xref: /freebsd/sys/dev/my/if_my.c (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*-
2  * Written by: yen_cw@myson.com.tw
3  * Copyright (c) 2002 Myson Technology Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/types.h>
42 #include <sys/bus.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 
47 #define NBPFILTER	1
48 
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_dl.h>
55 #include <net/bpf.h>
56 
57 #include <vm/vm.h>		/* for vtophys */
58 #include <vm/pmap.h>		/* for vtophys */
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/bus.h>
62 #include <sys/rman.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 /*
68  * #define MY_USEIOSPACE
69  */
70 
71 static int      MY_USEIOSPACE = 1;
72 
73 #ifdef MY_USEIOSPACE
74 #define MY_RES                  SYS_RES_IOPORT
75 #define MY_RID                  MY_PCI_LOIO
76 #else
77 #define MY_RES                  SYS_RES_MEMORY
78 #define MY_RID                  MY_PCI_LOMEM
79 #endif
80 
81 
82 #include <dev/my/if_myreg.h>
83 
84 #ifndef lint
85 static          const char rcsid[] =
86 "$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $";
87 #endif
88 
89 /*
90  * Various supported device vendors/types and their names.
91  */
92 struct my_type *my_info_tmp;
93 static struct my_type my_devs[] = {
94 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
95 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
96 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
97 	{0, 0, NULL}
98 };
99 
100 /*
101  * Various supported PHY vendors/types and their names. Note that this driver
102  * will work with pretty much any MII-compliant PHY, so failure to positively
103  * identify the chip is not a fatal error.
104  */
105 static struct my_type my_phys[] = {
106 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
107 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
108 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
109 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
110 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
111 	{0, 0, "<MII-compliant physical interface>"}
112 };
113 
114 static int      my_probe(device_t);
115 static int      my_attach(device_t);
116 static int      my_detach(device_t);
117 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
118 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
119 static void     my_rxeof(struct my_softc *);
120 static void     my_txeof(struct my_softc *);
121 static void     my_txeoc(struct my_softc *);
122 static void     my_intr(void *);
123 static void     my_start(struct ifnet *);
124 static void     my_start_locked(struct ifnet *);
125 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
126 static void     my_init(void *);
127 static void     my_init_locked(struct my_softc *);
128 static void     my_stop(struct my_softc *);
129 static void     my_watchdog(struct ifnet *);
130 static void     my_shutdown(device_t);
131 static int      my_ifmedia_upd(struct ifnet *);
132 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
133 static u_int16_t my_phy_readreg(struct my_softc *, int);
134 static void     my_phy_writereg(struct my_softc *, int, int);
135 static void     my_autoneg_xmit(struct my_softc *);
136 static void     my_autoneg_mii(struct my_softc *, int, int);
137 static void     my_setmode_mii(struct my_softc *, int);
138 static void     my_getmode_mii(struct my_softc *);
139 static void     my_setcfg(struct my_softc *, int);
140 static void     my_setmulti(struct my_softc *);
141 static void     my_reset(struct my_softc *);
142 static int      my_list_rx_init(struct my_softc *);
143 static int      my_list_tx_init(struct my_softc *);
144 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
145 
146 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
147 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
148 
149 static device_method_t my_methods[] = {
150 	/* Device interface */
151 	DEVMETHOD(device_probe, my_probe),
152 	DEVMETHOD(device_attach, my_attach),
153 	DEVMETHOD(device_detach, my_detach),
154 	DEVMETHOD(device_shutdown, my_shutdown),
155 
156 	{0, 0}
157 };
158 
159 static driver_t my_driver = {
160 	"my",
161 	my_methods,
162 	sizeof(struct my_softc)
163 };
164 
165 static devclass_t my_devclass;
166 
167 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
168 MODULE_DEPEND(my, pci, 1, 1, 1);
169 MODULE_DEPEND(my, ether, 1, 1, 1);
170 
171 static long
172 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
173 {
174 	long            miir;
175 	int             i;
176 	int             mask, data;
177 
178 	MY_LOCK_ASSERT(sc);
179 
180 	/* enable MII output */
181 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
182 	miir &= 0xfffffff0;
183 
184 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
185 
186 	/* send 32 1's preamble */
187 	for (i = 0; i < 32; i++) {
188 		/* low MDC; MDO is already high (miir) */
189 		miir &= ~MY_MASK_MIIR_MII_MDC;
190 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
191 
192 		/* high MDC */
193 		miir |= MY_MASK_MIIR_MII_MDC;
194 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
195 	}
196 
197 	/* calculate ST+OP+PHYAD+REGAD+TA */
198 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
199 
200 	/* sent out */
201 	mask = 0x8000;
202 	while (mask) {
203 		/* low MDC, prepare MDO */
204 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
205 		if (mask & data)
206 			miir |= MY_MASK_MIIR_MII_MDO;
207 
208 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
209 		/* high MDC */
210 		miir |= MY_MASK_MIIR_MII_MDC;
211 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
212 		DELAY(30);
213 
214 		/* next */
215 		mask >>= 1;
216 		if (mask == 0x2 && opcode == MY_OP_READ)
217 			miir &= ~MY_MASK_MIIR_MII_WRITE;
218 	}
219 
220 	return miir;
221 }
222 
223 
224 static u_int16_t
225 my_phy_readreg(struct my_softc * sc, int reg)
226 {
227 	long            miir;
228 	int             mask, data;
229 
230 	MY_LOCK_ASSERT(sc);
231 
232 	if (sc->my_info->my_did == MTD803ID)
233 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
234 	else {
235 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
236 
237 		/* read data */
238 		mask = 0x8000;
239 		data = 0;
240 		while (mask) {
241 			/* low MDC */
242 			miir &= ~MY_MASK_MIIR_MII_MDC;
243 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
244 
245 			/* read MDI */
246 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
247 			if (miir & MY_MASK_MIIR_MII_MDI)
248 				data |= mask;
249 
250 			/* high MDC, and wait */
251 			miir |= MY_MASK_MIIR_MII_MDC;
252 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
253 			DELAY(30);
254 
255 			/* next */
256 			mask >>= 1;
257 		}
258 
259 		/* low MDC */
260 		miir &= ~MY_MASK_MIIR_MII_MDC;
261 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
262 	}
263 
264 	return (u_int16_t) data;
265 }
266 
267 
268 static void
269 my_phy_writereg(struct my_softc * sc, int reg, int data)
270 {
271 	long            miir;
272 	int             mask;
273 
274 	MY_LOCK_ASSERT(sc);
275 
276 	if (sc->my_info->my_did == MTD803ID)
277 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
278 	else {
279 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
280 
281 		/* write data */
282 		mask = 0x8000;
283 		while (mask) {
284 			/* low MDC, prepare MDO */
285 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
286 			if (mask & data)
287 				miir |= MY_MASK_MIIR_MII_MDO;
288 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
289 			DELAY(1);
290 
291 			/* high MDC */
292 			miir |= MY_MASK_MIIR_MII_MDC;
293 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
294 			DELAY(1);
295 
296 			/* next */
297 			mask >>= 1;
298 		}
299 
300 		/* low MDC */
301 		miir &= ~MY_MASK_MIIR_MII_MDC;
302 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
303 	}
304 	return;
305 }
306 
307 
308 /*
309  * Program the 64-bit multicast hash filter.
