1 /****************************************************************************** 2 3 Copyright (c) 2006-2013, Myricom Inc. 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Neither the name of the Myricom Inc, nor the names of its 13 contributors may be used to endorse or promote products derived from 14 this software without specific prior written permission. 15 16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 20 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 POSSIBILITY OF SUCH DAMAGE. 27 28 ***************************************************************************/ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/linker.h> 36 #include <sys/firmware.h> 37 #include <sys/endian.h> 38 #include <sys/sockio.h> 39 #include <sys/mbuf.h> 40 #include <sys/malloc.h> 41 #include <sys/kdb.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/module.h> 45 #include <sys/socket.h> 46 #include <sys/sysctl.h> 47 #include <sys/sx.h> 48 #include <sys/taskqueue.h> 49 #include <sys/zlib.h> 50 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/if_arp.h> 54 #include <net/ethernet.h> 55 #include <net/if_dl.h> 56 #include <net/if_media.h> 57 58 #include <net/bpf.h> 59 60 #include <net/if_types.h> 61 #include <net/if_vlan_var.h> 62 63 #include <netinet/in_systm.h> 64 #include <netinet/in.h> 65 #include <netinet/ip.h> 66 #include <netinet/ip6.h> 67 #include <netinet/tcp.h> 68 #include <netinet/tcp_lro.h> 69 #include <netinet6/ip6_var.h> 70 71 #include <machine/bus.h> 72 #include <machine/in_cksum.h> 73 #include <machine/resource.h> 74 #include <sys/bus.h> 75 #include <sys/rman.h> 76 #include <sys/smp.h> 77 78 #include <dev/pci/pcireg.h> 79 #include <dev/pci/pcivar.h> 80 #include <dev/pci/pci_private.h> /* XXX for pci_cfg_restore */ 81 82 #include <vm/vm.h> /* for pmap_mapdev() */ 83 #include <vm/pmap.h> 84 85 #if defined(__i386) || defined(__amd64) 86 #include <machine/specialreg.h> 87 #endif 88 89 #include <dev/mxge/mxge_mcp.h> 90 #include <dev/mxge/mcp_gen_header.h> 91 /*#define MXGE_FAKE_IFP*/ 92 #include <dev/mxge/if_mxge_var.h> 93 #ifdef IFNET_BUF_RING 94 #include <sys/buf_ring.h> 95 #endif 96 97 #include "opt_inet.h" 98 #include "opt_inet6.h" 99 100 /* tunable params */ 101 static int mxge_nvidia_ecrc_enable = 1; 102 static int mxge_force_firmware = 0; 103 static int mxge_intr_coal_delay = 30; 104 static int mxge_deassert_wait = 1; 105 static int mxge_flow_control = 1; 106 static int mxge_verbose = 0; 107 static int mxge_ticks; 108 static int mxge_max_slices = 1; 109 static int mxge_rss_hash_type = MXGEFW_RSS_HASH_TYPE_SRC_DST_PORT; 110 static int mxge_always_promisc = 0; 111 static int mxge_initial_mtu = ETHERMTU_JUMBO; 112 static int mxge_throttle = 0; 113 static char *mxge_fw_unaligned = "mxge_ethp_z8e"; 114 static char *mxge_fw_aligned = "mxge_eth_z8e"; 115 static char *mxge_fw_rss_aligned = "mxge_rss_eth_z8e"; 116 static char *mxge_fw_rss_unaligned = "mxge_rss_ethp_z8e"; 117 118 static int mxge_probe(device_t dev); 119 static int mxge_attach(device_t dev); 120 static int mxge_detach(device_t dev); 121 static int mxge_shutdown(device_t dev); 122 static void mxge_intr(void *arg); 123 124 static device_method_t mxge_methods[] = 125 { 126 /* Device interface */ 127 DEVMETHOD(device_probe, mxge_probe), 128 DEVMETHOD(device_attach, mxge_attach), 129 DEVMETHOD(device_detach, mxge_detach), 130 DEVMETHOD(device_shutdown, mxge_shutdown), 131 132 DEVMETHOD_END 133 }; 134 135 static driver_t mxge_driver = 136 { 137 "mxge", 138 mxge_methods, 139 sizeof(mxge_softc_t), 140 }; 141 142 static devclass_t mxge_devclass; 143 144 /* Declare ourselves to be a child of the PCI bus.*/ 145 DRIVER_MODULE(mxge, pci, mxge_driver, mxge_devclass, 0, 0); 146 MODULE_DEPEND(mxge, firmware, 1, 1, 1); 147 MODULE_DEPEND(mxge, zlib, 1, 1, 1); 148 149 static int mxge_load_firmware(mxge_softc_t *sc, int adopt); 150 static int mxge_send_cmd(mxge_softc_t *sc, uint32_t cmd, mxge_cmd_t *data); 151 static int mxge_close(mxge_softc_t *sc, int down); 152 static int mxge_open(mxge_softc_t *sc); 153 static void mxge_tick(void *arg); 154 155 static int 156 mxge_probe(device_t dev) 157 { 158 int rev; 159 160 161 if ((pci_get_vendor(dev) == MXGE_PCI_VENDOR_MYRICOM) && 162 ((pci_get_device(dev) == MXGE_PCI_DEVICE_Z8E) || 163 (pci_get_device(dev) == MXGE_PCI_DEVICE_Z8E_9))) { 164 rev = pci_get_revid(dev); 165 switch (rev) { 166 case MXGE_PCI_REV_Z8E: 167 device_set_desc(dev, "Myri10G-PCIE-8A"); 168 break; 169 case MXGE_PCI_REV_Z8ES: 170 device_set_desc(dev, "Myri10G-PCIE-8B"); 171 break; 172 default: 173 device_set_desc(dev, "Myri10G-PCIE-8??"); 174 device_printf(dev, "Unrecognized rev %d NIC\n", 175 rev); 176 break; 177 } 178 return 0; 179 } 180 return ENXIO; 181 } 182 183 static void 184 mxge_enable_wc(mxge_softc_t *sc) 185 { 186 #if defined(__i386) || defined(__amd64) 187 vm_offset_t len; 188 int err; 189 190 sc->wc = 1; 191 len = rman_get_size(sc->mem_res); 192 err = pmap_change_attr((vm_offset_t) sc->sram, 193 len, PAT_WRITE_COMBINING); 194 if (err != 0) { 195 device_printf(sc->dev, "pmap_change_attr failed, %d\n", 196 err); 197 sc->wc = 0; 198 } 199 #endif 200 } 201 202 203 /* callback to get our DMA address */ 204 static void 205 mxge_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, 206 int error) 207 { 208 if (error == 0) { 209 *(bus_addr_t *) arg = segs->ds_addr; 210 } 211 } 212 213 static int 214 mxge_dma_alloc(mxge_softc_t *sc, mxge_dma_t *dma, size_t bytes, 215 bus_size_t alignment) 216 { 217 int err; 218 device_t dev = sc->dev; 219 bus_size_t boundary, maxsegsize; 220 221 if (bytes > 4096 && alignment == 4096) { 222 boundary = 0; 223 maxsegsize = bytes; 224 } else { 225 boundary = 4096; 226 maxsegsize = 4096; 227 } 228 229 /* allocate DMAable memory tags */ 230 err = bus_dma_tag_create(sc->parent_dmat, /* parent */ 231 alignment, /* alignment */ 232 boundary, /* boundary */ 233 BUS_SPACE_MAXADDR, /* low */ 234 BUS_SPACE_MAXADDR, /* high */ 235 NULL, NULL, /* filter */ 236 bytes, /* maxsize */ 237 1, /* num segs */ 238 maxsegsize, /* maxsegsize */ 239 BUS_DMA_COHERENT, /* flags */ 240 NULL, NULL, /* lock */ 241 &dma->dmat); /* tag */ 242 if (err != 0) { 243 device_printf(dev, "couldn't alloc tag (err = %d)\n", err); 244 return err; 245 } 246 247 /* allocate DMAable memory & map */ 248 err = bus_dmamem_alloc(dma->dmat, &dma->addr, 249 (BUS_DMA_WAITOK | BUS_DMA_COHERENT 250 | BUS_DMA_ZERO), &dma->map); 251 if (err != 0) { 252 device_printf(dev, "couldn't alloc mem (err = %d)\n", err); 253 goto abort_with_dmat; 254 } 255 256 /* load the memory */ 257 err = bus_dmamap_load(dma->dmat, dma->map, dma->addr, bytes, 258 mxge_dmamap_callback, 259 (void *)&dma->bus_addr, 0); 260 if (err != 0) { 261 device_printf(dev, "couldn't load map (err = %d)\n", err); 262 goto abort_with_mem; 263 } 264 return 0; 265 266 abort_with_mem: 267 bus_dmamem_free(dma->dmat, dma->addr, dma->map); 268 abort_with_dmat: 269 (void)bus_dma_tag_destroy(dma->dmat); 270 return err; 271 } 272 273 274 static void 275 mxge_dma_free(mxge_dma_t *dma) 276 { 277 bus_dmamap_unload(dma->dmat, dma->map); 278 bus_dmamem_free(dma->dmat, dma->addr, dma->map); 279 (void)bus_dma_tag_destroy(dma->dmat); 280 } 281 282 /* 283 * The eeprom strings on the lanaiX have the format 284 * SN=x\0 285 * MAC=x:x:x:x:x:x\0 286 * PC=text\0 287 */ 288 289 static int 290 mxge_parse_strings(mxge_softc_t *sc) 291 { 292 char *ptr; 293 int i, found_mac, found_sn2; 294 char *endptr; 295 296 ptr = sc->eeprom_strings; 297 found_mac = 0; 298 found_sn2 = 0; 299 while (*ptr != '\0') { 300 if (strncmp(ptr, "MAC=", 4) == 0) { 301 ptr += 4; 302 for (i = 0;;) { 303 sc->mac_addr[i] = strtoul(ptr, &endptr, 16); 304 if (endptr - ptr != 2) 305 goto abort; 306 ptr = endptr; 307 if (++i == 6) 308 break; 309 if (*ptr++ != ':') 310 goto abort; 311 } 312 found_mac = 1; 313 } else if (strncmp(ptr, "PC=", 3) == 0) { 314 ptr += 3; 315 strlcpy(sc->product_code_string, ptr, 316 sizeof(sc->product_code_string)); 317 } else if (!found_sn2 && (strncmp(ptr, "SN=", 3) == 0)) { 318 ptr += 3; 319 strlcpy(sc->serial_number_string, ptr, 320 sizeof(sc->serial_number_string)); 321 } else if (strncmp(ptr, "SN2=", 4) == 0) { 322 /* SN2 takes precedence over SN */ 323 ptr += 4; 324 found_sn2 = 1; 325 strlcpy(sc->serial_number_string, ptr, 326 sizeof(sc->serial_number_string)); 327 } 328 while (*ptr++ != '\0') {} 329 } 330 331 if (found_mac) 332 return 0; 333 334 abort: 335 device_printf(sc->dev, "failed to parse eeprom_strings\n"); 336 337 return ENXIO; 338 } 339 340 #if defined __i386 || defined i386 || defined __i386__ || defined __x86_64__ 341 static void 342 mxge_enable_nvidia_ecrc(mxge_softc_t *sc) 343 { 344 uint32_t val; 345 unsigned long base, off; 346 char *va, *cfgptr; 347 device_t pdev, mcp55; 348 uint16_t vendor_id, device_id, word; 349 uintptr_t bus, slot, func, ivend, idev; 350 uint32_t *ptr32; 351 352 353 if (!mxge_nvidia_ecrc_enable) 354 return; 355 356 pdev = device_get_parent(device_get_parent(sc->dev)); 357 if (pdev == NULL) { 358 device_printf(sc->dev, "could not find parent?\n"); 359 return; 360 } 361 vendor_id = pci_read_config(pdev, PCIR_VENDOR, 2); 362 device_id = pci_read_config(pdev, PCIR_DEVICE, 2); 363 364 if (vendor_id != 0x10de) 365 return; 366 367 base = 0; 368 369 if (device_id == 0x005d) { 370 /* ck804, base address is magic */ 371 base = 0xe0000000UL; 372 } else if (device_id >= 0x0374 && device_id <= 0x378) { 373 /* mcp55, base address stored in chipset */ 374 mcp55 = pci_find_bsf(0, 0, 0); 375 if (mcp55 && 376 0x10de == pci_read_config(mcp55, PCIR_VENDOR, 2) && 377 0x0369 == pci_read_config(mcp55, PCIR_DEVICE, 2)) { 378 word = pci_read_config(mcp55, 0x90, 2); 379 base = ((unsigned long)word & 0x7ffeU) << 25; 380 } 381 } 382 if (!base) 383 return; 384 385 /* XXXX 386 Test below is commented because it is believed that doing 387 config read/write beyond 0xff will access the config space 388 for the next larger function. Uncomment this and remove 389 the hacky pmap_mapdev() way of accessing config space when 390 FreeBSD grows support for extended pcie config space access 391 */ 392 #if 0 393 /* See if we can, by some miracle, access the extended 394 config space */ 395 val = pci_read_config(pdev, 0x178, 4); 396 if (val != 0xffffffff) { 397 val |= 0x40; 398 pci_write_config(pdev, 0x178, val, 4); 399 return; 400 } 401 #endif 402 /* Rather than using normal pci config space writes, we must 403 * map the Nvidia config space ourselves. This is because on 404 * opteron/nvidia class machine the 0xe000000 mapping is 405 * handled by the nvidia chipset, that means the internal PCI 406 * device (the on-chip northbridge), or the amd-8131 bridge 407 * and things behind them are not visible by this method. 408 */ 409 410 BUS_READ_IVAR(device_get_parent(pdev), pdev, 411 PCI_IVAR_BUS, &bus); 412 BUS_READ_IVAR(device_get_parent(pdev), pdev, 413 PCI_IVAR_SLOT, &slot); 414 BUS_READ_IVAR(device_get_parent(pdev), pdev, 415 PCI_IVAR_FUNCTION, &func); 416 BUS_READ_IVAR(device_get_parent(pdev), pdev, 417 PCI_IVAR_VENDOR, &ivend); 418 BUS_READ_IVAR(device_get_parent(pdev), pdev, 419 PCI_IVAR_DEVICE, &idev); 420 421 off = base 422 + 0x00100000UL * (unsigned long)bus 423 + 0x00001000UL * (unsigned long)(func 424 + 8 * slot); 425 426 /* map it into the kernel */ 427 va = pmap_mapdev(trunc_page((vm_paddr_t)off), PAGE_SIZE); 428 429 430 if (va == NULL) { 431 device_printf(sc->dev, "pmap_kenter_temporary didn't\n"); 432 return; 433 } 434 /* get a pointer to the config space mapped into the kernel */ 435 cfgptr = va + (off & PAGE_MASK); 436 437 /* make sure that we can really access it */ 438 vendor_id = *(uint16_t *)(cfgptr + PCIR_VENDOR); 439 device_id = *(uint16_t *)(cfgptr + PCIR_DEVICE); 440 if (! (vendor_id == ivend && device_id == idev)) { 441 device_printf(sc->dev, "mapping failed: 0x%x:0x%x\n", 442 vendor_id, device_id); 443 pmap_unmapdev((vm_offset_t)va, PAGE_SIZE); 444 return; 445 } 446 447 ptr32 = (uint32_t*)(cfgptr + 0x178); 448 val = *ptr32; 449 450 if (val == 0xffffffff) { 451 device_printf(sc->dev, "extended mapping failed\n"); 452 pmap_unmapdev((vm_offset_t)va, PAGE_SIZE); 453 return; 454 } 455 *ptr32 = val | 0x40; 456 pmap_unmapdev((vm_offset_t)va, PAGE_SIZE); 457 if (mxge_verbose) 458 device_printf(sc->dev, 459 "Enabled ECRC on upstream Nvidia bridge " 460 "at %d:%d:%d\n", 461 (int)bus, (int)slot, (int)func); 462 return; 463 } 464 #else 465 static void 466 mxge_enable_nvidia_ecrc(mxge_softc_t *sc) 467 { 468 device_printf(sc->dev, 469 "Nforce 4 chipset on non-x86/amd64!?!?!\n"); 470 return; 471 } 472 #endif 473 474 475 static int 476 mxge_dma_test(mxge_softc_t *sc, int test_type) 477 { 478 mxge_cmd_t cmd; 479 bus_addr_t dmatest_bus = sc->dmabench_dma.bus_addr; 480 int status; 481 uint32_t len; 482 char *test = " "; 483 484 485 /* Run a small DMA test. 486 * The magic multipliers to the length tell the firmware 487 * to do DMA read, write, or read+write tests. The 488 * results are returned in cmd.data0. The upper 16 489 * bits of the return is the number of transfers completed. 490 * The lower 16 bits is the time in 0.5us ticks that the 491 * transfers took to complete. 492 */ 493 494 len = sc->tx_boundary; 495 496 cmd.data0 = MXGE_LOWPART_TO_U32(dmatest_bus); 497 cmd.data1 = MXGE_HIGHPART_TO_U32(dmatest_bus); 498 cmd.data2 = len * 0x10000; 499 status = mxge_send_cmd(sc, test_type, &cmd); 500 if (status != 0) { 501 test = "read"; 502 goto abort; 503 } 504 sc->read_dma = ((cmd.data0>>16) * len * 2) / 505 (cmd.data0 & 0xffff); 506 cmd.data0 = MXGE_LOWPART_TO_U32(dmatest_bus); 507 cmd.data1 = MXGE_HIGHPART_TO_U32(dmatest_bus); 508 cmd.data2 = len * 0x1; 509 status = mxge_send_cmd(sc, test_type, &cmd); 510 if (status != 0) { 511 test = "write"; 512 goto abort; 513 } 514 sc->write_dma = ((cmd.data0>>16) * len * 2) / 515 (cmd.data0 & 0xffff); 516 517 cmd.data0 = MXGE_LOWPART_TO_U32(dmatest_bus); 518 cmd.data1 = MXGE_HIGHPART_TO_U32(dmatest_bus); 519 cmd.data2 = len * 0x10001; 520 status = mxge_send_cmd(sc, test_type, &cmd); 521 if (status != 0) { 522 test = "read/write"; 523 goto abort; 524 } 525 sc->read_write_dma = ((cmd.data0>>16) * len * 2 * 2) / 526 (cmd.data0 & 0xffff); 527 528 abort: 529 if (status != 0 && test_type != MXGEFW_CMD_UNALIGNED_TEST) 530 device_printf(sc->dev, "DMA %s benchmark failed: %d\n", 531 test, status); 532 533 return status; 534 } 535 536 /* 537 * The Lanai Z8E PCI-E interface achieves higher Read-DMA throughput 538 * when the PCI-E Completion packets are aligned on an 8-byte 539 * boundary. Some PCI-E chip sets always align Completion packets; on 540 * the ones that do not, the alignment can be enforced by enabling 541 * ECRC generation (if supported). 542 * 543 * When PCI-E Completion packets are not aligned, it is actually more 544 * efficient to limit Read-DMA transactions to 2KB, rather than 4KB. 545 * 546 * If the driver can neither enable ECRC nor verify that it has 547 * already been enabled, then it must use a firmware image which works 548 * around unaligned completion packets (ethp_z8e.dat), and it should 549 * also ensure that it never gives the device a Read-DMA which is 550 * larger than 2KB by setting the tx_boundary to 2KB. If ECRC is 551 * enabled, then the driver should use the aligned (eth_z8e.dat) 552 * firmware image, and set tx_boundary to 4KB. 553 */ 554 555 static int 556 mxge_firmware_probe(mxge_softc_t *sc) 557 { 558 device_t dev = sc->dev; 559 int reg, status; 560 uint16_t pectl; 561 562 sc->tx_boundary = 4096; 563 /* 564 * Verify the max read request size was set to 4KB 565 * before trying the test with 4KB. 566 */ 567 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 568 pectl = pci_read_config(dev, reg + 0x8, 2); 569 if ((pectl & (5 << 12)) != (5 << 12)) { 570 device_printf(dev, "Max Read Req. size != 4k (0x%x\n", 571 pectl); 572 sc->tx_boundary = 2048; 573 } 574 } 575 576 /* 577 * load the optimized firmware (which assumes aligned PCIe 578 * completions) in order to see if it works on this host. 579 */ 580 sc->fw_name = mxge_fw_aligned; 581 status = mxge_load_firmware(sc, 1); 582 if (status != 0) { 583 return status; 584 } 585 586 /* 587 * Enable ECRC if possible 588 */ 589 mxge_enable_nvidia_ecrc(sc); 590 591 /* 592 * Run a DMA test which watches for unaligned completions and 593 * aborts on the first one seen. Not required on Z8ES or newer. 594 */ 595 if (pci_get_revid(sc->dev) >= MXGE_PCI_REV_Z8ES) 596 return 0; 597 status = mxge_dma_test(sc, MXGEFW_CMD_UNALIGNED_TEST); 598 if (status == 0) 599 return 0; /* keep the aligned firmware */ 600 601 if (status != E2BIG) 602 device_printf(dev, "DMA test failed: %d\n", status); 603 if (status == ENOSYS) 604 device_printf(dev, "Falling back to ethp! " 605 "Please install up to date fw\n"); 606 return status; 607 } 608 609 static int 610 mxge_select_firmware(mxge_softc_t *sc) 611 { 612 int aligned = 0; 613 int force_firmware = mxge_force_firmware; 614 615 if (sc->throttle) 616 force_firmware = sc->throttle; 617 618 if (force_firmware != 0) { 619 if (force_firmware == 1) 620 aligned = 1; 621 else 622 aligned = 0; 623 if (mxge_verbose) 624 device_printf(sc->dev, 625 "Assuming %s completions (forced)\n", 626 aligned ? "aligned" : "unaligned"); 627 goto abort; 628 } 629 630 /* if the PCIe link width is 4 or less, we can use the aligned 631 firmware and skip any checks */ 632 if (sc->link_width != 0 && sc->link_width <= 4) { 633 device_printf(sc->dev, 634 "PCIe x%d Link, expect reduced performance\n", 635 sc->link_width); 636 aligned = 1; 637 goto abort; 638 } 639 640 if (0 == mxge_firmware_probe(sc)) 641 return 0; 642 643 abort: 644 if (aligned) { 645 sc->fw_name = mxge_fw_aligned; 646 sc->tx_boundary = 4096; 647 } else { 648 sc->fw_name = mxge_fw_unaligned; 649 sc->tx_boundary = 2048; 650 } 651 return (mxge_load_firmware(sc, 0)); 652 } 653 654 static int 655 mxge_validate_firmware(mxge_softc_t *sc, const mcp_gen_header_t *hdr) 656 { 657 658 659 if (be32toh(hdr->mcp_type) != MCP_TYPE_ETH) { 660 device_printf(sc->dev, "Bad firmware type: 0x%x\n", 661 be32toh(hdr->mcp_type)); 662 return EIO; 663 } 664 665 /* save firmware version for sysctl */ 666 strlcpy(sc->fw_version, hdr->version, sizeof(sc->fw_version)); 667 if (mxge_verbose) 668 device_printf(sc->dev, "firmware id: %s\n", hdr->version); 669 670 sscanf(sc->fw_version, "%d.