xref: /freebsd/sys/dev/mwl/mwlhal.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007-2009 Marvell Semiconductor, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
16  *    redistribution must be conditioned upon including a substantially
17  *    similar Disclaimer requirement for further binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
23  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
24  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
25  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
28  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGES.
31  *
32  * $FreeBSD$
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sysctl.h>
38 #include <sys/malloc.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/kernel.h>
42 #include <sys/errno.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 
46 #include <sys/linker.h>
47 #include <sys/firmware.h>
48 
49 #include <machine/bus.h>
50 
51 #include <dev/mwl/mwlhal.h>
52 #include <dev/mwl/mwlreg.h>
53 
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <net/if.h>
57 #include <dev/mwl/mwldiag.h>
58 
59 #define	MWLHAL_DEBUG			/* debug msgs */
60 
61 typedef enum {
62     WL_ANTENNAMODE_RX = 0xffff,
63     WL_ANTENNAMODE_TX = 2,
64 } wlantennamode_e;
65 
66 typedef enum {
67     WL_TX_POWERLEVEL_LOW = 5,
68     WL_TX_POWERLEVEL_MEDIUM = 10,
69     WL_TX_POWERLEVEL_HIGH = 15,
70 } wltxpowerlevel_e;
71 
72 #define	MWL_CMDBUF_SIZE	0x4000		/* size of f/w command buffer */
73 #define	MWL_BASTREAMS_MAX	7	/* max BA streams (NB: fw >3.3.5.9) */
74 #define	MWL_BAQID_MAX		8	/* max BA Q id's (NB: fw >3.3.5.9) */
75 #define	MWL_MBSS_AP_MAX		8	/* max ap vap's */
76 #define	MWL_MBSS_STA_MAX	24	/* max station/client vap's */
77 #define	MWL_MBSS_MAX	(MWL_MBSS_AP_MAX+MWL_MBSS_STA_MAX)
78 
79 /*
80  * BA stream -> queue ID mapping
81  *
82  * The first 2 streams map to h/w; the remaining streams are
83  * implemented in firmware.
84  */
85 static const int ba2qid[MWL_BASTREAMS_MAX] = {
86 	5, 6				/* h/w supported */
87 #if MWL_BASTREAMS_MAX == 7
88 	, 7, 0, 1, 2, 3 		/* f/w supported */
89 #endif
90 };
91 static int qid2ba[MWL_BAQID_MAX];
92 
93 #define	IEEE80211_ADDR_LEN	6	/* XXX */
94 #define	IEEE80211_ADDR_COPY(_dst, _src) \
95 	memcpy(_dst, _src, IEEE80211_ADDR_LEN)
96 #define	IEEE80211_ADDR_EQ(_dst, _src) \
97 	(memcmp(_dst, _src, IEEE80211_ADDR_LEN) == 0)
98 
99 #define	_CMD_SETUP(pCmd, type, cmd) do {				\
100 	pCmd = (type *)&mh->mh_cmdbuf[0];				\
101 	memset(pCmd, 0, sizeof(type));					\
102 	pCmd->CmdHdr.Cmd = htole16(cmd);				\
103 	pCmd->CmdHdr.Length = htole16(sizeof(type));			\
104 } while (0)
105 
106 #define	_VCMD_SETUP(vap, pCmd, type, cmd) do {				\
107 	_CMD_SETUP(pCmd, type, cmd);					\
108 	pCmd->CmdHdr.MacId = vap->macid;				\
109 } while (0)
110 
111 #define	PWTAGETRATETABLE20M	14*4
112 #define	PWTAGETRATETABLE40M	9*4
113 #define	PWTAGETRATETABLE20M_5G	35*4
114 #define	PWTAGETRATETABLE40M_5G	16*4
115 
116 struct mwl_hal_bastream {
117 	MWL_HAL_BASTREAM public;	/* public state */
118 	uint8_t	stream;			/* stream # */
119 	uint8_t	setup;			/* f/w cmd sent */
120 	uint8_t ba_policy;		/* direct/delayed BA policy */
121 	uint8_t	tid;
122 	uint8_t	paraminfo;
123 	uint8_t macaddr[IEEE80211_ADDR_LEN];
124 };
125 
126 struct mwl_hal_priv;
127 
128 struct mwl_hal_vap {
129 	struct mwl_hal_priv *mh;	/* back pointer */
130 	uint16_t bss_type;		/* f/w type */
131 	uint8_t vap_type;		/* MWL_HAL_BSSTYPE */
132 	uint8_t	macid;			/* for passing to f/w */
133 	uint8_t flags;
134 #define	MVF_RUNNING	0x01		/* BSS_START issued */
135 #define	MVF_STATION	0x02		/* sta db entry created */
136 	uint8_t mac[IEEE80211_ADDR_LEN];/* mac address */
137 };
138 #define	MWLVAP(_vap)	((_vap)->mh)
139 
140 /*
141  * Per-device state.  We allocate a single cmd buffer for
142  * submitting operations to the firmware.  Access to this
143  * buffer (and the f/w) are single-threaded.  At present
144  * we spin waiting for cmds to complete which is bad.  Not
145  * sure if it's possible to submit multiple requests or
146  * control when we get cmd done interrupts.  There's no
147  * documentation and no example code to indicate what can
148  * or cannot be done so all we can do right now is follow the
149  * linux driver logic.  This falls apart when the f/w fails;
150  * the system comes to a crawl as we spin waiting for operations
151  * to finish.
152  */
153 struct mwl_hal_priv {
154 	struct mwl_hal	public;		/* public area */
155 	device_t	mh_dev;
156 	char		mh_mtxname[12];
157 	struct mtx	mh_mtx;
158 	bus_dma_tag_t	mh_dmat;	/* bus DMA tag for cmd buffer */
159 	bus_dma_segment_t mh_seg;	/* segment for cmd buffer */
160 	bus_dmamap_t	mh_dmamap;	/* DMA map for cmd buffer */
161 	uint16_t	*mh_cmdbuf;	/* f/w cmd buffer */
162 	bus_addr_t	mh_cmdaddr;	/* physaddr of cmd buffer */
163 	int		mh_flags;
164 #define	MHF_CALDATA	0x0001		/* cal data retrieved */
165 #define	MHF_FWHANG	0x0002		/* fw appears hung */
166 #define	MHF_MBSS	0x0004		/* mbss enabled */
167 	struct mwl_hal_vap mh_vaps[MWL_MBSS_MAX+1];
168 	int		mh_bastreams;	/* bit mask of available BA streams */
169 	int		mh_regioncode;	/* XXX last region code sent to fw */
170 	struct mwl_hal_bastream mh_streams[MWL_BASTREAMS_MAX];
171 	int		mh_debug;
172 	MWL_HAL_CHANNELINFO mh_20M;
173 	MWL_HAL_CHANNELINFO mh_40M;
174 	MWL_HAL_CHANNELINFO mh_20M_5G;
175 	MWL_HAL_CHANNELINFO mh_40M_5G;
176 	int		mh_SDRAMSIZE_Addr;
177 	uint32_t	mh_RTSSuccesses;/* cumulative stats for read-on-clear */
178 	uint32_t	mh_RTSFailures;
179 	uint32_t	mh_RxDuplicateFrames;
180 	uint32_t	mh_FCSErrorCount;
181 	MWL_DIAG_REVS	mh_revs;
182 };
183 #define	MWLPRIV(_mh)	((struct mwl_hal_priv *)(_mh))
184 
185 static int mwl_hal_setmac_locked(struct mwl_hal_vap *,
186 	const uint8_t addr[IEEE80211_ADDR_LEN]);
187 static int mwlExecuteCmd(struct mwl_hal_priv *, unsigned short cmd);
188 static int mwlGetPwrCalTable(struct mwl_hal_priv *);
189 #ifdef MWLHAL_DEBUG
190 static const char *mwlcmdname(int cmd);
191 static void dumpresult(struct mwl_hal_priv *, int showresult);
192 #endif /* MWLHAL_DEBUG */
193 
194 SYSCTL_DECL(_hw_mwl);
195 static SYSCTL_NODE(_hw_mwl, OID_AUTO, hal, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
196     "Marvell HAL parameters");
197 
198 static __inline void
199 MWL_HAL_LOCK(struct mwl_hal_priv *mh)
200 {
201 	mtx_lock(&mh->mh_mtx);
202 }
203 
204 static __inline void
205 MWL_HAL_LOCK_ASSERT(struct mwl_hal_priv *mh)
206 {
207 	mtx_assert(&mh->mh_mtx, MA_OWNED);
208 }
209 
210 static __inline void
211 MWL_HAL_UNLOCK(struct mwl_hal_priv *mh)
212 {
213 	mtx_unlock(&mh->mh_mtx);
214 }
215 
216 static __inline uint32_t
217 RD4(struct mwl_hal_priv *mh, bus_size_t off)
218 {
219 	return bus_space_read_4(mh->public.mh_iot, mh->public.mh_ioh, off);
220 }
221 
222 static __inline void
223 WR4(struct mwl_hal_priv *mh, bus_size_t off, uint32_t val)
224 {
225 	bus_space_write_4(mh->public.mh_iot, mh->public.mh_ioh, off, val);
226 }
227 
228 static void
229 mwl_hal_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
230 {
231 	bus_addr_t *paddr = (bus_addr_t*) arg;
232 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
233 	*paddr = segs->ds_addr;
234 }
235 
236 /*
237  * Setup for communication with the device.  We allocate
238  * a command buffer and map it for bus dma use.  The pci
239  * device id is used to identify whether the device has
240  * SRAM on it (in which case f/w download must include a
241  * memory controller reset).  All bus i/o operations happen
242  * in BAR 1; the driver passes in the tag and handle we need.
243  */
244 struct mwl_hal *
245 mwl_hal_attach(device_t dev, uint16_t devid,
246     bus_space_handle_t ioh, bus_space_tag_t iot, bus_dma_tag_t tag)
247 {
248 	struct mwl_hal_priv *mh;
249 	struct mwl_hal_vap *hvap;
250 	int error, i;
251 
252 	mh = malloc(sizeof(struct mwl_hal_priv), M_DEVBUF, M_NOWAIT | M_ZERO);
253 	if (mh == NULL)
254 		return NULL;
255 	mh->mh_dev = dev;
256 	mh->public.mh_ioh = ioh;
257 	mh->public.mh_iot = iot;
258 	for (i = 0; i < MWL_BASTREAMS_MAX; i++) {
259 		mh->mh_streams[i].public.txq = ba2qid[i];
260 		mh->mh_streams[i].stream = i;
261 		/* construct back-mapping while we're at it */
262 		if (mh->mh_streams[i].public.txq < MWL_BAQID_MAX)
263 			qid2ba[mh->mh_streams[i].public.txq] = i;
264 		else
265 			device_printf(dev, "unexpected BA tx qid %d for "
266 			    "stream %d\n", mh->mh_streams[i].public.txq, i);
267 	}
268 	/* setup constant portion of vap state */
269 	/* XXX should get max ap/client vap's from f/w */
270 	i = 0;
271 	hvap = &mh->mh_vaps[i];
272 	hvap->vap_type = MWL_HAL_AP;
273 	hvap->bss_type = htole16(WL_MAC_TYPE_PRIMARY_AP);
274 	hvap->macid = 0;
275 	for (i++; i < MWL_MBSS_AP_MAX; i++) {
276 		hvap = &mh->mh_vaps[i];
277 		hvap->vap_type = MWL_HAL_AP;
278 		hvap->bss_type = htole16(WL_MAC_TYPE_SECONDARY_AP);
279 		hvap->macid = i;
280 	}
281 	hvap = &mh->mh_vaps[i];
282 	hvap->vap_type = MWL_HAL_STA;
283 	hvap->bss_type = htole16(WL_MAC_TYPE_PRIMARY_CLIENT);
284 	hvap->macid = i;
285 	for (i++; i < MWL_MBSS_MAX; i++) {
286 		hvap = &mh->mh_vaps[i];
287 		hvap->vap_type = MWL_HAL_STA;
288 		hvap->bss_type = htole16(WL_MAC_TYPE_SECONDARY_CLIENT);
289 		hvap->macid = i;
290 	}
291 	mh->mh_revs.mh_devid = devid;
292 	snprintf(mh->mh_mtxname, sizeof(mh->mh_mtxname),
293 	    "%s_hal", device_get_nameunit(dev));
294 	mtx_init(&mh->mh_mtx, mh->mh_mtxname, NULL, MTX_DEF);
295 
296 	/*
297 	 * Allocate the command buffer and map into the address
298 	 * space of the h/w.  We request "coherent" memory which
299 	 * will be uncached on some architectures.
300 	 */
301 	error = bus_dma_tag_create(tag,		/* parent */
302 		       PAGE_SIZE, 0,		/* alignment, bounds */
303 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
304 		       BUS_SPACE_MAXADDR,	/* highaddr */
305 		       NULL, NULL,		/* filter, filterarg */
306 		       MWL_CMDBUF_SIZE,		/* maxsize */
307 		       1,			/* nsegments */
308 		       MWL_CMDBUF_SIZE,		/* maxsegsize */
309 		       BUS_DMA_ALLOCNOW,	/* flags */
310 		       NULL,			/* lockfunc */
311 		       NULL,			/* lockarg */
312 		       &mh->mh_dmat);
313 	if (error != 0) {
314 		device_printf(dev, "unable to allocate memory for cmd tag, "
315 			"error %u\n", error);
316 		goto fail0;
317 	}
318 
319 	/* allocate descriptors */
320 	error = bus_dmamem_alloc(mh->mh_dmat, (void**) &mh->mh_cmdbuf,
321 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
322 				 &mh->mh_dmamap);
323 	if (error != 0) {
324 		device_printf(dev, "unable to allocate memory for cmd buffer, "
325 			"error %u\n", error);
326 		goto fail1;
327 	}
328 
329 	error = bus_dmamap_load(mh->mh_dmat, mh->mh_dmamap,
330 				mh->mh_cmdbuf, MWL_CMDBUF_SIZE,
331 				mwl_hal_load_cb, &mh->mh_cmdaddr,
332 				BUS_DMA_NOWAIT);
333 	if (error != 0) {
334 		device_printf(dev, "unable to load cmd buffer, error %u\n",
335 			error);
336 		goto fail2;
337 	}
338 
339 	/*
340 	 * Some cards have SDRAM.  When loading firmware we need
341 	 * to reset the SDRAM controller prior to doing this.
342 	 * When the SDRAMSIZE is non-zero we do that work in
343 	 * mwl_hal_fwload.