310  */
311 static void
312 my_setmulti(struct my_softc * sc)
313 {
314 	struct ifnet   *ifp;
315 	int             h = 0;
316 	u_int32_t       hashes[2] = {0, 0};
317 	struct ifmultiaddr *ifma;
318 	u_int32_t       rxfilt;
319 	int             mcnt = 0;
320 
321 	MY_LOCK_ASSERT(sc);
322 
323 	ifp = sc->my_ifp;
324 
325 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
326 
327 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
328 		rxfilt |= MY_AM;
329 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
330 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
331 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
332 
333 		return;
334 	}
335 	/* first, zot all the existing hash bits */
336 	CSR_WRITE_4(sc, MY_MAR0, 0);
337 	CSR_WRITE_4(sc, MY_MAR1, 0);
338 
339 	/* now program new ones */
340 	IF_ADDR_LOCK(ifp);
341 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
342 		if (ifma->ifma_addr->sa_family != AF_LINK)
343 			continue;
344 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
345 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
346 		if (h < 32)
347 			hashes[0] |= (1 << h);
348 		else
349 			hashes[1] |= (1 << (h - 32));
350 		mcnt++;
351 	}
352 	IF_ADDR_UNLOCK(ifp);
353 
354 	if (mcnt)
355 		rxfilt |= MY_AM;
356 	else
357 		rxfilt &= ~MY_AM;
358 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
359 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
360 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
361 	return;
362 }
363 
364 /*
365  * Initiate an autonegotiation session.
366  */
367 static void
368 my_autoneg_xmit(struct my_softc * sc)
369 {
370 	u_int16_t       phy_sts = 0;
371 
372 	MY_LOCK_ASSERT(sc);
373 
374 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
375 	DELAY(500);
376 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
377 
378 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
379 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
380 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
381 
382 	return;
383 }
384 
385 
386 /*
387  * Invoke autonegotiation on a PHY.
388  */
389 static void
390 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
391 {
392 	u_int16_t       phy_sts = 0, media, advert, ability;
393 	u_int16_t       ability2 = 0;
394 	struct ifnet   *ifp;
395 	struct ifmedia *ifm;
396 
397 	MY_LOCK_ASSERT(sc);
398 
399 	ifm = &sc->ifmedia;
400 	ifp = sc->my_ifp;
401 
402 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
403 
404 #ifndef FORCE_AUTONEG_TFOUR
405 	/*
406 	 * First, see if autoneg is supported. If not, there's no point in
407 	 * continuing.
408 	 */
409 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
410 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
411 		if (verbose)
412 			device_printf(sc->my_dev,
413 			    "autonegotiation not supported\n");
414 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
415 		return;
416 	}
417 #endif
418 	switch (flag) {
419 	case MY_FLAG_FORCEDELAY:
420 		/*
421 		 * XXX Never use this option anywhere but in the probe
422 		 * routine: making the kernel stop dead in its tracks for
423 		 * three whole seconds after we've gone multi-user is really
424 		 * bad manners.
425 		 */
426 		my_autoneg_xmit(sc);
427 		DELAY(5000000);
428 		break;
429 	case MY_FLAG_SCHEDDELAY:
430 		/*
431 		 * Wait for the transmitter to go idle before starting an
432 		 * autoneg session, otherwise my_start() may clobber our
433 		 * timeout, and we don't want to allow transmission during an
434 		 * autoneg session since that can screw it up.
435 		 */
436 		if (sc->my_cdata.my_tx_head != NULL) {
437 			sc->my_want_auto = 1;
438 			MY_UNLOCK(sc);
439 			return;
440 		}
441 		my_autoneg_xmit(sc);
442 		ifp->if_timer = 5;
443 		sc->my_autoneg = 1;
444 		sc->my_want_auto = 0;
445 		return;
446 	case MY_FLAG_DELAYTIMEO:
447 		ifp->if_timer = 0;
448 		sc->my_autoneg = 0;
449 		break;
450 	default:
451 		device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag);
452 		return;
453 	}
454 
455 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
456 		if (verbose)
457 			device_printf(sc->my_dev, "autoneg complete, ");
458 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
459 	} else {
460 		if (verbose)
461 			device_printf(sc->my_dev, "autoneg not complete, ");
462 	}
463 
464 	media = my_phy_readreg(sc, PHY_BMCR);
465 
466 	/* Link is good. Report modes and set duplex mode. */
467 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
468 		if (verbose)
469 			device_printf(sc->my_dev, "link status good. ");
470 		advert = my_phy_readreg(sc, PHY_ANAR);
471 		ability = my_phy_readreg(sc, PHY_LPAR);
472 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
473 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
474 			ability2 = my_phy_readreg(sc, PHY_1000SR);
475 			if (ability2 & PHY_1000SR_1000BTXFULL) {
476 				advert = 0;
477 				ability = 0;
478 				/*
479 				 * this version did not support 1000M,
480 				 * ifm->ifm_media =
481 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
482 				 */
483 				ifm->ifm_media =
484 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
485 				media &= ~PHY_BMCR_SPEEDSEL;
486 				media |= PHY_BMCR_1000;
487 				media |= PHY_BMCR_DUPLEX;
488 				printf("(full-duplex, 1000Mbps)\n");
489 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
490 				advert = 0;
491 				ability = 0;
492 				/*
493 				 * this version did not support 1000M,
494 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
