xref: /freebsd/sys/dev/my/if_my.c (revision 0fa02ea5f786ef02befd46f8f083f48c8cd9630b)
1 /*-
2  * Written by: yen_cw@myson.com.tw
3  * Copyright (c) 2002 Myson Technology Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/queue.h>
41 #include <sys/types.h>
42 #include <sys/bus.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 
47 #define NBPFILTER	1
48 
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/bpf.h>
55 
56 #include <vm/vm.h>		/* for vtophys */
57 #include <vm/pmap.h>		/* for vtophys */
58 #include <machine/clock.h>	/* for DELAY */
59 #include <machine/bus_memio.h>
60 #include <machine/bus_pio.h>
61 #include <machine/bus.h>
62 #include <machine/resource.h>
63 #include <sys/bus.h>
64 #include <sys/rman.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 
72 #include "miibus_if.h"
73 
74 /*
75  * #define MY_USEIOSPACE
76  */
77 
78 static int      MY_USEIOSPACE = 1;
79 
80 #if (MY_USEIOSPACE)
81 #define MY_RES                  SYS_RES_IOPORT
82 #define MY_RID                  MY_PCI_LOIO
83 #else
84 #define MY_RES                  SYS_RES_MEMORY
85 #define MY_RID                  MY_PCI_LOMEM
86 #endif
87 
88 
89 #include <dev/my/if_myreg.h>
90 
91 #ifndef lint
92 static          const char rcsid[] =
93 "$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $";
94 #endif
95 
96 /*
97  * Various supported device vendors/types and their names.
98  */
99 struct my_type *my_info_tmp;
100 static struct my_type my_devs[] = {
101 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
102 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
103 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
104 	{0, 0, NULL}
105 };
106 
107 /*
108  * Various supported PHY vendors/types and their names. Note that this driver
109  * will work with pretty much any MII-compliant PHY, so failure to positively
110  * identify the chip is not a fatal error.
111  */
112 static struct my_type my_phys[] = {
113 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
114 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
115 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
116 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
117 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
118 	{0, 0, "<MII-compliant physical interface>"}
119 };
120 
121 static int      my_probe(device_t);
122 static int      my_attach(device_t);
123 static int      my_detach(device_t);
124 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
125 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
126 static void     my_rxeof(struct my_softc *);
127 static void     my_txeof(struct my_softc *);
128 static void     my_txeoc(struct my_softc *);
129 static void     my_intr(void *);
130 static void     my_start(struct ifnet *);
131 static int      my_ioctl(struct ifnet *, u_long, caddr_t);
132 static void     my_init(void *);
133 static void     my_stop(struct my_softc *);
134 static void     my_watchdog(struct ifnet *);
135 static void     my_shutdown(device_t);
136 static int      my_ifmedia_upd(struct ifnet *);
137 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138 static u_int16_t my_phy_readreg(struct my_softc *, int);
139 static void     my_phy_writereg(struct my_softc *, int, int);
140 static void     my_autoneg_xmit(struct my_softc *);
141 static void     my_autoneg_mii(struct my_softc *, int, int);
142 static void     my_setmode_mii(struct my_softc *, int);
143 static void     my_getmode_mii(struct my_softc *);
144 static void     my_setcfg(struct my_softc *, int);
145 static uint32_t my_mchash(const uint8_t *);
146 static void     my_setmulti(struct my_softc *);
147 static void     my_reset(struct my_softc *);
148 static int      my_list_rx_init(struct my_softc *);
149 static int      my_list_tx_init(struct my_softc *);
150 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
151 
152 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
153 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
154 
155 static device_method_t my_methods[] = {
156 	/* Device interface */
157 	DEVMETHOD(device_probe, my_probe),
158 	DEVMETHOD(device_attach, my_attach),
159 	DEVMETHOD(device_detach, my_detach),
160 	DEVMETHOD(device_shutdown, my_shutdown),
161 
162 	{0, 0}
163 };
164 
165 static driver_t my_driver = {
166 	"my",
167 	my_methods,
168 	sizeof(struct my_softc)
169 };
170 
171 static devclass_t my_devclass;
172 
173 DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0);
174 MODULE_DEPEND(my, pci, 1, 1, 1);
175 MODULE_DEPEND(my, ether, 1, 1, 1);
176 
177 static long
178 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
179 {
180 	long            miir;
181 	int             i;
182 	int             mask, data;
183 
184 	MY_LOCK(sc);
185 
186 	/* enable MII output */
187 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
188 	miir &= 0xfffffff0;
189 
190 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
191 
192 	/* send 32 1's preamble */
193 	for (i = 0; i < 32; i++) {
194 		/* low MDC; MDO is already high (miir) */
195 		miir &= ~MY_MASK_MIIR_MII_MDC;
196 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
197 
198 		/* high MDC */
199 		miir |= MY_MASK_MIIR_MII_MDC;
200 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
201 	}
202 
203 	/* calculate ST+OP+PHYAD+REGAD+TA */
204 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
205 
206 	/* sent out */
207 	mask = 0x8000;
208 	while (mask) {
209 		/* low MDC, prepare MDO */
210 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
211 		if (mask & data)
212 			miir |= MY_MASK_MIIR_MII_MDO;
213 
214 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
215 		/* high MDC */
216 		miir |= MY_MASK_MIIR_MII_MDC;
217 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
218 		DELAY(30);
219 
220 		/* next */
221 		mask >>= 1;
222 		if (mask == 0x2 && opcode == MY_OP_READ)
223 			miir &= ~MY_MASK_MIIR_MII_WRITE;
224 	}
225 
226 	MY_UNLOCK(sc);
227 	return miir;
228 }
229 
230 
231 static          u_int16_t
232 my_phy_readreg(struct my_softc * sc, int reg)
233 {
234 	long            miir;
235 	int             mask, data;
236 
237 	MY_LOCK(sc);
238 
239 	if (sc->my_info->my_did == MTD803ID)
240 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
241 	else {
242 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
243 
244 		/* read data */
245 		mask = 0x8000;
246 		data = 0;
247 		while (mask) {
248 			/* low MDC */
249 			miir &= ~MY_MASK_MIIR_MII_MDC;
250 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
251 
252 			/* read MDI */
253 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
254 			if (miir & MY_MASK_MIIR_MII_MDI)
255 				data |= mask;
256 
257 			/* high MDC, and wait */
258 			miir |= MY_MASK_MIIR_MII_MDC;
259 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
260 			DELAY(30);
261 
262 			/* next */
263 			mask >>= 1;
264 		}
265 
266 		/* low MDC */
267 		miir &= ~MY_MASK_MIIR_MII_MDC;
268 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
269 	}
270 
271 	MY_UNLOCK(sc);
272 	return (u_int16_t) data;
273 }
274 
275 
276 static void
277 my_phy_writereg(struct my_softc * sc, int reg, int data)
278 {
279 	long            miir;
280 	int             mask;
281 
282 	MY_LOCK(sc);
283 
284 	if (sc->my_info->my_did == MTD803ID)
285 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
286 	else {
287 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
288 
289 		/* write data */
290 		mask = 0x8000;
291 		while (mask) {
292 			/* low MDC, prepare MDO */
293 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
294 			if (mask & data)
295 				miir |= MY_MASK_MIIR_MII_MDO;
296 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
297 			DELAY(1);
298 
299 			/* high MDC */
300 			miir |= MY_MASK_MIIR_MII_MDC;
301 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
302 			DELAY(1);
303 
304 			/* next */
305 			mask >>= 1;
306 		}
307 
308 		/* low MDC */
309 		miir &= ~MY_MASK_MIIR_MII_MDC;
310 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
311 	}
312 	MY_UNLOCK(sc);
313 	return;
314 }
315 
316 static uint32_t
317 my_mchash(const uint8_t *addr)
318 {
319 	uint32_t crc, carry;
320 	int idx, bit;
321 	uint8_t data;
322 
323 	/* Compute CRC for the address value. */
324 	crc = 0xFFFFFFFF;	/* initial value */
325 
326 	for (idx = 0; idx < 6; idx++) {
327 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
328 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
329 			crc <<= 1;
330 			if (carry)
331 				crc = (crc ^ 0x04c11db6) | carry;
332 		}
333 	}
334 
335 	/*
336 	 * return the filter bit position Note: I arrived at the following
337 	 * nonsense through experimentation. It's not the usual way to
338 	 * generate the bit position but it's the only thing I could come up
339 	 * with that works.