344 	 */
345 	switch (devid) {
346 	case 0x2a02:		/* CB82 */
347 	case 0x2a03:		/* CB85 */
348 	case 0x2a08:		/* MC85_B1 */
349 	case 0x2a0b:		/* CB85AP */
350 	case 0x2a24:
351 		mh->mh_SDRAMSIZE_Addr = 0x40fe70b7;	/* 8M SDRAM */
352 		break;
353 	case 0x2a04:		/* MC85 */
354 		mh->mh_SDRAMSIZE_Addr = 0x40fc70b7;	/* 16M SDRAM */
355 		break;
356 	default:
357 		break;
358 	}
359 	return &mh->public;
360 fail2:
361 	bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap);
362 fail1:
363 	bus_dma_tag_destroy(mh->mh_dmat);
364 fail0:
365 	mtx_destroy(&mh->mh_mtx);
366 	free(mh, M_DEVBUF);
367 	return NULL;
368 }
369 
370 void
371 mwl_hal_detach(struct mwl_hal *mh0)
372 {
373 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
374 
375 	bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap);
376 	bus_dma_tag_destroy(mh->mh_dmat);
377 	mtx_destroy(&mh->mh_mtx);
378 	free(mh, M_DEVBUF);
379 }
380 
381 /*
382  * Reset internal state after a firmware download.
383  */
384 static int
385 mwlResetHalState(struct mwl_hal_priv *mh)
386 {
387 	int i;
388 
389 	/* XXX get from f/w */
390 	mh->mh_bastreams = (1<<MWL_BASTREAMS_MAX)-1;
391 	for (i = 0; i < MWL_MBSS_MAX; i++)
392 		mh->mh_vaps[i].mh = NULL;
393 	/*
394 	 * Clear cumulative stats.
395 	 */
396 	mh->mh_RTSSuccesses = 0;
397 	mh->mh_RTSFailures = 0;
398 	mh->mh_RxDuplicateFrames = 0;
399 	mh->mh_FCSErrorCount = 0;
400 	/*
401 	 * Fetch cal data for later use.
402 	 * XXX may want to fetch other stuff too.
403 	 */
404 	/* XXX check return */
405 	if ((mh->mh_flags & MHF_CALDATA) == 0)
406 		mwlGetPwrCalTable(mh);
407 	return 0;
408 }
409 
410 struct mwl_hal_vap *
411 mwl_hal_newvap(struct mwl_hal *mh0, MWL_HAL_BSSTYPE type,
412 	const uint8_t mac[IEEE80211_ADDR_LEN])
413 {
414 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
415 	struct mwl_hal_vap *vap;
416 	int i;
417 
418 	MWL_HAL_LOCK(mh);
419 	/* NB: could optimize but not worth it w/ max 32 bss */
420 	for (i = 0; i < MWL_MBSS_MAX; i++) {
421 		vap = &mh->mh_vaps[i];
422 		if (vap->vap_type == type && vap->mh == NULL) {
423 			vap->mh = mh;
424 			mwl_hal_setmac_locked(vap, mac);
425 			break;
426 		}
427 	}
428 	MWL_HAL_UNLOCK(mh);
429 	return (i < MWL_MBSS_MAX) ? vap : NULL;
430 }
431 
432 void
433 mwl_hal_delvap(struct mwl_hal_vap *vap)
434 {
435 	/* NB: locking not needed for single write */
436 	vap->mh = NULL;
437 }
438 
439 /*
440  * Manipulate the debug mask.  Note debug
441  * msgs are only provided when this code is
442  * compiled with MWLHAL_DEBUG defined.
443  */
444 
445 void
446 mwl_hal_setdebug(struct mwl_hal *mh, int debug)
447 {
448 	MWLPRIV(mh)->mh_debug = debug;
449 }
450 
451 int
452 mwl_hal_getdebug(struct mwl_hal *mh)
453 {
454 	return MWLPRIV(mh)->mh_debug;
455 }
456 
457 void
458 mwl_hal_setbastreams(struct mwl_hal *mh, int mask)
459 {
460 	MWLPRIV(mh)->mh_bastreams = mask & ((1<<MWL_BASTREAMS_MAX)-1);
461 }
462 
463 int
464 mwl_hal_getbastreams(struct mwl_hal *mh)
465 {
466 	return MWLPRIV(mh)->mh_bastreams;
467 }
468 
469 int
470 mwl_hal_ismbsscapable(struct mwl_hal *mh)
471 {
472 	return (MWLPRIV(mh)->mh_flags & MHF_MBSS) != 0;
473 }
474 
475 #if 0
476 /* XXX inlined */
477 /*
478  * Return the current ISR setting and clear the cause.
479  * XXX maybe make inline
480  */
481 void
482 mwl_hal_getisr(struct mwl_hal *mh0, uint32_t *status)
483 {
484 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
485 	uint32_t cause;
486 
487 	cause = RD4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE);
488 	if (cause == 0xffffffff) {	/* card removed */
489 device_printf(mh->mh_dev, "%s: cause 0x%x\n", __func__, cause);
490 		cause = 0;
491 	} else if (cause != 0) {
492 		/* clear cause bits */
493 		WR4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE,
494 		    cause &~ mh->public.mh_imask);
495 		RD4(mh, MACREG_REG_INT_CODE);	/* XXX flush write? */
496 	}
497 	*status = cause;
498 }
499 #endif
500 
501 /*
502  * Set the interrupt mask.
503  */
504 void
505 mwl_hal_intrset(struct mwl_hal *mh0, uint32_t mask)
506 {
507 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
508 
509 	WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, 0);
510 	RD4(mh, MACREG_REG_INT_CODE);
511 
512 	mh->public.mh_imask = mask;
513 	WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, mask);
514 	RD4(mh, MACREG_REG_INT_CODE);
515 }
516 
517 #if 0
518 /* XXX inlined */
519 /*
520  * Kick the firmware to tell it there are new tx descriptors
521  * for processing.  The driver says what h/w q has work in
522  * case the f/w ever gets smarter.
523  */
524 void
525 mwl_hal_txstart(struct mwl_hal *mh0, int qnum)
526 {
527 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
528 	uint32_t dummy;
529 
530 	WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_PPA_READY);
531 	dummy = RD4(mh, MACREG_REG_INT_CODE);
532 }
533 #endif
534 
535 /*
536  * Callback from the driver on a cmd done interrupt.
537  * Nothing to do right now as we spin waiting for
538  * cmd completion.
539  */
540 void
541 mwl_hal_cmddone(struct mwl_hal *mh0)
542 {
543 #if 0
544 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
545 
546 	if (mh->mh_debug & MWL_HAL_DEBUG_CMDDONE) {
547 		device_printf(mh->mh_dev, "cmd done interrupt:\n");
548 		dumpresult(mh, 1);
549 	}
550 #endif
551 }
552 
553 /*
554  * Return "hw specs".  Note this must be the first
555  * cmd MUST be done after a firmware download or the
556  * f/w will lockup.
557  * XXX move into the hal so driver doesn't need to be responsible
558  */
559 int
560 mwl_hal_gethwspecs(struct mwl_hal *mh0, struct mwl_hal_hwspec *hw)
561 {
562 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
563 	HostCmd_DS_GET_HW_SPEC *pCmd;
564 	int retval, minrev;
565 
566 	MWL_HAL_LOCK(mh);
567 	_CMD_SETUP(pCmd, HostCmd_DS_GET_HW_SPEC, HostCmd_CMD_GET_HW_SPEC);
568 	memset(&pCmd->PermanentAddr[0], 0xff, IEEE80211_ADDR_LEN);
569 	pCmd->ulFwAwakeCookie = htole32((unsigned int)mh->mh_cmdaddr+2048);
570 
571 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_HW_SPEC);
572 	if (retval == 0) {
573 		IEEE80211_ADDR_COPY(hw->macAddr, pCmd->PermanentAddr);
574 		hw->wcbBase[0] = le32toh(pCmd->WcbBase0) & 0x0000ffff;
575 		hw->wcbBase[1] = le32toh(pCmd->WcbBase1[0]) & 0x0000ffff;
576 		hw->wcbBase[2] = le32toh(pCmd->WcbBase1[1]) & 0x0000ffff;
577 		hw->wcbBase[3] = le32toh(pCmd->WcbBase1[2]) & 0x0000ffff;
578 		hw->rxDescRead = le32toh(pCmd->RxPdRdPtr)& 0x0000ffff;
579 		hw->rxDescWrite = le32toh(pCmd->RxPdWrPtr)& 0x0000ffff;
580 		hw->regionCode = le16toh(pCmd->RegionCode) & 0x00ff;
581 		hw->fwReleaseNumber = le32toh(pCmd->FWReleaseNumber);
582 		hw->maxNumWCB = le16toh(pCmd->NumOfWCB);
583 		hw->maxNumMCAddr = le16toh(pCmd->NumOfMCastAddr);
584 		hw->numAntennas = le16toh(pCmd->NumberOfAntenna);
585 		hw->hwVersion = pCmd->Version;
586 		hw->hostInterface = pCmd->HostIf;
587 
588 		mh->mh_revs.mh_macRev = hw->hwVersion;		/* XXX */
589 		mh->mh_revs.mh_phyRev = hw->hostInterface;	/* XXX */
590 
591 		minrev = ((hw->fwReleaseNumber) >> 16) & 0xff;
592 		if (minrev >= 4) {
593 			/* starting with 3.4.x.x s/w BA streams supported */
594 			mh->mh_bastreams &= (1<<MWL_BASTREAMS_MAX)-1;
595 		} else
596 			mh->mh_bastreams &= (1<<2)-1;
597 	}
598 	MWL_HAL_UNLOCK(mh);
599 	return retval;
600 }
601 
602 /*
603  * Inform the f/w about location of the tx/rx dma data structures
604  * and related state.  This cmd must be done immediately after a
605  * mwl_hal_gethwspecs call or the f/w will lockup.
606  */
607 int
608 mwl_hal_sethwdma(struct mwl_hal *mh0, const struct mwl_hal_txrxdma *dma)
609 {
610 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
611 	HostCmd_DS_SET_HW_SPEC *pCmd;
612 	int retval;
613 
614 	MWL_HAL_LOCK(mh);
615 	_CMD_SETUP(pCmd, HostCmd_DS_SET_HW_SPEC, HostCmd_CMD_SET_HW_SPEC);
616 	pCmd->WcbBase[0] = htole32(dma->wcbBase[0]);
617 	pCmd->WcbBase[1] = htole32(dma->wcbBase[1]);
618 	pCmd->WcbBase[2] = htole32(dma->wcbBase[2]);
619 	pCmd->WcbBase[3] = htole32(dma->wcbBase[3]);
620 	pCmd->TxWcbNumPerQueue = htole32(dma->maxNumTxWcb);
621 	pCmd->NumTxQueues = htole32(dma->maxNumWCB);
622 	pCmd->TotalRxWcb = htole32(1);		/* XXX */
623 	pCmd->RxPdWrPtr = htole32(dma->rxDescRead);
624 	pCmd->Flags = htole32(SET_HW_SPEC_HOSTFORM_BEACON
625 #ifdef MWL_HOST_PS_SUPPORT
626 		    | SET_HW_SPEC_HOST_POWERSAVE
627 #endif
628 		    | SET_HW_SPEC_HOSTFORM_PROBERESP);
629 	/* disable multi-bss operation for A1-A4 parts */
630 	if (mh->mh_revs.mh_macRev < 5)
631 		pCmd->Flags |= htole32(SET_HW_SPEC_DISABLEMBSS);
632 
633 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_HW_SPEC);
634 	if (retval == 0) {
635 		if (pCmd->Flags & htole32(SET_HW_SPEC_DISABLEMBSS))
636 			mh->mh_flags &= ~MHF_MBSS;
637 		else
638 			mh->mh_flags |= MHF_MBSS;
639 	}
640 	MWL_HAL_UNLOCK(mh);
641 	return retval;
642 }
643 
644 /*
645  * Retrieve statistics from the f/w.
646  * XXX should be in memory shared w/ driver
647  */
648 int
649 mwl_hal_gethwstats(struct mwl_hal *mh0, struct mwl_hal_hwstats *stats)
650 {
651 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
652 	HostCmd_DS_802_11_GET_STAT *pCmd;
653 	int retval;
654 
655 	MWL_HAL_LOCK(mh);
656 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_GET_STAT,
657 		HostCmd_CMD_802_11_GET_STAT);
658 
659 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_GET_STAT);
660 	if (retval == 0) {
661 		const uint32_t *sp = (const uint32_t *)&pCmd->TxRetrySuccesses;
662 		uint32_t *dp = (uint32_t *)&stats->TxRetrySuccesses;
663 		int i;
664 
665 		for (i = 0; i < sizeof(*stats)/sizeof(uint32_t); i++)
666 			dp[i] = le32toh(sp[i]);
667 		/*
668 		 * Update stats not returned by f/w but available
669 		 * through public registers.  Note these registers
670 		 * are "clear on read" so we maintain cumulative data.
671 		 * XXX register defines
672 		 */
673 		mh->mh_RTSSuccesses += RD4(mh, 0xa834);
674 		mh->mh_RTSFailures += RD4(mh, 0xa830);
675 		mh->mh_RxDuplicateFrames += RD4(mh, 0xa84c);
676 		mh->mh_FCSErrorCount += RD4(mh, 0xa840);
677 	}
678 	MWL_HAL_UNLOCK(mh);
679 
680 	stats->RTSSuccesses = mh->mh_RTSSuccesses;
681 	stats->RTSFailures = mh->mh_RTSFailures;
682 	stats->RxDuplicateFrames = mh->mh_RxDuplicateFrames;
683 	stats->FCSErrorCount = mh->mh_FCSErrorCount;
684 	return retval;
685 }
686 
687 /*
688  * Set HT guard interval handling.
689  * Takes effect immediately.
690  */
691 int
692 mwl_hal_sethtgi(struct mwl_hal_vap *vap, int GIType)
693 {
694 	struct mwl_hal_priv *mh = MWLVAP(vap);
695 	HostCmd_FW_HT_GUARD_INTERVAL *pCmd;
696 	int retval;
697 
698 	MWL_HAL_LOCK(mh);
699 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_HT_GUARD_INTERVAL,
700 		HostCmd_CMD_HT_GUARD_INTERVAL);
701 	pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
702 
703 	if (GIType == 0) {
704 		pCmd->GIType = htole32(GI_TYPE_LONG);
705 	} else if (GIType == 1) {
706 		pCmd->GIType = htole32(GI_TYPE_LONG | GI_TYPE_SHORT);
707 	} else {
708 		pCmd->GIType = htole32(GI_TYPE_LONG);
709 	}
710 
711 	retval = mwlExecuteCmd(mh, HostCmd_CMD_HT_GUARD_INTERVAL);
712 	MWL_HAL_UNLOCK(mh);
713 	return retval;
714 }
715 
716 /*
717  * Configure radio.
718  * Takes effect immediately.