495 				 */
496 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
497 				media &= ~PHY_BMCR_SPEEDSEL;
498 				media &= ~PHY_BMCR_DUPLEX;
499 				media |= PHY_BMCR_1000;
500 				printf("(half-duplex, 1000Mbps)\n");
501 			}
502 		}
503 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
504 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
505 			media |= PHY_BMCR_SPEEDSEL;
506 			media &= ~PHY_BMCR_DUPLEX;
507 			printf("(100baseT4)\n");
508 		} else if (advert & PHY_ANAR_100BTXFULL &&
509 			   ability & PHY_ANAR_100BTXFULL) {
510 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
511 			media |= PHY_BMCR_SPEEDSEL;
512 			media |= PHY_BMCR_DUPLEX;
513 			printf("(full-duplex, 100Mbps)\n");
514 		} else if (advert & PHY_ANAR_100BTXHALF &&
515 			   ability & PHY_ANAR_100BTXHALF) {
516 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
517 			media |= PHY_BMCR_SPEEDSEL;
518 			media &= ~PHY_BMCR_DUPLEX;
519 			printf("(half-duplex, 100Mbps)\n");
520 		} else if (advert & PHY_ANAR_10BTFULL &&
521 			   ability & PHY_ANAR_10BTFULL) {
522 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
523 			media &= ~PHY_BMCR_SPEEDSEL;
524 			media |= PHY_BMCR_DUPLEX;
525 			printf("(full-duplex, 10Mbps)\n");
526 		} else if (advert) {
527 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
528 			media &= ~PHY_BMCR_SPEEDSEL;
529 			media &= ~PHY_BMCR_DUPLEX;
530 			printf("(half-duplex, 10Mbps)\n");
531 		}
532 		media &= ~PHY_BMCR_AUTONEGENBL;
533 
534 		/* Set ASIC's duplex mode to match the PHY. */
535 		my_phy_writereg(sc, PHY_BMCR, media);
536 		my_setcfg(sc, media);
537 	} else {
538 		if (verbose)
539 			device_printf(sc->my_dev, "no carrier\n");
540 	}
541 
542 	my_init_locked(sc);
543 	if (sc->my_tx_pend) {
544 		sc->my_autoneg = 0;
545 		sc->my_tx_pend = 0;
546 		my_start_locked(ifp);
547 	}
548 	return;
549 }
550 
551 /*
552  * To get PHY ability.
553  */
554 static void
555 my_getmode_mii(struct my_softc * sc)
556 {
557 	u_int16_t       bmsr;
558 	struct ifnet   *ifp;
559 
560 	MY_LOCK_ASSERT(sc);
561 	ifp = sc->my_ifp;
562 	bmsr = my_phy_readreg(sc, PHY_BMSR);
563 	if (bootverbose)
564 		device_printf(sc->my_dev, "PHY status word: %x\n", bmsr);
565 
566 	/* fallback */
567 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
568 
569 	if (bmsr & PHY_BMSR_10BTHALF) {
570 		if (bootverbose)
571 			device_printf(sc->my_dev,
572 			    "10Mbps half-duplex mode supported\n");
573 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
574 		    0, NULL);
575 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
576 	}
577 	if (bmsr & PHY_BMSR_10BTFULL) {
578 		if (bootverbose)
579 			device_printf(sc->my_dev,
580 			    "10Mbps full-duplex mode supported\n");
581 
582 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
583 		    0, NULL);
584 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
585 	}
586 	if (bmsr & PHY_BMSR_100BTXHALF) {
587 		if (bootverbose)
588 			device_printf(sc->my_dev,
589 			    "100Mbps half-duplex mode supported\n");
590 		ifp->if_baudrate = 100000000;
591 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
592 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
593 			    0, NULL);
594 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
595 	}
596 	if (bmsr & PHY_BMSR_100BTXFULL) {
597 		if (bootverbose)
598 			device_printf(sc->my_dev,
599 			    "100Mbps full-duplex mode supported\n");
600 		ifp->if_baudrate = 100000000;
601 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
602 		    0, NULL);
603 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
604 	}
605 	/* Some also support 100BaseT4. */
606 	if (bmsr & PHY_BMSR_100BT4) {
607 		if (bootverbose)
608 			device_printf(sc->my_dev, "100baseT4 mode supported\n");
609 		ifp->if_baudrate = 100000000;
610 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
611 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
612 #ifdef FORCE_AUTONEG_TFOUR
613 		if (bootverbose)
614 			device_printf(sc->my_dev,
615 			    "forcing on autoneg support for BT4\n");
616 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
617 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
618 #endif
619 	}
620 #if 0				/* this version did not support 1000M, */
621 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
622 		if (bootverbose)
623 			device_printf(sc->my_dev,
624 			    "1000Mbps half-duplex mode supported\n");
625 
626 		ifp->if_baudrate = 1000000000;
627 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
628 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
629 		    0, NULL);
630 		if (bootverbose)
631 			device_printf(sc->my_dev,
632 			    "1000Mbps full-duplex mode supported\n");
633 		ifp->if_baudrate = 1000000000;
634 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
635 		    0, NULL);
636 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
637 	}
638 #endif
639 	if (bmsr & PHY_BMSR_CANAUTONEG) {
640 		if (bootverbose)
641 			device_printf(sc->my_dev, "autoneg supported\n");
642 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
643 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
644 	}
645 	return;
646 }
647 
648 /*
649  * Set speed and duplex mode.
650  */
651 static void
652 my_setmode_mii(struct my_softc * sc, int media)
653 {
654 	u_int16_t       bmcr;
655 	struct ifnet   *ifp;
656 
657 	MY_LOCK_ASSERT(sc);
658 	ifp = sc->my_ifp;
659 	/*
660 	 * If an autoneg session is in progress, stop it.