%d.%d", &sc->fw_ver_major, 671 &sc->fw_ver_minor, &sc->fw_ver_tiny); 672 673 if (!(sc->fw_ver_major == MXGEFW_VERSION_MAJOR 674 && sc->fw_ver_minor == MXGEFW_VERSION_MINOR)) { 675 device_printf(sc->dev, "Found firmware version %s\n", 676 sc->fw_version); 677 device_printf(sc->dev, "Driver needs %d.%d\n", 678 MXGEFW_VERSION_MAJOR, MXGEFW_VERSION_MINOR); 679 return EINVAL; 680 } 681 return 0; 682 683 } 684 685 static void * 686 z_alloc(void *nil, u_int items, u_int size) 687 { 688 void *ptr; 689 690 ptr = malloc(items * size, M_TEMP, M_NOWAIT); 691 return ptr; 692 } 693 694 static void 695 z_free(void *nil, void *ptr) 696 { 697 free(ptr, M_TEMP); 698 } 699 700 701 static int 702 mxge_load_firmware_helper(mxge_softc_t *sc, uint32_t *limit) 703 { 704 z_stream zs; 705 char *inflate_buffer; 706 const struct firmware *fw; 707 const mcp_gen_header_t *hdr; 708 unsigned hdr_offset; 709 int status; 710 unsigned int i; 711 char dummy; 712 size_t fw_len; 713 714 fw = firmware_get(sc->fw_name); 715 if (fw == NULL) { 716 device_printf(sc->dev, "Could not find firmware image %s\n", 717 sc->fw_name); 718 return ENOENT; 719 } 720 721 722 723 /* setup zlib and decompress f/w */ 724 bzero(&zs, sizeof (zs)); 725 zs.zalloc = z_alloc; 726 zs.zfree = z_free; 727 status = inflateInit(&zs); 728 if (status != Z_OK) { 729 status = EIO; 730 goto abort_with_fw; 731 } 732 733 /* the uncompressed size is stored as the firmware version, 734 which would otherwise go unused */ 735 fw_len = (size_t) fw->version; 736 inflate_buffer = malloc(fw_len, M_TEMP, M_NOWAIT); 737 if (inflate_buffer == NULL) 738 goto abort_with_zs; 739 zs.avail_in = fw->datasize; 740 zs.next_in = __DECONST(char *, fw->data); 741 zs.avail_out = fw_len; 742 zs.next_out = inflate_buffer; 743 status = inflate(&zs, Z_FINISH); 744 if (status != Z_STREAM_END) { 745 device_printf(sc->dev, "zlib %d\n", status); 746 status = EIO; 747 goto abort_with_buffer; 748 } 749 750 /* check id */ 751 hdr_offset = htobe32(*(const uint32_t *) 752 (inflate_buffer + MCP_HEADER_PTR_OFFSET)); 753 if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > fw_len) { 754 device_printf(sc->dev, "Bad firmware file"); 755 status = EIO; 756 goto abort_with_buffer; 757 } 758 hdr = (const void*)(inflate_buffer + hdr_offset); 759 760 status = mxge_validate_firmware(sc, hdr); 761 if (status != 0) 762 goto abort_with_buffer; 763 764 /* Copy the inflated firmware to NIC SRAM. */ 765 for (i = 0; i < fw_len; i += 256) { 766 mxge_pio_copy(sc->sram + MXGE_FW_OFFSET + i, 767 inflate_buffer + i, 768 min(256U, (unsigned)(fw_len - i))); 769 wmb(); 770 dummy = *sc->sram; 771 wmb(); 772 } 773 774 *limit = fw_len; 775 status = 0; 776 abort_with_buffer: 777 free(inflate_buffer, M_TEMP); 778 abort_with_zs: 779 inflateEnd(&zs); 780 abort_with_fw: 781 firmware_put(fw, FIRMWARE_UNLOAD); 782 return status; 783 } 784 785 /* 786 * Enable or disable periodic RDMAs from the host to make certain 787 * chipsets resend dropped PCIe messages 788 */ 789 790 static void 791 mxge_dummy_rdma(mxge_softc_t *sc, int enable) 792 { 793 char buf_bytes[72]; 794 volatile uint32_t *confirm; 795 volatile char *submit; 796 uint32_t *buf, dma_low, dma_high; 797 int i; 798 799 buf = (uint32_t *)((unsigned long)(buf_bytes + 7) & ~7UL); 800 801 /* clear confirmation addr */ 802 confirm = (volatile uint32_t *)sc->cmd; 803 *confirm = 0; 804 wmb(); 805 806 /* send an rdma command to the PCIe engine, and wait for the 807 response in the confirmation address. The firmware should 808 write a -1 there to indicate it is alive and well 809 */ 810 811 dma_low = MXGE_LOWPART_TO_U32(sc->cmd_dma.bus_addr); 812 dma_high = MXGE_HIGHPART_TO_U32(sc->cmd_dma.bus_addr); 813 buf[0] = htobe32(dma_high); /* confirm addr MSW */ 814 buf[1] = htobe32(dma_low); /* confirm addr LSW */ 815 buf[2] = htobe32(0xffffffff); /* confirm data */ 816 dma_low = MXGE_LOWPART_TO_U32(sc->zeropad_dma.bus_addr); 817 dma_high = MXGE_HIGHPART_TO_U32(sc->zeropad_dma.bus_addr); 818 buf[3] = htobe32(dma_high); /* dummy addr MSW */ 819 buf[4] = htobe32(dma_low); /* dummy addr LSW */ 820 buf[5] = htobe32(enable); /* enable? */ 821 822 823 submit = (volatile char *)(sc->sram + MXGEFW_BOOT_DUMMY_RDMA); 824 825 mxge_pio_copy(submit, buf, 64); 826 wmb(); 827 DELAY(1000); 828 wmb(); 829 i = 0; 830 while (*confirm != 0xffffffff && i < 20) { 831 DELAY(1000); 832 i++; 833 } 834 if (*confirm != 0xffffffff) { 835 device_printf(sc->dev, "dummy rdma %s failed (%p = 0x%x)", 836 (enable ? "enable" : "disable"), confirm, 837 *confirm); 838 } 839 return; 840 } 841 842 static int 843 mxge_send_cmd(mxge_softc_t *sc, uint32_t cmd, mxge_cmd_t *data) 844 { 845 mcp_cmd_t *buf; 846 char buf_bytes[sizeof(*buf) + 8]; 847 volatile mcp_cmd_response_t *response = sc->cmd; 848 volatile char *cmd_addr = sc->sram + MXGEFW_ETH_CMD; 849 uint32_t dma_low, dma_high; 850 int err, sleep_total = 0; 851 852 /* ensure buf is aligned to 8 bytes */ 853 buf = (mcp_cmd_t *)((unsigned long)(buf_bytes + 7) & ~7UL); 854 855 buf->data0 = htobe32(data->data0); 856 buf->data1 = htobe32(data->data1); 857 buf->data2 = htobe32(data->data2); 858 buf->cmd = htobe32(cmd); 859 dma_low = MXGE_LOWPART_TO_U32(sc->cmd_dma.bus_addr); 860 dma_high = MXGE_HIGHPART_TO_U32(sc->cmd_dma.bus_addr); 861 862 buf->response_addr.low = htobe32(dma_low); 863 buf->response_addr.high = htobe32(dma_high); 864 mtx_lock(&sc->cmd_mtx); 865 response->result = 0xffffffff; 866 wmb(); 867 mxge_pio_copy((volatile void *)cmd_addr, buf, sizeof (*buf)); 868 869 /* wait up to 20ms */ 870 err = EAGAIN; 871 for (sleep_total = 0; sleep_total < 20; sleep_total++) { 872 bus_dmamap_sync(sc->cmd_dma.dmat, 873 sc->cmd_dma.map, BUS_DMASYNC_POSTREAD); 874 wmb(); 875 switch (be32toh(response->result)) { 876 case 0: 877 data->data0 = be32toh(response->data); 878 err = 0; 879 break; 880 case 0xffffffff: 881 DELAY(1000); 882 break; 883 case MXGEFW_CMD_UNKNOWN: 884 err = ENOSYS; 885 break; 886 case MXGEFW_CMD_ERROR_UNALIGNED: 887 err = E2BIG; 888 break; 889 case MXGEFW_CMD_ERROR_BUSY: 890 err = EBUSY; 891 break; 892 case MXGEFW_CMD_ERROR_I2C_ABSENT: 893 err = ENXIO; 894 break; 895 default: 896 device_printf(sc->dev, 897 "mxge: command %d " 898 "failed, result = %d\n", 899 cmd, be32toh(response->result)); 900 err = ENXIO; 901 break; 902 } 903 if (err != EAGAIN) 904 break; 905 } 906 if (err == EAGAIN) 907 device_printf(sc->dev, "mxge: command %d timed out" 908 "result = %d\n", 909 cmd, be32toh(response->result)); 910 mtx_unlock(&sc->cmd_mtx); 911 return err; 912 } 913 914 static int 915 mxge_adopt_running_firmware(mxge_softc_t *sc) 916 { 917 struct mcp_gen_header *hdr; 918 const size_t bytes = sizeof (struct mcp_gen_header); 919 size_t hdr_offset; 920 int status; 921 922 /* find running firmware header */ 923 hdr_offset = htobe32(*(volatile uint32_t *) 924 (sc->sram + MCP_HEADER_PTR_OFFSET)); 925 926 if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > sc->sram_size) { 927 device_printf(sc->dev, 928 "Running firmware has bad header offset (%d)\n", 929 (int)hdr_offset); 930 return EIO; 931 } 932 933 /* copy header of running firmware from SRAM to host memory to 934 * validate firmware */ 935 hdr = malloc(bytes, M_DEVBUF, M_NOWAIT); 936 if (hdr == NULL) { 937 device_printf(sc->dev, "could not malloc firmware hdr\n"); 938 return ENOMEM; 939 } 940 bus_space_read_region_1(rman_get_bustag(sc->mem_res), 941 rman_get_bushandle(sc->mem_res), 942 hdr_offset, (char *)hdr, bytes); 943 status = mxge_validate_firmware(sc, hdr); 944 free(hdr, M_DEVBUF); 945 946 /* 947 * check to see if adopted firmware has bug where adopting 948 * it will cause broadcasts to be filtered unless the NIC 949 * is kept in ALLMULTI mode 950 */ 951 if (sc->fw_ver_major == 1 && sc->fw_ver_minor == 4 && 952 sc->fw_ver_tiny >= 4 && sc->fw_ver_tiny <= 11) { 953 sc->adopted_rx_filter_bug = 1; 954 device_printf(sc->dev, "Adopting fw %d.%d.%d: " 955 "working around rx filter bug\n", 956 sc->fw_ver_major, sc->fw_ver_minor, 957 sc->fw_ver_tiny); 958 } 959 960 return status; 961 } 962 963 964 static int 965 mxge_load_firmware(mxge_softc_t *sc, int adopt) 966 { 967 volatile uint32_t *confirm; 968 volatile char *submit; 969 char buf_bytes[72]; 970 uint32_t *buf, size, dma_low, dma_high; 971 int status, i; 972 973 buf = (uint32_t *)((unsigned long)(buf_bytes + 7) & ~7UL); 974 975 size = sc->sram_size; 976 status = mxge_load_firmware_helper(sc, &size); 977 if (status) { 978 if (!adopt) 979 return status; 980 /* Try to use the currently running firmware, if 981 it is new enough */ 982 status = mxge_adopt_running_firmware(sc); 983 if (status) { 984 device_printf(sc->dev, 985 "failed to adopt running firmware\n"); 986 return status; 987 } 988 device_printf(sc->dev, 989 "Successfully adopted running firmware\n"); 990 if (sc->tx_boundary == 4096) { 991 device_printf(sc->dev, 992 "Using firmware currently running on NIC" 993 ". For optimal\n"); 994 device_printf(sc->dev, 995 "performance consider loading optimized " 996 "firmware\n"); 997 } 998 sc->fw_name = mxge_fw_unaligned; 999 sc->tx_boundary = 2048; 1000 return 0; 1001 } 1002 /* clear confirmation addr */ 1003 confirm = (volatile uint32_t *)sc->cmd; 1004 *confirm = 0; 1005 wmb(); 1006 /* send a reload command to the bootstrap MCP, and wait for the 1007 response in the confirmation address. The firmware should 1008 write a -1 there to indicate it is alive and well 1009 */ 1010 1011 dma_low = MXGE_LOWPART_TO_U32(sc->cmd_dma.bus_addr); 1012 dma_high = MXGE_HIGHPART_TO_U32(sc->cmd_dma.bus_addr); 1013 1014 buf[0] = htobe32(dma_high); /* confirm addr MSW */ 1015 buf[1] = htobe32(dma_low); /* confirm addr LSW */ 1016 buf[2] = htobe32(0xffffffff); /* confirm data */ 1017 1018 /* FIX: All newest firmware should un-protect the bottom of 1019 the sram before handoff. However, the very first interfaces 1020 do not. Therefore the handoff copy must skip the first 8 bytes 1021 */ 1022 /* where the code starts*/ 1023 buf[3] = htobe32(MXGE_FW_OFFSET + 8); 1024 buf[4] = htobe32(size - 8); /* length of code */ 1025 buf[5] = htobe32(8); /* where to copy to */ 1026 buf[6] = htobe32(0); /* where to jump to */ 1027 1028 submit = (volatile char *)(sc->sram + MXGEFW_BOOT_HANDOFF); 1029 mxge_pio_copy(submit, buf, 64); 1030 wmb(); 1031 DELAY(1000); 1032 wmb(); 1033 i = 0; 1034 while (*confirm != 0xffffffff && i < 20) { 1035 DELAY(1000*10); 1036 i++; 1037 bus_dmamap_sync(sc->cmd_dma.dmat, 1038 sc->cmd_dma.map, BUS_DMASYNC_POSTREAD); 1039 } 1040 if (*confirm != 0xffffffff) { 1041 device_printf(sc->dev,"handoff failed (%p = 0x%x)", 1042 confirm, *confirm); 1043 1044 return ENXIO; 1045 } 1046 return 0; 1047 } 1048 1049 static int 1050 mxge_update_mac_address(mxge_softc_t *sc) 1051 { 1052 mxge_cmd_t cmd; 1053 uint8_t *addr = sc->mac_addr; 1054 int status; 1055 1056 1057 cmd.data0 = ((addr[0] << 24) | (addr[1] << 16) 1058 | (addr[2] << 8) | addr[3]); 1059 1060 cmd.data1 = ((addr[4] << 8) | (addr[5])); 1061 1062 status = mxge_send_cmd(sc, MXGEFW_SET_MAC_ADDRESS, &cmd); 1063 return status; 1064 } 1065 1066 static int 1067 mxge_change_pause(mxge_softc_t *sc, int pause) 1068 { 1069 mxge_cmd_t cmd; 1070 int status; 1071 1072 if (pause) 1073 status = mxge_send_cmd(sc, MXGEFW_ENABLE_FLOW_CONTROL, 1074 &cmd); 1075 else 1076 status = mxge_send_cmd(sc, MXGEFW_DISABLE_FLOW_CONTROL, 1077 &cmd); 1078 1079 if (status) { 1080 device_printf(sc->dev, "Failed to set flow control mode\n"); 1081 return ENXIO; 1082 } 1083 sc->pause = pause; 1084 return 0; 1085 } 1086 1087 static void 1088 mxge_change_promisc(mxge_softc_t *sc, int promisc) 1089 { 1090 mxge_cmd_t cmd; 1091 int status; 1092 1093 if (mxge_always_promisc) 1094 promisc = 1; 1095 1096 if (promisc) 1097 status = mxge_send_cmd(sc, MXGEFW_ENABLE_PROMISC, 1098 &cmd); 1099 else 1100 status = mxge_send_cmd(sc, MXGEFW_DISABLE_PROMISC, 1101 &cmd); 1102 1103 if (status) { 1104 device_printf(sc->dev, "Failed to set promisc mode\n"); 1105 } 1106 } 1107 1108 static void 1109 mxge_set_multicast_list(mxge_softc_t *sc) 1110 { 1111 mxge_cmd_t cmd; 1112 struct ifmultiaddr *ifma; 1113 struct ifnet *ifp = sc->ifp; 1114 int err; 1115 1116 /* This firmware is known to not support multicast */ 1117 if (!sc->fw_multicast_support) 1118 return; 1119 1120 /* Disable multicast filtering while we play with the lists*/ 1121 err = mxge_send_cmd(sc, MXGEFW_ENABLE_ALLMULTI, &cmd); 1122 if (err != 0) { 1123 device_printf(sc->dev, "Failed MXGEFW_ENABLE_ALLMULTI," 1124 " error status: %d\n", err); 1125 return; 1126 } 1127 1128 if (sc->adopted_rx_filter_bug) 1129 return; 1130 1131 if (ifp->if_flags & IFF_ALLMULTI) 1132 /* request to disable multicast filtering, so quit here */ 1133 return; 1134 1135 /* Flush all the filters */ 1136 1137 err = mxge_send_cmd(sc, MXGEFW_LEAVE_ALL_MULTICAST_GROUPS, &cmd); 1138 if (err != 0) { 1139 device_printf(sc->dev, 1140 "Failed MXGEFW_LEAVE_ALL_MULTICAST_GROUPS" 1141 ", error status: %d\n", err); 1142 return; 1143 } 1144 1145 /* Walk the multicast list, and add each address */ 1146 1147 if_maddr_rlock(ifp); 1148 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1149 if (ifma->ifma_addr->sa_family != AF_LINK) 1150 continue; 1151 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 1152 &cmd.data0, 4); 1153 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr) + 4, 1154 &cmd.data1, 2); 1155 cmd.data0 = htonl(cmd.data0); 1156 cmd.data1 = htonl(cmd.data1); 1157 err = mxge_send_cmd(sc, MXGEFW_JOIN_MULTICAST_GROUP, &cmd); 1158 if (err != 0) { 1159 device_printf(sc->dev, "Failed " 1160 "MXGEFW_JOIN_MULTICAST_GROUP, error status:" 1161 "%d\t", err); 1162 /* abort, leaving multicast filtering off */ 1163 if_maddr_runlock(ifp); 1164 return; 1165 } 1166 } 1167 if_maddr_runlock(ifp); 1168 /* Enable multicast filtering */ 1169 err = mxge_send_cmd(sc, MXGEFW_DISABLE_ALLMULTI, &cmd); 1170 if (err != 0) { 1171 device_printf(sc->dev, "Failed MXGEFW_DISABLE_ALLMULTI" 1172 ", error status: %d\n", err); 1173 } 1174 } 1175 1176 static int 1177 mxge_max_mtu(mxge_softc_t *sc) 1178 { 1179 mxge_cmd_t cmd; 1180 int status; 1181 1182 if (MJUMPAGESIZE - MXGEFW_PAD > MXGEFW_MAX_MTU) 1183 return MXGEFW_MAX_MTU - MXGEFW_PAD; 1184 1185 /* try to set nbufs to see if it we can 1186 use virtually contiguous jumbos */ 1187 cmd.data0 = 0; 1188 status = mxge_send_cmd(sc, MXGEFW_CMD_ALWAYS_USE_N_BIG_BUFFERS, 1189 &cmd); 1190 if (status == 0) 1191 return MXGEFW_MAX_MTU - MXGEFW_PAD; 1192 1193 /* otherwise, we're limited to MJUMPAGESIZE */ 1194 return MJUMPAGESIZE - MXGEFW_PAD; 1195 } 1196 1197 static int 1198 mxge_reset(mxge_softc_t *sc, int interrupts_setup) 1199 { 1200 struct mxge_slice_state *ss; 1201 mxge_rx_done_t *rx_done; 1202 volatile uint32_t *irq_claim; 1203 mxge_cmd_t cmd; 1204 int slice, status; 1205 1206 /* try to send a reset command to the card to see if it 1207 is alive */ 1208 memset(&cmd, 0, sizeof (cmd)); 1209 status = mxge_send_cmd(sc, MXGEFW_CMD_RESET, &cmd); 1210 if (status != 0) { 1211 device_printf(sc->dev, "failed reset\n"); 1212 return ENXIO; 1213 } 1214 1215 mxge_dummy_rdma(sc, 1); 1216 1217 1218 /* set the intrq size */ 1219 cmd.data0 = sc->rx_ring_size; 1220 status = mxge_send_cmd(sc, MXGEFW_CMD_SET_INTRQ_SIZE, &cmd); 1221 1222 /* 1223 * Even though we already know how many slices are supported 1224 * via mxge_slice_probe(), MXGEFW_CMD_GET_MAX_RSS_QUEUES 1225 * has magic side effects, and must be called after a reset. 1226 * It must be called prior to calling any RSS related cmds, 1227 * including assigning an interrupt queue for anything but 1228 * slice 0. It must also be called *after* 1229 * MXGEFW_CMD_SET_INTRQ_SIZE, since the intrq size is used by 1230 * the firmware to compute offsets. 