xref: /freebsd/sys/dev/mwl/mwlhal.c (revision 3416500aef140042c64bc149cb1ec6620483bc44)
1 /*-
2  * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2007-2009 Marvell Semiconductor, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
14  *    redistribution must be conditioned upon including a substantially
15  *    similar Disclaimer requirement for further binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
21  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
23  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
26  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGES.
29  *
30  * $FreeBSD$
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sysctl.h>
36 #include <sys/malloc.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/kernel.h>
40 #include <sys/errno.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 
44 #include <sys/linker.h>
45 #include <sys/firmware.h>
46 
47 #include <machine/bus.h>
48 
49 #include <dev/mwl/mwlhal.h>
50 #include <dev/mwl/mwlreg.h>
51 
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <net/if.h>
55 #include <dev/mwl/mwldiag.h>
56 
57 #define	MWLHAL_DEBUG			/* debug msgs */
58 
59 typedef enum {
60     WL_ANTENNAMODE_RX = 0xffff,
61     WL_ANTENNAMODE_TX = 2,
62 } wlantennamode_e;
63 
64 typedef enum {
65     WL_TX_POWERLEVEL_LOW = 5,
66     WL_TX_POWERLEVEL_MEDIUM = 10,
67     WL_TX_POWERLEVEL_HIGH = 15,
68 } wltxpowerlevel_e;
69 
70 #define	MWL_CMDBUF_SIZE	0x4000		/* size of f/w command buffer */
71 #define	MWL_BASTREAMS_MAX	7	/* max BA streams (NB: fw >3.3.5.9) */
72 #define	MWL_BAQID_MAX		8	/* max BA Q id's (NB: fw >3.3.5.9) */
73 #define	MWL_MBSS_AP_MAX		8	/* max ap vap's */
74 #define	MWL_MBSS_STA_MAX	24	/* max station/client vap's */
75 #define	MWL_MBSS_MAX	(MWL_MBSS_AP_MAX+MWL_MBSS_STA_MAX)
76 
77 /*
78  * BA stream -> queue ID mapping
79  *
80  * The first 2 streams map to h/w; the remaining streams are
81  * implemented in firmware.
82  */
83 static const int ba2qid[MWL_BASTREAMS_MAX] = {
84 	5, 6				/* h/w supported */
85 #if MWL_BASTREAMS_MAX == 7
86 	, 7, 0, 1, 2, 3 		/* f/w supported */
87 #endif
88 };
89 static int qid2ba[MWL_BAQID_MAX];
90 
91 #define	IEEE80211_ADDR_LEN	6	/* XXX */
92 #define	IEEE80211_ADDR_COPY(_dst, _src) \
93 	memcpy(_dst, _src, IEEE80211_ADDR_LEN)
94 #define	IEEE80211_ADDR_EQ(_dst, _src) \
95 	(memcmp(_dst, _src, IEEE80211_ADDR_LEN) == 0)
96 
97 #define	_CMD_SETUP(pCmd, type, cmd) do {				\
98 	pCmd = (type *)&mh->mh_cmdbuf[0];				\
99 	memset(pCmd, 0, sizeof(type));					\
100 	pCmd->CmdHdr.Cmd = htole16(cmd);				\
101 	pCmd->CmdHdr.Length = htole16(sizeof(type));			\
102 } while (0)
103 
104 #define	_VCMD_SETUP(vap, pCmd, type, cmd) do {				\
105 	_CMD_SETUP(pCmd, type, cmd);					\
106 	pCmd->CmdHdr.MacId = vap->macid;				\
107 } while (0)
108 
109 #define	PWTAGETRATETABLE20M	14*4
110 #define	PWTAGETRATETABLE40M	9*4
111 #define	PWTAGETRATETABLE20M_5G	35*4
112 #define	PWTAGETRATETABLE40M_5G	16*4
113 
114 struct mwl_hal_bastream {
115 	MWL_HAL_BASTREAM public;	/* public state */
116 	uint8_t	stream;			/* stream # */
117 	uint8_t	setup;			/* f/w cmd sent */
118 	uint8_t ba_policy;		/* direct/delayed BA policy */
119 	uint8_t	tid;
120 	uint8_t	paraminfo;
121 	uint8_t macaddr[IEEE80211_ADDR_LEN];
122 };
123 
124 struct mwl_hal_priv;
125 
126 struct mwl_hal_vap {
127 	struct mwl_hal_priv *mh;	/* back pointer */
128 	uint16_t bss_type;		/* f/w type */
129 	uint8_t vap_type;		/* MWL_HAL_BSSTYPE */
130 	uint8_t	macid;			/* for passing to f/w */
131 	uint8_t flags;
132 #define	MVF_RUNNING	0x01		/* BSS_START issued */
133 #define	MVF_STATION	0x02		/* sta db entry created */
134 	uint8_t mac[IEEE80211_ADDR_LEN];/* mac address */
135 };
136 #define	MWLVAP(_vap)	((_vap)->mh)
137 
138 /*
139  * Per-device state.  We allocate a single cmd buffer for
140  * submitting operations to the firmware.  Access to this
141  * buffer (and the f/w) are single-threaded.  At present
142  * we spin waiting for cmds to complete which is bad.  Not
143  * sure if it's possible to submit multiple requests or
144  * control when we get cmd done interrupts.  There's no
145  * documentation and no example code to indicate what can
146  * or cannot be done so all we can do right now is follow the
147  * linux driver logic.  This falls apart when the f/w fails;
148  * the system comes to a crawl as we spin waiting for operations
149  * to finish.
150  */
151 struct mwl_hal_priv {
152 	struct mwl_hal	public;		/* public area */
153 	device_t	mh_dev;
154 	char		mh_mtxname[12];
155 	struct mtx	mh_mtx;
156 	bus_dma_tag_t	mh_dmat;	/* bus DMA tag for cmd buffer */
157 	bus_dma_segment_t mh_seg;	/* segment for cmd buffer */
158 	bus_dmamap_t	mh_dmamap;	/* DMA map for cmd buffer */
159 	uint16_t	*mh_cmdbuf;	/* f/w cmd buffer */
160 	bus_addr_t	mh_cmdaddr;	/* physaddr of cmd buffer */
161 	int		mh_flags;
162 #define	MHF_CALDATA	0x0001		/* cal data retrieved */
163 #define	MHF_FWHANG	0x0002		/* fw appears hung */
164 #define	MHF_MBSS	0x0004		/* mbss enabled */
165 	struct mwl_hal_vap mh_vaps[MWL_MBSS_MAX+1];
166 	int		mh_bastreams;	/* bit mask of available BA streams */
167 	int		mh_regioncode;	/* XXX last region code sent to fw */
168 	struct mwl_hal_bastream mh_streams[MWL_BASTREAMS_MAX];
169 	int		mh_debug;
170 	MWL_HAL_CHANNELINFO mh_20M;
171 	MWL_HAL_CHANNELINFO mh_40M;
172 	MWL_HAL_CHANNELINFO mh_20M_5G;
173 	MWL_HAL_CHANNELINFO mh_40M_5G;
174 	int		mh_SDRAMSIZE_Addr;
175 	uint32_t	mh_RTSSuccesses;/* cumulative stats for read-on-clear */
176 	uint32_t	mh_RTSFailures;
177 	uint32_t	mh_RxDuplicateFrames;
178 	uint32_t	mh_FCSErrorCount;
179 	MWL_DIAG_REVS	mh_revs;
180 };
181 #define	MWLPRIV(_mh)	((struct mwl_hal_priv *)(_mh))
182 
183 static int mwl_hal_setmac_locked(struct mwl_hal_vap *,
184 	const uint8_t addr[IEEE80211_ADDR_LEN]);
185 static int mwlExecuteCmd(struct mwl_hal_priv *, unsigned short cmd);
186 static int mwlGetPwrCalTable(struct mwl_hal_priv *);
187 #ifdef MWLHAL_DEBUG
188 static const char *mwlcmdname(int cmd);
189 static void dumpresult(struct mwl_hal_priv *, int showresult);
190 #endif /* MWLHAL_DEBUG */
191 
192 SYSCTL_DECL(_hw_mwl);
193 static SYSCTL_NODE(_hw_mwl, OID_AUTO, hal, CTLFLAG_RD, 0,
194     "Marvell HAL parameters");
195 
196 static __inline void
197 MWL_HAL_LOCK(struct mwl_hal_priv *mh)
198 {
199 	mtx_lock(&mh->mh_mtx);
200 }
201 
202 static __inline void
203 MWL_HAL_LOCK_ASSERT(struct mwl_hal_priv *mh)
204 {
205 	mtx_assert(&mh->mh_mtx, MA_OWNED);
206 }
207 
208 static __inline void
209 MWL_HAL_UNLOCK(struct mwl_hal_priv *mh)
210 {
211 	mtx_unlock(&mh->mh_mtx);
212 }
213 
214 static __inline uint32_t
215 RD4(struct mwl_hal_priv *mh, bus_size_t off)
216 {
217 	return bus_space_read_4(mh->public.mh_iot, mh->public.mh_ioh, off);
218 }
219 
220 static __inline void
221 WR4(struct mwl_hal_priv *mh, bus_size_t off, uint32_t val)
222 {
223 	bus_space_write_4(mh->public.mh_iot, mh->public.mh_ioh, off, val);
224 }
225 
226 static void
227 mwl_hal_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
228 {
229 	bus_addr_t *paddr = (bus_addr_t*) arg;
230 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
231 	*paddr = segs->ds_addr;
232 }
233 
234 /*
235  * Setup for communication with the device.  We allocate
236  * a command buffer and map it for bus dma use.  The pci
237  * device id is used to identify whether the device has
238  * SRAM on it (in which case f/w download must include a
239  * memory controller reset).  All bus i/o operations happen
240  * in BAR 1; the driver passes in the tag and handle we need.
241  */
242 struct mwl_hal *
243 mwl_hal_attach(device_t dev, uint16_t devid,
244     bus_space_handle_t ioh, bus_space_tag_t iot, bus_dma_tag_t tag)
245 {
246 	struct mwl_hal_priv *mh;
247 	struct mwl_hal_vap *hvap;
248 	int error, i;
249 
250 	mh = malloc(sizeof(struct mwl_hal_priv), M_DEVBUF, M_NOWAIT | M_ZERO);
251 	if (mh == NULL)
252 		return NULL;
253 	mh->mh_dev = dev;
254 	mh->public.mh_ioh = ioh;
255 	mh->public.mh_iot = iot;
256 	for (i = 0; i < MWL_BASTREAMS_MAX; i++) {
257 		mh->mh_streams[i].public.txq = ba2qid[i];
258 		mh->mh_streams[i].stream = i;
259 		/* construct back-mapping while we're at it */
260 		if (mh->mh_streams[i].public.txq < MWL_BAQID_MAX)
261 			qid2ba[mh->mh_streams[i].public.txq] = i;
262 		else
263 			device_printf(dev, "unexpected BA tx qid %d for "
264 			    "stream %d\n", mh->mh_streams[i].public.txq, i);
265 	}
266 	/* setup constant portion of vap state */
267 	/* XXX should get max ap/client vap's from f/w */
268 	i = 0;
269 	hvap = &mh->mh_vaps[i];
270 	hvap->vap_type = MWL_HAL_AP;
271 	hvap->bss_type = htole16(WL_MAC_TYPE_PRIMARY_AP);
272 	hvap->macid = 0;
273 	for (i++; i < MWL_MBSS_AP_MAX; i++) {
274 		hvap = &mh->mh_vaps[i];
275 		hvap->vap_type = MWL_HAL_AP;
276 		hvap->bss_type = htole16(WL_MAC_TYPE_SECONDARY_AP);
277 		hvap->macid = i;
278 	}
279 	hvap = &mh->mh_vaps[i];
280 	hvap->vap_type = MWL_HAL_STA;
281 	hvap->bss_type = htole16(WL_MAC_TYPE_PRIMARY_CLIENT);
282 	hvap->macid = i;
283 	for (i++; i < MWL_MBSS_MAX; i++) {
284 		hvap = &mh->mh_vaps[i];
285 		hvap->vap_type = MWL_HAL_STA;
286 		hvap->bss_type = htole16(WL_MAC_TYPE_SECONDARY_CLIENT);
287 		hvap->macid = i;
288 	}
289 	mh->mh_revs.mh_devid = devid;
290 	snprintf(mh->mh_mtxname, sizeof(mh->mh_mtxname),
291 	    "%s_hal", device_get_nameunit(dev));
292 	mtx_init(&mh->mh_mtx, mh->mh_mtxname, NULL, MTX_DEF);
293 
294 	/*
295 	 * Allocate the command buffer and map into the address
296 	 * space of the h/w.  We request "coherent" memory which
297 	 * will be uncached on some architectures.
298 	 */
299 	error = bus_dma_tag_create(tag,		/* parent */
300 		       PAGE_SIZE, 0,		/* alignment, bounds */
301 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
302 		       BUS_SPACE_MAXADDR,	/* highaddr */
303 		       NULL, NULL,		/* filter, filterarg */
304 		       MWL_CMDBUF_SIZE,		/* maxsize */
305 		       1,			/* nsegments */
306 		       MWL_CMDBUF_SIZE,		/* maxsegsize */
307 		       BUS_DMA_ALLOCNOW,	/* flags */
308 		       NULL,			/* lockfunc */
309 		       NULL,			/* lockarg */
310 		       &mh->mh_dmat);
311 	if (error != 0) {
312 		device_printf(dev, "unable to allocate memory for cmd tag, "
313 			"error %u\n", error);
314 		goto fail0;
315 	}
316 
317 	/* allocate descriptors */
318 	error = bus_dmamem_alloc(mh->mh_dmat, (void**) &mh->mh_cmdbuf,
319 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
320 				 &mh->mh_dmamap);
321 	if (error != 0) {
322 		device_printf(dev, "unable to allocate memory for cmd buffer, "
323 			"error %u\n", error);
324 		goto fail1;
325 	}
326 
327 	error = bus_dmamap_load(mh->mh_dmat, mh->mh_dmamap,
328 				mh->mh_cmdbuf, MWL_CMDBUF_SIZE,
329 				mwl_hal_load_cb, &mh->mh_cmdaddr,
330 				BUS_DMA_NOWAIT);
331 	if (error != 0) {
332 		device_printf(dev, "unable to load cmd buffer, error %u\n",
333 			error);
334 		goto fail2;
335 	}
336 
337 	/*
338 	 * Some cards have SDRAM.  When loading firmware we need
339 	 * to reset the SDRAM controller prior to doing this.