719  * XXX preamble installed after set fixed rate cmd
720  */
721 int
722 mwl_hal_setradio(struct mwl_hal *mh0, int onoff, MWL_HAL_PREAMBLE preamble)
723 {
724 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
725 	HostCmd_DS_802_11_RADIO_CONTROL *pCmd;
726 	int retval;
727 
728 	MWL_HAL_LOCK(mh);
729 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RADIO_CONTROL,
730 		HostCmd_CMD_802_11_RADIO_CONTROL);
731 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
732 	if (onoff == 0)
733 		pCmd->Control = 0;
734 	else
735 		pCmd->Control = htole16(preamble);
736 	pCmd->RadioOn = htole16(onoff);
737 
738 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RADIO_CONTROL);
739 	MWL_HAL_UNLOCK(mh);
740 	return retval;
741 }
742 
743 /*
744  * Configure antenna use.
745  * Takes effect immediately.
746  * XXX tx antenna setting ignored
747  * XXX rx antenna setting should always be 3 (for now)
748  */
749 int
750 mwl_hal_setantenna(struct mwl_hal *mh0, MWL_HAL_ANTENNA dirSet, int ant)
751 {
752 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
753 	HostCmd_DS_802_11_RF_ANTENNA *pCmd;
754 	int retval;
755 
756 	if (!(dirSet == WL_ANTENNATYPE_RX || dirSet == WL_ANTENNATYPE_TX))
757 		return EINVAL;
758 
759 	MWL_HAL_LOCK(mh);
760 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_ANTENNA,
761 		HostCmd_CMD_802_11_RF_ANTENNA);
762 	pCmd->Action = htole16(dirSet);
763 	if (ant == 0)			/* default to all/both antennae */
764 		ant = 3;
765 	pCmd->AntennaMode = htole16(ant);
766 
767 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_ANTENNA);
768 	MWL_HAL_UNLOCK(mh);
769 	return retval;
770 }
771 
772 /*
773  * Set packet size threshold for implicit use of RTS.
774  * Takes effect immediately.
775  * XXX packet length > threshold =>'s RTS
776  */
777 int
778 mwl_hal_setrtsthreshold(struct mwl_hal_vap *vap, int threshold)
779 {
780 	struct mwl_hal_priv *mh = MWLVAP(vap);
781 	HostCmd_DS_802_11_RTS_THSD *pCmd;
782 	int retval;
783 
784 	MWL_HAL_LOCK(mh);
785 	_VCMD_SETUP(vap, pCmd, HostCmd_DS_802_11_RTS_THSD,
786 		HostCmd_CMD_802_11_RTS_THSD);
787 	pCmd->Action  = htole16(HostCmd_ACT_GEN_SET);
788 	pCmd->Threshold = htole16(threshold);
789 
790 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RTS_THSD);
791 	MWL_HAL_UNLOCK(mh);
792 	return retval;
793 }
794 
795 /*
796  * Enable sta-mode operation (disables beacon frame xmit).
797  */
798 int
799 mwl_hal_setinframode(struct mwl_hal_vap *vap)
800 {
801 	struct mwl_hal_priv *mh = MWLVAP(vap);
802 	HostCmd_FW_SET_INFRA_MODE *pCmd;
803 	int retval;
804 
805 	MWL_HAL_LOCK(mh);
806 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_INFRA_MODE,
807 		HostCmd_CMD_SET_INFRA_MODE);
808 
809 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_INFRA_MODE);
810 	MWL_HAL_UNLOCK(mh);
811 	return retval;
812 }
813 
814 /*
815  * Configure radar detection in support of 802.11h.
816  */
817 int
818 mwl_hal_setradardetection(struct mwl_hal *mh0, MWL_HAL_RADAR action)
819 {
820 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
821 	HostCmd_802_11h_Detect_Radar *pCmd;
822 	int retval;
823 
824 	MWL_HAL_LOCK(mh);
825 	_CMD_SETUP(pCmd, HostCmd_802_11h_Detect_Radar,
826 		HostCmd_CMD_802_11H_DETECT_RADAR);
827 	pCmd->CmdHdr.Length = htole16(sizeof(HostCmd_802_11h_Detect_Radar));
828 	pCmd->Action = htole16(action);
829 	if (mh->mh_regioncode == DOMAIN_CODE_ETSI_131)
830 		pCmd->RadarTypeCode = htole16(131);
831 
832 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11H_DETECT_RADAR);
833 	MWL_HAL_UNLOCK(mh);
834 	return retval;
835 }
836 
837 /*
838  * Convert public channel flags definition to a
839  * value suitable for feeding to the firmware.
840  * Note this includes byte swapping.
841  */
842 static uint32_t
843 cvtChannelFlags(const MWL_HAL_CHANNEL *chan)
844 {
845 	uint32_t w;
846 
847 	/*
848 	 * NB: f/w only understands FREQ_BAND_5GHZ, supplying the more
849 	 *     precise band info causes it to lockup (sometimes).
850 	 */
851 	w = (chan->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) ?
852 		FREQ_BAND_2DOT4GHZ : FREQ_BAND_5GHZ;
853 	switch (chan->channelFlags.ChnlWidth) {
854 	case MWL_CH_10_MHz_WIDTH:
855 		w |= CH_10_MHz_WIDTH;
856 		break;
857 	case MWL_CH_20_MHz_WIDTH:
858 		w |= CH_20_MHz_WIDTH;
859 		break;
860 	case MWL_CH_40_MHz_WIDTH:
861 	default:
862 		w |= CH_40_MHz_WIDTH;
863 		break;
864 	}
865 	switch (chan->channelFlags.ExtChnlOffset) {
866 	case MWL_EXT_CH_NONE:
867 		w |= EXT_CH_NONE;
868 		break;
869 	case MWL_EXT_CH_ABOVE_CTRL_CH:
870 		w |= EXT_CH_ABOVE_CTRL_CH;
871 		break;
872 	case MWL_EXT_CH_BELOW_CTRL_CH:
873 		w |= EXT_CH_BELOW_CTRL_CH;
874 		break;
875 	}
876 	return htole32(w);
877 }
878 
879 /*
880  * Start a channel switch announcement countdown.  The IE
881  * in the beacon frame is allowed to go out and the firmware
882  * counts down and notifies the host when it's time to switch
883  * channels.
884  */
885 int
886 mwl_hal_setchannelswitchie(struct mwl_hal *mh0,
887 	const MWL_HAL_CHANNEL *nextchan, uint32_t mode, uint32_t count)
888 {
889 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
890 	HostCmd_SET_SWITCH_CHANNEL *pCmd;
891 	int retval;
892 
893 	MWL_HAL_LOCK(mh);
894 	_CMD_SETUP(pCmd, HostCmd_SET_SWITCH_CHANNEL,
895 		HostCmd_CMD_SET_SWITCH_CHANNEL);
896 	pCmd->Next11hChannel = htole32(nextchan->channel);
897 	pCmd->Mode = htole32(mode);
898 	pCmd->InitialCount = htole32(count+1);
899 	pCmd->ChannelFlags = cvtChannelFlags(nextchan);
900 
901 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_SWITCH_CHANNEL);
902 	MWL_HAL_UNLOCK(mh);
903 	return retval;
904 }
905 
906 /*
907  * Set the region code that selects the radar bin'ing agorithm.
908  */
909 int
910 mwl_hal_setregioncode(struct mwl_hal *mh0, int regionCode)
911 {
912 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
913 	HostCmd_SET_REGIONCODE_INFO *pCmd;
914 	int retval;
915 
916 	MWL_HAL_LOCK(mh);
917 	_CMD_SETUP(pCmd, HostCmd_SET_REGIONCODE_INFO,
918 		HostCmd_CMD_SET_REGION_CODE);
919 	/* XXX map pseudo-codes to fw codes */
920 	switch (regionCode) {
921 	case DOMAIN_CODE_ETSI_131:
922 		pCmd->regionCode = htole16(DOMAIN_CODE_ETSI);
923 		break;
924 	default:
925 		pCmd->regionCode = htole16(regionCode);
926 		break;
927 	}
928 
929 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_REGION_CODE);
930 	if (retval == 0)
931 		mh->mh_regioncode = regionCode;
932 	MWL_HAL_UNLOCK(mh);
933 	return retval;
934 }
935 
936 #define	RATEVAL(r)	((r) &~ RATE_MCS)
937 #define	RATETYPE(r)	(((r) & RATE_MCS) ? HT_RATE_TYPE : LEGACY_RATE_TYPE)
938 
939 int
940 mwl_hal_settxrate(struct mwl_hal_vap *vap, MWL_HAL_TXRATE_HANDLING handling,
941 	const MWL_HAL_TXRATE *rate)
942 {
943 	struct mwl_hal_priv *mh = MWLVAP(vap);
944 	HostCmd_FW_USE_FIXED_RATE *pCmd;
945 	FIXED_RATE_ENTRY *fp;
946 	int retval, i, n;
947 
948 	MWL_HAL_LOCK(mh);
949 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_USE_FIXED_RATE,
950 		HostCmd_CMD_SET_FIXED_RATE);
951 
952 	pCmd->MulticastRate = RATEVAL(rate->McastRate);
953 	pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
954 	/* NB: no rate type field */
955 	pCmd->ManagementRate = RATEVAL(rate->MgtRate);
956 	memset(pCmd->FixedRateTable, 0, sizeof(pCmd->FixedRateTable));
957 	if (handling == RATE_FIXED) {
958 		pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
959 		pCmd->AllowRateDrop = htole32(FIXED_RATE_WITHOUT_AUTORATE_DROP);
960 		fp = pCmd->FixedRateTable;
961 		fp->FixedRate =
962 		    htole32(RATEVAL(rate->RateSeries[0].Rate));
963 		fp->FixRateTypeFlags.FixRateType =
964 		    htole32(RATETYPE(rate->RateSeries[0].Rate));
965 		pCmd->EntryCount = htole32(1);
966 	} else if (handling == RATE_FIXED_DROP) {
967 		pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
968 		pCmd->AllowRateDrop = htole32(FIXED_RATE_WITH_AUTO_RATE_DROP);
969 		n = 0;
970 		fp = pCmd->FixedRateTable;
971 		for (i = 0; i < 4; i++) {
972 			if (rate->RateSeries[0].TryCount == 0)
973 				break;
974 			fp->FixRateTypeFlags.FixRateType =
975 			    htole32(RATETYPE(rate->RateSeries[i].Rate));
976 			fp->FixedRate =
977 			    htole32(RATEVAL(rate->RateSeries[i].Rate));
978 			fp->FixRateTypeFlags.RetryCountValid =
979 			    htole32(RETRY_COUNT_VALID);
980 			fp->RetryCount =
981 			    htole32(rate->RateSeries[i].TryCount-1);
982 			n++;
983 		}
984 		pCmd->EntryCount = htole32(n);
985 	} else
986 		pCmd->Action = htole32(HostCmd_ACT_NOT_USE_FIXED_RATE);
987 
988 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_FIXED_RATE);
989 	MWL_HAL_UNLOCK(mh);
990 	return retval;
991 }
992 
993 int
994 mwl_hal_settxrate_auto(struct mwl_hal *mh0, const MWL_HAL_TXRATE *rate)
995 {
996 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
997 	HostCmd_FW_USE_FIXED_RATE *pCmd;
998 	int retval;
999 
1000 	MWL_HAL_LOCK(mh);
1001 	_CMD_SETUP(pCmd, HostCmd_FW_USE_FIXED_RATE,
1002 		HostCmd_CMD_SET_FIXED_RATE);
1003 
1004 	pCmd->MulticastRate = RATEVAL(rate->McastRate);
1005 	pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
1006 	/* NB: no rate type field */
1007 	pCmd->ManagementRate = RATEVAL(rate->MgtRate);
1008 	memset(pCmd->FixedRateTable, 0, sizeof(pCmd->FixedRateTable));
1009 	pCmd->Action = htole32(HostCmd_ACT_NOT_USE_FIXED_RATE);
1010 
1011 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_FIXED_RATE);
1012 	MWL_HAL_UNLOCK(mh);
1013 	return retval;
1014 }
1015 
1016 #undef RATEVAL
1017 #undef RATETYPE
1018 
1019 int
1020 mwl_hal_setslottime(struct mwl_hal *mh0, int usecs)
1021 {
1022 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1023 	HostCmd_FW_SET_SLOT *pCmd;
1024 	int retval;
1025 
1026 	if (usecs != 9 && usecs != 20)
1027 		return EINVAL;
1028 
1029 	MWL_HAL_LOCK(mh);
1030 	_CMD_SETUP(pCmd, HostCmd_FW_SET_SLOT,
1031 	    HostCmd_CMD_802_11_SET_SLOT);
1032 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1033 	pCmd->Slot = (usecs == 9 ? 1 : 0);
1034 
1035 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_SET_SLOT);
1036 	MWL_HAL_UNLOCK(mh);
1037 	return retval;
1038 }
1039 
1040 int
1041 mwl_hal_adjusttxpower(struct mwl_hal *mh0, uint32_t level)
1042 {
1043 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1044 	HostCmd_DS_802_11_RF_TX_POWER *pCmd;
1045 	int retval;
1046 
1047 	MWL_HAL_LOCK(mh);
1048 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
1049 	    HostCmd_CMD_802_11_RF_TX_POWER);
1050 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1051 
1052 	if (level < 30) {
1053 		pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_LOW);
1054 	} else if (level >= 30 && level < 60) {
1055 		pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_MEDIUM);
1056 	} else {
1057 		pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_HIGH);
1058 	}
1059 
1060 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_TX_POWER);
1061 	MWL_HAL_UNLOCK(mh);
1062 	return retval;
1063 }
1064 
1065 static const struct mwl_hal_channel *
1066 findchannel(const struct mwl_hal_priv *mh, const MWL_HAL_CHANNEL *c)
1067 {
1068 	const struct mwl_hal_channel *hc;
1069 	const MWL_HAL_CHANNELINFO *ci;
1070 	int chan = c->channel, i;
1071 
1072 	if (c->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) {
1073 		i = chan - 1;
1074 		if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
1075 			ci = &mh->mh_40M;
1076 			if (c->channelFlags.ExtChnlOffset == MWL_EXT_CH_BELOW_CTRL_CH)
1077 				i -= 4;
1078 		} else
1079 			ci = &mh->mh_20M;
1080 		/* 2.4G channel table is directly indexed */
1081 		hc = ((unsigned)i < ci->nchannels) ? &ci->channels[i] : NULL;
1082 	} else if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ) {
1083 		if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
1084 			ci = &mh->mh_40M_5G;
1085 			if (c->channelFlags.ExtChnlOffset == MWL_EXT_CH_BELOW_CTRL_CH)
1086 				chan -= 4;
1087 		} else
1088 			ci = &mh->mh_20M_5G;
1089 		/* 5GHz channel table is sparse and must be searched */
1090 		for (i = 0; i < ci->nchannels; i++)
1091 			if (ci->channels[i].ieee == chan)
1092 				break;
1093 		hc = (i < ci->nchannels) ? &ci->channels[i] : NULL;
1094 	} else
1095 		hc = NULL;
1096 	return hc;
1097 }
1098 
1099 int
1100 mwl_hal_settxpower(struct mwl_hal *mh0, const MWL_HAL_CHANNEL *c, uint8_t maxtxpow)
1101 {
1102 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1103 	HostCmd_DS_802_11_RF_TX_POWER *pCmd;
1104 	const struct mwl_hal_channel *hc;
1105 	int i, retval;
1106 
1107 	hc = findchannel(mh, c);
1108 	if (hc == NULL) {
1109 		/* XXX temp while testing */
1110 		device_printf(mh->mh_dev,
1111 		    "%s: no cal data for channel %u band %u width %u ext %u\n",
1112 		    __func__, c->channel, c->channelFlags.FreqBand,
1113 		    c->channelFlags.ChnlWidth, c->channelFlags.ExtChnlOffset);
1114 		return EINVAL;
1115 	}
1116 
1117 	MWL_HAL_LOCK(mh);
1118 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
1119 	    HostCmd_CMD_802_11_RF_TX_POWER);
1120 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET_LIST);
1121 	i = 0;
1122 	/* NB: 5Ghz cal data have the channel # in [0]; don't truncate */
1123 	if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ)
1124 		pCmd->PowerLevelList[i++] = htole16(hc->targetPowers[0]);
1125 	for (; i < 4; i++) {
1126 		uint16_t pow = hc->targetPowers[i];
1127 		if (pow > maxtxpow)
1128 			pow = maxtxpow;
1129 		pCmd->PowerLevelList[i] = htole16(pow);
1130 	}
1131 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_TX_POWER);
1132 	MWL_HAL_UNLOCK(mh);
1133 	return retval;
1134 }
1135 
1136 int
1137 mwl_hal_getchannelinfo(struct mwl_hal *mh0, int band, int chw,
1138 	const MWL_HAL_CHANNELINFO **ci)
1139 {
1140 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1141 
1142 	switch (band) {
1143 	case MWL_FREQ_BAND_2DOT4GHZ:
1144 		*ci = (chw == MWL_CH_20_MHz_WIDTH) ? &mh->mh_20M : &mh->mh_40M;
1145 		break;
1146 	case MWL_FREQ_BAND_5GHZ:
1147 		*ci = (chw == MWL_CH_20_MHz_WIDTH) ?
