xref: /freebsd/sys/dev/my/if_my.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Written by: yen_cw@myson.com.tw
5  * Copyright (c) 2002 Myson Technology Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/queue.h>
43 #include <sys/types.h>
44 #include <sys/module.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 
48 #define NBPFILTER	1
49 
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_dl.h>
57 #include <net/bpf.h>
58 
59 #include <vm/vm.h>		/* for vtophys */
60 #include <vm/pmap.h>		/* for vtophys */
61 #include <machine/bus.h>
62 #include <machine/resource.h>
63 #include <sys/bus.h>
64 #include <sys/rman.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 /*
70  * #define MY_USEIOSPACE
71  */
72 
73 static int      MY_USEIOSPACE = 1;
74 
75 #ifdef MY_USEIOSPACE
76 #define MY_RES                  SYS_RES_IOPORT
77 #define MY_RID                  MY_PCI_LOIO
78 #else
79 #define MY_RES                  SYS_RES_MEMORY
80 #define MY_RID                  MY_PCI_LOMEM
81 #endif
82 
83 
84 #include <dev/my/if_myreg.h>
85 
86 /*
87  * Various supported device vendors/types and their names.
88  */
89 struct my_type *my_info_tmp;
90 static struct my_type my_devs[] = {
91 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
92 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
93 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
94 	{0, 0, NULL}
95 };
96 
97 /*
98  * Various supported PHY vendors/types and their names. Note that this driver
99  * will work with pretty much any MII-compliant PHY, so failure to positively
100  * identify the chip is not a fatal error.
101  */
102 static struct my_type my_phys[] = {
103 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
104 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
105 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
106 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
107 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
108 	{0, 0, "<MII-compliant physical interface>"}
109 };
110 
111 static int      my_probe(device_t);
112 static int      my_attach(device_t);
113 static int      my_detach(device_t);
114 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
115 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
116 static void     my_rxeof(struct my_softc *);
117 static void     my_txeof(struct my_softc *);
118 static void     my_txeoc(struct my_softc *);
119 static void     my_intr(void *);
120 static void     my_start(struct ifnet *);
121 static void     my_start_locked(struct ifnet *);
122 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
123 static void     my_init(void *);
124 static void     my_init_locked(struct my_softc *);
125 static void     my_stop(struct my_softc *);
126 static void     my_autoneg_timeout(void *);
127 static void     my_watchdog(void *);
128 static int      my_shutdown(device_t);
129 static int      my_ifmedia_upd(struct ifnet *);
130 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131 static u_int16_t my_phy_readreg(struct my_softc *, int);
132 static void     my_phy_writereg(struct my_softc *, int, int);
133 static void     my_autoneg_xmit(struct my_softc *);
134 static void     my_autoneg_mii(struct my_softc *, int, int);
135 static void     my_setmode_mii(struct my_softc *, int);
136 static void     my_getmode_mii(struct my_softc *);
137 static void     my_setcfg(struct my_softc *, int);
138 static void     my_setmulti(struct my_softc *);
139 static void     my_reset(struct my_softc *);
140 static int      my_list_rx_init(struct my_softc *);
141 static int      my_list_tx_init(struct my_softc *);
142 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
143 
144 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
145 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
146 
147 static device_method_t my_methods[] = {
148 	/* Device interface */
149 	DEVMETHOD(device_probe, my_probe),
150 	DEVMETHOD(device_attach, my_attach),
151 	DEVMETHOD(device_detach, my_detach),
152 	DEVMETHOD(device_shutdown, my_shutdown),
153 
154 	DEVMETHOD_END
155 };
156 
157 static driver_t my_driver = {
158 	"my",
159 	my_methods,
160 	sizeof(struct my_softc)
161 };
162 
163 static devclass_t my_devclass;
164 
165 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
166 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, my, my_devs,
167     nitems(my_devs) - 1);
168 MODULE_DEPEND(my, pci, 1, 1, 1);
169 MODULE_DEPEND(my, ether, 1, 1, 1);
170 
171 static long
172 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
173 {
174 	long            miir;
175 	int             i;
176 	int             mask, data;
177 
178 	MY_LOCK_ASSERT(sc);
179 
180 	/* enable MII output */
181 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
182 	miir &= 0xfffffff0;
183 
184 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
185 
186 	/* send 32 1's preamble */
187 	for (i = 0; i < 32; i++) {
188 		/* low MDC; MDO is already high (miir) */
189 		miir &= ~MY_MASK_MIIR_MII_MDC;
190 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
191 
192 		/* high MDC */
193 		miir |= MY_MASK_MIIR_MII_MDC;
194 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
195 	}
196 
197 	/* calculate ST+OP+PHYAD+REGAD+TA */
198 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
199 
200 	/* sent out */
201 	mask = 0x8000;
202 	while (mask) {
203 		/* low MDC, prepare MDO */
204 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
205 		if (mask & data)
206 			miir |= MY_MASK_MIIR_MII_MDO;
207 
208 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
209 		/* high MDC */
210 		miir |= MY_MASK_MIIR_MII_MDC;
211 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
212 		DELAY(30);
213 
214 		/* next */
215 		mask >>= 1;
216 		if (mask == 0x2 && opcode == MY_OP_READ)
217 			miir &= ~MY_MASK_MIIR_MII_WRITE;
218 	}
219 
220 	return miir;
221 }
222 
223 
224 static u_int16_t
225 my_phy_readreg(struct my_softc * sc, int reg)
226 {
227 	long            miir;
228 	int             mask, data;
229 
230 	MY_LOCK_ASSERT(sc);
231 
232 	if (sc->my_info->my_did == MTD803ID)
233 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
234 	else {
235 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
236 
237 		/* read data */
238 		mask = 0x8000;
239 		data = 0;
240 		while (mask) {
241 			/* low MDC */
242 			miir &= ~MY_MASK_MIIR_MII_MDC;
243 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
244 
245 			/* read MDI */
246 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
247 			if (miir & MY_MASK_MIIR_MII_MDI)
248 				data |= mask;
249 
250 			/* high MDC, and wait */
251 			miir |= MY_MASK_MIIR_MII_MDC;
252 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
253 			DELAY(30);
254 
255 			/* next */
256 			mask >>= 1;
257 		}
258 
259 		/* low MDC */
260 		miir &= ~MY_MASK_MIIR_MII_MDC;
261 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
262 	}
263 
264 	return (u_int16_t) data;
265 }
266 
267 
268 static void
269 my_phy_writereg(struct my_softc * sc, int reg, int data)
270 {
271 	long            miir;
272 	int             mask;
273 
274 	MY_LOCK_ASSERT(sc);
275 
276 	if (sc->my_info->my_did == MTD803ID)
277 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
278 	else {
279 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
280 
281 		/* write data */
282 		mask = 0x8000;
283 		while (mask) {
284 			/* low MDC, prepare MDO */
285 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
286 			if (mask & data)
287 				miir |= MY_MASK_MIIR_MII_MDO;
288 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
289 			DELAY(1);
290 
291 			/* high MDC */
292 			miir |= MY_MASK_MIIR_MII_MDC;
293 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
294 			DELAY(1);
295 
296 			/* next */
297 			mask >>= 1;
298 		}
299 
300 		/* low MDC */
301 		miir &= ~MY_MASK_MIIR_MII_MDC;
302 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
303 	}
304 	return;
305 }
306 
307 
308 /*
309  * Program the 64-bit multicast hash filter.