340 	 * When the SDRAMSIZE is non-zero we do that work in
341 	 * mwl_hal_fwload.
342 	 */
343 	switch (devid) {
344 	case 0x2a02:		/* CB82 */
345 	case 0x2a03:		/* CB85 */
346 	case 0x2a08:		/* MC85_B1 */
347 	case 0x2a0b:		/* CB85AP */
348 	case 0x2a24:
349 		mh->mh_SDRAMSIZE_Addr = 0x40fe70b7;	/* 8M SDRAM */
350 		break;
351 	case 0x2a04:		/* MC85 */
352 		mh->mh_SDRAMSIZE_Addr = 0x40fc70b7;	/* 16M SDRAM */
353 		break;
354 	default:
355 		break;
356 	}
357 	return &mh->public;
358 fail2:
359 	bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap);
360 fail1:
361 	bus_dma_tag_destroy(mh->mh_dmat);
362 fail0:
363 	mtx_destroy(&mh->mh_mtx);
364 	free(mh, M_DEVBUF);
365 	return NULL;
366 }
367 
368 void
369 mwl_hal_detach(struct mwl_hal *mh0)
370 {
371 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
372 
373 	bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap);
374 	bus_dma_tag_destroy(mh->mh_dmat);
375 	mtx_destroy(&mh->mh_mtx);
376 	free(mh, M_DEVBUF);
377 }
378 
379 /*
380  * Reset internal state after a firmware download.
381  */
382 static int
383 mwlResetHalState(struct mwl_hal_priv *mh)
384 {
385 	int i;
386 
387 	/* XXX get from f/w */
388 	mh->mh_bastreams = (1<<MWL_BASTREAMS_MAX)-1;
389 	for (i = 0; i < MWL_MBSS_MAX; i++)
390 		mh->mh_vaps[i].mh = NULL;
391 	/*
392 	 * Clear cumulative stats.
393 	 */
394 	mh->mh_RTSSuccesses = 0;
395 	mh->mh_RTSFailures = 0;
396 	mh->mh_RxDuplicateFrames = 0;
397 	mh->mh_FCSErrorCount = 0;
398 	/*
399 	 * Fetch cal data for later use.
400 	 * XXX may want to fetch other stuff too.
401 	 */
402 	/* XXX check return */
403 	if ((mh->mh_flags & MHF_CALDATA) == 0)
404 		mwlGetPwrCalTable(mh);
405 	return 0;
406 }
407 
408 struct mwl_hal_vap *
409 mwl_hal_newvap(struct mwl_hal *mh0, MWL_HAL_BSSTYPE type,
410 	const uint8_t mac[IEEE80211_ADDR_LEN])
411 {
412 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
413 	struct mwl_hal_vap *vap;
414 	int i;
415 
416 	MWL_HAL_LOCK(mh);
417 	/* NB: could optimize but not worth it w/ max 32 bss */
418 	for (i = 0; i < MWL_MBSS_MAX; i++) {
419 		vap = &mh->mh_vaps[i];
420 		if (vap->vap_type == type && vap->mh == NULL) {
421 			vap->mh = mh;
422 			mwl_hal_setmac_locked(vap, mac);
423 			break;
424 		}
425 	}
426 	MWL_HAL_UNLOCK(mh);
427 	return (i < MWL_MBSS_MAX) ? vap : NULL;
428 }
429 
430 void
431 mwl_hal_delvap(struct mwl_hal_vap *vap)
432 {
433 	/* NB: locking not needed for single write */
434 	vap->mh = NULL;
435 }
436 
437 /*
438  * Manipulate the debug mask.  Note debug
439  * msgs are only provided when this code is
440  * compiled with MWLHAL_DEBUG defined.
441  */
442 
443 void
444 mwl_hal_setdebug(struct mwl_hal *mh, int debug)
445 {
446 	MWLPRIV(mh)->mh_debug = debug;
447 }
448 
449 int
450 mwl_hal_getdebug(struct mwl_hal *mh)
451 {
452 	return MWLPRIV(mh)->mh_debug;
453 }
454 
455 void
456 mwl_hal_setbastreams(struct mwl_hal *mh, int mask)
457 {
458 	MWLPRIV(mh)->mh_bastreams = mask & ((1<<MWL_BASTREAMS_MAX)-1);
459 }
460 
461 int
462 mwl_hal_getbastreams(struct mwl_hal *mh)
463 {
464 	return MWLPRIV(mh)->mh_bastreams;
465 }
466 
467 int
468 mwl_hal_ismbsscapable(struct mwl_hal *mh)
469 {
470 	return (MWLPRIV(mh)->mh_flags & MHF_MBSS) != 0;
471 }
472 
473 #if 0
474 /* XXX inlined */
475 /*
476  * Return the current ISR setting and clear the cause.
477  * XXX maybe make inline
478  */
479 void
480 mwl_hal_getisr(struct mwl_hal *mh0, uint32_t *status)
481 {
482 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
483 	uint32_t cause;
484 
485 	cause = RD4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE);
486 	if (cause == 0xffffffff) {	/* card removed */
487 device_printf(mh->mh_dev, "%s: cause 0x%x\n", __func__, cause);
488 		cause = 0;
489 	} else if (cause != 0) {
490 		/* clear cause bits */
491 		WR4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE,
492 		    cause &~ mh->public.mh_imask);
493 		RD4(mh, MACREG_REG_INT_CODE);	/* XXX flush write? */
494 	}
495 	*status = cause;
496 }
497 #endif
498 
499 /*
500  * Set the interrupt mask.
501  */
502 void
503 mwl_hal_intrset(struct mwl_hal *mh0, uint32_t mask)
504 {
505 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
506 
507 	WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, 0);
508 	RD4(mh, MACREG_REG_INT_CODE);
509 
510 	mh->public.mh_imask = mask;
511 	WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, mask);
512 	RD4(mh, MACREG_REG_INT_CODE);
513 }
514 
515 #if 0
516 /* XXX inlined */
517 /*
518  * Kick the firmware to tell it there are new tx descriptors
519  * for processing.  The driver says what h/w q has work in
520  * case the f/w ever gets smarter.
521  */
522 void
523 mwl_hal_txstart(struct mwl_hal *mh0, int qnum)
524 {
525 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
526 	uint32_t dummy;
527 
528 	WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_PPA_READY);
529 	dummy = RD4(mh, MACREG_REG_INT_CODE);
530 }
531 #endif
532 
533 /*
534  * Callback from the driver on a cmd done interrupt.
535  * Nothing to do right now as we spin waiting for
536  * cmd completion.
537  */
538 void
539 mwl_hal_cmddone(struct mwl_hal *mh0)
540 {
541 #if 0
542 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
543 
544 	if (mh->mh_debug & MWL_HAL_DEBUG_CMDDONE) {
545 		device_printf(mh->mh_dev, "cmd done interrupt:\n");
546 		dumpresult(mh, 1);
547 	}
548 #endif
549 }
550 
551 /*
552  * Return "hw specs".  Note this must be the first
553  * cmd MUST be done after a firmware download or the
554  * f/w will lockup.
555  * XXX move into the hal so driver doesn't need to be responsible
556  */
557 int
558 mwl_hal_gethwspecs(struct mwl_hal *mh0, struct mwl_hal_hwspec *hw)
559 {
560 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
561 	HostCmd_DS_GET_HW_SPEC *pCmd;
562 	int retval, minrev;
563 
564 	MWL_HAL_LOCK(mh);
565 	_CMD_SETUP(pCmd, HostCmd_DS_GET_HW_SPEC, HostCmd_CMD_GET_HW_SPEC);
566 	memset(&pCmd->PermanentAddr[0], 0xff, IEEE80211_ADDR_LEN);
567 	pCmd->ulFwAwakeCookie = htole32((unsigned int)mh->mh_cmdaddr+2048);
568 
569 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_HW_SPEC);
570 	if (retval == 0) {
571 		IEEE80211_ADDR_COPY(hw->macAddr, pCmd->PermanentAddr);
572 		hw->wcbBase[0] = le32toh(pCmd->WcbBase0) & 0x0000ffff;
573 		hw->wcbBase[1] = le32toh(pCmd->WcbBase1[0]) & 0x0000ffff;
574 		hw->wcbBase[2] = le32toh(pCmd->WcbBase1[1]) & 0x0000ffff;
575 		hw->wcbBase[3] = le32toh(pCmd->WcbBase1[2]) & 0x0000ffff;
576 		hw->rxDescRead = le32toh(pCmd->RxPdRdPtr)& 0x0000ffff;
577 		hw->rxDescWrite = le32toh(pCmd->RxPdWrPtr)& 0x0000ffff;
578 		hw->regionCode = le16toh(pCmd->RegionCode) & 0x00ff;
579 		hw->fwReleaseNumber = le32toh(pCmd->FWReleaseNumber);
580 		hw->maxNumWCB = le16toh(pCmd->NumOfWCB);
581 		hw->maxNumMCAddr = le16toh(pCmd->NumOfMCastAddr);
582 		hw->numAntennas = le16toh(pCmd->NumberOfAntenna);
583 		hw->hwVersion = pCmd->Version;
584 		hw->hostInterface = pCmd->HostIf;
585 
586 		mh->mh_revs.mh_macRev = hw->hwVersion;		/* XXX */
587 		mh->mh_revs.mh_phyRev = hw->hostInterface;	/* XXX */
588 
589 		minrev = ((hw->fwReleaseNumber) >> 16) & 0xff;
590 		if (minrev >= 4) {
591 			/* starting with 3.4.x.x s/w BA streams supported */
592 			mh->mh_bastreams &= (1<<MWL_BASTREAMS_MAX)-1;
593 		} else
594 			mh->mh_bastreams &= (1<<2)-1;
595 	}
596 	MWL_HAL_UNLOCK(mh);
597 	return retval;
598 }
599 
600 /*
601  * Inform the f/w about location of the tx/rx dma data structures
602  * and related state.  This cmd must be done immediately after a
603  * mwl_hal_gethwspecs call or the f/w will lockup.
604  */
605 int
606 mwl_hal_sethwdma(struct mwl_hal *mh0, const struct mwl_hal_txrxdma *dma)
607 {
608 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
609 	HostCmd_DS_SET_HW_SPEC *pCmd;
610 	int retval;
611 
612 	MWL_HAL_LOCK(mh);
613 	_CMD_SETUP(pCmd, HostCmd_DS_SET_HW_SPEC, HostCmd_CMD_SET_HW_SPEC);
614 	pCmd->WcbBase[0] = htole32(dma->wcbBase[0]);
615 	pCmd->WcbBase[1] = htole32(dma->wcbBase[1]);
616 	pCmd->WcbBase[2] = htole32(dma->wcbBase[2]);
617 	pCmd->WcbBase[3] = htole32(dma->wcbBase[3]);
618 	pCmd->TxWcbNumPerQueue = htole32(dma->maxNumTxWcb);
619 	pCmd->NumTxQueues = htole32(dma->maxNumWCB);
620 	pCmd->TotalRxWcb = htole32(1);		/* XXX */
621 	pCmd->RxPdWrPtr = htole32(dma->rxDescRead);
622 	pCmd->Flags = htole32(SET_HW_SPEC_HOSTFORM_BEACON
623 #ifdef MWL_HOST_PS_SUPPORT
624 		    | SET_HW_SPEC_HOST_POWERSAVE
625 #endif
626 		    | SET_HW_SPEC_HOSTFORM_PROBERESP);
627 	/* disable multi-bss operation for A1-A4 parts */
628 	if (mh->mh_revs.mh_macRev < 5)
629 		pCmd->Flags |= htole32(SET_HW_SPEC_DISABLEMBSS);
630 
631 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_HW_SPEC);
632 	if (retval == 0) {
633 		if (pCmd->Flags & htole32(SET_HW_SPEC_DISABLEMBSS))
634 			mh->mh_flags &= ~MHF_MBSS;
635 		else
636 			mh->mh_flags |= MHF_MBSS;
637 	}
638 	MWL_HAL_UNLOCK(mh);
639 	return retval;
640 }
641 
642 /*
643  * Retrieve statistics from the f/w.
644  * XXX should be in memory shared w/ driver
645  */
646 int
647 mwl_hal_gethwstats(struct mwl_hal *mh0, struct mwl_hal_hwstats *stats)
648 {
649 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
650 	HostCmd_DS_802_11_GET_STAT *pCmd;
651 	int retval;
652 
653 	MWL_HAL_LOCK(mh);
654 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_GET_STAT,
655 		HostCmd_CMD_802_11_GET_STAT);
656 
657 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_GET_STAT);
658 	if (retval == 0) {
659 		const uint32_t *sp = (const uint32_t *)&pCmd->TxRetrySuccesses;
660 		uint32_t *dp = (uint32_t *)&stats->TxRetrySuccesses;
661 		int i;
662 
663 		for (i = 0; i < sizeof(*stats)/sizeof(uint32_t); i++)
664 			dp[i] = le32toh(sp[i]);
665 		/*
666 		 * Update stats not returned by f/w but available
667 		 * through public registers.  Note these registers
668 		 * are "clear on read" so we maintain cumulative data.
