xref: /freebsd/sys/dev/my/if_my.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*-
2  * Written by: yen_cw@myson.com.tw
3  * Copyright (c) 2002 Myson Technology Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/types.h>
42 #include <sys/module.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 
46 #define NBPFILTER	1
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_dl.h>
55 #include <net/bpf.h>
56 
57 #include <vm/vm.h>		/* for vtophys */
58 #include <vm/pmap.h>		/* for vtophys */
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/bus.h>
62 #include <sys/rman.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 /*
68  * #define MY_USEIOSPACE
69  */
70 
71 static int      MY_USEIOSPACE = 1;
72 
73 #ifdef MY_USEIOSPACE
74 #define MY_RES                  SYS_RES_IOPORT
75 #define MY_RID                  MY_PCI_LOIO
76 #else
77 #define MY_RES                  SYS_RES_MEMORY
78 #define MY_RID                  MY_PCI_LOMEM
79 #endif
80 
81 
82 #include <dev/my/if_myreg.h>
83 
84 /*
85  * Various supported device vendors/types and their names.
86  */
87 struct my_type *my_info_tmp;
88 static struct my_type my_devs[] = {
89 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
90 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
91 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
92 	{0, 0, NULL}
93 };
94 
95 /*
96  * Various supported PHY vendors/types and their names. Note that this driver
97  * will work with pretty much any MII-compliant PHY, so failure to positively
98  * identify the chip is not a fatal error.
99  */
100 static struct my_type my_phys[] = {
101 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
102 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
103 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
104 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
105 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
106 	{0, 0, "<MII-compliant physical interface>"}
107 };
108 
109 static int      my_probe(device_t);
110 static int      my_attach(device_t);
111 static int      my_detach(device_t);
112 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
113 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
114 static void     my_rxeof(struct my_softc *);
115 static void     my_txeof(struct my_softc *);
116 static void     my_txeoc(struct my_softc *);
117 static void     my_intr(void *);
118 static void     my_start(struct ifnet *);
119 static void     my_start_locked(struct ifnet *);
120 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
121 static void     my_init(void *);
122 static void     my_init_locked(struct my_softc *);
123 static void     my_stop(struct my_softc *);
124 static void     my_autoneg_timeout(void *);
125 static void     my_watchdog(void *);
126 static int      my_shutdown(device_t);
127 static int      my_ifmedia_upd(struct ifnet *);
128 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
129 static u_int16_t my_phy_readreg(struct my_softc *, int);
130 static void     my_phy_writereg(struct my_softc *, int, int);
131 static void     my_autoneg_xmit(struct my_softc *);
132 static void     my_autoneg_mii(struct my_softc *, int, int);
133 static void     my_setmode_mii(struct my_softc *, int);
134 static void     my_getmode_mii(struct my_softc *);
135 static void     my_setcfg(struct my_softc *, int);
136 static void     my_setmulti(struct my_softc *);
137 static void     my_reset(struct my_softc *);
138 static int      my_list_rx_init(struct my_softc *);
139 static int      my_list_tx_init(struct my_softc *);
140 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
141 
142 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
143 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
144 
145 static device_method_t my_methods[] = {
146 	/* Device interface */
147 	DEVMETHOD(device_probe, my_probe),
148 	DEVMETHOD(device_attach, my_attach),
149 	DEVMETHOD(device_detach, my_detach),
150 	DEVMETHOD(device_shutdown, my_shutdown),
151 
152 	DEVMETHOD_END
153 };
154 
155 static driver_t my_driver = {
156 	"my",
157 	my_methods,
158 	sizeof(struct my_softc)
159 };
160 
161 static devclass_t my_devclass;
162 
163 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
164 MODULE_DEPEND(my, pci, 1, 1, 1);
165 MODULE_DEPEND(my, ether, 1, 1, 1);
166 
167 static long
168 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
169 {
170 	long            miir;
171 	int             i;
172 	int             mask, data;
173 
174 	MY_LOCK_ASSERT(sc);
175 
176 	/* enable MII output */
177 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
178 	miir &= 0xfffffff0;
179 
180 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
181 
182 	/* send 32 1's preamble */
183 	for (i = 0; i < 32; i++) {
184 		/* low MDC; MDO is already high (miir) */
185 		miir &= ~MY_MASK_MIIR_MII_MDC;
186 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
187 
188 		/* high MDC */
189 		miir |= MY_MASK_MIIR_MII_MDC;
190 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
191 	}
192 
193 	/* calculate ST+OP+PHYAD+REGAD+TA */
194 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
195 
196 	/* sent out */
197 	mask = 0x8000;
198 	while (mask) {
199 		/* low MDC, prepare MDO */
200 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
201 		if (mask & data)
202 			miir |= MY_MASK_MIIR_MII_MDO;
203 
204 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
205 		/* high MDC */
206 		miir |= MY_MASK_MIIR_MII_MDC;
207 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
208 		DELAY(30);
209 
210 		/* next */
211 		mask >>= 1;
212 		if (mask == 0x2 && opcode == MY_OP_READ)
213 			miir &= ~MY_MASK_MIIR_MII_WRITE;
214 	}
215 
216 	return miir;
217 }
218 
219 
220 static u_int16_t
221 my_phy_readreg(struct my_softc * sc, int reg)
222 {
223 	long            miir;
224 	int             mask, data;
225 
226 	MY_LOCK_ASSERT(sc);
227 
228 	if (sc->my_info->my_did == MTD803ID)
229 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
230 	else {
231 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
232 
233 		/* read data */
234 		mask = 0x8000;
235 		data = 0;
236 		while (mask) {
237 			/* low MDC */
238 			miir &= ~MY_MASK_MIIR_MII_MDC;
239 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
240 
241 			/* read MDI */
242 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
243 			if (miir & MY_MASK_MIIR_MII_MDI)
244 				data |= mask;
245 
246 			/* high MDC, and wait */
247 			miir |= MY_MASK_MIIR_MII_MDC;
248 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
249 			DELAY(30);
250 
251 			/* next */
252 			mask >>= 1;
253 		}
254 
255 		/* low MDC */
256 		miir &= ~MY_MASK_MIIR_MII_MDC;
257 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
258 	}
259 
260 	return (u_int16_t) data;
261 }
262 
263 
264 static void
265 my_phy_writereg(struct my_softc * sc, int reg, int data)
266 {
267 	long            miir;
268 	int             mask;
269 
270 	MY_LOCK_ASSERT(sc);
271 
272 	if (sc->my_info->my_did == MTD803ID)
273 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
274 	else {
275 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
276 
277 		/* write data */
278 		mask = 0x8000;
279 		while (mask) {
280 			/* low MDC, prepare MDO */
281 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
282 			if (mask & data)
283 				miir |= MY_MASK_MIIR_MII_MDO;
284 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
285 			DELAY(1);
286 
287 			/* high MDC */
288 			miir |= MY_MASK_MIIR_MII_MDC;
289 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
290 			DELAY(1);
291 
292 			/* next */
293 			mask >>= 1;
294 		}
295 
296 		/* low MDC */
297 		miir &= ~MY_MASK_MIIR_MII_MDC;
298 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
299 	}
300 	return;
301 }
302 
303 
304 /*
305  * Program the 64-bit multicast hash filter.