340 	 */
341 	return (~(crc >> 26) & 0x0000003F);
342 }
343 
344 
345 /*
346  * Program the 64-bit multicast hash filter.
347  */
348 static void
349 my_setmulti(struct my_softc * sc)
350 {
351 	struct ifnet   *ifp;
352 	int             h = 0;
353 	u_int32_t       hashes[2] = {0, 0};
354 	struct ifmultiaddr *ifma;
355 	u_int32_t       rxfilt;
356 	int             mcnt = 0;
357 
358 	MY_LOCK(sc);
359 
360 	ifp = &sc->arpcom.ac_if;
361 
362 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
363 
364 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
365 		rxfilt |= MY_AM;
366 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
367 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
368 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
369 
370 		MY_UNLOCK(sc);
371 
372 		return;
373 	}
374 	/* first, zot all the existing hash bits */
375 	CSR_WRITE_4(sc, MY_MAR0, 0);
376 	CSR_WRITE_4(sc, MY_MAR1, 0);
377 
378 	/* now program new ones */
379 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
380 		if (ifma->ifma_addr->sa_family != AF_LINK)
381 			continue;
382 		h = my_mchash(LLADDR((struct sockaddr_dl *) ifma->ifma_addr));
383 		if (h < 32)
384 			hashes[0] |= (1 << h);
385 		else
386 			hashes[1] |= (1 << (h - 32));
387 		mcnt++;
388 	}
389 
390 	if (mcnt)
391 		rxfilt |= MY_AM;
392 	else
393 		rxfilt &= ~MY_AM;
394 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
395 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
396 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
397 	MY_UNLOCK(sc);
398 	return;
399 }
400 
401 /*
402  * Initiate an autonegotiation session.
403  */
404 static void
405 my_autoneg_xmit(struct my_softc * sc)
406 {
407 	u_int16_t       phy_sts = 0;
408 
409 	MY_LOCK(sc);
410 
411 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
412 	DELAY(500);
413 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
414 
415 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
416 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
417 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
418 
419 	MY_UNLOCK(sc);
420 	return;
421 }
422 
423 
424 /*
425  * Invoke autonegotiation on a PHY.
426  */
427 static void
428 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
429 {
430 	u_int16_t       phy_sts = 0, media, advert, ability;
431 	u_int16_t       ability2 = 0;
432 	struct ifnet   *ifp;
433 	struct ifmedia *ifm;
434 
435 	MY_LOCK(sc);
436 
437 	ifm = &sc->ifmedia;
438 	ifp = &sc->arpcom.ac_if;
439 
440 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
441 
442 #ifndef FORCE_AUTONEG_TFOUR
443 	/*
444 	 * First, see if autoneg is supported. If not, there's no point in
445 	 * continuing.
446 	 */
447 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
448 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
449 		if (verbose)
450 			printf("my%d: autonegotiation not supported\n",
451 			    sc->my_unit);
452 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
453 		MY_UNLOCK(sc);
454 		return;
455 	}
456 #endif
457 	switch (flag) {
458 	case MY_FLAG_FORCEDELAY:
459 		/*
460 		 * XXX Never use this option anywhere but in the probe
461 		 * routine: making the kernel stop dead in its tracks for
462 		 * three whole seconds after we've gone multi-user is really
463 		 * bad manners.
464 		 */
465 		my_autoneg_xmit(sc);
466 		DELAY(5000000);
467 		break;
468 	case MY_FLAG_SCHEDDELAY:
469 		/*
470 		 * Wait for the transmitter to go idle before starting an
471 		 * autoneg session, otherwise my_start() may clobber our
472 		 * timeout, and we don't want to allow transmission during an
473 		 * autoneg session since that can screw it up.