669 		 * XXX register defines
670 		 */
671 		mh->mh_RTSSuccesses += RD4(mh, 0xa834);
672 		mh->mh_RTSFailures += RD4(mh, 0xa830);
673 		mh->mh_RxDuplicateFrames += RD4(mh, 0xa84c);
674 		mh->mh_FCSErrorCount += RD4(mh, 0xa840);
675 	}
676 	MWL_HAL_UNLOCK(mh);
677 
678 	stats->RTSSuccesses = mh->mh_RTSSuccesses;
679 	stats->RTSFailures = mh->mh_RTSFailures;
680 	stats->RxDuplicateFrames = mh->mh_RxDuplicateFrames;
681 	stats->FCSErrorCount = mh->mh_FCSErrorCount;
682 	return retval;
683 }
684 
685 /*
686  * Set HT guard interval handling.
687  * Takes effect immediately.
688  */
689 int
690 mwl_hal_sethtgi(struct mwl_hal_vap *vap, int GIType)
691 {
692 	struct mwl_hal_priv *mh = MWLVAP(vap);
693 	HostCmd_FW_HT_GUARD_INTERVAL *pCmd;
694 	int retval;
695 
696 	MWL_HAL_LOCK(mh);
697 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_HT_GUARD_INTERVAL,
698 		HostCmd_CMD_HT_GUARD_INTERVAL);
699 	pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
700 
701 	if (GIType == 0) {
702 		pCmd->GIType = htole32(GI_TYPE_LONG);
703 	} else if (GIType == 1) {
704 		pCmd->GIType = htole32(GI_TYPE_LONG | GI_TYPE_SHORT);
705 	} else {
706 		pCmd->GIType = htole32(GI_TYPE_LONG);
707 	}
708 
709 	retval = mwlExecuteCmd(mh, HostCmd_CMD_HT_GUARD_INTERVAL);
710 	MWL_HAL_UNLOCK(mh);
711 	return retval;
712 }
713 
714 /*
715  * Configure radio.
716  * Takes effect immediately.
717  * XXX preamble installed after set fixed rate cmd
718  */
719 int
720 mwl_hal_setradio(struct mwl_hal *mh0, int onoff, MWL_HAL_PREAMBLE preamble)
721 {
722 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
723 	HostCmd_DS_802_11_RADIO_CONTROL *pCmd;
724 	int retval;
725 
726 	MWL_HAL_LOCK(mh);
727 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RADIO_CONTROL,
728 		HostCmd_CMD_802_11_RADIO_CONTROL);
729 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
730 	if (onoff == 0)
731 		pCmd->Control = 0;
732 	else
733 		pCmd->Control = htole16(preamble);
734 	pCmd->RadioOn = htole16(onoff);
735 
736 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RADIO_CONTROL);
737 	MWL_HAL_UNLOCK(mh);
738 	return retval;
739 }
740 
741 /*
742  * Configure antenna use.
743  * Takes effect immediately.
744  * XXX tx antenna setting ignored
745  * XXX rx antenna setting should always be 3 (for now)
746  */
747 int
748 mwl_hal_setantenna(struct mwl_hal *mh0, MWL_HAL_ANTENNA dirSet, int ant)
749 {
750 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
751 	HostCmd_DS_802_11_RF_ANTENNA *pCmd;
752 	int retval;
753 
754 	if (!(dirSet == WL_ANTENNATYPE_RX || dirSet == WL_ANTENNATYPE_TX))
755 		return EINVAL;
756 
757 	MWL_HAL_LOCK(mh);
758 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_ANTENNA,
759 		HostCmd_CMD_802_11_RF_ANTENNA);
760 	pCmd->Action = htole16(dirSet);
761 	if (ant == 0)			/* default to all/both antennae */
762 		ant = 3;
763 	pCmd->AntennaMode = htole16(ant);
764 
765 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_ANTENNA);
766 	MWL_HAL_UNLOCK(mh);
767 	return retval;
768 }
769 
770 /*
771  * Set packet size threshold for implicit use of RTS.
772  * Takes effect immediately.
773  * XXX packet length > threshold =>'s RTS
774  */
775 int
776 mwl_hal_setrtsthreshold(struct mwl_hal_vap *vap, int threshold)
777 {
778 	struct mwl_hal_priv *mh = MWLVAP(vap);
779 	HostCmd_DS_802_11_RTS_THSD *pCmd;
780 	int retval;
781 
782 	MWL_HAL_LOCK(mh);
783 	_VCMD_SETUP(vap, pCmd, HostCmd_DS_802_11_RTS_THSD,
784 		HostCmd_CMD_802_11_RTS_THSD);
785 	pCmd->Action  = htole16(HostCmd_ACT_GEN_SET);
786 	pCmd->Threshold = htole16(threshold);
787 
788 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RTS_THSD);
789 	MWL_HAL_UNLOCK(mh);
790 	return retval;
791 }
792 
793 /*
794  * Enable sta-mode operation (disables beacon frame xmit).
795  */
796 int
797 mwl_hal_setinframode(struct mwl_hal_vap *vap)
798 {
799 	struct mwl_hal_priv *mh = MWLVAP(vap);
800 	HostCmd_FW_SET_INFRA_MODE *pCmd;
801 	int retval;
802 
803 	MWL_HAL_LOCK(mh);
804 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_INFRA_MODE,
805 		HostCmd_CMD_SET_INFRA_MODE);
806 
807 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_INFRA_MODE);
808 	MWL_HAL_UNLOCK(mh);
809 	return retval;
810 }
811 
812 /*
813  * Configure radar detection in support of 802.11h.
814  */
815 int
816 mwl_hal_setradardetection(struct mwl_hal *mh0, MWL_HAL_RADAR action)
817 {
818 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
819 	HostCmd_802_11h_Detect_Radar *pCmd;
820 	int retval;
821 
822 	MWL_HAL_LOCK(mh);
823 	_CMD_SETUP(pCmd, HostCmd_802_11h_Detect_Radar,
824 		HostCmd_CMD_802_11H_DETECT_RADAR);
825 	pCmd->CmdHdr.Length = htole16(sizeof(HostCmd_802_11h_Detect_Radar));
826 	pCmd->Action = htole16(action);
827 	if (mh->mh_regioncode == DOMAIN_CODE_ETSI_131)
828 		pCmd->RadarTypeCode = htole16(131);
829 
830 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11H_DETECT_RADAR);
831 	MWL_HAL_UNLOCK(mh);
832 	return retval;
833 }
834 
835 /*
836  * Convert public channel flags definition to a
837  * value suitable for feeding to the firmware.
838  * Note this includes byte swapping.
839  */
840 static uint32_t
841 cvtChannelFlags(const MWL_HAL_CHANNEL *chan)
842 {
843 	uint32_t w;
844 
845 	/*
846 	 * NB: f/w only understands FREQ_BAND_5GHZ, supplying the more
847 	 *     precise band info causes it to lockup (sometimes).
848 	 */
849 	w = (chan->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) ?
850 		FREQ_BAND_2DOT4GHZ : FREQ_BAND_5GHZ;
851 	switch (chan->channelFlags.ChnlWidth) {
852 	case MWL_CH_10_MHz_WIDTH:
853 		w |= CH_10_MHz_WIDTH;
854 		break;
855 	case MWL_CH_20_MHz_WIDTH:
856 		w |= CH_20_MHz_WIDTH;
857 		break;
858 	case MWL_CH_40_MHz_WIDTH:
859 	default:
860 		w |= CH_40_MHz_WIDTH;
861 		break;
862 	}
863 	switch (chan->channelFlags.ExtChnlOffset) {
864 	case MWL_EXT_CH_NONE:
865 		w |= EXT_CH_NONE;
866 		break;
867 	case MWL_EXT_CH_ABOVE_CTRL_CH:
868 		w |= EXT_CH_ABOVE_CTRL_CH;
869 		break;
870 	case MWL_EXT_CH_BELOW_CTRL_CH:
871 		w |= EXT_CH_BELOW_CTRL_CH;
872 		break;
873 	}
874 	return htole32(w);
875 }
876 
877 /*
878  * Start a channel switch announcement countdown.  The IE
879  * in the beacon frame is allowed to go out and the firmware
880  * counts down and notifies the host when it's time to switch
881  * channels.
882  */
883 int
884 mwl_hal_setchannelswitchie(struct mwl_hal *mh0,
885 	const MWL_HAL_CHANNEL *nextchan, uint32_t mode, uint32_t count)
886 {
887 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
888 	HostCmd_SET_SWITCH_CHANNEL *pCmd;
889 	int retval;
890 
891 	MWL_HAL_LOCK(mh);
892 	_CMD_SETUP(pCmd, HostCmd_SET_SWITCH_CHANNEL,
893 		HostCmd_CMD_SET_SWITCH_CHANNEL);
894 	pCmd->Next11hChannel = htole32(nextchan->channel);
895 	pCmd->Mode = htole32(mode);
896 	pCmd->InitialCount = htole32(count+1);
897 	pCmd->ChannelFlags = cvtChannelFlags(nextchan);
898 
899 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_SWITCH_CHANNEL);
900 	MWL_HAL_UNLOCK(mh);
901 	return retval;
902 }
903 
904 /*
905  * Set the region code that selects the radar bin'ing agorithm.
906  */
907 int
908 mwl_hal_setregioncode(struct mwl_hal *mh0, int regionCode)
909 {
910 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
911 	HostCmd_SET_REGIONCODE_INFO *pCmd;
912 	int retval;
913 
914 	MWL_HAL_LOCK(mh);
915 	_CMD_SETUP(pCmd, HostCmd_SET_REGIONCODE_INFO,
916 		HostCmd_CMD_SET_REGION_CODE);
917 	/* XXX map pseudo-codes to fw codes */
918 	switch (regionCode) {
919 	case DOMAIN_CODE_ETSI_131:
920 		pCmd->regionCode = htole16(DOMAIN_CODE_ETSI);
921 		break;
922 	default:
923 		pCmd->regionCode = htole16(regionCode);
924 		break;
925 	}
926 
927 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_REGION_CODE);
928 	if (retval == 0)
929 		mh->mh_regioncode = regionCode;
930 	MWL_HAL_UNLOCK(mh);
931 	return retval;
932 }
933 
934 #define	RATEVAL(r)	((r) &~ RATE_MCS)
935 #define	RATETYPE(r)	(((r) & RATE_MCS) ? HT_RATE_TYPE : LEGACY_RATE_TYPE)
936 
937 int
938 mwl_hal_settxrate(struct mwl_hal_vap *vap, MWL_HAL_TXRATE_HANDLING handling,
939 	const MWL_HAL_TXRATE *rate)
940 {
941 	struct mwl_hal_priv *mh = MWLVAP(vap);
942 	HostCmd_FW_USE_FIXED_RATE *pCmd;
943 	FIXED_RATE_ENTRY *fp;
944 	int retval, i, n;
945 
946 	MWL_HAL_LOCK(mh);
947 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_USE_FIXED_RATE,
948 		HostCmd_CMD_SET_FIXED_RATE);
949 
950 	pCmd->MulticastRate = RATEVAL(rate->McastRate);
951 	pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
952 	/* NB: no rate type field */
953 	pCmd->ManagementRate = RATEVAL(rate->MgtRate);
954 	memset(pCmd->FixedRateTable, 0, sizeof(pCmd->FixedRateTable));
955 	if (handling == RATE_FIXED) {
956 		pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
957 		pCmd->AllowRateDrop = htole32(FIXED_RATE_WITHOUT_AUTORATE_DROP);
958 		fp = pCmd->FixedRateTable;
959 		fp->FixedRate =
960 		    htole32(RATEVAL(rate->RateSeries[0].Rate));
961 		fp->FixRateTypeFlags.FixRateType =
962 		    htole32(RATETYPE(rate->RateSeries[0].Rate));
963 		pCmd->EntryCount = htole32(1);
964 	} else if (handling == RATE_FIXED_DROP) {
965 		pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
966 		pCmd->AllowRateDrop = htole32(FIXED_RATE_WITH_AUTO_RATE_DROP);
967 		n = 0;
968 		fp = pCmd->FixedRateTable;
969 		for (i = 0; i < 4; i++) {
970 			if (rate->RateSeries[0].TryCount == 0)
971 				break;
972 			fp->FixRateTypeFlags.FixRateType =
973 			    htole32(RATETYPE(rate->RateSeries[i].Rate));
974 			fp->FixedRate =
975 			    htole32(RATEVAL(rate->RateSeries[i].Rate));
976 			fp->FixRateTypeFlags.RetryCountValid =
977 			    htole32(RETRY_COUNT_VALID);
978 			fp->RetryCount =
979 			    htole32(rate->RateSeries[i].TryCount-1);
980 			n++;
981 		}
982 		pCmd->EntryCount = htole32(n);
983 	} else
984 		pCmd->Action = htole32(HostCmd_ACT_NOT_USE_FIXED_RATE);
985 
986 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_FIXED_RATE);
987 	MWL_HAL_UNLOCK(mh);
988 	return retval;
989 }
990 
991 int
992 mwl_hal_settxrate_auto(struct mwl_hal *mh0, const MWL_HAL_TXRATE *rate)
993 {
994 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
995 	HostCmd_FW_USE_FIXED_RATE *pCmd;
996 	int retval;
997 
998 	MWL_HAL_LOCK(mh);
999 	_CMD_SETUP(pCmd, HostCmd_FW_USE_FIXED_RATE,
1000 		HostCmd_CMD_SET_FIXED_RATE);
1001 
1002 	pCmd->MulticastRate = RATEVAL(rate->McastRate);
1003 	pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
1004 	/* NB: no rate type field */
1005 	pCmd->ManagementRate = RATEVAL(rate->MgtRate);
1006 	memset(pCmd->FixedRateTable, 0, sizeof(pCmd->FixedRateTable));
1007 	pCmd->Action = htole32(HostCmd_ACT_NOT_USE_FIXED_RATE);
1008 
1009 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_FIXED_RATE);
1010 	MWL_HAL_UNLOCK(mh);
1011 	return retval;
1012 }
1013 
1014 #undef RATEVAL
1015 #undef RATETYPE
1016 
1017 int
1018 mwl_hal_setslottime(struct mwl_hal *mh0, int usecs)
1019 {
1020 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1021 	HostCmd_FW_SET_SLOT *pCmd;
1022 	int retval;
1023 
1024 	if (usecs != 9 && usecs != 20)
1025 		return EINVAL;
1026 
1027 	MWL_HAL_LOCK(mh);
1028 	_CMD_SETUP(pCmd, HostCmd_FW_SET_SLOT,
1029 	    HostCmd_CMD_802_11_SET_SLOT);
1030 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1031 	pCmd->Slot = (usecs == 9 ? 1 : 0);
1032 
1033 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_SET_SLOT);
1034 	MWL_HAL_UNLOCK(mh);
1035 	return retval;
1036 }
1037 
1038 int
1039 mwl_hal_adjusttxpower(struct mwl_hal *mh0, uint32_t level)
1040 {
1041 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1042 	HostCmd_DS_802_11_RF_TX_POWER *pCmd;
1043 	int retval;
1044 
1045 	MWL_HAL_LOCK(mh);
1046 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
1047 	    HostCmd_CMD_802_11_RF_TX_POWER);
1048 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1049 
1050 	if (level < 30) {
1051 		pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_LOW);
1052 	} else if (level >= 30 && level < 60) {
1053 		pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_MEDIUM);
1054 	} else {
1055 		pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_HIGH);