306  */
307 static void
308 my_setmulti(struct my_softc * sc)
309 {
310 	struct ifnet   *ifp;
311 	int             h = 0;
312 	u_int32_t       hashes[2] = {0, 0};
313 	struct ifmultiaddr *ifma;
314 	u_int32_t       rxfilt;
315 	int             mcnt = 0;
316 
317 	MY_LOCK_ASSERT(sc);
318 
319 	ifp = sc->my_ifp;
320 
321 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
322 
323 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
324 		rxfilt |= MY_AM;
325 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
326 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
327 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
328 
329 		return;
330 	}
331 	/* first, zot all the existing hash bits */
332 	CSR_WRITE_4(sc, MY_MAR0, 0);
333 	CSR_WRITE_4(sc, MY_MAR1, 0);
334 
335 	/* now program new ones */
336 	if_maddr_rlock(ifp);
337 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
338 		if (ifma->ifma_addr->sa_family != AF_LINK)
339 			continue;
340 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
341 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
342 		if (h < 32)
343 			hashes[0] |= (1 << h);
344 		else
345 			hashes[1] |= (1 << (h - 32));
346 		mcnt++;
347 	}
348 	if_maddr_runlock(ifp);
349 
350 	if (mcnt)
351 		rxfilt |= MY_AM;
352 	else
353 		rxfilt &= ~MY_AM;
354 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
355 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
356 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
357 	return;
358 }
359 
360 /*
361  * Initiate an autonegotiation session.
362  */
363 static void
364 my_autoneg_xmit(struct my_softc * sc)
365 {
366 	u_int16_t       phy_sts = 0;
367 
368 	MY_LOCK_ASSERT(sc);
369 
370 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
371 	DELAY(500);
372 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
373 
374 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
375 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
376 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
377 
378 	return;
379 }
380 
381 static void
382 my_autoneg_timeout(void *arg)
383 {
384 	struct my_softc *sc;
385 
386 	sc = arg;
387 	MY_LOCK_ASSERT(sc);
388 	my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
389 }
390 
391 /*
392  * Invoke autonegotiation on a PHY.
393  */
394 static void
395 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
396 {
397 	u_int16_t       phy_sts = 0, media, advert, ability;
398 	u_int16_t       ability2 = 0;
399 	struct ifnet   *ifp;
400 	struct ifmedia *ifm;
401 
402 	MY_LOCK_ASSERT(sc);
403 
404 	ifm = &sc->ifmedia;
405 	ifp = sc->my_ifp;
406 
407 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
408 
409 #ifndef FORCE_AUTONEG_TFOUR
410 	/*
411 	 * First, see if autoneg is supported. If not, there's no point in
412 	 * continuing.
413 	 */
414 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
415 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
416 		if (verbose)
417 			device_printf(sc->my_dev,
418 			    "autonegotiation not supported\n");
419 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
420 		return;
421 	}
422 #endif
423 	switch (flag) {
424 	case MY_FLAG_FORCEDELAY:
425 		/*
426 		 * XXX Never use this option anywhere but in the probe
427 		 * routine: making the kernel stop dead in its tracks for
428 		 * three whole seconds after we've gone multi-user is really
429 		 * bad manners.
430 		 */
431 		my_autoneg_xmit(sc);
432 		DELAY(5000000);
433 		break;
434 	case MY_FLAG_SCHEDDELAY:
435 		/*
436 		 * Wait for the transmitter to go idle before starting an
437 		 * autoneg session, otherwise my_start() may clobber our
438 		 * timeout, and we don't want to allow transmission during an
439 		 * autoneg session since that can screw it up.
440 		 */
441 		if (sc->my_cdata.my_tx_head != NULL) {
442 			sc->my_want_auto = 1;
443 			MY_UNLOCK(sc);
444 			return;
445 		}
446 		my_autoneg_xmit(sc);
447 		callout_reset(&sc->my_autoneg_timer, hz * 5, my_autoneg_timeout,
448 		    sc);
449 		sc->my_autoneg = 1;
450 		sc->my_want_auto = 0;
451 		return;
452 	case MY_FLAG_DELAYTIMEO:
453 		callout_stop(&sc->my_autoneg_timer);
454 		sc->my_autoneg = 0;
455 		break;
456 	default:
457 		device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag);
458 		return;
459 	}
460 
461 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
462 		if (verbose)
463 			device_printf(sc->my_dev, "autoneg complete, ");
464 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
465 	} else {
466 		if (verbose)
467 			device_printf(sc->my_dev, "autoneg not complete, ");
468 	}
469 
470 	media = my_phy_readreg(sc, PHY_BMCR);
471 
472 	/* Link is good. Report modes and set duplex mode. */
473 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
474 		if (verbose)
475 			device_printf(sc->my_dev, "link status good. ");
476 		advert = my_phy_readreg(sc, PHY_ANAR);
477 		ability = my_phy_readreg(sc, PHY_LPAR);
478 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
479 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
480 			ability2 = my_phy_readreg(sc, PHY_1000SR);
481 			if (ability2 & PHY_1000SR_1000BTXFULL) {
482 				advert = 0;
483 				ability = 0;
484 				/*
485 				 * this version did not support 1000M,
486 				 * ifm->ifm_media =
487 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
488 				 */
489 				ifm->ifm_media =
490 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
491 				media &= ~PHY_BMCR_SPEEDSEL;
492 				media |= PHY_BMCR_1000;
493 				media |= PHY_BMCR_DUPLEX;
494 				printf("(full-duplex, 1000Mbps)\n");