474 		 */
475 		if (sc->my_cdata.my_tx_head != NULL) {
476 			sc->my_want_auto = 1;
477 			MY_UNLOCK(sc);
478 			return;
479 		}
480 		my_autoneg_xmit(sc);
481 		ifp->if_timer = 5;
482 		sc->my_autoneg = 1;
483 		sc->my_want_auto = 0;
484 		MY_UNLOCK(sc);
485 		return;
486 	case MY_FLAG_DELAYTIMEO:
487 		ifp->if_timer = 0;
488 		sc->my_autoneg = 0;
489 		break;
490 	default:
491 		printf("my%d: invalid autoneg flag: %d\n", sc->my_unit, flag);
492 		MY_UNLOCK(sc);
493 		return;
494 	}
495 
496 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
497 		if (verbose)
498 			printf("my%d: autoneg complete, ", sc->my_unit);
499 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
500 	} else {
501 		if (verbose)
502 			printf("my%d: autoneg not complete, ", sc->my_unit);
503 	}
504 
505 	media = my_phy_readreg(sc, PHY_BMCR);
506 
507 	/* Link is good. Report modes and set duplex mode. */
508 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
509 		if (verbose)
510 			printf("my%d: link status good. ", sc->my_unit);
511 		advert = my_phy_readreg(sc, PHY_ANAR);
512 		ability = my_phy_readreg(sc, PHY_LPAR);
513 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
514 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
515 			ability2 = my_phy_readreg(sc, PHY_1000SR);
516 			if (ability2 & PHY_1000SR_1000BTXFULL) {
517 				advert = 0;
518 				ability = 0;
519 				/*
520 				 * this version did not support 1000M,
521 				 * ifm->ifm_media =
522 				 * IFM_ETHER|IFM_1000_T|IFM_FDX;
523 				 */
524 				ifm->ifm_media =
525 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
526 				media &= ~PHY_BMCR_SPEEDSEL;
527 				media |= PHY_BMCR_1000;
528 				media |= PHY_BMCR_DUPLEX;
529 				printf("(full-duplex, 1000Mbps)\n");
530 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
531 				advert = 0;
532 				ability = 0;
533 				/*
534 				 * this version did not support 1000M,
535 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_T;
536 				 */
537 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
538 				media &= ~PHY_BMCR_SPEEDSEL;
539 				media &= ~PHY_BMCR_DUPLEX;
540 				media |= PHY_BMCR_1000;
541 				printf("(half-duplex, 1000Mbps)\n");
542 			}
543 		}
544 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
545 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
546 			media |= PHY_BMCR_SPEEDSEL;
547 			media &= ~PHY_BMCR_DUPLEX;
548 			printf("(100baseT4)\n");
549 		} else if (advert & PHY_ANAR_100BTXFULL &&
550 			   ability & PHY_ANAR_100BTXFULL) {
551 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
552 			media |= PHY_BMCR_SPEEDSEL;
553 			media |= PHY_BMCR_DUPLEX;
554 			printf("(full-duplex, 100Mbps)\n");
555 		} else if (advert & PHY_ANAR_100BTXHALF &&
556 			   ability & PHY_ANAR_100BTXHALF) {
557 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
558 			media |= PHY_BMCR_SPEEDSEL;
559 			media &= ~PHY_BMCR_DUPLEX;
560 			printf("(half-duplex, 100Mbps)\n");
561 		} else if (advert & PHY_ANAR_10BTFULL &&
562 			   ability & PHY_ANAR_10BTFULL) {
563 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
564 			media &= ~PHY_BMCR_SPEEDSEL;
565 			media |= PHY_BMCR_DUPLEX;
566 			printf("(full-duplex, 10Mbps)\n");
567 		} else if (advert) {
568 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
569 			media &= ~PHY_BMCR_SPEEDSEL;
570 			media &= ~PHY_BMCR_DUPLEX;
571 			printf("(half-duplex, 10Mbps)\n");
572 		}
573 		media &= ~PHY_BMCR_AUTONEGENBL;
574 
575 		/* Set ASIC's duplex mode to match the PHY. */
576 		my_phy_writereg(sc, PHY_BMCR, media);
577 		my_setcfg(sc, media);
578 	} else {
579 		if (verbose)
580 			printf("my%d: no carrier\n", sc->my_unit);
581 	}
582 
583 	my_init(sc);
584 	if (sc->my_tx_pend) {
585 		sc->my_autoneg = 0;
586 		sc->my_tx_pend = 0;
587 		my_start(ifp);
588 	}
589 	MY_UNLOCK(sc);
590 	return;
591 }
592 
593 /*
594  * To get PHY ability.
595  */
596 static void
597 my_getmode_mii(struct my_softc * sc)
598 {
599 	u_int16_t       bmsr;
600 	struct ifnet   *ifp;
601 
602 	MY_LOCK(sc);
603 	ifp = &sc->arpcom.ac_if;
604 	bmsr = my_phy_readreg(sc, PHY_BMSR);
605 	if (bootverbose)
606 		printf("my%d: PHY status word: %x\n", sc->my_unit, bmsr);
607 
608 	/* fallback */
609 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
610 
611 	if (bmsr & PHY_BMSR_10BTHALF) {
612 		if (bootverbose)
613 			printf("my%d: 10Mbps half-duplex mode supported\n",
614 			       sc->my_unit);
615 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
616 		    0, NULL);
617 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
618 	}
619 	if (bmsr & PHY_BMSR_10BTFULL) {
620 		if (bootverbose)
621 			printf("my%d: 10Mbps full-duplex mode supported\n",
622 			    sc->my_unit);
623 
624 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
625 		    0, NULL);
626 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
627 	}
628 	if (bmsr & PHY_BMSR_100BTXHALF) {
629 		if (bootverbose)
630 			printf("my%d: 100Mbps half-duplex mode supported\n",
631 			       sc->my_unit);
632 		ifp->if_baudrate = 100000000;
633 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
634 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
635 			    0, NULL);
636 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
637 	}
638 	if (bmsr & PHY_BMSR_100BTXFULL) {
639 		if (bootverbose)
640 			printf("my%d: 100Mbps full-duplex mode supported\n",
641 			    sc->my_unit);
642 		ifp->if_baudrate = 100000000;
643 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
644 		    0, NULL);
645 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
646 	}
647 	/* Some also support 100BaseT4. */
648 	if (bmsr & PHY_BMSR_100BT4) {
649 		if (bootverbose)
650 			printf("my%d: 100baseT4 mode supported\n", sc->my_unit);
651 		ifp->if_baudrate = 100000000;
652 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
653 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
654 #ifdef FORCE_AUTONEG_TFOUR
655 		if (bootverbose)
656 			printf("my%d: forcing on autoneg support for BT4\n",
657 			    sc->my_unit);
658 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
659 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
660 #endif
661 	}
662 #if 0				/* this version did not support 1000M, */
663 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
664 		if (bootverbose)
665 			printf("my%d: 1000Mbps half-duplex mode supported\n",
666 			       sc->my_unit);
667 
668 		ifp->if_baudrate = 1000000000;
669 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
670 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
671 		    0, NULL);
672 		if (bootverbose)
673 			printf("my%d: 1000Mbps full-duplex mode supported\n",
674 			   sc->my_unit);
675 		ifp->if_baudrate = 1000000000;
676 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
677 		    0, NULL);
678 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
679 	}
680 #endif
681 	if (bmsr & PHY_BMSR_CANAUTONEG) {
682 		if (bootverbose)
683 			printf("my%d: autoneg supported\n", sc->my_unit);
684 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
685 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
686 	}
687 	MY_UNLOCK(sc);
688 	return;
689 }
690 
691 /*
692  * Set speed and duplex mode.
693  */
694 static void
695 my_setmode_mii(struct my_softc * sc, int media)
696 {
697 	u_int16_t       bmcr;
698 	struct ifnet   *ifp;
699 
700 	MY_LOCK(sc);
701 	ifp = &sc->arpcom.ac_if;
702 	/*
703 	 * If an autoneg session is in progress, stop it.
704 	 */
705 	if (sc->my_autoneg) {
706 		printf("my%d: canceling autoneg session\n", sc->my_unit);
707 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
708 		bmcr = my_phy_readreg(sc, PHY_BMCR);
709 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
710 		my_phy_writereg(sc, PHY_BMCR, bmcr);
711 	}
712 	printf("my%d: selecting MII, ", sc->my_unit);
713 	bmcr = my_phy_readreg(sc, PHY_BMCR);
714 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
715 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
716 
717 #if 0				/* this version did not support 1000M, */
718 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
719 		printf("1000Mbps/T4, half-duplex\n");
720 		bmcr &= ~PHY_BMCR_SPEEDSEL;
721 		bmcr &= ~PHY_BMCR_DUPLEX;
722 		bmcr |= PHY_BMCR_1000;
723 	}
724 #endif
725 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
726 		printf("100Mbps/T4, half-duplex\n");
727 		bmcr |= PHY_BMCR_SPEEDSEL;
728 		bmcr &= ~PHY_BMCR_DUPLEX;
729 	}
730 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
731 		printf("100Mbps, ");
732 		bmcr |= PHY_BMCR_SPEEDSEL;
733 	}
734 	if (IFM_SUBTYPE(media) == IFM_10_T) {
735 		printf("10Mbps, ");
736 		bmcr &= ~PHY_BMCR_SPEEDSEL;
737 	}
738 	if ((media & IFM_GMASK) == IFM_FDX) {
739 		printf("full duplex\n");
740 		bmcr |= PHY_BMCR_DUPLEX;
741 	} else {
742 		printf("half duplex\n");
743 		bmcr &= ~PHY_BMCR_DUPLEX;
744 	}
745 	my_phy_writereg(sc, PHY_BMCR, bmcr);
746 	my_setcfg(sc, bmcr);
747 	MY_UNLOCK(sc);
748 	return;
749 }
750 
751 /*
752  * The Myson manual states that in order to fiddle with the 'full-duplex' and
753  * '100Mbps' bits in the netconfig register, we first have to put the
754  * transmit and/or receive logic in the idle state.