310  */
311 static void
312 my_setmulti(struct my_softc * sc)
313 {
314 	struct ifnet   *ifp;
315 	int             h = 0;
316 	u_int32_t       hashes[2] = {0, 0};
317 	struct ifmultiaddr *ifma;
318 	u_int32_t       rxfilt;
319 	int             mcnt = 0;
320 
321 	MY_LOCK_ASSERT(sc);
322 
323 	ifp = sc->my_ifp;
324 
325 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
326 
327 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
328 		rxfilt |= MY_AM;
329 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
330 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
331 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
332 
333 		return;
334 	}
335 	/* first, zot all the existing hash bits */
336 	CSR_WRITE_4(sc, MY_MAR0, 0);
337 	CSR_WRITE_4(sc, MY_MAR1, 0);
338 
339 	/* now program new ones */
340 	if_maddr_rlock(ifp);
341 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
342 		if (ifma->ifma_addr->sa_family != AF_LINK)
343 			continue;
344 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
345 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
346 		if (h < 32)
347 			hashes[0] |= (1 << h);
348 		else
349 			hashes[1] |= (1 << (h - 32));
350 		mcnt++;
351 	}
352 	if_maddr_runlock(ifp);
353 
354 	if (mcnt)
355 		rxfilt |= MY_AM;
356 	else
357 		rxfilt &= ~MY_AM;
358 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
359 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
360 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
361 	return;
362 }
363 
364 /*
365  * Initiate an autonegotiation session.
366  */
367 static void
368 my_autoneg_xmit(struct my_softc * sc)
369 {
370 	u_int16_t       phy_sts = 0;
371 
372 	MY_LOCK_ASSERT(sc);
373 
374 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
375 	DELAY(500);
376 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
377 
378 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
379 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
380 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
381 
382 	return;
383 }
384 
385 static void
386 my_autoneg_timeout(void *arg)
387 {
388 	struct my_softc *sc;
389 
390 	sc = arg;
391 	MY_LOCK_ASSERT(sc);
392 	my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
393 }
394 
395 /*
396  * Invoke autonegotiation on a PHY.
397  */
398 static void
399 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
400 {
401 	u_int16_t       phy_sts = 0, media, advert, ability;
402 	u_int16_t       ability2 = 0;
403 	struct ifnet   *ifp;
404 	struct ifmedia *ifm;
405 
406 	MY_LOCK_ASSERT(sc);
407 
408 	ifm = &sc->ifmedia;
409 	ifp = sc->my_ifp;
410 
411 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
412 
413 #ifndef FORCE_AUTONEG_TFOUR
414 	/*
415 	 * First, see if autoneg is supported. If not, there's no point in
416 	 * continuing.
417 	 */
418 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
419 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
420 		if (verbose)
421 			device_printf(sc->my_dev,
422 			    "autonegotiation not supported\n");
423 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
424 		return;
425 	}
426 #endif
427 	switch (flag) {
428 	case MY_FLAG_FORCEDELAY:
429 		/*
430 		 * XXX Never use this option anywhere but in the probe
431 		 * routine: making the kernel stop dead in its tracks for
432 		 * three whole seconds after we've gone multi-user is really
433 		 * bad manners.
434 		 */
435 		my_autoneg_xmit(sc);
436 		DELAY(5000000);
437 		break;
438 	case MY_FLAG_SCHEDDELAY:
439 		/*
440 		 * Wait for the transmitter to go idle before starting an
441 		 * autoneg session, otherwise my_start() may clobber our
442 		 * timeout, and we don't want to allow transmission during an
443 		 * autoneg session since that can screw it up.
444 		 */
445 		if (sc->my_cdata.my_tx_head != NULL) {
446 			sc->my_want_auto = 1;
447 			MY_UNLOCK(sc);
448 			return;
449 		}
450 		my_autoneg_xmit(sc);
451 		callout_reset(&sc->my_autoneg_timer, hz * 5, my_autoneg_timeout,
452 		    sc);
453 		sc->my_autoneg = 1;
454 		sc->my_want_auto = 0;
455 		return;
456 	case MY_FLAG_DELAYTIMEO:
457 		callout_stop(&sc->my_autoneg_timer);
458 		sc->my_autoneg = 0;
459 		break;
460 	default:
461 		device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag);
462 		return;
463 	}
464 
465 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
466 		if (verbose)
467 			device_printf(sc->my_dev, "autoneg complete, ");
468 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
469 	} else {
470 		if (verbose)
471 			device_printf(sc->my_dev, "autoneg not complete, ");
472 	}
473 
474 	media = my_phy_readreg(sc, PHY_BMCR);
475 
476 	/* Link is good. Report modes and set duplex mode. */
477 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
478 		if (verbose)
479 			device_printf(sc->my_dev, "link status good. ");
480 		advert = my_phy_readreg(sc, PHY_ANAR);
481 		ability = my_phy_readreg(sc, PHY_LPAR);
482 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
483 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
484 			ability2 = my_phy_readreg(sc, PHY_1000SR);
485 			if (ability2 & PHY_1000SR_1000BTXFULL) {
486 				advert = 0;
487 				ability = 0;
488 				/*
489 				 * this version did not support 1000M,
490 				 * ifm->ifm_media =
491 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
492 				 */
493 				ifm->ifm_media =
494 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
495 				media &= ~PHY_BMCR_SPEEDSEL;
496 				media |= PHY_BMCR_1000;
497 				media |= PHY_BMCR_DUPLEX;
498 				printf("(full-duplex, 1000Mbps)\n");