495 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
496 				advert = 0;
497 				ability = 0;
498 				/*
499 				 * this version did not support 1000M,
500 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
501 				 */
502 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
503 				media &= ~PHY_BMCR_SPEEDSEL;
504 				media &= ~PHY_BMCR_DUPLEX;
505 				media |= PHY_BMCR_1000;
506 				printf("(half-duplex, 1000Mbps)\n");
507 			}
508 		}
509 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
510 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
511 			media |= PHY_BMCR_SPEEDSEL;
512 			media &= ~PHY_BMCR_DUPLEX;
513 			printf("(100baseT4)\n");
514 		} else if (advert & PHY_ANAR_100BTXFULL &&
515 			   ability & PHY_ANAR_100BTXFULL) {
516 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
517 			media |= PHY_BMCR_SPEEDSEL;
518 			media |= PHY_BMCR_DUPLEX;
519 			printf("(full-duplex, 100Mbps)\n");
520 		} else if (advert & PHY_ANAR_100BTXHALF &&
521 			   ability & PHY_ANAR_100BTXHALF) {
522 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
523 			media |= PHY_BMCR_SPEEDSEL;
524 			media &= ~PHY_BMCR_DUPLEX;
525 			printf("(half-duplex, 100Mbps)\n");
526 		} else if (advert & PHY_ANAR_10BTFULL &&
527 			   ability & PHY_ANAR_10BTFULL) {
528 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
529 			media &= ~PHY_BMCR_SPEEDSEL;
530 			media |= PHY_BMCR_DUPLEX;
531 			printf("(full-duplex, 10Mbps)\n");
532 		} else if (advert) {
533 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
534 			media &= ~PHY_BMCR_SPEEDSEL;
535 			media &= ~PHY_BMCR_DUPLEX;
536 			printf("(half-duplex, 10Mbps)\n");
537 		}
538 		media &= ~PHY_BMCR_AUTONEGENBL;
539 
540 		/* Set ASIC's duplex mode to match the PHY. */
541 		my_phy_writereg(sc, PHY_BMCR, media);
542 		my_setcfg(sc, media);
543 	} else {
544 		if (verbose)
545 			device_printf(sc->my_dev, "no carrier\n");
546 	}
547 
548 	my_init_locked(sc);
549 	if (sc->my_tx_pend) {
550 		sc->my_autoneg = 0;
551 		sc->my_tx_pend = 0;
552 		my_start_locked(ifp);
553 	}
554 	return;
555 }
556 
557 /*
558  * To get PHY ability.
559  */
560 static void
561 my_getmode_mii(struct my_softc * sc)
562 {
563 	u_int16_t       bmsr;
564 	struct ifnet   *ifp;
565 
566 	MY_LOCK_ASSERT(sc);
567 	ifp = sc->my_ifp;
568 	bmsr = my_phy_readreg(sc, PHY_BMSR);
569 	if (bootverbose)
570 		device_printf(sc->my_dev, "PHY status word: %x\n", bmsr);
571 
572 	/* fallback */
573 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
574 
575 	if (bmsr & PHY_BMSR_10BTHALF) {
576 		if (bootverbose)
577 			device_printf(sc->my_dev,
578 			    "10Mbps half-duplex mode supported\n");
579 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
580 		    0, NULL);
581 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
582 	}
583 	if (bmsr & PHY_BMSR_10BTFULL) {
584 		if (bootverbose)
585 			device_printf(sc->my_dev,
586 			    "10Mbps full-duplex mode supported\n");
587 
588 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
589 		    0, NULL);
590 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
591 	}
592 	if (bmsr & PHY_BMSR_100BTXHALF) {
593 		if (bootverbose)
594 			device_printf(sc->my_dev,
595 			    "100Mbps half-duplex mode supported\n");
596 		ifp->if_baudrate = 100000000;
597 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
598 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
599 			    0, NULL);
600 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
601 	}
602 	if (bmsr & PHY_BMSR_100BTXFULL) {
603 		if (bootverbose)
604 			device_printf(sc->my_dev,
605 			    "100Mbps full-duplex mode supported\n");
606 		ifp->if_baudrate = 100000000;
607 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
608 		    0, NULL);
609 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
610 	}
611 	/* Some also support 100BaseT4. */
612 	if (bmsr & PHY_BMSR_100BT4) {
613 		if (bootverbose)
614 			device_printf(sc->my_dev, "100baseT4 mode supported\n");
615 		ifp->if_baudrate = 100000000;
616 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
617 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
618 #ifdef FORCE_AUTONEG_TFOUR
619 		if (bootverbose)
620 			device_printf(sc->my_dev,
621 			    "forcing on autoneg support for BT4\n");
622 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
623 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
624 #endif
625 	}
626 #if 0				/* this version did not support 1000M, */
627 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
628 		if (bootverbose)
629 			device_printf(sc->my_dev,
630 			    "1000Mbps half-duplex mode supported\n");
631 
632 		ifp->if_baudrate = 1000000000;
633 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
634 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
635 		    0, NULL);
636 		if (bootverbose)
637 			device_printf(sc->my_dev,
638 			    "1000Mbps full-duplex mode supported\n");
639 		ifp->if_baudrate = 1000000000;
640 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
641 		    0, NULL);
642 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
643 	}
644 #endif
645 	if (bmsr & PHY_BMSR_CANAUTONEG) {
646 		if (bootverbose)
647 			device_printf(sc->my_dev, "autoneg supported\n");
648 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
649 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
650 	}
651 	return;
652 }
653 
654 /*
655  * Set speed and duplex mode.
656  */
657 static void
658 my_setmode_mii(struct my_softc * sc, int media)
659 {
660 	u_int16_t       bmcr;
661 
662 	MY_LOCK_ASSERT(sc);
663 	/*
664 	 * If an autoneg session is in progress, stop it.