755  */
756 static void
757 my_setcfg(struct my_softc * sc, int bmcr)
758 {
759 	int             i, restart = 0;
760 
761 	MY_LOCK(sc);
762 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
763 		restart = 1;
764 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
765 		for (i = 0; i < MY_TIMEOUT; i++) {
766 			DELAY(10);
767 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
768 			    (MY_TXRUN | MY_RXRUN)))
769 				break;
770 		}
771 		if (i == MY_TIMEOUT)
772 			printf("my%d: failed to force tx and rx to idle \n",
773 			    sc->my_unit);
774 	}
775 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
776 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
777 	if (bmcr & PHY_BMCR_1000)
778 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
779 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
780 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
781 	if (bmcr & PHY_BMCR_DUPLEX)
782 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
783 	else
784 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
785 	if (restart)
786 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
787 	MY_UNLOCK(sc);
788 	return;
789 }
790 
791 static void
792 my_reset(struct my_softc * sc)
793 {
794 	register int    i;
795 
796 	MY_LOCK(sc);
797 	MY_SETBIT(sc, MY_BCR, MY_SWR);
798 	for (i = 0; i < MY_TIMEOUT; i++) {
799 		DELAY(10);
800 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
801 			break;
802 	}
803 	if (i == MY_TIMEOUT)
804 		printf("m0x%d: reset never completed!\n", sc->my_unit);
805 
806 	/* Wait a little while for the chip to get its brains in order. */
807 	DELAY(1000);
808 	MY_UNLOCK(sc);
809 	return;
810 }
811 
812 /*
813  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
814  * list and return a device name if we find a match.
815  */
816 static int
817 my_probe(device_t dev)
818 {
819 	struct my_type *t;
820 
821 	t = my_devs;
822 	while (t->my_name != NULL) {
823 		if ((pci_get_vendor(dev) == t->my_vid) &&
824 		    (pci_get_device(dev) == t->my_did)) {
825 			device_set_desc(dev, t->my_name);
826 			my_info_tmp = t;
827 			return (0);
828 		}
829 		t++;
830 	}
831 	return (ENXIO);
832 }
833 
834 /*
835  * Attach the interface. Allocate softc structures, do ifmedia setup and
836  * ethernet/BPF attach.
837  */
838 static int
839 my_attach(device_t dev)
840 {
841 	int             s, i;
842 	u_char          eaddr[ETHER_ADDR_LEN];
843 	u_int32_t       command, iobase;
844 	struct my_softc *sc;
845 	struct ifnet   *ifp;
846 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
847 	unsigned int    round;
848 	caddr_t         roundptr;
849 	struct my_type *p;
850 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
851 	int             rid, unit, error = 0;
852 
853 	s = splimp();
854 	sc = device_get_softc(dev);
855 	unit = device_get_unit(dev);
856 	if (sc == NULL) {
857 		printf("my%d: no memory for softc struct!\n", unit);
858 		error = ENXIO;
859 		goto fail;
860 
861 	}
862 	bzero(sc, sizeof(struct my_softc));
863 	mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
864 	    MTX_DEF | MTX_RECURSE);
865 	MY_LOCK(sc);
866 
867 	/*
868 	 * Map control/status registers.
869 	 */
870 #if 0
871 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
872 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
873 	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command & 0x000000ff, 4);
874 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
875 #endif
876 	command = pci_read_config(dev, PCIR_COMMAND, 4);
877 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
878 	pci_write_config(dev, PCIR_COMMAND, command & 0x000000ff, 4);
879 	command = pci_read_config(dev, PCIR_COMMAND, 4);
880 
881 	if (my_info_tmp->my_did == MTD800ID) {
882 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
883 		if (iobase & 0x300)
884 			MY_USEIOSPACE = 0;
885 	}
886 	if (MY_USEIOSPACE) {
887 		if (!(command & PCIM_CMD_PORTEN)) {
888 			printf("my%d: failed to enable I/O ports!\n", unit);
889 			free(sc, M_DEVBUF);
890 			error = ENXIO;
891 			goto fail;
892 		}
893 #if 0
894 		if (!pci_map_port(config_id, MY_PCI_LOIO, (u_int16_t *) & (sc->my_bhandle))) {
895 			printf("my%d: couldn't map ports\n", unit);
896 			error = ENXIO;
897 			goto fail;
898 		}
899 
900 		sc->my_btag = I386_BUS_SPACE_IO;
901 #endif
902 	} else {
903 		if (!(command & PCIM_CMD_MEMEN)) {
904 			printf("my%d: failed to enable memory mapping!\n",
905 			    unit);
906 			error = ENXIO;
907 			goto fail;
908 		}
909 #if 0
910 		 if (!pci_map_mem(config_id, MY_PCI_LOMEM, &vbase, &pbase)) {
911 			printf ("my%d: couldn't map memory\n", unit);
912 			error = ENXIO;
913 			goto fail;
914 		}
915 		sc->my_btag = I386_BUS_SPACE_MEM;
916 		sc->my_bhandle = vbase;
917 #endif
918 	}
919 
920 	rid = MY_RID;
921 	sc->my_res = bus_alloc_resource(dev, MY_RES, &rid,
922 					0, ~0, 1, RF_ACTIVE);
923 
924 	if (sc->my_res == NULL) {
925 		printf("my%d: couldn't map ports/memory\n", unit);
926 		error = ENXIO;
927 		goto fail;
928 	}
929 	sc->my_btag = rman_get_bustag(sc->my_res);
930 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
931 
932 	rid = 0;
933 	sc->my_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
934 					RF_SHAREABLE | RF_ACTIVE);
935 
936 	if (sc->my_irq == NULL) {
937 		printf("my%d: couldn't map interrupt\n", unit);
938 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
939 		error = ENXIO;
940 		goto fail;
941 	}
942 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET,
943 			       my_intr, sc, &sc->my_intrhand);
944 
945 	if (error) {
946 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
947 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
948 		printf("my%d: couldn't set up irq\n", unit);
949 		goto fail;
950 	}
951 	callout_handle_init(&sc->my_stat_ch);
952 
953 	sc->my_info = my_info_tmp;
954 
955 	/* Reset the adapter. */
956 	my_reset(sc);
957 
958 	/*
959 	 * Get station address
960 	 */
961 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
962 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
963 
964 	/*
965 	 * A Myson chip was detected. Inform the world.