499 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
500 				advert = 0;
501 				ability = 0;
502 				/*
503 				 * this version did not support 1000M,
504 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
505 				 */
506 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
507 				media &= ~PHY_BMCR_SPEEDSEL;
508 				media &= ~PHY_BMCR_DUPLEX;
509 				media |= PHY_BMCR_1000;
510 				printf("(half-duplex, 1000Mbps)\n");
511 			}
512 		}
513 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
514 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
515 			media |= PHY_BMCR_SPEEDSEL;
516 			media &= ~PHY_BMCR_DUPLEX;
517 			printf("(100baseT4)\n");
518 		} else if (advert & PHY_ANAR_100BTXFULL &&
519 			   ability & PHY_ANAR_100BTXFULL) {
520 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
521 			media |= PHY_BMCR_SPEEDSEL;
522 			media |= PHY_BMCR_DUPLEX;
523 			printf("(full-duplex, 100Mbps)\n");
524 		} else if (advert & PHY_ANAR_100BTXHALF &&
525 			   ability & PHY_ANAR_100BTXHALF) {
526 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
527 			media |= PHY_BMCR_SPEEDSEL;
528 			media &= ~PHY_BMCR_DUPLEX;
529 			printf("(half-duplex, 100Mbps)\n");
530 		} else if (advert & PHY_ANAR_10BTFULL &&
531 			   ability & PHY_ANAR_10BTFULL) {
532 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
533 			media &= ~PHY_BMCR_SPEEDSEL;
534 			media |= PHY_BMCR_DUPLEX;
535 			printf("(full-duplex, 10Mbps)\n");
536 		} else if (advert) {
537 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
538 			media &= ~PHY_BMCR_SPEEDSEL;
539 			media &= ~PHY_BMCR_DUPLEX;
540 			printf("(half-duplex, 10Mbps)\n");
541 		}
542 		media &= ~PHY_BMCR_AUTONEGENBL;
543 
544 		/* Set ASIC's duplex mode to match the PHY. */
545 		my_phy_writereg(sc, PHY_BMCR, media);
546 		my_setcfg(sc, media);
547 	} else {
548 		if (verbose)
549 			device_printf(sc->my_dev, "no carrier\n");
550 	}
551 
552 	my_init_locked(sc);
553 	if (sc->my_tx_pend) {
554 		sc->my_autoneg = 0;
555 		sc->my_tx_pend = 0;
556 		my_start_locked(ifp);
557 	}
558 	return;
559 }
560 
561 /*
562  * To get PHY ability.
563  */
564 static void
565 my_getmode_mii(struct my_softc * sc)
566 {
567 	u_int16_t       bmsr;
568 	struct ifnet   *ifp;
569 
570 	MY_LOCK_ASSERT(sc);
571 	ifp = sc->my_ifp;
572 	bmsr = my_phy_readreg(sc, PHY_BMSR);
573 	if (bootverbose)
574 		device_printf(sc->my_dev, "PHY status word: %x\n", bmsr);
575 
576 	/* fallback */
577 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
578 
579 	if (bmsr & PHY_BMSR_10BTHALF) {
580 		if (bootverbose)
581 			device_printf(sc->my_dev,
582 			    "10Mbps half-duplex mode supported\n");
583 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
584 		    0, NULL);
585 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
586 	}
587 	if (bmsr & PHY_BMSR_10BTFULL) {
588 		if (bootverbose)
589 			device_printf(sc->my_dev,
590 			    "10Mbps full-duplex mode supported\n");
591 
592 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
593 		    0, NULL);
594 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
595 	}
596 	if (bmsr & PHY_BMSR_100BTXHALF) {
597 		if (bootverbose)
598 			device_printf(sc->my_dev,
599 			    "100Mbps half-duplex mode supported\n");
600 		ifp->if_baudrate = 100000000;
601 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
602 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
603 			    0, NULL);
604 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
605 	}
606 	if (bmsr & PHY_BMSR_100BTXFULL) {
607 		if (bootverbose)
608 			device_printf(sc->my_dev,
609 			    "100Mbps full-duplex mode supported\n");
610 		ifp->if_baudrate = 100000000;
611 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
612 		    0, NULL);
613 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
614 	}
615 	/* Some also support 100BaseT4. */
616 	if (bmsr & PHY_BMSR_100BT4) {
617 		if (bootverbose)
618 			device_printf(sc->my_dev, "100baseT4 mode supported\n");
619 		ifp->if_baudrate = 100000000;
620 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
621 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
622 #ifdef FORCE_AUTONEG_TFOUR
623 		if (bootverbose)
624 			device_printf(sc->my_dev,
625 			    "forcing on autoneg support for BT4\n");
626 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
627 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
628 #endif
629 	}
630 #if 0				/* this version did not support 1000M, */
631 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
632 		if (bootverbose)
633 			device_printf(sc->my_dev,
634 			    "1000Mbps half-duplex mode supported\n");
635 
636 		ifp->if_baudrate = 1000000000;
637 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
638 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
639 		    0, NULL);
640 		if (bootverbose)
641 			device_printf(sc->my_dev,
642 			    "1000Mbps full-duplex mode supported\n");
643 		ifp->if_baudrate = 1000000000;
644 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
645 		    0, NULL);
646 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
647 	}
648 #endif
649 	if (bmsr & PHY_BMSR_CANAUTONEG) {
650 		if (bootverbose)
651 			device_printf(sc->my_dev, "autoneg supported\n");
652 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
653 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
654 	}
655 	return;
656 }
657 
658 /*
659  * Set speed and duplex mode.
660  */
661 static void
662 my_setmode_mii(struct my_softc * sc, int media)
663 {
664 	u_int16_t       bmcr;
665 
666 	MY_LOCK_ASSERT(sc);
667 	/*
668 	 * If an autoneg session is in progress, stop it.
