 static u_int16_t my_phy_readreg(struct my_softc *, int);
139 static void     my_phy_writereg(struct my_softc *, int, int);
140 static void     my_autoneg_xmit(struct my_softc *);
141 static void     my_autoneg_mii(struct my_softc *, int, int);
142 static void     my_setmode_mii(struct my_softc *, int);
143 static void     my_getmode_mii(struct my_softc *);
144 static void     my_setcfg(struct my_softc *, int);
145 static void     my_setmulti(struct my_softc *);
146 static void     my_reset(struct my_softc *);
147 static int      my_list_rx_init(struct my_softc *);
148 static int      my_list_tx_init(struct my_softc *);
149 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
150 
151 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
152 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
153 
154 static device_method_t my_methods[] = {
155 	/* Device interface */
156 	DEVMETHOD(device_probe, my_probe),
157 	DEVMETHOD(device_attach, my_attach),
158 	DEVMETHOD(device_detach, my_detach),
159 	DEVMETHOD(device_shutdown, my_shutdown),
160 
161 	{0, 0}
162 };
163 
164 static driver_t my_driver = {
165 	"my",
166 	my_methods,
167 	sizeof(struct my_softc)
168 };
169 
170 static devclass_t my_devclass;
171 
172 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
173 MODULE_DEPEND(my, pci, 1, 1, 1);
174 MODULE_DEPEND(my, ether, 1, 1, 1);
175 
176 static long
177 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
178 {
179 	long            miir;
180 	int             i;
181 	int             mask, data;
182 
183 	MY_LOCK_ASSERT(sc);
184 
185 	/* enable MII output */
186 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
187 	miir &= 0xfffffff0;
188 
189 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
190 
191 	/* send 32 1's preamble */
192 	for (i = 0; i < 32; i++) {
193 		/* low MDC; MDO is already high (miir) */
194 		miir &= ~MY_MASK_MIIR_MII_MDC;
195 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
196 
197 		/* high MDC */
198 		miir |= MY_MASK_MIIR_MII_MDC;
199 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
200 	}
201 
202 	/* calculate ST+OP+PHYAD+REGAD+TA */
203 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
204 
205 	/* sent out */
206 	mask = 0x8000;
207 	while (mask) {
208 		/* low MDC, prepare MDO */
209 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
210 		if (mask & data)
211 			miir |= MY_MASK_MIIR_MII_MDO;
212 
213 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
214 		/* high MDC */
215 		miir |= MY_MASK_MIIR_MII_MDC;
216 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
217 		DELAY(30);
218 
219 		/* next */
220 		mask >>= 1;
221 		if (mask == 0x2 && opcode == MY_OP_READ)
222 			miir &= ~MY_MASK_MIIR_MII_WRITE;
223 	}
224 
225 	return miir;
226 }
227 
228 
229 static u_int16_t
230 my_phy_readreg(struct my_softc * sc, int reg)
231 {
232 	long            miir;
233 	int             mask, data;
234 
235 	MY_LOCK_ASSERT(sc);
236 
237 	if (sc->my_info->my_did == MTD803ID)
238 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
239 	else {
240 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
241 
242 		/* read data */
243 		mask = 0x8000;
244 		data = 0;
245 		while (mask) {
246 			/* low MDC */
247 			miir &= ~MY_MASK_MIIR_MII_MDC;
248 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
249 
250 			/* read MDI */
251 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
252 			if (miir & MY_MASK_MIIR_MII_MDI)
253 				data |= mask;
254 
255 			/* high MDC, and wait */
256 			miir |= MY_MASK_MIIR_MII_MDC;
257 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
258 			DELAY(30);
259 
260 			/* next */
261 			mask >>= 1;
262 		}
263 
264 		/* low MDC */
265 		miir &= ~MY_MASK_MIIR_MII_MDC;
266 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
267 	}
268 
269 	return (u_int16_t) data;
270 }
271 
272 
273 static void
274 my_phy_writereg(struct my_softc * sc, int reg, int data)
275 {
276 	long            miir;
277 	int             mask;
278 
279 	MY_LOCK_ASSERT(sc);
280 
281 	if (sc->my_info->my_did == MTD803ID)
282 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
283 	else {
284 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
285 
286 		/* write data */
287 		mask = 0x8000;
288 		while (mask) {
289 			/* low MDC, prepare MDO */
290 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
291 			if (mask & data)
292 				miir |= MY_MASK_MIIR_MII_MDO;
293 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
294 			DELAY(1);
295 
296 			/* high MDC */
297 			miir |= MY_MASK_MIIR_MII_MDC;
298 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
299 			DELAY(1);
300 
301 			/* next */
302 			mask >>= 1;
303 		}
304 
305 		/* low MDC */
306 		miir &= ~MY_MASK_MIIR_MII_MDC;
307 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
308 	}
309 	return;
310 }
311 
312 
313 /*
314  * Program the 64-bit multicast hash filter.
315  */
316 static void
317 my_setmulti(struct my_softc * sc)
318 {
319 	struct ifnet   *ifp;
320 	int             h = 0;
321 	u_int32_t       hashes[2] = {0, 0};
322 	struct ifmultiaddr *ifma;
323 	u_int32_t       rxfilt;
324 	int             mcnt = 0;
325 
326 	MY_LOCK_ASSERT(sc);
327 
328 	ifp = sc->my_ifp;
329 
330 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
331 
332 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
333 		rxfilt |= MY_AM;
334 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
335 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
336 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
337 
338 		return;
339 	}
340 	/* first, zot all the existing hash bits */
341 	CSR_WRITE_4(sc, MY_MAR0, 0);
342 	CSR_WRITE_4(sc, MY_MAR1, 0);
343 
344 	/* now program new ones */
345 	IF_ADDR_LOCK(ifp);
346 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
347 		if (ifma->ifma_addr->sa_family != AF_LINK)
348 			continue;
349 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
350 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
351 		if (h < 32)
352 			hashes[0] |= (1 << h);
353 		else
354 			hashes[1] |= (1 << (h - 32));
355 		mcnt++;
356 	}
357 	IF_ADDR_UNLOCK(ifp);
358 
359 	if (mcnt)
360 		rxfilt |= MY_AM;
361 	else
362 		rxfilt &= ~MY_AM;
363 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
364 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
365 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
366 	return;
367 }
368 
369 /*
370  * Initiate an autonegotiation session.