1231 */ 1232 1233 if (sc->num_slices > 1) { 1234 /* ask the maximum number of slices it supports */ 1235 status = mxge_send_cmd(sc, MXGEFW_CMD_GET_MAX_RSS_QUEUES, 1236 &cmd); 1237 if (status != 0) { 1238 device_printf(sc->dev, 1239 "failed to get number of slices\n"); 1240 return status; 1241 } 1242 /* 1243 * MXGEFW_CMD_ENABLE_RSS_QUEUES must be called prior 1244 * to setting up the interrupt queue DMA 1245 */ 1246 cmd.data0 = sc->num_slices; 1247 cmd.data1 = MXGEFW_SLICE_INTR_MODE_ONE_PER_SLICE; 1248 #ifdef IFNET_BUF_RING 1249 cmd.data1 |= MXGEFW_SLICE_ENABLE_MULTIPLE_TX_QUEUES; 1250 #endif 1251 status = mxge_send_cmd(sc, MXGEFW_CMD_ENABLE_RSS_QUEUES, 1252 &cmd); 1253 if (status != 0) { 1254 device_printf(sc->dev, 1255 "failed to set number of slices\n"); 1256 return status; 1257 } 1258 } 1259 1260 1261 if (interrupts_setup) { 1262 /* Now exchange information about interrupts */ 1263 for (slice = 0; slice < sc->num_slices; slice++) { 1264 rx_done = &sc->ss[slice].rx_done; 1265 memset(rx_done->entry, 0, sc->rx_ring_size); 1266 cmd.data0 = MXGE_LOWPART_TO_U32(rx_done->dma.bus_addr); 1267 cmd.data1 = MXGE_HIGHPART_TO_U32(rx_done->dma.bus_addr); 1268 cmd.data2 = slice; 1269 status |= mxge_send_cmd(sc, 1270 MXGEFW_CMD_SET_INTRQ_DMA, 1271 &cmd); 1272 } 1273 } 1274 1275 status |= mxge_send_cmd(sc, 1276 MXGEFW_CMD_GET_INTR_COAL_DELAY_OFFSET, &cmd); 1277 1278 1279 sc->intr_coal_delay_ptr = (volatile uint32_t *)(sc->sram + cmd.data0); 1280 1281 status |= mxge_send_cmd(sc, MXGEFW_CMD_GET_IRQ_ACK_OFFSET, &cmd); 1282 irq_claim = (volatile uint32_t *)(sc->sram + cmd.data0); 1283 1284 1285 status |= mxge_send_cmd(sc, MXGEFW_CMD_GET_IRQ_DEASSERT_OFFSET, 1286 &cmd); 1287 sc->irq_deassert = (volatile uint32_t *)(sc->sram + cmd.data0); 1288 if (status != 0) { 1289 device_printf(sc->dev, "failed set interrupt parameters\n"); 1290 return status; 1291 } 1292 1293 1294 *sc->intr_coal_delay_ptr = htobe32(sc->intr_coal_delay); 1295 1296 1297 /* run a DMA benchmark */ 1298 (void) mxge_dma_test(sc, MXGEFW_DMA_TEST); 1299 1300 for (slice = 0; slice < sc->num_slices; slice++) { 1301 ss = &sc->ss[slice]; 1302 1303 ss->irq_claim = irq_claim + (2 * slice); 1304 /* reset mcp/driver shared state back to 0 */ 1305 ss->rx_done.idx = 0; 1306 ss->rx_done.cnt = 0; 1307 ss->tx.req = 0; 1308 ss->tx.done = 0; 1309 ss->tx.pkt_done = 0; 1310 ss->tx.queue_active = 0; 1311 ss->tx.activate = 0; 1312 ss->tx.deactivate = 0; 1313 ss->tx.wake = 0; 1314 ss->tx.defrag = 0; 1315 ss->tx.stall = 0; 1316 ss->rx_big.cnt = 0; 1317 ss->rx_small.cnt = 0; 1318 ss->lc.lro_bad_csum = 0; 1319 ss->lc.lro_queued = 0; 1320 ss->lc.lro_flushed = 0; 1321 if (ss->fw_stats != NULL) { 1322 bzero(ss->fw_stats, sizeof *ss->fw_stats); 1323 } 1324 } 1325 sc->rdma_tags_available = 15; 1326 status = mxge_update_mac_address(sc); 1327 mxge_change_promisc(sc, sc->ifp->if_flags & IFF_PROMISC); 1328 mxge_change_pause(sc, sc->pause); 1329 mxge_set_multicast_list(sc); 1330 if (sc->throttle) { 1331 cmd.data0 = sc->throttle; 1332 if (mxge_send_cmd(sc, MXGEFW_CMD_SET_THROTTLE_FACTOR, 1333 &cmd)) { 1334 device_printf(sc->dev, 1335 "can't enable throttle\n"); 1336 } 1337 } 1338 return status; 1339 } 1340 1341 static int 1342 mxge_change_throttle(SYSCTL_HANDLER_ARGS) 1343 { 1344 mxge_cmd_t cmd; 1345 mxge_softc_t *sc; 1346 int err; 1347 unsigned int throttle; 1348 1349 sc = arg1; 1350 throttle = sc->throttle; 1351 err = sysctl_handle_int(oidp, &throttle, arg2, req); 1352 if (err != 0) { 1353 return err; 1354 } 1355 1356 if (throttle == sc->throttle) 1357 return 0; 1358 1359 if (throttle < MXGE_MIN_THROTTLE || throttle > MXGE_MAX_THROTTLE) 1360 return EINVAL; 1361 1362 mtx_lock(&sc->driver_mtx); 1363 cmd.data0 = throttle; 1364 err = mxge_send_cmd(sc, MXGEFW_CMD_SET_THROTTLE_FACTOR, &cmd); 1365 if (err == 0) 1366 sc->throttle = throttle; 1367 mtx_unlock(&sc->driver_mtx); 1368 return err; 1369 } 1370 1371 static int 1372 mxge_change_intr_coal(SYSCTL_HANDLER_ARGS) 1373 { 1374 mxge_softc_t *sc; 1375 unsigned int intr_coal_delay; 1376 int err; 1377 1378 sc = arg1; 1379 intr_coal_delay = sc->intr_coal_delay; 1380 err = sysctl_handle_int(oidp, &intr_coal_delay, arg2, req); 1381 if (err != 0) { 1382 return err; 1383 } 1384 if (intr_coal_delay == sc->intr_coal_delay) 1385 return 0; 1386 1387 if (intr_coal_delay == 0 || intr_coal_delay > 1000*1000) 1388 return EINVAL; 1389 1390 mtx_lock(&sc->driver_mtx); 1391 *sc->intr_coal_delay_ptr = htobe32(intr_coal_delay); 1392 sc->intr_coal_delay = intr_coal_delay; 1393 1394 mtx_unlock(&sc->driver_mtx); 1395 return err; 1396 } 1397 1398 static int 1399 mxge_change_flow_control(SYSCTL_HANDLER_ARGS) 1400 { 1401 mxge_softc_t *sc; 1402 unsigned int enabled; 1403 int err; 1404 1405 sc = arg1; 1406 enabled = sc->pause; 1407 err = sysctl_handle_int(oidp, &enabled, arg2, req); 1408 if (err != 0) { 1409 return err; 1410 } 1411 if (enabled == sc->pause) 1412 return 0; 1413 1414 mtx_lock(&sc->driver_mtx); 1415 err = mxge_change_pause(sc, enabled); 1416 mtx_unlock(&sc->driver_mtx); 1417 return err; 1418 } 1419 1420 static int 1421 mxge_handle_be32(SYSCTL_HANDLER_ARGS) 1422 { 1423 int err; 1424 1425 if (arg1 == NULL) 1426 return EFAULT; 1427 arg2 = be32toh(*(int *)arg1); 1428 arg1 = NULL; 1429 err = sysctl_handle_int(oidp, arg1, arg2, req); 1430 1431 return err; 1432 } 1433 1434 static void 1435 mxge_rem_sysctls(mxge_softc_t *sc) 1436 { 1437 struct mxge_slice_state *ss; 1438 int slice; 1439 1440 if (sc->slice_sysctl_tree == NULL) 1441 return; 1442 1443 for (slice = 0; slice < sc->num_slices; slice++) { 1444 ss = &sc->ss[slice]; 1445 if (ss == NULL || ss->sysctl_tree == NULL) 1446 continue; 1447 sysctl_ctx_free(&ss->sysctl_ctx); 1448 ss->sysctl_tree = NULL; 1449 } 1450 sysctl_ctx_free(&sc->slice_sysctl_ctx); 1451 sc->slice_sysctl_tree = NULL; 1452 } 1453 1454 static void 1455 mxge_add_sysctls(mxge_softc_t *sc) 1456 { 1457 struct sysctl_ctx_list *ctx; 1458 struct sysctl_oid_list *children; 1459 mcp_irq_data_t *fw; 1460 struct mxge_slice_state *ss; 1461 int slice; 1462 char slice_num[8]; 1463 1464 ctx = device_get_sysctl_ctx(sc->dev); 1465 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 1466 fw = sc->ss[0].fw_stats; 1467 1468 /* random information */ 1469 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, 1470 "firmware_version", 1471 CTLFLAG_RD, sc->fw_version, 1472 0, "firmware version"); 1473 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, 1474 "serial_number", 1475 CTLFLAG_RD, sc->serial_number_string, 1476 0, "serial number"); 1477 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, 1478 "product_code", 1479 CTLFLAG_RD, sc->product_code_string, 1480 0, "product_code"); 1481 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1482 "pcie_link_width", 1483 CTLFLAG_RD, &sc->link_width, 1484 0, "tx_boundary"); 1485 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1486 "tx_boundary", 1487 CTLFLAG_RD, &sc->tx_boundary, 1488 0, "tx_boundary"); 1489 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1490 "write_combine", 1491 CTLFLAG_RD, &sc->wc, 1492 0, "write combining PIO?"); 1493 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1494 "read_dma_MBs", 1495 CTLFLAG_RD, &sc->read_dma, 1496 0, "DMA Read speed in MB/s"); 1497 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1498 "write_dma_MBs", 1499 CTLFLAG_RD, &sc->write_dma, 1500 0, "DMA Write speed in MB/s"); 1501 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1502 "read_write_dma_MBs", 1503 CTLFLAG_RD, &sc->read_write_dma, 1504 0, "DMA concurrent Read/Write speed in MB/s"); 1505 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1506 "watchdog_resets", 1507 CTLFLAG_RD, &sc->watchdog_resets, 1508 0, "Number of times NIC was reset"); 1509 1510 1511 /* performance related tunables */ 1512 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1513 "intr_coal_delay", 1514 CTLTYPE_INT|CTLFLAG_RW, sc, 1515 0, mxge_change_intr_coal, 1516 "I", "interrupt coalescing delay in usecs"); 1517 1518 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1519 "throttle", 1520 CTLTYPE_INT|CTLFLAG_RW, sc, 1521 0, mxge_change_throttle, 1522 "I", "transmit throttling"); 1523 1524 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1525 "flow_control_enabled", 1526 CTLTYPE_INT|CTLFLAG_RW, sc, 1527 0, mxge_change_flow_control, 1528 "I", "interrupt coalescing delay in usecs"); 1529 1530 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1531 "deassert_wait", 1532 CTLFLAG_RW, &mxge_deassert_wait, 1533 0, "Wait for IRQ line to go low in ihandler"); 1534 1535 /* stats block from firmware is in network byte order. 1536 Need to swap it */ 1537 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1538 "link_up", 1539 CTLTYPE_INT|CTLFLAG_RD, &fw->link_up, 1540 0, mxge_handle_be32, 1541 "I", "link up"); 1542 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1543 "rdma_tags_available", 1544 CTLTYPE_INT|CTLFLAG_RD, &fw->rdma_tags_available, 1545 0, mxge_handle_be32, 1546 "I", "rdma_tags_available"); 1547 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1548 "dropped_bad_crc32", 1549 CTLTYPE_INT|CTLFLAG_RD, 1550 &fw->dropped_bad_crc32, 1551 0, mxge_handle_be32, 1552 "I", "dropped_bad_crc32"); 1553 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1554 "dropped_bad_phy", 1555 CTLTYPE_INT|CTLFLAG_RD, 1556 &fw->dropped_bad_phy, 1557 0, mxge_handle_be32, 1558 "I", "dropped_bad_phy"); 1559 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1560 "dropped_link_error_or_filtered", 1561 CTLTYPE_INT|CTLFLAG_RD, 1562 &fw->dropped_link_error_or_filtered, 1563 0, mxge_handle_be32, 1564 "I", "dropped_link_error_or_filtered"); 1565 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1566 "dropped_link_overflow", 1567 CTLTYPE_INT|CTLFLAG_RD, &fw->dropped_link_overflow, 1568 0, mxge_handle_be32, 1569 "I", "dropped_link_overflow"); 1570 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1571 "dropped_multicast_filtered", 1572 CTLTYPE_INT|CTLFLAG_RD, 1573 &fw->dropped_multicast_filtered, 1574 0, mxge_handle_be32, 1575 "I", "dropped_multicast_filtered"); 1576 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1577 "dropped_no_big_buffer", 1578 CTLTYPE_INT|CTLFLAG_RD, &fw->dropped_no_big_buffer, 1579 0, mxge_handle_be32, 1580 "I", "dropped_no_big_buffer"); 1581 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1582 "dropped_no_small_buffer", 1583 CTLTYPE_INT|CTLFLAG_RD, 1584 &fw->dropped_no_small_buffer, 1585 0, mxge_handle_be32, 1586 "I", "dropped_no_small_buffer"); 1587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1588 "dropped_overrun", 1589 CTLTYPE_INT|CTLFLAG_RD, &fw->dropped_overrun, 1590 0, mxge_handle_be32, 1591 "I", "dropped_overrun"); 1592 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1593 "dropped_pause", 1594 CTLTYPE_INT|CTLFLAG_RD, 1595 &fw->dropped_pause, 1596 0, mxge_handle_be32, 1597 "I", "dropped_pause"); 1598 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1599 "dropped_runt", 1600 CTLTYPE_INT|CTLFLAG_RD, &fw->dropped_runt, 1601 0, mxge_handle_be32, 1602 "I", "dropped_runt"); 1603 1604 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 1605 "dropped_unicast_filtered", 1606 CTLTYPE_INT|CTLFLAG_RD, &fw->dropped_unicast_filtered, 1607 0, mxge_handle_be32, 1608 "I", "dropped_unicast_filtered"); 1609 1610 /* verbose printing? */ 1611 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1612 "verbose", 1613 CTLFLAG_RW, &mxge_verbose, 1614 0, "verbose printing"); 1615 1616 /* add counters exported for debugging from all slices */ 1617 sysctl_ctx_init(&sc->slice_sysctl_ctx); 1618 sc->slice_sysctl_tree = 1619 SYSCTL_ADD_NODE(&sc->slice_sysctl_ctx, children, OID_AUTO, 1620 "slice", CTLFLAG_RD, 0, ""); 1621 1622 for (slice = 0; slice < sc->num_slices; slice++) { 1623 ss = &sc->ss[slice]; 1624 sysctl_ctx_init(&ss->sysctl_ctx); 1625 ctx = &ss->sysctl_ctx; 1626 children = SYSCTL_CHILDREN(sc->slice_sysctl_tree); 1627 sprintf(slice_num, "%d", slice); 1628 ss->sysctl_tree = 1629 SYSCTL_ADD_NODE(ctx, children, OID_AUTO, slice_num, 1630 CTLFLAG_RD, 0, ""); 1631 children = SYSCTL_CHILDREN(ss->sysctl_tree); 1632 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1633 "rx_small_cnt", 1634 CTLFLAG_RD, &ss->rx_small.cnt, 1635 0, "rx_small_cnt"); 1636 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1637 "rx_big_cnt", 1638 CTLFLAG_RD, &ss->rx_big.cnt, 1639 0, "rx_small_cnt"); 1640 SYSCTL_ADD_U64(ctx, children, OID_AUTO, 1641 "lro_flushed", CTLFLAG_RD, &ss->lc.lro_flushed, 1642 0, "number of lro merge queues flushed"); 1643 1644 SYSCTL_ADD_U64(ctx, children, OID_AUTO, 1645 "lro_bad_csum", CTLFLAG_RD, &ss->lc.lro_bad_csum, 1646 0, "number of bad csums preventing LRO"); 1647 1648 SYSCTL_ADD_U64(ctx, children, OID_AUTO, 1649 "lro_queued", CTLFLAG_RD, &ss->lc.lro_queued, 1650 0, "number of frames appended to lro merge" 1651 "queues"); 1652 1653 #ifndef IFNET_BUF_RING 1654 /* only transmit from slice 0 for now */ 1655 if (slice > 0) 1656 continue; 1657 #endif 1658 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1659 "tx_req", 1660 CTLFLAG_RD, &ss->tx.req, 1661 0, "tx_req"); 1662 1663 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1664 "tx_done", 1665 CTLFLAG_RD, &ss->tx.done, 1666 0, "tx_done"); 1667 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1668 "tx_pkt_done", 1669 CTLFLAG_RD, &ss->tx.pkt_done, 1670 0, "tx_done"); 1671 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1672 "tx_stall", 1673 CTLFLAG_RD, &ss->tx.stall, 1674 0, "tx_stall"); 1675 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1676 "tx_wake", 1677 CTLFLAG_RD, &ss->tx.wake, 1678 0, "tx_wake"); 1679 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1680 "tx_defrag", 1681 CTLFLAG_RD, &ss->tx.defrag, 1682 0, "tx_defrag"); 1683 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1684 "tx_queue_active", 1685 CTLFLAG_RD, &ss->tx.queue_active, 1686 0, "tx_queue_active"); 1687 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1688 "tx_activate", 1689 CTLFLAG_RD, &ss->tx.activate, 1690 0, "tx_activate"); 1691 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 1692 "tx_deactivate", 1693 CTLFLAG_RD, &ss->tx.deactivate, 1694 0, "tx_deactivate"); 1695 } 1696 } 1697 1698 /* copy an array of mcp_kreq_ether_send_t's to the mcp. Copy 1699 backwards one at a time and handle ring wraps */ 1700 1701 static inline void 1702 mxge_submit_req_backwards(mxge_tx_ring_t *tx, 1703 mcp_kreq_ether_send_t *src, int cnt) 1704 { 1705 int idx, starting_slot; 1706 starting_slot = tx->req; 1707 while (cnt > 1) { 1708 cnt--; 1709 idx = (starting_slot + cnt) & tx->mask; 1710 mxge_pio_copy(&tx->lanai[idx], 1711 &src[cnt], sizeof(*src)); 1712 wmb(); 1713 } 1714 } 1715 1716 /* 1717 * copy an array of mcp_kreq_ether_send_t's to the mcp. Copy 1718 * at most 32 bytes at a time, so as to avoid involving the software 1719 * pio handler in the nic. We re-write the first segment's flags 1720 * to mark them valid only after writing the entire chain 1721 */ 1722 1723 static inline void 1724 mxge_submit_req(mxge_tx_ring_t *tx, mcp_kreq_ether_send_t *src, 1725 int cnt) 1726 { 1727 int idx, i; 1728 uint32_t *src_ints; 1729 volatile uint32_t *dst_ints; 1730 mcp_kreq_ether_send_t *srcp; 1731 volatile mcp_kreq_ether_send_t *dstp, *dst; 1732 uint8_t last_flags; 1733 1734 idx = tx->req & tx->mask; 1735 1736 last_flags = src->flags; 1737 src->flags = 0; 1738 wmb(); 1739 dst = dstp = &tx->lanai[idx]; 1740 srcp = src; 1741 1742 if ((idx + cnt) < tx->mask) { 1743 for (i = 0; i < (cnt - 1); i += 2) { 1744 mxge_pio_copy(dstp, srcp, 2 * sizeof(*src)); 1745 wmb(); /* force write every 32 bytes */ 1746 srcp += 2; 1747 dstp += 2; 1748 } 1749 } else { 1750 /* submit all but the first request, and ensure 1751 that it is submitted below */ 1752 mxge_submit_req_backwards(tx, src, cnt); 1753 i = 0; 1754 } 1755 if (i < cnt) { 1756 /* submit the first request */ 1757 mxge_pio_copy(dstp, srcp, sizeof(*src)); 1758 wmb(); /* barrier before setting valid flag */ 1759 } 1760 1761 /* re-write the last 32-bits with the valid flags */ 1762 src->flags = last_flags; 1763 src_ints = (uint32_t *)src; 1764 src_ints+=3; 1765 dst_ints = (volatile uint32_t *)dst; 1766 dst_ints+=3; 1767 *dst_ints = *src_ints; 1768 tx->req += cnt; 1769 wmb(); 1770 } 1771 1772 static int 1773 mxge_parse_tx(struct mxge_slice_state *ss, struct mbuf *m, 1774 struct mxge_pkt_info *pi) 1775 { 1776 struct ether_vlan_header *eh; 1777 uint16_t etype; 1778 int tso = m->m_pkthdr.csum_flags & (CSUM_TSO); 1779 #if IFCAP_TSO6 && defined(INET6) 1780 int nxt; 1781 #endif 1782 1783 eh = mtod(m, struct ether_vlan_header *); 1784 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 1785 etype = ntohs(eh->evl_proto); 1786 pi->ip_off = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 1787 } else { 1788 etype = ntohs(eh->evl_encap_proto); 1789 pi->ip_off = ETHER_HDR_LEN; 1790 } 1791 1792 switch (etype) { 1793 case ETHERTYPE_IP: 1794 /* 1795 * ensure ip header is in first mbuf, copy it to a 1796 * scratch buffer if not 1797 */ 1798 pi->ip = (struct ip *)(m->m_data + pi->ip_off); 1799 pi->ip6 = NULL; 1800 if (__predict_false(m->m_len < pi->ip_off + sizeof(*pi->ip))) { 1801 m_copydata(m, 0, pi->ip_off + sizeof(*pi->ip), 1802 ss->scratch); 1803 pi->ip = (struct ip *)(ss->scratch + pi->ip_off); 1804 } 1805 pi->ip_hlen = pi->ip->ip_hl << 2; 1806 if (!tso) 1807 return 0; 1808 1809 if (__predict_false(m->m_len < pi->ip_off + pi->ip_hlen + 1810 sizeof(struct tcphdr))) { 1811 m_copydata(m, 0, pi->ip_off + pi->ip_hlen + 1812 sizeof(struct tcphdr), ss->scratch); 1813 pi->ip = (struct ip *)(ss->scratch + pi->ip_off); 1814 } 1815 pi->tcp = (struct tcphdr *)((char *)pi->ip + pi->ip_hlen); 1816 break; 1817 #if IFCAP_TSO6 && defined(INET6) 1818 case ETHERTYPE_IPV6: 1819 pi->ip6 = (struct ip6_hdr *)(m->m_data + pi->ip_off); 1820 if (__predict_false(m->m_len < pi->ip_off + sizeof(*pi->ip6))) { 1821 m_copydata(m, 0, pi->ip_off + sizeof(*pi->ip6), 1822 ss->scratch); 1823 pi->ip6 = (struct ip6_hdr *)(ss->scratch + pi->ip_off); 1824 } 1825 nxt = 0; 1826 pi->ip_hlen = ip6_lasthdr(m, pi->ip_off, IPPROTO_IPV6, &nxt); 1827 pi->ip_hlen -= pi->ip_off; 1828 if (nxt != IPPROTO_TCP && nxt != IPPROTO_UDP) 1829 return EINVAL; 1830 1831 if (!tso) 1832 return 0; 1833 1834 if (pi->ip_off + pi->ip_hlen > ss->sc->max_tso6_hlen) 1835 return EINVAL; 1836 1837 if (__predict_false(m->m_len < pi->ip_off + pi->ip_hlen + 1838 sizeof(struct tcphdr))) { 1839 m_copydata(m, 0, pi->ip_off + pi->ip_hlen + 1840 sizeof(struct tcphdr), ss->scratch); 1841 pi->ip6 = (struct ip6_hdr *)(ss->scratch + pi->ip_off); 1842 } 1843 pi->tcp = (struct tcphdr *)((char *)pi->ip6 + pi->ip_hlen); 1844 break; 1845 #endif 1846 default: 1847 return EINVAL; 1848 } 1849 return 0; 1850 } 1851 1852 #if IFCAP_TSO4 1853 1854 static void 1855 mxge_encap_tso(struct mxge_slice_state *ss, struct mbuf *m, 1856 int busdma_seg_cnt, struct mxge_pkt_info *pi) 1857 { 1858 mxge_tx_ring_t *tx; 1859 mcp_kreq_ether_send_t *req; 1860 bus_dma_segment_t *seg; 1861 uint32_t low, high_swapped; 1862 int len, seglen, cum_len, cum_len_next; 1863 int next_is_first, chop, cnt, rdma_count, small; 1864 uint16_t pseudo_hdr_offset, cksum_offset, mss, sum; 1865 uint8_t flags, flags_next; 1866 static int once; 1867 1868 mss = m->m_pkthdr.tso_segsz; 1869 1870 /* negative cum_len signifies to the 1871 * send loop that we are still in the 1872 * header portion of the TSO packet. 