1148 		     &mh->mh_20M_5G : &mh->mh_40M_5G;
1149 		break;
1150 	default:
1151 		return EINVAL;
1152 	}
1153 	return ((*ci)->freqLow == (*ci)->freqHigh) ? EINVAL : 0;
1154 }
1155 
1156 int
1157 mwl_hal_setmcast(struct mwl_hal *mh0, int nmc, const uint8_t macs[])
1158 {
1159 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1160 	HostCmd_DS_MAC_MULTICAST_ADR *pCmd;
1161 	int retval;
1162 
1163 	if (nmc > MWL_HAL_MCAST_MAX)
1164 		return EINVAL;
1165 
1166 	MWL_HAL_LOCK(mh);
1167 	_CMD_SETUP(pCmd, HostCmd_DS_MAC_MULTICAST_ADR,
1168 		HostCmd_CMD_MAC_MULTICAST_ADR);
1169 	memcpy(pCmd->MACList, macs, nmc*IEEE80211_ADDR_LEN);
1170 	pCmd->NumOfAdrs = htole16(nmc);
1171 	pCmd->Action = htole16(0xffff);
1172 
1173 	retval = mwlExecuteCmd(mh, HostCmd_CMD_MAC_MULTICAST_ADR);
1174 	MWL_HAL_UNLOCK(mh);
1175 	return retval;
1176 }
1177 
1178 int
1179 mwl_hal_keyset(struct mwl_hal_vap *vap, const MWL_HAL_KEYVAL *kv,
1180 	const uint8_t mac[IEEE80211_ADDR_LEN])
1181 {
1182 	struct mwl_hal_priv *mh = MWLVAP(vap);
1183 	HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
1184 	int retval;
1185 
1186 	MWL_HAL_LOCK(mh);
1187 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
1188 		HostCmd_CMD_UPDATE_ENCRYPTION);
1189 	if (kv->keyFlags & (KEY_FLAG_TXGROUPKEY|KEY_FLAG_RXGROUPKEY))
1190 		pCmd->ActionType = htole32(EncrActionTypeSetGroupKey);
1191 	else
1192 		pCmd->ActionType = htole32(EncrActionTypeSetKey);
1193 	pCmd->KeyParam.Length = htole16(sizeof(pCmd->KeyParam));
1194 	pCmd->KeyParam.KeyTypeId = htole16(kv->keyTypeId);
1195 	pCmd->KeyParam.KeyInfo = htole32(kv->keyFlags);
1196 	pCmd->KeyParam.KeyIndex = htole32(kv->keyIndex);
1197 	/* NB: includes TKIP MIC keys */
1198 	memcpy(&pCmd->KeyParam.Key, &kv->key, kv->keyLen);
1199 	switch (kv->keyTypeId) {
1200 	case KEY_TYPE_ID_WEP:
1201 		pCmd->KeyParam.KeyLen = htole16(kv->keyLen);
1202 		break;
1203 	case KEY_TYPE_ID_TKIP:
1204 		pCmd->KeyParam.KeyLen = htole16(sizeof(TKIP_TYPE_KEY));
1205 		pCmd->KeyParam.Key.TkipKey.TkipRsc.low =
1206 			htole16(kv->key.tkip.rsc.low);
1207 		pCmd->KeyParam.Key.TkipKey.TkipRsc.high =
1208 			htole32(kv->key.tkip.rsc.high);
1209 		pCmd->KeyParam.Key.TkipKey.TkipTsc.low =
1210 			htole16(kv->key.tkip.tsc.low);
1211 		pCmd->KeyParam.Key.TkipKey.TkipTsc.high =
1212 			htole32(kv->key.tkip.tsc.high);
1213 		break;
1214 	case KEY_TYPE_ID_AES:
1215 		pCmd->KeyParam.KeyLen = htole16(sizeof(AES_TYPE_KEY));
1216 		break;
1217 	}
1218 #ifdef MWL_MBSS_SUPPORT
1219 	IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
1220 #else
1221 	IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
1222 #endif
1223 	retval = mwlExecuteCmd(mh, HostCmd_CMD_UPDATE_ENCRYPTION);
1224 	MWL_HAL_UNLOCK(mh);
1225 	return retval;
1226 }
1227 
1228 int
1229 mwl_hal_keyreset(struct mwl_hal_vap *vap, const MWL_HAL_KEYVAL *kv, const uint8_t mac[IEEE80211_ADDR_LEN])
1230 {
1231 	struct mwl_hal_priv *mh = MWLVAP(vap);
1232 	HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
1233 	int retval;
1234 
1235 	MWL_HAL_LOCK(mh);
1236 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
1237 		HostCmd_CMD_UPDATE_ENCRYPTION);
1238 	pCmd->ActionType = htole16(EncrActionTypeRemoveKey);
1239 	pCmd->KeyParam.Length = htole16(sizeof(pCmd->KeyParam));
1240 	pCmd->KeyParam.KeyTypeId = htole16(kv->keyTypeId);
1241 	pCmd->KeyParam.KeyInfo = htole32(kv->keyFlags);
1242 	pCmd->KeyParam.KeyIndex = htole32(kv->keyIndex);
1243 #ifdef MWL_MBSS_SUPPORT
1244 	IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
1245 #else
1246 	IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
1247 #endif
1248 	retval = mwlExecuteCmd(mh, HostCmd_CMD_UPDATE_ENCRYPTION);
1249 	MWL_HAL_UNLOCK(mh);
1250 	return retval;
1251 }
1252 
1253 static int
1254 mwl_hal_setmac_locked(struct mwl_hal_vap *vap,
1255 	const uint8_t addr[IEEE80211_ADDR_LEN])
1256 {
1257 	struct mwl_hal_priv *mh = MWLVAP(vap);
1258 	HostCmd_DS_SET_MAC *pCmd;
1259 
1260 	_VCMD_SETUP(vap, pCmd, HostCmd_DS_SET_MAC, HostCmd_CMD_SET_MAC_ADDR);
1261 	IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1262 #ifdef MWL_MBSS_SUPPORT
1263 	pCmd->MacType = vap->bss_type;		/* NB: already byte swapped */
1264 	IEEE80211_ADDR_COPY(vap->mac, addr);	/* XXX do only if success */
1265 #endif
1266 	return mwlExecuteCmd(mh, HostCmd_CMD_SET_MAC_ADDR);
1267 }
1268 
1269 int
1270 mwl_hal_setmac(struct mwl_hal_vap *vap, const uint8_t addr[IEEE80211_ADDR_LEN])
1271 {
1272 	struct mwl_hal_priv *mh = MWLVAP(vap);
1273 	int retval;
1274 
1275 	MWL_HAL_LOCK(mh);
1276 	retval = mwl_hal_setmac_locked(vap, addr);
1277 	MWL_HAL_UNLOCK(mh);
1278 	return retval;
1279 }
1280 
1281 int
1282 mwl_hal_setbeacon(struct mwl_hal_vap *vap, const void *frame, size_t frameLen)
1283 {
1284 	struct mwl_hal_priv *mh = MWLVAP(vap);
1285 	HostCmd_DS_SET_BEACON *pCmd;
1286 	int retval;
1287 
1288 	/* XXX verify frameLen fits */
1289 	MWL_HAL_LOCK(mh);
1290 	_VCMD_SETUP(vap, pCmd, HostCmd_DS_SET_BEACON, HostCmd_CMD_SET_BEACON);
1291 	/* XXX override _VCMD_SETUP */
1292 	pCmd->CmdHdr.Length = htole16(sizeof(HostCmd_DS_SET_BEACON)-1+frameLen);
1293 	pCmd->FrmBodyLen = htole16(frameLen);
1294 	memcpy(pCmd->FrmBody, frame, frameLen);
1295 
1296 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_BEACON);
1297 	MWL_HAL_UNLOCK(mh);
1298 	return retval;
1299 }
1300 
1301 int
1302 mwl_hal_setpowersave_bss(struct mwl_hal_vap *vap, uint8_t nsta)
1303 {
1304 	struct mwl_hal_priv *mh = MWLVAP(vap);
1305 	HostCmd_SET_POWERSAVESTATION *pCmd;
1306 	int retval;
1307 
1308 	MWL_HAL_LOCK(mh);
1309 	_VCMD_SETUP(vap, pCmd, HostCmd_SET_POWERSAVESTATION,
1310 		HostCmd_CMD_SET_POWERSAVESTATION);
1311 	pCmd->NumberOfPowersave = nsta;
1312 
1313 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_POWERSAVESTATION);
1314 	MWL_HAL_UNLOCK(mh);
1315 	return retval;
1316 }
1317 
1318 int
1319 mwl_hal_setpowersave_sta(struct mwl_hal_vap *vap, uint16_t aid, int ena)
1320 {
1321 	struct mwl_hal_priv *mh = MWLVAP(vap);
1322 	HostCmd_SET_TIM *pCmd;
1323 	int retval;
1324 
1325 	MWL_HAL_LOCK(mh);
1326 	_VCMD_SETUP(vap, pCmd, HostCmd_SET_TIM, HostCmd_CMD_SET_TIM);
1327 	pCmd->Aid = htole16(aid);
1328 	pCmd->Set = htole32(ena);
1329 
1330 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_TIM);
1331 	MWL_HAL_UNLOCK(mh);
1332 	return retval;
1333 }
1334 
1335 int
1336 mwl_hal_setassocid(struct mwl_hal_vap *vap,
1337 	const uint8_t bssId[IEEE80211_ADDR_LEN], uint16_t assocId)
1338 {
1339 	struct mwl_hal_priv *mh = MWLVAP(vap);
1340 	HostCmd_FW_SET_AID *pCmd = (HostCmd_FW_SET_AID *) &mh->mh_cmdbuf[0];
1341 	int retval;
1342 
1343 	MWL_HAL_LOCK(mh);
1344 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_AID, HostCmd_CMD_SET_AID);
1345 	pCmd->AssocID = htole16(assocId);
1346 	IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], bssId);
1347 
1348 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_AID);
1349 	MWL_HAL_UNLOCK(mh);
1350 	return retval;
1351 }
1352 
1353 int
1354 mwl_hal_setchannel(struct mwl_hal *mh0, const MWL_HAL_CHANNEL *chan)
1355 {
1356 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1357 	HostCmd_FW_SET_RF_CHANNEL *pCmd;
1358 	int retval;
1359 
1360 	MWL_HAL_LOCK(mh);
1361 	_CMD_SETUP(pCmd, HostCmd_FW_SET_RF_CHANNEL, HostCmd_CMD_SET_RF_CHANNEL);
1362 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1363 	pCmd->CurrentChannel = chan->channel;
1364 	pCmd->ChannelFlags = cvtChannelFlags(chan);	/* NB: byte-swapped */
1365 
1366 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RF_CHANNEL);
1367 	MWL_HAL_UNLOCK(mh);
1368 	return retval;
1369 }
1370 
1371 static int
1372 bastream_check_available(struct mwl_hal_vap *vap, int qid,
1373 	const uint8_t Macaddr[IEEE80211_ADDR_LEN],
1374 	uint8_t Tid, uint8_t ParamInfo)
1375 {
1376 	struct mwl_hal_priv *mh = MWLVAP(vap);
1377 	HostCmd_FW_BASTREAM *pCmd;
1378 	int retval;
1379 
1380 	MWL_HAL_LOCK_ASSERT(mh);
1381 
1382 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
1383 	pCmd->ActionType = htole32(BaCheckCreateStream);
1384 	pCmd->BaInfo.CreateParams.BarThrs = htole32(63);
1385 	pCmd->BaInfo.CreateParams.WindowSize = htole32(64);
1386 	pCmd->BaInfo.CreateParams.IdleThrs = htole32(0x22000);
1387 	IEEE80211_ADDR_COPY(&pCmd->BaInfo.CreateParams.PeerMacAddr[0], Macaddr);
1388 	pCmd->BaInfo.CreateParams.DialogToken = 10;
1389 	pCmd->BaInfo.CreateParams.Tid = Tid;
1390 	pCmd->BaInfo.CreateParams.QueueId = qid;
1391 	pCmd->BaInfo.CreateParams.ParamInfo = (uint8_t) ParamInfo;
1392 #if 0
1393 	cvtBAFlags(&pCmd->BaInfo.CreateParams.Flags, sp->ba_policy, 0);
1394 #else
1395 	pCmd->BaInfo.CreateParams.Flags =
1396 			  htole32(BASTREAM_FLAG_IMMEDIATE_TYPE)
1397 			| htole32(BASTREAM_FLAG_DIRECTION_UPSTREAM)
1398 			;
1399 #endif
1400 
1401 	retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
1402 	if (retval == 0) {
1403 		/*
1404 		 * NB: BA stream create may fail when the stream is
1405 		 * h/w backed under some (as yet not understood) conditions.