371  */
372 static void
373 my_autoneg_xmit(struct my_softc * sc)
374 {
375 	u_int16_t       phy_sts = 0;
376 
377 	MY_LOCK_ASSERT(sc);
378 
379 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
380 	DELAY(500);
381 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
382 
383 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
384 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
385 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
386 
387 	return;
388 }
389 
390 
391 /*
392  * Invoke autonegotiation on a PHY.
393  */
394 static void
395 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
396 {
397 	u_int16_t       phy_sts = 0, media, advert, ability;
398 	u_int16_t       ability2 = 0;
399 	struct ifnet   *ifp;
400 	struct ifmedia *ifm;
401 
402 	MY_LOCK_ASSERT(sc);
403 
404 	ifm = &sc->ifmedia;
405 	ifp = sc->my_ifp;
406 
407 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
408 
409 #ifndef FORCE_AUTONEG_TFOUR
410 	/*
411 	 * First, see if autoneg is supported. If not, there's no point in
412 	 * continuing.
413 	 */
414 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
415 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
416 		if (verbose)
417 			if_printf(ifp, "autonegotiation not supported\n");
418 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
419 		return;
420 	}
421 #endif
422 	switch (flag) {
423 	case MY_FLAG_FORCEDELAY:
424 		/*
425 		 * XXX Never use this option anywhere but in the probe
426 		 * routine: making the kernel stop dead in its tracks for
427 		 * three whole seconds after we've gone multi-user is really
428 		 * bad manners.
429 		 */
430 		my_autoneg_xmit(sc);
431 		DELAY(5000000);
432 		break;
433 	case MY_FLAG_SCHEDDELAY:
434 		/*
435 		 * Wait for the transmitter to go idle before starting an
436 		 * autoneg session, otherwise my_start() may clobber our
437 		 * timeout, and we don't want to allow transmission during an
438 		 * autoneg session since that can screw it up.
439 		 */
440 		if (sc->my_cdata.my_tx_head != NULL) {
441 			sc->my_want_auto = 1;
442 			MY_UNLOCK(sc);
443 			return;
444 		}
445 		my_autoneg_xmit(sc);
446 		ifp->if_timer = 5;
447 		sc->my_autoneg = 1;
448 		sc->my_want_auto = 0;
449 		return;
450 	case MY_FLAG_DELAYTIMEO:
451 		ifp->if_timer = 0;
452 		sc->my_autoneg = 0;
453 		break;
454 	default:
455 		if_printf(ifp, "invalid autoneg flag: %d\n", flag);
456 		return;
457 	}
458 
459 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
460 		if (verbose)
461 			if_printf(ifp, "autoneg complete, ");
462 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
463 	} else {
464 		if (verbose)
465 			if_printf(ifp, "autoneg not complete, ");
466 	}
467 
468 	media = my_phy_readreg(sc, PHY_BMCR);
469 
470 	/* Link is good. Report modes and set duplex mode. */
471 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
472 		if (verbose)
473 			if_printf(ifp, "link status good. ");
474 		advert = my_phy_readreg(sc, PHY_ANAR);
475 		ability = my_phy_readreg(sc, PHY_LPAR);
476 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
477 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
478 			ability2 = my_phy_readreg(sc, PHY_1000SR);
479 			if (ability2 & PHY_1000SR_1000BTXFULL) {
480 				advert = 0;
481 				ability = 0;
482 				/*
483 				 * this version did not support 1000M,
484 				 * ifm->ifm_media =
485 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
486 				 */
487 				ifm->ifm_media =
488 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
489 				media &= ~PHY_BMCR_SPEEDSEL;
490 				media |= PHY_BMCR_1000;
491 				media |= PHY_BMCR_DUPLEX;
492 				printf("(full-duplex, 1000Mbps)\n");
493 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
494 				advert = 0;
495 				ability = 0;
496 				/*
497 				 * this version did not support 1000M,
498 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
499 				 */
500 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
501 				media &= ~PHY_BMCR_SPEEDSEL;
502 				media &= ~PHY_BMCR_DUPLEX;
503 				media |= PHY_BMCR_1000;
504 				printf("(half-duplex, 1000Mbps)\n");
505 			}
506 		}
507 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
508 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
509 			media |= PHY_BMCR_SPEEDSEL;
510 			media &= ~PHY_BMCR_DUPLEX;
511 			printf("(100baseT4)\n");
512 		} else if (advert & PHY_ANAR_100BTXFULL &&
513 			   ability & PHY_ANAR_100BTXFULL) {
514 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
515 			media |= PHY_BMCR_SPEEDSEL;
516 			media |= PHY_BMCR_DUPLEX;
517 			printf("(full-duplex, 100Mbps)\n");
518 		} else if (advert & PHY_ANAR_100BTXHALF &&
519 			   ability & PHY_ANAR_100BTXHALF) {
520 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
521 			media |= PHY_BMCR_SPEEDSEL;
522 			media &= ~PHY_BMCR_DUPLEX;
523 			printf("(half-duplex, 100Mbps)\n");
524 		} else if (advert & PHY_ANAR_10BTFULL &&
525 			   ability & PHY_ANAR_10BTFULL) {
526 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
527 			media &= ~PHY_BMCR_SPEEDSEL;
528 			media |= PHY_BMCR_DUPLEX;
529 			printf("(full-duplex, 10Mbps)\n");
530 		} else if (advert) {
531 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
532 			media &= ~PHY_BMCR_SPEEDSEL;
533 			media &= ~PHY_BMCR_DUPLEX;
534 			printf("(half-duplex, 10Mbps)\n");
535 		}
536 		media &= ~PHY_BMCR_AUTONEGENBL;
537 
538 		/* Set ASIC's duplex mode to match the PHY. */
539 		my_phy_writereg(sc, PHY_BMCR, media);
540 		my_setcfg(sc, media);
541 	} else {
542 		if (verbose)
543 			if_printf(ifp, "no carrier\n");
544 	}
545 
546 	my_init_locked(sc);
547 	if (sc->my_tx_pend) {
548 		sc->my_autoneg = 0;
549 		sc->my_tx_pend = 0;
550 		my_start_locked(ifp);
551 	}
552 	return;
553 }
554 
555 /*
556  * To get PHY ability.