1873 */ 1874 1875 cksum_offset = pi->ip_off + pi->ip_hlen; 1876 cum_len = -(cksum_offset + (pi->tcp->th_off << 2)); 1877 1878 /* TSO implies checksum offload on this hardware */ 1879 if (__predict_false((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_TCP_IPV6)) == 0)) { 1880 /* 1881 * If packet has full TCP csum, replace it with pseudo hdr 1882 * sum that the NIC expects, otherwise the NIC will emit 1883 * packets with bad TCP checksums. 1884 */ 1885 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 1886 if (pi->ip6) { 1887 #if (CSUM_TCP_IPV6 != 0) && defined(INET6) 1888 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6; 1889 sum = in6_cksum_pseudo(pi->ip6, 1890 m->m_pkthdr.len - cksum_offset, 1891 IPPROTO_TCP, 0); 1892 #endif 1893 } else { 1894 #ifdef INET 1895 m->m_pkthdr.csum_flags |= CSUM_TCP; 1896 sum = in_pseudo(pi->ip->ip_src.s_addr, 1897 pi->ip->ip_dst.s_addr, 1898 htons(IPPROTO_TCP + (m->m_pkthdr.len - 1899 cksum_offset))); 1900 #endif 1901 } 1902 m_copyback(m, offsetof(struct tcphdr, th_sum) + 1903 cksum_offset, sizeof(sum), (caddr_t)&sum); 1904 } 1905 flags = MXGEFW_FLAGS_TSO_HDR | MXGEFW_FLAGS_FIRST; 1906 1907 1908 /* for TSO, pseudo_hdr_offset holds mss. 1909 * The firmware figures out where to put 1910 * the checksum by parsing the header. */ 1911 pseudo_hdr_offset = htobe16(mss); 1912 1913 if (pi->ip6) { 1914 /* 1915 * for IPv6 TSO, the "checksum offset" is re-purposed 1916 * to store the TCP header len 1917 */ 1918 cksum_offset = (pi->tcp->th_off << 2); 1919 } 1920 1921 tx = &ss->tx; 1922 req = tx->req_list; 1923 seg = tx->seg_list; 1924 cnt = 0; 1925 rdma_count = 0; 1926 /* "rdma_count" is the number of RDMAs belonging to the 1927 * current packet BEFORE the current send request. For 1928 * non-TSO packets, this is equal to "count". 1929 * For TSO packets, rdma_count needs to be reset 1930 * to 0 after a segment cut. 1931 * 1932 * The rdma_count field of the send request is 1933 * the number of RDMAs of the packet starting at 1934 * that request. For TSO send requests with one ore more cuts 1935 * in the middle, this is the number of RDMAs starting 1936 * after the last cut in the request. All previous 1937 * segments before the last cut implicitly have 1 RDMA. 1938 * 1939 * Since the number of RDMAs is not known beforehand, 1940 * it must be filled-in retroactively - after each 1941 * segmentation cut or at the end of the entire packet. 1942 */ 1943 1944 while (busdma_seg_cnt) { 1945 /* Break the busdma segment up into pieces*/ 1946 low = MXGE_LOWPART_TO_U32(seg->ds_addr); 1947 high_swapped = htobe32(MXGE_HIGHPART_TO_U32(seg->ds_addr)); 1948 len = seg->ds_len; 1949 1950 while (len) { 1951 flags_next = flags & ~MXGEFW_FLAGS_FIRST; 1952 seglen = len; 1953 cum_len_next = cum_len + seglen; 1954 (req-rdma_count)->rdma_count = rdma_count + 1; 1955 if (__predict_true(cum_len >= 0)) { 1956 /* payload */ 1957 chop = (cum_len_next > mss); 1958 cum_len_next = cum_len_next % mss; 1959 next_is_first = (cum_len_next == 0); 1960 flags |= chop * MXGEFW_FLAGS_TSO_CHOP; 1961 flags_next |= next_is_first * 1962 MXGEFW_FLAGS_FIRST; 1963 rdma_count |= -(chop | next_is_first); 1964 rdma_count += chop & !next_is_first; 1965 } else if (cum_len_next >= 0) { 1966 /* header ends */ 1967 rdma_count = -1; 1968 cum_len_next = 0; 1969 seglen = -cum_len; 1970 small = (mss <= MXGEFW_SEND_SMALL_SIZE); 1971 flags_next = MXGEFW_FLAGS_TSO_PLD | 1972 MXGEFW_FLAGS_FIRST | 1973 (small * MXGEFW_FLAGS_SMALL); 1974 } 1975 1976 req->addr_high = high_swapped; 1977 req->addr_low = htobe32(low); 1978 req->pseudo_hdr_offset = pseudo_hdr_offset; 1979 req->pad = 0; 1980 req->rdma_count = 1; 1981 req->length = htobe16(seglen); 1982 req->cksum_offset = cksum_offset; 1983 req->flags = flags | ((cum_len & 1) * 1984 MXGEFW_FLAGS_ALIGN_ODD); 1985 low += seglen; 1986 len -= seglen; 1987 cum_len = cum_len_next; 1988 flags = flags_next; 1989 req++; 1990 cnt++; 1991 rdma_count++; 1992 if (cksum_offset != 0 && !pi->ip6) { 1993 if (__predict_false(cksum_offset > seglen)) 1994 cksum_offset -= seglen; 1995 else 1996 cksum_offset = 0; 1997 } 1998 if (__predict_false(cnt > tx->max_desc)) 1999 goto drop; 2000 } 2001 busdma_seg_cnt--; 2002 seg++; 2003 } 2004 (req-rdma_count)->rdma_count = rdma_count; 2005 2006 do { 2007 req--; 2008 req->flags |= MXGEFW_FLAGS_TSO_LAST; 2009 } while (!(req->flags & (MXGEFW_FLAGS_TSO_CHOP | MXGEFW_FLAGS_FIRST))); 2010 2011 tx->info[((cnt - 1) + tx->req) & tx->mask].flag = 1; 2012 mxge_submit_req(tx, tx->req_list, cnt); 2013 #ifdef IFNET_BUF_RING 2014 if ((ss->sc->num_slices > 1) && tx->queue_active == 0) { 2015 /* tell the NIC to start polling this slice */ 2016 *tx->send_go = 1; 2017 tx->queue_active = 1; 2018 tx->activate++; 2019 wmb(); 2020 } 2021 #endif 2022 return; 2023 2024 drop: 2025 bus_dmamap_unload(tx->dmat, tx->info[tx->req & tx->mask].map); 2026 m_freem(m); 2027 ss->oerrors++; 2028 if (!once) { 2029 printf("tx->max_desc exceeded via TSO!\n"); 2030 printf("mss = %d, %ld, %d!\n", mss, 2031 (long)seg - (long)tx->seg_list, tx->max_desc); 2032 once = 1; 2033 } 2034 return; 2035 2036 } 2037 2038 #endif /* IFCAP_TSO4 */ 2039 2040 #ifdef MXGE_NEW_VLAN_API 2041 /* 2042 * We reproduce the software vlan tag insertion from 2043 * net/if_vlan.c:vlan_start() here so that we can advertise "hardware" 2044 * vlan tag insertion. We need to advertise this in order to have the 2045 * vlan interface respect our csum offload flags. 2046 */ 2047 static struct mbuf * 2048 mxge_vlan_tag_insert(struct mbuf *m) 2049 { 2050 struct ether_vlan_header *evl; 2051 2052 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 2053 if (__predict_false(m == NULL)) 2054 return NULL; 2055 if (m->m_len < sizeof(*evl)) { 2056 m = m_pullup(m, sizeof(*evl)); 2057 if (__predict_false(m == NULL)) 2058 return NULL; 2059 } 2060 /* 2061 * Transform the Ethernet header into an Ethernet header 2062 * with 802.1Q encapsulation. 2063 */ 2064 evl = mtod(m, struct ether_vlan_header *); 2065 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 2066 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 2067 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 2068 evl->evl_tag = htons(m->m_pkthdr.ether_vtag); 2069 m->m_flags &= ~M_VLANTAG; 2070 return m; 2071 } 2072 #endif /* MXGE_NEW_VLAN_API */ 2073 2074 static void 2075 mxge_encap(struct mxge_slice_state *ss, struct mbuf *m) 2076 { 2077 struct mxge_pkt_info pi = {0,0,0,0}; 2078 mxge_softc_t *sc; 2079 mcp_kreq_ether_send_t *req; 2080 bus_dma_segment_t *seg; 2081 struct mbuf *m_tmp; 2082 struct ifnet *ifp; 2083 mxge_tx_ring_t *tx; 2084 int cnt, cum_len, err, i, idx, odd_flag; 2085 uint16_t pseudo_hdr_offset; 2086 uint8_t flags, cksum_offset; 2087 2088 2089 sc = ss->sc; 2090 ifp = sc->ifp; 2091 tx = &ss->tx; 2092 2093 #ifdef MXGE_NEW_VLAN_API 2094 if (m->m_flags & M_VLANTAG) { 2095 m = mxge_vlan_tag_insert(m); 2096 if (__predict_false(m == NULL)) 2097 goto drop_without_m; 2098 } 2099 #endif 2100 if (m->m_pkthdr.csum_flags & 2101 (CSUM_TSO | CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) { 2102 if (mxge_parse_tx(ss, m, &pi)) 2103 goto drop; 2104 } 2105 2106 /* (try to) map the frame for DMA */ 2107 idx = tx->req & tx->mask; 2108 err = bus_dmamap_load_mbuf_sg(tx->dmat, tx->info[idx].map, 2109 m, tx->seg_list, &cnt, 2110 BUS_DMA_NOWAIT); 2111 if (__predict_false(err == EFBIG)) { 2112 /* Too many segments in the chain. Try 2113 to defrag */ 2114 m_tmp = m_defrag(m, M_NOWAIT); 2115 if (m_tmp == NULL) { 2116 goto drop; 2117 } 2118 ss->tx.defrag++; 2119 m = m_tmp; 2120 err = bus_dmamap_load_mbuf_sg(tx->dmat, 2121 tx->info[idx].map, 2122 m, tx->seg_list, &cnt, 2123 BUS_DMA_NOWAIT); 2124 } 2125 if (__predict_false(err != 0)) { 2126 device_printf(sc->dev, "bus_dmamap_load_mbuf_sg returned %d" 2127 " packet len = %d\n", err, m->m_pkthdr.len); 2128 goto drop; 2129 } 2130 bus_dmamap_sync(tx->dmat, tx->info[idx].map, 2131 BUS_DMASYNC_PREWRITE); 2132 tx->info[idx].m = m; 2133 2134 #if IFCAP_TSO4 2135 /* TSO is different enough, we handle it in another routine */ 2136 if (m->m_pkthdr.csum_flags & (CSUM_TSO)) { 2137 mxge_encap_tso(ss, m, cnt, &pi); 2138 return; 2139 } 2140 #endif 2141 2142 req = tx->req_list; 2143 cksum_offset = 0; 2144 pseudo_hdr_offset = 0; 2145 flags = MXGEFW_FLAGS_NO_TSO; 2146 2147 /* checksum offloading? */ 2148 if (m->m_pkthdr.csum_flags & 2149 (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) { 2150 /* ensure ip header is in first mbuf, copy 2151 it to a scratch buffer if not */ 2152 cksum_offset = pi.ip_off + pi.ip_hlen; 2153 pseudo_hdr_offset = cksum_offset + m->m_pkthdr.csum_data; 2154 pseudo_hdr_offset = htobe16(pseudo_hdr_offset); 2155 req->cksum_offset = cksum_offset; 2156 flags |= MXGEFW_FLAGS_CKSUM; 2157 odd_flag = MXGEFW_FLAGS_ALIGN_ODD; 2158 } else { 2159 odd_flag = 0; 2160 } 2161 if (m->m_pkthdr.len < MXGEFW_SEND_SMALL_SIZE) 2162 flags |= MXGEFW_FLAGS_SMALL; 2163 2164 /* convert segments into a request list */ 2165 cum_len = 0; 2166 seg = tx->seg_list; 2167 req->flags = MXGEFW_FLAGS_FIRST; 2168 for (i = 0; i < cnt; i++) { 2169 req->addr_low = 2170 htobe32(MXGE_LOWPART_TO_U32(seg->ds_addr)); 2171 req->addr_high = 2172 htobe32(MXGE_HIGHPART_TO_U32(seg->ds_addr)); 2173 req->length = htobe16(seg->ds_len); 2174 req->cksum_offset = cksum_offset; 2175 if (cksum_offset > seg->ds_len) 2176 cksum_offset -= seg->ds_len; 2177 else 2178 cksum_offset = 0; 2179 req->pseudo_hdr_offset = pseudo_hdr_offset; 2180 req->pad = 0; /* complete solid 16-byte block */ 2181 req->rdma_count = 1; 2182 req->flags |= flags | ((cum_len & 1) * odd_flag); 2183 cum_len += seg->ds_len; 2184 seg++; 2185 req++; 2186 req->flags = 0; 2187 } 2188 req--; 2189 /* pad runts to 60 bytes */ 2190 if (cum_len < 60) { 2191 req++; 2192 req->addr_low = 2193 htobe32(MXGE_LOWPART_TO_U32(sc->zeropad_dma.bus_addr)); 2194 req->addr_high = 2195 htobe32(MXGE_HIGHPART_TO_U32(sc->zeropad_dma.bus_addr)); 2196 req->length = htobe16(60 - cum_len); 2197 req->cksum_offset = 0; 2198 req->pseudo_hdr_offset = pseudo_hdr_offset; 2199 req->pad = 0; /* complete solid 16-byte block */ 2200 req->rdma_count = 1; 2201 req->flags |= flags | ((cum_len & 1) * odd_flag); 2202 cnt++; 2203 } 2204 2205 tx->req_list[0].rdma_count = cnt; 2206 #if 0 2207 /* print what the firmware will see */ 2208 for (i = 0; i < cnt; i++) { 2209 printf("%d: addr: 0x%x 0x%x len:%d pso%d," 2210 "cso:%d, flags:0x%x, rdma:%d\n", 2211 i, (int)ntohl(tx->req_list[i].addr_high), 2212 (int)ntohl(tx->req_list[i].addr_low), 2213 (int)ntohs(tx->req_list[i].length), 2214 (int)ntohs(tx->req_list[i].pseudo_hdr_offset), 2215 tx->req_list[i].cksum_offset, tx->req_list[i].flags, 2216 tx->req_list[i].rdma_count); 2217 } 2218 printf("--------------\n"); 2219 #endif 2220 tx->info[((cnt - 1) + tx->req) & tx->mask].flag = 1; 2221 mxge_submit_req(tx, tx->req_list, cnt); 2222 #ifdef IFNET_BUF_RING 2223 if ((ss->sc->num_slices > 1) && tx->queue_active == 0) { 2224 /* tell the NIC to start polling this slice */ 2225 *tx->send_go = 1; 2226 tx->queue_active = 1; 2227 tx->activate++; 2228 wmb(); 2229 } 2230 #endif 2231 return; 2232 2233 drop: 2234 m_freem(m); 2235 drop_without_m: 2236 ss->oerrors++; 2237 return; 2238 } 2239 2240 #ifdef IFNET_BUF_RING 2241 static void 2242 mxge_qflush(struct ifnet *ifp) 2243 { 2244 mxge_softc_t *sc = ifp->if_softc; 2245 mxge_tx_ring_t *tx; 2246 struct mbuf *m; 2247 int slice; 2248 2249 for (slice = 0; slice < sc->num_slices; slice++) { 2250 tx = &sc->ss[slice].tx; 2251 mtx_lock(&tx->mtx); 2252 while ((m = buf_ring_dequeue_sc(tx->br)) != NULL) 2253 m_freem(m); 2254 mtx_unlock(&tx->mtx); 2255 } 2256 if_qflush(ifp); 2257 } 2258 2259 static inline void 2260 mxge_start_locked(struct mxge_slice_state *ss) 2261 { 2262 mxge_softc_t *sc; 2263 struct mbuf *m; 2264 struct ifnet *ifp; 2265 mxge_tx_ring_t *tx; 2266 2267 sc = ss->sc; 2268 ifp = sc->ifp; 2269 tx = &ss->tx; 2270 2271 while ((tx->mask - (tx->req - tx->done)) > tx->max_desc) { 2272 m = drbr_dequeue(ifp, tx->br); 2273 if (m == NULL) { 2274 return; 2275 } 2276 /* let BPF see it */ 2277 BPF_MTAP(ifp, m); 2278 2279 /* give it to the nic */ 2280 mxge_encap(ss, m); 2281 } 2282 /* ran out of transmit slots */ 2283 if (((ss->if_drv_flags & IFF_DRV_OACTIVE) == 0) 2284 && (!drbr_empty(ifp, tx->br))) { 2285 ss->if_drv_flags |= IFF_DRV_OACTIVE; 2286 tx->stall++; 2287 } 2288 } 2289 2290 static int 2291 mxge_transmit_locked(struct mxge_slice_state *ss, struct mbuf *m) 2292 { 2293 mxge_softc_t *sc; 2294 struct ifnet *ifp; 2295 mxge_tx_ring_t *tx; 2296 int err; 2297 2298 sc = ss->sc; 2299 ifp = sc->ifp; 2300 tx = &ss->tx; 2301 2302 if ((ss->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != 2303 IFF_DRV_RUNNING) { 2304 err = drbr_enqueue(ifp, tx->br, m); 2305 return (err); 2306 } 2307 2308 if (!drbr_needs_enqueue(ifp, tx->br) && 2309 ((tx->mask - (tx->req - tx->done)) > tx->max_desc)) { 2310 /* let BPF see it */ 2311 BPF_MTAP(ifp, m); 2312 /* give it to the nic */ 2313 mxge_encap(ss, m); 2314 } else if ((err = drbr_enqueue(ifp, tx->br, m)) != 0) { 2315 return (err); 2316 } 2317 if (!drbr_empty(ifp, tx->br)) 2318 mxge_start_locked(ss); 2319 return (0); 2320 } 2321 2322 static int 2323 mxge_transmit(struct ifnet *ifp, struct mbuf *m) 2324 { 2325 mxge_softc_t *sc = ifp->if_softc; 2326 struct mxge_slice_state *ss; 2327 mxge_tx_ring_t *tx; 2328 int err = 0; 2329 int slice; 2330 2331 slice = m->m_pkthdr.flowid; 2332 slice &= (sc->num_slices - 1); /* num_slices always power of 2 */ 2333 2334 ss = &sc->ss[slice]; 2335 tx = &ss->tx; 2336 2337 if (mtx_trylock(&tx->mtx)) { 2338 err = mxge_transmit_locked(ss, m); 2339 mtx_unlock(&tx->mtx); 2340 } else { 2341 err = drbr_enqueue(ifp, tx->br, m); 2342 } 2343 2344 return (err); 2345 } 2346 2347 #else 2348 2349 static inline void 2350 mxge_start_locked(struct mxge_slice_state *ss) 2351 { 2352 mxge_softc_t *sc; 2353 struct mbuf *m; 2354 struct ifnet *ifp; 2355 mxge_tx_ring_t *tx; 2356 2357 sc = ss->sc; 2358 ifp = sc->ifp; 2359 tx = &ss->tx; 2360 while ((tx->mask - (tx->req - tx->done)) > tx->max_desc) { 2361 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2362 if (m == NULL) { 2363 return; 2364 } 2365 /* let BPF see it */ 2366 BPF_MTAP(ifp, m); 2367 2368 /* give it to the nic */ 2369 mxge_encap(ss, m); 2370 } 2371 /* ran out of transmit slots */ 2372 if ((sc->ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 2373 sc->ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2374 tx->stall++; 2375 } 2376 } 2377 #endif 2378 static void 2379 mxge_start(struct ifnet *ifp) 2380 { 2381 mxge_softc_t *sc = ifp->if_softc; 2382 struct mxge_slice_state *ss; 2383 2384 /* only use the first slice for now */ 2385 ss = &sc->ss[0]; 2386 mtx_lock(&ss->tx.mtx); 2387 mxge_start_locked(ss); 2388 mtx_unlock(&ss->tx.mtx); 2389 } 2390 2391 /* 2392 * copy an array of mcp_kreq_ether_recv_t's to the mcp. Copy 2393 * at most 32 bytes at a time, so as to avoid involving the software 2394 * pio handler in the nic. We re-write the first segment's low 2395 * DMA address to mark it valid only after we write the entire chunk 2396 * in a burst 2397 */ 2398 static inline void 2399 mxge_submit_8rx(volatile mcp_kreq_ether_recv_t *dst, 2400 mcp_kreq_ether_recv_t *src) 2401 { 2402 uint32_t low; 2403 2404 low = src->addr_low; 2405 src->addr_low = 0xffffffff; 2406 mxge_pio_copy(dst, src, 4 * sizeof (*src)); 2407 wmb(); 2408 mxge_pio_copy(dst + 4, src + 4, 4 * sizeof (*src)); 2409 wmb(); 2410 src->addr_low = low; 2411 dst->addr_low = low; 2412 wmb(); 2413 } 2414 2415 static int 2416 mxge_get_buf_small(struct mxge_slice_state *ss, bus_dmamap_t map, int idx) 2417 { 2418 bus_dma_segment_t seg; 2419 struct mbuf *m; 2420 mxge_rx_ring_t *rx = &ss->rx_small; 2421 int cnt, err; 2422 2423 m = m_gethdr(M_NOWAIT, MT_DATA); 2424 if (m == NULL) { 2425 rx->alloc_fail++; 2426 err = ENOBUFS; 2427 goto done; 2428 } 2429 m->m_len = MHLEN; 2430 err = bus_dmamap_load_mbuf_sg(rx->dmat, map, m, 2431 &seg, &cnt, BUS_DMA_NOWAIT); 2432 if (err != 0) { 2433 m_free(m); 2434 goto done; 2435 } 2436 rx->info[idx].m = m; 2437 rx->shadow[idx].addr_low = 2438 htobe32(MXGE_LOWPART_TO_U32(seg.ds_addr)); 2439 rx->shadow[idx].addr_high = 2440 htobe32(MXGE_HIGHPART_TO_U32(seg.ds_addr)); 2441 2442 done: 2443 if ((idx & 7) == 7) 2444 mxge_submit_8rx(&rx->lanai[idx - 7], &rx->shadow[idx - 7]); 2445 return err; 2446 } 2447 2448 static int 2449 mxge_get_buf_big(struct mxge_slice_state *ss, bus_dmamap_t map, int idx) 2450 { 2451 bus_dma_segment_t seg[3]; 2452 struct mbuf *m; 2453 mxge_rx_ring_t *rx = &ss->rx_big; 2454 int cnt, err, i; 2455 2456 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, rx->cl_size); 2457 if (m == NULL) { 2458 rx->alloc_fail++; 2459 err = ENOBUFS; 2460 goto done; 2461 } 2462 m->m_len = rx->mlen; 2463 err = bus_dmamap_load_mbuf_sg(rx->dmat, map, m, 2464 seg, &cnt, BUS_DMA_NOWAIT); 2465 if (err != 0) { 2466 m_free(m); 2467 goto done; 2468 } 2469 rx->info[idx].m = m; 2470 rx->shadow[idx].addr_low = 2471 htobe32(MXGE_LOWPART_TO_U32(seg->ds_addr)); 2472 rx->shadow[idx].addr_high = 2473 htobe32(MXGE_HIGHPART_TO_U32(seg->ds_addr)); 2474 2475 #if MXGE_VIRT_JUMBOS 2476 for (i = 1; i < cnt; i++) { 2477 rx->shadow[idx + i].addr_low = 2478 htobe32(MXGE_LOWPART_TO_U32(seg[i].ds_addr)); 2479 rx->shadow[idx + i].addr_high = 2480 htobe32(MXGE_HIGHPART_TO_U32(seg[i].ds_addr)); 2481 } 2482 #endif 2483 2484 done: 2485 for (i = 0; i < rx->nbufs; i++) { 2486 if ((idx & 7) == 7) { 2487 mxge_submit_8rx(&rx->lanai[idx - 7], 2488 &rx->shadow[idx - 7]); 2489 } 2490 idx++; 2491 } 2492 return err; 2493 } 2494 2495 #ifdef INET6 2496 2497 static uint16_t 2498 mxge_csum_generic(uint16_t *raw, int len) 2499 { 2500 uint32_t csum; 2501 2502 2503 csum = 0; 2504 while (len > 0) { 2505 csum += *raw; 2506 raw++; 2507 len -= 2; 2508 } 2509 csum = (csum >> 16) + (csum & 0xffff); 2510 csum = (csum >> 16) + (csum & 0xffff); 2511 return (uint16_t)csum; 2512 } 2513 2514 static inline uint16_t 2515 mxge_rx_csum6(void *p, struct mbuf *m, uint32_t csum) 2516 { 2517 uint32_t partial; 2518 int nxt, cksum_offset; 2519 struct ip6_hdr *ip6 = p; 2520 uint16_t c; 2521 2522 nxt = ip6->ip6_nxt; 2523 cksum_offset = sizeof (*ip6) + ETHER_HDR_LEN; 2524 if (nxt != IPPROTO_TCP && nxt != IPPROTO_UDP) { 2525 cksum_offset = ip6_lasthdr(m, ETHER_HDR_LEN, 2526 IPPROTO_IPV6, &nxt); 2527 if (nxt != IPPROTO_TCP && nxt != IPPROTO_UDP) 2528 return (1); 2529 } 2530 2531 /* 2532 * IPv6 headers do not contain a checksum, and hence 2533 * do not checksum to zero, so they don't "fall out" 2534 * of the partial checksum calculation like IPv4 2535 * headers do. We need to fix the partial checksum by 2536 * subtracting the checksum of the IPv6 header. 