669 	 */
670 	if (sc->my_autoneg) {
671 		device_printf(sc->my_dev, "canceling autoneg session\n");
672 		callout_stop(&sc->my_autoneg_timer);
673 		sc->my_autoneg = sc->my_want_auto = 0;
674 		bmcr = my_phy_readreg(sc, PHY_BMCR);
675 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
676 		my_phy_writereg(sc, PHY_BMCR, bmcr);
677 	}
678 	device_printf(sc->my_dev, "selecting MII, ");
679 	bmcr = my_phy_readreg(sc, PHY_BMCR);
680 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
681 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
682 
683 #if 0				/* this version did not support 1000M, */
684 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
685 		printf("1000Mbps/T4, half-duplex\n");
686 		bmcr &= ~PHY_BMCR_SPEEDSEL;
687 		bmcr &= ~PHY_BMCR_DUPLEX;
688 		bmcr |= PHY_BMCR_1000;
689 	}
690 #endif
691 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
692 		printf("100Mbps/T4, half-duplex\n");
693 		bmcr |= PHY_BMCR_SPEEDSEL;
694 		bmcr &= ~PHY_BMCR_DUPLEX;
695 	}
696 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
697 		printf("100Mbps, ");
698 		bmcr |= PHY_BMCR_SPEEDSEL;
699 	}
700 	if (IFM_SUBTYPE(media) == IFM_10_T) {
701 		printf("10Mbps, ");
702 		bmcr &= ~PHY_BMCR_SPEEDSEL;
703 	}
704 	if ((media & IFM_GMASK) == IFM_FDX) {
705 		printf("full duplex\n");
706 		bmcr |= PHY_BMCR_DUPLEX;
707 	} else {
708 		printf("half duplex\n");
709 		bmcr &= ~PHY_BMCR_DUPLEX;
710 	}
711 	my_phy_writereg(sc, PHY_BMCR, bmcr);
712 	my_setcfg(sc, bmcr);
713 	return;
714 }
715 
716 /*
717  * The Myson manual states that in order to fiddle with the 'full-duplex' and
718  * '100Mbps' bits in the netconfig register, we first have to put the
719  * transmit and/or receive logic in the idle state.
720  */
721 static void
722 my_setcfg(struct my_softc * sc, int bmcr)
723 {
724 	int             i, restart = 0;
725 
726 	MY_LOCK_ASSERT(sc);
727 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
728 		restart = 1;
729 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
730 		for (i = 0; i < MY_TIMEOUT; i++) {
731 			DELAY(10);
732 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
733 			    (MY_TXRUN | MY_RXRUN)))
734 				break;
735 		}
736 		if (i == MY_TIMEOUT)
737 			device_printf(sc->my_dev,
738 			    "failed to force tx and rx to idle \n");
739 	}
740 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
741 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
742 	if (bmcr & PHY_BMCR_1000)
743 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
744 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
745 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
746 	if (bmcr & PHY_BMCR_DUPLEX)
747 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
748 	else
749 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
750 	if (restart)
751 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
752 	return;
753 }
754 
755 static void
756 my_reset(struct my_softc * sc)
757 {
758 	int    i;
759 
760 	MY_LOCK_ASSERT(sc);
761 	MY_SETBIT(sc, MY_BCR, MY_SWR);
762 	for (i = 0; i < MY_TIMEOUT; i++) {
763 		DELAY(10);
764 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
765 			break;
766 	}
767 	if (i == MY_TIMEOUT)
768 		device_printf(sc->my_dev, "reset never completed!\n");
769 
770 	/* Wait a little while for the chip to get its brains in order. */
771 	DELAY(1000);
772 	return;
773 }
774 
775 /*
776  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
777  * list and return a device name if we find a match.
778  */
779 static int
780 my_probe(device_t dev)
781 {
782 	struct my_type *t;
783 
784 	t = my_devs;
785 	while (t->my_name != NULL) {
786 		if ((pci_get_vendor(dev) == t->my_vid) &&
787 		    (pci_get_device(dev) == t->my_did)) {
788 			device_set_desc(dev, t->my_name);
789 			my_info_tmp = t;
790 			return (BUS_PROBE_DEFAULT);
791 		}
792 		t++;
793 	}
794 	return (ENXIO);
795 }
796 
797 /*
798  * Attach the interface. Allocate softc structures, do ifmedia setup and
799  * ethernet/BPF attach.
800  */
801 static int
802 my_attach(device_t dev)
803 {
804 	int             i;
805 	u_char          eaddr[ETHER_ADDR_LEN];
806 	u_int32_t       iobase;
807 	struct my_softc *sc;
808 	struct ifnet   *ifp;
809 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
810 	unsigned int    round;
811 	caddr_t         roundptr;
812 	struct my_type *p;
813 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
814 	int             rid, error = 0;
815 
816 	sc = device_get_softc(dev);
817 	sc->my_dev = dev;
818 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
819 	    MTX_DEF);
820 	callout_init_mtx(&sc->my_autoneg_timer, &sc->my_mtx, 0);
821 	callout_init_mtx(&sc->my_watchdog, &sc->my_mtx, 0);
822 
823 	/*
824 	 * Map control/status registers.
825 	 */
826 	pci_enable_busmaster(dev);
827 
828 	if (my_info_tmp->my_did == MTD800ID) {
829 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
830 		if (iobase & 0x300)
831 			MY_USEIOSPACE = 0;
832 	}
833 
834 	rid = MY_RID;
835 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
836 
837 	if (sc->my_res == NULL) {
838 		device_printf(dev, "couldn't map ports/memory\n");
839 		error = ENXIO;
840 		goto destroy_mutex;
841 	}
842 	sc->my_btag = rman_get_bustag(sc->my_res);
843 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
844 
845 	rid = 0;
846 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
847 					    RF_SHAREABLE | RF_ACTIVE);
848 
849 	if (sc->my_irq == NULL) {
850 		device_printf(dev, "couldn't map interrupt\n");
851 		error = ENXIO;
852 		goto release_io;
853 	}
854 
855 	sc->my_info = my_info_tmp;
856 
857 	/* Reset the adapter. */
858 	MY_LOCK(sc);
859 	my_reset(sc);
860 	MY_UNLOCK(sc);
861 
862 	/*
863 	 * Get station address
864 	 */
865 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
866 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
867 
868 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
869 				  M_DEVBUF, M_NOWAIT);
870 	if (sc->my_ldata_ptr == NULL) {
871 		device_printf(dev, "no memory for list buffers!\n");
872 		error = ENXIO;
873 		goto release_irq;
874 	}
875 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
876 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
877 	roundptr = sc->my_ldata_ptr;
878 	for (i = 0; i < 8; i++) {
879 		if (round % 8) {
880 			round++;
881 			roundptr++;
882 		} else
883 			break;
884 	}