557  */
558 static void
559 my_getmode_mii(struct my_softc * sc)
560 {
561 	u_int16_t       bmsr;
562 	struct ifnet   *ifp;
563 
564 	MY_LOCK_ASSERT(sc);
565 	ifp = sc->my_ifp;
566 	bmsr = my_phy_readreg(sc, PHY_BMSR);
567 	if (bootverbose)
568 		if_printf(ifp, "PHY status word: %x\n", bmsr);
569 
570 	/* fallback */
571 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
572 
573 	if (bmsr & PHY_BMSR_10BTHALF) {
574 		if (bootverbose)
575 			if_printf(ifp, "10Mbps half-duplex mode supported\n");
576 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
577 		    0, NULL);
578 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
579 	}
580 	if (bmsr & PHY_BMSR_10BTFULL) {
581 		if (bootverbose)
582 			if_printf(ifp, "10Mbps full-duplex mode supported\n");
583 
584 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
585 		    0, NULL);
586 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
587 	}
588 	if (bmsr & PHY_BMSR_100BTXHALF) {
589 		if (bootverbose)
590 			if_printf(ifp, "100Mbps half-duplex mode supported\n");
591 		ifp->if_baudrate = 100000000;
592 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
593 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
594 			    0, NULL);
595 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
596 	}
597 	if (bmsr & PHY_BMSR_100BTXFULL) {
598 		if (bootverbose)
599 			if_printf(ifp, "100Mbps full-duplex mode supported\n");
600 		ifp->if_baudrate = 100000000;
601 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
602 		    0, NULL);
603 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
604 	}
605 	/* Some also support 100BaseT4. */
606 	if (bmsr & PHY_BMSR_100BT4) {
607 		if (bootverbose)
608 			if_printf(ifp, "100baseT4 mode supported\n");
609 		ifp->if_baudrate = 100000000;
610 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
611 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
612 #ifdef FORCE_AUTONEG_TFOUR
613 		if (bootverbose)
614 			if_printf(ifp, "forcing on autoneg support for BT4\n");
615 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
616 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
617 #endif
618 	}
619 #if 0				/* this version did not support 1000M, */
620 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
621 		if (bootverbose)
622 			if_printf(ifp, "1000Mbps half-duplex mode supported\n");
623 
624 		ifp->if_baudrate = 1000000000;
625 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
626 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
627 		    0, NULL);
628 		if (bootverbose)
629 			if_printf(ifp, "1000Mbps full-duplex mode supported\n");
630 		ifp->if_baudrate = 1000000000;
631 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
632 		    0, NULL);
633 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
634 	}
635 #endif
636 	if (bmsr & PHY_BMSR_CANAUTONEG) {
637 		if (bootverbose)
638 			if_printf(ifp, "autoneg supported\n");
639 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
640 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
641 	}
642 	return;
643 }
644 
645 /*
646  * Set speed and duplex mode.
647  */
648 static void
649 my_setmode_mii(struct my_softc * sc, int media)
650 {
651 	u_int16_t       bmcr;
652 	struct ifnet   *ifp;
653 
654 	MY_LOCK_ASSERT(sc);
655 	ifp = sc->my_ifp;
656 	/*
657 	 * If an autoneg session is in progress, stop it.
658 	 */
659 	if (sc->my_autoneg) {
660 		if_printf(ifp, "canceling autoneg session\n");
661 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
662 		bmcr = my_phy_readreg(sc, PHY_BMCR);
663 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
664 		my_phy_writereg(sc, PHY_BMCR, bmcr);
665 	}
666 	if_printf(ifp, "selecting MII, ");
667 	bmcr = my_phy_readreg(sc, PHY_BMCR);
668 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
669 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
670 
671 #if 0				/* this version did not support 1000M, */
672 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
673 		printf("1000Mbps/T4, half-duplex\n");
674 		bmcr &= ~PHY_BMCR_SPEEDSEL;
675 		bmcr &= ~PHY_BMCR_DUPLEX;
676 		bmcr |= PHY_BMCR_1000;
677 	}
678 #endif
679 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
680 		printf("100Mbps/T4, half-duplex\n");
681 		bmcr |= PHY_BMCR_SPEEDSEL;
682 		bmcr &= ~PHY_BMCR_DUPLEX;
683 	}
684 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
685 		printf("100Mbps, ");
686 		bmcr |= PHY_BMCR_SPEEDSEL;
687 	}
688 	if (IFM_SUBTYPE(media) == IFM_10_T) {
689 		printf("10Mbps, ");
690 		bmcr &= ~PHY_BMCR_SPEEDSEL;
691 	}
692 	if ((media & IFM_GMASK) == IFM_FDX) {
693 		printf("full duplex\n");
694 		bmcr |= PHY_BMCR_DUPLEX;
695 	} else {
696 		printf("half duplex\n");
697 		bmcr &= ~PHY_BMCR_DUPLEX;
698 	}
699 	my_phy_writereg(sc, PHY_BMCR, bmcr);
700 	my_setcfg(sc, bmcr);
701 	return;
702 }
703 
704 /*
705  * The Myson manual states that in order to fiddle with the 'full-duplex' and
706  * '100Mbps' bits in the netconfig register, we first have to put the
707  * transmit and/or receive logic in the idle state.