966 	 */
967 	printf("my%d: Ethernet address: %6D\n", unit, eaddr, ":");
968 
969 	sc->my_unit = unit;
970 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
971 
972 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
973 				  M_DEVBUF, M_NOWAIT);
974 	if (sc->my_ldata_ptr == NULL) {
975 		free(sc, M_DEVBUF);
976 		printf("my%d: no memory for list buffers!\n", unit);
977 		error = ENXIO;
978 		goto fail;
979 	}
980 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
981 	round = (uintptr_t)sc->my_ldata_ptr & 0xF;
982 	roundptr = sc->my_ldata_ptr;
983 	for (i = 0; i < 8; i++) {
984 		if (round % 8) {
985 			round++;
986 			roundptr++;
987 		} else
988 			break;
989 	}
990 	sc->my_ldata = (struct my_list_data *) roundptr;
991 	bzero(sc->my_ldata, sizeof(struct my_list_data));
992 
993 	ifp = &sc->arpcom.ac_if;
994 	ifp->if_softc = sc;
995 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
996 	ifp->if_mtu = ETHERMTU;
997 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
998 	ifp->if_ioctl = my_ioctl;
999 	ifp->if_output = ether_output;
1000 	ifp->if_start = my_start;
1001 	ifp->if_watchdog = my_watchdog;
1002 	ifp->if_init = my_init;
1003 	ifp->if_baudrate = 10000000;
1004 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
1005 
1006 	if (sc->my_info->my_did == MTD803ID)
1007 		sc->my_pinfo = my_phys;
1008 	else {
1009 		if (bootverbose)
1010 			printf("my%d: probing for a PHY\n", sc->my_unit);
1011 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
1012 			if (bootverbose)
1013 				printf("my%d: checking address: %d\n",
1014 				    sc->my_unit, i);
1015 			sc->my_phy_addr = i;
1016 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
1017 			if ((phy_sts != 0) && (phy_sts != 0xffff))
1018 				break;
1019 			else
1020 				phy_sts = 0;
1021 		}
1022 		if (phy_sts) {
1023 			phy_vid = my_phy_readreg(sc, PHY_VENID);
1024 			phy_did = my_phy_readreg(sc, PHY_DEVID);
1025 			if (bootverbose) {
1026 				printf("my%d: found PHY at address %d, ",
1027 				    sc->my_unit, sc->my_phy_addr);
1028 				printf("vendor id: %x device id: %x\n",
1029 				    phy_vid, phy_did);
1030 			}
1031 			p = my_phys;
1032 			while (p->my_vid) {
1033 				if (phy_vid == p->my_vid) {
1034 					sc->my_pinfo = p;
1035 					break;
1036 				}
1037 				p++;
1038 			}
1039 			if (sc->my_pinfo == NULL)
1040 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
1041 			if (bootverbose)
1042 				printf("my%d: PHY type: %s\n",
1043 				       sc->my_unit, sc->my_pinfo->my_name);
1044 		} else {
1045 			printf("my%d: MII without any phy!\n", sc->my_unit);
1046 			error = ENXIO;
1047 			goto fail;
1048 		}
1049 	}
1050 
1051 	/* Do ifmedia setup. */
1052 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
1053 	my_getmode_mii(sc);
1054 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
1055 	media = sc->ifmedia.ifm_media;
1056 	my_stop(sc);
1057 	ifmedia_set(&sc->ifmedia, media);
1058 
1059 	ether_ifattach(ifp, eaddr);
1060 
1061 #if 0
1062 	at_shutdown(my_shutdown, sc, SHUTDOWN_POST_SYNC);
1063 	shutdownhook_establish(my_shutdown, sc);
1064 #endif
1065 
1066 	MY_UNLOCK(sc);
1067 	return (0);
1068 
1069 fail:
1070 	MY_UNLOCK(sc);
1071 	mtx_destroy(&sc->my_mtx);
1072 	splx(s);
1073 	return (error);
1074 }
1075 
1076 static int
1077 my_detach(device_t dev)
1078 {
1079 	struct my_softc *sc;
1080 	struct ifnet   *ifp;
1081 	int             s;
1082 
1083 	s = splimp();
1084 	sc = device_get_softc(dev);
1085 	MY_LOCK(sc);
1086 	ifp = &sc->arpcom.ac_if;
1087 	ether_ifdetach(ifp);
1088 	my_stop(sc);
1089 
1090 #if 0
1091 	bus_generic_detach(dev);
1092 	device_delete_child(dev, sc->rl_miibus);
1093 #endif
1094 
1095 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
1096 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1097 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1098 #if 0
1099 	contigfree(sc->my_cdata.my_rx_buf, MY_RXBUFLEN + 32, M_DEVBUF);
1100 #endif
1101 	free(sc, M_DEVBUF);
1102 	MY_UNLOCK(sc);
1103 	splx(s);
1104 	mtx_destroy(&sc->my_mtx);
1105 	return (0);
1106 }
1107 
1108 
1109 /*
1110  * Initialize the transmit descriptors.
1111  */
1112 static int
1113 my_list_tx_init(struct my_softc * sc)
1114 {
1115 	struct my_chain_data *cd;
1116 	struct my_list_data *ld;
1117 	int             i;
1118 
1119 	MY_LOCK(sc);
1120 	cd = &sc->my_cdata;
1121 	ld = sc->my_ldata;
1122 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1123 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1124 		if (i == (MY_TX_LIST_CNT - 1))
1125 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1126 		else
1127 			cd->my_tx_chain[i].my_nextdesc =
1128 			    &cd->my_tx_chain[i + 1];
1129 	}
1130 	cd->my_tx_free = &cd->my_tx_chain[0];
1131 	cd->my_tx_tail = cd->my_tx_head = NULL;
1132 	MY_UNLOCK(sc);
1133 	return (0);
1134 }
1135 
1136 /*
1137  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1138  * arrange the descriptors in a closed ring, so that the last descriptor
1139  * points back to the first.
1140  */
1141 static int
1142 my_list_rx_init(struct my_softc * sc)
1143 {
1144 	struct my_chain_data *cd;
1145 	struct my_list_data *ld;
1146 	int             i;
1147 
1148 	MY_LOCK(sc);
1149 	cd = &sc->my_cdata;
1150 	ld = sc->my_ldata;
1151 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1152 		cd->my_rx_chain[i].my_ptr =
1153 		    (struct my_desc *) & ld->my_rx_list[i];
1154 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) {
1155 			MY_UNLOCK(sc);
1156 			return (ENOBUFS);
1157 		}
1158 		if (i == (MY_RX_LIST_CNT - 1)) {
1159 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1160 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1161 		} else {
1162 			cd->my_rx_chain[i].my_nextdesc =
1163 			    &cd->my_rx_chain[i + 1];
1164 			ld->my_rx_list[i].my_next =
1165 			    vtophys(&ld->my_rx_list[i + 1]);
1166 		}
1167 	}
1168 	cd->my_rx_head = &cd->my_rx_chain[0];
1169 	MY_UNLOCK(sc);
1170 	return (0);
1171 }
1172 
1173 /*
1174  * Initialize an RX descriptor and attach an MBUF cluster.