1056 	}
1057 
1058 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_TX_POWER);
1059 	MWL_HAL_UNLOCK(mh);
1060 	return retval;
1061 }
1062 
1063 static const struct mwl_hal_channel *
1064 findchannel(const struct mwl_hal_priv *mh, const MWL_HAL_CHANNEL *c)
1065 {
1066 	const struct mwl_hal_channel *hc;
1067 	const MWL_HAL_CHANNELINFO *ci;
1068 	int chan = c->channel, i;
1069 
1070 	if (c->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) {
1071 		i = chan - 1;
1072 		if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
1073 			ci = &mh->mh_40M;
1074 			if (c->channelFlags.ExtChnlOffset == MWL_EXT_CH_BELOW_CTRL_CH)
1075 				i -= 4;
1076 		} else
1077 			ci = &mh->mh_20M;
1078 		/* 2.4G channel table is directly indexed */
1079 		hc = ((unsigned)i < ci->nchannels) ? &ci->channels[i] : NULL;
1080 	} else if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ) {
1081 		if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
1082 			ci = &mh->mh_40M_5G;
1083 			if (c->channelFlags.ExtChnlOffset == MWL_EXT_CH_BELOW_CTRL_CH)
1084 				chan -= 4;
1085 		} else
1086 			ci = &mh->mh_20M_5G;
1087 		/* 5GHz channel table is sparse and must be searched */
1088 		for (i = 0; i < ci->nchannels; i++)
1089 			if (ci->channels[i].ieee == chan)
1090 				break;
1091 		hc = (i < ci->nchannels) ? &ci->channels[i] : NULL;
1092 	} else
1093 		hc = NULL;
1094 	return hc;
1095 }
1096 
1097 int
1098 mwl_hal_settxpower(struct mwl_hal *mh0, const MWL_HAL_CHANNEL *c, uint8_t maxtxpow)
1099 {
1100 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1101 	HostCmd_DS_802_11_RF_TX_POWER *pCmd;
1102 	const struct mwl_hal_channel *hc;
1103 	int i, retval;
1104 
1105 	hc = findchannel(mh, c);
1106 	if (hc == NULL) {
1107 		/* XXX temp while testing */
1108 		device_printf(mh->mh_dev,
1109 		    "%s: no cal data for channel %u band %u width %u ext %u\n",
1110 		    __func__, c->channel, c->channelFlags.FreqBand,
1111 		    c->channelFlags.ChnlWidth, c->channelFlags.ExtChnlOffset);
1112 		return EINVAL;
1113 	}
1114 
1115 	MWL_HAL_LOCK(mh);
1116 	_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
1117 	    HostCmd_CMD_802_11_RF_TX_POWER);
1118 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET_LIST);
1119 	i = 0;
1120 	/* NB: 5Ghz cal data have the channel # in [0]; don't truncate */
1121 	if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ)
1122 		pCmd->PowerLevelList[i++] = htole16(hc->targetPowers[0]);
1123 	for (; i < 4; i++) {
1124 		uint16_t pow = hc->targetPowers[i];
1125 		if (pow > maxtxpow)
1126 			pow = maxtxpow;
1127 		pCmd->PowerLevelList[i] = htole16(pow);
1128 	}
1129 	retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_TX_POWER);
1130 	MWL_HAL_UNLOCK(mh);
1131 	return retval;
1132 }
1133 
1134 int
1135 mwl_hal_getchannelinfo(struct mwl_hal *mh0, int band, int chw,
1136 	const MWL_HAL_CHANNELINFO **ci)
1137 {
1138 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1139 
1140 	switch (band) {
1141 	case MWL_FREQ_BAND_2DOT4GHZ:
1142 		*ci = (chw == MWL_CH_20_MHz_WIDTH) ? &mh->mh_20M : &mh->mh_40M;
1143 		break;
1144 	case MWL_FREQ_BAND_5GHZ:
1145 		*ci = (chw == MWL_CH_20_MHz_WIDTH) ?
1146 		     &mh->mh_20M_5G : &mh->mh_40M_5G;
1147 		break;
1148 	default:
1149 		return EINVAL;
1150 	}
1151 	return ((*ci)->freqLow == (*ci)->freqHigh) ? EINVAL : 0;
1152 }
1153 
1154 int
1155 mwl_hal_setmcast(struct mwl_hal *mh0, int nmc, const uint8_t macs[])
1156 {
1157 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1158 	HostCmd_DS_MAC_MULTICAST_ADR *pCmd;
1159 	int retval;
1160 
1161 	if (nmc > MWL_HAL_MCAST_MAX)
1162 		return EINVAL;
1163 
1164 	MWL_HAL_LOCK(mh);
1165 	_CMD_SETUP(pCmd, HostCmd_DS_MAC_MULTICAST_ADR,
1166 		HostCmd_CMD_MAC_MULTICAST_ADR);
1167 	memcpy(pCmd->MACList, macs, nmc*IEEE80211_ADDR_LEN);
1168 	pCmd->NumOfAdrs = htole16(nmc);
1169 	pCmd->Action = htole16(0xffff);
1170 
1171 	retval = mwlExecuteCmd(mh, HostCmd_CMD_MAC_MULTICAST_ADR);
1172 	MWL_HAL_UNLOCK(mh);
1173 	return retval;
1174 }
1175 
1176 int
1177 mwl_hal_keyset(struct mwl_hal_vap *vap, const MWL_HAL_KEYVAL *kv,
1178 	const uint8_t mac[IEEE80211_ADDR_LEN])
1179 {
1180 	struct mwl_hal_priv *mh = MWLVAP(vap);
1181 	HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
1182 	int retval;
1183 
1184 	MWL_HAL_LOCK(mh);
1185 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
1186 		HostCmd_CMD_UPDATE_ENCRYPTION);
1187 	if (kv->keyFlags & (KEY_FLAG_TXGROUPKEY|KEY_FLAG_RXGROUPKEY))
1188 		pCmd->ActionType = htole32(EncrActionTypeSetGroupKey);
1189 	else
1190 		pCmd->ActionType = htole32(EncrActionTypeSetKey);
1191 	pCmd->KeyParam.Length = htole16(sizeof(pCmd->KeyParam));
1192 	pCmd->KeyParam.KeyTypeId = htole16(kv->keyTypeId);
1193 	pCmd->KeyParam.KeyInfo = htole32(kv->keyFlags);
1194 	pCmd->KeyParam.KeyIndex = htole32(kv->keyIndex);
1195 	/* NB: includes TKIP MIC keys */
1196 	memcpy(&pCmd->KeyParam.Key, &kv->key, kv->keyLen);
1197 	switch (kv->keyTypeId) {
1198 	case KEY_TYPE_ID_WEP:
1199 		pCmd->KeyParam.KeyLen = htole16(kv->keyLen);
1200 		break;
1201 	case KEY_TYPE_ID_TKIP:
1202 		pCmd->KeyParam.KeyLen = htole16(sizeof(TKIP_TYPE_KEY));
1203 		pCmd->KeyParam.Key.TkipKey.TkipRsc.low =
1204 			htole16(kv->key.tkip.rsc.low);
1205 		pCmd->KeyParam.Key.TkipKey.TkipRsc.high =
1206 			htole32(kv->key.tkip.rsc.high);
1207 		pCmd->KeyParam.Key.TkipKey.TkipTsc.low =
1208 			htole16(kv->key.tkip.tsc.low);
1209 		pCmd->KeyParam.Key.TkipKey.TkipTsc.high =
1210 			htole32(kv->key.tkip.tsc.high);
1211 		break;
1212 	case KEY_TYPE_ID_AES:
1213 		pCmd->KeyParam.KeyLen = htole16(sizeof(AES_TYPE_KEY));
1214 		break;
1215 	}
1216 #ifdef MWL_MBSS_SUPPORT
1217 	IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
1218 #else
1219 	IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
1220 #endif
1221 	retval = mwlExecuteCmd(mh, HostCmd_CMD_UPDATE_ENCRYPTION);
1222 	MWL_HAL_UNLOCK(mh);
1223 	return retval;
1224 }
1225 
1226 int
1227 mwl_hal_keyreset(struct mwl_hal_vap *vap, const MWL_HAL_KEYVAL *kv, const uint8_t mac[IEEE80211_ADDR_LEN])
1228 {
1229 	struct mwl_hal_priv *mh = MWLVAP(vap);
1230 	HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
1231 	int retval;
1232 
1233 	MWL_HAL_LOCK(mh);
1234 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
1235 		HostCmd_CMD_UPDATE_ENCRYPTION);
1236 	pCmd->ActionType = htole16(EncrActionTypeRemoveKey);
1237 	pCmd->KeyParam.Length = htole16(sizeof(pCmd->KeyParam));
1238 	pCmd->KeyParam.KeyTypeId = htole16(kv->keyTypeId);
1239 	pCmd->KeyParam.KeyInfo = htole32(kv->keyFlags);
1240 	pCmd->KeyParam.KeyIndex = htole32(kv->keyIndex);
1241 #ifdef MWL_MBSS_SUPPORT
1242 	IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
1243 #else
1244 	IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
1245 #endif
1246 	retval = mwlExecuteCmd(mh, HostCmd_CMD_UPDATE_ENCRYPTION);
1247 	MWL_HAL_UNLOCK(mh);
1248 	return retval;
1249 }
1250 
1251 static int
1252 mwl_hal_setmac_locked(struct mwl_hal_vap *vap,
1253 	const uint8_t addr[IEEE80211_ADDR_LEN])
1254 {
1255 	struct mwl_hal_priv *mh = MWLVAP(vap);
1256 	HostCmd_DS_SET_MAC *pCmd;
1257 
1258 	_VCMD_SETUP(vap, pCmd, HostCmd_DS_SET_MAC, HostCmd_CMD_SET_MAC_ADDR);
1259 	IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1260 #ifdef MWL_MBSS_SUPPORT
1261 	pCmd->MacType = vap->bss_type;		/* NB: already byte swapped */
1262 	IEEE80211_ADDR_COPY(vap->mac, addr);	/* XXX do only if success */
1263 #endif
1264 	return mwlExecuteCmd(mh, HostCmd_CMD_SET_MAC_ADDR);
1265 }
1266 
1267 int
1268 mwl_hal_setmac(struct mwl_hal_vap *vap, const uint8_t addr[IEEE80211_ADDR_LEN])
1269 {
1270 	struct mwl_hal_priv *mh = MWLVAP(vap);
1271 	int retval;
1272 
1273 	MWL_HAL_LOCK(mh);
1274 	retval = mwl_hal_setmac_locked(vap, addr);
1275 	MWL_HAL_UNLOCK(mh);
1276 	return retval;
1277 }
1278 
1279 int
1280 mwl_hal_setbeacon(struct mwl_hal_vap *vap, const void *frame, size_t frameLen)
1281 {
1282 	struct mwl_hal_priv *mh = MWLVAP(vap);
1283 	HostCmd_DS_SET_BEACON *pCmd;
1284 	int retval;
1285 
1286 	/* XXX verify frameLen fits */
1287 	MWL_HAL_LOCK(mh);
1288 	_VCMD_SETUP(vap, pCmd, HostCmd_DS_SET_BEACON, HostCmd_CMD_SET_BEACON);
1289 	/* XXX override _VCMD_SETUP */
1290 	pCmd->CmdHdr.Length = htole16(sizeof(HostCmd_DS_SET_BEACON)-1+frameLen);
1291 	pCmd->FrmBodyLen = htole16(frameLen);
1292 	memcpy(pCmd->FrmBody, frame, frameLen);
1293 
1294 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_BEACON);
1295 	MWL_HAL_UNLOCK(mh);
1296 	return retval;
1297 }
1298 
1299 int
1300 mwl_hal_setpowersave_bss(struct mwl_hal_vap *vap, uint8_t nsta)
1301 {
1302 	struct mwl_hal_priv *mh = MWLVAP(vap);
1303 	HostCmd_SET_POWERSAVESTATION *pCmd;
1304 	int retval;
1305 
1306 	MWL_HAL_LOCK(mh);
1307 	_VCMD_SETUP(vap, pCmd, HostCmd_SET_POWERSAVESTATION,
1308 		HostCmd_CMD_SET_POWERSAVESTATION);
1309 	pCmd->NumberOfPowersave = nsta;
1310 
1311 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_POWERSAVESTATION);
1312 	MWL_HAL_UNLOCK(mh);
1313 	return retval;
1314 }
1315 
1316 int
1317 mwl_hal_setpowersave_sta(struct mwl_hal_vap *vap, uint16_t aid, int ena)
1318 {
1319 	struct mwl_hal_priv *mh = MWLVAP(vap);
1320 	HostCmd_SET_TIM *pCmd;
1321 	int retval;
1322 
1323 	MWL_HAL_LOCK(mh);
1324 	_VCMD_SETUP(vap, pCmd, HostCmd_SET_TIM, HostCmd_CMD_SET_TIM);
1325 	pCmd->Aid = htole16(aid);
1326 	pCmd->Set = htole32(ena);
1327 
1328 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_TIM);
1329 	MWL_HAL_UNLOCK(mh);
1330 	return retval;
1331 }
1332 
1333 int
1334 mwl_hal_setassocid(struct mwl_hal_vap *vap,
1335 	const uint8_t bssId[IEEE80211_ADDR_LEN], uint16_t assocId)
1336 {
1337 	struct mwl_hal_priv *mh = MWLVAP(vap);
1338 	HostCmd_FW_SET_AID *pCmd = (HostCmd_FW_SET_AID *) &mh->mh_cmdbuf[0];
1339 	int retval;
1340 
1341 	MWL_HAL_LOCK(mh);
1342 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_AID, HostCmd_CMD_SET_AID);
1343 	pCmd->AssocID = htole16(assocId);
1344 	IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], bssId);
1345 
1346 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_AID);
1347 	MWL_HAL_UNLOCK(mh);
1348 	return retval;
1349 }
1350 
1351 int
1352 mwl_hal_setchannel(struct mwl_hal *mh0, const MWL_HAL_CHANNEL *chan)
1353 {
1354 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1355 	HostCmd_FW_SET_RF_CHANNEL *pCmd;
1356 	int retval;
1357 
1358 	MWL_HAL_LOCK(mh);
1359 	_CMD_SETUP(pCmd, HostCmd_FW_SET_RF_CHANNEL, HostCmd_CMD_SET_RF_CHANNEL);
1360 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1361 	pCmd->CurrentChannel = chan->channel;
1362 	pCmd->ChannelFlags = cvtChannelFlags(chan);	/* NB: byte-swapped */
1363 
1364 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RF_CHANNEL);
1365 	MWL_HAL_UNLOCK(mh);
1366 	return retval;
1367 }
1368 
1369 static int
1370 bastream_check_available(struct mwl_hal_vap *vap, int qid,
1371 	const uint8_t Macaddr[IEEE80211_ADDR_LEN],
1372 	uint8_t Tid, uint8_t ParamInfo)
1373 {
1374 	struct mwl_hal_priv *mh = MWLVAP(vap);
1375 	HostCmd_FW_BASTREAM *pCmd;
1376 	int retval;
1377 
1378 	MWL_HAL_LOCK_ASSERT(mh);
1379 
1380 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
1381 	pCmd->ActionType = htole32(BaCheckCreateStream);
1382 	pCmd->BaInfo.CreateParams.BarThrs = htole32(63);
1383 	pCmd->BaInfo.CreateParams.WindowSize = htole32(64);
1384 	pCmd->BaInfo.CreateParams.IdleThrs = htole32(0x22000);
1385 	IEEE80211_ADDR_COPY(&pCmd->BaInfo.CreateParams.PeerMacAddr[0], Macaddr);
1386 	pCmd->BaInfo.CreateParams.DialogToken = 10;
1387 	pCmd->BaInfo.CreateParams.Tid = Tid;
1388 	pCmd->BaInfo.CreateParams.QueueId = qid;
1389 	pCmd->BaInfo.CreateParams.ParamInfo = (uint8_t) ParamInfo;
1390 #if 0
1391 	cvtBAFlags(&pCmd->BaInfo.CreateParams.Flags, sp->ba_policy, 0);
1392 #else
1393 	pCmd->BaInfo.CreateParams.Flags =
1394 			  htole32(BASTREAM_FLAG_IMMEDIATE_TYPE)
1395 			| htole32(BASTREAM_FLAG_DIRECTION_UPSTREAM)
1396 			;
1397 #endif
1398 
1399 	retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
1400 	if (retval == 0) {
1401 		/*
1402 		 * NB: BA stream create may fail when the stream is
1403 		 * h/w backed under some (as yet not understood) conditions.