708  */
709 static void
710 my_setcfg(struct my_softc * sc, int bmcr)
711 {
712 	int             i, restart = 0;
713 
714 	MY_LOCK_ASSERT(sc);
715 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
716 		restart = 1;
717 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
718 		for (i = 0; i < MY_TIMEOUT; i++) {
719 			DELAY(10);
720 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
721 			    (MY_TXRUN | MY_RXRUN)))
722 				break;
723 		}
724 		if (i == MY_TIMEOUT)
725 			if_printf(sc->my_ifp,
726 			    "failed to force tx and rx to idle \n");
727 	}
728 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
729 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
730 	if (bmcr & PHY_BMCR_1000)
731 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
732 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
733 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
734 	if (bmcr & PHY_BMCR_DUPLEX)
735 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
736 	else
737 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
738 	if (restart)
739 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
740 	return;
741 }
742 
743 static void
744 my_reset(struct my_softc * sc)
745 {
746 	register int    i;
747 
748 	MY_LOCK_ASSERT(sc);
749 	MY_SETBIT(sc, MY_BCR, MY_SWR);
750 	for (i = 0; i < MY_TIMEOUT; i++) {
751 		DELAY(10);
752 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
753 			break;
754 	}
755 	if (i == MY_TIMEOUT)
756 		if_printf(sc->my_ifp, "reset never completed!\n");
757 
758 	/* Wait a little while for the chip to get its brains in order. */
759 	DELAY(1000);
760 	return;
761 }
762 
763 /*
764  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
765  * list and return a device name if we find a match.
766  */
767 static int
768 my_probe(device_t dev)
769 {
770 	struct my_type *t;
771 
772 	t = my_devs;
773 	while (t->my_name != NULL) {
774 		if ((pci_get_vendor(dev) == t->my_vid) &&
775 		    (pci_get_device(dev) == t->my_did)) {
776 			device_set_desc(dev, t->my_name);
777 			my_info_tmp = t;
778 			return (BUS_PROBE_DEFAULT);
779 		}
780 		t++;
781 	}
782 	return (ENXIO);
783 }
784 
785 /*
786  * Attach the interface. Allocate softc structures, do ifmedia setup and
787  * ethernet/BPF attach.
788  */
789 static int
790 my_attach(device_t dev)
791 {
792 	int             i;
793 	u_char          eaddr[ETHER_ADDR_LEN];
794 	u_int32_t       iobase;
795 	struct my_softc *sc;
796 	struct ifnet   *ifp;
797 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
798 	unsigned int    round;
799 	caddr_t         roundptr;
800 	struct my_type *p;
801 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
802 	int             rid, error = 0;
803 
804 	sc = device_get_softc(dev);
805 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
806 	    MTX_DEF);
807 
808 	/*
809 	 * Map control/status registers.
810 	 */
811 	pci_enable_busmaster(dev);
812 
813 	if (my_info_tmp->my_did == MTD800ID) {
814 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
815 		if (iobase & 0x300)
816 			MY_USEIOSPACE = 0;
817 	}
818 
819 	rid = MY_RID;
820 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
821 
822 	if (sc->my_res == NULL) {
823 		device_printf(dev, "couldn't map ports/memory\n");
824 		error = ENXIO;
825 		goto destroy_mutex;
826 	}
827 	sc->my_btag = rman_get_bustag(sc->my_res);
828 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
829 
830 	rid = 0;
831 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
832 					    RF_SHAREABLE | RF_ACTIVE);
833 
834 	if (sc->my_irq == NULL) {
835 		device_printf(dev, "couldn't map interrupt\n");
836 		error = ENXIO;
837 		goto release_io;
838 	}
839 
840 	sc->my_info = my_info_tmp;
841 
842 	/* Reset the adapter. */
843 	MY_LOCK(sc);
844 	my_reset(sc);
845 	MY_UNLOCK(sc);
846 
847 	/*
848 	 * Get station address
849 	 */
850 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
851 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
852 
853 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
854 				  M_DEVBUF, M_NOWAIT);
855 	if (sc->my_ldata_ptr == NULL) {
856 		device_printf(dev, "no memory for list buffers!\n");
857 		error = ENXIO;
858 		goto release_irq;
859 	}
860 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
861 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
862 	roundptr = sc->my_ldata_ptr;
863 	for (i = 0; i < 8; i++) {
864 		if (round % 8) {
865 			round++;
866 			roundptr++;
867 		} else
868 			break;
869 	}
870 	sc->my_ldata = (struct my_list_data *) roundptr;
871 	bzero(sc->my_ldata, sizeof(struct my_list_data));
872 
873 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
874 	if (ifp == NULL) {
875 		device_printf(dev, "can not if_alloc()\n");
876 		error = ENOSPC;
877 		goto free_ldata;
878 	}
879 	ifp->if_softc = sc;
880 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
881 	ifp->if_mtu = ETHERMTU;
882 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
883 	ifp->if_ioctl = my_ioctl;
884 	ifp->if_start = my_start;
885 	ifp->if_watchdog = my_watchdog;
886 	ifp->if_init = my_init;
887 	ifp->if_baudrate = 10000000;
888 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
889 
890 	if (sc->my_info->my_did == MTD803ID)
891 		sc->my_pinfo = my_phys;
892 	else {
893 		if (bootverbose)
894 			device_printf(dev, "probing for a PHY\n");
895 		MY_LOCK(sc);
896 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
897 			if (bootverbose)
898 				device_printf(dev, "checking address: %d\n", i);
899 			sc->my_phy_addr = i;
900 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
901 			if ((phy_sts != 0) && (phy_sts != 0xffff))
902 				break;
903 			else
904 				phy_sts = 0;
905 		}
906 		if (phy_sts) {
907 			phy_vid = my_phy_readreg(sc, PHY_VENID);
908 			phy_did = my_phy_readreg(sc, PHY_DEVID);
909 			if (bootverbose) {
910 				device_printf(dev, "found PHY at address %d, ",
911 				    sc->my_phy_addr);
912 				printf("vendor id: %x device id: %x\n",
913 				    phy_vid, phy_did);
914 			}
915 			p = my_phys;
916 			while (p->my_vid) {
917 				if (phy_vid == p->my_vid) {
918 					sc->my_pinfo = p;
919 					break;
920 				}
921 				p++;
922 			}
923 			if (sc->my_pinfo == NULL)
924 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
925 			if (bootverbose)
926 				device_printf(dev, "PHY type: %s\n",
927 				       sc->my_pinfo->my_name);
928 		} else {
929 			MY_UNLOCK(sc);
930 			device_printf(dev, "MII without any phy!\n");
931 			error = ENXIO;
932 			goto free_if;
933 		}
934 		MY_UNLOCK(sc);
935 	}
936 
937 	/* Do ifmedia setup. */
938 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
939 	MY_LOCK(sc);
940 	my_getmode_mii(sc);
941 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
942 	media = sc->ifmedia.ifm_media;
943 	my_stop(sc);
944 	MY_UNLOCK(sc);
945 	ifmedia_set(&sc->ifmedia, media);
946 
947 	ether_ifattach(ifp, eaddr);
948 
949 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
950 			       my_intr, sc, &sc->my_intrhand);
951 
952 	if (error) {
953 		device_printf(dev, "couldn't set up irq\n");
954 		goto detach_if;
955 	}
956 
957 	return (0);
958 
959 detach_if:
960 	ether_ifdetach(ifp);
961 free_if:
962 	if_free(ifp);
963 free_ldata:
964 	free(sc->my_ldata_ptr, M_DEVBUF);
965 release_irq:
966 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
967 release_io:
968 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
969 destroy_mutex:
970 	mtx_destroy(&sc->my_mtx);
971 	return (error);
972 }
973 
974 static int
975 my_detach(device_t dev)
976 {
977 	struct my_softc *sc;
978 	struct ifnet   *ifp;
979 
980 	sc = device_get_softc(dev);
981 	MY_LOCK(sc);
982 	my_stop(sc);
983 	MY_UNLOCK(sc);
984 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
985 
986 	ifp = sc->my_ifp;
987 	ether_ifdetach(ifp);
988 	if_free(ifp);
989 	free(sc->my_ldata_ptr, M_DEVBUF);
990 
991 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
992 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
993 	mtx_destroy(&sc->my_mtx);
994 	return (0);
995 }
996 
997 
998 /*
999  * Initialize the transmit descriptors.