1175  */
1176 static int
1177 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1178 {
1179 	struct mbuf    *m_new = NULL;
1180 
1181 	MY_LOCK(sc);
1182 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1183 	if (m_new == NULL) {
1184 		printf("my%d: no memory for rx list -- packet dropped!\n",
1185 		       sc->my_unit);
1186 		MY_UNLOCK(sc);
1187 		return (ENOBUFS);
1188 	}
1189 	MCLGET(m_new, M_DONTWAIT);
1190 	if (!(m_new->m_flags & M_EXT)) {
1191 		printf("my%d: no memory for rx list -- packet dropped!\n",
1192 		       sc->my_unit);
1193 		m_freem(m_new);
1194 		MY_UNLOCK(sc);
1195 		return (ENOBUFS);
1196 	}
1197 	c->my_mbuf = m_new;
1198 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1199 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1200 	c->my_ptr->my_status = MY_OWNByNIC;
1201 	MY_UNLOCK(sc);
1202 	return (0);
1203 }
1204 
1205 /*
1206  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1207  * level protocols.
1208  */
1209 static void
1210 my_rxeof(struct my_softc * sc)
1211 {
1212 	struct ether_header *eh;
1213 	struct mbuf    *m;
1214 	struct ifnet   *ifp;
1215 	struct my_chain_onefrag *cur_rx;
1216 	int             total_len = 0;
1217 	u_int32_t       rxstat;
1218 
1219 	MY_LOCK(sc);
1220 	ifp = &sc->arpcom.ac_if;
1221 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1222 	    & MY_OWNByNIC)) {
1223 		cur_rx = sc->my_cdata.my_rx_head;
1224 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1225 
1226 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1227 			ifp->if_ierrors++;
1228 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1229 			continue;
1230 		}
1231 		/* No errors; receive the packet. */
1232 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1233 		total_len -= ETHER_CRC_LEN;
1234 
1235 		if (total_len < MINCLSIZE) {
1236 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1237 			    total_len, 0, ifp, NULL);
1238 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1239 			if (m == NULL) {
1240 				ifp->if_ierrors++;
1241 				continue;
1242 			}
1243 		} else {
1244 			m = cur_rx->my_mbuf;
1245 			/*
1246 			 * Try to conjure up a new mbuf cluster. If that
1247 			 * fails, it means we have an out of memory condition
1248 			 * and should leave the buffer in place and continue.
1249 			 * This will result in a lost packet, but there's
1250 			 * little else we can do in this situation.
1251 			 */
1252 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1253 				ifp->if_ierrors++;
1254 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1255 				continue;
1256 			}
1257 			m->m_pkthdr.rcvif = ifp;
1258 			m->m_pkthdr.len = m->m_len = total_len;
1259 		}
1260 		ifp->if_ipackets++;
1261 		eh = mtod(m, struct ether_header *);
1262 #if NBPFILTER > 0
1263 		/*
1264 		 * Handle BPF listeners. Let the BPF user see the packet, but
1265 		 * don't pass it up to the ether_input() layer unless it's a
1266 		 * broadcast packet, multicast packet, matches our ethernet
1267 		 * address or the interface is in promiscuous mode.
1268 		 */
1269 		if (ifp->if_bpf) {
1270 			BPF_MTAP(ifp, m);
1271 			if (ifp->if_flags & IFF_PROMISC &&
1272 			    (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1273 				ETHER_ADDR_LEN) &&
1274 			     (eh->ether_dhost[0] & 1) == 0)) {
1275 				m_freem(m);
1276 				continue;
1277 			}
1278 		}
1279 #endif
1280 		MY_UNLOCK(sc);
1281 		(*ifp->if_input)(ifp, m);
1282 		MY_LOCK(sc);
1283 	}
1284 	MY_UNLOCK(sc);
1285 	return;
1286 }
1287 
1288 
1289 /*
1290  * A frame was downloaded to the chip. It's safe for us to clean up the list
1291  * buffers.
1292  */
1293 static void
1294 my_txeof(struct my_softc * sc)
1295 {
1296 	struct my_chain *cur_tx;
1297 	struct ifnet   *ifp;
1298 
1299 	MY_LOCK(sc);
1300 	ifp = &sc->arpcom.ac_if;
1301 	/* Clear the timeout timer. */
1302 	ifp->if_timer = 0;
1303 	if (sc->my_cdata.my_tx_head == NULL) {
1304 		MY_UNLOCK(sc);
1305 		return;
1306 	}
1307 	/*
1308 	 * Go through our tx list and free mbufs for those frames that have
1309 	 * been transmitted.
1310 	 */
1311 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1312 		u_int32_t       txstat;
1313 
1314 		cur_tx = sc->my_cdata.my_tx_head;
1315 		txstat = MY_TXSTATUS(cur_tx);
1316 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1317 			break;
1318 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1319 			if (txstat & MY_TXERR) {
1320 				ifp->if_oerrors++;
1321 				if (txstat & MY_EC) /* excessive collision */
1322 					ifp->if_collisions++;
1323 				if (txstat & MY_LC)	/* late collision */
1324 					ifp->if_collisions++;
1325 			}
1326 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1327 			    MY_NCRShift;
1328 		}
1329 		ifp->if_opackets++;
1330 		m_freem(cur_tx->my_mbuf);
1331 		cur_tx->my_mbuf = NULL;
1332 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1333 			sc->my_cdata.my_tx_head = NULL;
1334 			sc->my_cdata.my_tx_tail = NULL;
1335 			break;
1336 		}
1337 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1338 	}
1339 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1340 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1341 	}
1342 	MY_UNLOCK(sc);
1343 	return;
1344 }
1345 
1346 /*
1347  * TX 'end of channel' interrupt handler.