665 	 */
666 	if (sc->my_autoneg) {
667 		device_printf(sc->my_dev, "canceling autoneg session\n");
668 		callout_stop(&sc->my_autoneg_timer);
669 		sc->my_autoneg = sc->my_want_auto = 0;
670 		bmcr = my_phy_readreg(sc, PHY_BMCR);
671 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
672 		my_phy_writereg(sc, PHY_BMCR, bmcr);
673 	}
674 	device_printf(sc->my_dev, "selecting MII, ");
675 	bmcr = my_phy_readreg(sc, PHY_BMCR);
676 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
677 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
678 
679 #if 0				/* this version did not support 1000M, */
680 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
681 		printf("1000Mbps/T4, half-duplex\n");
682 		bmcr &= ~PHY_BMCR_SPEEDSEL;
683 		bmcr &= ~PHY_BMCR_DUPLEX;
684 		bmcr |= PHY_BMCR_1000;
685 	}
686 #endif
687 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
688 		printf("100Mbps/T4, half-duplex\n");
689 		bmcr |= PHY_BMCR_SPEEDSEL;
690 		bmcr &= ~PHY_BMCR_DUPLEX;
691 	}
692 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
693 		printf("100Mbps, ");
694 		bmcr |= PHY_BMCR_SPEEDSEL;
695 	}
696 	if (IFM_SUBTYPE(media) == IFM_10_T) {
697 		printf("10Mbps, ");
698 		bmcr &= ~PHY_BMCR_SPEEDSEL;
699 	}
700 	if ((media & IFM_GMASK) == IFM_FDX) {
701 		printf("full duplex\n");
702 		bmcr |= PHY_BMCR_DUPLEX;
703 	} else {
704 		printf("half duplex\n");
705 		bmcr &= ~PHY_BMCR_DUPLEX;
706 	}
707 	my_phy_writereg(sc, PHY_BMCR, bmcr);
708 	my_setcfg(sc, bmcr);
709 	return;
710 }
711 
712 /*
713  * The Myson manual states that in order to fiddle with the 'full-duplex' and
714  * '100Mbps' bits in the netconfig register, we first have to put the
715  * transmit and/or receive logic in the idle state.
716  */
717 static void
718 my_setcfg(struct my_softc * sc, int bmcr)
719 {
720 	int             i, restart = 0;
721 
722 	MY_LOCK_ASSERT(sc);
723 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
724 		restart = 1;
725 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
726 		for (i = 0; i < MY_TIMEOUT; i++) {
727 			DELAY(10);
728 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
729 			    (MY_TXRUN | MY_RXRUN)))
730 				break;
731 		}
732 		if (i == MY_TIMEOUT)
733 			device_printf(sc->my_dev,
734 			    "failed to force tx and rx to idle \n");
735 	}
736 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
737 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
738 	if (bmcr & PHY_BMCR_1000)
739 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
740 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
741 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
742 	if (bmcr & PHY_BMCR_DUPLEX)
743 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
744 	else
745 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
746 	if (restart)
747 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
748 	return;
749 }
750 
751 static void
752 my_reset(struct my_softc * sc)
753 {
754 	register int    i;
755 
756 	MY_LOCK_ASSERT(sc);
757 	MY_SETBIT(sc, MY_BCR, MY_SWR);
758 	for (i = 0; i < MY_TIMEOUT; i++) {
759 		DELAY(10);
760 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
761 			break;
762 	}
763 	if (i == MY_TIMEOUT)
764 		device_printf(sc->my_dev, "reset never completed!\n");
765 
766 	/* Wait a little while for the chip to get its brains in order. */
767 	DELAY(1000);
768 	return;
769 }
770 
771 /*
772  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
773  * list and return a device name if we find a match.
774  */
775 static int
776 my_probe(device_t dev)
777 {
778 	struct my_type *t;
779 
780 	t = my_devs;
781 	while (t->my_name != NULL) {
782 		if ((pci_get_vendor(dev) == t->my_vid) &&
783 		    (pci_get_device(dev) == t->my_did)) {
784 			device_set_desc(dev, t->my_name);
785 			my_info_tmp = t;
786 			return (BUS_PROBE_DEFAULT);
787 		}
788 		t++;
789 	}
790 	return (ENXIO);
791 }
792 
793 /*
794  * Attach the interface. Allocate softc structures, do ifmedia setup and
795  * ethernet/BPF attach.
796  */
797 static int
798 my_attach(device_t dev)
799 {
800 	int             i;
801 	u_char          eaddr[ETHER_ADDR_LEN];
802 	u_int32_t       iobase;
803 	struct my_softc *sc;
804 	struct ifnet   *ifp;
805 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
806 	unsigned int    round;
807 	caddr_t         roundptr;
808 	struct my_type *p;
809 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
810 	int             rid, error = 0;
811 
812 	sc = device_get_softc(dev);
813 	sc->my_dev = dev;
814 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
815 	    MTX_DEF);
816 	callout_init_mtx(&sc->my_autoneg_timer, &sc->my_mtx, 0);
817 	callout_init_mtx(&sc->my_watchdog, &sc->my_mtx, 0);
818 
819 	/*
820 	 * Map control/status registers.
821 	 */
822 	pci_enable_busmaster(dev);
823 
824 	if (my_info_tmp->my_did == MTD800ID) {
825 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
826 		if (iobase & 0x300)
827 			MY_USEIOSPACE = 0;
828 	}
829 
830 	rid = MY_RID;
831 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
832 
833 	if (sc->my_res == NULL) {
834 		device_printf(dev, "couldn't map ports/memory\n");
835 		error = ENXIO;
836 		goto destroy_mutex;
837 	}
838 	sc->my_btag = rman_get_bustag(sc->my_res);
839 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
840 
841 	rid = 0;
842 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
843 					    RF_SHAREABLE | RF_ACTIVE);
844 
845 	if (sc->my_irq == NULL) {
846 		device_printf(dev, "couldn't map interrupt\n");
847 		error = ENXIO;
848 		goto release_io;
849 	}
850 
851 	sc->my_info = my_info_tmp;
852 
853 	/* Reset the adapter. */
854 	MY_LOCK(sc);
855 	my_reset(sc);
856 	MY_UNLOCK(sc);
857 
858 	/*
859 	 * Get station address
860 	 */
861 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
862 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
863 
864 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
865 				  M_DEVBUF, M_NOWAIT);
866 	if (sc->my_ldata_ptr == NULL) {
867 		device_printf(dev, "no memory for list buffers!\n");
868 		error = ENXIO;
869 		goto release_irq;
870 	}
871 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
872 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
873 	roundptr = sc->my_ldata_ptr;
874 	for (i = 0; i < 8; i++) {
875 		if (round % 8) {
876 			round++;
877 			roundptr++;
878 		} else
879 			break;
880 	}
881 	sc->my_ldata = (struct my_list_data *) roundptr;