885 	sc->my_ldata = (struct my_list_data *) roundptr;
886 	bzero(sc->my_ldata, sizeof(struct my_list_data));
887 
888 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
889 	if (ifp == NULL) {
890 		device_printf(dev, "can not if_alloc()\n");
891 		error = ENOSPC;
892 		goto free_ldata;
893 	}
894 	ifp->if_softc = sc;
895 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
896 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
897 	ifp->if_ioctl = my_ioctl;
898 	ifp->if_start = my_start;
899 	ifp->if_init = my_init;
900 	ifp->if_baudrate = 10000000;
901 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
902 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
903 	IFQ_SET_READY(&ifp->if_snd);
904 
905 	if (sc->my_info->my_did == MTD803ID)
906 		sc->my_pinfo = my_phys;
907 	else {
908 		if (bootverbose)
909 			device_printf(dev, "probing for a PHY\n");
910 		MY_LOCK(sc);
911 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
912 			if (bootverbose)
913 				device_printf(dev, "checking address: %d\n", i);
914 			sc->my_phy_addr = i;
915 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
916 			if ((phy_sts != 0) && (phy_sts != 0xffff))
917 				break;
918 			else
919 				phy_sts = 0;
920 		}
921 		if (phy_sts) {
922 			phy_vid = my_phy_readreg(sc, PHY_VENID);
923 			phy_did = my_phy_readreg(sc, PHY_DEVID);
924 			if (bootverbose) {
925 				device_printf(dev, "found PHY at address %d, ",
926 				    sc->my_phy_addr);
927 				printf("vendor id: %x device id: %x\n",
928 				    phy_vid, phy_did);
929 			}
930 			p = my_phys;
931 			while (p->my_vid) {
932 				if (phy_vid == p->my_vid) {
933 					sc->my_pinfo = p;
934 					break;
935 				}
936 				p++;
937 			}
938 			if (sc->my_pinfo == NULL)
939 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
940 			if (bootverbose)
941 				device_printf(dev, "PHY type: %s\n",
942 				       sc->my_pinfo->my_name);
943 		} else {
944 			MY_UNLOCK(sc);
945 			device_printf(dev, "MII without any phy!\n");
946 			error = ENXIO;
947 			goto free_if;
948 		}
949 		MY_UNLOCK(sc);
950 	}
951 
952 	/* Do ifmedia setup. */
953 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
954 	MY_LOCK(sc);
955 	my_getmode_mii(sc);
956 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
957 	media = sc->ifmedia.ifm_media;
958 	my_stop(sc);
959 	MY_UNLOCK(sc);
960 	ifmedia_set(&sc->ifmedia, media);
961 
962 	ether_ifattach(ifp, eaddr);
963 
964 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
965 			       NULL, my_intr, sc, &sc->my_intrhand);
966 
967 	if (error) {
968 		device_printf(dev, "couldn't set up irq\n");
969 		goto detach_if;
970 	}
971 
972 	return (0);
973 
974 detach_if:
975 	ether_ifdetach(ifp);
976 free_if:
977 	if_free(ifp);
978 free_ldata:
979 	free(sc->my_ldata_ptr, M_DEVBUF);
980 release_irq:
981 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
982 release_io:
983 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
984 destroy_mutex:
985 	mtx_destroy(&sc->my_mtx);
986 	return (error);
987 }
988 
989 static int
990 my_detach(device_t dev)
991 {
992 	struct my_softc *sc;
993 	struct ifnet   *ifp;
994 
995 	sc = device_get_softc(dev);
996 	ifp = sc->my_ifp;
997 	ether_ifdetach(ifp);
998 	MY_LOCK(sc);
999 	my_stop(sc);
1000 	MY_UNLOCK(sc);
1001 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
1002 	callout_drain(&sc->my_watchdog);
1003 	callout_drain(&sc->my_autoneg_timer);
1004 
1005 	if_free(ifp);
1006 	free(sc->my_ldata_ptr, M_DEVBUF);
1007 
1008 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1009 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1010 	mtx_destroy(&sc->my_mtx);
1011 	return (0);
1012 }
1013 
1014 
1015 /*
1016  * Initialize the transmit descriptors.
1017  */
1018 static int
1019 my_list_tx_init(struct my_softc * sc)
1020 {
1021 	struct my_chain_data *cd;
1022 	struct my_list_data *ld;
1023 	int             i;
1024 
1025 	MY_LOCK_ASSERT(sc);
1026 	cd = &sc->my_cdata;
1027 	ld = sc->my_ldata;
1028 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1029 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1030 		if (i == (MY_TX_LIST_CNT - 1))
1031 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1032 		else
1033 			cd->my_tx_chain[i].my_nextdesc =
1034 			    &cd->my_tx_chain[i + 1];
1035 	}
1036 	cd->my_tx_free = &cd->my_tx_chain[0];
1037 	cd->my_tx_tail = cd->my_tx_head = NULL;
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1043  * arrange the descriptors in a closed ring, so that the last descriptor
1044  * points back to the first.
1045  */
1046 static int
1047 my_list_rx_init(struct my_softc * sc)
1048 {
1049 	struct my_chain_data *cd;
1050 	struct my_list_data *ld;
1051 	int             i;
1052 
1053 	MY_LOCK_ASSERT(sc);
1054 	cd = &sc->my_cdata;
1055 	ld = sc->my_ldata;
1056 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1057 		cd->my_rx_chain[i].my_ptr =
1058 		    (struct my_desc *) & ld->my_rx_list[i];
1059 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1060 			MY_UNLOCK(sc);
1061 			return (ENOBUFS);
1062 		}
1063 		if (i == (MY_RX_LIST_CNT - 1)) {
1064 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1065 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1066 		} else {
1067 			cd->my_rx_chain[i].my_nextdesc =
1068 			    &cd->my_rx_chain[i + 1];
1069 			ld->my_rx_list[i].my_next =
1070 			    vtophys(&ld->my_rx_list[i + 1]);
1071 		}
1072 	}
1073 	cd->my_rx_head = &cd->my_rx_chain[0];
1074 	return (0);
1075 }
1076 
1077 /*
1078  * Initialize an RX descriptor and attach an MBUF cluster.
1079  */
1080 static int
1081 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1082 {
1083 	struct mbuf    *m_new = NULL;
1084 
1085 	MY_LOCK_ASSERT(sc);
1086 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1087 	if (m_new == NULL) {
1088 		device_printf(sc->my_dev,
1089 		    "no memory for rx list -- packet dropped!\n");
1090 		return (ENOBUFS);
1091 	}
1092 	if (!(MCLGET(m_new, M_NOWAIT))) {
1093 		device_printf(sc->my_dev,
1094 		    "no memory for rx list -- packet dropped!\n");
1095 		m_freem(m_new);
1096 		return (ENOBUFS);
1097 	}
1098 	c->my_mbuf = m_new;
1099 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1100 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1101 	c->my_ptr->my_status = MY_OWNByNIC;
1102 	return (0);
1103 }
1104 
1105 /*
1106  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1107  * level protocols.