1404 		 * Check the result code to catch this.
1405 		 */
1406 		if (le16toh(pCmd->CmdHdr.Result) != HostCmd_RESULT_OK)
1407 			retval = EIO;
1408 	}
1409 	return retval;
1410 }
1411 
1412 const MWL_HAL_BASTREAM *
1413 mwl_hal_bastream_alloc(struct mwl_hal_vap *vap, int ba_policy,
1414 	const uint8_t Macaddr[IEEE80211_ADDR_LEN],
1415 	uint8_t Tid, uint8_t ParamInfo, void *a1, void *a2)
1416 {
1417 	struct mwl_hal_priv *mh = MWLVAP(vap);
1418 	struct mwl_hal_bastream *sp;
1419 	int s;
1420 
1421 	MWL_HAL_LOCK(mh);
1422 	if (mh->mh_bastreams == 0) {
1423 		/* no streams available */
1424 		MWL_HAL_UNLOCK(mh);
1425 		return NULL;
1426 	}
1427 	for (s = 0; (mh->mh_bastreams & (1<<s)) == 0; s++)
1428 		;
1429 	if (bastream_check_available(vap, s, Macaddr, Tid, ParamInfo)) {
1430 		MWL_HAL_UNLOCK(mh);
1431 		return NULL;
1432 	}
1433 	sp = &mh->mh_streams[s];
1434 	mh->mh_bastreams &= ~(1<<s);
1435 	sp->public.data[0] = a1;
1436 	sp->public.data[1] = a2;
1437 	IEEE80211_ADDR_COPY(sp->macaddr, Macaddr);
1438 	sp->tid = Tid;
1439 	sp->paraminfo = ParamInfo;
1440 	sp->setup = 0;
1441 	sp->ba_policy = ba_policy;
1442 	MWL_HAL_UNLOCK(mh);
1443 	return &sp->public;
1444 }
1445 
1446 const MWL_HAL_BASTREAM *
1447 mwl_hal_bastream_lookup(struct mwl_hal *mh0, int s)
1448 {
1449 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1450 
1451 	if (!(0 <= s && s < MWL_BASTREAMS_MAX))
1452 		return NULL;
1453 	if (mh->mh_bastreams & (1<<s))
1454 		return NULL;
1455 	return &mh->mh_streams[s].public;
1456 }
1457 
1458 #ifndef	__DECONST
1459 #define	__DECONST(type, var)	((type)(uintptr_t)(const void *)(var))
1460 #endif
1461 
1462 int
1463 mwl_hal_bastream_create(struct mwl_hal_vap *vap,
1464 	const MWL_HAL_BASTREAM *s, int BarThrs, int WindowSize, uint16_t seqno)
1465 {
1466 	struct mwl_hal_priv *mh = MWLVAP(vap);
1467 	struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
1468 	HostCmd_FW_BASTREAM *pCmd;
1469 	int retval;
1470 
1471 	MWL_HAL_LOCK(mh);
1472 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
1473 	pCmd->ActionType = htole32(BaCreateStream);
1474 	pCmd->BaInfo.CreateParams.BarThrs = htole32(BarThrs);
1475 	pCmd->BaInfo.CreateParams.WindowSize = htole32(WindowSize);
1476 	pCmd->BaInfo.CreateParams.IdleThrs = htole32(0x22000);
1477 	IEEE80211_ADDR_COPY(&pCmd->BaInfo.CreateParams.PeerMacAddr[0],
1478 	    sp->macaddr);
1479 	/* XXX proxy STA */
1480 	memset(&pCmd->BaInfo.CreateParams.StaSrcMacAddr, 0, IEEE80211_ADDR_LEN);
1481 #if 0
1482 	pCmd->BaInfo.CreateParams.DialogToken = DialogToken;
1483 #else
1484 	pCmd->BaInfo.CreateParams.DialogToken = 10;
1485 #endif
1486 	pCmd->BaInfo.CreateParams.Tid = sp->tid;
1487 	pCmd->BaInfo.CreateParams.QueueId = sp->stream;
1488 	pCmd->BaInfo.CreateParams.ParamInfo = sp->paraminfo;
1489 	/* NB: ResetSeqNo known to be zero */
1490 	pCmd->BaInfo.CreateParams.StartSeqNo = htole16(seqno);
1491 #if 0
1492 	cvtBAFlags(&pCmd->BaInfo.CreateParams.Flags, sp->ba_policy, 0);
1493 #else
1494 	pCmd->BaInfo.CreateParams.Flags =
1495 			  htole32(BASTREAM_FLAG_IMMEDIATE_TYPE)
1496 			| htole32(BASTREAM_FLAG_DIRECTION_UPSTREAM)
1497 			;
1498 #endif
1499 
1500 	retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
1501 	if (retval == 0) {
1502 		/*
1503 		 * NB: BA stream create may fail when the stream is
1504 		 * h/w backed under some (as yet not understood) conditions.
1505 		 * Check the result code to catch this.
1506 		 */
1507 		if (le16toh(pCmd->CmdHdr.Result) != HostCmd_RESULT_OK)
1508 			retval = EIO;
1509 		else
1510 			sp->setup = 1;
1511 	}
1512 	MWL_HAL_UNLOCK(mh);
1513 	return retval;
1514 }
1515 
1516 int
1517 mwl_hal_bastream_destroy(struct mwl_hal *mh0, const MWL_HAL_BASTREAM *s)
1518 {
1519 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1520 	struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
1521 	HostCmd_FW_BASTREAM *pCmd;
1522 	int retval;
1523 
1524 	if (sp->stream >= MWL_BASTREAMS_MAX) {
1525 		/* XXX */
1526 		return EINVAL;
1527 	}
1528 	MWL_HAL_LOCK(mh);
1529 	if (sp->setup) {
1530 		_CMD_SETUP(pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
1531 		pCmd->ActionType = htole32(BaDestroyStream);
1532 		pCmd->BaInfo.DestroyParams.FwBaContext.Context =
1533 		    htole32(sp->stream);
1534 
1535 		retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
1536 	} else
1537 		retval = 0;
1538 	/* NB: always reclaim stream */
1539 	mh->mh_bastreams |= 1<<sp->stream;
1540 	sp->public.data[0] = NULL;
1541 	sp->public.data[1] = NULL;
1542 	sp->setup = 0;
1543 	MWL_HAL_UNLOCK(mh);
1544 	return retval;
1545 }
1546 
1547 int
1548 mwl_hal_bastream_get_seqno(struct mwl_hal *mh0,
1549 	const MWL_HAL_BASTREAM *s, const uint8_t Macaddr[IEEE80211_ADDR_LEN],
1550 	uint16_t *pseqno)
1551 {
1552 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1553 	struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
1554 	HostCmd_GET_SEQNO *pCmd;
1555 	int retval;
1556 
1557 	MWL_HAL_LOCK(mh);
1558 	_CMD_SETUP(pCmd, HostCmd_GET_SEQNO, HostCmd_CMD_GET_SEQNO);
1559 	IEEE80211_ADDR_COPY(pCmd->MacAddr, Macaddr);
1560 	pCmd->TID = sp->tid;
1561 
1562 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_SEQNO);
1563 	if (retval == 0)
1564 		*pseqno = le16toh(pCmd->SeqNo);
1565 	MWL_HAL_UNLOCK(mh);
1566 	return retval;
1567 }
1568 
1569 int
1570 mwl_hal_getwatchdogbitmap(struct mwl_hal *mh0, uint8_t bitmap[1])
1571 {
1572 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1573 	HostCmd_FW_GET_WATCHDOG_BITMAP *pCmd;
1574 	int retval;
1575 
1576 	MWL_HAL_LOCK(mh);
1577 	_CMD_SETUP(pCmd, HostCmd_FW_GET_WATCHDOG_BITMAP,
1578 		HostCmd_CMD_GET_WATCHDOG_BITMAP);
1579 
1580 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_WATCHDOG_BITMAP);
1581 	if (retval == 0) {
1582 		bitmap[0] = pCmd->Watchdogbitmap;
1583 		/* fw returns qid, map it to BA stream */
1584 		if (bitmap[0] < MWL_BAQID_MAX)
1585 			bitmap[0] = qid2ba[bitmap[0]];
1586 	}
1587 	MWL_HAL_UNLOCK(mh);
1588 	return retval;
1589 }
1590 
1591 /*
1592  * Configure aggressive Ampdu rate mode.