1406 		 * Check the result code to catch this.
1407 		 */
1408 		if (le16toh(pCmd->CmdHdr.Result) != HostCmd_RESULT_OK)
1409 			retval = EIO;
1410 	}
1411 	return retval;
1412 }
1413 
1414 const MWL_HAL_BASTREAM *
1415 mwl_hal_bastream_alloc(struct mwl_hal_vap *vap, int ba_policy,
1416 	const uint8_t Macaddr[IEEE80211_ADDR_LEN],
1417 	uint8_t Tid, uint8_t ParamInfo, void *a1, void *a2)
1418 {
1419 	struct mwl_hal_priv *mh = MWLVAP(vap);
1420 	struct mwl_hal_bastream *sp;
1421 	int s;
1422 
1423 	MWL_HAL_LOCK(mh);
1424 	if (mh->mh_bastreams == 0) {
1425 		/* no streams available */
1426 		MWL_HAL_UNLOCK(mh);
1427 		return NULL;
1428 	}
1429 	for (s = 0; (mh->mh_bastreams & (1<<s)) == 0; s++)
1430 		;
1431 	if (bastream_check_available(vap, s, Macaddr, Tid, ParamInfo)) {
1432 		MWL_HAL_UNLOCK(mh);
1433 		return NULL;
1434 	}
1435 	sp = &mh->mh_streams[s];
1436 	mh->mh_bastreams &= ~(1<<s);
1437 	sp->public.data[0] = a1;
1438 	sp->public.data[1] = a2;
1439 	IEEE80211_ADDR_COPY(sp->macaddr, Macaddr);
1440 	sp->tid = Tid;
1441 	sp->paraminfo = ParamInfo;
1442 	sp->setup = 0;
1443 	sp->ba_policy = ba_policy;
1444 	MWL_HAL_UNLOCK(mh);
1445 	return &sp->public;
1446 }
1447 
1448 const MWL_HAL_BASTREAM *
1449 mwl_hal_bastream_lookup(struct mwl_hal *mh0, int s)
1450 {
1451 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1452 
1453 	if (!(0 <= s && s < MWL_BASTREAMS_MAX))
1454 		return NULL;
1455 	if (mh->mh_bastreams & (1<<s))
1456 		return NULL;
1457 	return &mh->mh_streams[s].public;
1458 }
1459 
1460 #ifndef	__DECONST
1461 #define	__DECONST(type, var)	((type)(uintptr_t)(const void *)(var))
1462 #endif
1463 
1464 int
1465 mwl_hal_bastream_create(struct mwl_hal_vap *vap,
1466 	const MWL_HAL_BASTREAM *s, int BarThrs, int WindowSize, uint16_t seqno)
1467 {
1468 	struct mwl_hal_priv *mh = MWLVAP(vap);
1469 	struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
1470 	HostCmd_FW_BASTREAM *pCmd;
1471 	int retval;
1472 
1473 	MWL_HAL_LOCK(mh);
1474 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
1475 	pCmd->ActionType = htole32(BaCreateStream);
1476 	pCmd->BaInfo.CreateParams.BarThrs = htole32(BarThrs);
1477 	pCmd->BaInfo.CreateParams.WindowSize = htole32(WindowSize);
1478 	pCmd->BaInfo.CreateParams.IdleThrs = htole32(0x22000);
1479 	IEEE80211_ADDR_COPY(&pCmd->BaInfo.CreateParams.PeerMacAddr[0],
1480 	    sp->macaddr);
1481 	/* XXX proxy STA */
1482 	memset(&pCmd->BaInfo.CreateParams.StaSrcMacAddr, 0, IEEE80211_ADDR_LEN);
1483 #if 0
1484 	pCmd->BaInfo.CreateParams.DialogToken = DialogToken;
1485 #else
1486 	pCmd->BaInfo.CreateParams.DialogToken = 10;
1487 #endif
1488 	pCmd->BaInfo.CreateParams.Tid = sp->tid;
1489 	pCmd->BaInfo.CreateParams.QueueId = sp->stream;
1490 	pCmd->BaInfo.CreateParams.ParamInfo = sp->paraminfo;
1491 	/* NB: ResetSeqNo known to be zero */
1492 	pCmd->BaInfo.CreateParams.StartSeqNo = htole16(seqno);
1493 #if 0
1494 	cvtBAFlags(&pCmd->BaInfo.CreateParams.Flags, sp->ba_policy, 0);
1495 #else
1496 	pCmd->BaInfo.CreateParams.Flags =
1497 			  htole32(BASTREAM_FLAG_IMMEDIATE_TYPE)
1498 			| htole32(BASTREAM_FLAG_DIRECTION_UPSTREAM)
1499 			;
1500 #endif
1501 
1502 	retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
1503 	if (retval == 0) {
1504 		/*
1505 		 * NB: BA stream create may fail when the stream is
1506 		 * h/w backed under some (as yet not understood) conditions.
1507 		 * Check the result code to catch this.
1508 		 */
1509 		if (le16toh(pCmd->CmdHdr.Result) != HostCmd_RESULT_OK)
1510 			retval = EIO;
1511 		else
1512 			sp->setup = 1;
1513 	}
1514 	MWL_HAL_UNLOCK(mh);
1515 	return retval;
1516 }
1517 
1518 int
1519 mwl_hal_bastream_destroy(struct mwl_hal *mh0, const MWL_HAL_BASTREAM *s)
1520 {
1521 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1522 	struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
1523 	HostCmd_FW_BASTREAM *pCmd;
1524 	int retval;
1525 
1526 	if (sp->stream >= MWL_BASTREAMS_MAX) {
1527 		/* XXX */
1528 		return EINVAL;
1529 	}
1530 	MWL_HAL_LOCK(mh);
1531 	if (sp->setup) {
1532 		_CMD_SETUP(pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
1533 		pCmd->ActionType = htole32(BaDestroyStream);
1534 		pCmd->BaInfo.DestroyParams.FwBaContext.Context =
1535 		    htole32(sp->stream);
1536 
1537 		retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
1538 	} else
1539 		retval = 0;
1540 	/* NB: always reclaim stream */
1541 	mh->mh_bastreams |= 1<<sp->stream;
1542 	sp->public.data[0] = NULL;
1543 	sp->public.data[1] = NULL;
1544 	sp->setup = 0;
1545 	MWL_HAL_UNLOCK(mh);
1546 	return retval;
1547 }
1548 
1549 int
1550 mwl_hal_bastream_get_seqno(struct mwl_hal *mh0,
1551 	const MWL_HAL_BASTREAM *s, const uint8_t Macaddr[IEEE80211_ADDR_LEN],
1552 	uint16_t *pseqno)
1553 {
1554 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1555 	struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
1556 	HostCmd_GET_SEQNO *pCmd;
1557 	int retval;
1558 
1559 	MWL_HAL_LOCK(mh);
1560 	_CMD_SETUP(pCmd, HostCmd_GET_SEQNO, HostCmd_CMD_GET_SEQNO);
1561 	IEEE80211_ADDR_COPY(pCmd->MacAddr, Macaddr);
1562 	pCmd->TID = sp->tid;
1563 
1564 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_SEQNO);
1565 	if (retval == 0)
1566 		*pseqno = le16toh(pCmd->SeqNo);
1567 	MWL_HAL_UNLOCK(mh);
1568 	return retval;
1569 }
1570 
1571 int
1572 mwl_hal_getwatchdogbitmap(struct mwl_hal *mh0, uint8_t bitmap[1])
1573 {
1574 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1575 	HostCmd_FW_GET_WATCHDOG_BITMAP *pCmd;
1576 	int retval;
1577 
1578 	MWL_HAL_LOCK(mh);
1579 	_CMD_SETUP(pCmd, HostCmd_FW_GET_WATCHDOG_BITMAP,
1580 		HostCmd_CMD_GET_WATCHDOG_BITMAP);
1581 
1582 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_WATCHDOG_BITMAP);
1583 	if (retval == 0) {
1584 		bitmap[0] = pCmd->Watchdogbitmap;
1585 		/* fw returns qid, map it to BA stream */
1586 		if (bitmap[0] < MWL_BAQID_MAX)
1587 			bitmap[0] = qid2ba[bitmap[0]];
1588 	}
1589 	MWL_HAL_UNLOCK(mh);
1590 	return retval;
1591 }
1592 
1593 /*
1594  * Configure aggressive Ampdu rate mode.
1595  */
1596 int
1597 mwl_hal_setaggampduratemode(struct mwl_hal *mh0, int mode, int threshold)
1598 {
1599 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1600 	HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE *pCmd;
1601 	int retval;
1602 
1603 	MWL_HAL_LOCK(mh);
1604 	_CMD_SETUP(pCmd, HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE,
1605 		HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
1606 	pCmd->Action = htole16(1);
1607 	pCmd->Option = htole32(mode);
1608 	pCmd->Threshold = htole32(threshold);
1609 
1610 	retval = mwlExecuteCmd(mh, HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
1611 	MWL_HAL_UNLOCK(mh);
1612 	return retval;
1613 }
1614 
1615 int
1616 mwl_hal_getaggampduratemode(struct mwl_hal *mh0, int *mode, int *threshold)
1617 {
1618 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1619 	HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE *pCmd;
1620 	int retval;
1621 
1622 	MWL_HAL_LOCK(mh);
1623 	_CMD_SETUP(pCmd, HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE,
1624 		HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
1625 	pCmd->Action = htole16(0);
1626 
1627 	retval = mwlExecuteCmd(mh, HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
1628 	MWL_HAL_UNLOCK(mh);
1629 	*mode =  le32toh(pCmd->Option);
1630 	*threshold = le32toh(pCmd->Threshold);
1631 	return retval;
1632 }
1633 
1634 /*
1635  * Set CFEND status Enable/Disable
1636  */
1637 int
1638 mwl_hal_setcfend(struct mwl_hal *mh0, int ena)
1639 {
1640 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1641 	HostCmd_CFEND_ENABLE *pCmd;
1642 	int retval;
1643 
1644 	MWL_HAL_LOCK(mh);
1645 	_CMD_SETUP(pCmd, HostCmd_CFEND_ENABLE,
1646 		HostCmd_CMD_CFEND_ENABLE);
1647 	pCmd->Enable = htole32(ena);
1648 
1649 	retval = mwlExecuteCmd(mh, HostCmd_CMD_CFEND_ENABLE);
1650 	MWL_HAL_UNLOCK(mh);
1651 	return retval;
1652 }
1653 
1654 int
1655 mwl_hal_setdwds(struct mwl_hal *mh0, int ena)
1656 {
1657 	HostCmd_DWDS_ENABLE *pCmd;
1658 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1659    	int retval;
1660 
1661 	MWL_HAL_LOCK(mh);
1662 	_CMD_SETUP(pCmd, HostCmd_DWDS_ENABLE, HostCmd_CMD_DWDS_ENABLE);
1663 	pCmd->Enable = htole32(ena);
1664 	retval = mwlExecuteCmd(mh, HostCmd_CMD_DWDS_ENABLE);
1665   	MWL_HAL_UNLOCK(mh);
1666 	return retval;
1667 }
1668 
1669 static void
1670 cvtPeerInfo(PeerInfo_t *to, const MWL_HAL_PEERINFO *from)
1671 {
1672 	to->LegacyRateBitMap = htole32(from->LegacyRateBitMap);
1673 	to->HTRateBitMap = htole32(from->HTRateBitMap);
1674 	to->CapInfo = htole16(from->CapInfo);
1675 	to->HTCapabilitiesInfo = htole16(from->HTCapabilitiesInfo);
1676 	to->MacHTParamInfo = from->MacHTParamInfo;
1677 	to->AddHtInfo.ControlChan = from->AddHtInfo.ControlChan;
1678 	to->AddHtInfo.AddChan = from->AddHtInfo.AddChan;
1679 	to->AddHtInfo.OpMode = htole16(from->AddHtInfo.OpMode);
1680 	to->AddHtInfo.stbc = htole16(from->AddHtInfo.stbc);
1681 }
1682 
1683 /* XXX station id must be in [0..63] */
1684 int
1685 mwl_hal_newstation(struct mwl_hal_vap *vap,
1686 	const uint8_t addr[IEEE80211_ADDR_LEN], uint16_t aid, uint16_t sid,
1687 	const MWL_HAL_PEERINFO *peer, int isQosSta, int wmeInfo)
1688 {
1689 	struct mwl_hal_priv *mh = MWLVAP(vap);
1690 	HostCmd_FW_SET_NEW_STN *pCmd;
1691 	int retval;
1692 
1693 	MWL_HAL_LOCK(mh);
1694 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_NEW_STN, HostCmd_CMD_SET_NEW_STN);
1695 	pCmd->AID = htole16(aid);
1696 	pCmd->StnId = htole16(sid);
1697 	pCmd->Action = htole16(0);	/* SET */
1698 	if (peer != NULL) {
1699 		/* NB: must fix up byte order */
1700 		cvtPeerInfo(&pCmd->PeerInfo, peer);
1701 	}
1702 	IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1703 	pCmd->Qosinfo = wmeInfo;
1704 	pCmd->isQosSta = (isQosSta != 0);
1705 
1706 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_NEW_STN);
1707 	if (retval == 0 && IEEE80211_ADDR_EQ(vap->mac, addr))
1708 		vap->flags |= MVF_STATION;
1709 	MWL_HAL_UNLOCK(mh);
1710 	return retval;
1711 }
1712 
1713 int
1714 mwl_hal_delstation(struct mwl_hal_vap *vap,
1715 	const uint8_t addr[IEEE80211_ADDR_LEN])
1716 {
1717 	struct mwl_hal_priv *mh = MWLVAP(vap);
1718 	HostCmd_FW_SET_NEW_STN *pCmd;
1719 	int retval, islocal;
1720 
1721 	MWL_HAL_LOCK(mh);
1722 	islocal = IEEE80211_ADDR_EQ(vap->mac, addr);
1723 	if (!islocal || (vap->flags & MVF_STATION)) {
1724 		_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_NEW_STN,
1725 		    HostCmd_CMD_SET_NEW_STN);
1726 		pCmd->Action = htole16(2);	/* REMOVE */
1727 		IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1728 		retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_NEW_STN);
1729 		if (islocal)
1730 			vap->flags &= ~MVF_STATION;
1731 	} else
1732 		retval = 0;
1733 	MWL_HAL_UNLOCK(mh);
1734 	return retval;
1735 }
1736 
1737 /*
1738  * Prod the firmware to age packets on station power
1739  * save queues and reap frames on the tx aggregation q's.