661 	 */
662 	if (sc->my_autoneg) {
663 		device_printf(sc->my_dev, "canceling autoneg session\n");
664 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
665 		bmcr = my_phy_readreg(sc, PHY_BMCR);
666 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
667 		my_phy_writereg(sc, PHY_BMCR, bmcr);
668 	}
669 	device_printf(sc->my_dev, "selecting MII, ");
670 	bmcr = my_phy_readreg(sc, PHY_BMCR);
671 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
672 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
673 
674 #if 0				/* this version did not support 1000M, */
675 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
676 		printf("1000Mbps/T4, half-duplex\n");
677 		bmcr &= ~PHY_BMCR_SPEEDSEL;
678 		bmcr &= ~PHY_BMCR_DUPLEX;
679 		bmcr |= PHY_BMCR_1000;
680 	}
681 #endif
682 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
683 		printf("100Mbps/T4, half-duplex\n");
684 		bmcr |= PHY_BMCR_SPEEDSEL;
685 		bmcr &= ~PHY_BMCR_DUPLEX;
686 	}
687 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
688 		printf("100Mbps, ");
689 		bmcr |= PHY_BMCR_SPEEDSEL;
690 	}
691 	if (IFM_SUBTYPE(media) == IFM_10_T) {
692 		printf("10Mbps, ");
693 		bmcr &= ~PHY_BMCR_SPEEDSEL;
694 	}
695 	if ((media & IFM_GMASK) == IFM_FDX) {
696 		printf("full duplex\n");
697 		bmcr |= PHY_BMCR_DUPLEX;
698 	} else {
699 		printf("half duplex\n");
700 		bmcr &= ~PHY_BMCR_DUPLEX;
701 	}
702 	my_phy_writereg(sc, PHY_BMCR, bmcr);
703 	my_setcfg(sc, bmcr);
704 	return;
705 }
706 
707 /*
708  * The Myson manual states that in order to fiddle with the 'full-duplex' and
709  * '100Mbps' bits in the netconfig register, we first have to put the
710  * transmit and/or receive logic in the idle state.
711  */
712 static void
713 my_setcfg(struct my_softc * sc, int bmcr)
714 {
715 	int             i, restart = 0;
716 
717 	MY_LOCK_ASSERT(sc);
718 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
719 		restart = 1;
720 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
721 		for (i = 0; i < MY_TIMEOUT; i++) {
722 			DELAY(10);
723 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
724 			    (MY_TXRUN | MY_RXRUN)))
725 				break;
726 		}
727 		if (i == MY_TIMEOUT)
728 			device_printf(sc->my_dev,
729 			    "failed to force tx and rx to idle \n");
730 	}
731 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
732 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
733 	if (bmcr & PHY_BMCR_1000)
734 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
735 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
736 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
737 	if (bmcr & PHY_BMCR_DUPLEX)
738 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
739 	else
740 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
741 	if (restart)
742 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
743 	return;
744 }
745 
746 static void
747 my_reset(struct my_softc * sc)
748 {
749 	register int    i;
750 
751 	MY_LOCK_ASSERT(sc);
752 	MY_SETBIT(sc, MY_BCR, MY_SWR);
753 	for (i = 0; i < MY_TIMEOUT; i++) {
754 		DELAY(10);
755 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
756 			break;
757 	}
758 	if (i == MY_TIMEOUT)
759 		device_printf(sc->my_dev, "reset never completed!\n");
760 
761 	/* Wait a little while for the chip to get its brains in order. */
762 	DELAY(1000);
763 	return;
764 }
765 
766 /*
767  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
768  * list and return a device name if we find a match.
769  */
770 static int
771 my_probe(device_t dev)
772 {
773 	struct my_type *t;
774 
775 	t = my_devs;
776 	while (t->my_name != NULL) {
777 		if ((pci_get_vendor(dev) == t->my_vid) &&
778 		    (pci_get_device(dev) == t->my_did)) {
779 			device_set_desc(dev, t->my_name);
780 			my_info_tmp = t;
781 			return (BUS_PROBE_DEFAULT);
782 		}
783 		t++;
784 	}
785 	return (ENXIO);
786 }
787 
788 /*
789  * Attach the interface. Allocate softc structures, do ifmedia setup and
790  * ethernet/BPF attach.
791  */
792 static int
793 my_attach(device_t dev)
794 {
795 	int             i;
796 	u_char          eaddr[ETHER_ADDR_LEN];
797 	u_int32_t       iobase;
798 	struct my_softc *sc;
799 	struct ifnet   *ifp;
800 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
801 	unsigned int    round;
802 	caddr_t         roundptr;
803 	struct my_type *p;
804 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
805 	int             rid, error = 0;
806 
807 	sc = device_get_softc(dev);
808 	sc->my_dev = dev;
809 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
810 	    MTX_DEF);
811 
812 	/*
813 	 * Map control/status registers.
814 	 */
815 	pci_enable_busmaster(dev);
816 
817 	if (my_info_tmp->my_did == MTD800ID) {
818 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
819 		if (iobase & 0x300)
820 			MY_USEIOSPACE = 0;
821 	}
822 
823 	rid = MY_RID;
824 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
825 
826 	if (sc->my_res == NULL) {
827 		device_printf(dev, "couldn't map ports/memory\n");
828 		error = ENXIO;
829 		goto destroy_mutex;
830 	}
831 	sc->my_btag = rman_get_bustag(sc->my_res);
832 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
833 
834 	rid = 0;
835 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
836 					    RF_SHAREABLE | RF_ACTIVE);
837 
838 	if (sc->my_irq == NULL) {
839 		device_printf(dev, "couldn't map interrupt\n");
840 		error = ENXIO;
841 		goto release_io;
842 	}
843 
844 	sc->my_info = my_info_tmp;
845 
846 	/* Reset the adapter. */
847 	MY_LOCK(sc);
848 	my_reset(sc);
849 	MY_UNLOCK(sc);
850 
851 	/*
852 	 * Get station address
853 	 */
854 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
855 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
856 
857 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
858 				  M_DEVBUF, M_NOWAIT);
859 	if (sc->my_ldata_ptr == NULL) {
860 		device_printf(dev, "no memory for list buffers!\n");
861 		error = ENXIO;
862 		goto release_irq;
863 	}
864 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
865 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
866 	roundptr = sc->my_ldata_ptr;
867 	for (i = 0; i < 8; i++) {
868 		if (round % 8) {
869 			round++;
870 			roundptr++;
871 		} else
872 			break;
873 	}
874 	sc->my_ldata = (struct my_list_data *) roundptr;
875 	bzero(sc->my_ldata, sizeof(struct my_list_data));