1593  */
1594 int
1595 mwl_hal_setaggampduratemode(struct mwl_hal *mh0, int mode, int threshold)
1596 {
1597 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1598 	HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE *pCmd;
1599 	int retval;
1600 
1601 	MWL_HAL_LOCK(mh);
1602 	_CMD_SETUP(pCmd, HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE,
1603 		HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
1604 	pCmd->Action = htole16(1);
1605 	pCmd->Option = htole32(mode);
1606 	pCmd->Threshold = htole32(threshold);
1607 
1608 	retval = mwlExecuteCmd(mh, HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
1609 	MWL_HAL_UNLOCK(mh);
1610 	return retval;
1611 }
1612 
1613 int
1614 mwl_hal_getaggampduratemode(struct mwl_hal *mh0, int *mode, int *threshold)
1615 {
1616 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1617 	HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE *pCmd;
1618 	int retval;
1619 
1620 	MWL_HAL_LOCK(mh);
1621 	_CMD_SETUP(pCmd, HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE,
1622 		HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
1623 	pCmd->Action = htole16(0);
1624 
1625 	retval = mwlExecuteCmd(mh, HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
1626 	MWL_HAL_UNLOCK(mh);
1627 	*mode =  le32toh(pCmd->Option);
1628 	*threshold = le32toh(pCmd->Threshold);
1629 	return retval;
1630 }
1631 
1632 /*
1633  * Set CFEND status Enable/Disable
1634  */
1635 int
1636 mwl_hal_setcfend(struct mwl_hal *mh0, int ena)
1637 {
1638 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1639 	HostCmd_CFEND_ENABLE *pCmd;
1640 	int retval;
1641 
1642 	MWL_HAL_LOCK(mh);
1643 	_CMD_SETUP(pCmd, HostCmd_CFEND_ENABLE,
1644 		HostCmd_CMD_CFEND_ENABLE);
1645 	pCmd->Enable = htole32(ena);
1646 
1647 	retval = mwlExecuteCmd(mh, HostCmd_CMD_CFEND_ENABLE);
1648 	MWL_HAL_UNLOCK(mh);
1649 	return retval;
1650 }
1651 
1652 int
1653 mwl_hal_setdwds(struct mwl_hal *mh0, int ena)
1654 {
1655 	HostCmd_DWDS_ENABLE *pCmd;
1656 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1657    	int retval;
1658 
1659 	MWL_HAL_LOCK(mh);
1660 	_CMD_SETUP(pCmd, HostCmd_DWDS_ENABLE, HostCmd_CMD_DWDS_ENABLE);
1661 	pCmd->Enable = htole32(ena);
1662 	retval = mwlExecuteCmd(mh, HostCmd_CMD_DWDS_ENABLE);
1663   	MWL_HAL_UNLOCK(mh);
1664 	return retval;
1665 }
1666 
1667 static void
1668 cvtPeerInfo(PeerInfo_t *to, const MWL_HAL_PEERINFO *from)
1669 {
1670 	to->LegacyRateBitMap = htole32(from->LegacyRateBitMap);
1671 	to->HTRateBitMap = htole32(from->HTRateBitMap);
1672 	to->CapInfo = htole16(from->CapInfo);
1673 	to->HTCapabilitiesInfo = htole16(from->HTCapabilitiesInfo);
1674 	to->MacHTParamInfo = from->MacHTParamInfo;
1675 	to->AddHtInfo.ControlChan = from->AddHtInfo.ControlChan;
1676 	to->AddHtInfo.AddChan = from->AddHtInfo.AddChan;
1677 	to->AddHtInfo.OpMode = htole16(from->AddHtInfo.OpMode);
1678 	to->AddHtInfo.stbc = htole16(from->AddHtInfo.stbc);
1679 }
1680 
1681 /* XXX station id must be in [0..63] */
1682 int
1683 mwl_hal_newstation(struct mwl_hal_vap *vap,
1684 	const uint8_t addr[IEEE80211_ADDR_LEN], uint16_t aid, uint16_t sid,
1685 	const MWL_HAL_PEERINFO *peer, int isQosSta, int wmeInfo)
1686 {
1687 	struct mwl_hal_priv *mh = MWLVAP(vap);
1688 	HostCmd_FW_SET_NEW_STN *pCmd;
1689 	int retval;
1690 
1691 	MWL_HAL_LOCK(mh);
1692 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_NEW_STN, HostCmd_CMD_SET_NEW_STN);
1693 	pCmd->AID = htole16(aid);
1694 	pCmd->StnId = htole16(sid);
1695 	pCmd->Action = htole16(0);	/* SET */
1696 	if (peer != NULL) {
1697 		/* NB: must fix up byte order */
1698 		cvtPeerInfo(&pCmd->PeerInfo, peer);
1699 	}
1700 	IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1701 	pCmd->Qosinfo = wmeInfo;
1702 	pCmd->isQosSta = (isQosSta != 0);
1703 
1704 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_NEW_STN);
1705 	if (retval == 0 && IEEE80211_ADDR_EQ(vap->mac, addr))
1706 		vap->flags |= MVF_STATION;
1707 	MWL_HAL_UNLOCK(mh);
1708 	return retval;
1709 }
1710 
1711 int
1712 mwl_hal_delstation(struct mwl_hal_vap *vap,
1713 	const uint8_t addr[IEEE80211_ADDR_LEN])
1714 {
1715 	struct mwl_hal_priv *mh = MWLVAP(vap);
1716 	HostCmd_FW_SET_NEW_STN *pCmd;
1717 	int retval, islocal;
1718 
1719 	MWL_HAL_LOCK(mh);
1720 	islocal = IEEE80211_ADDR_EQ(vap->mac, addr);
1721 	if (!islocal || (vap->flags & MVF_STATION)) {
1722 		_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_NEW_STN,
1723 		    HostCmd_CMD_SET_NEW_STN);
1724 		pCmd->Action = htole16(2);	/* REMOVE */
1725 		IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
1726 		retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_NEW_STN);
1727 		if (islocal)
1728 			vap->flags &= ~MVF_STATION;
1729 	} else
1730 		retval = 0;
1731 	MWL_HAL_UNLOCK(mh);
1732 	return retval;
1733 }
1734 
1735 /*
1736  * Prod the firmware to age packets on station power
1737  * save queues and reap frames on the tx aggregation q's.
1738  */
1739 int
1740 mwl_hal_setkeepalive(struct mwl_hal *mh0)
1741 {
1742 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1743 	HostCmd_FW_SET_KEEP_ALIVE_TICK *pCmd;
1744 	int retval;
1745 
1746 	MWL_HAL_LOCK(mh);
1747 	_CMD_SETUP(pCmd, HostCmd_FW_SET_KEEP_ALIVE_TICK,
1748 		HostCmd_CMD_SET_KEEP_ALIVE);
1749 	/*
1750 	 * NB: tick must be 0 to prod the f/w;
1751 	 *     a non-zero value is a noop.
1752 	 */
1753 	pCmd->tick = 0;
1754 
1755 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_KEEP_ALIVE);
1756 	MWL_HAL_UNLOCK(mh);
1757 	return retval;
1758 }
1759 
1760 int
1761 mwl_hal_setapmode(struct mwl_hal_vap *vap, MWL_HAL_APMODE ApMode)
1762 {
1763 	struct mwl_hal_priv *mh = MWLVAP(vap);
1764 	HostCmd_FW_SET_APMODE *pCmd;
1765 	int retval;
1766 
1767 	/* XXX validate ApMode? */
1768 
1769 	MWL_HAL_LOCK(mh);
1770 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_APMODE, HostCmd_CMD_SET_APMODE);
1771 	pCmd->ApMode = ApMode;
1772 
1773 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_APMODE);
1774 	MWL_HAL_UNLOCK(mh);
1775 	return retval;
1776 }
1777 
1778 int
1779 mwl_hal_stop(struct mwl_hal_vap *vap)
1780 {
1781 	struct mwl_hal_priv *mh = MWLVAP(vap);
1782 	HostCmd_DS_BSS_START *pCmd;
1783 	int retval;
1784 
1785 	MWL_HAL_LOCK(mh);
1786 	if (vap->flags & MVF_RUNNING) {
1787 		_VCMD_SETUP(vap, pCmd, HostCmd_DS_BSS_START,
1788 		    HostCmd_CMD_BSS_START);
1789 		pCmd->Enable = htole32(HostCmd_ACT_GEN_OFF);
1790 		retval = mwlExecuteCmd(mh, HostCmd_CMD_BSS_START);
1791 	} else
1792 		retval = 0;
1793 	/* NB: mark !running regardless */
1794 	vap->flags &= ~MVF_RUNNING;
1795 	MWL_HAL_UNLOCK(mh);
1796 	return retval;
1797 }
1798 
1799 int
1800 mwl_hal_start(struct mwl_hal_vap *vap)
1801 {
1802 	struct mwl_hal_priv *mh = MWLVAP(vap);
1803 	HostCmd_DS_BSS_START *pCmd;
1804 	int retval;
1805 
1806 	MWL_HAL_LOCK(mh);
1807 	_VCMD_SETUP(vap, pCmd, HostCmd_DS_BSS_START, HostCmd_CMD_BSS_START);
1808 	pCmd->Enable = htole32(HostCmd_ACT_GEN_ON);
1809 
1810 	retval = mwlExecuteCmd(mh, HostCmd_CMD_BSS_START);
1811 	if (retval == 0)
1812 		vap->flags |= MVF_RUNNING;
1813 	MWL_HAL_UNLOCK(mh);
1814 	return retval;
1815 }
1816 
1817 int
1818 mwl_hal_setgprot(struct mwl_hal *mh0, int prot)
1819 {
1820 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1821 	HostCmd_FW_SET_G_PROTECT_FLAG *pCmd;
1822 	int retval;
1823 
1824 	MWL_HAL_LOCK(mh);
1825 	_CMD_SETUP(pCmd, HostCmd_FW_SET_G_PROTECT_FLAG,
1826 		HostCmd_CMD_SET_G_PROTECT_FLAG);
1827 	pCmd->GProtectFlag  = htole32(prot);
1828 
1829 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_G_PROTECT_FLAG);
1830 	MWL_HAL_UNLOCK(mh);
1831 	return retval;
1832 }
1833 
1834 int
1835 mwl_hal_setwmm(struct mwl_hal *mh0, int onoff)
1836 {
1837 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1838 	HostCmd_FW_SetWMMMode *pCmd;
1839 	int retval;
1840 
1841 	MWL_HAL_LOCK(mh);
1842 	_CMD_SETUP(pCmd, HostCmd_FW_SetWMMMode,
1843 		HostCmd_CMD_SET_WMM_MODE);
1844 	pCmd->Action = htole16(onoff);
1845 
1846 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_WMM_MODE);
1847 	MWL_HAL_UNLOCK(mh);
1848 	return retval;
1849 }
1850 
1851 int
1852 mwl_hal_setedcaparams(struct mwl_hal *mh0, uint8_t qnum,
1853 	uint32_t CWmin, uint32_t CWmax, uint8_t AIFSN,  uint16_t TXOPLimit)
1854 {
1855 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1856 	HostCmd_FW_SET_EDCA_PARAMS *pCmd;
1857 	int retval;
1858 
1859 	MWL_HAL_LOCK(mh);
1860 	_CMD_SETUP(pCmd, HostCmd_FW_SET_EDCA_PARAMS,
1861 		HostCmd_CMD_SET_EDCA_PARAMS);
1862 	/*
1863 	 * NB: CWmin and CWmax are always set.
1864 	 *     TxOpLimit is set if bit 0x2 is marked in Action
1865 	 *     AIFSN is set if bit 0x4 is marked in Action
1866 	 */
1867 	pCmd->Action = htole16(0xffff);	/* NB: set everything */
1868 	pCmd->TxOP = htole16(TXOPLimit);
1869 	pCmd->CWMax = htole32(CWmax);
1870 	pCmd->CWMin = htole32(CWmin);
1871 	pCmd->AIFSN = AIFSN;
1872 	pCmd->TxQNum = qnum;		/* XXX check */
1873 
1874 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_EDCA_PARAMS);
1875 	MWL_HAL_UNLOCK(mh);
1876 	return retval;
1877 }
1878 
1879 /* XXX 0 = indoor, 1 = outdoor */
1880 int
1881 mwl_hal_setrateadaptmode(struct mwl_hal *mh0, uint16_t mode)
1882 {
1883 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1884 	HostCmd_DS_SET_RATE_ADAPT_MODE *pCmd;
1885 	int retval;
1886 
1887 	MWL_HAL_LOCK(mh);
1888 	_CMD_SETUP(pCmd, HostCmd_DS_SET_RATE_ADAPT_MODE,
1889 		HostCmd_CMD_SET_RATE_ADAPT_MODE);
1890 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1891 	pCmd->RateAdaptMode = htole16(mode);
1892 
1893 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RATE_ADAPT_MODE);
1894 	MWL_HAL_UNLOCK(mh);
1895 	return retval;
1896 }
1897 
1898 int
1899 mwl_hal_setcsmode(struct mwl_hal *mh0, MWL_HAL_CSMODE csmode)
1900 {
1901 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1902 	HostCmd_DS_SET_LINKADAPT_CS_MODE *pCmd;
1903 	int retval;
1904 
1905 	MWL_HAL_LOCK(mh);
1906 	_CMD_SETUP(pCmd, HostCmd_DS_SET_LINKADAPT_CS_MODE,
1907 		HostCmd_CMD_SET_LINKADAPT_CS_MODE);
1908 	pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
1909 	pCmd->CSMode = htole16(csmode);
1910 
1911 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_LINKADAPT_CS_MODE);
1912 	MWL_HAL_UNLOCK(mh);
1913 	return retval;
1914 }
1915 
1916 int
1917 mwl_hal_setnprot(struct mwl_hal_vap *vap, MWL_HAL_HTPROTECT mode)
1918 {
1919 	struct mwl_hal_priv *mh = MWLVAP(vap);
1920 	HostCmd_FW_SET_N_PROTECT_FLAG *pCmd;
1921 	int retval;
1922 
1923 	/* XXX validate mode */
1924 	MWL_HAL_LOCK(mh);
1925 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_N_PROTECT_FLAG,
1926 		HostCmd_CMD_SET_N_PROTECT_FLAG);
1927 	pCmd->NProtectFlag  = htole32(mode);
1928 
1929 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_N_PROTECT_FLAG);
1930 	MWL_HAL_UNLOCK(mh);
1931 	return retval;
1932 }
1933 
1934 int
1935 mwl_hal_setnprotmode(struct mwl_hal_vap *vap, uint8_t mode)
1936 {
1937 	struct mwl_hal_priv *mh = MWLVAP(vap);
1938 	HostCmd_FW_SET_N_PROTECT_OPMODE *pCmd;
1939 	int retval;
1940 
1941 	MWL_HAL_LOCK(mh);
1942 	_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_N_PROTECT_OPMODE,
1943 		HostCmd_CMD_SET_N_PROTECT_OPMODE);
1944 	pCmd->NProtectOpMode = mode;
1945 
1946 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_N_PROTECT_OPMODE);
1947 	MWL_HAL_UNLOCK(mh);
1948 	return retval;
1949 }
1950 
1951 int
1952 mwl_hal_setoptimizationlevel(struct mwl_hal *mh0, int level)
1953 {
1954 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1955 	HostCmd_FW_SET_OPTIMIZATION_LEVEL *pCmd;
1956 	int retval;
1957 
1958 	MWL_HAL_LOCK(mh);
1959 	_CMD_SETUP(pCmd, HostCmd_FW_SET_OPTIMIZATION_LEVEL,
1960 		HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
1961 	pCmd->OptLevel = level;
1962 
1963 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
1964 	MWL_HAL_UNLOCK(mh);
1965 	return retval;
1966 }
1967 
1968 int
1969 mwl_hal_setmimops(struct mwl_hal *mh0, const uint8_t addr[IEEE80211_ADDR_LEN],
1970 	uint8_t enable, uint8_t mode)
1971 {
1972 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
1973 	HostCmd_FW_SET_MIMOPSHT *pCmd;
1974 	int retval;
1975 
1976 	MWL_HAL_LOCK(mh);
1977 	_CMD_SETUP(pCmd, HostCmd_FW_SET_MIMOPSHT, HostCmd_CMD_SET_MIMOPSHT);
1978 	IEEE80211_ADDR_COPY(pCmd->Addr, addr);
1979 	pCmd->Enable = enable;
1980 	pCmd->Mode = mode;
1981 
1982 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_MIMOPSHT);
1983 	MWL_HAL_UNLOCK(mh);
1984 	return retval;
1985 }
1986 
1987 static int
1988 mwlGetCalTable(struct mwl_hal_priv *mh, uint8_t annex, uint8_t index)
1989 {
1990 	HostCmd_FW_GET_CALTABLE *pCmd;
1991 	int retval;
1992 
1993 	MWL_HAL_LOCK_ASSERT(mh);
1994 
1995 	_CMD_SETUP(pCmd, HostCmd_FW_GET_CALTABLE, HostCmd_CMD_GET_CALTABLE);
1996 	pCmd->annex = annex;
1997 	pCmd->index = index;
1998 	memset(pCmd->calTbl, 0, sizeof(pCmd->calTbl));
1999 
2000 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_CALTABLE);
2001 	if (retval == 0 &&
2002 	    pCmd->calTbl[0] != annex && annex != 0 && annex != 255)
2003 		retval = EIO;
2004 	return retval;
2005 }
2006 
2007 /*
2008  * Calculate the max tx power from the channel's cal data.