1740  */
1741 int
1742 mwl_hal_setkeepalive(struct mwl_hal *mh0)
1743 {
1744 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1745 	HostCmd_FW_SET_KEEP_ALIVE_TICK *pCmd;
1746 	int retval;
1747 
1748 	MWL_HAL_LOCK(mh);
1749 	_CMD_SETUP(pCmd, HostCmd_FW_SET_KEEP_ALIVE_TICK,
1750 		HostCmd_CMD_SET_KEEP_ALIVE);
1751 	/*
1752 	 * NB: tick must be 0 to prod the f/w;
1753 	 *     a non-zero value is a noop.
1754 	 */
1755 	pCmd->tick = 0;
1756 
1757 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_KEEP_ALIVE);
1758 	MWL_HAL_UNLOCK(mh);
1759 	return retval;
1760 }
1761 
1762 int
1763 mwl_hal_setapmode(struct mwl_hal_vap *vap, MWL_HAL_APMODE ApMode)
1764 {
1765 	struct mwl_hal_priv *mh = MWLVAP(vap);
1766 	HostCmd_FW_SET_APMODE *pCmd;
1767 	int retval;
1768 
1769 	/* XXX validate ApMode? */
1770 
1771 	MWL_HAL_LOCK(mh);
1772 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_APMODE, HostCmd_CMD_SET_APMODE);
1773 	pCmd->ApMode = ApMode;
1774 
1775 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_APMODE);
1776 	MWL_HAL_UNLOCK(mh);
1777 	return retval;
1778 }
1779 
1780 int
1781 mwl_hal_stop(struct mwl_hal_vap *vap)
1782 {
1783 	struct mwl_hal_priv *mh = MWLVAP(vap);
1784 	HostCmd_DS_BSS_START *pCmd;
1785 	int retval;
1786 
1787 	MWL_HAL_LOCK(mh);
1788 	if (vap->flags & MVF_RUNNING) {
1789 		_VCMD_SETUP(vap, pCmd, HostCmd_DS_BSS_START,
1790 		    HostCmd_CMD_BSS_START);
1791 		pCmd->Enable = htole32(HostCmd_ACT_GEN_OFF);
1792 		retval = mwlExecuteCmd(mh, HostCmd_CMD_BSS_START);
1793 	} else
1794 		retval = 0;
1795 	/* NB: mark !running regardless */
1796 	vap->flags &= ~MVF_RUNNING;
1797 	MWL_HAL_UNLOCK(mh);
1798 	return retval;
1799 }
1800 
1801 int
1802 mwl_hal_start(struct mwl_hal_vap *vap)
1803 {
1804 	struct mwl_hal_priv *mh = MWLVAP(vap);
1805 	HostCmd_DS_BSS_START *pCmd;
1806 	int retval;
1807 
1808 	MWL_HAL_LOCK(mh);
1809 	_VCMD_SETUP(vap, pCmd, HostCmd_DS_BSS_START, HostCmd_CMD_BSS_START);
1810 	pCmd->Enable = htole32(HostCmd_ACT_GEN_ON);
1811 
1812 	retval = mwlExecuteCmd(mh, HostCmd_CMD_BSS_START);
1813 	if (retval == 0)
1814 		vap->flags |= MVF_RUNNING;
1815 	MWL_HAL_UNLOCK(mh);
1816 	return retval;
1817 }
1818 
1819 int
1820 mwl_hal_setgprot(struct mwl_hal *mh0, int prot)
1821 {
1822 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1823 	HostCmd_FW_SET_G_PROTECT_FLAG *pCmd;
1824 	int retval;
1825 
1826 	MWL_HAL_LOCK(mh);
1827 	_CMD_SETUP(pCmd, HostCmd_FW_SET_G_PROTECT_FLAG,
1828 		HostCmd_CMD_SET_G_PROTECT_FLAG);
1829 	pCmd->GProtectFlag  = htole32(prot);
1830 
1831 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_G_PROTECT_FLAG);
1832 	MWL_HAL_UNLOCK(mh);
1833 	return retval;
1834 }
1835 
1836 int
1837 mwl_hal_setwmm(struct mwl_hal *mh0, int onoff)
1838 {
1839 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1840 	HostCmd_FW_SetWMMMode *pCmd;
1841 	int retval;
1842 
1843 	MWL_HAL_LOCK(mh);
1844 	_CMD_SETUP(pCmd, HostCmd_FW_SetWMMMode,
1845 		HostCmd_CMD_SET_WMM_MODE);
1846 	pCmd->Action = htole16(onoff);
1847 
1848 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_WMM_MODE);
1849 	MWL_HAL_UNLOCK(mh);
1850 	return retval;
1851 }
1852 
1853 int
1854 mwl_hal_setedcaparams(struct mwl_hal *mh0, uint8_t qnum,
1855 	uint32_t CWmin, uint32_t CWmax, uint8_t AIFSN,  uint16_t TXOPLimit)
1856 {
1857 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1858 	HostCmd_FW_SET_EDCA_PARAMS *pCmd;
1859 	int retval;
1860 
1861 	MWL_HAL_LOCK(mh);
1862 	_CMD_SETUP(pCmd, HostCmd_FW_SET_EDCA_PARAMS,
1863 		HostCmd_CMD_SET_EDCA_PARAMS);
1864 	/*
1865 	 * NB: CWmin and CWmax are always set.
1866 	 *     TxOpLimit is set if bit 0x2 is marked in Action
1867 	 *     AIFSN is set if bit 0x4 is marked in Action
1868 	 */
1869 	pCmd->Action = htole16(0xffff);	/* NB: set everything */
1870 	pCmd->TxOP = htole16(TXOPLimit);
1871 	pCmd->CWMax = htole32(CWmax);
1872 	pCmd->CWMin = htole32(CWmin);
1873 	pCmd->AIFSN = AIFSN;
1874 	pCmd->TxQNum = qnum;		/* XXX check */
1875 
1876 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_EDCA_PARAMS);
1877 	MWL_HAL_UNLOCK(mh);
1878 	return retval;
1879 }
1880 
1881 /* XXX 0 = indoor, 1 = outdoor */
1882 int
1883 mwl_hal_setrateadaptmode(struct mwl_hal *mh0, uint16_t mode)
1884 {
1885 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1886 	HostCmd_DS_SET_RATE_ADAPT_MODE *pCmd;
1887 	int retval;
1888 
1889 	MWL_HAL_LOCK(mh);
1890 	_CMD_SETUP(pCmd, HostCmd_DS_SET_RATE_ADAPT_MODE,
1891 		HostCmd_CMD_SET_RATE_ADAPT_MODE);
1892 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1893 	pCmd->RateAdaptMode = htole16(mode);
1894 
1895 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RATE_ADAPT_MODE);
1896 	MWL_HAL_UNLOCK(mh);
1897 	return retval;
1898 }
1899 
1900 int
1901 mwl_hal_setcsmode(struct mwl_hal *mh0, MWL_HAL_CSMODE csmode)
1902 {
1903 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1904 	HostCmd_DS_SET_LINKADAPT_CS_MODE *pCmd;
1905 	int retval;
1906 
1907 	MWL_HAL_LOCK(mh);
1908 	_CMD_SETUP(pCmd, HostCmd_DS_SET_LINKADAPT_CS_MODE,
1909 		HostCmd_CMD_SET_LINKADAPT_CS_MODE);
1910 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1911 	pCmd->CSMode = htole16(csmode);
1912 
1913 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_LINKADAPT_CS_MODE);
1914 	MWL_HAL_UNLOCK(mh);
1915 	return retval;
1916 }
1917 
1918 int
1919 mwl_hal_setnprot(struct mwl_hal_vap *vap, MWL_HAL_HTPROTECT mode)
1920 {
1921 	struct mwl_hal_priv *mh = MWLVAP(vap);
1922 	HostCmd_FW_SET_N_PROTECT_FLAG *pCmd;
1923 	int retval;
1924 
1925 	/* XXX validate mode */
1926 	MWL_HAL_LOCK(mh);
1927 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_N_PROTECT_FLAG,
1928 		HostCmd_CMD_SET_N_PROTECT_FLAG);
1929 	pCmd->NProtectFlag  = htole32(mode);
1930 
1931 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_N_PROTECT_FLAG);
1932 	MWL_HAL_UNLOCK(mh);
1933 	return retval;
1934 }
1935 
1936 int
1937 mwl_hal_setnprotmode(struct mwl_hal_vap *vap, uint8_t mode)
1938 {
1939 	struct mwl_hal_priv *mh = MWLVAP(vap);
1940 	HostCmd_FW_SET_N_PROTECT_OPMODE *pCmd;
1941 	int retval;
1942 
1943 	MWL_HAL_LOCK(mh);
1944 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_N_PROTECT_OPMODE,
1945 		HostCmd_CMD_SET_N_PROTECT_OPMODE);
1946 	pCmd->NProtectOpMode = mode;
1947 
1948 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_N_PROTECT_OPMODE);
1949 	MWL_HAL_UNLOCK(mh);
1950 	return retval;
1951 }
1952 
1953 int
1954 mwl_hal_setoptimizationlevel(struct mwl_hal *mh0, int level)
1955 {
1956 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1957 	HostCmd_FW_SET_OPTIMIZATION_LEVEL *pCmd;
1958 	int retval;
1959 
1960 	MWL_HAL_LOCK(mh);
1961 	_CMD_SETUP(pCmd, HostCmd_FW_SET_OPTIMIZATION_LEVEL,
1962 		HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
1963 	pCmd->OptLevel = level;
1964 
1965 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
1966 	MWL_HAL_UNLOCK(mh);
1967 	return retval;
1968 }
1969 
1970 int
1971 mwl_hal_setmimops(struct mwl_hal *mh0, const uint8_t addr[IEEE80211_ADDR_LEN],
1972 	uint8_t enable, uint8_t mode)
1973 {
1974 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1975 	HostCmd_FW_SET_MIMOPSHT *pCmd;
1976 	int retval;
1977 
1978 	MWL_HAL_LOCK(mh);
1979 	_CMD_SETUP(pCmd, HostCmd_FW_SET_MIMOPSHT, HostCmd_CMD_SET_MIMOPSHT);
1980 	IEEE80211_ADDR_COPY(pCmd->Addr, addr);
1981 	pCmd->Enable = enable;
1982 	pCmd->Mode = mode;
1983 
1984 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_MIMOPSHT);
1985 	MWL_HAL_UNLOCK(mh);
1986 	return retval;
1987 }
1988 
1989 static int
1990 mwlGetCalTable(struct mwl_hal_priv *mh, uint8_t annex, uint8_t index)
1991 {
1992 	HostCmd_FW_GET_CALTABLE *pCmd;
1993 	int retval;
1994 
1995 	MWL_HAL_LOCK_ASSERT(mh);
1996 
1997 	_CMD_SETUP(pCmd, HostCmd_FW_GET_CALTABLE, HostCmd_CMD_GET_CALTABLE);
1998 	pCmd->annex = annex;
1999 	pCmd->index = index;
2000 	memset(pCmd->calTbl, 0, sizeof(pCmd->calTbl));
2001 
2002 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_CALTABLE);
2003 	if (retval == 0 &&
2004 	    pCmd->calTbl[0] != annex && annex != 0 && annex != 255)
2005 		retval = EIO;
2006 	return retval;
2007 }
2008 
2009 /*
2010  * Calculate the max tx power from the channel's cal data.
2011  */
2012 static void
2013 setmaxtxpow(struct mwl_hal_channel *hc, int i, int maxix)
2014 {
2015 	hc->maxTxPow = hc->targetPowers[i];
2016 	for (i++; i < maxix; i++)
2017 		if (hc->targetPowers[i] > hc->maxTxPow)
2018 			hc->maxTxPow = hc->targetPowers[i];
2019 }
2020 
2021 /*
2022  * Construct channel info for 5GHz channels from cal data.
2023  */
2024 static void
2025 get5Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
2026 {
2027 	int i, j, f, l, h;
2028 
2029 	l = 32000;
2030 	h = 0;
2031 	j = 0;
2032 	for (i = 0; i < len; i += 4) {
2033 		struct mwl_hal_channel *hc;
2034 
2035 		if (table[i] == 0)
2036 			continue;
2037 		f = 5000 + 5*table[i];
2038 		if (f < l)
2039 			l = f;
2040 		if (f > h)
2041 			h = f;
2042 		hc = &ci->channels[j];
2043 		hc->freq = f;
2044 		hc->ieee = table[i];
2045 		memcpy(hc->targetPowers, &table[i], 4);
2046 		setmaxtxpow(hc, 1, 4);		/* NB: col 1 is the freq, skip*/
2047 		j++;
2048 	}
2049 	ci->nchannels = j;
2050 	ci->freqLow = (l == 32000) ? 0 : l;
2051 	ci->freqHigh = h;
2052 }
2053 
2054 static uint16_t
2055 ieee2mhz(int chan)
2056 {
2057 	if (chan == 14)
2058 		return 2484;
2059 	if (chan < 14)
2060 		return 2407 + chan*5;
2061 	return 2512 + (chan-15)*20;
2062 }
2063 
2064 /*
2065  * Construct channel info for 2.4GHz channels from cal data.