876 
877 	ifp = sc->my_ifp = if_alloc(IFT_ETHER);
878 	if (ifp == NULL) {
879 		device_printf(dev, "can not if_alloc()\n");
880 		error = ENOSPC;
881 		goto free_ldata;
882 	}
883 	ifp->if_softc = sc;
884 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
885 	ifp->if_mtu = ETHERMTU;
886 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
887 	ifp->if_ioctl = my_ioctl;
888 	ifp->if_start = my_start;
889 	ifp->if_watchdog = my_watchdog;
890 	ifp->if_init = my_init;
891 	ifp->if_baudrate = 10000000;
892 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
893 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
894 	IFQ_SET_READY(&ifp->if_snd);
895 
896 	if (sc->my_info->my_did == MTD803ID)
897 		sc->my_pinfo = my_phys;
898 	else {
899 		if (bootverbose)
900 			device_printf(dev, "probing for a PHY\n");
901 		MY_LOCK(sc);
902 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
903 			if (bootverbose)
904 				device_printf(dev, "checking address: %d\n", i);
905 			sc->my_phy_addr = i;
906 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
907 			if ((phy_sts != 0) && (phy_sts != 0xffff))
908 				break;
909 			else
910 				phy_sts = 0;
911 		}
912 		if (phy_sts) {
913 			phy_vid = my_phy_readreg(sc, PHY_VENID);
914 			phy_did = my_phy_readreg(sc, PHY_DEVID);
915 			if (bootverbose) {
916 				device_printf(dev, "found PHY at address %d, ",
917 				    sc->my_phy_addr);
918 				printf("vendor id: %x device id: %x\n",
919 				    phy_vid, phy_did);
920 			}
921 			p = my_phys;
922 			while (p->my_vid) {
923 				if (phy_vid == p->my_vid) {
924 					sc->my_pinfo = p;
925 					break;
926 				}
927 				p++;
928 			}
929 			if (sc->my_pinfo == NULL)
930 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
931 			if (bootverbose)
932 				device_printf(dev, "PHY type: %s\n",
933 				       sc->my_pinfo->my_name);
934 		} else {
935 			MY_UNLOCK(sc);
936 			device_printf(dev, "MII without any phy!\n");
937 			error = ENXIO;
938 			goto free_if;
939 		}
940 		MY_UNLOCK(sc);
941 	}
942 
943 	/* Do ifmedia setup. */
944 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
945 	MY_LOCK(sc);
946 	my_getmode_mii(sc);
947 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
948 	media = sc->ifmedia.ifm_media;
949 	my_stop(sc);
950 	MY_UNLOCK(sc);
951 	ifmedia_set(&sc->ifmedia, media);
952 
953 	ether_ifattach(ifp, eaddr);
954 
955 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE,
956 			       NULL, my_intr, sc, &sc->my_intrhand);
957 
958 	if (error) {
959 		device_printf(dev, "couldn't set up irq\n");
960 		goto detach_if;
961 	}
962 
963 	return (0);
964 
965 detach_if:
966 	ether_ifdetach(ifp);
967 free_if:
968 	if_free(ifp);
969 free_ldata:
970 	free(sc->my_ldata_ptr, M_DEVBUF);
971 release_irq:
972 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
973 release_io:
974 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
975 destroy_mutex:
976 	mtx_destroy(&sc->my_mtx);
977 	return (error);
978 }
979 
980 static int
981 my_detach(device_t dev)
982 {
983 	struct my_softc *sc;
984 	struct ifnet   *ifp;
985 
986 	sc = device_get_softc(dev);
987 	MY_LOCK(sc);
988 	my_stop(sc);
989 	MY_UNLOCK(sc);
990 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
991 
992 	ifp = sc->my_ifp;
993 	ether_ifdetach(ifp);
994 	if_free(ifp);
995 	free(sc->my_ldata_ptr, M_DEVBUF);
996 
997 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
998 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
999 	mtx_destroy(&sc->my_mtx);
1000 	return (0);
1001 }
1002 
1003 
1004 /*
1005  * Initialize the transmit descriptors.
1006  */
1007 static int
1008 my_list_tx_init(struct my_softc * sc)
1009 {
1010 	struct my_chain_data *cd;
1011 	struct my_list_data *ld;
1012 	int             i;
1013 
1014 	MY_LOCK_ASSERT(sc);
1015 	cd = &sc->my_cdata;
1016 	ld = sc->my_ldata;
1017 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1018 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1019 		if (i == (MY_TX_LIST_CNT - 1))
1020 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1021 		else
1022 			cd->my_tx_chain[i].my_nextdesc =
1023 			    &cd->my_tx_chain[i + 1];
1024 	}
1025 	cd->my_tx_free = &cd->my_tx_chain[0];
1026 	cd->my_tx_tail = cd->my_tx_head = NULL;
1027 	return (0);
1028 }
1029 
1030 /*
1031  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1032  * arrange the descriptors in a closed ring, so that the last descriptor
1033  * points back to the first.
1034  */
1035 static int
1036 my_list_rx_init(struct my_softc * sc)
1037 {
1038 	struct my_chain_data *cd;
1039 	struct my_list_data *ld;
1040 	int             i;
1041 
1042 	MY_LOCK_ASSERT(sc);
1043 	cd = &sc->my_cdata;
1044 	ld = sc->my_ldata;
1045 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1046 		cd->my_rx_chain[i].my_ptr =
1047 		    (struct my_desc *) & ld->my_rx_list[i];
1048 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1049 			MY_UNLOCK(sc);
1050 			return (ENOBUFS);
1051 		}
1052 		if (i == (MY_RX_LIST_CNT - 1)) {
1053 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1054 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1055 		} else {
1056 			cd->my_rx_chain[i].my_nextdesc =
1057 			    &cd->my_rx_chain[i + 1];
1058 			ld->my_rx_list[i].my_next =
1059 			    vtophys(&ld->my_rx_list[i + 1]);
1060 		}
1061 	}
1062 	cd->my_rx_head = &cd->my_rx_chain[0];
1063 	return (0);
1064 }
1065 
1066 /*
1067  * Initialize an RX descriptor and attach an MBUF cluster.
1068  */
1069 static int
1070 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1071 {
1072 	struct mbuf    *m_new = NULL;
1073 
1074 	MY_LOCK_ASSERT(sc);
1075 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1076 	if (m_new == NULL) {
1077 		device_printf(sc->my_dev,
1078 		    "no memory for rx list -- packet dropped!\n");
1079 		return (ENOBUFS);
1080 	}
1081 	MCLGET(m_new, M_DONTWAIT);
1082 	if (!(m_new->m_flags & M_EXT)) {
1083 		device_printf(sc->my_dev,
1084 		    "no memory for rx list -- packet dropped!\n");
1085 		m_freem(m_new);
1086 		return (ENOBUFS);
1087 	}
1088 	c->my_mbuf = m_new;
1089 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1090 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1091 	c->my_ptr->my_status = MY_OWNByNIC;
1092 	return (0);
1093 }
1094 
1095 /*
1096  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1097  * level protocols.