2537 */ 2538 2539 partial = mxge_csum_generic((uint16_t *)ip6, cksum_offset - 2540 ETHER_HDR_LEN); 2541 csum += ~partial; 2542 csum += (csum < ~partial); 2543 csum = (csum >> 16) + (csum & 0xFFFF); 2544 csum = (csum >> 16) + (csum & 0xFFFF); 2545 c = in6_cksum_pseudo(ip6, m->m_pkthdr.len - cksum_offset, nxt, 2546 csum); 2547 c ^= 0xffff; 2548 return (c); 2549 } 2550 #endif /* INET6 */ 2551 /* 2552 * Myri10GE hardware checksums are not valid if the sender 2553 * padded the frame with non-zero padding. This is because 2554 * the firmware just does a simple 16-bit 1s complement 2555 * checksum across the entire frame, excluding the first 14 2556 * bytes. It is best to simply to check the checksum and 2557 * tell the stack about it only if the checksum is good 2558 */ 2559 2560 static inline uint16_t 2561 mxge_rx_csum(struct mbuf *m, int csum) 2562 { 2563 struct ether_header *eh; 2564 #ifdef INET 2565 struct ip *ip; 2566 #endif 2567 #if defined(INET) || defined(INET6) 2568 int cap = m->m_pkthdr.rcvif->if_capenable; 2569 #endif 2570 uint16_t c, etype; 2571 2572 2573 eh = mtod(m, struct ether_header *); 2574 etype = ntohs(eh->ether_type); 2575 switch (etype) { 2576 #ifdef INET 2577 case ETHERTYPE_IP: 2578 if ((cap & IFCAP_RXCSUM) == 0) 2579 return (1); 2580 ip = (struct ip *)(eh + 1); 2581 if (ip->ip_p != IPPROTO_TCP && ip->ip_p != IPPROTO_UDP) 2582 return (1); 2583 c = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 2584 htonl(ntohs(csum) + ntohs(ip->ip_len) - 2585 (ip->ip_hl << 2) + ip->ip_p)); 2586 c ^= 0xffff; 2587 break; 2588 #endif 2589 #ifdef INET6 2590 case ETHERTYPE_IPV6: 2591 if ((cap & IFCAP_RXCSUM_IPV6) == 0) 2592 return (1); 2593 c = mxge_rx_csum6((eh + 1), m, csum); 2594 break; 2595 #endif 2596 default: 2597 c = 1; 2598 } 2599 return (c); 2600 } 2601 2602 static void 2603 mxge_vlan_tag_remove(struct mbuf *m, uint32_t *csum) 2604 { 2605 struct ether_vlan_header *evl; 2606 struct ether_header *eh; 2607 uint32_t partial; 2608 2609 evl = mtod(m, struct ether_vlan_header *); 2610 eh = mtod(m, struct ether_header *); 2611 2612 /* 2613 * fix checksum by subtracting ETHER_VLAN_ENCAP_LEN bytes 2614 * after what the firmware thought was the end of the ethernet 2615 * header. 2616 */ 2617 2618 /* put checksum into host byte order */ 2619 *csum = ntohs(*csum); 2620 partial = ntohl(*(uint32_t *)(mtod(m, char *) + ETHER_HDR_LEN)); 2621 (*csum) += ~partial; 2622 (*csum) += ((*csum) < ~partial); 2623 (*csum) = ((*csum) >> 16) + ((*csum) & 0xFFFF); 2624 (*csum) = ((*csum) >> 16) + ((*csum) & 0xFFFF); 2625 2626 /* restore checksum to network byte order; 2627 later consumers expect this */ 2628 *csum = htons(*csum); 2629 2630 /* save the tag */ 2631 #ifdef MXGE_NEW_VLAN_API 2632 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 2633 #else 2634 { 2635 struct m_tag *mtag; 2636 mtag = m_tag_alloc(MTAG_VLAN, MTAG_VLAN_TAG, sizeof(u_int), 2637 M_NOWAIT); 2638 if (mtag == NULL) 2639 return; 2640 VLAN_TAG_VALUE(mtag) = ntohs(evl->evl_tag); 2641 m_tag_prepend(m, mtag); 2642 } 2643 2644 #endif 2645 m->m_flags |= M_VLANTAG; 2646 2647 /* 2648 * Remove the 802.1q header by copying the Ethernet 2649 * addresses over it and adjusting the beginning of 2650 * the data in the mbuf. The encapsulated Ethernet 2651 * type field is already in place. 2652 */ 2653 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 2654 ETHER_HDR_LEN - ETHER_TYPE_LEN); 2655 m_adj(m, ETHER_VLAN_ENCAP_LEN); 2656 } 2657 2658 2659 static inline void 2660 mxge_rx_done_big(struct mxge_slice_state *ss, uint32_t len, 2661 uint32_t csum, int lro) 2662 { 2663 mxge_softc_t *sc; 2664 struct ifnet *ifp; 2665 struct mbuf *m; 2666 struct ether_header *eh; 2667 mxge_rx_ring_t *rx; 2668 bus_dmamap_t old_map; 2669 int idx; 2670 2671 sc = ss->sc; 2672 ifp = sc->ifp; 2673 rx = &ss->rx_big; 2674 idx = rx->cnt & rx->mask; 2675 rx->cnt += rx->nbufs; 2676 /* save a pointer to the received mbuf */ 2677 m = rx->info[idx].m; 2678 /* try to replace the received mbuf */ 2679 if (mxge_get_buf_big(ss, rx->extra_map, idx)) { 2680 /* drop the frame -- the old mbuf is re-cycled */ 2681 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2682 return; 2683 } 2684 2685 /* unmap the received buffer */ 2686 old_map = rx->info[idx].map; 2687 bus_dmamap_sync(rx->dmat, old_map, BUS_DMASYNC_POSTREAD); 2688 bus_dmamap_unload(rx->dmat, old_map); 2689 2690 /* swap the bus_dmamap_t's */ 2691 rx->info[idx].map = rx->extra_map; 2692 rx->extra_map = old_map; 2693 2694 /* mcp implicitly skips 1st 2 bytes so that packet is properly 2695 * aligned */ 2696 m->m_data += MXGEFW_PAD; 2697 2698 m->m_pkthdr.rcvif = ifp; 2699 m->m_len = m->m_pkthdr.len = len; 2700 ss->ipackets++; 2701 eh = mtod(m, struct ether_header *); 2702 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 2703 mxge_vlan_tag_remove(m, &csum); 2704 } 2705 /* if the checksum is valid, mark it in the mbuf header */ 2706 2707 if ((ifp->if_capenable & (IFCAP_RXCSUM_IPV6 | IFCAP_RXCSUM)) && 2708 (0 == mxge_rx_csum(m, csum))) { 2709 /* Tell the stack that the checksum is good */ 2710 m->m_pkthdr.csum_data = 0xffff; 2711 m->m_pkthdr.csum_flags = CSUM_PSEUDO_HDR | 2712 CSUM_DATA_VALID; 2713 2714 #if defined(INET) || defined (INET6) 2715 if (lro && (0 == tcp_lro_rx(&ss->lc, m, 0))) 2716 return; 2717 #endif 2718 } 2719 /* flowid only valid if RSS hashing is enabled */ 2720 if (sc->num_slices > 1) { 2721 m->m_pkthdr.flowid = (ss - sc->ss); 2722 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 2723 } 2724 /* pass the frame up the stack */ 2725 (*ifp->if_input)(ifp, m); 2726 } 2727 2728 static inline void 2729 mxge_rx_done_small(struct mxge_slice_state *ss, uint32_t len, 2730 uint32_t csum, int lro) 2731 { 2732 mxge_softc_t *sc; 2733 struct ifnet *ifp; 2734 struct ether_header *eh; 2735 struct mbuf *m; 2736 mxge_rx_ring_t *rx; 2737 bus_dmamap_t old_map; 2738 int idx; 2739 2740 sc = ss->sc; 2741 ifp = sc->ifp; 2742 rx = &ss->rx_small; 2743 idx = rx->cnt & rx->mask; 2744 rx->cnt++; 2745 /* save a pointer to the received mbuf */ 2746 m = rx->info[idx].m; 2747 /* try to replace the received mbuf */ 2748 if (mxge_get_buf_small(ss, rx->extra_map, idx)) { 2749 /* drop the frame -- the old mbuf is re-cycled */ 2750 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2751 return; 2752 } 2753 2754 /* unmap the received buffer */ 2755 old_map = rx->info[idx].map; 2756 bus_dmamap_sync(rx->dmat, old_map, BUS_DMASYNC_POSTREAD); 2757 bus_dmamap_unload(rx->dmat, old_map); 2758 2759 /* swap the bus_dmamap_t's */ 2760 rx->info[idx].map = rx->extra_map; 2761 rx->extra_map = old_map; 2762 2763 /* mcp implicitly skips 1st 2 bytes so that packet is properly 2764 * aligned */ 2765 m->m_data += MXGEFW_PAD; 2766 2767 m->m_pkthdr.rcvif = ifp; 2768 m->m_len = m->m_pkthdr.len = len; 2769 ss->ipackets++; 2770 eh = mtod(m, struct ether_header *); 2771 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 2772 mxge_vlan_tag_remove(m, &csum); 2773 } 2774 /* if the checksum is valid, mark it in the mbuf header */ 2775 if ((ifp->if_capenable & (IFCAP_RXCSUM_IPV6 | IFCAP_RXCSUM)) && 2776 (0 == mxge_rx_csum(m, csum))) { 2777 /* Tell the stack that the checksum is good */ 2778 m->m_pkthdr.csum_data = 0xffff; 2779 m->m_pkthdr.csum_flags = CSUM_PSEUDO_HDR | 2780 CSUM_DATA_VALID; 2781 2782 #if defined(INET) || defined (INET6) 2783 if (lro && (0 == tcp_lro_rx(&ss->lc, m, csum))) 2784 return; 2785 #endif 2786 } 2787 /* flowid only valid if RSS hashing is enabled */ 2788 if (sc->num_slices > 1) { 2789 m->m_pkthdr.flowid = (ss - sc->ss); 2790 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 2791 } 2792 /* pass the frame up the stack */ 2793 (*ifp->if_input)(ifp, m); 2794 } 2795 2796 static inline void 2797 mxge_clean_rx_done(struct mxge_slice_state *ss) 2798 { 2799 mxge_rx_done_t *rx_done = &ss->rx_done; 2800 int limit = 0; 2801 uint16_t length; 2802 uint16_t checksum; 2803 int lro; 2804 2805 lro = ss->sc->ifp->if_capenable & IFCAP_LRO; 2806 while (rx_done->entry[rx_done->idx].length != 0) { 2807 length = ntohs(rx_done->entry[rx_done->idx].length); 2808 rx_done->entry[rx_done->idx].length = 0; 2809 checksum = rx_done->entry[rx_done->idx].checksum; 2810 if (length <= (MHLEN - MXGEFW_PAD)) 2811 mxge_rx_done_small(ss, length, checksum, lro); 2812 else 2813 mxge_rx_done_big(ss, length, checksum, lro); 2814 rx_done->cnt++; 2815 rx_done->idx = rx_done->cnt & rx_done->mask; 2816 2817 /* limit potential for livelock */ 2818 if (__predict_false(++limit > rx_done->mask / 2)) 2819 break; 2820 } 2821 #if defined(INET) || defined (INET6) 2822 tcp_lro_flush_all(&ss->lc); 2823 #endif 2824 } 2825 2826 2827 static inline void 2828 mxge_tx_done(struct mxge_slice_state *ss, uint32_t mcp_idx) 2829 { 2830 struct ifnet *ifp; 2831 mxge_tx_ring_t *tx; 2832 struct mbuf *m; 2833 bus_dmamap_t map; 2834 int idx; 2835 int *flags; 2836 2837 tx = &ss->tx; 2838 ifp = ss->sc->ifp; 2839 while (tx->pkt_done != mcp_idx) { 2840 idx = tx->done & tx->mask; 2841 tx->done++; 2842 m = tx->info[idx].m; 2843 /* mbuf and DMA map only attached to the first 2844 segment per-mbuf */ 2845 if (m != NULL) { 2846 ss->obytes += m->m_pkthdr.len; 2847 if (m->m_flags & M_MCAST) 2848 ss->omcasts++; 2849 ss->opackets++; 2850 tx->info[idx].m = NULL; 2851 map = tx->info[idx].map; 2852 bus_dmamap_unload(tx->dmat, map); 2853 m_freem(m); 2854 } 2855 if (tx->info[idx].flag) { 2856 tx->info[idx].flag = 0; 2857 tx->pkt_done++; 2858 } 2859 } 2860 2861 /* If we have space, clear IFF_OACTIVE to tell the stack that 2862 its OK to send packets */ 2863 #ifdef IFNET_BUF_RING 2864 flags = &ss->if_drv_flags; 2865 #else 2866 flags = &ifp->if_drv_flags; 2867 #endif 2868 mtx_lock(&ss->tx.mtx); 2869 if ((*flags) & IFF_DRV_OACTIVE && 2870 tx->req - tx->done < (tx->mask + 1)/4) { 2871 *(flags) &= ~IFF_DRV_OACTIVE; 2872 ss->tx.wake++; 2873 mxge_start_locked(ss); 2874 } 2875 #ifdef IFNET_BUF_RING 2876 if ((ss->sc->num_slices > 1) && (tx->req == tx->done)) { 2877 /* let the NIC stop polling this queue, since there 2878 * are no more transmits pending */ 2879 if (tx->req == tx->done) { 2880 *tx->send_stop = 1; 2881 tx->queue_active = 0; 2882 tx->deactivate++; 2883 wmb(); 2884 } 2885 } 2886 #endif 2887 mtx_unlock(&ss->tx.mtx); 2888 2889 } 2890 2891 static struct mxge_media_type mxge_xfp_media_types[] = 2892 { 2893 {IFM_10G_CX4, 0x7f, "10GBASE-CX4 (module)"}, 2894 {IFM_10G_SR, (1 << 7), "10GBASE-SR"}, 2895 {IFM_10G_LR, (1 << 6), "10GBASE-LR"}, 2896 {0, (1 << 5), "10GBASE-ER"}, 2897 {IFM_10G_LRM, (1 << 4), "10GBASE-LRM"}, 2898 {0, (1 << 3), "10GBASE-SW"}, 2899 {0, (1 << 2), "10GBASE-LW"}, 2900 {0, (1 << 1), "10GBASE-EW"}, 2901 {0, (1 << 0), "Reserved"} 2902 }; 2903 static struct mxge_media_type mxge_sfp_media_types[] = 2904 { 2905 {IFM_10G_TWINAX, 0, "10GBASE-Twinax"}, 2906 {0, (1 << 7), "Reserved"}, 2907 {IFM_10G_LRM, (1 << 6), "10GBASE-LRM"}, 2908 {IFM_10G_LR, (1 << 5), "10GBASE-LR"}, 2909 {IFM_10G_SR, (1 << 4), "10GBASE-SR"}, 2910 {IFM_10G_TWINAX,(1 << 0), "10GBASE-Twinax"} 2911 }; 2912 2913 static void 2914 mxge_media_set(mxge_softc_t *sc, int media_type) 2915 { 2916 2917 2918 ifmedia_add(&sc->media, IFM_ETHER | IFM_FDX | media_type, 2919 0, NULL); 2920 ifmedia_set(&sc->media, IFM_ETHER | IFM_FDX | media_type); 2921 sc->current_media = media_type; 2922 sc->media.ifm_media = sc->media.ifm_cur->ifm_media; 2923 } 2924 2925 static void 2926 mxge_media_init(mxge_softc_t *sc) 2927 { 2928 char *ptr; 2929 int i; 2930 2931 ifmedia_removeall(&sc->media); 2932 mxge_media_set(sc, IFM_AUTO); 2933 2934 /* 2935 * parse the product code to deterimine the interface type 2936 * (CX4, XFP, Quad Ribbon Fiber) by looking at the character 2937 * after the 3rd dash in the driver's cached copy of the 2938 * EEPROM's product code string. 2939 */ 2940 ptr = sc->product_code_string; 2941 if (ptr == NULL) { 2942 device_printf(sc->dev, "Missing product code\n"); 2943 return; 2944 } 2945 2946 for (i = 0; i < 3; i++, ptr++) { 2947 ptr = strchr(ptr, '-'); 2948 if (ptr == NULL) { 2949 device_printf(sc->dev, 2950 "only %d dashes in PC?!?\n", i); 2951 return; 2952 } 2953 } 2954 if (*ptr == 'C' || *(ptr +1) == 'C') { 2955 /* -C is CX4 */ 2956 sc->connector = MXGE_CX4; 2957 mxge_media_set(sc, IFM_10G_CX4); 2958 } else if (*ptr == 'Q') { 2959 /* -Q is Quad Ribbon Fiber */ 2960 sc->connector = MXGE_QRF; 2961 device_printf(sc->dev, "Quad Ribbon Fiber Media\n"); 2962 /* FreeBSD has no media type for Quad ribbon fiber */ 2963 } else if (*ptr == 'R') { 2964 /* -R is XFP */ 2965 sc->connector = MXGE_XFP; 2966 } else if (*ptr == 'S' || *(ptr +1) == 'S') { 2967 /* -S or -2S is SFP+ */ 2968 sc->connector = MXGE_SFP; 2969 } else { 2970 device_printf(sc->dev, "Unknown media type: %c\n", *ptr); 2971 } 2972 } 2973 2974 /* 2975 * Determine the media type for a NIC. Some XFPs will identify 2976 * themselves only when their link is up, so this is initiated via a 2977 * link up interrupt. However, this can potentially take up to 2978 * several milliseconds, so it is run via the watchdog routine, rather 2979 * than in the interrupt handler itself. 2980 */ 2981 static void 2982 mxge_media_probe(mxge_softc_t *sc) 2983 { 2984 mxge_cmd_t cmd; 2985 char *cage_type; 2986 2987 struct mxge_media_type *mxge_media_types = NULL; 2988 int i, err, ms, mxge_media_type_entries; 2989 uint32_t byte; 2990 2991 sc->need_media_probe = 0; 2992 2993 if (sc->connector == MXGE_XFP) { 2994 /* -R is XFP */ 2995 mxge_media_types = mxge_xfp_media_types; 2996 mxge_media_type_entries = 2997 nitems(mxge_xfp_media_types); 2998 byte = MXGE_XFP_COMPLIANCE_BYTE; 2999 cage_type = "XFP"; 3000 } else if (sc->connector == MXGE_SFP) { 3001 /* -S or -2S is SFP+ */ 3002 mxge_media_types = mxge_sfp_media_types; 3003 mxge_media_type_entries = 3004 nitems(mxge_sfp_media_types); 3005 cage_type = "SFP+"; 3006 byte = 3; 3007 } else { 3008 /* nothing to do; media type cannot change */ 3009 return; 3010 } 3011 3012 /* 3013 * At this point we know the NIC has an XFP cage, so now we 3014 * try to determine what is in the cage by using the 3015 * firmware's XFP I2C commands to read the XFP 10GbE compilance 3016 * register. We read just one byte, which may take over 3017 * a millisecond 3018 */ 3019 3020 cmd.data0 = 0; /* just fetch 1 byte, not all 256 */ 3021 cmd.data1 = byte; 3022 err = mxge_send_cmd(sc, MXGEFW_CMD_I2C_READ, &cmd); 3023 if (err == MXGEFW_CMD_ERROR_I2C_FAILURE) { 3024 device_printf(sc->dev, "failed to read XFP\n"); 3025 } 3026 if (err == MXGEFW_CMD_ERROR_I2C_ABSENT) { 3027 device_printf(sc->dev, "Type R/S with no XFP!?!?\n"); 3028 } 3029 if (err != MXGEFW_CMD_OK) { 3030 return; 3031 } 3032 3033 /* now we wait for the data to be cached */ 3034 cmd.data0 = byte; 3035 err = mxge_send_cmd(sc, MXGEFW_CMD_I2C_BYTE, &cmd); 3036 for (ms = 0; (err == EBUSY) && (ms < 50); ms++) { 3037 DELAY(1000); 3038 cmd.data0 = byte; 3039 err = mxge_send_cmd(sc, MXGEFW_CMD_I2C_BYTE, &cmd); 3040 } 3041 if (err != MXGEFW_CMD_OK) { 3042 device_printf(sc->dev, "failed to read %s (%d, %dms)\n", 3043 cage_type, err, ms); 3044 return; 3045 } 3046 3047 if (cmd.data0 == mxge_media_types[0].bitmask) { 3048 if (mxge_verbose) 3049 device_printf(sc->dev, "%s:%s\n", cage_type, 3050 mxge_media_types[0].name); 3051 if (sc->current_media != mxge_media_types[0].flag) { 3052 mxge_media_init(sc); 3053 mxge_media_set(sc, mxge_media_types[0].flag); 3054 } 3055 return; 3056 } 3057 for (i = 1; i < mxge_media_type_entries; i++) { 3058 if (cmd.data0 & mxge_media_types[i].bitmask) { 3059 if (mxge_verbose) 3060 device_printf(sc->dev, "%s:%s\n", 3061 cage_type, 3062 mxge_media_types[i].name); 3063 3064 if (sc->current_media != mxge_media_types[i].flag) { 3065 mxge_media_init(sc); 3066 mxge_media_set(sc, mxge_media_types[i].flag); 3067 } 3068 return; 3069 } 3070 } 3071 if (mxge_verbose) 3072 device_printf(sc->dev, "%s media 0x%x unknown\n", 3073 cage_type, cmd.data0); 3074 3075 return; 3076 } 3077 3078 static void 3079 mxge_intr(void *arg) 3080 { 3081 struct mxge_slice_state *ss = arg; 3082 mxge_softc_t *sc = ss->sc; 3083 mcp_irq_data_t *stats = ss->fw_stats; 3084 mxge_tx_ring_t *tx = &ss->tx; 3085 mxge_rx_done_t *rx_done = &ss->rx_done; 3086 uint32_t send_done_count; 3087 uint8_t valid; 3088 3089 3090 #ifndef IFNET_BUF_RING 3091 /* an interrupt on a non-zero slice is implicitly valid 3092 since MSI-X irqs are not shared */ 3093 if (ss != sc->ss) { 3094 mxge_clean_rx_done(ss); 3095 *ss->irq_claim = be32toh(3); 3096 return; 3097 } 3098 #endif 3099 3100 /* make sure the DMA has finished */ 3101 if (!stats->valid) { 3102 return; 3103 } 3104 valid = stats->valid; 3105 3106 if (sc->legacy_irq) { 3107 /* lower legacy IRQ */ 3108 *sc->irq_deassert = 0; 3109 if (!mxge_deassert_wait) 3110 /* don't wait for conf. that irq is low */ 3111 stats->valid = 0; 3112 } else { 3113 stats->valid = 0; 3114 } 3115 3116 /* loop while waiting for legacy irq deassertion */ 3117 do { 3118 /* check for transmit completes and receives */ 3119 send_done_count = be32toh(stats->send_done_count); 3120 while ((send_done_count != tx->pkt_done) || 3121 (rx_done->entry[rx_done->idx].length != 0)) { 3122 if (send_done_count != tx->pkt_done) 3123 mxge_tx_done(ss, (int)send_done_count); 3124 mxge_clean_rx_done(ss); 3125 send_done_count = be32toh(stats->send_done_count); 3126 } 3127 if (sc->legacy_irq && mxge_deassert_wait) 3128 wmb(); 3129 } while (*((volatile uint8_t *) &stats->valid)); 3130 3131 /* fw link & error stats meaningful only on the first slice */ 3132 if (__predict_false((ss == sc->ss) && stats->stats_updated)) { 3133 if (sc->link_state != stats->link_up) { 3134 sc->link_state = stats->link_up; 3135 if (sc->link_state) { 3136 if_link_state_change(sc->ifp, LINK_STATE_UP); 3137 if (mxge_verbose) 3138 device_printf(sc->dev, "link up\n"); 3139 } else { 3140 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 3141 if (mxge_verbose) 3142 device_printf(sc->dev, "link down\n"); 3143 } 3144 sc->need_media_probe = 1; 3145 } 3146 if (sc->rdma_tags_available != 3147 be32toh(stats->rdma_tags_available)) { 3148 sc->rdma_tags_available = 3149 be32toh(stats->rdma_tags_available); 3150 device_printf(sc->dev, "RDMA timed out! %d tags " 3151 "left\n", sc->rdma_tags_available); 3152 } 3153 3154 if (stats->link_down) { 3155 sc->down_cnt += stats->link_down; 3156 sc->link_state = 0; 3157 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 3158 } 3159 } 3160 3161 /* check to see if we have rx token to pass back */ 3162 if (valid & 0x1) 3163 *ss->irq_claim = be32toh(3); 3164 *(ss->irq_claim + 1) = be32toh(3); 3165 } 3166 3167 static void 3168 mxge_init(void *arg) 3169 { 3170 mxge_softc_t *sc = arg; 3171 struct ifnet *ifp = sc->ifp; 3172 3173 3174 mtx_lock(&sc->driver_mtx); 3175 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 3176 (void) mxge_open(sc); 3177 mtx_unlock(&sc->driver_mtx); 3178 } 3179 3180 3181 3182 static void 3183 mxge_free_slice_mbufs(struct mxge_slice_state *ss) 3184 { 3185 int i; 3186 3187 #if defined(INET) || defined(INET6) 3188 tcp_lro_free(&ss->lc); 3189 #endif 3190 for (i = 0; i <= ss->rx_big.mask; i++) { 3191 if (ss->rx_big.info[i].m == NULL) 3192 continue; 3193 bus_dmamap_unload(ss->rx_big.dmat, 3194 ss->rx_big.info[i].map); 3195 m_freem(ss->rx_big.info[i].m); 3196 ss->rx_big.info[i].m = NULL; 3197 } 3198 3199 for (i = 0; i <= ss->rx_small.mask; i++) { 3200 if (ss->rx_small.info[i].m == NULL) 3201 continue; 3202 bus_dmamap_unload(ss->rx_small.dmat, 3203 ss->rx_small.info[i].map); 3204 m_freem(ss->rx_small.info[i].m); 3205 ss->rx_small.info[i].m = NULL; 3206 } 3207 3208 /* transmit ring used only on the first slice */ 3209 if (ss->tx.info == NULL) 3210 return; 3211 3212 for (i = 0; i <= ss->tx.mask; i++) { 3213 ss->tx.info[i].flag = 0; 3214 if (ss->tx.info[i].m == NULL) 3215 continue; 3216 bus_dmamap_unload(ss->tx.dmat, 3217 ss->tx.info[i].map); 3218 m_freem(ss->tx.info[i].m); 3219 ss->tx.info[i].m = NULL; 3220 } 3221 } 3222 3223 static void 3224 mxge_free_mbufs(mxge_softc_t *sc) 3225 { 3226 int slice; 3227 3228 for (slice = 0; slice < sc->num_slices; slice++) 3229 mxge_free_slice_mbufs(&sc->ss[slice]); 3230 } 3231 3232 static void 3233 mxge_free_slice_rings(struct mxge_slice_state *ss) 3234 { 3235 int i; 3236 3237 3238 if (ss->rx_done.entry != NULL) 3239 mxge_dma_free(&ss->rx_done.dma); 3240 ss->rx_done.entry = NULL; 3241 3242 if (ss->tx.req_bytes != NULL) 3243 free(ss->tx.req_bytes, M_DEVBUF); 3244 ss->tx.req_bytes = NULL; 3245 3246 if (ss->tx.seg_list != NULL) 3247 free(ss->tx.seg_list, M_DEVBUF); 3248 ss->tx.seg_list = NULL; 3249 3250 if (ss->rx_small.shadow != NULL) 3251 free(ss->rx_small.shadow, M_DEVBUF); 3252 ss->rx_small.shadow = NULL; 3253 3254 if (ss->rx_big.shadow != NULL) 3255 free(ss->rx_big.shadow, M_DEVBUF); 3256 ss->rx_big.shadow = NULL; 3257 3258 if (ss->tx.info != NULL) { 3259 if (ss->tx.dmat != NULL) { 3260 for (i = 0; i <= ss->tx.mask; i++) { 3261 bus_dmamap_destroy(ss->tx.dmat, 3262 ss->tx.info[i].map); 3263 } 3264 bus_dma_tag_destroy(ss->tx.dmat); 3265 } 3266 free(ss->tx.info, M_DEVBUF); 3267 } 3268 ss->tx.info = NULL; 3269 3270 if (ss->rx_small.info != NULL) { 3271 if (ss->rx_small.dmat != NULL) { 3272 for (i = 0; i <= ss->rx_small.mask; i++) { 3273 bus_dmamap_destroy(ss->rx_small.dmat, 3274 ss->rx_small.info[i].map); 3275 } 3276 bus_dmamap_destroy(ss->rx_small.dmat, 3277 ss->rx_small.extra_map); 3278 bus_dma_tag_destroy(ss->rx_small.dmat); 3279 } 3280 free(ss->rx_small.info, M_DEVBUF); 3281 } 3282 ss->rx_small.info = NULL; 3283 3284 if (ss->rx_big.info != NULL) { 3285 if (ss->rx_big.dmat != NULL) { 3286 for (i = 0; i <= ss->rx_big.mask; i++) { 3287 bus_dmamap_destroy(ss->rx_big.dmat, 3288 ss->rx_big.info[i].map); 3289 } 3290 bus_dmamap_destroy(ss->rx_big.dmat, 3291 ss->rx_big.extra_map); 3292 bus_dma_tag_destroy(ss->rx_big.dmat); 3293 } 3294 free(ss->rx_big.info, M_DEVBUF); 3295 } 3296 ss->rx_big.info = NULL; 3297 } 3298 3299 static void 3300 mxge_free_rings(mxge_softc_t *sc) 3301 { 3302 int slice; 3303 3304 for (slice = 0; slice < sc->num_slices; slice++) 3305 mxge_free_slice_rings(&sc->ss[slice]); 3306 } 3307 3308 static int 3309 mxge_alloc_slice_rings(struct mxge_slice_state *ss, int rx_ring_entries, 3310 int tx_ring_entries) 3311 { 3312 mxge_softc_t *sc = ss->sc; 3313 size_t bytes; 3314 int err, i; 3315 3316 /* allocate per-slice receive resources */ 3317 3318 ss->rx_small.mask = ss->rx_big.mask = rx_ring_entries - 1; 3319 ss->rx_done.mask = (2 * rx_ring_entries) - 1; 3320 3321 /* allocate the rx shadow rings */ 3322 bytes = rx_ring_entries * sizeof (*ss->rx_small.shadow); 3323 ss->rx_small.shadow = malloc(bytes, M_DEVBUF, M_ZERO|M_WAITOK); 3324 3325 bytes = rx_ring_entries * sizeof (*ss->rx_big.shadow); 3326 ss->rx_big.shadow = malloc(bytes, M_DEVBUF, M_ZERO|M_WAITOK); 3327 3328 /* allocate the rx host info rings */ 3329 bytes = rx_ring_entries * sizeof (*ss->rx_small.info); 3330 ss->rx_small.info = malloc(bytes, M_DEVBUF, M_ZERO|M_WAITOK); 3331 3332 bytes = rx_ring_entries * sizeof (*ss->rx_big.info); 3333 ss->rx_big.info = malloc(bytes, M_DEVBUF, M_ZERO|M_WAITOK); 3334 3335 /* allocate the rx busdma resources */ 3336 err = bus_dma_tag_create(sc->parent_dmat, /* parent */ 3337 1, /* alignment */ 3338 4096, /* boundary */ 3339 BUS_SPACE_MAXADDR, /* low */ 3340 BUS_SPACE_MAXADDR, /* high */ 3341 NULL, NULL, /* filter */ 3342 MHLEN, /* maxsize */ 3343 1, /* num segs */ 3344 MHLEN, /* maxsegsize */ 3345 BUS_DMA_ALLOCNOW, /* flags */ 3346 NULL, NULL, /* lock */ 3347 &ss->rx_small.dmat); /* tag */ 3348 if (err != 0) { 3349 device_printf(sc->dev, "Err %d allocating rx_small dmat\n", 3350 err); 3351 return err; 3352 } 3353 3354 err = bus_dma_tag_create(sc->parent_dmat, /* parent */ 3355 1, /* alignment */ 3356 #if MXGE_VIRT_JUMBOS 3357 4096, /* boundary */ 3358 #else 3359 0, /* boundary */ 3360 #endif 3361 BUS_SPACE_MAXADDR, /* low */ 3362 BUS_SPACE_MAXADDR, /* high */ 3363 NULL, NULL, /* filter */ 3364 3*4096, /* maxsize */ 3365 #if MXGE_VIRT_JUMBOS 3366 3, /* num segs */ 3367 4096, /* maxsegsize*/ 3368 #else 3369 1, /* num segs */ 3370 MJUM9BYTES, /* maxsegsize*/ 3371 #endif 3372 BUS_DMA_ALLOCNOW, /* flags */ 3373 NULL, NULL, /* lock */ 3374 &ss->rx_big.dmat); /* tag */ 3375 if (err != 0) { 3376 device_printf(sc->dev, "Err %d allocating rx_big dmat\n", 3377 err); 3378 return err; 3379 } 3380 for (i = 0; i <= ss->rx_small.mask; i++) { 3381 err = bus_dmamap_create(ss->rx_small.dmat, 0, 3382 &ss->rx_small.info[i].map); 3383 if (err != 0) { 3384 device_printf(sc->dev, "Err %d rx_small dmamap\n", 3385 err); 3386 return err; 3387 } 3388 } 3389 err = bus_dmamap_create(ss->rx_small.dmat, 0, 3390 &ss->rx_small.extra_map); 3391 if (err != 0) { 3392 device_printf(sc->dev, "Err %d extra rx_small dmamap\n", 3393 err); 3394 return err; 3395 } 3396 3397 for (i = 0; i <= ss->rx_big.mask; i++) { 3398 err = bus_dmamap_create(ss->rx_big.dmat, 0, 3399 &ss->rx_big.info[i].map); 3400 if (err != 0) { 3401 device_printf(sc->dev, "Err %d rx_big dmamap\n", 3402 err); 3403 return err; 3404 } 3405 } 3406 err = bus_dmamap_create(ss->rx_big.dmat, 0, 3407 &ss->rx_big.extra_map); 3408 if (err != 0) { 3409 device_printf(sc->dev, "Err %d extra rx_big dmamap\n", 3410 err); 3411 return err; 3412 } 3413 3414 /* now allocate TX resources */ 3415 3416 #ifndef IFNET_BUF_RING 3417 /* only use a single TX ring for now */ 3418 if (ss != ss->sc->ss) 3419 return 0; 3420 #endif 3421 3422 ss->tx.mask = tx_ring_entries - 1; 3423 ss->tx.max_desc = MIN(MXGE_MAX_SEND_DESC, tx_ring_entries / 4); 3424 3425 3426 /* allocate the tx request copy block */ 3427 bytes = 8 + 3428 sizeof (*ss->tx.req_list) * (ss->tx.max_desc + 4); 3429 ss->tx.req_bytes = malloc(bytes, M_DEVBUF, M_WAITOK); 3430 /* ensure req_list entries are aligned to 8 bytes */ 3431 ss->tx.req_list = (mcp_kreq_ether_send_t *) 3432 ((unsigned long)(ss->tx.req_bytes + 7) & ~7UL); 3433 3434 /* allocate the tx busdma segment list */ 3435 bytes = sizeof (*ss->tx.seg_list) * ss->tx.max_desc; 3436 ss->tx.seg_list = (bus_dma_segment_t *) 3437 malloc(bytes, M_DEVBUF, M_WAITOK); 3438 3439 /* allocate the tx host info ring */ 3440 bytes = tx_ring_entries * sizeof (*ss->tx.info); 3441 ss->tx.info = malloc(bytes, M_DEVBUF, M_ZERO|M_WAITOK); 3442 3443 /* allocate the tx busdma resources */ 3444 err = bus_dma_tag_create(sc->parent_dmat, /* parent */ 3445 1, /* alignment */ 3446 sc->tx_boundary, /* boundary */ 3447 BUS_SPACE_MAXADDR, /* low */ 3448 BUS_SPACE_MAXADDR, /* high */ 3449 NULL, NULL, /* filter */ 3450 65536 + 256, /* maxsize */ 3451 ss->tx.max_desc - 2, /* num segs */ 3452 sc->tx_boundary, /* maxsegsz */ 3453 BUS_DMA_ALLOCNOW, /* flags */ 3454 NULL, NULL, /* lock */ 3455 &ss->tx.dmat); /* tag */ 3456 3457 if (err != 0) { 3458 device_printf(sc->dev, "Err %d allocating tx dmat\n", 3459 err); 3460 return err; 3461 } 3462 3463 /* now use these tags to setup dmamaps for each slot 3464 in the ring */ 3465 for (i = 0; i <= ss->tx.mask; i++) { 3466 err = bus_dmamap_create(ss->tx.dmat, 0, 3467 &ss->tx.info[i].map); 3468 if (err != 0) { 3469 device_printf(sc->dev, "Err %d tx dmamap\n", 3470 err); 3471 return err; 3472 } 3473 } 3474 return 0; 3475 3476 } 3477 3478 static int 3479 mxge_alloc_rings(mxge_softc_t *sc) 3480 { 3481 mxge_cmd_t cmd; 3482 int tx_ring_size; 3483 int tx_ring_entries, rx_ring_entries; 3484 int err, slice; 3485 3486 /* get ring sizes */ 3487 err = mxge_send_cmd(sc, MXGEFW_CMD_GET_SEND_RING_SIZE, &cmd); 3488 tx_ring_size = cmd.data0; 3489 if (err != 0) { 3490 device_printf(sc->dev, "Cannot determine tx ring sizes\n"); 3491 goto abort; 3492 } 3493 3494 tx_ring_entries = tx_ring_size / sizeof (mcp_kreq_ether_send_t); 3495 rx_ring_entries = sc->rx_ring_size / sizeof (mcp_dma_addr_t); 3496 IFQ_SET_MAXLEN(&sc->ifp->if_snd, tx_ring_entries - 1); 3497 sc->ifp->if_snd.ifq_drv_maxlen = sc->ifp->if_snd.ifq_maxlen; 3498 IFQ_SET_READY(&sc->ifp->if_snd); 3499 3500 for (slice = 0; slice < sc->num_slices; slice++) { 3501 err = mxge_alloc_slice_rings(&sc->ss[slice], 3502 rx_ring_entries, 3503 tx_ring_entries); 3504 if (err != 0) 3505 goto abort; 3506 } 3507 return 0; 3508 3509 abort: 3510 mxge_free_rings(sc); 3511 return err; 3512 3513 } 3514 3515 3516 static void 3517 mxge_choose_params(int mtu, int *big_buf_size, int *cl_size, int *nbufs) 3518 { 3519 int bufsize = mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + MXGEFW_PAD; 3520 3521 if (bufsize < MCLBYTES) { 3522 /* easy, everything fits in a single buffer */ 3523 *big_buf_size = MCLBYTES; 3524 *cl_size = MCLBYTES; 3525 *nbufs = 1; 3526 return; 3527 } 3528 3529 if (bufsize < MJUMPAGESIZE) { 3530 /* still easy, everything still fits in a single buffer */ 3531 *big_buf_size = MJUMPAGESIZE; 3532 *cl_size = MJUMPAGESIZE; 3533 *nbufs = 1; 3534 return; 3535 } 3536 #if MXGE_VIRT_JUMBOS 3537 /* now we need to use virtually contiguous buffers */ 3538 *cl_size = MJUM9BYTES; 3539 *big_buf_size = 4096; 3540 *nbufs = mtu / 4096 + 1; 3541 /* needs to be a power of two, so round up */ 3542 if (*nbufs == 3) 3543 *nbufs = 4; 3544 #else 3545 *cl_size = MJUM9BYTES; 3546 *big_buf_size = MJUM9BYTES; 3547 *nbufs = 1; 3548 #endif 3549 } 3550 3551 static int 3552 mxge_slice_open(struct mxge_slice_state *ss, int nbufs, int cl_size) 3553 { 3554 mxge_softc_t *sc; 3555 mxge_cmd_t cmd; 3556 bus_dmamap_t map; 3557 int err, i, slice; 3558 3559 3560 sc = ss->sc; 3561 slice = ss - sc->ss; 3562 3563 #if defined(INET) || defined(INET6) 3564 (void)tcp_lro_init(&ss->lc); 3565 #endif 3566 ss->lc.ifp = sc->ifp; 3567 3568 /* get the lanai pointers to the send and receive rings */ 3569 3570 err = 0; 3571 #ifndef IFNET_BUF_RING 3572 /* We currently only send from the first slice */ 3573 if (slice == 0) { 3574 #endif 3575 cmd.data0 = slice; 3576 err = mxge_send_cmd(sc, MXGEFW_CMD_GET_SEND_OFFSET, &cmd); 3577 ss->tx.lanai = 3578 (volatile mcp_kreq_ether_send_t *)(sc->sram + cmd.data0); 3579 ss->tx.send_go = (volatile uint32_t *) 3580 (sc->sram + MXGEFW_ETH_SEND_GO + 64 * slice); 3581 ss->tx.send_stop = (volatile uint32_t *) 3582 (sc->sram + MXGEFW_ETH_SEND_STOP + 64 * slice); 3583 #ifndef IFNET_BUF_RING 3584 } 3585 #endif 3586 cmd.data0 = slice; 3587 err |= mxge_send_cmd(sc, 3588 MXGEFW_CMD_GET_SMALL_RX_OFFSET, &cmd); 3589 ss->rx_small.lanai = 3590 (volatile mcp_kreq_ether_recv_t *)(sc->sram + cmd.data0); 3591 cmd.data0 = slice; 3592 err |= mxge_send_cmd(sc, MXGEFW_CMD_GET_BIG_RX_OFFSET, &cmd); 3593 ss->rx_big.lanai = 3594 (volatile mcp_kreq_ether_recv_t *)(sc->sram + cmd.data0); 3595 3596 if (err != 0) { 3597 device_printf(sc->dev, 3598 "failed to get ring sizes or locations\n"); 3599 return EIO; 3600 } 3601 3602 /* stock receive rings */ 3603 for (i = 0; i <= ss->rx_small.mask; i++) { 3604 map = ss->rx_small.info[i].map; 3605 err = mxge_get_buf_small(ss, map, i); 3606 if (err) { 3607 device_printf(sc->dev, "alloced %d/%d smalls\n", 3608 i, ss->rx_small.mask + 1); 3609 return ENOMEM; 3610 } 3611 } 3612 for (i = 0; i <= ss->rx_big.mask; i++) { 3613 ss->rx_big.shadow[i].addr_low = 0xffffffff; 3614 ss->rx_big.shadow[i].addr_high = 0xffffffff; 3615 } 3616 ss->rx_big.nbufs = nbufs; 3617 ss->rx_big.cl_size = cl_size; 3618 ss->rx_big.mlen = ss->sc->ifp->if_mtu + ETHER_HDR_LEN + 3619 ETHER_VLAN_ENCAP_LEN + MXGEFW_PAD; 3620 for (i = 0; i <= ss->rx_big.mask; i += ss->rx_big.nbufs) { 3621 map = ss->rx_big.info[i].map; 3622 err = mxge_get_buf_big(ss, map, i); 3623 if (err) { 3624 device_printf(sc->dev, "alloced %d/%d bigs\n", 3625 i, ss->rx_big.mask + 1); 3626 return ENOMEM; 3627 } 3628 } 3629 return 0; 3630 } 3631 3632 static int 3633 mxge_open(mxge_softc_t *sc) 3634 { 3635 mxge_cmd_t cmd; 3636 int err, big_bytes, nbufs, slice, cl_size, i; 3637 bus_addr_t bus; 3638 volatile uint8_t *itable; 3639 struct mxge_slice_state *ss; 3640 3641 /* Copy the MAC address in case it was overridden */ 3642 bcopy(IF_LLADDR(sc->ifp), sc->mac_addr, ETHER_ADDR_LEN); 3643 3644 err = mxge_reset(sc, 1); 3645 if (err != 0) { 3646 device_printf(sc->dev, "failed to reset\n"); 3647 return EIO; 3648 } 3649 3650 if (sc->num_slices > 1) { 3651 /* setup the indirection table */ 3652 cmd.data0 = sc->num_slices; 3653 err = mxge_send_cmd(sc, MXGEFW_CMD_SET_RSS_TABLE_SIZE, 3654 &cmd); 3655 3656 err |= mxge_send_cmd(sc, MXGEFW_CMD_GET_RSS_TABLE_OFFSET, 3657 &cmd); 3658 if (err != 0) { 3659 device_printf(sc->dev, 3660 "failed to setup rss tables\n"); 3661 return err; 3662 } 3663 3664 /* just enable an identity mapping */ 3665 itable = sc->sram + cmd.data0; 3666 for (i = 0; i < sc->num_slices; i++) 3667 itable[i] = (uint8_t)i; 3668 3669 cmd.data0 = 1; 3670 cmd.data1 = mxge_rss_hash_type; 3671 err = mxge_send_cmd(sc, MXGEFW_CMD_SET_RSS_ENABLE, &cmd); 3672 if (err != 0) { 3673 device_printf(sc->dev, "failed to enable slices\n"); 3674 return err; 3675 } 3676 } 3677 3678 3679 mxge_choose_params(sc->ifp->if_mtu, &big_bytes, &cl_size, &nbufs); 3680 3681 cmd.data0 = nbufs; 3682 err = mxge_send_cmd(sc, MXGEFW_CMD_ALWAYS_USE_N_BIG_BUFFERS, 3683 &cmd); 3684 /* error is only meaningful if we're trying to set 3685 MXGEFW_CMD_ALWAYS_USE_N_BIG_BUFFERS > 1 */ 3686 if (err && nbufs > 1) { 3687 device_printf(sc->dev, 3688 "Failed to set alway-use-n to %d\n", 3689 nbufs); 3690 return EIO; 3691 } 3692 /* Give the firmware the mtu and the big and small buffer 3693 sizes. The firmware wants the big buf size to be a power 3694 of two. Luckily, FreeBSD's clusters are powers of two */ 3695 cmd.data0 = sc->ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 3696 err = mxge_send_cmd(sc, MXGEFW_CMD_SET_MTU, &cmd); 3697 cmd.data0 = MHLEN - MXGEFW_PAD; 3698 err |= mxge_send_cmd(sc, MXGEFW_CMD_SET_SMALL_BUFFER_SIZE, 3699 &cmd); 3700 cmd.data0 = big_bytes; 3701 err |= mxge_send_cmd(sc, MXGEFW_CMD_SET_BIG_BUFFER_SIZE, &cmd); 3702 3703 if (err != 0) { 3704 device_printf(sc->dev, "failed to setup params\n"); 3705 goto abort; 3706 } 3707 3708 /* Now give him the pointer to the stats block */ 3709 for (slice = 0; 3710 #ifdef IFNET_BUF_RING 3711 slice < sc->num_slices; 3712 #else 3713 slice < 1; 3714 #endif 3715 slice++) { 3716 ss = &sc->ss[slice]; 3717 cmd.data0 = 3718 MXGE_LOWPART_TO_U32(ss->fw_stats_dma.bus_addr); 3719 cmd.data1 = 3720 MXGE_HIGHPART_TO_U32(ss->fw_stats_dma.bus_addr); 3721 cmd.data2 = sizeof(struct mcp_irq_data); 3722 cmd.data2 |= (slice << 16); 3723 err |= mxge_send_cmd(sc, MXGEFW_CMD_SET_STATS_DMA_V2, &cmd); 3724 } 3725 3726 if (err != 0) { 3727 bus = sc->ss->fw_stats_dma.bus_addr; 3728 bus += offsetof(struct mcp_irq_data, send_done_count); 3729 cmd.data0 = MXGE_LOWPART_TO_U32(bus); 3730 cmd.data1 = MXGE_HIGHPART_TO_U32(bus); 3731 err = mxge_send_cmd(sc, 3732 MXGEFW_CMD_SET_STATS_DMA_OBSOLETE, 3733 &cmd); 3734 /* Firmware cannot support multicast without STATS_DMA_V2 */ 3735 sc->fw_multicast_support = 0; 3736 } else { 3737 sc->fw_multicast_support = 1; 3738 } 3739 3740 if (err != 0) { 3741 device_printf(sc->dev, "failed to setup params\n"); 3742 goto abort; 3743 } 3744 3745 for (slice = 0; slice < sc->num_slices; slice++) { 3746 err = mxge_slice_open(&sc->ss[slice], nbufs, cl_size); 3747 if (err != 0) { 3748 device_printf(sc->dev, "couldn't open slice %d\n", 3749 slice); 3750 goto abort; 3751 } 3752 } 3753 3754 /* Finally, start the firmware running */ 3755 