2066  */
2067 static void
2068 get2Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
2069 {
2070 	int i, j;
2071 
2072 	j = 0;
2073 	for (i = 0; i < len; i += 4) {
2074 		struct mwl_hal_channel *hc = &ci->channels[j];
2075 		hc->ieee = 1+j;
2076 		hc->freq = ieee2mhz(1+j);
2077 		memcpy(hc->targetPowers, &table[i], 4);
2078 		setmaxtxpow(hc, 0, 4);
2079 		j++;
2080 	}
2081 	ci->nchannels = j;
2082 	ci->freqLow = ieee2mhz(1);
2083 	ci->freqHigh = ieee2mhz(j);
2084 }
2085 
2086 #undef DUMPCALDATA
2087 #ifdef DUMPCALDATA
2088 static void
2089 dumpcaldata(const char *name, const uint8_t *table, int n)
2090 {
2091 	int i;
2092 	printf("\n%s:\n", name);
2093 	for (i = 0; i < n; i += 4)
2094 		printf("[%2d] %3d %3d %3d %3d\n", i/4, table[i+0], table[i+1], table[i+2], table[i+3]);
2095 }
2096 #endif
2097 
2098 static int
2099 mwlGetPwrCalTable(struct mwl_hal_priv *mh)
2100 {
2101 	const uint8_t *data;
2102 	MWL_HAL_CHANNELINFO *ci;
2103 	int len;
2104 
2105 	MWL_HAL_LOCK(mh);
2106 	/* NB: we hold the lock so it's ok to use cmdbuf */
2107 	data = ((const HostCmd_FW_GET_CALTABLE *) mh->mh_cmdbuf)->calTbl;
2108 	if (mwlGetCalTable(mh, 33, 0) == 0) {
2109 		len = (data[2] | (data[3] << 8)) - 12;
2110 		if (len > PWTAGETRATETABLE20M)
2111 			len = PWTAGETRATETABLE20M;
2112 #ifdef DUMPCALDATA
2113 dumpcaldata("2.4G 20M", &data[12], len);/*XXX*/
2114 #endif
2115 		get2Ghz(&mh->mh_20M, &data[12], len);
2116 	}
2117 	if (mwlGetCalTable(mh, 34, 0) == 0) {
2118 		len = (data[2] | (data[3] << 8)) - 12;
2119 		if (len > PWTAGETRATETABLE40M)
2120 			len = PWTAGETRATETABLE40M;
2121 #ifdef DUMPCALDATA
2122 dumpcaldata("2.4G 40M", &data[12], len);/*XXX*/
2123 #endif
2124 		ci = &mh->mh_40M;
2125 		get2Ghz(ci, &data[12], len);
2126 	}
2127 	if (mwlGetCalTable(mh, 35, 0) == 0) {
2128 		len = (data[2] | (data[3] << 8)) - 20;
2129 		if (len > PWTAGETRATETABLE20M_5G)
2130 			len = PWTAGETRATETABLE20M_5G;
2131 #ifdef DUMPCALDATA
2132 dumpcaldata("5G 20M", &data[20], len);/*XXX*/
2133 #endif
2134 		get5Ghz(&mh->mh_20M_5G, &data[20], len);
2135 	}
2136 	if (mwlGetCalTable(mh, 36, 0) == 0) {
2137 		len = (data[2] | (data[3] << 8)) - 20;
2138 		if (len > PWTAGETRATETABLE40M_5G)
2139 			len = PWTAGETRATETABLE40M_5G;
2140 #ifdef DUMPCALDATA
2141 dumpcaldata("5G 40M", &data[20], len);/*XXX*/
2142 #endif
2143 		ci = &mh->mh_40M_5G;
2144 		get5Ghz(ci, &data[20], len);
2145 	}
2146 	mh->mh_flags |= MHF_CALDATA;
2147 	MWL_HAL_UNLOCK(mh);
2148 	return 0;
2149 }
2150 
2151 int
2152 mwl_hal_getregioncode(struct mwl_hal *mh0, uint8_t *countryCode)
2153 {
2154 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2155 	int retval;
2156 
2157 	MWL_HAL_LOCK(mh);
2158 	retval = mwlGetCalTable(mh, 0, 0);
2159 	if (retval == 0) {
2160 		const HostCmd_FW_GET_CALTABLE *pCmd =
2161 		    (const HostCmd_FW_GET_CALTABLE *) mh->mh_cmdbuf;
2162 		*countryCode = pCmd->calTbl[16];
2163 	}
2164 	MWL_HAL_UNLOCK(mh);
2165 	return retval;
2166 }
2167 
2168 int
2169 mwl_hal_setpromisc(struct mwl_hal *mh0, int ena)
2170 {
2171 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2172 	uint32_t v;
2173 
2174 	MWL_HAL_LOCK(mh);
2175 	v = RD4(mh, MACREG_REG_PROMISCUOUS);
2176 	WR4(mh, MACREG_REG_PROMISCUOUS, ena ? v | 1 : v &~ 1);
2177 	MWL_HAL_UNLOCK(mh);
2178 	return 0;
2179 }
2180 
2181 int
2182 mwl_hal_getpromisc(struct mwl_hal *mh0)
2183 {
2184 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2185 	uint32_t v;
2186 
2187 	MWL_HAL_LOCK(mh);
2188 	v = RD4(mh, MACREG_REG_PROMISCUOUS);
2189 	MWL_HAL_UNLOCK(mh);
2190 	return (v & 1) != 0;
2191 }
2192 
2193 int
2194 mwl_hal_GetBeacon(struct mwl_hal *mh0, uint8_t *pBcn, uint16_t *pLen)
2195 {
2196 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2197 	HostCmd_FW_GET_BEACON *pCmd;
2198 	int retval;
2199 
2200 	MWL_HAL_LOCK(mh);
2201 	_CMD_SETUP(pCmd, HostCmd_FW_GET_BEACON, HostCmd_CMD_GET_BEACON);
2202 	pCmd->Bcnlen = htole16(0);
2203 
2204 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_BEACON);
2205 	if (retval == 0) {
2206 		/* XXX bounds check */
2207 		memcpy(pBcn, &pCmd->Bcn, pCmd->Bcnlen);
2208 		*pLen = pCmd->Bcnlen;
2209 	}
2210 	MWL_HAL_UNLOCK(mh);
2211 	return retval;
2212 }
2213 
2214 int
2215 mwl_hal_SetRifs(struct mwl_hal *mh0, uint8_t QNum)
2216 {
2217 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2218 	HostCmd_FW_SET_RIFS  *pCmd;
2219 	int retval;
2220 
2221 	MWL_HAL_LOCK(mh);
2222 	_CMD_SETUP(pCmd, HostCmd_FW_SET_RIFS, HostCmd_CMD_SET_RIFS);
2223 	pCmd->QNum = QNum;
2224 
2225 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RIFS);
2226 	MWL_HAL_UNLOCK(mh);
2227 	return retval;
2228 }
2229 
2230 /*
2231  * Diagnostic api's for set/get registers.
2232  */
2233 
2234 static int
2235 getRFReg(struct mwl_hal_priv *mh, int flag, uint32_t reg, uint32_t *val)
2236 {
2237 	HostCmd_DS_RF_REG_ACCESS *pCmd;
2238 	int retval;
2239 
2240 	MWL_HAL_LOCK(mh);
2241 	_CMD_SETUP(pCmd, HostCmd_DS_RF_REG_ACCESS, HostCmd_CMD_RF_REG_ACCESS);
2242 	pCmd->Offset =  htole16(reg);
2243 	pCmd->Action = htole16(flag);
2244 	pCmd->Value = htole32(*val);
2245 
2246 	retval = mwlExecuteCmd(mh, HostCmd_CMD_RF_REG_ACCESS);
2247 	if (retval == 0)
2248 		*val = pCmd->Value;
2249 	MWL_HAL_UNLOCK(mh);
2250 	return retval;
2251 }
2252 
2253 static int
2254 getBBReg(struct mwl_hal_priv *mh, int flag, uint32_t reg, uint32_t *val)
2255 {
2256 	HostCmd_DS_BBP_REG_ACCESS *pCmd;
2257 	int retval;
2258 
2259 	MWL_HAL_LOCK(mh);
2260 	_CMD_SETUP(pCmd, HostCmd_DS_BBP_REG_ACCESS, HostCmd_CMD_BBP_REG_ACCESS);
2261 	pCmd->Offset =  htole16(reg);
2262 	pCmd->Action = htole16(flag);
2263 	pCmd->Value = htole32(*val);
2264 
2265 	retval = mwlExecuteCmd(mh, HostCmd_CMD_BBP_REG_ACCESS);
2266 	if (retval == 0)
2267 		*val = pCmd->Value;
2268 	MWL_HAL_UNLOCK(mh);
2269 	return retval;
2270 }
2271 
2272 static u_int
2273 mwl_hal_getregdump(struct mwl_hal_priv *mh, const MWL_DIAG_REGRANGE *regs,
2274 	void *dstbuf, int space)
2275 {
2276 	uint32_t *dp = dstbuf;
2277 	int i;
2278 
2279 	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
2280 		u_int r = regs[i].start;
2281 		u_int e = regs[i].end;
2282 		*dp++ = (r<<16) | e;
2283 		space -= sizeof(uint32_t);
2284 		do {
2285 			if (MWL_DIAG_ISMAC(r))
2286 				*dp = RD4(mh, r);
2287 			else if (MWL_DIAG_ISBB(r))
2288 				getBBReg(mh, HostCmd_ACT_GEN_READ,
2289 				    r - MWL_DIAG_BASE_BB, dp);
2290 			else if (MWL_DIAG_ISRF(r))
2291 				getRFReg(mh, HostCmd_ACT_GEN_READ,
2292 				    r - MWL_DIAG_BASE_RF, dp);
2293 			else if (r < 0x1000 || r == MACREG_REG_FW_PRESENT)
2294 				*dp = RD4(mh, r);
2295 			else
2296 				*dp = 0xffffffff;
2297 			dp++;
2298 			r += sizeof(uint32_t);
2299 			space -= sizeof(uint32_t);
2300 		} while (r <= e && space >= sizeof(uint32_t));
2301 	}
2302 	return (char *) dp - (char *) dstbuf;
2303 }
2304 
2305 int
2306 mwl_hal_getdiagstate(struct mwl_hal *mh0, int request,
2307 	const void *args, uint32_t argsize,
2308 	void **result, uint32_t *resultsize)
2309 {
2310 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2311 
2312 	switch (request) {
2313 	case MWL_DIAG_CMD_REVS:
2314 		*result = &mh->mh_revs;
2315 		*resultsize = sizeof(mh->mh_revs);
2316 		return 1;
2317 	case MWL_DIAG_CMD_REGS:
2318 		*resultsize = mwl_hal_getregdump(mh, args, *result, *resultsize);
2319 		return 1;
2320 	case MWL_DIAG_CMD_HOSTCMD: {
2321 		FWCmdHdr *pCmd = (FWCmdHdr *) &mh->mh_cmdbuf[0];
2322 		int retval;
2323 
2324 		MWL_HAL_LOCK(mh);
2325 		memcpy(pCmd, args, argsize);
2326 		retval = mwlExecuteCmd(mh, le16toh(pCmd->Cmd));
2327 		*result = (*resultsize != 0) ? pCmd : NULL;
2328 		MWL_HAL_UNLOCK(mh);
2329 		return (retval == 0);
2330 	}
2331 	case MWL_DIAG_CMD_FWLOAD:
2332 		if (mwl_hal_fwload(mh0, __DECONST(void *, args))) {
2333 			device_printf(mh->mh_dev, "problem loading fw image\n");
2334 			return 0;
2335 		}
2336 		return 1;
2337 	}
2338 	return 0;
2339 }
2340 
2341 /*
2342  * Low level firmware cmd block handshake support.
2343  */
2344 
2345 static void
2346 mwlSendCmd(struct mwl_hal_priv *mh)
2347 {
2348 	uint32_t dummy;
2349 
2350 	bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap,
2351 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2352 
2353 	WR4(mh, MACREG_REG_GEN_PTR, mh->mh_cmdaddr);
2354 	dummy = RD4(mh, MACREG_REG_INT_CODE);
2355 
2356 	WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_DOOR_BELL);
2357 }
2358 
2359 static int
2360 mwlWaitForCmdComplete(struct mwl_hal_priv *mh, uint16_t cmdCode)
2361 {
2362 #define MAX_WAIT_FW_COMPLETE_ITERATIONS 10000
2363 	int i;
2364 
2365 	for (i = 0; i < MAX_WAIT_FW_COMPLETE_ITERATIONS; i++) {
2366 		if (mh->mh_cmdbuf[0] == le16toh(cmdCode))
2367 			return 1;
2368 		DELAY(1*1000);
2369 	}
2370 	return 0;
2371 #undef MAX_WAIT_FW_COMPLETE_ITERATIONS
2372 }
2373 
2374 static int
2375 mwlExecuteCmd(struct mwl_hal_priv *mh, unsigned short cmd)
2376 {
2377 
2378 	MWL_HAL_LOCK_ASSERT(mh);
2379 
2380 	if ((mh->mh_flags & MHF_FWHANG) &&
2381 	    (mh->mh_debug & MWL_HAL_DEBUG_IGNHANG) == 0) {
2382 #ifdef MWLHAL_DEBUG
2383 		device_printf(mh->mh_dev, "firmware hung, skipping cmd %s\n",
2384 			mwlcmdname(cmd));
2385 #else
2386 		device_printf(mh->mh_dev, "firmware hung, skipping cmd 0x%x\n",
2387 			cmd);
2388 #endif
2389 		return ENXIO;
2390 	}
2391 	if (RD4(mh,  MACREG_REG_INT_CODE) == 0xffffffff) {
2392 		device_printf(mh->mh_dev, "%s: device not present!\n",
2393 		    __func__);
2394 		return EIO;
2395 	}
2396 #ifdef MWLHAL_DEBUG
2397 	if (mh->mh_debug & MWL_HAL_DEBUG_SENDCMD)
2398 		dumpresult(mh, 0);
2399 #endif
2400 	mwlSendCmd(mh);
2401 	if (!mwlWaitForCmdComplete(mh, 0x8000 | cmd)) {
2402 #ifdef MWLHAL_DEBUG
2403 		device_printf(mh->mh_dev,
2404 		    "timeout waiting for f/w cmd %s\n", mwlcmdname(cmd));
2405 #else
2406 		device_printf(mh->mh_dev,
2407 		    "timeout waiting for f/w cmd 0x%x\n", cmd);
2408 #endif
2409 		mh->mh_flags |= MHF_FWHANG;
2410 		return ETIMEDOUT;
2411 	}
2412 	bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap,
2413 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2414 #ifdef MWLHAL_DEBUG
2415 	if (mh->mh_debug & MWL_HAL_DEBUG_CMDDONE)
2416 		dumpresult(mh, 1);
2417 #endif
2418 	return 0;
2419 }
2420 
2421 /*
2422  * Firmware download support.
2423  */
2424 #define FW_DOWNLOAD_BLOCK_SIZE	256
2425 #define FW_CHECK_USECS		(5*1000)	/* 5ms */
2426 #define FW_MAX_NUM_CHECKS	200
2427 
2428 #if 0
2429 /* XXX read f/w from file */
2430 #include <dev/mwl/mwlbootfw.h>
2431 #include <dev/mwl/mwl88W8363fw.h>
2432 #endif
2433 
2434 static void
2435 mwlFwReset(struct mwl_hal_priv *mh)
2436 {
2437 	if (RD4(mh,  MACREG_REG_INT_CODE) == 0xffffffff) {
2438 		device_printf(mh->mh_dev, "%s: device not present!\n",
2439 		    __func__);
2440 		return;
2441 	}
2442 	WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, ISR_RESET);
2443 	mh->mh_flags &= ~MHF_FWHANG;
2444 }
2445 
2446 static void
2447 mwlTriggerPciCmd(struct mwl_hal_priv *mh)
2448 {
2449 	uint32_t dummy;
2450 
2451 	bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap, BUS_DMASYNC_PREWRITE);
2452 
2453 	WR4(mh, MACREG_REG_GEN_PTR, mh->mh_cmdaddr);
2454 	dummy = RD4(mh, MACREG_REG_INT_CODE);
2455 
2456 	WR4(mh, MACREG_REG_INT_CODE, 0x00);
2457 	dummy = RD4(mh, MACREG_REG_INT_CODE);
2458 
2459 	WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_DOOR_BELL);
2460 	dummy = RD4(mh, MACREG_REG_INT_CODE);
2461 }
2462 
2463 static int
2464 mwlWaitFor(struct mwl_hal_priv *mh, uint32_t val)
2465 {
2466 	int i;
2467 
2468 	for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
2469 		DELAY(FW_CHECK_USECS);
2470 		if (RD4(mh, MACREG_REG_INT_CODE) == val)
2471 			return 1;
2472 	}
2473 	return 0;
2474 }
2475 
2476 /*
2477  * Firmware block xmit when talking to the boot-rom.