1098  */
1099 static void
1100 my_rxeof(struct my_softc * sc)
1101 {
1102 	struct ether_header *eh;
1103 	struct mbuf    *m;
1104 	struct ifnet   *ifp;
1105 	struct my_chain_onefrag *cur_rx;
1106 	int             total_len = 0;
1107 	u_int32_t       rxstat;
1108 
1109 	MY_LOCK_ASSERT(sc);
1110 	ifp = sc->my_ifp;
1111 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1112 	    & MY_OWNByNIC)) {
1113 		cur_rx = sc->my_cdata.my_rx_head;
1114 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1115 
1116 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1117 			ifp->if_ierrors++;
1118 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1119 			continue;
1120 		}
1121 		/* No errors; receive the packet. */
1122 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1123 		total_len -= ETHER_CRC_LEN;
1124 
1125 		if (total_len < MINCLSIZE) {
1126 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1127 			    total_len, 0, ifp, NULL);
1128 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1129 			if (m == NULL) {
1130 				ifp->if_ierrors++;
1131 				continue;
1132 			}
1133 		} else {
1134 			m = cur_rx->my_mbuf;
1135 			/*
1136 			 * Try to conjure up a new mbuf cluster. If that
1137 			 * fails, it means we have an out of memory condition
1138 			 * and should leave the buffer in place and continue.
1139 			 * This will result in a lost packet, but there's
1140 			 * little else we can do in this situation.
1141 			 */
1142 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1143 				ifp->if_ierrors++;
1144 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1145 				continue;
1146 			}
1147 			m->m_pkthdr.rcvif = ifp;
1148 			m->m_pkthdr.len = m->m_len = total_len;
1149 		}
1150 		ifp->if_ipackets++;
1151 		eh = mtod(m, struct ether_header *);
1152 #if NBPFILTER > 0
1153 		/*
1154 		 * Handle BPF listeners. Let the BPF user see the packet, but
1155 		 * don't pass it up to the ether_input() layer unless it's a
1156 		 * broadcast packet, multicast packet, matches our ethernet
1157 		 * address or the interface is in promiscuous mode.
1158 		 */
1159 		if (bpf_peers_present(ifp->if_bpf)) {
1160 			bpf_mtap(ifp->if_bpf, m);
1161 			if (ifp->if_flags & IFF_PROMISC &&
1162 			    (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp),
1163 				ETHER_ADDR_LEN) &&
1164 			     (eh->ether_dhost[0] & 1) == 0)) {
1165 				m_freem(m);
1166 				continue;
1167 			}
1168 		}
1169 #endif
1170 		MY_UNLOCK(sc);
1171 		(*ifp->if_input)(ifp, m);
1172 		MY_LOCK(sc);
1173 	}
1174 	return;
1175 }
1176 
1177 
1178 /*
1179  * A frame was downloaded to the chip. It's safe for us to clean up the list
1180  * buffers.
1181  */
1182 static void
1183 my_txeof(struct my_softc * sc)
1184 {
1185 	struct my_chain *cur_tx;
1186 	struct ifnet   *ifp;
1187 
1188 	MY_LOCK_ASSERT(sc);
1189 	ifp = sc->my_ifp;
1190 	/* Clear the timeout timer. */
1191 	ifp->if_timer = 0;
1192 	if (sc->my_cdata.my_tx_head == NULL) {
1193 		return;
1194 	}
1195 	/*
1196 	 * Go through our tx list and free mbufs for those frames that have
1197 	 * been transmitted.
1198 	 */
1199 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1200 		u_int32_t       txstat;
1201 
1202 		cur_tx = sc->my_cdata.my_tx_head;
1203 		txstat = MY_TXSTATUS(cur_tx);
1204 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1205 			break;
1206 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1207 			if (txstat & MY_TXERR) {
1208 				ifp->if_oerrors++;
1209 				if (txstat & MY_EC) /* excessive collision */
1210 					ifp->if_collisions++;
1211 				if (txstat & MY_LC)	/* late collision */
1212 					ifp->if_collisions++;
1213 			}
1214 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1215 			    MY_NCRShift;
1216 		}
1217 		ifp->if_opackets++;
1218 		m_freem(cur_tx->my_mbuf);
1219 		cur_tx->my_mbuf = NULL;
1220 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1221 			sc->my_cdata.my_tx_head = NULL;
1222 			sc->my_cdata.my_tx_tail = NULL;
1223 			break;
1224 		}
1225 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1226 	}
1227 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1228 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1229 	}
1230 	return;
1231 }
1232 
1233 /*
1234  * TX 'end of channel' interrupt handler.
1235  */
1236 static void
1237 my_txeoc(struct my_softc * sc)
1238 {
1239 	struct ifnet   *ifp;
1240 
1241 	MY_LOCK_ASSERT(sc);
1242 	ifp = sc->my_ifp;
1243 	ifp->if_timer = 0;
1244 	if (sc->my_cdata.my_tx_head == NULL) {
1245 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1246 		sc->my_cdata.my_tx_tail = NULL;
1247 		if (sc->my_want_auto)
1248 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1249 	} else {
1250 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1251 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1252 			ifp->if_timer = 5;
1253 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1254 		}
1255 	}
1256 	return;
1257 }
1258 
1259 static void
1260 my_intr(void *arg)
1261 {
1262 	struct my_softc *sc;
1263 	struct ifnet   *ifp;
1264 	u_int32_t       status;
1265 
1266 	sc = arg;
1267 	MY_LOCK(sc);
1268 	ifp = sc->my_ifp;
1269 	if (!(ifp->if_flags & IFF_UP)) {
1270 		MY_UNLOCK(sc);
1271 		return;
1272 	}
1273 	/* Disable interrupts. */
1274 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1275 
1276 	for (;;) {
1277 		status = CSR_READ_4(sc, MY_ISR);
1278 		status &= MY_INTRS;
1279 		if (status)
1280 			CSR_WRITE_4(sc, MY_ISR, status);
1281 		else
1282 			break;
1283 
1284 		if (status & MY_RI)	/* receive interrupt */
1285 			my_rxeof(sc);
1286 
1287 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1288 			/* rx buffer unavailable or rx error */
1289 			ifp->if_ierrors++;
1290 #ifdef foo
1291 			my_stop(sc);
1292 			my_reset(sc);
1293 			my_init_locked(sc);
1294 #endif
1295 		}
1296 		if (status & MY_TI)	/* tx interrupt */
1297 			my_txeof(sc);
1298 		if (status & MY_ETI)	/* tx early interrupt */
1299 			my_txeof(sc);
1300 		if (status & MY_TBU)	/* tx buffer unavailable */
1301 			my_txeoc(sc);
1302 
1303 #if 0				/* 90/1/18 delete */
1304 		if (status & MY_FBE) {
1305 			my_reset(sc);
1306 			my_init_locked(sc);
1307 		}
1308 #endif
1309 
1310 	}
1311 
1312 	/* Re-enable interrupts. */
1313 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1314 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1315 		my_start_locked(ifp);
1316 	MY_UNLOCK(sc);
1317 	return;
1318 }
1319 
1320 /*
1321  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1322  * pointers to the fragment pointers.