1108  */
1109 static void
1110 my_rxeof(struct my_softc * sc)
1111 {
1112 	struct ether_header *eh;
1113 	struct mbuf    *m;
1114 	struct ifnet   *ifp;
1115 	struct my_chain_onefrag *cur_rx;
1116 	int             total_len = 0;
1117 	u_int32_t       rxstat;
1118 
1119 	MY_LOCK_ASSERT(sc);
1120 	ifp = sc->my_ifp;
1121 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1122 	    & MY_OWNByNIC)) {
1123 		cur_rx = sc->my_cdata.my_rx_head;
1124 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1125 
1126 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1127 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1128 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1129 			continue;
1130 		}
1131 		/* No errors; receive the packet. */
1132 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1133 		total_len -= ETHER_CRC_LEN;
1134 
1135 		if (total_len < MINCLSIZE) {
1136 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1137 			    total_len, 0, ifp, NULL);
1138 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1139 			if (m == NULL) {
1140 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1141 				continue;
1142 			}
1143 		} else {
1144 			m = cur_rx->my_mbuf;
1145 			/*
1146 			 * Try to conjure up a new mbuf cluster. If that
1147 			 * fails, it means we have an out of memory condition
1148 			 * and should leave the buffer in place and continue.
1149 			 * This will result in a lost packet, but there's
1150 			 * little else we can do in this situation.
1151 			 */
1152 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1153 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1154 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1155 				continue;
1156 			}
1157 			m->m_pkthdr.rcvif = ifp;
1158 			m->m_pkthdr.len = m->m_len = total_len;
1159 		}
1160 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1161 		eh = mtod(m, struct ether_header *);
1162 #if NBPFILTER > 0
1163 		/*
1164 		 * Handle BPF listeners. Let the BPF user see the packet, but
1165 		 * don't pass it up to the ether_input() layer unless it's a
1166 		 * broadcast packet, multicast packet, matches our ethernet
1167 		 * address or the interface is in promiscuous mode.
1168 		 */
1169 		if (bpf_peers_present(ifp->if_bpf)) {
1170 			bpf_mtap(ifp->if_bpf, m);
1171 			if (ifp->if_flags & IFF_PROMISC &&
1172 			    (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
1173 				ETHER_ADDR_LEN) &&
1174 			     (eh->ether_dhost[0] & 1) == 0)) {
1175 				m_freem(m);
1176 				continue;
1177 			}
1178 		}
1179 #endif
1180 		MY_UNLOCK(sc);
1181 		(*ifp->if_input)(ifp, m);
1182 		MY_LOCK(sc);
1183 	}
1184 	return;
1185 }
1186 
1187 
1188 /*
1189  * A frame was downloaded to the chip. It's safe for us to clean up the list
1190  * buffers.
1191  */
1192 static void
1193 my_txeof(struct my_softc * sc)
1194 {
1195 	struct my_chain *cur_tx;
1196 	struct ifnet   *ifp;
1197 
1198 	MY_LOCK_ASSERT(sc);
1199 	ifp = sc->my_ifp;
1200 	/* Clear the timeout timer. */
1201 	sc->my_timer = 0;
1202 	if (sc->my_cdata.my_tx_head == NULL) {
1203 		return;
1204 	}
1205 	/*
1206 	 * Go through our tx list and free mbufs for those frames that have
1207 	 * been transmitted.
1208 	 */
1209 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1210 		u_int32_t       txstat;
1211 
1212 		cur_tx = sc->my_cdata.my_tx_head;
1213 		txstat = MY_TXSTATUS(cur_tx);
1214 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1215 			break;
1216 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1217 			if (txstat & MY_TXERR) {
1218 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1219 				if (txstat & MY_EC) /* excessive collision */
1220 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1221 				if (txstat & MY_LC)	/* late collision */
1222 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1223 			}
1224 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1225 			    (txstat & MY_NCRMASK) >> MY_NCRShift);
1226 		}
1227 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1228 		m_freem(cur_tx->my_mbuf);
1229 		cur_tx->my_mbuf = NULL;
1230 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1231 			sc->my_cdata.my_tx_head = NULL;
1232 			sc->my_cdata.my_tx_tail = NULL;
1233 			break;
1234 		}
1235 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1236 	}
1237 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1238 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (CSR_READ_4(sc, MY_TSR) & MY_NCRMask));
1239 	}
1240 	return;
1241 }
1242 
1243 /*
1244  * TX 'end of channel' interrupt handler.
1245  */
1246 static void
1247 my_txeoc(struct my_softc * sc)
1248 {
1249 	struct ifnet   *ifp;
1250 
1251 	MY_LOCK_ASSERT(sc);
1252 	ifp = sc->my_ifp;
1253 	sc->my_timer = 0;
1254 	if (sc->my_cdata.my_tx_head == NULL) {
1255 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1256 		sc->my_cdata.my_tx_tail = NULL;
1257 		if (sc->my_want_auto)
1258 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1259 	} else {
1260 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1261 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1262 			sc->my_timer = 5;
1263 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1264 		}
1265 	}
1266 	return;
1267 }
1268 
1269 static void
1270 my_intr(void *arg)
1271 {
1272 	struct my_softc *sc;
1273 	struct ifnet   *ifp;
1274 	u_int32_t       status;
1275 
1276 	sc = arg;
1277 	MY_LOCK(sc);
1278 	ifp = sc->my_ifp;
1279 	if (!(ifp->if_flags & IFF_UP)) {
1280 		MY_UNLOCK(sc);
1281 		return;
1282 	}
1283 	/* Disable interrupts. */
1284 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1285 
1286 	for (;;) {
1287 		status = CSR_READ_4(sc, MY_ISR);
1288 		status &= MY_INTRS;
1289 		if (status)
1290 			CSR_WRITE_4(sc, MY_ISR, status);
1291 		else
1292 			break;
1293 
1294 		if (status & MY_RI)	/* receive interrupt */
1295 			my_rxeof(sc);
1296 
1297 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1298 			/* rx buffer unavailable or rx error */
1299 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1300 #ifdef foo
1301 			my_stop(sc);
1302 			my_reset(sc);
1303 			my_init_locked(sc);
1304 #endif
1305 		}
1306 		if (status & MY_TI)	/* tx interrupt */
1307 			my_txeof(sc);
1308 		if (status & MY_ETI)	/* tx early interrupt */
1309 			my_txeof(sc);
1310 		if (status & MY_TBU)	/* tx buffer unavailable */
1311 			my_txeoc(sc);
1312 
1313 #if 0				/* 90/1/18 delete */
1314 		if (status & MY_FBE) {
1315 			my_reset(sc);
1316 			my_init_locked(sc);
1317 		}
1318 #endif
1319 
1320 	}
1321 
1322 	/* Re-enable interrupts. */
1323 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1324 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1325 		my_start_locked(ifp);
1326 	MY_UNLOCK(sc);
1327 	return;
1328 }
1329 
1330 /*
1331  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1332  * pointers to the fragment pointers.