882 	bzero(sc->my_ldata, sizeof(struct my_list_data));
883 
884 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
885 	if (ifp == NULL) {
886 		device_printf(dev, "can not if_alloc()\n");
887 		error = ENOSPC;
888 		goto free_ldata;
889 	}
890 	ifp->if_softc = sc;
891 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
892 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
893 	ifp->if_ioctl = my_ioctl;
894 	ifp->if_start = my_start;
895 	ifp->if_init = my_init;
896 	ifp->if_baudrate = 10000000;
897 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
898 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
899 	IFQ_SET_READY(&ifp->if_snd);
900 
901 	if (sc->my_info->my_did == MTD803ID)
902 		sc->my_pinfo = my_phys;
903 	else {
904 		if (bootverbose)
905 			device_printf(dev, "probing for a PHY\n");
906 		MY_LOCK(sc);
907 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
908 			if (bootverbose)
909 				device_printf(dev, "checking address: %d\n", i);
910 			sc->my_phy_addr = i;
911 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
912 			if ((phy_sts != 0) && (phy_sts != 0xffff))
913 				break;
914 			else
915 				phy_sts = 0;
916 		}
917 		if (phy_sts) {
918 			phy_vid = my_phy_readreg(sc, PHY_VENID);
919 			phy_did = my_phy_readreg(sc, PHY_DEVID);
920 			if (bootverbose) {
921 				device_printf(dev, "found PHY at address %d, ",
922 				    sc->my_phy_addr);
923 				printf("vendor id: %x device id: %x\n",
924 				    phy_vid, phy_did);
925 			}
926 			p = my_phys;
927 			while (p->my_vid) {
928 				if (phy_vid == p->my_vid) {
929 					sc->my_pinfo = p;
930 					break;
931 				}
932 				p++;
933 			}
934 			if (sc->my_pinfo == NULL)
935 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
936 			if (bootverbose)
937 				device_printf(dev, "PHY type: %s\n",
938 				       sc->my_pinfo->my_name);
939 		} else {
940 			MY_UNLOCK(sc);
941 			device_printf(dev, "MII without any phy!\n");
942 			error = ENXIO;
943 			goto free_if;
944 		}
945 		MY_UNLOCK(sc);
946 	}
947 
948 	/* Do ifmedia setup. */
949 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
950 	MY_LOCK(sc);
951 	my_getmode_mii(sc);
952 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
953 	media = sc->ifmedia.ifm_media;
954 	my_stop(sc);
955 	MY_UNLOCK(sc);
956 	ifmedia_set(&sc->ifmedia, media);
957 
958 	ether_ifattach(ifp, eaddr);
959 
960 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
961 			       NULL, my_intr, sc, &sc->my_intrhand);
962 
963 	if (error) {
964 		device_printf(dev, "couldn't set up irq\n");
965 		goto detach_if;
966 	}
967 
968 	return (0);
969 
970 detach_if:
971 	ether_ifdetach(ifp);
972 free_if:
973 	if_free(ifp);
974 free_ldata:
975 	free(sc->my_ldata_ptr, M_DEVBUF);
976 release_irq:
977 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
978 release_io:
979 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
980 destroy_mutex:
981 	mtx_destroy(&sc->my_mtx);
982 	return (error);
983 }
984 
985 static int
986 my_detach(device_t dev)
987 {
988 	struct my_softc *sc;
989 	struct ifnet   *ifp;
990 
991 	sc = device_get_softc(dev);
992 	ifp = sc->my_ifp;
993 	ether_ifdetach(ifp);
994 	MY_LOCK(sc);
995 	my_stop(sc);
996 	MY_UNLOCK(sc);
997 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
998 	callout_drain(&sc->my_watchdog);
999 	callout_drain(&sc->my_autoneg_timer);
1000 
1001 	if_free(ifp);
1002 	free(sc->my_ldata_ptr, M_DEVBUF);
1003 
1004 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1005 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1006 	mtx_destroy(&sc->my_mtx);
1007 	return (0);
1008 }
1009 
1010 
1011 /*
1012  * Initialize the transmit descriptors.
1013  */
1014 static int
1015 my_list_tx_init(struct my_softc * sc)
1016 {
1017 	struct my_chain_data *cd;
1018 	struct my_list_data *ld;
1019 	int             i;
1020 
1021 	MY_LOCK_ASSERT(sc);
1022 	cd = &sc->my_cdata;
1023 	ld = sc->my_ldata;
1024 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1025 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1026 		if (i == (MY_TX_LIST_CNT - 1))
1027 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1028 		else
1029 			cd->my_tx_chain[i].my_nextdesc =
1030 			    &cd->my_tx_chain[i + 1];
1031 	}
1032 	cd->my_tx_free = &cd->my_tx_chain[0];
1033 	cd->my_tx_tail = cd->my_tx_head = NULL;
1034 	return (0);
1035 }
1036 
1037 /*
1038  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1039  * arrange the descriptors in a closed ring, so that the last descriptor
1040  * points back to the first.
1041  */
1042 static int
1043 my_list_rx_init(struct my_softc * sc)
1044 {
1045 	struct my_chain_data *cd;
1046 	struct my_list_data *ld;
1047 	int             i;
1048 
1049 	MY_LOCK_ASSERT(sc);
1050 	cd = &sc->my_cdata;
1051 	ld = sc->my_ldata;
1052 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1053 		cd->my_rx_chain[i].my_ptr =
1054 		    (struct my_desc *) & ld->my_rx_list[i];
1055 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1056 			MY_UNLOCK(sc);
1057 			return (ENOBUFS);
1058 		}
1059 		if (i == (MY_RX_LIST_CNT - 1)) {
1060 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1061 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1062 		} else {
1063 			cd->my_rx_chain[i].my_nextdesc =
1064 			    &cd->my_rx_chain[i + 1];
1065 			ld->my_rx_list[i].my_next =
1066 			    vtophys(&ld->my_rx_list[i + 1]);
1067 		}
1068 	}
1069 	cd->my_rx_head = &cd->my_rx_chain[0];
1070 	return (0);
1071 }
1072 
1073 /*
1074  * Initialize an RX descriptor and attach an MBUF cluster.
1075  */
1076 static int
1077 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1078 {
1079 	struct mbuf    *m_new = NULL;
1080 
1081 	MY_LOCK_ASSERT(sc);
1082 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1083 	if (m_new == NULL) {
1084 		device_printf(sc->my_dev,
1085 		    "no memory for rx list -- packet dropped!\n");
1086 		return (ENOBUFS);
1087 	}
1088 	if (!(MCLGET(m_new, M_NOWAIT))) {
1089 		device_printf(sc->my_dev,
1090 		    "no memory for rx list -- packet dropped!\n");
1091 		m_freem(m_new);
1092 		return (ENOBUFS);
1093 	}
1094 	c->my_mbuf = m_new;
1095 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1096 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1097 	c->my_ptr->my_status = MY_OWNByNIC;
1098 	return (0);
1099 }
1100 
1101 /*
1102  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1103  * level protocols.