1323  */
1324 static int
1325 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1326 {
1327 	struct my_desc *f = NULL;
1328 	int             total_len;
1329 	struct mbuf    *m, *m_new = NULL;
1330 
1331 	MY_LOCK_ASSERT(sc);
1332 	/* calculate the total tx pkt length */
1333 	total_len = 0;
1334 	for (m = m_head; m != NULL; m = m->m_next)
1335 		total_len += m->m_len;
1336 	/*
1337 	 * Start packing the mbufs in this chain into the fragment pointers.
1338 	 * Stop when we run out of fragments or hit the end of the mbuf
1339 	 * chain.
1340 	 */
1341 	m = m_head;
1342 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1343 	if (m_new == NULL) {
1344 		device_printf(sc->my_dev, "no memory for tx list");
1345 		return (1);
1346 	}
1347 	if (m_head->m_pkthdr.len > MHLEN) {
1348 		MCLGET(m_new, M_DONTWAIT);
1349 		if (!(m_new->m_flags & M_EXT)) {
1350 			m_freem(m_new);
1351 			device_printf(sc->my_dev, "no memory for tx list");
1352 			return (1);
1353 		}
1354 	}
1355 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1356 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1357 	m_freem(m_head);
1358 	m_head = m_new;
1359 	f = &c->my_ptr->my_frag[0];
1360 	f->my_status = 0;
1361 	f->my_data = vtophys(mtod(m_new, caddr_t));
1362 	total_len = m_new->m_len;
1363 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1364 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1365 	f->my_ctl |= total_len;	/* buffer size */
1366 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1367 	if (sc->my_info->my_did == MTD891ID)
1368 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1369 	c->my_mbuf = m_head;
1370 	c->my_lastdesc = 0;
1371 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1372 	return (0);
1373 }
1374 
1375 /*
1376  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1377  * to the mbuf data regions directly in the transmit lists. We also save a
1378  * copy of the pointers since the transmit list fragment pointers are
1379  * physical addresses.
1380  */
1381 static void
1382 my_start(struct ifnet * ifp)
1383 {
1384 	struct my_softc *sc;
1385 
1386 	sc = ifp->if_softc;
1387 	MY_LOCK(sc);
1388 	my_start_locked(ifp);
1389 	MY_UNLOCK(sc);
1390 }
1391 
1392 static void
1393 my_start_locked(struct ifnet * ifp)
1394 {
1395 	struct my_softc *sc;
1396 	struct mbuf    *m_head = NULL;
1397 	struct my_chain *cur_tx = NULL, *start_tx;
1398 
1399 	sc = ifp->if_softc;
1400 	MY_LOCK_ASSERT(sc);
1401 	if (sc->my_autoneg) {
1402 		sc->my_tx_pend = 1;
1403 		return;
1404 	}
1405 	/*
1406 	 * Check for an available queue slot. If there are none, punt.
1407 	 */
1408 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1409 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1410 		return;
1411 	}
1412 	start_tx = sc->my_cdata.my_tx_free;
1413 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1414 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1415 		if (m_head == NULL)
1416 			break;
1417 
1418 		/* Pick a descriptor off the free list. */
1419 		cur_tx = sc->my_cdata.my_tx_free;
1420 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1421 
1422 		/* Pack the data into the descriptor. */
1423 		my_encap(sc, cur_tx, m_head);
1424 
1425 		if (cur_tx != start_tx)
1426 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1427 #if NBPFILTER > 0
1428 		/*
1429 		 * If there's a BPF listener, bounce a copy of this frame to
1430 		 * him.
1431 		 */
1432 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1433 #endif
1434 	}
1435 	/*
1436 	 * If there are no packets queued, bail.
1437 	 */
1438 	if (cur_tx == NULL) {
1439 		return;
1440 	}
1441 	/*
1442 	 * Place the request for the upload interrupt in the last descriptor
1443 	 * in the chain. This way, if we're chaining several packets at once,
1444 	 * we'll only get an interrupt once for the whole chain rather than
1445 	 * once for each packet.
1446 	 */
1447 	MY_TXCTL(cur_tx) |= MY_TXIC;
1448 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1449 	sc->my_cdata.my_tx_tail = cur_tx;
1450 	if (sc->my_cdata.my_tx_head == NULL)
1451 		sc->my_cdata.my_tx_head = start_tx;
1452 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1453 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1454 
1455 	/*
1456 	 * Set a timeout in case the chip goes out to lunch.
1457 	 */
1458 	ifp->if_timer = 5;
1459 	return;
1460 }
1461 
1462 static void
1463 my_init(void *xsc)
1464 {
1465 	struct my_softc *sc = xsc;
1466 
1467 	MY_LOCK(sc);
1468 	my_init_locked(sc);
1469 	MY_UNLOCK(sc);
1470 }
1471 
1472 static void
1473 my_init_locked(struct my_softc *sc)
1474 {
1475 	struct ifnet   *ifp = sc->my_ifp;
1476 	u_int16_t       phy_bmcr = 0;
1477 
1478 	MY_LOCK_ASSERT(sc);
1479 	if (sc->my_autoneg) {
1480 		return;
1481 	}
1482 	if (sc->my_pinfo != NULL)
1483 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1484 	/*
1485 	 * Cancel pending I/O and free all RX/TX buffers.
1486 	 */
1487 	my_stop(sc);
1488 	my_reset(sc);
1489 
1490 	/*
1491 	 * Set cache alignment and burst length.
1492 	 */
1493 #if 0				/* 89/9/1 modify,  */
1494 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1495 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1496 #endif
1497 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1498 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1499 	/*
1500 	 * 89/12/29 add, for mtd891,
1501 	 */
1502 	if (sc->my_info->my_did == MTD891ID) {
1503 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1504 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1505 	}
1506 	my_setcfg(sc, phy_bmcr);
1507 	/* Init circular RX list. */
1508 	if (my_list_rx_init(sc) == ENOBUFS) {
1509 		device_printf(sc->my_dev, "init failed: no memory for rx buffers\n");
1510 		my_stop(sc);
1511 		return;
1512 	}
1513 	/* Init TX descriptors. */
1514 	my_list_tx_init(sc);
1515 
1516 	/* If we want promiscuous mode, set the allframes bit. */
1517 	if (ifp->if_flags & IFF_PROMISC)
1518 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1519 	else
1520 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1521 
1522 	/*
1523 	 * Set capture broadcast bit to capture broadcast frames.