2009  */
2010 static void
2011 setmaxtxpow(struct mwl_hal_channel *hc, int i, int maxix)
2012 {
2013 	hc->maxTxPow = hc->targetPowers[i];
2014 	for (i++; i < maxix; i++)
2015 		if (hc->targetPowers[i] > hc->maxTxPow)
2016 			hc->maxTxPow = hc->targetPowers[i];
2017 }
2018 
2019 /*
2020  * Construct channel info for 5GHz channels from cal data.
2021  */
2022 static void
2023 get5Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
2024 {
2025 	int i, j, f, l, h;
2026 
2027 	l = 32000;
2028 	h = 0;
2029 	j = 0;
2030 	for (i = 0; i < len; i += 4) {
2031 		struct mwl_hal_channel *hc;
2032 
2033 		if (table[i] == 0)
2034 			continue;
2035 		f = 5000 + 5*table[i];
2036 		if (f < l)
2037 			l = f;
2038 		if (f > h)
2039 			h = f;
2040 		hc = &ci->channels[j];
2041 		hc->freq = f;
2042 		hc->ieee = table[i];
2043 		memcpy(hc->targetPowers, &table[i], 4);
2044 		setmaxtxpow(hc, 1, 4);		/* NB: col 1 is the freq, skip*/
2045 		j++;
2046 	}
2047 	ci->nchannels = j;
2048 	ci->freqLow = (l == 32000) ? 0 : l;
2049 	ci->freqHigh = h;
2050 }
2051 
2052 static uint16_t
2053 ieee2mhz(int chan)
2054 {
2055 	if (chan == 14)
2056 		return 2484;
2057 	if (chan < 14)
2058 		return 2407 + chan*5;
2059 	return 2512 + (chan-15)*20;
2060 }
2061 
2062 /*
2063  * Construct channel info for 2.4GHz channels from cal data.
2064  */
2065 static void
2066 get2Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
2067 {
2068 	int i, j;
2069 
2070 	j = 0;
2071 	for (i = 0; i < len; i += 4) {
2072 		struct mwl_hal_channel *hc = &ci->channels[j];
2073 		hc->ieee = 1+j;
2074 		hc->freq = ieee2mhz(1+j);
2075 		memcpy(hc->targetPowers, &table[i], 4);
2076 		setmaxtxpow(hc, 0, 4);
2077 		j++;
2078 	}
2079 	ci->nchannels = j;
2080 	ci->freqLow = ieee2mhz(1);
2081 	ci->freqHigh = ieee2mhz(j);
2082 }
2083 
2084 #undef DUMPCALDATA
2085 #ifdef DUMPCALDATA
2086 static void
2087 dumpcaldata(const char *name, const uint8_t *table, int n)
2088 {
2089 	int i;
2090 	printf("\n%s:\n", name);
2091 	for (i = 0; i < n; i += 4)
2092 		printf("[%2d] %3d %3d %3d %3d\n", i/4, table[i+0], table[i+1], table[i+2], table[i+3]);
2093 }
2094 #endif
2095 
2096 static int
2097 mwlGetPwrCalTable(struct mwl_hal_priv *mh)
2098 {
2099 	const uint8_t *data;
2100 	MWL_HAL_CHANNELINFO *ci;
2101 	int len;
2102 
2103 	MWL_HAL_LOCK(mh);
2104 	/* NB: we hold the lock so it's ok to use cmdbuf */
2105 	data = ((const HostCmd_FW_GET_CALTABLE *) mh->mh_cmdbuf)->calTbl;
2106 	if (mwlGetCalTable(mh, 33, 0) == 0) {
2107 		len = (data[2] | (data[3] << 8)) - 12;
2108 		if (len > PWTAGETRATETABLE20M)
2109 			len = PWTAGETRATETABLE20M;
2110 #ifdef DUMPCALDATA
2111 dumpcaldata("2.4G 20M", &data[12], len);/*XXX*/
2112 #endif
2113 		get2Ghz(&mh->mh_20M, &data[12], len);
2114 	}
2115 	if (mwlGetCalTable(mh, 34, 0) == 0) {
2116 		len = (data[2] | (data[3] << 8)) - 12;
2117 		if (len > PWTAGETRATETABLE40M)
2118 			len = PWTAGETRATETABLE40M;
2119 #ifdef DUMPCALDATA
2120 dumpcaldata("2.4G 40M", &data[12], len);/*XXX*/
2121 #endif
2122 		ci = &mh->mh_40M;
2123 		get2Ghz(ci, &data[12], len);
2124 	}
2125 	if (mwlGetCalTable(mh, 35, 0) == 0) {
2126 		len = (data[2] | (data[3] << 8)) - 20;
2127 		if (len > PWTAGETRATETABLE20M_5G)
2128 			len = PWTAGETRATETABLE20M_5G;
2129 #ifdef DUMPCALDATA
2130 dumpcaldata("5G 20M", &data[20], len);/*XXX*/
2131 #endif
2132 		get5Ghz(&mh->mh_20M_5G, &data[20], len);
2133 	}
2134 	if (mwlGetCalTable(mh, 36, 0) == 0) {
2135 		len = (data[2] | (data[3] << 8)) - 20;
2136 		if (len > PWTAGETRATETABLE40M_5G)
2137 			len = PWTAGETRATETABLE40M_5G;
2138 #ifdef DUMPCALDATA
2139 dumpcaldata("5G 40M", &data[20], len);/*XXX*/
2140 #endif
2141 		ci = &mh->mh_40M_5G;
2142 		get5Ghz(ci, &data[20], len);
2143 	}
2144 	mh->mh_flags |= MHF_CALDATA;
2145 	MWL_HAL_UNLOCK(mh);
2146 	return 0;
2147 }
2148 
2149 int
2150 mwl_hal_getregioncode(struct mwl_hal *mh0, uint8_t *countryCode)
2151 {
2152 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2153 	int retval;
2154 
2155 	MWL_HAL_LOCK(mh);
2156 	retval = mwlGetCalTable(mh, 0, 0);
2157 	if (retval == 0) {
2158 		const HostCmd_FW_GET_CALTABLE *pCmd =
2159 		    (const HostCmd_FW_GET_CALTABLE *) mh->mh_cmdbuf;
2160 		*countryCode = pCmd->calTbl[16];
2161 	}
2162 	MWL_HAL_UNLOCK(mh);
2163 	return retval;
2164 }
2165 
2166 int
2167 mwl_hal_setpromisc(struct mwl_hal *mh0, int ena)
2168 {
2169 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2170 	uint32_t v;
2171 
2172 	MWL_HAL_LOCK(mh);
2173 	v = RD4(mh, MACREG_REG_PROMISCUOUS);
2174 	WR4(mh, MACREG_REG_PROMISCUOUS, ena ? v | 1 : v &~ 1);
2175 	MWL_HAL_UNLOCK(mh);
2176 	return 0;
2177 }
2178 
2179 int
2180 mwl_hal_getpromisc(struct mwl_hal *mh0)
2181 {
2182 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2183 	uint32_t v;
2184 
2185 	MWL_HAL_LOCK(mh);
2186 	v = RD4(mh, MACREG_REG_PROMISCUOUS);
2187 	MWL_HAL_UNLOCK(mh);
2188 	return (v & 1) != 0;
2189 }
2190 
2191 int
2192 mwl_hal_GetBeacon(struct mwl_hal *mh0, uint8_t *pBcn, uint16_t *pLen)
2193 {
2194 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2195 	HostCmd_FW_GET_BEACON *pCmd;
2196 	int retval;
2197 
2198 	MWL_HAL_LOCK(mh);
2199 	_CMD_SETUP(pCmd, HostCmd_FW_GET_BEACON, HostCmd_CMD_GET_BEACON);
2200 	pCmd->Bcnlen = htole16(0);
2201 
2202 	retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_BEACON);
2203 	if (retval == 0) {
2204 		/* XXX bounds check */
2205 		memcpy(pBcn, &pCmd->Bcn, pCmd->Bcnlen);
2206 		*pLen = pCmd->Bcnlen;
2207 	}
2208 	MWL_HAL_UNLOCK(mh);
2209 	return retval;
2210 }
2211 
2212 int
2213 mwl_hal_SetRifs(struct mwl_hal *mh0, uint8_t QNum)
2214 {
2215 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2216 	HostCmd_FW_SET_RIFS  *pCmd;
2217 	int retval;
2218 
2219 	MWL_HAL_LOCK(mh);
2220 	_CMD_SETUP(pCmd, HostCmd_FW_SET_RIFS, HostCmd_CMD_SET_RIFS);
2221 	pCmd->QNum = QNum;
2222 
2223 	retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RIFS);
2224 	MWL_HAL_UNLOCK(mh);
2225 	return retval;
2226 }
2227 
2228 /*
2229  * Diagnostic api's for set/get registers.
2230  */
2231 
2232 static int
2233 getRFReg(struct mwl_hal_priv *mh, int flag, uint32_t reg, uint32_t *val)
2234 {
2235 	HostCmd_DS_RF_REG_ACCESS *pCmd;
2236 	int retval;
2237 
2238 	MWL_HAL_LOCK(mh);
2239 	_CMD_SETUP(pCmd, HostCmd_DS_RF_REG_ACCESS, HostCmd_CMD_RF_REG_ACCESS);
2240 	pCmd->Offset =  htole16(reg);
2241 	pCmd->Action = htole16(flag);
2242 	pCmd->Value = htole32(*val);
2243 
2244 	retval = mwlExecuteCmd(mh, HostCmd_CMD_RF_REG_ACCESS);
2245 	if (retval == 0)
2246 		*val = pCmd->Value;
2247 	MWL_HAL_UNLOCK(mh);
2248 	return retval;
2249 }
2250 
2251 static int
2252 getBBReg(struct mwl_hal_priv *mh, int flag, uint32_t reg, uint32_t *val)
2253 {
2254 	HostCmd_DS_BBP_REG_ACCESS *pCmd;
2255 	int retval;
2256 
2257 	MWL_HAL_LOCK(mh);
2258 	_CMD_SETUP(pCmd, HostCmd_DS_BBP_REG_ACCESS, HostCmd_CMD_BBP_REG_ACCESS);
2259 	pCmd->Offset =  htole16(reg);
2260 	pCmd->Action = htole16(flag);
2261 	pCmd->Value = htole32(*val);
2262 
2263 	retval = mwlExecuteCmd(mh, HostCmd_CMD_BBP_REG_ACCESS);
2264 	if (retval == 0)
2265 		*val = pCmd->Value;
2266 	MWL_HAL_UNLOCK(mh);
2267 	return retval;
2268 }
2269 
2270 static u_int
2271 mwl_hal_getregdump(struct mwl_hal_priv *mh, const MWL_DIAG_REGRANGE *regs,
2272 	void *dstbuf, int space)
2273 {
2274 	uint32_t *dp = dstbuf;
2275 	int i;
2276 
2277 	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
2278 		u_int r = regs[i].start;
2279 		u_int e = regs[i].end;
2280 		*dp++ = (r<<16) | e;
2281 		space -= sizeof(uint32_t);
2282 		do {
2283 			if (MWL_DIAG_ISMAC(r))
2284 				*dp = RD4(mh, r);
2285 			else if (MWL_DIAG_ISBB(r))
2286 				getBBReg(mh, HostCmd_ACT_GEN_READ,
2287 				    r - MWL_DIAG_BASE_BB, dp);
2288 			else if (MWL_DIAG_ISRF(r))
2289 				getRFReg(mh, HostCmd_ACT_GEN_READ,
2290 				    r - MWL_DIAG_BASE_RF, dp);
2291 			else if (r < 0x1000 || r == MACREG_REG_FW_PRESENT)
2292 				*dp = RD4(mh, r);
2293 			else
2294 				*dp = 0xffffffff;
2295 			dp++;
2296 			r += sizeof(uint32_t);
2297 			space -= sizeof(uint32_t);
2298 		} while (r <= e && space >= sizeof(uint32_t));
2299 	}
2300 	return (char *) dp - (char *) dstbuf;
2301 }
2302 
2303 int
2304 mwl_hal_getdiagstate(struct mwl_hal *mh0, int request,
2305 	const void *args, uint32_t argsize,
2306 	void **result, uint32_t *resultsize)
2307 {
2308 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2309 
2310 	switch (request) {
2311 	case MWL_DIAG_CMD_REVS:
2312 		*result = &mh->mh_revs;
2313 		*resultsize = sizeof(mh->mh_revs);
2314 		return 1;
2315 	case MWL_DIAG_CMD_REGS:
2316 		*resultsize = mwl_hal_getregdump(mh, args, *result, *resultsize);
2317 		return 1;
2318 	case MWL_DIAG_CMD_HOSTCMD: {
2319 		FWCmdHdr *pCmd = (FWCmdHdr *) &mh->mh_cmdbuf[0];
2320 		int retval;
2321 
2322 		MWL_HAL_LOCK(mh);
2323 		memcpy(pCmd, args, argsize);
2324 		retval = mwlExecuteCmd(mh, le16toh(pCmd->Cmd));
2325 		*result = (*resultsize != 0) ? pCmd : NULL;
2326 		MWL_HAL_UNLOCK(mh);
2327 		return (retval == 0);
2328 	}
2329 	case MWL_DIAG_CMD_FWLOAD:
2330 		if (mwl_hal_fwload(mh0, __DECONST(void *, args))) {
2331 			device_printf(mh->mh_dev, "problem loading fw image\n");
2332 			return 0;
2333 		}
2334 		return 1;
2335 	}
2336 	return 0;
2337 }
2338 
2339 /*
2340  * Low level firmware cmd block handshake support.