1348  */
1349 static void
1350 my_txeoc(struct my_softc * sc)
1351 {
1352 	struct ifnet   *ifp;
1353 
1354 	MY_LOCK(sc);
1355 	ifp = &sc->arpcom.ac_if;
1356 	ifp->if_timer = 0;
1357 	if (sc->my_cdata.my_tx_head == NULL) {
1358 		ifp->if_flags &= ~IFF_OACTIVE;
1359 		sc->my_cdata.my_tx_tail = NULL;
1360 		if (sc->my_want_auto)
1361 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1362 	} else {
1363 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1364 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1365 			ifp->if_timer = 5;
1366 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1367 		}
1368 	}
1369 	MY_UNLOCK(sc);
1370 	return;
1371 }
1372 
1373 static void
1374 my_intr(void *arg)
1375 {
1376 	struct my_softc *sc;
1377 	struct ifnet   *ifp;
1378 	u_int32_t       status;
1379 
1380 	sc = arg;
1381 	MY_LOCK(sc);
1382 	ifp = &sc->arpcom.ac_if;
1383 	if (!(ifp->if_flags & IFF_UP)) {
1384 		MY_UNLOCK(sc);
1385 		return;
1386 	}
1387 	/* Disable interrupts. */
1388 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1389 
1390 	for (;;) {
1391 		status = CSR_READ_4(sc, MY_ISR);
1392 		status &= MY_INTRS;
1393 		if (status)
1394 			CSR_WRITE_4(sc, MY_ISR, status);
1395 		else
1396 			break;
1397 
1398 		if (status & MY_RI)	/* receive interrupt */
1399 			my_rxeof(sc);
1400 
1401 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1402 			/* rx buffer unavailable or rx error */
1403 			ifp->if_ierrors++;
1404 #ifdef foo
1405 			my_stop(sc);
1406 			my_reset(sc);
1407 			my_init(sc);
1408 #endif
1409 		}
1410 		if (status & MY_TI)	/* tx interrupt */
1411 			my_txeof(sc);
1412 		if (status & MY_ETI)	/* tx early interrupt */
1413 			my_txeof(sc);
1414 		if (status & MY_TBU)	/* tx buffer unavailable */
1415 			my_txeoc(sc);
1416 
1417 #if 0				/* 90/1/18 delete */
1418 		if (status & MY_FBE) {
1419 			my_reset(sc);
1420 			my_init(sc);
1421 		}
1422 #endif
1423 
1424 	}
1425 
1426 	/* Re-enable interrupts. */
1427 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1428 	if (ifp->if_snd.ifq_head != NULL)
1429 		my_start(ifp);
1430 	MY_UNLOCK(sc);
1431 	return;
1432 }
1433 
1434 /*
1435  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1436  * pointers to the fragment pointers.
1437  */
1438 static int
1439 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1440 {
1441 	struct my_desc *f = NULL;
1442 	int             total_len;
1443 	struct mbuf    *m, *m_new = NULL;
1444 
1445 	MY_LOCK(sc);
1446 	/* calculate the total tx pkt length */
1447 	total_len = 0;
1448 	for (m = m_head; m != NULL; m = m->m_next)
1449 		total_len += m->m_len;
1450 	/*
1451 	 * Start packing the mbufs in this chain into the fragment pointers.
1452 	 * Stop when we run out of fragments or hit the end of the mbuf
1453 	 * chain.
1454 	 */
1455 	m = m_head;
1456 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1457 	if (m_new == NULL) {
1458 		printf("my%d: no memory for tx list", sc->my_unit);
1459 		MY_UNLOCK(sc);
1460 		return (1);
1461 	}
1462 	if (m_head->m_pkthdr.len > MHLEN) {
1463 		MCLGET(m_new, M_DONTWAIT);
1464 		if (!(m_new->m_flags & M_EXT)) {
1465 			m_freem(m_new);
1466 			printf("my%d: no memory for tx list", sc->my_unit);
1467 			MY_UNLOCK(sc);
1468 			return (1);
1469 		}
1470 	}
1471 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1472 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1473 	m_freem(m_head);
1474 	m_head = m_new;
1475 	f = &c->my_ptr->my_frag[0];
1476 	f->my_status = 0;
1477 	f->my_data = vtophys(mtod(m_new, caddr_t));
1478 	total_len = m_new->m_len;
1479 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1480 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1481 	f->my_ctl |= total_len;	/* buffer size */
1482 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1483 	if (sc->my_info->my_did == MTD891ID)
1484 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1485 	c->my_mbuf = m_head;
1486 	c->my_lastdesc = 0;
1487 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1488 	MY_UNLOCK(sc);
1489 	return (0);
1490 }
1491 
1492 /*
1493  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1494  * to the mbuf data regions directly in the transmit lists. We also save a
1495  * copy of the pointers since the transmit list fragment pointers are
1496  * physical addresses.
1497  */
1498 static void
1499 my_start(struct ifnet * ifp)
1500 {
1501 	struct my_softc *sc;
1502 	struct mbuf    *m_head = NULL;
1503 	struct my_chain *cur_tx = NULL, *start_tx;
1504 
1505 	sc = ifp->if_softc;
1506 	MY_LOCK(sc);
1507 	if (sc->my_autoneg) {
1508 		sc->my_tx_pend = 1;
1509 		MY_UNLOCK(sc);
1510 		return;
1511 	}
1512 	/*
1513 	 * Check for an available queue slot. If there are none, punt.
1514 	 */
1515 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1516 		ifp->if_flags |= IFF_OACTIVE;
1517 		MY_UNLOCK(sc);
1518 		return;
1519 	}
1520 	start_tx = sc->my_cdata.my_tx_free;
1521 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1522 		IF_DEQUEUE(&ifp->if_snd, m_head);
1523 		if (m_head == NULL)
1524 			break;
1525 
1526 		/* Pick a descriptor off the free list. */
1527 		cur_tx = sc->my_cdata.my_tx_free;
1528 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1529 
1530 		/* Pack the data into the descriptor. */
1531 		my_encap(sc, cur_tx, m_head);
1532 
1533 		if (cur_tx != start_tx)
1534 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1535 #if NBPFILTER > 0
1536 		/*
1537 		 * If there's a BPF listener, bounce a copy of this frame to
1538 		 * him.
1539 		 */
1540 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1541 #endif
1542 	}
1543 	/*
1544 	 * If there are no packets queued, bail.
1545 	 */
1546 	if (cur_tx == NULL) {
1547 		MY_UNLOCK(sc);
1548 		return;
1549 	}
1550 	/*
1551 	 * Place the request for the upload interrupt in the last descriptor
1552 	 * in the chain. This way, if we're chaining several packets at once,
1553 	 * we'll only get an interupt once for the whole chain rather than
1554 	 * once for each packet.
1555 	 */
1556 	MY_TXCTL(cur_tx) |= MY_TXIC;
1557 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1558 	sc->my_cdata.my_tx_tail = cur_tx;
1559 	if (sc->my_cdata.my_tx_head == NULL)
1560 		sc->my_cdata.my_tx_head = start_tx;
1561 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1562 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1563 
1564 	/*
1565 	 * Set a timeout in case the chip goes out to lunch.
1566 	 */
1567 	ifp->if_timer = 5;
1568 	MY_UNLOCK(sc);
1569 	return;
1570 }
1571 
1572 static void
1573 my_init(void *xsc)
1574 {
1575 	struct my_softc *sc = xsc;
1576 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1577 	int             s;
1578 	u_int16_t       phy_bmcr = 0;
1579 
1580 	MY_LOCK(sc);
1581 	if (sc->my_autoneg) {
1582 		MY_UNLOCK(sc);
1583 		return;
1584 	}
1585 	s = splimp();
1586 	if (sc->my_pinfo != NULL)
1587 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1588 	/*
1589 	 * Cancel pending I/O and free all RX/TX buffers.
1590 	 */
1591 	my_stop(sc);
1592 	my_reset(sc);
1593 
1594 	/*
1595 	 * Set cache alignment and burst length.