1104  */
1105 static void
1106 my_rxeof(struct my_softc * sc)
1107 {
1108 	struct ether_header *eh;
1109 	struct mbuf    *m;
1110 	struct ifnet   *ifp;
1111 	struct my_chain_onefrag *cur_rx;
1112 	int             total_len = 0;
1113 	u_int32_t       rxstat;
1114 
1115 	MY_LOCK_ASSERT(sc);
1116 	ifp = sc->my_ifp;
1117 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1118 	    & MY_OWNByNIC)) {
1119 		cur_rx = sc->my_cdata.my_rx_head;
1120 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1121 
1122 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1123 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1124 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1125 			continue;
1126 		}
1127 		/* No errors; receive the packet. */
1128 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1129 		total_len -= ETHER_CRC_LEN;
1130 
1131 		if (total_len < MINCLSIZE) {
1132 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1133 			    total_len, 0, ifp, NULL);
1134 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1135 			if (m == NULL) {
1136 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1137 				continue;
1138 			}
1139 		} else {
1140 			m = cur_rx->my_mbuf;
1141 			/*
1142 			 * Try to conjure up a new mbuf cluster. If that
1143 			 * fails, it means we have an out of memory condition
1144 			 * and should leave the buffer in place and continue.
1145 			 * This will result in a lost packet, but there's
1146 			 * little else we can do in this situation.
1147 			 */
1148 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1149 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1150 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1151 				continue;
1152 			}
1153 			m->m_pkthdr.rcvif = ifp;
1154 			m->m_pkthdr.len = m->m_len = total_len;
1155 		}
1156 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1157 		eh = mtod(m, struct ether_header *);
1158 #if NBPFILTER > 0
1159 		/*
1160 		 * Handle BPF listeners. Let the BPF user see the packet, but
1161 		 * don't pass it up to the ether_input() layer unless it's a
1162 		 * broadcast packet, multicast packet, matches our ethernet
1163 		 * address or the interface is in promiscuous mode.
1164 		 */
1165 		if (bpf_peers_present(ifp->if_bpf)) {
1166 			bpf_mtap(ifp->if_bpf, m);
1167 			if (ifp->if_flags & IFF_PROMISC &&
1168 			    (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
1169 				ETHER_ADDR_LEN) &&
1170 			     (eh->ether_dhost[0] & 1) == 0)) {
1171 				m_freem(m);
1172 				continue;
1173 			}
1174 		}
1175 #endif
1176 		MY_UNLOCK(sc);
1177 		(*ifp->if_input)(ifp, m);
1178 		MY_LOCK(sc);
1179 	}
1180 	return;
1181 }
1182 
1183 
1184 /*
1185  * A frame was downloaded to the chip. It's safe for us to clean up the list
1186  * buffers.
1187  */
1188 static void
1189 my_txeof(struct my_softc * sc)
1190 {
1191 	struct my_chain *cur_tx;
1192 	struct ifnet   *ifp;
1193 
1194 	MY_LOCK_ASSERT(sc);
1195 	ifp = sc->my_ifp;
1196 	/* Clear the timeout timer. */
1197 	sc->my_timer = 0;
1198 	if (sc->my_cdata.my_tx_head == NULL) {
1199 		return;
1200 	}
1201 	/*
1202 	 * Go through our tx list and free mbufs for those frames that have
1203 	 * been transmitted.
1204 	 */
1205 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1206 		u_int32_t       txstat;
1207 
1208 		cur_tx = sc->my_cdata.my_tx_head;
1209 		txstat = MY_TXSTATUS(cur_tx);
1210 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1211 			break;
1212 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1213 			if (txstat & MY_TXERR) {
1214 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1215 				if (txstat & MY_EC) /* excessive collision */
1216 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1217 				if (txstat & MY_LC)	/* late collision */
1218 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1219 			}
1220 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1221 			    (txstat & MY_NCRMASK) >> MY_NCRShift);
1222 		}
1223 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1224 		m_freem(cur_tx->my_mbuf);
1225 		cur_tx->my_mbuf = NULL;
1226 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1227 			sc->my_cdata.my_tx_head = NULL;
1228 			sc->my_cdata.my_tx_tail = NULL;
1229 			break;
1230 		}
1231 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1232 	}
1233 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1234 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (CSR_READ_4(sc, MY_TSR) & MY_NCRMask));
1235 	}
1236 	return;
1237 }
1238 
1239 /*
1240  * TX 'end of channel' interrupt handler.
1241  */
1242 static void
1243 my_txeoc(struct my_softc * sc)
1244 {
1245 	struct ifnet   *ifp;
1246 
1247 	MY_LOCK_ASSERT(sc);
1248 	ifp = sc->my_ifp;
1249 	sc->my_timer = 0;
1250 	if (sc->my_cdata.my_tx_head == NULL) {
1251 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1252 		sc->my_cdata.my_tx_tail = NULL;
1253 		if (sc->my_want_auto)
1254 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1255 	} else {
1256 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1257 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1258 			sc->my_timer = 5;
1259 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1260 		}
1261 	}
1262 	return;
1263 }
1264 
1265 static void
1266 my_intr(void *arg)
1267 {
1268 	struct my_softc *sc;
1269 	struct ifnet   *ifp;
1270 	u_int32_t       status;
1271 
1272 	sc = arg;
1273 	MY_LOCK(sc);
1274 	ifp = sc->my_ifp;
1275 	if (!(ifp->if_flags & IFF_UP)) {
1276 		MY_UNLOCK(sc);
1277 		return;
1278 	}
1279 	/* Disable interrupts. */
1280 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1281 
1282 	for (;;) {
1283 		status = CSR_READ_4(sc, MY_ISR);
1284 		status &= MY_INTRS;
1285 		if (status)
1286 			CSR_WRITE_4(sc, MY_ISR, status);
1287 		else
1288 			break;
1289 
1290 		if (status & MY_RI)	/* receive interrupt */
1291 			my_rxeof(sc);
1292 
1293 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1294 			/* rx buffer unavailable or rx error */
1295 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1296 #ifdef foo
1297 			my_stop(sc);
1298 			my_reset(sc);
1299 			my_init_locked(sc);
1300 #endif
1301 		}
1302 		if (status & MY_TI)	/* tx interrupt */
1303 			my_txeof(sc);
1304 		if (status & MY_ETI)	/* tx early interrupt */
1305 			my_txeof(sc);
1306 		if (status & MY_TBU)	/* tx buffer unavailable */
1307 			my_txeoc(sc);
1308 
1309 #if 0				/* 90/1/18 delete */
1310 		if (status & MY_FBE) {
1311 			my_reset(sc);
1312 			my_init_locked(sc);
1313 		}
1314 #endif
1315 
1316 	}
1317 
1318 	/* Re-enable interrupts. */
1319 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1320 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1321 		my_start_locked(ifp);
1322 	MY_UNLOCK(sc);
1323 	return;
1324 }
1325 
1326 /*
1327  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1328  * pointers to the fragment pointers.