1000  */
1001 static int
1002 my_list_tx_init(struct my_softc * sc)
1003 {
1004 	struct my_chain_data *cd;
1005 	struct my_list_data *ld;
1006 	int             i;
1007 
1008 	MY_LOCK_ASSERT(sc);
1009 	cd = &sc->my_cdata;
1010 	ld = sc->my_ldata;
1011 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1012 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1013 		if (i == (MY_TX_LIST_CNT - 1))
1014 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1015 		else
1016 			cd->my_tx_chain[i].my_nextdesc =
1017 			    &cd->my_tx_chain[i + 1];
1018 	}
1019 	cd->my_tx_free = &cd->my_tx_chain[0];
1020 	cd->my_tx_tail = cd->my_tx_head = NULL;
1021 	return (0);
1022 }
1023 
1024 /*
1025  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1026  * arrange the descriptors in a closed ring, so that the last descriptor
1027  * points back to the first.
1028  */
1029 static int
1030 my_list_rx_init(struct my_softc * sc)
1031 {
1032 	struct my_chain_data *cd;
1033 	struct my_list_data *ld;
1034 	int             i;
1035 
1036 	MY_LOCK_ASSERT(sc);
1037 	cd = &sc->my_cdata;
1038 	ld = sc->my_ldata;
1039 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1040 		cd->my_rx_chain[i].my_ptr =
1041 		    (struct my_desc *) & ld->my_rx_list[i];
1042 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1043 			MY_UNLOCK(sc);
1044 			return (ENOBUFS);
1045 		}
1046 		if (i == (MY_RX_LIST_CNT - 1)) {
1047 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1048 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1049 		} else {
1050 			cd->my_rx_chain[i].my_nextdesc =
1051 			    &cd->my_rx_chain[i + 1];
1052 			ld->my_rx_list[i].my_next =
1053 			    vtophys(&ld->my_rx_list[i + 1]);
1054 		}
1055 	}
1056 	cd->my_rx_head = &cd->my_rx_chain[0];
1057 	return (0);
1058 }
1059 
1060 /*
1061  * Initialize an RX descriptor and attach an MBUF cluster.
1062  */
1063 static int
1064 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1065 {
1066 	struct mbuf    *m_new = NULL;
1067 
1068 	MY_LOCK_ASSERT(sc);
1069 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1070 	if (m_new == NULL) {
1071 		if_printf(sc->my_ifp,
1072 		    "no memory for rx list -- packet dropped!\n");
1073 		return (ENOBUFS);
1074 	}
1075 	MCLGET(m_new, M_DONTWAIT);
1076 	if (!(m_new->m_flags & M_EXT)) {
1077 		if_printf(sc->my_ifp,
1078 		    "no memory for rx list -- packet dropped!\n");
1079 		m_freem(m_new);
1080 		return (ENOBUFS);
1081 	}
1082 	c->my_mbuf = m_new;
1083 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1084 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1085 	c->my_ptr->my_status = MY_OWNByNIC;
1086 	return (0);
1087 }
1088 
1089 /*
1090  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1091  * level protocols.
1092  */
1093 static void
1094 my_rxeof(struct my_softc * sc)
1095 {
1096 	struct ether_header *eh;
1097 	struct mbuf    *m;
1098 	struct ifnet   *ifp;
1099 	struct my_chain_onefrag *cur_rx;
1100 	int             total_len = 0;
1101 	u_int32_t       rxstat;
1102 
1103 	MY_LOCK_ASSERT(sc);
1104 	ifp = sc->my_ifp;
1105 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1106 	    & MY_OWNByNIC)) {
1107 		cur_rx = sc->my_cdata.my_rx_head;
1108 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1109 
1110 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1111 			ifp->if_ierrors++;
1112 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1113 			continue;
1114 		}
1115 		/* No errors; receive the packet. */
1116 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1117 		total_len -= ETHER_CRC_LEN;
1118 
1119 		if (total_len < MINCLSIZE) {
1120 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1121 			    total_len, 0, ifp, NULL);
1122 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1123 			if (m == NULL) {
1124 				ifp->if_ierrors++;
1125 				continue;
1126 			}
1127 		} else {
1128 			m = cur_rx->my_mbuf;
1129 			/*
1130 			 * Try to conjure up a new mbuf cluster. If that
1131 			 * fails, it means we have an out of memory condition
1132 			 * and should leave the buffer in place and continue.