err = mxge_send_cmd(sc, MXGEFW_CMD_ETHERNET_UP, &cmd); 3756 if (err) { 3757 device_printf(sc->dev, "Couldn't bring up link\n"); 3758 goto abort; 3759 } 3760 #ifdef IFNET_BUF_RING 3761 for (slice = 0; slice < sc->num_slices; slice++) { 3762 ss = &sc->ss[slice]; 3763 ss->if_drv_flags |= IFF_DRV_RUNNING; 3764 ss->if_drv_flags &= ~IFF_DRV_OACTIVE; 3765 } 3766 #endif 3767 sc->ifp->if_drv_flags |= IFF_DRV_RUNNING; 3768 sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3769 3770 return 0; 3771 3772 3773 abort: 3774 mxge_free_mbufs(sc); 3775 3776 return err; 3777 } 3778 3779 static int 3780 mxge_close(mxge_softc_t *sc, int down) 3781 { 3782 mxge_cmd_t cmd; 3783 int err, old_down_cnt; 3784 #ifdef IFNET_BUF_RING 3785 struct mxge_slice_state *ss; 3786 int slice; 3787 #endif 3788 3789 #ifdef IFNET_BUF_RING 3790 for (slice = 0; slice < sc->num_slices; slice++) { 3791 ss = &sc->ss[slice]; 3792 ss->if_drv_flags &= ~IFF_DRV_RUNNING; 3793 } 3794 #endif 3795 sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3796 if (!down) { 3797 old_down_cnt = sc->down_cnt; 3798 wmb(); 3799 err = mxge_send_cmd(sc, MXGEFW_CMD_ETHERNET_DOWN, &cmd); 3800 if (err) { 3801 device_printf(sc->dev, 3802 "Couldn't bring down link\n"); 3803 } 3804 if (old_down_cnt == sc->down_cnt) { 3805 /* wait for down irq */ 3806 DELAY(10 * sc->intr_coal_delay); 3807 } 3808 wmb(); 3809 if (old_down_cnt == sc->down_cnt) { 3810 device_printf(sc->dev, "never got down irq\n"); 3811 } 3812 } 3813 mxge_free_mbufs(sc); 3814 3815 return 0; 3816 } 3817 3818 static void 3819 mxge_setup_cfg_space(mxge_softc_t *sc) 3820 { 3821 device_t dev = sc->dev; 3822 int reg; 3823 uint16_t lnk, pectl; 3824 3825 /* find the PCIe link width and set max read request to 4KB*/ 3826 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 3827 lnk = pci_read_config(dev, reg + 0x12, 2); 3828 sc->link_width = (lnk >> 4) & 0x3f; 3829 3830 if (sc->pectl == 0) { 3831 pectl = pci_read_config(dev, reg + 0x8, 2); 3832 pectl = (pectl & ~0x7000) | (5 << 12); 3833 pci_write_config(dev, reg + 0x8, pectl, 2); 3834 sc->pectl = pectl; 3835 } else { 3836 /* restore saved pectl after watchdog reset */ 3837 pci_write_config(dev, reg + 0x8, sc->pectl, 2); 3838 } 3839 } 3840 3841 /* Enable DMA and Memory space access */ 3842 pci_enable_busmaster(dev); 3843 } 3844 3845 static uint32_t 3846 mxge_read_reboot(mxge_softc_t *sc) 3847 { 3848 device_t dev = sc->dev; 3849 uint32_t vs; 3850 3851 /* find the vendor specific offset */ 3852 if (pci_find_cap(dev, PCIY_VENDOR, &vs) != 0) { 3853 device_printf(sc->dev, 3854 "could not find vendor specific offset\n"); 3855 return (uint32_t)-1; 3856 } 3857 /* enable read32 mode */ 3858 pci_write_config(dev, vs + 0x10, 0x3, 1); 3859 /* tell NIC which register to read */ 3860 pci_write_config(dev, vs + 0x18, 0xfffffff0, 4); 3861 return (pci_read_config(dev, vs + 0x14, 4)); 3862 } 3863 3864 static void 3865 mxge_watchdog_reset(mxge_softc_t *sc) 3866 { 3867 struct pci_devinfo *dinfo; 3868 struct mxge_slice_state *ss; 3869 int err, running, s, num_tx_slices = 1; 3870 uint32_t reboot; 3871 uint16_t cmd; 3872 3873 err = ENXIO; 3874 3875 device_printf(sc->dev, "Watchdog reset!\n"); 3876 3877 /* 3878 * check to see if the NIC rebooted. If it did, then all of 3879 * PCI config space has been reset, and things like the 3880 * busmaster bit will be zero. If this is the case, then we 3881 * must restore PCI config space before the NIC can be used 3882 * again 3883 */ 3884 cmd = pci_read_config(sc->dev, PCIR_COMMAND, 2); 3885 if (cmd == 0xffff) { 3886 /* 3887 * maybe the watchdog caught the NIC rebooting; wait 3888 * up to 100ms for it to finish. If it does not come 3889 * back, then give up 3890 */ 3891 DELAY(1000*100); 3892 cmd = pci_read_config(sc->dev, PCIR_COMMAND, 2); 3893 if (cmd == 0xffff) { 3894 device_printf(sc->dev, "NIC disappeared!\n"); 3895 } 3896 } 3897 if ((cmd & PCIM_CMD_BUSMASTEREN) == 0) { 3898 /* print the reboot status */ 3899 reboot = mxge_read_reboot(sc); 3900 device_printf(sc->dev, "NIC rebooted, status = 0x%x\n", 3901 reboot); 3902 running = sc->ifp->if_drv_flags & IFF_DRV_RUNNING; 3903 if (running) { 3904 3905 /* 3906 * quiesce NIC so that TX routines will not try to 3907 * xmit after restoration of BAR 3908 */ 3909 3910 /* Mark the link as down */ 3911 if (sc->link_state) { 3912 sc->link_state = 0; 3913 if_link_state_change(sc->ifp, 3914 LINK_STATE_DOWN); 3915 } 3916 #ifdef IFNET_BUF_RING 3917 num_tx_slices = sc->num_slices; 3918 #endif 3919 /* grab all TX locks to ensure no tx */ 3920 for (s = 0; s < num_tx_slices; s++) { 3921 ss = &sc->ss[s]; 3922 mtx_lock(&ss->tx.mtx); 3923 } 3924 mxge_close(sc, 1); 3925 } 3926 /* restore PCI configuration space */ 3927 dinfo = device_get_ivars(sc->dev); 3928 pci_cfg_restore(sc->dev, dinfo); 3929 3930 /* and redo any changes we made to our config space */ 3931 mxge_setup_cfg_space(sc); 3932 3933 /* reload f/w */ 3934 err = mxge_load_firmware(sc, 0); 3935 if (err) { 3936 device_printf(sc->dev, 3937 "Unable to re-load f/w\n"); 3938 } 3939 if (running) { 3940 if (!err) 3941 err = mxge_open(sc); 3942 /* release all TX locks */ 3943 for (s = 0; s < num_tx_slices; s++) { 3944 ss = &sc->ss[s]; 3945 #ifdef IFNET_BUF_RING 3946 mxge_start_locked(ss); 3947 #endif 3948 mtx_unlock(&ss->tx.mtx); 3949 } 3950 } 3951 sc->watchdog_resets++; 3952 } else { 3953 device_printf(sc->dev, 3954 "NIC did not reboot, not resetting\n"); 3955 err = 0; 3956 } 3957 if (err) { 3958 device_printf(sc->dev, "watchdog reset failed\n"); 3959 } else { 3960 if (sc->dying == 2) 3961 sc->dying = 0; 3962 callout_reset(&sc->co_hdl, mxge_ticks, mxge_tick, sc); 3963 } 3964 } 3965 3966 static void 3967 mxge_watchdog_task(void *arg, int pending) 3968 { 3969 mxge_softc_t *sc = arg; 3970 3971 3972 mtx_lock(&sc->driver_mtx); 3973 mxge_watchdog_reset(sc); 3974 mtx_unlock(&sc->driver_mtx); 3975 } 3976 3977 static void 3978 mxge_warn_stuck(mxge_softc_t *sc, mxge_tx_ring_t *tx, int slice) 3979 { 3980 tx = &sc->ss[slice].tx; 3981 device_printf(sc->dev, "slice %d struck? ring state:\n", slice); 3982 device_printf(sc->dev, 3983 "tx.req=%d tx.done=%d, tx.queue_active=%d\n", 3984 tx->req, tx->done, tx->queue_active); 3985 device_printf(sc->dev, "tx.activate=%d tx.deactivate=%d\n", 3986 tx->activate, tx->deactivate); 3987 device_printf(sc->dev, "pkt_done=%d fw=%d\n", 3988 tx->pkt_done, 3989 be32toh(sc->ss->fw_stats->send_done_count)); 3990 } 3991 3992 static int 3993 mxge_watchdog(mxge_softc_t *sc) 3994 { 3995 mxge_tx_ring_t *tx; 3996 uint32_t rx_pause = be32toh(sc->ss->fw_stats->dropped_pause); 3997 int i, err = 0; 3998 3999 /* see if we have outstanding transmits, which 4000 have been pending for more than mxge_ticks */ 4001 for (i = 0; 4002 #ifdef IFNET_BUF_RING 4003 (i < sc->num_slices) && (err == 0); 4004 #else 4005 (i < 1) && (err == 0); 4006 #endif 4007 i++) { 4008 tx = &sc->ss[i].tx; 4009 if (tx->req != tx->done && 4010 tx->watchdog_req != tx->watchdog_done && 4011 tx->done == tx->watchdog_done) { 4012 /* check for pause blocking before resetting */ 4013 if (tx->watchdog_rx_pause == rx_pause) { 4014 mxge_warn_stuck(sc, tx, i); 4015 taskqueue_enqueue(sc->tq, &sc->watchdog_task); 4016 return (ENXIO); 4017 } 4018 else 4019 device_printf(sc->dev, "Flow control blocking " 4020 "xmits, check link partner\n"); 4021 } 4022 4023 tx->watchdog_req = tx->req; 4024 tx->watchdog_done = tx->done; 4025 tx->watchdog_rx_pause = rx_pause; 4026 } 4027 4028 if (sc->need_media_probe) 4029 mxge_media_probe(sc); 4030 return (err); 4031 } 4032 4033 static uint64_t 4034 mxge_get_counter(struct ifnet *ifp, ift_counter cnt) 4035 { 4036 struct mxge_softc *sc; 4037 uint64_t rv; 4038 4039 sc = if_getsoftc(ifp); 4040 rv = 0; 4041 4042 switch (cnt) { 4043 case IFCOUNTER_IPACKETS: 4044 for (int s = 0; s < sc->num_slices; s++) 4045 rv += sc->ss[s].ipackets; 4046 return (rv); 4047 case IFCOUNTER_OPACKETS: 4048 for (int s = 0; s < sc->num_slices; s++) 4049 rv += sc->ss[s].opackets; 4050 return (rv); 4051 case IFCOUNTER_OERRORS: 4052 for (int s = 0; s < sc->num_slices; s++) 4053 rv += sc->ss[s].oerrors; 4054 return (rv); 4055 #ifdef IFNET_BUF_RING 4056 case IFCOUNTER_OBYTES: 4057 for (int s = 0; s < sc->num_slices; s++) 4058 rv += sc->ss[s].obytes; 4059 return (rv); 4060 case IFCOUNTER_OMCASTS: 4061 for (int s = 0; s < sc->num_slices; s++) 4062 rv += sc->ss[s].omcasts; 4063 return (rv); 4064 case IFCOUNTER_OQDROPS: 4065 for (int s = 0; s < sc->num_slices; s++) 4066 rv += sc->ss[s].tx.br->br_drops; 4067 return (rv); 4068 #endif 4069 default: 4070 return (if_get_counter_default(ifp, cnt)); 4071 } 4072 } 4073 4074 static void 4075 mxge_tick(void *arg) 4076 { 4077 mxge_softc_t *sc = arg; 4078 u_long pkts = 0; 4079 int err = 0; 4080 int running, ticks; 4081 uint16_t cmd; 4082 4083 ticks = mxge_ticks; 4084 running = sc->ifp->if_drv_flags & IFF_DRV_RUNNING; 4085 if (running) { 4086 if (!sc->watchdog_countdown) { 4087 err = mxge_watchdog(sc); 4088 sc->watchdog_countdown = 4; 4089 } 4090 sc->watchdog_countdown--; 4091 } 4092 if (pkts == 0) { 4093 /* ensure NIC did not suffer h/w fault while idle */ 4094 cmd = pci_read_config(sc->dev, PCIR_COMMAND, 2); 4095 if ((cmd & PCIM_CMD_BUSMASTEREN) == 0) { 4096 sc->dying = 2; 4097 taskqueue_enqueue(sc->tq, &sc->watchdog_task); 4098 err = ENXIO; 4099 } 4100 /* look less often if NIC is idle */ 4101 ticks *= 4; 4102 } 4103 4104 if (err == 0) 4105 callout_reset(&sc->co_hdl, ticks, mxge_tick, sc); 4106 4107 } 4108 4109 static int 4110 mxge_media_change(struct ifnet *ifp) 4111 { 4112 return EINVAL; 4113 } 4114 4115 static int 4116 mxge_change_mtu(mxge_softc_t *sc, int mtu) 4117 { 4118 struct ifnet *ifp = sc->ifp; 4119 int real_mtu, old_mtu; 4120 int err = 0; 4121 4122 4123 real_mtu = mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 4124 if ((real_mtu > sc->max_mtu) || real_mtu < 60) 4125 return EINVAL; 4126 mtx_lock(&sc->driver_mtx); 4127 old_mtu = ifp->if_mtu; 4128 ifp->if_mtu = mtu; 4129 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4130 mxge_close(sc, 0); 4131 err = mxge_open(sc); 4132 if (err != 0) { 4133 ifp->if_mtu = old_mtu; 4134 mxge_close(sc, 0); 4135 (void) mxge_open(sc); 4136 } 4137 } 4138 mtx_unlock(&sc->driver_mtx); 4139 return err; 4140 } 4141 4142 static void 4143 mxge_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4144 { 4145 mxge_softc_t *sc = ifp->if_softc; 4146 4147 4148 if (sc == NULL) 4149 return; 4150 ifmr->ifm_status = IFM_AVALID; 4151 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 4152 ifmr->ifm_status |= sc->link_state ? IFM_ACTIVE : 0; 4153 ifmr->ifm_active |= sc->current_media; 4154 } 4155 4156 static int 4157 mxge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 4158 { 4159 mxge_softc_t *sc = ifp->if_softc; 4160 struct ifreq *ifr = (struct ifreq *)data; 4161 int err, mask; 4162 4163 err = 0; 4164 switch (command) { 4165 case SIOCSIFADDR: 4166 case SIOCGIFADDR: 4167 err = ether_ioctl(ifp, command, data); 4168 break; 4169 4170 case SIOCSIFMTU: 4171 err = mxge_change_mtu(sc, ifr->ifr_mtu); 4172 break; 4173 4174 case SIOCSIFFLAGS: 4175 mtx_lock(&sc->driver_mtx); 4176 if (sc->dying) { 4177 mtx_unlock(&sc->driver_mtx); 4178 return EINVAL; 4179 } 4180 if (ifp->if_flags & IFF_UP) { 4181 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4182 err = mxge_open(sc); 4183 } else { 4184 /* take care of promis can allmulti 4185 flag chages */ 4186 mxge_change_promisc(sc, 4187 ifp->if_flags & IFF_PROMISC); 4188 mxge_set_multicast_list(sc); 4189 } 4190 } else { 4191 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4192 mxge_close(sc, 0); 4193 } 4194 } 4195 mtx_unlock(&sc->driver_mtx); 4196 break; 4197 4198 case SIOCADDMULTI: 4199 case SIOCDELMULTI: 4200 mtx_lock(&sc->driver_mtx); 4201 mxge_set_multicast_list(sc); 4202 mtx_unlock(&sc->driver_mtx); 4203 break; 4204 4205 case SIOCSIFCAP: 4206 mtx_lock(&sc->driver_mtx); 4207 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 4208 if (mask & IFCAP_TXCSUM) { 4209 if (IFCAP_TXCSUM & ifp->if_capenable) { 4210 ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4); 4211 ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP); 4212 } else { 4213 ifp->if_capenable |= IFCAP_TXCSUM; 4214 ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP); 4215 } 4216 } else if (mask & IFCAP_RXCSUM) { 4217 if (IFCAP_RXCSUM & ifp->if_capenable) { 4218 ifp->if_capenable &= ~IFCAP_RXCSUM; 4219 } else { 4220 ifp->if_capenable |= IFCAP_RXCSUM; 4221 } 4222 } 4223 if (mask & IFCAP_TSO4) { 4224 if (IFCAP_TSO4 & ifp->if_capenable) { 4225 ifp->if_capenable &= ~IFCAP_TSO4; 4226 } else if (IFCAP_TXCSUM & ifp->if_capenable) { 4227 ifp->if_capenable |= IFCAP_TSO4; 4228 ifp->if_hwassist |= CSUM_TSO; 4229 } else { 4230 printf("mxge requires tx checksum offload" 4231 " be enabled to use TSO\n"); 4232 err = EINVAL; 4233 } 4234 } 4235 #if IFCAP_TSO6 4236 if (mask & IFCAP_TXCSUM_IPV6) { 4237 if (IFCAP_TXCSUM_IPV6 & ifp->if_capenable) { 4238 ifp->if_capenable &= ~(IFCAP_TXCSUM_IPV6 4239 | IFCAP_TSO6); 4240 ifp->if_hwassist &= ~(CSUM_TCP_IPV6 4241 | CSUM_UDP); 4242 } else { 4243 ifp->if_capenable |= IFCAP_TXCSUM_IPV6; 4244 ifp->if_hwassist |= (CSUM_TCP_IPV6 4245 | CSUM_UDP_IPV6); 4246 } 4247 } else if (mask & IFCAP_RXCSUM_IPV6) { 4248 if (IFCAP_RXCSUM_IPV6 & ifp->if_capenable) { 4249 ifp->if_capenable &= ~IFCAP_RXCSUM_IPV6; 4250 } else { 4251 ifp->if_capenable |= IFCAP_RXCSUM_IPV6; 4252 } 4253 } 4254 if (mask & IFCAP_TSO6) { 4255 if (IFCAP_TSO6 & ifp->if_capenable) { 4256 ifp->if_capenable &= ~IFCAP_TSO6; 4257 } else if (IFCAP_TXCSUM_IPV6 & ifp->if_capenable) { 4258 ifp->if_capenable |= IFCAP_TSO6; 4259 ifp->if_hwassist |= CSUM_TSO; 4260 } else { 4261 printf("mxge requires tx checksum offload" 4262 " be enabled to use TSO\n"); 4263 err = EINVAL; 4264 } 4265 } 4266 #endif /*IFCAP_TSO6 */ 4267 4268 if (mask & IFCAP_LRO) 4269 ifp->if_capenable ^= IFCAP_LRO; 4270 if (mask & IFCAP_VLAN_HWTAGGING) 4271 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 4272 if (mask & IFCAP_VLAN_HWTSO) 4273 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 4274 4275 if (!(ifp->if_capabilities & IFCAP_VLAN_HWTSO) || 4276 !(ifp->if_capenable & IFCAP_VLAN_HWTAGGING)) 4277 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 4278 4279 mtx_unlock(&sc->driver_mtx); 4280 VLAN_CAPABILITIES(ifp); 4281 4282 break; 4283 4284 case SIOCGIFMEDIA: 4285 mtx_lock(&sc->driver_mtx); 4286 mxge_media_probe(sc); 4287 mtx_unlock(&sc->driver_mtx); 4288 err = ifmedia_ioctl(ifp, (struct ifreq *)data, 4289 &sc->media, command); 4290 break; 4291 4292 default: 4293 err = ENOTTY; 4294 } 4295 return err; 4296 } 4297 4298 static void 4299 mxge_fetch_tunables(mxge_softc_t *sc) 4300 { 4301 4302 TUNABLE_INT_FETCH("hw.mxge.max_slices", &mxge_max_slices); 4303 TUNABLE_INT_FETCH("hw.mxge.flow_control_enabled", 4304 &mxge_flow_control); 4305 TUNABLE_INT_FETCH("hw.mxge.intr_coal_delay", 4306 &mxge_intr_coal_delay); 4307 TUNABLE_INT_FETCH("hw.mxge.nvidia_ecrc_enable", 4308 &mxge_nvidia_ecrc_enable); 4309 TUNABLE_INT_FETCH("hw.mxge.force_firmware", 4310 &mxge_force_firmware); 4311 TUNABLE_INT_FETCH("hw.mxge.deassert_wait", 4312 &mxge_deassert_wait); 4313 TUNABLE_INT_FETCH("hw.mxge.verbose", 4314 &mxge_verbose); 4315 TUNABLE_INT_FETCH("hw.mxge.ticks", &mxge_ticks); 4316 TUNABLE_INT_FETCH("hw.mxge.always_promisc", &mxge_always_promisc); 4317 TUNABLE_INT_FETCH("hw.mxge.rss_hash_type", &mxge_rss_hash_type); 4318 TUNABLE_INT_FETCH("hw.mxge.rss_hashtype", &mxge_rss_hash_type); 4319 TUNABLE_INT_FETCH("hw.mxge.initial_mtu", &mxge_initial_mtu); 4320 TUNABLE_INT_FETCH("hw.mxge.throttle", &mxge_throttle); 4321 4322 if (bootverbose) 4323 mxge_verbose = 1; 4324 if (mxge_intr_coal_delay < 0 || mxge_intr_coal_delay > 10*1000) 4325 mxge_intr_coal_delay = 30; 4326 if (mxge_ticks == 0) 4327 mxge_ticks = hz / 2; 4328 sc->pause = mxge_flow_control; 4329 if (mxge_rss_hash_type < MXGEFW_RSS_HASH_TYPE_IPV4 4330 || mxge_rss_hash_type > MXGEFW_RSS_HASH_TYPE_MAX) { 4331 mxge_rss_hash_type = MXGEFW_RSS_HASH_TYPE_SRC_DST_PORT; 4332 } 4333 if (mxge_initial_mtu > ETHERMTU_JUMBO || 4334 mxge_initial_mtu < ETHER_MIN_LEN) 4335 mxge_initial_mtu = ETHERMTU_JUMBO; 4336 4337 if (mxge_throttle && mxge_throttle > MXGE_MAX_THROTTLE) 4338 mxge_throttle = MXGE_MAX_THROTTLE; 4339 if (mxge_throttle && mxge_throttle < MXGE_MIN_THROTTLE) 4340 mxge_throttle = MXGE_MIN_THROTTLE; 4341 sc->throttle = mxge_throttle; 4342 } 4343 4344 4345 static void 4346 mxge_free_slices(mxge_softc_t *sc) 4347 { 4348 struct mxge_slice_state *ss; 4349 int i; 4350 4351 4352 if (sc->ss == NULL) 4353 return; 4354 4355 for (i = 0; i < sc->num_slices; i++) { 4356 ss = &sc->ss[i]; 4357 if (ss->fw_stats != NULL) { 4358 mxge_dma_free(&ss->fw_stats_dma); 4359 ss->fw_stats = NULL; 4360 #ifdef IFNET_BUF_RING 4361 if (ss->tx.br != NULL) { 4362 drbr_free(ss->tx.br, M_DEVBUF); 4363 ss->tx.br = NULL; 4364 } 4365 #endif 4366 mtx_destroy(&ss->tx.mtx); 4367 } 4368 if (ss->rx_done.entry != NULL) { 4369 mxge_dma_free(&ss->rx_done.dma); 4370 ss->rx_done.entry = NULL; 4371 } 4372 } 4373 free(sc->ss, M_DEVBUF); 4374 sc->ss = NULL; 4375 } 4376 4377 static int 4378 mxge_alloc_slices(mxge_softc_t *sc) 4379 { 4380 mxge_cmd_t cmd; 4381 struct mxge_slice_state *ss; 4382 size_t bytes; 4383 int err, i, max_intr_slots; 4384 4385 err = mxge_send_cmd(sc, MXGEFW_CMD_GET_RX_RING_SIZE, &cmd); 4386 if (err != 0) { 4387 device_printf(sc->dev, "Cannot determine rx ring size\n"); 4388 return err; 4389 } 4390 sc->rx_ring_size = cmd.data0; 4391 max_intr_slots = 2 * (sc->rx_ring_size / sizeof (mcp_dma_addr_t)); 4392 4393 bytes = sizeof (*sc->ss) * sc->num_slices; 4394 sc->ss = malloc(bytes, M_DEVBUF, M_NOWAIT | M_ZERO); 4395 if (sc->ss == NULL) 4396 return (ENOMEM); 4397 for (i = 0; i < sc->num_slices; i++) { 4398 ss = &sc->ss[i]; 4399 4400 ss->sc = sc; 4401 4402 /* allocate per-slice rx interrupt queues */ 4403 4404 bytes = max_intr_slots * sizeof (*ss->rx_done.entry); 4405 err = mxge_dma_alloc(sc, &ss->rx_done.dma, bytes, 4096); 4406 if (err != 0) 4407 goto abort; 4408 ss->rx_done.entry = ss->rx_done.dma.addr; 4409 bzero(ss->rx_done.entry, bytes); 4410 4411 /* 4412 * allocate the per-slice firmware stats; stats 4413 * (including tx) are used used only on the first 4414 * slice for now 4415 */ 4416 #ifndef IFNET_BUF_RING 4417 if (i > 0) 4418 continue; 4419 #endif 4420 4421 bytes = sizeof (*ss->fw_stats); 4422 err = mxge_dma_alloc(sc, &ss->fw_stats_dma, 4423 sizeof (*ss->fw_stats), 64); 4424 if (err != 0) 4425 goto abort; 4426 ss->fw_stats = (mcp_irq_data_t *)ss->fw_stats_dma.addr; 4427 snprintf(ss->tx.mtx_name, sizeof(ss->tx.mtx_name), 4428 "%s:tx(%d)", device_get_nameunit(sc->dev), i); 4429 mtx_init(&ss->tx.mtx, ss->tx.mtx_name, NULL, MTX_DEF); 4430 #ifdef IFNET_BUF_RING 4431 ss->tx.br = buf_ring_alloc(2048, M_DEVBUF, M_WAITOK, 4432 &ss->tx.mtx); 4433 #endif 4434 } 4435 4436 return (0); 4437 4438 abort: 4439 mxge_free_slices(sc); 4440 return (ENOMEM); 4441 } 4442 4443 static void 4444 mxge_slice_probe(mxge_softc_t *sc) 4445 { 4446 mxge_cmd_t cmd; 4447 char *old_fw; 4448 int msix_cnt, status, max_intr_slots; 4449 4450 sc->num_slices = 1; 4451 /* 4452 * don't enable multiple slices if they are not enabled, 4453 * or if this is not an SMP system 4454 */ 4455 4456 if (mxge_max_slices == 0 || mxge_max_slices == 1 || mp_ncpus < 2) 4457 return; 4458 4459 /* see how many MSI-X interrupts are available */ 4460 msix_cnt = pci_msix_count(sc->dev); 4461 if (msix_cnt < 2) 4462 return; 4463 4464 /* now load the slice aware firmware see what it supports */ 4465 old_fw = sc->fw_name; 4466 if (old_fw == mxge_fw_aligned) 4467 sc->fw_name = mxge_fw_rss_aligned; 4468 else 4469 sc->fw_name = mxge_fw_rss_unaligned; 4470 status = mxge_load_firmware(sc, 0); 4471 if (status != 0) { 4472 device_printf(sc->dev, "Falling back to a single slice\n"); 4473 return; 4474 } 4475 4476 /* try to send a reset command to the card to see if it 4477 is alive */ 4478 memset(&cmd, 0, sizeof (cmd)); 4479 status = mxge_send_cmd(sc, MXGEFW_CMD_RESET, &cmd); 4480 if (status != 0) { 4481 device_printf(sc->dev, "failed reset\n"); 4482 goto abort_with_fw; 4483 } 4484 4485 /* get rx ring size */ 4486 status = mxge_send_cmd(sc, MXGEFW_CMD_GET_RX_RING_SIZE, &cmd); 4487 if (status != 0) { 4488 device_printf(sc->dev, "Cannot determine rx ring size\n"); 4489 goto abort_with_fw; 4490 } 4491 max_intr_slots = 2 * (cmd.data0 / sizeof (mcp_dma_addr_t)); 4492 4493 /* tell it the size of the interrupt queues */ 4494 cmd.data0 = max_intr_slots * sizeof (struct mcp_slot); 4495 status = mxge_send_cmd(sc, MXGEFW_CMD_SET_INTRQ_SIZE, &cmd); 4496 if (status != 0) { 4497 device_printf(sc->dev, "failed MXGEFW_CMD_SET_INTRQ_SIZE\n"); 4498 goto abort_with_fw; 4499 } 4500 4501 /* ask the maximum number of slices it supports */ 4502 status = mxge_send_cmd(sc, MXGEFW_CMD_GET_MAX_RSS_QUEUES, &cmd); 4503 if (status != 0) { 4504 device_printf(sc->dev, 4505 "failed MXGEFW_CMD_GET_MAX_RSS_QUEUES\n"); 4506 goto abort_with_fw; 4507 } 4508 sc->num_slices = cmd.data0; 4509 if (sc->num_slices > msix_cnt) 4510 sc->num_slices = msix_cnt; 4511 4512 if (mxge_max_slices == -1) { 4513 /* cap to number of CPUs in system */ 4514 if (sc->num_slices > mp_ncpus) 4515 sc->num_slices = mp_ncpus; 4516 } else { 4517 if (sc->num_slices > mxge_max_slices) 4518 sc->num_slices = mxge_max_slices; 4519 } 4520 /* make sure it is a power of two */ 4521 while (sc->num_slices & (sc->num_slices - 1)) 4522 sc->num_slices--; 4523 4524 if (mxge_verbose) 4525 device_printf(sc->dev, "using %d slices\n", 4526 sc->num_slices); 4527 4528 return; 4529 4530 abort_with_fw: 4531 sc->fw_name = old_fw; 4532 (void) mxge_load_firmware(sc, 0); 4533 } 4534 4535 static int 4536 mxge_add_msix_irqs(mxge_softc_t *sc) 4537 { 4538 size_t bytes; 4539 int count, err, i, rid; 4540 4541 rid = PCIR_BAR(2); 4542 sc->msix_table_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 4543 &rid, RF_ACTIVE); 4544 4545 if (sc->msix_table_res == NULL) { 4546 device_printf(sc->dev, "couldn't alloc MSIX table res\n"); 4547 return ENXIO; 4548 } 4549 4550 count = sc->num_slices; 4551 err = pci_alloc_msix(sc->dev, &count); 4552 if (err != 0) { 4553 device_printf(sc->dev, "pci_alloc_msix: failed, wanted %d" 4554 "err = %d \n", sc->num_slices, err); 4555 goto abort_with_msix_table; 4556 } 4557 if (count < sc->num_slices) { 4558 device_printf(sc->dev, "pci_alloc_msix: need %d, got %d\n", 4559 count, sc->num_slices); 4560 device_printf(sc->dev, 4561 "Try setting hw.mxge.max_slices to %d\n", 4562 count); 4563 err = ENOSPC; 4564 goto abort_with_msix; 4565 } 4566 bytes = sizeof (*sc->msix_irq_res) * sc->num_slices; 4567 sc->msix_irq_res = malloc(bytes, M_DEVBUF, M_NOWAIT|M_ZERO); 4568 if (sc->msix_irq_res == NULL) { 4569 err = ENOMEM; 4570 goto abort_with_msix; 4571 } 4572 4573 for (i = 0; i < sc->num_slices; i++) { 4574 rid = i + 1; 4575 sc->msix_irq_res[i] = bus_alloc_resource_any(sc->dev, 4576 SYS_RES_IRQ, 4577 &rid, RF_ACTIVE); 4578 if (sc->msix_irq_res[i] == NULL) { 4579 device_printf(sc->dev, "couldn't allocate IRQ res" 4580 " for message %d\n", i); 4581 err = ENXIO; 4582 goto abort_with_res; 4583 } 4584 } 4585 4586 bytes = sizeof (*sc->msix_ih) * sc->num_slices; 4587 sc->msix_ih = malloc(bytes, M_DEVBUF, M_NOWAIT|M_ZERO); 4588 4589 for (i = 0; i < sc->num_slices; i++) { 4590 err = bus_setup_intr(sc->dev, sc->msix_irq_res[i], 4591 INTR_TYPE_NET | INTR_MPSAFE, 4592 #if __FreeBSD_version > 700030 4593 NULL, 4594 #endif 4595 mxge_intr, &sc->ss[i], &sc->msix_ih[i]); 4596 if (err != 0) { 4597 device_printf(sc->dev, "couldn't setup intr for " 4598 "message %d\n", i); 4599 goto abort_with_intr; 4600 } 4601 bus_describe_intr(sc->dev, sc->msix_irq_res[i], 4602 sc->msix_ih[i], "s%d", i); 4603 } 4604 4605 if (mxge_verbose) { 4606 device_printf(sc->dev, "using %d msix IRQs:", 4607 sc->num_slices); 4608 for (i = 0; i < sc->num_slices; i++) 4609 printf(" %jd", rman_get_start(sc->msix_irq_res[i])); 4610 printf("\n"); 4611 } 4612 return (0); 4613 4614 abort_with_intr: 4615 for (i = 0; i < sc->num_slices; i++) { 4616 if (sc->msix_ih[i] != NULL) { 4617 bus_teardown_intr(sc->dev, sc->msix_irq_res[i], 4618 sc->msix_ih[i]); 4619 sc->msix_ih[i] = NULL; 4620 } 4621 } 4622 free(sc->msix_ih, M_DEVBUF); 4623 4624 4625 abort_with_res: 4626 for (i = 0; i < sc->num_slices; i++) { 4627 rid = i + 1; 4628 if (sc->msix_irq_res[i] != NULL) 4629 bus_release_resource(sc->dev, SYS_RES_IRQ, rid, 4630 sc->msix_irq_res[i]); 4631 sc->msix_irq_res[i] = NULL; 4632 } 4633 free(sc->msix_irq_res, M_DEVBUF); 4634 4635 4636 abort_with_msix: 4637 pci_release_msi(sc->dev); 4638 4639 abort_with_msix_table: 4640 bus_release_resource(sc->dev, SYS_RES_MEMORY, PCIR_BAR(2), 4641 sc->msix_table_res); 4642 4643 return err; 4644 } 4645 4646 static int 4647 mxge_add_single_irq(mxge_softc_t *sc) 4648 { 4649 int count, err, rid; 4650 4651 count = pci_msi_count(sc->dev); 4652 if (count == 1 && pci_alloc_msi(sc->dev, &count) == 0) { 4653 rid = 1; 4654 } else { 4655 rid = 0; 4656 sc->legacy_irq = 1; 4657 } 4658 sc->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &rid, 4659 RF_SHAREABLE | RF_ACTIVE); 4660 if (sc->irq_res == NULL) { 4661 device_printf(sc->dev, "could not alloc interrupt\n"); 4662 return ENXIO; 4663 } 4664 if (mxge_verbose) 4665 device_printf(sc->dev, "using %s irq %jd\n", 4666 sc->legacy_irq ? "INTx" : "MSI", 4667 rman_get_start(sc->irq_res)); 4668 err = bus_setup_intr(sc->dev, sc->irq_res, 4669 INTR_TYPE_NET | INTR_MPSAFE, 4670 #if __FreeBSD_version > 700030 4671 NULL, 4672 #endif 4673 mxge_intr, &sc->ss[0], &sc->ih); 4674 if (err != 0) { 4675 bus_release_resource(sc->dev, SYS_RES_IRQ, 4676 sc->legacy_irq ? 0 : 1, sc->irq_res); 4677 if (!sc->legacy_irq) 4678 pci_release_msi(sc->dev); 4679 } 4680 return err; 4681 } 4682 4683 static void 4684 mxge_rem_msix_irqs(mxge_softc_t *sc) 4685 { 4686 int i, rid; 4687 4688 for (i = 0; i < sc->num_slices; i++) { 4689 if (sc->msix_ih[i] != NULL) { 4690 bus_teardown_intr(sc->dev, sc->msix_irq_res[i], 4691 sc->msix_ih[i]); 4692 sc->msix_ih[i] = NULL; 4693 } 4694 } 4695 free(sc->msix_ih, M_DEVBUF); 4696 4697 for (i = 0; i < sc->num_slices; i++) { 4698 rid = i + 1; 4699 if (sc->msix_irq_res[i] != NULL) 4700 bus_release_resource(sc->dev, SYS_RES_IRQ, rid, 4701 sc->msix_irq_res[i]); 4702 sc->msix_irq_res[i] = NULL; 4703 } 4704 free(sc->msix_irq_res, M_DEVBUF); 4705 4706 bus_release_resource(sc->dev, SYS_RES_MEMORY, PCIR_BAR(2), 4707 sc->msix_table_res); 4708 4709 pci_release_msi(sc->dev); 4710 return; 4711 } 4712 4713 static void 4714 mxge_rem_single_irq(mxge_softc_t *sc) 4715 { 4716 bus_teardown_intr(sc->dev, sc->irq_res, sc->ih); 4717 bus_release_resource(sc->dev, SYS_RES_IRQ, 4718 sc->legacy_irq ? 0 : 1, sc->irq_res); 4719 if (!sc->legacy_irq) 4720 pci_release_msi(sc->dev); 4721 } 4722 4723 static void 4724 mxge_rem_irq(mxge_softc_t *sc) 4725 { 4726 if (sc->num_slices > 1) 4727 mxge_rem_msix_irqs(sc); 4728 else 4729 mxge_rem_single_irq(sc); 4730 } 4731 4732 static int 4733 mxge_add_irq(mxge_softc_t *sc) 4734 { 4735 int err; 4736 4737 if (sc->num_slices > 1) 4738 err = mxge_add_msix_irqs(sc); 4739 else 4740 err = mxge_add_single_irq(sc); 4741 4742 if (0 && err == 0 && sc->num_slices > 1) { 4743 mxge_rem_msix_irqs(sc); 4744 err = mxge_add_msix_irqs(sc); 4745 } 4746 return err; 4747 } 4748 4749 4750 static int 4751 mxge_attach(device_t dev) 4752 { 4753 mxge_cmd_t cmd; 4754 mxge_softc_t *sc = device_get_softc(dev); 4755 struct ifnet *ifp; 4756 int err, rid; 4757 4758 sc->dev = dev; 4759 mxge_fetch_tunables(sc); 4760 4761 TASK_INIT(&sc->watchdog_task, 1, mxge_watchdog_task, sc); 4762 sc->tq = taskqueue_create("mxge_taskq", M_WAITOK, 4763 taskqueue_thread_enqueue, &sc->tq); 4764 if (sc->tq == NULL) { 4765 err = ENOMEM; 4766 goto abort_with_nothing; 4767 } 4768 4769 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 4770 1, /* alignment */ 4771 0, /* boundary */ 4772 BUS_SPACE_MAXADDR, /* low */ 4773 BUS_SPACE_MAXADDR, /* high */ 4774 NULL, NULL, /* filter */ 4775 65536 + 256, /* maxsize */ 4776 MXGE_MAX_SEND_DESC, /* num segs */ 4777 65536, /* maxsegsize */ 4778 0, /* flags */ 4779 NULL, NULL, /* lock */ 4780 &sc->parent_dmat); /* tag */ 4781 4782 if (err != 0) { 4783 device_printf(sc->dev, "Err %d allocating parent dmat\n", 4784 err); 4785 goto abort_with_tq; 4786 } 4787 4788 ifp = sc->ifp = if_alloc(IFT_ETHER); 4789 if (ifp == NULL) { 4790 device_printf(dev, "can not if_alloc()\n"); 4791 err = ENOSPC; 4792 goto abort_with_parent_dmat; 4793 } 4794 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 4795 4796 snprintf(sc->cmd_mtx_name, sizeof(sc->cmd_mtx_name), "%s:cmd", 4797 device_get_nameunit(dev)); 4798 mtx_init(&sc->cmd_mtx, sc->cmd_mtx_name, NULL, MTX_DEF); 4799 snprintf(sc->driver_mtx_name, sizeof(sc->driver_mtx_name), 4800 "%s:drv", device_get_nameunit(dev)); 4801 mtx_init(&sc->driver_mtx, sc->driver_mtx_name, 4802 MTX_NETWORK_LOCK, MTX_DEF); 4803 4804 callout_init_mtx(&sc->co_hdl, &sc->driver_mtx, 0); 4805 4806 mxge_setup_cfg_space(sc); 4807 4808 /* Map the board into the kernel */ 4809 rid = PCIR_BARS; 4810 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 4811 RF_ACTIVE); 4812 if (sc->mem_res == NULL) { 4813 device_printf(dev, "could not map memory\n"); 4814 err = ENXIO; 4815 goto abort_with_lock; 4816 } 4817 sc->sram = rman_get_virtual(sc->mem_res); 4818 sc->sram_size = 2*1024*1024 - (2*(48*1024)+(32*1024)) - 0x100; 4819 if (sc->sram_size > rman_get_size(sc->mem_res)) { 4820 device_printf(dev, "impossible memory region size %jd\n", 4821 rman_get_size(sc->mem_res)); 4822 err = ENXIO; 4823 goto abort_with_mem_res; 4824 } 4825 4826 /* make NULL terminated copy of the EEPROM strings section of 4827 lanai SRAM */ 4828 bzero(sc->eeprom_strings, MXGE_EEPROM_STRINGS_SIZE); 4829 bus_space_read_region_1(rman_get_bustag(sc->mem_res), 4830 rman_get_bushandle(sc->mem_res), 4831 sc->sram_size - MXGE_EEPROM_STRINGS_SIZE, 4832 sc->eeprom_strings, 4833 MXGE_EEPROM_STRINGS_SIZE - 2); 4834 err = mxge_parse_strings(sc); 4835 if (err != 0) 4836 goto abort_with_mem_res; 4837 4838 /* Enable write combining for efficient use of PCIe bus */ 4839 mxge_enable_wc(sc); 4840 4841 /* Allocate the out of band dma memory */ 4842 err = mxge_dma_alloc(sc, &sc->cmd_dma, 4843 sizeof (mxge_cmd_t), 64); 4844 if (err != 0) 4845 goto abort_with_mem_res; 4846 sc->cmd = (mcp_cmd_response_t *) sc->cmd_dma.addr; 4847 err = mxge_dma_alloc(sc, &sc->zeropad_dma, 64, 64); 4848 if (err != 0) 4849 goto abort_with_cmd_dma; 4850 4851 err = mxge_dma_alloc(sc, &sc->dmabench_dma, 4096, 4096); 4852 if (err != 0) 4853 goto abort_with_zeropad_dma; 4854 4855 /* select & load the firmware */ 4856 err = mxge_select_firmware(sc); 4857 if (err != 0) 4858 goto abort_with_dmabench; 4859 sc->intr_coal_delay = mxge_intr_coal_delay; 4860 4861 mxge_slice_probe(sc); 4862 err = mxge_alloc_slices(sc); 4863 if (err != 0) 4864 goto abort_with_dmabench; 4865 4866 err = mxge_reset(sc, 0); 4867 if (err != 0) 4868 goto abort_with_slices; 4869 4870 err = mxge_alloc_rings(sc); 4871 if (err != 0) { 4872 device_printf(sc->dev, "failed to allocate rings\n"); 4873 goto abort_with_slices; 4874 } 4875 4876 err = mxge_add_irq(sc); 4877 if (err != 0) { 4878 device_printf(sc->dev, "failed to add irq\n"); 4879 goto abort_with_rings; 4880 } 4881 4882 ifp->if_baudrate = IF_Gbps(10); 4883 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4 | 4884 IFCAP_VLAN_MTU | IFCAP_LINKSTATE | IFCAP_TXCSUM_IPV6 | 4885 IFCAP_RXCSUM_IPV6; 4886 #if defined(INET) || defined(INET6) 4887 ifp->if_capabilities |= IFCAP_LRO; 4888 #endif 4889 4890 #ifdef MXGE_NEW_VLAN_API 4891 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM; 4892 4893 /* Only FW 1.4.32 and newer can do TSO over vlans */ 4894 if (sc->fw_ver_major == 1 && sc->fw_ver_minor == 4 && 4895 sc->fw_ver_tiny >= 32) 4896 ifp->if_capabilities |= IFCAP_VLAN_HWTSO; 4897 #endif 4898 sc->max_mtu = mxge_max_mtu(sc); 4899 if (sc->max_mtu >= 9000) 4900 ifp->if_capabilities |= IFCAP_JUMBO_MTU; 4901 else 4902 device_printf(dev, "MTU limited to %d. Install " 4903 "latest firmware for 9000 byte jumbo support\n", 4904 sc->max_mtu - ETHER_HDR_LEN); 4905 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_TSO; 4906 ifp->if_hwassist |= CSUM_TCP_IPV6 | CSUM_UDP_IPV6; 4907 /* check to see if f/w supports TSO for IPv6 */ 4908 if (!mxge_send_cmd(sc, MXGEFW_CMD_GET_MAX_TSO6_HDR_SIZE, &cmd)) { 4909 if (CSUM_TCP_IPV6) 4910 ifp->if_capabilities |= IFCAP_TSO6; 4911 sc->max_tso6_hlen = min(cmd.data0, 4912 sizeof (sc->ss[0].scratch)); 4913 } 4914 ifp->if_capenable = ifp->if_capabilities; 4915 if (sc->lro_cnt == 0) 4916 ifp->if_capenable &= ~IFCAP_LRO; 4917 ifp->if_init = mxge_init; 4918 ifp->if_softc = sc; 4919 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 4920 ifp->if_ioctl = mxge_ioctl; 4921 ifp->if_start = mxge_start; 4922 ifp->if_get_counter = mxge_get_counter; 4923 /* Initialise the ifmedia structure */ 4924 ifmedia_init(&sc->media, 0, mxge_media_change, 4925 mxge_media_status); 4926 mxge_media_init(sc); 4927 mxge_media_probe(sc); 4928 sc->dying = 0; 4929 ether_ifattach(ifp, sc->mac_addr); 4930 /* ether_ifattach sets mtu to ETHERMTU */ 4931 if (mxge_initial_mtu != ETHERMTU) 4932 mxge_change_mtu(sc, mxge_initial_mtu); 4933 4934 mxge_add_sysctls(sc); 4935 #ifdef IFNET_BUF_RING 4936 ifp->if_transmit = mxge_transmit; 4937 ifp->if_qflush = mxge_qflush; 4938 #endif 4939 taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq", 4940 device_get_nameunit(sc->dev)); 4941 callout_reset(&sc->co_hdl, mxge_ticks, mxge_tick, sc); 4942 return 0; 4943 4944 abort_with_rings: 4945 mxge_free_rings(sc); 4946 abort_with_slices: 4947 mxge_free_slices(sc); 4948 abort_with_dmabench: 4949 mxge_dma_free(&sc->dmabench_dma); 4950 abort_with_zeropad_dma: 4951 mxge_dma_free(&sc->zeropad_dma); 4952 abort_with_cmd_dma: 4953 mxge_dma_free(&sc->cmd_dma); 4954 abort_with_mem_res: 4955 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BARS, sc->mem_res); 4956 abort_with_lock: 4957 pci_disable_busmaster(dev); 4958 mtx_destroy(&sc->cmd_mtx); 4959 mtx_destroy(&sc->driver_mtx); 4960 if_free(ifp); 4961 abort_with_parent_dmat: 4962 bus_dma_tag_destroy(sc->parent_dmat); 4963 abort_with_tq: 4964 if (sc->tq != NULL) { 4965 taskqueue_drain(sc->tq, &sc->watchdog_task); 4966 taskqueue_free(sc->tq); 4967 sc->tq = NULL; 4968 } 4969 abort_with_nothing: 4970 return err; 4971 } 4972 4973 static int 4974 mxge_detach(device_t dev) 4975 { 4976 mxge_softc_t *sc = device_get_softc(dev); 4977 4978 if (mxge_vlans_active(sc)) { 4979 device_printf(sc->dev, 4980 "Detach vlans before removing module\n"); 4981 return EBUSY; 4982 } 4983 mtx_lock(&sc->driver_mtx); 4984 sc->dying = 1; 4985 if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) 4986 mxge_close(sc, 0); 4987 mtx_unlock(&sc->driver_mtx); 4988 ether_ifdetach(sc->ifp); 4989 if (sc->tq != NULL) { 4990 taskqueue_drain(sc->tq, &sc->watchdog_task); 4991 taskqueue_free(sc->tq); 4992 sc->tq = NULL; 4993 } 4994 callout_drain(&sc->co_hdl); 4995 ifmedia_removeall(&sc->media); 4996 mxge_dummy_rdma(sc, 0); 4997 mxge_rem_sysctls(sc); 4998 mxge_rem_irq(sc); 4999 mxge_free_rings(sc); 5000 mxge_free_slices(sc); 5001 mxge_dma_free(&sc->dmabench_dma); 5002 mxge_dma_free(&sc->zeropad_dma); 5003 mxge_dma_free(&sc->cmd_dma); 5004 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BARS, sc->mem_res); 5005 pci_disable_busmaster(dev); 5006 mtx_destroy(&sc->cmd_mtx); 5007 mtx_destroy(&sc->driver_mtx); 5008 if_free(sc->ifp); 5009 bus_dma_tag_destroy(sc->parent_dmat); 5010 return 0; 5011 } 5012 5013 static int 5014 mxge_shutdown(device_t dev) 5015 { 5016 return 0; 5017 } 5018 5019 /* 5020 This file uses Myri10GE driver indentation. 5021 5022 Local Variables: 5023 c-file-style:"linux" 5024 tab-width:8 5025 End: 5026 */ 5027