1329  */
1330 static int
1331 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1332 {
1333 	struct my_desc *f = NULL;
1334 	int             total_len;
1335 	struct mbuf    *m, *m_new = NULL;
1336 
1337 	MY_LOCK_ASSERT(sc);
1338 	/* calculate the total tx pkt length */
1339 	total_len = 0;
1340 	for (m = m_head; m != NULL; m = m->m_next)
1341 		total_len += m->m_len;
1342 	/*
1343 	 * Start packing the mbufs in this chain into the fragment pointers.
1344 	 * Stop when we run out of fragments or hit the end of the mbuf
1345 	 * chain.
1346 	 */
1347 	m = m_head;
1348 	MGETHDR(m_new, M_NOWAIT, MT_DATA);
1349 	if (m_new == NULL) {
1350 		device_printf(sc->my_dev, "no memory for tx list");
1351 		return (1);
1352 	}
1353 	if (m_head->m_pkthdr.len > MHLEN) {
1354 		if (!(MCLGET(m_new, M_NOWAIT))) {
1355 			m_freem(m_new);
1356 			device_printf(sc->my_dev, "no memory for tx list");
1357 			return (1);
1358 		}
1359 	}
1360 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1361 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1362 	m_freem(m_head);
1363 	m_head = m_new;
1364 	f = &c->my_ptr->my_frag[0];
1365 	f->my_status = 0;
1366 	f->my_data = vtophys(mtod(m_new, caddr_t));
1367 	total_len = m_new->m_len;
1368 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1369 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1370 	f->my_ctl |= total_len;	/* buffer size */
1371 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1372 	if (sc->my_info->my_did == MTD891ID)
1373 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1374 	c->my_mbuf = m_head;
1375 	c->my_lastdesc = 0;
1376 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1377 	return (0);
1378 }
1379 
1380 /*
1381  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1382  * to the mbuf data regions directly in the transmit lists. We also save a
1383  * copy of the pointers since the transmit list fragment pointers are
1384  * physical addresses.
1385  */
1386 static void
1387 my_start(struct ifnet * ifp)
1388 {
1389 	struct my_softc *sc;
1390 
1391 	sc = ifp->if_softc;
1392 	MY_LOCK(sc);
1393 	my_start_locked(ifp);
1394 	MY_UNLOCK(sc);
1395 }
1396 
1397 static void
1398 my_start_locked(struct ifnet * ifp)
1399 {
1400 	struct my_softc *sc;
1401 	struct mbuf    *m_head = NULL;
1402 	struct my_chain *cur_tx = NULL, *start_tx;
1403 
1404 	sc = ifp->if_softc;
1405 	MY_LOCK_ASSERT(sc);
1406 	if (sc->my_autoneg) {
1407 		sc->my_tx_pend = 1;
1408 		return;
1409 	}
1410 	/*
1411 	 * Check for an available queue slot. If there are none, punt.
1412 	 */
1413 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1414 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1415 		return;
1416 	}
1417 	start_tx = sc->my_cdata.my_tx_free;
1418 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1419 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1420 		if (m_head == NULL)
1421 			break;
1422 
1423 		/* Pick a descriptor off the free list. */
1424 		cur_tx = sc->my_cdata.my_tx_free;
1425 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1426 
1427 		/* Pack the data into the descriptor. */
1428 		my_encap(sc, cur_tx, m_head);
1429 
1430 		if (cur_tx != start_tx)
1431 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1432 #if NBPFILTER > 0
1433 		/*
1434 		 * If there's a BPF listener, bounce a copy of this frame to
1435 		 * him.
1436 		 */
1437 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1438 #endif
1439 	}
1440 	/*
1441 	 * If there are no packets queued, bail.
1442 	 */
1443 	if (cur_tx == NULL) {
1444 		return;
1445 	}
1446 	/*
1447 	 * Place the request for the upload interrupt in the last descriptor
1448 	 * in the chain. This way, if we're chaining several packets at once,
1449 	 * we'll only get an interrupt once for the whole chain rather than
1450 	 * once for each packet.
1451 	 */
1452 	MY_TXCTL(cur_tx) |= MY_TXIC;
1453 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1454 	sc->my_cdata.my_tx_tail = cur_tx;
1455 	if (sc->my_cdata.my_tx_head == NULL)
1456 		sc->my_cdata.my_tx_head = start_tx;
1457 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1458 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1459 
1460 	/*
1461 	 * Set a timeout in case the chip goes out to lunch.
1462 	 */
1463 	sc->my_timer = 5;
1464 	return;
1465 }
1466 
1467 static void
1468 my_init(void *xsc)
1469 {
1470 	struct my_softc *sc = xsc;
1471 
1472 	MY_LOCK(sc);
1473 	my_init_locked(sc);
1474 	MY_UNLOCK(sc);
1475 }
1476 
1477 static void
1478 my_init_locked(struct my_softc *sc)
1479 {
1480 	struct ifnet   *ifp = sc->my_ifp;
1481 	u_int16_t       phy_bmcr = 0;
1482 
1483 	MY_LOCK_ASSERT(sc);
1484 	if (sc->my_autoneg) {
1485 		return;
1486 	}
1487 	if (sc->my_pinfo != NULL)
1488 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1489 	/*
1490 	 * Cancel pending I/O and free all RX/TX buffers.
1491 	 */
1492 	my_stop(sc);
1493 	my_reset(sc);
1494 
1495 	/*
1496 	 * Set cache alignment and burst length.
1497 	 */
1498 #if 0				/* 89/9/1 modify,  */
1499 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1500 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1501 #endif
1502 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1503 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1504 	/*
1505 	 * 89/12/29 add, for mtd891,
1506 	 */
1507 	if (sc->my_info->my_did == MTD891ID) {
1508 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1509 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1510 	}
1511 	my_setcfg(sc, phy_bmcr);
1512 	/* Init circular RX list. */
1513 	if (my_list_rx_init(sc) == ENOBUFS) {
1514 		device_printf(sc->my_dev, "init failed: no memory for rx buffers\n");
1515 		my_stop(sc);
1516 		return;
1517 	}
1518 	/* Init TX descriptors. */
1519 	my_list_tx_init(sc);
1520 
1521 	/* If we want promiscuous mode, set the allframes bit. */
1522 	if (ifp->if_flags & IFF_PROMISC)
1523 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1524 	else
1525 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1526 
1527 	/*
1528 	 * Set capture broadcast bit to capture broadcast frames.