1133 			 * This will result in a lost packet, but there's
1134 			 * little else we can do in this situation.
1135 			 */
1136 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1137 				ifp->if_ierrors++;
1138 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1139 				continue;
1140 			}
1141 			m->m_pkthdr.rcvif = ifp;
1142 			m->m_pkthdr.len = m->m_len = total_len;
1143 		}
1144 		ifp->if_ipackets++;
1145 		eh = mtod(m, struct ether_header *);
1146 #if NBPFILTER > 0
1147 		/*
1148 		 * Handle BPF listeners. Let the BPF user see the packet, but
1149 		 * don't pass it up to the ether_input() layer unless it's a
1150 		 * broadcast packet, multicast packet, matches our ethernet
1151 		 * address or the interface is in promiscuous mode.
1152 		 */
1153 		if (ifp->if_bpf) {
1154 			BPF_MTAP(ifp, m);
1155 			if (ifp->if_flags & IFF_PROMISC &&
1156 			    (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
1157 				ETHER_ADDR_LEN) &&
1158 			     (eh->ether_dhost[0] & 1) == 0)) {
1159 				m_freem(m);
1160 				continue;
1161 			}
1162 		}
1163 #endif
1164 		MY_UNLOCK(sc);
1165 		(*ifp->if_input)(ifp, m);
1166 		MY_LOCK(sc);
1167 	}
1168 	return;
1169 }
1170 
1171 
1172 /*
1173  * A frame was downloaded to the chip. It's safe for us to clean up the list
1174  * buffers.
1175  */
1176 static void
1177 my_txeof(struct my_softc * sc)
1178 {
1179 	struct my_chain *cur_tx;
1180 	struct ifnet   *ifp;
1181 
1182 	MY_LOCK_ASSERT(sc);
1183 	ifp = sc->my_ifp;
1184 	/* Clear the timeout timer. */
1185 	ifp->if_timer = 0;
1186 	if (sc->my_cdata.my_tx_head == NULL) {
1187 		return;
1188 	}
1189 	/*
1190 	 * Go through our tx list and free mbufs for those frames that have
1191 	 * been transmitted.
1192 	 */
1193 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1194 		u_int32_t       txstat;
1195 
1196 		cur_tx = sc->my_cdata.my_tx_head;
1197 		txstat = MY_TXSTATUS(cur_tx);
1198 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1199 			break;
1200 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1201 			if (txstat & MY_TXERR) {
1202 				ifp->if_oerrors++;
1203 				if (txstat & MY_EC) /* excessive collision */
1204 					ifp->if_collisions++;
1205 				if (txstat & MY_LC)	/* late collision */
1206 					ifp->if_collisions++;
1207 			}
1208 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1209 			    MY_NCRShift;
1210 		}
1211 		ifp->if_opackets++;
1212 		m_freem(cur_tx->my_mbuf);
1213 		cur_tx->my_mbuf = NULL;
1214 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1215 			sc->my_cdata.my_tx_head = NULL;
1216 			sc->my_cdata.my_tx_tail = NULL;
1217 			break;
1218 		}
1219 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1220 	}
1221 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1222 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1223 	}
1224 	return;
1225 }
1226 
1227 /*
1228  * TX 'end of channel' interrupt handler.
1229  */
1230 static void
1231 my_txeoc(struct my_softc * sc)
1232 {
1233 	struct ifnet   *ifp;
1234 
1235 	MY_LOCK_ASSERT(sc);
1236 	ifp = sc->my_ifp;
1237 	ifp->if_timer = 0;
1238 	if (sc->my_cdata.my_tx_head == NULL) {
1239 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1240 		sc->my_cdata.my_tx_tail = NULL;
1241 		if (sc->my_want_auto)
1242 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1243 	} else {
1244 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1245 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1246 			ifp->if_timer = 5;
1247 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1248 		}
1249 	}
1250 	return;
1251 }
1252 
1253 static void
1254 my_intr(void *arg)
1255 {
1256 	struct my_softc *sc;
1257 	struct ifnet   *ifp;
1258 	u_int32_t       status;
1259 
1260 	sc = arg;
1261 	MY_LOCK(sc);
1262 	ifp = sc->my_ifp;
1263 	if (!(ifp->if_flags & IFF_UP)) {
1264 		MY_UNLOCK(sc);
1265 		return;
1266 	}
1267 	/* Disable interrupts. */
1268 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1269 
1270 	for (;;) {
1271 		status = CSR_READ_4(sc, MY_ISR);
1272 		status &= MY_INTRS;
1273 		if (status)
1274 			CSR_WRITE_4(sc, MY_ISR, status);
1275 		else
1276 			break;
1277 
1278 		if (status & MY_RI)	/* receive interrupt */
1279 			my_rxeof(sc);
1280 
1281 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1282 			/* rx buffer unavailable or rx error */
1283 			ifp->if_ierrors++;
1284 #ifdef foo
1285 			my_stop(sc);
1286 			my_reset(sc);
1287 			my_init_locked(sc);
1288 #endif
1289 		}
1290 		if (status & MY_TI)	/* tx interrupt */
1291 			my_txeof(sc);
1292 		if (status & MY_ETI)	/* tx early interrupt */
1293 			my_txeof(sc);
1294 		if (status & MY_TBU)	/* tx buffer unavailable */
1295 			my_txeoc(sc);
1296 
1297 #if 0				/* 90/1/18 delete */
1298 		if (status & MY_FBE) {
1299 			my_reset(sc);
1300 			my_init_locked(sc);
1301 		}
1302 #endif
1303 
1304 	}
1305 
1306 	/* Re-enable interrupts. */
1307 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1308 	if (ifp->if_snd.ifq_head != NULL)
1309 		my_start_locked(ifp);
1310 	MY_UNLOCK(sc);
1311 	return;
1312 }
1313 
1314 /*
1315  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1316  * pointers to the fragment pointers.
1317  */
1318 static int
1319 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1320 {
1321 	struct my_desc *f = NULL;
1322 	int             total_len;
1323 	struct mbuf    *m, *m_new = NULL;
1324 
1325 	MY_LOCK_ASSERT(sc);
1326 	/* calculate the total tx pkt length */
1327 	total_len = 0;
1328 	for (m = m_head; m != NULL; m = m->m_next)
1329 		total_len += m->m_len;
1330 	/*
1331 	 * Start packing the mbufs in this chain into the fragment pointers.