2478  */
2479 static int
2480 mwlSendBlock(struct mwl_hal_priv *mh, int bsize, const void *data, size_t dsize)
2481 {
2482 	mh->mh_cmdbuf[0] = htole16(HostCmd_CMD_CODE_DNLD);
2483 	mh->mh_cmdbuf[1] = htole16(bsize);
2484 	memcpy(&mh->mh_cmdbuf[4], data , dsize);
2485 	mwlTriggerPciCmd(mh);
2486 	/* XXX 2000 vs 200 */
2487 	if (mwlWaitFor(mh, MACREG_INT_CODE_CMD_FINISHED)) {
2488 		WR4(mh, MACREG_REG_INT_CODE, 0);
2489 		return 1;
2490 	}
2491 	device_printf(mh->mh_dev,
2492 	    "%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
2493 	    __func__, RD4(mh, MACREG_REG_INT_CODE));
2494 	return 0;
2495 }
2496 
2497 /*
2498  * Firmware block xmit when talking to the 1st-stage loader.
2499  */
2500 static int
2501 mwlSendBlock2(struct mwl_hal_priv *mh, const void *data, size_t dsize)
2502 {
2503 	memcpy(&mh->mh_cmdbuf[0], data, dsize);
2504 	mwlTriggerPciCmd(mh);
2505 	if (mwlWaitFor(mh, MACREG_INT_CODE_CMD_FINISHED)) {
2506 		WR4(mh, MACREG_REG_INT_CODE, 0);
2507 		return 1;
2508 	}
2509 	device_printf(mh->mh_dev,
2510 	    "%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
2511 	    __func__, RD4(mh, MACREG_REG_INT_CODE));
2512 	return 0;
2513 }
2514 
2515 static void
2516 mwlPokeSdramController(struct mwl_hal_priv *mh, int SDRAMSIZE_Addr)
2517 {
2518 	/** Set up sdram controller for superflyv2 **/
2519 	WR4(mh, 0x00006014, 0x33);
2520 	WR4(mh, 0x00006018, 0xa3a2632);
2521 	WR4(mh, 0x00006010, SDRAMSIZE_Addr);
2522 }
2523 
2524 int
2525 mwl_hal_fwload(struct mwl_hal *mh0, void *fwargs)
2526 {
2527 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2528 	const char *fwname = "mw88W8363fw";
2529 	const char *fwbootname = "mwlboot";
2530 	const struct firmware *fwboot = NULL;
2531 	const struct firmware *fw;
2532 	/* XXX get from firmware header */
2533 	uint32_t FwReadySignature = HostCmd_SOFTAP_FWRDY_SIGNATURE;
2534 	uint32_t OpMode = HostCmd_SOFTAP_MODE;
2535 	const uint8_t *fp, *ep;
2536 	const uint8_t *fmdata;
2537 	uint32_t blocksize, nbytes, fmsize;
2538 	int i, error, ntries;
2539 
2540 	fw = firmware_get(fwname);
2541 	if (fw == NULL) {
2542 		device_printf(mh->mh_dev,
2543 		    "could not load firmware image %s\n", fwname);
2544 		return ENXIO;
2545 	}
2546 	fmdata = fw->data;
2547 	fmsize = fw->datasize;
2548 	if (fmsize < 4) {
2549 		device_printf(mh->mh_dev, "firmware image %s too small\n",
2550 		    fwname);
2551 		error = ENXIO;
2552 		goto bad2;
2553 	}
2554 	if (fmdata[0] == 0x01 && fmdata[1] == 0x00 &&
2555 	    fmdata[2] == 0x00 && fmdata[3] == 0x00) {
2556 		/*
2557 		 * 2-stage load, get the boot firmware.
2558 		 */
2559 		fwboot = firmware_get(fwbootname);
2560 		if (fwboot == NULL) {
2561 			device_printf(mh->mh_dev,
2562 			    "could not load firmware image %s\n", fwbootname);
2563 			error = ENXIO;
2564 			goto bad2;
2565 		}
2566 	} else
2567 		fwboot = NULL;
2568 
2569 	mwlFwReset(mh);
2570 
2571 	WR4(mh, MACREG_REG_A2H_INTERRUPT_CLEAR_SEL, MACREG_A2HRIC_BIT_MASK);
2572 	WR4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE, 0x00);
2573 	WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, 0x00);
2574 	WR4(mh, MACREG_REG_A2H_INTERRUPT_STATUS_MASK, MACREG_A2HRIC_BIT_MASK);
2575 	if (mh->mh_SDRAMSIZE_Addr != 0) {
2576 		/** Set up sdram controller for superflyv2 **/
2577 		mwlPokeSdramController(mh, mh->mh_SDRAMSIZE_Addr);
2578 	}
2579 	device_printf(mh->mh_dev, "load %s firmware image (%u bytes)\n",
2580 	    fwname, fmsize);
2581 	if (fwboot != NULL) {
2582 		/*
2583 		 * Do 2-stage load.  The 1st stage loader is setup
2584 		 * with the bootrom loader then we load the real
2585 		 * image using a different handshake. With this
2586 		 * mechanism the firmware is segmented into chunks
2587 		 * that have a CRC.  If a chunk is incorrect we'll
2588 		 * be told to retransmit.
2589 		 */
2590 		/* XXX assumes hlpimage fits in a block */
2591 		/* NB: zero size block indicates download is finished */
2592 		if (!mwlSendBlock(mh, fwboot->datasize, fwboot->data, fwboot->datasize) ||
2593 		    !mwlSendBlock(mh, 0, NULL, 0)) {
2594 			error = ETIMEDOUT;
2595 			goto bad;
2596 		}
2597 		DELAY(200*FW_CHECK_USECS);
2598 		if (mh->mh_SDRAMSIZE_Addr != 0) {
2599 			/** Set up sdram controller for superflyv2 **/
2600 			mwlPokeSdramController(mh, mh->mh_SDRAMSIZE_Addr);
2601 		}
2602 		nbytes = ntries = 0;		/* NB: silence compiler */
2603 		for (fp = fmdata, ep = fp + fmsize; fp < ep; ) {
2604 			WR4(mh, MACREG_REG_INT_CODE, 0);
2605 			blocksize = RD4(mh, MACREG_REG_SCRATCH);
2606 			if (blocksize == 0)	/* download complete */
2607 				break;
2608 			if (blocksize > 0x00000c00) {
2609 				error = EINVAL;
2610 				goto bad;
2611 			}
2612 			if ((blocksize & 0x1) == 0) {
2613 				/* block successfully downloaded, advance */
2614 				fp += nbytes;
2615 				ntries = 0;
2616 			} else {
2617 				if (++ntries > 2) {
2618 					/*
2619 					 * Guard against f/w telling us to
2620 					 * retry infinitely.
2621 					 */
2622 					error = ELOOP;
2623 					goto bad;
2624 				}
2625 				/* clear NAK bit/flag */
2626 				blocksize &= ~0x1;
2627 			}
2628 			if (blocksize > ep - fp) {
2629 				/* XXX this should not happen, what to do? */
2630 				blocksize = ep - fp;
2631 			}
2632 			nbytes = blocksize;
2633 			if (!mwlSendBlock2(mh, fp, nbytes)) {
2634 				error = ETIMEDOUT;
2635 				goto bad;
2636 			}
2637 		}
2638 	} else {
2639 		for (fp = fmdata, ep = fp + fmsize; fp < ep;) {
2640 			nbytes = ep - fp;
2641 			if (nbytes > FW_DOWNLOAD_BLOCK_SIZE)
2642 				nbytes = FW_DOWNLOAD_BLOCK_SIZE;
2643 			if (!mwlSendBlock(mh, FW_DOWNLOAD_BLOCK_SIZE, fp, nbytes)) {
2644 				error = EIO;
2645 				goto bad;
2646 			}
2647 			fp += nbytes;
2648 		}
2649 	}
2650 	/* done with firmware... */
2651 	if (fwboot != NULL)
2652 		firmware_put(fwboot, FIRMWARE_UNLOAD);
2653 	firmware_put(fw, FIRMWARE_UNLOAD);
2654 	/*
2655 	 * Wait for firmware to startup; we monitor the
2656 	 * INT_CODE register waiting for a signature to
2657 	 * written back indicating it's ready to go.
2658 	 */
2659 	mh->mh_cmdbuf[1] = 0;
2660 	/*
2661 	 * XXX WAR for mfg fw download
2662 	 */
2663 	if (OpMode != HostCmd_STA_MODE)
2664 		mwlTriggerPciCmd(mh);
2665 	for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
2666 		WR4(mh, MACREG_REG_GEN_PTR, OpMode);
2667 		DELAY(FW_CHECK_USECS);
2668 		if (RD4(mh, MACREG_REG_INT_CODE) == FwReadySignature) {
2669 			WR4(mh, MACREG_REG_INT_CODE, 0x00);
2670 			return mwlResetHalState(mh);
2671 		}
2672 	}
2673 	return ETIMEDOUT;
2674 bad:
2675 	mwlFwReset(mh);
2676 bad2:
2677 	/* done with firmware... */
2678 	if (fwboot != NULL)
2679 		firmware_put(fwboot, FIRMWARE_UNLOAD);
2680 	firmware_put(fw, FIRMWARE_UNLOAD);
2681 	return error;
2682 }
2683 
2684 #ifdef MWLHAL_DEBUG
2685 static const char *
2686 mwlcmdname(int cmd)
2687 {
2688 	static char buf[12];
2689 #define	CMD(x)	case HostCmd_CMD_##x: return #x
2690 	switch (cmd) {
2691 	CMD(CODE_DNLD);
2692 	CMD(GET_HW_SPEC);
2693 	CMD(SET_HW_SPEC);
2694 	CMD(MAC_MULTICAST_ADR);
2695 	CMD(802_11_GET_STAT);
2696 	CMD(MAC_REG_ACCESS);
2697 	CMD(BBP_REG_ACCESS);
2698 	CMD(RF_REG_ACCESS);
2699 	CMD(802_11_RADIO_CONTROL);
2700 	CMD(802_11_RF_TX_POWER);
2701 	CMD(802_11_RF_ANTENNA);
2702 	CMD(SET_BEACON);
2703 	CMD(SET_RF_CHANNEL);
2704 	CMD(SET_AID);
2705 	CMD(SET_INFRA_MODE);
2706 	CMD(SET_G_PROTECT_FLAG);
2707 	CMD(802_11_RTS_THSD);
2708 	CMD(802_11_SET_SLOT);
2709 	CMD(SET_EDCA_PARAMS);
2710 	CMD(802_11H_DETECT_RADAR);
2711 	CMD(SET_WMM_MODE);
2712 	CMD(HT_GUARD_INTERVAL);
2713 	CMD(SET_FIXED_RATE);
2714 	CMD(SET_LINKADAPT_CS_MODE);
2715 	CMD(SET_MAC_ADDR);
2716 	CMD(SET_RATE_ADAPT_MODE);
2717 	CMD(BSS_START);
2718 	CMD(SET_NEW_STN);
2719 	CMD(SET_KEEP_ALIVE);
2720 	CMD(SET_APMODE);
2721 	CMD(SET_SWITCH_CHANNEL);
2722 	CMD(UPDATE_ENCRYPTION);
2723 	CMD(BASTREAM);
2724 	CMD(SET_RIFS);
2725 	CMD(SET_N_PROTECT_FLAG);
2726 	CMD(SET_N_PROTECT_OPMODE);
2727 	CMD(SET_OPTIMIZATION_LEVEL);
2728 	CMD(GET_CALTABLE);
2729 	CMD(SET_MIMOPSHT);
2730 	CMD(GET_BEACON);
2731 	CMD(SET_REGION_CODE);
2732 	CMD(SET_POWERSAVESTATION);
2733 	CMD(SET_TIM);
2734 	CMD(GET_TIM);
2735 	CMD(GET_SEQNO);
2736 	CMD(DWDS_ENABLE);
2737 	CMD(AMPDU_RETRY_RATEDROP_MODE);
2738 	CMD(CFEND_ENABLE);
2739 	}
2740 	snprintf(buf, sizeof(buf), "0x%x", cmd);
2741 	return buf;
2742 #undef CMD
2743 }
2744 
2745 static void
2746 dumpresult(struct mwl_hal_priv *mh, int showresult)
2747 {
2748 	const FWCmdHdr *h = (const FWCmdHdr *)mh->mh_cmdbuf;
2749 	const uint8_t *cp;
2750 	int len, i;
2751 
2752 	len = le16toh(h->Length);
2753 #ifdef MWL_MBSS_SUPPORT
2754 	device_printf(mh->mh_dev, "Cmd %s Length %d SeqNum %d MacId %d",
2755 	    mwlcmdname(le16toh(h->Cmd) &~ 0x8000), len, h->SeqNum, h->MacId);
2756 #else
2757 	device_printf(mh->mh_dev, "Cmd %s Length %d SeqNum %d",
2758 	    mwlcmdname(le16toh(h->Cmd) &~ 0x8000), len, le16toh(h->SeqNum));
2759 #endif
2760 	if (showresult) {
2761 		const char *results[] =
2762 		    { "OK", "ERROR", "NOT_SUPPORT", "PENDING", "BUSY",
2763 		      "PARTIAL_DATA" };
2764 		int result = le16toh(h->Result);
2765 
2766 		if (result <= HostCmd_RESULT_PARTIAL_DATA)
2767 			printf(" Result %s", results[result]);
2768 		else
2769 			printf(" Result %d", result);
2770 	}
2771 	cp = (const uint8_t *)h;
2772 	for (i = 0; i < len; i++) {
2773 		if ((i % 16) == 0)
2774 			printf("\n%02x", cp[i]);
2775 		else
2776 			printf(" %02x", cp[i]);
2777 	}
2778 	printf("\n");
2779 }
2780 #endif /* MWLHAL_DEBUG */
2781