1529 	 */
1530 	if (ifp->if_flags & IFF_BROADCAST)
1531 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1532 	else
1533 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1534 
1535 	/*
1536 	 * Program the multicast filter, if necessary.
1537 	 */
1538 	my_setmulti(sc);
1539 
1540 	/*
1541 	 * Load the address of the RX list.
1542 	 */
1543 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1544 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1545 
1546 	/*
1547 	 * Enable interrupts.
1548 	 */
1549 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1550 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1551 
1552 	/* Enable receiver and transmitter. */
1553 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1554 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1555 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1556 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1557 
1558 	/* Restore state of BMCR */
1559 	if (sc->my_pinfo != NULL)
1560 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1561 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1562 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1563 
1564 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1565 	return;
1566 }
1567 
1568 /*
1569  * Set media options.
1570  */
1571 
1572 static int
1573 my_ifmedia_upd(struct ifnet * ifp)
1574 {
1575 	struct my_softc *sc;
1576 	struct ifmedia *ifm;
1577 
1578 	sc = ifp->if_softc;
1579 	MY_LOCK(sc);
1580 	ifm = &sc->ifmedia;
1581 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1582 		MY_UNLOCK(sc);
1583 		return (EINVAL);
1584 	}
1585 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1586 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1587 	else
1588 		my_setmode_mii(sc, ifm->ifm_media);
1589 	MY_UNLOCK(sc);
1590 	return (0);
1591 }
1592 
1593 /*
1594  * Report current media status.
1595  */
1596 
1597 static void
1598 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1599 {
1600 	struct my_softc *sc;
1601 	u_int16_t advert = 0, ability = 0;
1602 
1603 	sc = ifp->if_softc;
1604 	MY_LOCK(sc);
1605 	ifmr->ifm_active = IFM_ETHER;
1606 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1607 #if 0				/* this version did not support 1000M, */
1608 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1609 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1610 #endif
1611 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1612 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1613 		else
1614 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1615 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1616 			ifmr->ifm_active |= IFM_FDX;
1617 		else
1618 			ifmr->ifm_active |= IFM_HDX;
1619 
1620 		MY_UNLOCK(sc);
1621 		return;
1622 	}
1623 	ability = my_phy_readreg(sc, PHY_LPAR);
1624 	advert = my_phy_readreg(sc, PHY_ANAR);
1625 
1626 #if 0				/* this version did not support 1000M, */
1627 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1628 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1629 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1630 			advert = 0;
1631 			ability = 0;
1632 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1633 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1634 			advert = 0;
1635 			ability = 0;
1636 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1637 		}
1638 	}
1639 #endif
1640 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1641 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1642 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1643 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1644 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1645 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1646 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1647 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1648 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1649 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1650 	MY_UNLOCK(sc);
1651 	return;
1652 }
1653 
1654 static int
1655 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1656 {
1657 	struct my_softc *sc = ifp->if_softc;
1658 	struct ifreq   *ifr = (struct ifreq *) data;
1659 	int             error;
1660 
1661 	switch (command) {
1662 	case SIOCSIFFLAGS:
1663 		MY_LOCK(sc);
1664 		if (ifp->if_flags & IFF_UP)
1665 			my_init_locked(sc);
1666 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1667 			my_stop(sc);
1668 		MY_UNLOCK(sc);
1669 		error = 0;
1670 		break;
1671 	case SIOCADDMULTI:
1672 	case SIOCDELMULTI:
1673 		MY_LOCK(sc);
1674 		my_setmulti(sc);
1675 		MY_UNLOCK(sc);
1676 		error = 0;
1677 		break;
1678 	case SIOCGIFMEDIA:
1679 	case SIOCSIFMEDIA:
1680 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1681 		break;
1682 	default:
1683 		error = ether_ioctl(ifp, command, data);
1684 		break;
1685 	}
1686 	return (error);
1687 }
1688 
1689 static void
1690 my_watchdog(void *arg)
1691 {
1692 	struct my_softc *sc;
1693 	struct ifnet *ifp;
1694 
1695 	sc = arg;
1696 	MY_LOCK_ASSERT(sc);
1697 	callout_reset(&sc->my_watchdog, hz, my_watchdog, sc);
1698 	if (sc->my_timer == 0 || --sc->my_timer > 0)
1699 		return;
1700 
1701 	ifp = sc->my_ifp;
1702 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1703 	if_printf(ifp, "watchdog timeout\n");
1704 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1705 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1706 	my_stop(sc);
1707 	my_reset(sc);
1708 	my_init_locked(sc);
1709 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1710 		my_start_locked(ifp);
1711 }
1712 
1713 
1714 /*
1715  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1716  */
1717 static void
1718 my_stop(struct my_softc * sc)
1719 {
1720 	register int    i;
1721 	struct ifnet   *ifp;
1722 
1723 	MY_LOCK_ASSERT(sc);
1724 	ifp = sc->my_ifp;
1725 
1726 	callout_stop(&sc->my_autoneg_timer);
1727 	callout_stop(&sc->my_watchdog);
1728 
1729 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1730 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1731 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1732 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1733 
1734 	/*
1735 	 * Free data in the RX lists.
1736 	 */
1737 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1738 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1739 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1740 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1741 		}
1742 	}
1743 	bzero((char *)&sc->my_ldata->my_rx_list,
1744 	    sizeof(sc->my_ldata->my_rx_list));
1745 	/*
1746 	 * Free the TX list buffers.
1747 	 */
1748 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1749 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1750 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1751 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1752 		}
1753 	}
1754 	bzero((char *)&sc->my_ldata->my_tx_list,
1755 	    sizeof(sc->my_ldata->my_tx_list));
1756 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1757 	return;
1758 }
1759 
1760 /*
1761  * Stop all chip I/O so that the kernel's probe routines don't get confused
1762  * by errant DMAs when rebooting.
1763  */
1764 static int
1765 my_shutdown(device_t dev)
1766 {
1767 	struct my_softc *sc;
1768 
1769 	sc = device_get_softc(dev);
1770 	MY_LOCK(sc);
1771 	my_stop(sc);
1772 	MY_UNLOCK(sc);
1773 	return 0;
1774 }
1775