1332 	 * Stop when we run out of fragments or hit the end of the mbuf
1333 	 * chain.
1334 	 */
1335 	m = m_head;
1336 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1337 	if (m_new == NULL) {
1338 		if_printf(sc->my_ifp, "no memory for tx list");
1339 		return (1);
1340 	}
1341 	if (m_head->m_pkthdr.len > MHLEN) {
1342 		MCLGET(m_new, M_DONTWAIT);
1343 		if (!(m_new->m_flags & M_EXT)) {
1344 			m_freem(m_new);
1345 			if_printf(sc->my_ifp, "no memory for tx list");
1346 			return (1);
1347 		}
1348 	}
1349 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1350 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1351 	m_freem(m_head);
1352 	m_head = m_new;
1353 	f = &c->my_ptr->my_frag[0];
1354 	f->my_status = 0;
1355 	f->my_data = vtophys(mtod(m_new, caddr_t));
1356 	total_len = m_new->m_len;
1357 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1358 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1359 	f->my_ctl |= total_len;	/* buffer size */
1360 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1361 	if (sc->my_info->my_did == MTD891ID)
1362 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1363 	c->my_mbuf = m_head;
1364 	c->my_lastdesc = 0;
1365 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1366 	return (0);
1367 }
1368 
1369 /*
1370  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1371  * to the mbuf data regions directly in the transmit lists. We also save a
1372  * copy of the pointers since the transmit list fragment pointers are
1373  * physical addresses.
1374  */
1375 static void
1376 my_start(struct ifnet * ifp)
1377 {
1378 	struct my_softc *sc;
1379 
1380 	sc = ifp->if_softc;
1381 	MY_LOCK(sc);
1382 	my_start_locked(ifp);
1383 	MY_UNLOCK(sc);
1384 }
1385 
1386 static void
1387 my_start_locked(struct ifnet * ifp)
1388 {
1389 	struct my_softc *sc;
1390 	struct mbuf    *m_head = NULL;
1391 	struct my_chain *cur_tx = NULL, *start_tx;
1392 
1393 	sc = ifp->if_softc;
1394 	MY_LOCK_ASSERT(sc);
1395 	if (sc->my_autoneg) {
1396 		sc->my_tx_pend = 1;
1397 		return;
1398 	}
1399 	/*
1400 	 * Check for an available queue slot. If there are none, punt.
1401 	 */
1402 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1403 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1404 		return;
1405 	}
1406 	start_tx = sc->my_cdata.my_tx_free;
1407 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1408 		IF_DEQUEUE(&ifp->if_snd, m_head);
1409 		if (m_head == NULL)
1410 			break;
1411 
1412 		/* Pick a descriptor off the free list. */
1413 		cur_tx = sc->my_cdata.my_tx_free;
1414 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1415 
1416 		/* Pack the data into the descriptor. */
1417 		my_encap(sc, cur_tx, m_head);
1418 
1419 		if (cur_tx != start_tx)
1420 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1421 #if NBPFILTER > 0
1422 		/*
1423 		 * If there's a BPF listener, bounce a copy of this frame to
1424 		 * him.
1425 		 */
1426 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1427 #endif
1428 	}
1429 	/*
1430 	 * If there are no packets queued, bail.
1431 	 */
1432 	if (cur_tx == NULL) {
1433 		return;
1434 	}
1435 	/*
1436 	 * Place the request for the upload interrupt in the last descriptor
1437 	 * in the chain. This way, if we're chaining several packets at once,
1438 	 * we'll only get an interupt once for the whole chain rather than
1439 	 * once for each packet.
1440 	 */
1441 	MY_TXCTL(cur_tx) |= MY_TXIC;
1442 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1443 	sc->my_cdata.my_tx_tail = cur_tx;
1444 	if (sc->my_cdata.my_tx_head == NULL)
1445 		sc->my_cdata.my_tx_head = start_tx;
1446 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1447 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1448 
1449 	/*
1450 	 * Set a timeout in case the chip goes out to lunch.
1451 	 */
1452 	ifp->if_timer = 5;
1453 	return;
1454 }
1455 
1456 static void
1457 my_init(void *xsc)
1458 {
1459 	struct my_softc *sc = xsc;
1460 
1461 	MY_LOCK(sc);
1462 	my_init_locked(sc);
1463 	MY_UNLOCK(sc);
1464 }
1465 
1466 static void
1467 my_init_locked(struct my_softc *sc)
1468 {
1469 	struct ifnet   *ifp = sc->my_ifp;
1470 	u_int16_t       phy_bmcr = 0;
1471 
1472 	MY_LOCK_ASSERT(sc);
1473 	if (sc->my_autoneg) {
1474 		return;
1475 	}
1476 	if (sc->my_pinfo != NULL)
1477 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1478 	/*
1479 	 * Cancel pending I/O and free all RX/TX buffers.
1480 	 */
1481 	my_stop(sc);
1482 	my_reset(sc);
1483 
1484 	/*
1485 	 * Set cache alignment and burst length.
1486 	 */
1487 #if 0				/* 89/9/1 modify,  */
1488 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1489 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1490 #endif
1491 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1492 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1493 	/*
1494 	 * 89/12/29 add, for mtd891,
1495 	 */
1496 	if (sc->my_info->my_did == MTD891ID) {
1497 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1498 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1499 	}
1500 	my_setcfg(sc, phy_bmcr);
1501 	/* Init circular RX list. */
1502 	if (my_list_rx_init(sc) == ENOBUFS) {
1503 		if_printf(ifp, "init failed: no memory for rx buffers\n");
1504 		my_stop(sc);
1505 		return;
1506 	}
1507 	/* Init TX descriptors. */
1508 	my_list_tx_init(sc);
1509 
1510 	/* If we want promiscuous mode, set the allframes bit. */
1511 	if (ifp->if_flags & IFF_PROMISC)
1512 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1513 	else
1514 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1515 
1516 	/*
1517 	 * Set capture broadcast bit to capture broadcast frames.