1524 	 */
1525 	if (ifp->if_flags & IFF_BROADCAST)
1526 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1527 	else
1528 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1529 
1530 	/*
1531 	 * Program the multicast filter, if necessary.
1532 	 */
1533 	my_setmulti(sc);
1534 
1535 	/*
1536 	 * Load the address of the RX list.
1537 	 */
1538 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1539 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1540 
1541 	/*
1542 	 * Enable interrupts.
1543 	 */
1544 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1545 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1546 
1547 	/* Enable receiver and transmitter. */
1548 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1549 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1550 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1551 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1552 
1553 	/* Restore state of BMCR */
1554 	if (sc->my_pinfo != NULL)
1555 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1556 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1557 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1558 	return;
1559 }
1560 
1561 /*
1562  * Set media options.
1563  */
1564 
1565 static int
1566 my_ifmedia_upd(struct ifnet * ifp)
1567 {
1568 	struct my_softc *sc;
1569 	struct ifmedia *ifm;
1570 
1571 	sc = ifp->if_softc;
1572 	MY_LOCK(sc);
1573 	ifm = &sc->ifmedia;
1574 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1575 		MY_UNLOCK(sc);
1576 		return (EINVAL);
1577 	}
1578 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1579 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1580 	else
1581 		my_setmode_mii(sc, ifm->ifm_media);
1582 	MY_UNLOCK(sc);
1583 	return (0);
1584 }
1585 
1586 /*
1587  * Report current media status.
1588  */
1589 
1590 static void
1591 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1592 {
1593 	struct my_softc *sc;
1594 	u_int16_t advert = 0, ability = 0;
1595 
1596 	sc = ifp->if_softc;
1597 	MY_LOCK(sc);
1598 	ifmr->ifm_active = IFM_ETHER;
1599 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1600 #if 0				/* this version did not support 1000M, */
1601 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1602 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1603 #endif
1604 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1605 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1606 		else
1607 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1608 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1609 			ifmr->ifm_active |= IFM_FDX;
1610 		else
1611 			ifmr->ifm_active |= IFM_HDX;
1612 
1613 		MY_UNLOCK(sc);
1614 		return;
1615 	}
1616 	ability = my_phy_readreg(sc, PHY_LPAR);
1617 	advert = my_phy_readreg(sc, PHY_ANAR);
1618 
1619 #if 0				/* this version did not support 1000M, */
1620 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1621 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1622 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1623 			advert = 0;
1624 			ability = 0;
1625 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1626 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1627 			advert = 0;
1628 			ability = 0;
1629 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1630 		}
1631 	}
1632 #endif
1633 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1634 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1635 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1636 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1637 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1638 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1639 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1640 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1641 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1642 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1643 	MY_UNLOCK(sc);
1644 	return;
1645 }
1646 
1647 static int
1648 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1649 {
1650 	struct my_softc *sc = ifp->if_softc;
1651 	struct ifreq   *ifr = (struct ifreq *) data;
1652 	int             error;
1653 
1654 	switch (command) {
1655 	case SIOCSIFFLAGS:
1656 		MY_LOCK(sc);
1657 		if (ifp->if_flags & IFF_UP)
1658 			my_init_locked(sc);
1659 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1660 			my_stop(sc);
1661 		MY_UNLOCK(sc);
1662 		error = 0;
1663 		break;
1664 	case SIOCADDMULTI:
1665 	case SIOCDELMULTI:
1666 		MY_LOCK(sc);
1667 		my_setmulti(sc);
1668 		MY_UNLOCK(sc);
1669 		error = 0;
1670 		break;
1671 	case SIOCGIFMEDIA:
1672 	case SIOCSIFMEDIA:
1673 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1674 		break;
1675 	default:
1676 		error = ether_ioctl(ifp, command, data);
1677 		break;
1678 	}
1679 	return (error);
1680 }
1681 
1682 static void
1683 my_watchdog(struct ifnet * ifp)
1684 {
1685 	struct my_softc *sc;
1686 
1687 	sc = ifp->if_softc;
1688 	MY_LOCK(sc);
1689 	if (sc->my_autoneg) {
1690 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1691 		MY_UNLOCK(sc);
1692 		return;
1693 	}
1694 	ifp->if_oerrors++;
1695 	if_printf(ifp, "watchdog timeout\n");
1696 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1697 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
1698 	my_stop(sc);
1699 	my_reset(sc);
1700 	my_init_locked(sc);
1701 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1702 		my_start_locked(ifp);
1703 	MY_LOCK(sc);
1704 	return;
1705 }
1706 
1707 
1708 /*
1709  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1710  */
1711 static void
1712 my_stop(struct my_softc * sc)
1713 {
1714 	register int    i;
1715 	struct ifnet   *ifp;
1716 
1717 	MY_LOCK_ASSERT(sc);
1718 	ifp = sc->my_ifp;
1719 	ifp->if_timer = 0;
1720 
1721 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1722 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1723 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1724 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1725 
1726 	/*
1727 	 * Free data in the RX lists.
1728 	 */
1729 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1730 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1731 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1732 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1733 		}
1734 	}
1735 	bzero((char *)&sc->my_ldata->my_rx_list,
1736 	    sizeof(sc->my_ldata->my_rx_list));
1737 	/*
1738 	 * Free the TX list buffers.
1739 	 */
1740 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1741 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1742 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1743 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1744 		}
1745 	}
1746 	bzero((char *)&sc->my_ldata->my_tx_list,
1747 	    sizeof(sc->my_ldata->my_tx_list));
1748 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1749 	return;
1750 }
1751 
1752 /*
1753  * Stop all chip I/O so that the kernel's probe routines don't get confused
1754  * by errant DMAs when rebooting.
1755  */
1756 static void
1757 my_shutdown(device_t dev)
1758 {
1759 	struct my_softc *sc;
1760 
1761 	sc = device_get_softc(dev);
1762 	MY_LOCK(sc);
1763 	my_stop(sc);
1764 	MY_UNLOCK(sc);
1765 	return;
1766 }
1767