1333  */
1334 static int
1335 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1336 {
1337 	struct my_desc *f = NULL;
1338 	int             total_len;
1339 	struct mbuf    *m, *m_new = NULL;
1340 
1341 	MY_LOCK_ASSERT(sc);
1342 	/* calculate the total tx pkt length */
1343 	total_len = 0;
1344 	for (m = m_head; m != NULL; m = m->m_next)
1345 		total_len += m->m_len;
1346 	/*
1347 	 * Start packing the mbufs in this chain into the fragment pointers.
1348 	 * Stop when we run out of fragments or hit the end of the mbuf
1349 	 * chain.
1350 	 */
1351 	m = m_head;
1352 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1353 	if (m_new == NULL) {
1354 		device_printf(sc->my_dev, "no memory for tx list");
1355 		return (1);
1356 	}
1357 	if (m_head->m_pkthdr.len > MHLEN) {
1358 		if (!(MCLGET(m_new, M_NOWAIT))) {
1359 			m_freem(m_new);
1360 			device_printf(sc->my_dev, "no memory for tx list");
1361 			return (1);
1362 		}
1363 	}
1364 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1365 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1366 	m_freem(m_head);
1367 	m_head = m_new;
1368 	f = &c->my_ptr->my_frag[0];
1369 	f->my_status = 0;
1370 	f->my_data = vtophys(mtod(m_new, caddr_t));
1371 	total_len = m_new->m_len;
1372 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1373 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1374 	f->my_ctl |= total_len;	/* buffer size */
1375 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1376 	if (sc->my_info->my_did == MTD891ID)
1377 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1378 	c->my_mbuf = m_head;
1379 	c->my_lastdesc = 0;
1380 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1381 	return (0);
1382 }
1383 
1384 /*
1385  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1386  * to the mbuf data regions directly in the transmit lists. We also save a
1387  * copy of the pointers since the transmit list fragment pointers are
1388  * physical addresses.
1389  */
1390 static void
1391 my_start(struct ifnet * ifp)
1392 {
1393 	struct my_softc *sc;
1394 
1395 	sc = ifp->if_softc;
1396 	MY_LOCK(sc);
1397 	my_start_locked(ifp);
1398 	MY_UNLOCK(sc);
1399 }
1400 
1401 static void
1402 my_start_locked(struct ifnet * ifp)
1403 {
1404 	struct my_softc *sc;
1405 	struct mbuf    *m_head = NULL;
1406 	struct my_chain *cur_tx = NULL, *start_tx;
1407 
1408 	sc = ifp->if_softc;
1409 	MY_LOCK_ASSERT(sc);
1410 	if (sc->my_autoneg) {
1411 		sc->my_tx_pend = 1;
1412 		return;
1413 	}
1414 	/*
1415 	 * Check for an available queue slot. If there are none, punt.
1416 	 */
1417 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1418 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1419 		return;
1420 	}
1421 	start_tx = sc->my_cdata.my_tx_free;
1422 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1423 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1424 		if (m_head == NULL)
1425 			break;
1426 
1427 		/* Pick a descriptor off the free list. */
1428 		cur_tx = sc->my_cdata.my_tx_free;
1429 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1430 
1431 		/* Pack the data into the descriptor. */
1432 		my_encap(sc, cur_tx, m_head);
1433 
1434 		if (cur_tx != start_tx)
1435 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1436 #if NBPFILTER > 0
1437 		/*
1438 		 * If there's a BPF listener, bounce a copy of this frame to
1439 		 * him.
1440 		 */
1441 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1442 #endif
1443 	}
1444 	/*
1445 	 * If there are no packets queued, bail.
1446 	 */
1447 	if (cur_tx == NULL) {
1448 		return;
1449 	}
1450 	/*
1451 	 * Place the request for the upload interrupt in the last descriptor
1452 	 * in the chain. This way, if we're chaining several packets at once,
1453 	 * we'll only get an interrupt once for the whole chain rather than
1454 	 * once for each packet.
1455 	 */
1456 	MY_TXCTL(cur_tx) |= MY_TXIC;
1457 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1458 	sc->my_cdata.my_tx_tail = cur_tx;
1459 	if (sc->my_cdata.my_tx_head == NULL)
1460 		sc->my_cdata.my_tx_head = start_tx;
1461 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1462 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1463 
1464 	/*
1465 	 * Set a timeout in case the chip goes out to lunch.
1466 	 */
1467 	sc->my_timer = 5;
1468 	return;
1469 }
1470 
1471 static void
1472 my_init(void *xsc)
1473 {
1474 	struct my_softc *sc = xsc;
1475 
1476 	MY_LOCK(sc);
1477 	my_init_locked(sc);
1478 	MY_UNLOCK(sc);
1479 }
1480 
1481 static void
1482 my_init_locked(struct my_softc *sc)
1483 {
1484 	struct ifnet   *ifp = sc->my_ifp;
1485 	u_int16_t       phy_bmcr = 0;
1486 
1487 	MY_LOCK_ASSERT(sc);
1488 	if (sc->my_autoneg) {
1489 		return;
1490 	}
1491 	if (sc->my_pinfo != NULL)
1492 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1493 	/*
1494 	 * Cancel pending I/O and free all RX/TX buffers.
1495 	 */
1496 	my_stop(sc);
1497 	my_reset(sc);
1498 
1499 	/*
1500 	 * Set cache alignment and burst length.
1501 	 */
1502 #if 0				/* 89/9/1 modify,  */
1503 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1504 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1505 #endif
1506 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1507 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1508 	/*
1509 	 * 89/12/29 add, for mtd891,
1510 	 */
1511 	if (sc->my_info->my_did == MTD891ID) {
1512 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1513 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1514 	}
1515 	my_setcfg(sc, phy_bmcr);
1516 	/* Init circular RX list. */
1517 	if (my_list_rx_init(sc) == ENOBUFS) {
1518 		device_printf(sc->my_dev, "init failed: no memory for rx buffers\n");
1519 		my_stop(sc);
1520 		return;
1521 	}
1522 	/* Init TX descriptors. */
1523 	my_list_tx_init(sc);
1524 
1525 	/* If we want promiscuous mode, set the allframes bit. */
1526 	if (ifp->if_flags & IFF_PROMISC)
1527 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1528 	else
1529 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1530 
1531 	/*
1532 	 * Set capture broadcast bit to capture broadcast frames.