1596 	 */
1597 #if 0				/* 89/9/1 modify,  */
1598 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1599 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1600 #endif
1601 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1602 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1603 	/*
1604 	 * 89/12/29 add, for mtd891,
1605 	 */
1606 	if (sc->my_info->my_did == MTD891ID) {
1607 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1608 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1609 	}
1610 	my_setcfg(sc, phy_bmcr);
1611 	/* Init circular RX list. */
1612 	if (my_list_rx_init(sc) == ENOBUFS) {
1613 		printf("my%d: init failed: no memory for rx buffers\n",
1614 		    sc->my_unit);
1615 		my_stop(sc);
1616 		(void)splx(s);
1617 		MY_UNLOCK(sc);
1618 		return;
1619 	}
1620 	/* Init TX descriptors. */
1621 	my_list_tx_init(sc);
1622 
1623 	/* If we want promiscuous mode, set the allframes bit. */
1624 	if (ifp->if_flags & IFF_PROMISC)
1625 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1626 	else
1627 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1628 
1629 	/*
1630 	 * Set capture broadcast bit to capture broadcast frames.
1631 	 */
1632 	if (ifp->if_flags & IFF_BROADCAST)
1633 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1634 	else
1635 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1636 
1637 	/*
1638 	 * Program the multicast filter, if necessary.
1639 	 */
1640 	my_setmulti(sc);
1641 
1642 	/*
1643 	 * Load the address of the RX list.
1644 	 */
1645 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1646 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1647 
1648 	/*
1649 	 * Enable interrupts.
1650 	 */
1651 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1652 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1653 
1654 	/* Enable receiver and transmitter. */
1655 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1656 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1657 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1658 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1659 
1660 	/* Restore state of BMCR */
1661 	if (sc->my_pinfo != NULL)
1662 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1663 	ifp->if_flags |= IFF_RUNNING;
1664 	ifp->if_flags &= ~IFF_OACTIVE;
1665 	(void)splx(s);
1666 	MY_UNLOCK(sc);
1667 	return;
1668 }
1669 
1670 /*
1671  * Set media options.
1672  */
1673 
1674 static int
1675 my_ifmedia_upd(struct ifnet * ifp)
1676 {
1677 	struct my_softc *sc;
1678 	struct ifmedia *ifm;
1679 
1680 	sc = ifp->if_softc;
1681 	MY_LOCK(sc);
1682 	ifm = &sc->ifmedia;
1683 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1684 		MY_UNLOCK(sc);
1685 		return (EINVAL);
1686 	}
1687 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1688 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1689 	else
1690 		my_setmode_mii(sc, ifm->ifm_media);
1691 	MY_UNLOCK(sc);
1692 	return (0);
1693 }
1694 
1695 /*
1696  * Report current media status.
1697  */
1698 
1699 static void
1700 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1701 {
1702 	struct my_softc *sc;
1703 	u_int16_t advert = 0, ability = 0;
1704 
1705 	sc = ifp->if_softc;
1706 	MY_LOCK(sc);
1707 	ifmr->ifm_active = IFM_ETHER;
1708 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1709 #if 0				/* this version did not support 1000M, */
1710 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1711 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1712 #endif
1713 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1714 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1715 		else
1716 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1717 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1718 			ifmr->ifm_active |= IFM_FDX;
1719 		else
1720 			ifmr->ifm_active |= IFM_HDX;
1721 
1722 		MY_UNLOCK(sc);
1723 		return;
1724 	}
1725 	ability = my_phy_readreg(sc, PHY_LPAR);
1726 	advert = my_phy_readreg(sc, PHY_ANAR);
1727 
1728 #if 0				/* this version did not support 1000M, */
1729 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1730 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1731 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1732 			advert = 0;
1733 			ability = 0;
1734 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX;
1735 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1736 			advert = 0;
1737 			ability = 0;
1738 			ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX;
1739 		}
1740 	}
1741 #endif
1742 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1743 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1744 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1745 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1746 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1747 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1748 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1749 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1750 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1751 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1752 	MY_UNLOCK(sc);
1753 	return;
1754 }
1755 
1756 static int
1757 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
1758 {
1759 	struct my_softc *sc = ifp->if_softc;
1760 	struct ifreq   *ifr = (struct ifreq *) data;
1761 	int             s, error = 0;
1762 
1763 	s = splimp();
1764 	MY_LOCK(sc);
1765 	switch (command) {
1766 	case SIOCSIFFLAGS:
1767 		if (ifp->if_flags & IFF_UP)
1768 			my_init(sc);
1769 		else if (ifp->if_flags & IFF_RUNNING)
1770 			my_stop(sc);
1771 		error = 0;
1772 		break;
1773 	case SIOCADDMULTI:
1774 	case SIOCDELMULTI:
1775 		my_setmulti(sc);
1776 		error = 0;
1777 		break;
1778 	case SIOCGIFMEDIA:
1779 	case SIOCSIFMEDIA:
1780 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1781 		break;
1782 	default:
1783 		error = ether_ioctl(ifp, command, data);
1784 		break;
1785 	}
1786 	MY_UNLOCK(sc);
1787 	(void)splx(s);
1788 	return (error);
1789 }
1790 
1791 static void
1792 my_watchdog(struct ifnet * ifp)
1793 {
1794 	struct my_softc *sc;
1795 
1796 	sc = ifp->if_softc;
1797 	MY_LOCK(sc);
1798 	if (sc->my_autoneg) {
1799 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1800 		MY_UNLOCK(sc);
1801 		return;
1802 	}
1803 	ifp->if_oerrors++;
1804 	printf("my%d: watchdog timeout\n", sc->my_unit);
1805 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1806 		printf("my%d: no carrier - transceiver cable problem?\n",
1807 		    sc->my_unit);
1808 	my_stop(sc);
1809 	my_reset(sc);
1810 	my_init(sc);
1811 	if (ifp->if_snd.ifq_head != NULL)
1812 		my_start(ifp);
1813 	MY_LOCK(sc);
1814 	return;
1815 }
1816 
1817 
1818 /*
1819  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1820  */
1821 static void
1822 my_stop(struct my_softc * sc)
1823 {
1824 	register int    i;
1825 	struct ifnet   *ifp;
1826 
1827 	MY_LOCK(sc);
1828 	ifp = &sc->arpcom.ac_if;
1829 	ifp->if_timer = 0;
1830 
1831 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1832 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1833 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1834 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1835 
1836 	/*
1837 	 * Free data in the RX lists.
1838 	 */
1839 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1840 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1841 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1842 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1843 		}
1844 	}
1845 	bzero((char *)&sc->my_ldata->my_rx_list,
1846 	    sizeof(sc->my_ldata->my_rx_list));
1847 	/*
1848 	 * Free the TX list buffers.
1849 	 */
1850 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1851 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1852 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1853 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1854 		}
1855 	}
1856 	bzero((char *)&sc->my_ldata->my_tx_list,
1857 	    sizeof(sc->my_ldata->my_tx_list));
1858 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1859 	MY_UNLOCK(sc);
1860 	return;
1861 }
1862 
1863 /*
1864  * Stop all chip I/O so that the kernel's probe routines don't get confused
1865  * by errant DMAs when rebooting.
1866  */
1867 static void
1868 my_shutdown(device_t dev)
1869 {
1870 	struct my_softc *sc;
1871 
1872 	sc = device_get_softc(dev);
1873 	my_stop(sc);
1874 	return;
1875 }
1876