1518 	 */
1519 	if (ifp->if_flags & IFF_BROADCAST)
1520 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1521 	else
1522 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1523 
1524 	/*
1525 	 * Program the multicast filter, if necessary.
1526 	 */
1527 	my_setmulti(sc);
1528 
1529 	/*
1530 	 * Load the address of the RX list.
1531 	 */
1532 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1533 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1534 
1535 	/*
1536 	 * Enable interrupts.
1537 	 */
1538 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1539 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1540 
1541 	/* Enable receiver and transmitter. */
1542 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1543 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1544 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1545 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1546 
1547 	/* Restore state of BMCR */
1548 	if (sc->my_pinfo != NULL)
1549 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1550 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1551 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1552 	return;
1553 }
1554 
1555 /*
1556  * Set media options.
1557  */
1558 
1559 static int
1560 my_ifmedia_upd(struct ifnet * ifp)
1561 {
1562 	struct my_softc *sc;
1563 	struct ifmedia *ifm;
1564 
1565 	sc = ifp->if_softc;
1566 	MY_LOCK(sc);
1567 	ifm = &sc->ifmedia;
1568 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1569 		MY_UNLOCK(sc);
1570 		return (EINVAL);
1571 	}
1572 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1573 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1574 	else
1575 		my_setmode_mii(sc, ifm->ifm_media);
1576 	MY_UNLOCK(sc);
1577 	return (0);
1578 }
1579 
1580 /*
1581  * Report current media status.
1582  */
1583 
1584 static void
1585 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1586 {
1587 	struct my_softc *sc;
1588 	u_int16_t advert = 0, ability = 0;
1589 
1590 	sc = ifp->if_softc;
1591 	MY_LOCK(sc);
1592 	ifmr->ifm_active = IFM_ETHER;
1593 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1594 #if 0				/* this version did not support 1000M, */
1595 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1596 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1597 #endif
1598 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1599 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1600 		else
1601 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1602 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1603 			ifmr->ifm_active |= IFM_FDX;
1604 		else
1605 			ifmr->ifm_active |= IFM_HDX;
1606 
1607 		MY_UNLOCK(sc);
1608 		return;
1609 	}
1610 	ability = my_phy_readreg(sc, PHY_LPAR);
1611 	advert = my_phy_readreg(sc, PHY_ANAR);
1612 
1613 #if 0				/* this version did not support 1000M, */
1614 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1615 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1616 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1617 			advert = 0;
1618 			ability = 0;
1619 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1620 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1621 			advert = 0;
1622 			ability = 0;
1623 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1624 		}
1625 	}
1626 #endif
1627 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1628 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1629 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1630 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1631 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1632 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1633 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1634 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1635 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1636 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1637 	MY_UNLOCK(sc);
1638 	return;
1639 }
1640 
1641 static int
1642 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1643 {
1644 	struct my_softc *sc = ifp->if_softc;
1645 	struct ifreq   *ifr = (struct ifreq *) data;
1646 	int             error;
1647 
1648 	switch (command) {
1649 	case SIOCSIFFLAGS:
1650 		MY_LOCK(sc);
1651 		if (ifp->if_flags & IFF_UP)
1652 			my_init_locked(sc);
1653 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1654 			my_stop(sc);
1655 		MY_UNLOCK(sc);
1656 		error = 0;
1657 		break;
1658 	case SIOCADDMULTI:
1659 	case SIOCDELMULTI:
1660 		MY_LOCK(sc);
1661 		my_setmulti(sc);
1662 		MY_UNLOCK(sc);
1663 		error = 0;
1664 		break;
1665 	case SIOCGIFMEDIA:
1666 	case SIOCSIFMEDIA:
1667 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1668 		break;
1669 	default:
1670 		error = ether_ioctl(ifp, command, data);
1671 		break;
1672 	}
1673 	return (error);
1674 }
1675 
1676 static void
1677 my_watchdog(struct ifnet * ifp)
1678 {
1679 	struct my_softc *sc;
1680 
1681 	sc = ifp->if_softc;
1682 	MY_LOCK(sc);
1683 	if (sc->my_autoneg) {
1684 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1685 		MY_UNLOCK(sc);
1686 		return;
1687 	}
1688 	ifp->if_oerrors++;
1689 	if_printf(ifp, "watchdog timeout\n");
1690 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1691 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1692 	my_stop(sc);
1693 	my_reset(sc);
1694 	my_init_locked(sc);
1695 	if (ifp->if_snd.ifq_head != NULL)
1696 		my_start_locked(ifp);
1697 	MY_LOCK(sc);
1698 	return;
1699 }
1700 
1701 
1702 /*
1703  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1704  */
1705 static void
1706 my_stop(struct my_softc * sc)
1707 {
1708 	register int    i;
1709 	struct ifnet   *ifp;
1710 
1711 	MY_LOCK_ASSERT(sc);
1712 	ifp = sc->my_ifp;
1713 	ifp->if_timer = 0;
1714 
1715 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1716 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1717 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1718 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1719 
1720 	/*
1721 	 * Free data in the RX lists.
1722 	 */
1723 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1724 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1725 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1726 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1727 		}
1728 	}
1729 	bzero((char *)&sc->my_ldata->my_rx_list,
1730 	    sizeof(sc->my_ldata->my_rx_list));
1731 	/*
1732 	 * Free the TX list buffers.
1733 	 */
1734 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1735 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1736 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1737 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1738 		}
1739 	}
1740 	bzero((char *)&sc->my_ldata->my_tx_list,
1741 	    sizeof(sc->my_ldata->my_tx_list));
1742 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1743 	return;
1744 }
1745 
1746 /*
1747  * Stop all chip I/O so that the kernel's probe routines don't get confused
1748  * by errant DMAs when rebooting.
1749  */
1750 static void
1751 my_shutdown(device_t dev)
1752 {
1753 	struct my_softc *sc;
1754 
1755 	sc = device_get_softc(dev);
1756 	MY_LOCK(sc);
1757 	my_stop(sc);
1758 	MY_UNLOCK(sc);
1759 	return;
1760 }
1761