1533 	 */
1534 	if (ifp->if_flags & IFF_BROADCAST)
1535 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1536 	else
1537 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1538 
1539 	/*
1540 	 * Program the multicast filter, if necessary.
1541 	 */
1542 	my_setmulti(sc);
1543 
1544 	/*
1545 	 * Load the address of the RX list.
1546 	 */
1547 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1548 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1549 
1550 	/*
1551 	 * Enable interrupts.
1552 	 */
1553 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1554 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1555 
1556 	/* Enable receiver and transmitter. */
1557 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1558 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1559 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1560 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1561 
1562 	/* Restore state of BMCR */
1563 	if (sc->my_pinfo != NULL)
1564 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1565 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1566 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1567 
1568 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1569 	return;
1570 }
1571 
1572 /*
1573  * Set media options.
1574  */
1575 
1576 static int
1577 my_ifmedia_upd(struct ifnet * ifp)
1578 {
1579 	struct my_softc *sc;
1580 	struct ifmedia *ifm;
1581 
1582 	sc = ifp->if_softc;
1583 	MY_LOCK(sc);
1584 	ifm = &sc->ifmedia;
1585 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1586 		MY_UNLOCK(sc);
1587 		return (EINVAL);
1588 	}
1589 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1590 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1591 	else
1592 		my_setmode_mii(sc, ifm->ifm_media);
1593 	MY_UNLOCK(sc);
1594 	return (0);
1595 }
1596 
1597 /*
1598  * Report current media status.
1599  */
1600 
1601 static void
1602 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1603 {
1604 	struct my_softc *sc;
1605 	u_int16_t advert = 0, ability = 0;
1606 
1607 	sc = ifp->if_softc;
1608 	MY_LOCK(sc);
1609 	ifmr->ifm_active = IFM_ETHER;
1610 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1611 #if 0				/* this version did not support 1000M, */
1612 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1613 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1614 #endif
1615 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1616 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1617 		else
1618 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1619 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1620 			ifmr->ifm_active |= IFM_FDX;
1621 		else
1622 			ifmr->ifm_active |= IFM_HDX;
1623 
1624 		MY_UNLOCK(sc);
1625 		return;
1626 	}
1627 	ability = my_phy_readreg(sc, PHY_LPAR);
1628 	advert = my_phy_readreg(sc, PHY_ANAR);
1629 
1630 #if 0				/* this version did not support 1000M, */
1631 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1632 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1633 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1634 			advert = 0;
1635 			ability = 0;
1636 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1637 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1638 			advert = 0;
1639 			ability = 0;
1640 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1641 		}
1642 	}
1643 #endif
1644 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1645 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1646 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1647 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1648 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1649 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1650 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1651 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1652 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1653 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1654 	MY_UNLOCK(sc);
1655 	return;
1656 }
1657 
1658 static int
1659 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1660 {
1661 	struct my_softc *sc = ifp->if_softc;
1662 	struct ifreq   *ifr = (struct ifreq *) data;
1663 	int             error;
1664 
1665 	switch (command) {
1666 	case SIOCSIFFLAGS:
1667 		MY_LOCK(sc);
1668 		if (ifp->if_flags & IFF_UP)
1669 			my_init_locked(sc);
1670 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1671 			my_stop(sc);
1672 		MY_UNLOCK(sc);
1673 		error = 0;
1674 		break;
1675 	case SIOCADDMULTI:
1676 	case SIOCDELMULTI:
1677 		MY_LOCK(sc);
1678 		my_setmulti(sc);
1679 		MY_UNLOCK(sc);
1680 		error = 0;
1681 		break;
1682 	case SIOCGIFMEDIA:
1683 	case SIOCSIFMEDIA:
1684 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1685 		break;
1686 	default:
1687 		error = ether_ioctl(ifp, command, data);
1688 		break;
1689 	}
1690 	return (error);
1691 }
1692 
1693 static void
1694 my_watchdog(void *arg)
1695 {
1696 	struct my_softc *sc;
1697 	struct ifnet *ifp;
1698 
1699 	sc = arg;
1700 	MY_LOCK_ASSERT(sc);
1701 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1702 	if (sc->my_timer == 0 || --sc->my_timer > 0)
1703 		return;
1704 
1705 	ifp = sc->my_ifp;
1706 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1707 	if_printf(ifp, "watchdog timeout\n");
1708 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1709 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1710 	my_stop(sc);
1711 	my_reset(sc);
1712 	my_init_locked(sc);
1713 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1714 		my_start_locked(ifp);
1715 }
1716 
1717 
1718 /*
1719  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1720  */
1721 static void
1722 my_stop(struct my_softc * sc)
1723 {
1724 	int    i;
1725 	struct ifnet   *ifp;
1726 
1727 	MY_LOCK_ASSERT(sc);
1728 	ifp = sc->my_ifp;
1729 
1730 	callout_stop(&sc->my_autoneg_timer);
1731 	callout_stop(&sc->my_watchdog);
1732 
1733 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1734 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1735 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1736 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1737 
1738 	/*
1739 	 * Free data in the RX lists.
1740 	 */
1741 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1742 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1743 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1744 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1745 		}
1746 	}
1747 	bzero((char *)&sc->my_ldata->my_rx_list,
1748 	    sizeof(sc->my_ldata->my_rx_list));
1749 	/*
1750 	 * Free the TX list buffers.
1751 	 */
1752 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1753 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1754 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1755 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1756 		}
1757 	}
1758 	bzero((char *)&sc->my_ldata->my_tx_list,
1759 	    sizeof(sc->my_ldata->my_tx_list));
1760 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1761 	return;
1762 }
1763 
1764 /*
1765  * Stop all chip I/O so that the kernel's probe routines don't get confused
1766  * by errant DMAs when rebooting.
1767  */
1768 static int
1769 my_shutdown(device_t dev)
1770 {
1771 	struct my_softc *sc;
1772 
1773 	sc = device_get_softc(dev);
1774 	MY_LOCK(sc);
1775 	my_stop(sc);
1776 	MY_UNLOCK(sc);
1777 	return 0;
1778 }
1779