2341  */
2342 
2343 static void
2344 mwlSendCmd(struct mwl_hal_priv *mh)
2345 {
2346 	uint32_t dummy;
2347 
2348 	bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap,
2349 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2350 
2351 	WR4(mh, MACREG_REG_GEN_PTR, mh->mh_cmdaddr);
2352 	dummy = RD4(mh, MACREG_REG_INT_CODE);
2353 
2354 	WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_DOOR_BELL);
2355 }
2356 
2357 static int
2358 mwlWaitForCmdComplete(struct mwl_hal_priv *mh, uint16_t cmdCode)
2359 {
2360 #define MAX_WAIT_FW_COMPLETE_ITERATIONS 10000
2361 	int i;
2362 
2363 	for (i = 0; i < MAX_WAIT_FW_COMPLETE_ITERATIONS; i++) {
2364 		if (mh->mh_cmdbuf[0] == le16toh(cmdCode))
2365 			return 1;
2366 		DELAY(1*1000);
2367 	}
2368 	return 0;
2369 #undef MAX_WAIT_FW_COMPLETE_ITERATIONS
2370 }
2371 
2372 static int
2373 mwlExecuteCmd(struct mwl_hal_priv *mh, unsigned short cmd)
2374 {
2375 
2376 	MWL_HAL_LOCK_ASSERT(mh);
2377 
2378 	if ((mh->mh_flags & MHF_FWHANG) &&
2379 	    (mh->mh_debug & MWL_HAL_DEBUG_IGNHANG) == 0) {
2380 #ifdef MWLHAL_DEBUG
2381 		device_printf(mh->mh_dev, "firmware hung, skipping cmd %s\n",
2382 			mwlcmdname(cmd));
2383 #else
2384 		device_printf(mh->mh_dev, "firmware hung, skipping cmd 0x%x\n",
2385 			cmd);
2386 #endif
2387 		return ENXIO;
2388 	}
2389 	if (RD4(mh,  MACREG_REG_INT_CODE) == 0xffffffff) {
2390 		device_printf(mh->mh_dev, "%s: device not present!\n",
2391 		    __func__);
2392 		return EIO;
2393 	}
2394 #ifdef MWLHAL_DEBUG
2395 	if (mh->mh_debug & MWL_HAL_DEBUG_SENDCMD)
2396 		dumpresult(mh, 0);
2397 #endif
2398 	mwlSendCmd(mh);
2399 	if (!mwlWaitForCmdComplete(mh, 0x8000 | cmd)) {
2400 #ifdef MWLHAL_DEBUG
2401 		device_printf(mh->mh_dev,
2402 		    "timeout waiting for f/w cmd %s\n", mwlcmdname(cmd));
2403 #else
2404 		device_printf(mh->mh_dev,
2405 		    "timeout waiting for f/w cmd 0x%x\n", cmd);
2406 #endif
2407 		mh->mh_flags |= MHF_FWHANG;
2408 		return ETIMEDOUT;
2409 	}
2410 	bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap,
2411 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2412 #ifdef MWLHAL_DEBUG
2413 	if (mh->mh_debug & MWL_HAL_DEBUG_CMDDONE)
2414 		dumpresult(mh, 1);
2415 #endif
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Firmware download support.
2421  */
2422 #define FW_DOWNLOAD_BLOCK_SIZE	256
2423 #define FW_CHECK_USECS		(5*1000)	/* 5ms */
2424 #define FW_MAX_NUM_CHECKS	200
2425 
2426 #if 0
2427 /* XXX read f/w from file */
2428 #include <dev/mwl/mwlbootfw.h>
2429 #include <dev/mwl/mwl88W8363fw.h>
2430 #endif
2431 
2432 static void
2433 mwlFwReset(struct mwl_hal_priv *mh)
2434 {
2435 	if (RD4(mh,  MACREG_REG_INT_CODE) == 0xffffffff) {
2436 		device_printf(mh->mh_dev, "%s: device not present!\n",
2437 		    __func__);
2438 		return;
2439 	}
2440 	WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, ISR_RESET);
2441 	mh->mh_flags &= ~MHF_FWHANG;
2442 }
2443 
2444 static void
2445 mwlTriggerPciCmd(struct mwl_hal_priv *mh)
2446 {
2447 	uint32_t dummy;
2448 
2449 	bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap, BUS_DMASYNC_PREWRITE);
2450 
2451 	WR4(mh, MACREG_REG_GEN_PTR, mh->mh_cmdaddr);
2452 	dummy = RD4(mh, MACREG_REG_INT_CODE);
2453 
2454 	WR4(mh, MACREG_REG_INT_CODE, 0x00);
2455 	dummy = RD4(mh, MACREG_REG_INT_CODE);
2456 
2457 	WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_DOOR_BELL);
2458 	dummy = RD4(mh, MACREG_REG_INT_CODE);
2459 }
2460 
2461 static int
2462 mwlWaitFor(struct mwl_hal_priv *mh, uint32_t val)
2463 {
2464 	int i;
2465 
2466 	for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
2467 		DELAY(FW_CHECK_USECS);
2468 		if (RD4(mh, MACREG_REG_INT_CODE) == val)
2469 			return 1;
2470 	}
2471 	return 0;
2472 }
2473 
2474 /*
2475  * Firmware block xmit when talking to the boot-rom.
2476  */
2477 static int
2478 mwlSendBlock(struct mwl_hal_priv *mh, int bsize, const void *data, size_t dsize)
2479 {
2480 	mh->mh_cmdbuf[0] = htole16(HostCmd_CMD_CODE_DNLD);
2481 	mh->mh_cmdbuf[1] = htole16(bsize);
2482 	memcpy(&mh->mh_cmdbuf[4], data , dsize);
2483 	mwlTriggerPciCmd(mh);
2484 	/* XXX 2000 vs 200 */
2485 	if (mwlWaitFor(mh, MACREG_INT_CODE_CMD_FINISHED)) {
2486 		WR4(mh, MACREG_REG_INT_CODE, 0);
2487 		return 1;
2488 	}
2489 	device_printf(mh->mh_dev,
2490 	    "%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
2491 	    __func__, RD4(mh, MACREG_REG_INT_CODE));
2492 	return 0;
2493 }
2494 
2495 /*
2496  * Firmware block xmit when talking to the 1st-stage loader.
2497  */
2498 static int
2499 mwlSendBlock2(struct mwl_hal_priv *mh, const void *data, size_t dsize)
2500 {
2501 	memcpy(&mh->mh_cmdbuf[0], data, dsize);
2502 	mwlTriggerPciCmd(mh);
2503 	if (mwlWaitFor(mh, MACREG_INT_CODE_CMD_FINISHED)) {
2504 		WR4(mh, MACREG_REG_INT_CODE, 0);
2505 		return 1;
2506 	}
2507 	device_printf(mh->mh_dev,
2508 	    "%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
2509 	    __func__, RD4(mh, MACREG_REG_INT_CODE));
2510 	return 0;
2511 }
2512 
2513 static void
2514 mwlPokeSdramController(struct mwl_hal_priv *mh, int SDRAMSIZE_Addr)
2515 {
2516 	/** Set up sdram controller for superflyv2 **/
2517 	WR4(mh, 0x00006014, 0x33);
2518 	WR4(mh, 0x00006018, 0xa3a2632);
2519 	WR4(mh, 0x00006010, SDRAMSIZE_Addr);
2520 }
2521 
2522 int
2523 mwl_hal_fwload(struct mwl_hal *mh0, void *fwargs)
2524 {
2525 	struct mwl_hal_priv *mh = MWLPRIV(mh0);
2526 	const char *fwname = "mw88W8363fw";
2527 	const char *fwbootname = "mwlboot";
2528 	const struct firmware *fwboot = NULL;
2529 	const struct firmware *fw;
2530 	/* XXX get from firmware header */
2531 	uint32_t FwReadySignature = HostCmd_SOFTAP_FWRDY_SIGNATURE;
2532 	uint32_t OpMode = HostCmd_SOFTAP_MODE;
2533 	const uint8_t *fp, *ep;
2534 	const uint8_t *fmdata;
2535 	uint32_t blocksize, nbytes, fmsize;
2536 	int i, error, ntries;
2537 
2538 	fw = firmware_get(fwname);
2539 	if (fw == NULL) {
2540 		device_printf(mh->mh_dev,
2541 		    "could not load firmware image %s\n", fwname);
2542 		return ENXIO;
2543 	}
2544 	fmdata = fw->data;
2545 	fmsize = fw->datasize;
2546 	if (fmsize < 4) {
2547 		device_printf(mh->mh_dev, "firmware image %s too small\n",
2548 		    fwname);
2549 		error = ENXIO;
2550 		goto bad2;
2551 	}
2552 	if (fmdata[0] == 0x01 && fmdata[1] == 0x00 &&
2553 	    fmdata[2] == 0x00 && fmdata[3] == 0x00) {
2554 		/*
2555 		 * 2-stage load, get the boot firmware.
2556 		 */
2557 		fwboot = firmware_get(fwbootname);
2558 		if (fwboot == NULL) {
2559 			device_printf(mh->mh_dev,
2560 			    "could not load firmware image %s\n", fwbootname);
2561 			error = ENXIO;
2562 			goto bad2;
2563 		}
2564 	} else
2565 		fwboot = NULL;
2566 
2567 	mwlFwReset(mh);
2568 
2569 	WR4(mh, MACREG_REG_A2H_INTERRUPT_CLEAR_SEL, MACREG_A2HRIC_BIT_MASK);
2570 	WR4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE, 0x00);
2571 	WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, 0x00);
2572 	WR4(mh, MACREG_REG_A2H_INTERRUPT_STATUS_MASK, MACREG_A2HRIC_BIT_MASK);
2573 	if (mh->mh_SDRAMSIZE_Addr != 0) {
2574 		/** Set up sdram controller for superflyv2 **/
2575 		mwlPokeSdramController(mh, mh->mh_SDRAMSIZE_Addr);
2576 	}
2577 	device_printf(mh->mh_dev, "load %s firmware image (%u bytes)\n",
2578 	    fwname, fmsize);
2579 	if (fwboot != NULL) {
2580 		/*
2581 		 * Do 2-stage load.  The 1st stage loader is setup
2582 		 * with the bootrom loader then we load the real
2583 		 * image using a different handshake. With this
2584 		 * mechanism the firmware is segmented into chunks
2585 		 * that have a CRC.  If a chunk is incorrect we'll
2586 		 * be told to retransmit.
2587 		 */
2588 		/* XXX assumes hlpimage fits in a block */
2589 		/* NB: zero size block indicates download is finished */
2590 		if (!mwlSendBlock(mh, fwboot->datasize, fwboot->data, fwboot->datasize) ||
2591 		    !mwlSendBlock(mh, 0, NULL, 0)) {
2592 			error = ETIMEDOUT;
2593 			goto bad;
2594 		}
2595 		DELAY(200*FW_CHECK_USECS);
2596 		if (mh->mh_SDRAMSIZE_Addr != 0) {
2597 			/** Set up sdram controller for superflyv2 **/
2598 			mwlPokeSdramController(mh, mh->mh_SDRAMSIZE_Addr);
2599 		}
2600 		nbytes = ntries = 0;		/* NB: silence compiler */
2601 		for (fp = fmdata, ep = fp + fmsize; fp < ep; ) {
2602 			WR4(mh, MACREG_REG_INT_CODE, 0);
2603 			blocksize = RD4(mh, MACREG_REG_SCRATCH);
2604 			if (blocksize == 0)	/* download complete */
2605 				break;
2606 			if (blocksize > 0x00000c00) {
2607 				error = EINVAL;
2608 				goto bad;
2609 			}
2610 			if ((blocksize & 0x1) == 0) {
2611 				/* block successfully downloaded, advance */
2612 				fp += nbytes;
2613 				ntries = 0;
2614 			} else {
2615 				if (++ntries > 2) {
2616 					/*
2617 					 * Guard against f/w telling us to
2618 					 * retry infinitely.
2619 					 */
2620 					error = ELOOP;
2621 					goto bad;
2622 				}
2623 				/* clear NAK bit/flag */
2624 				blocksize &= ~0x1;
2625 			}
2626 			if (blocksize > ep - fp) {
2627 				/* XXX this should not happen, what to do? */
2628 				blocksize = ep - fp;
2629 			}
2630 			nbytes = blocksize;
2631 			if (!mwlSendBlock2(mh, fp, nbytes)) {
2632 				error = ETIMEDOUT;
2633 				goto bad;
2634 			}
2635 		}
2636 	} else {
2637 		for (fp = fmdata, ep = fp + fmsize; fp < ep;) {
2638 			nbytes = ep - fp;
2639 			if (nbytes > FW_DOWNLOAD_BLOCK_SIZE)
2640 				nbytes = FW_DOWNLOAD_BLOCK_SIZE;
2641 			if (!mwlSendBlock(mh, FW_DOWNLOAD_BLOCK_SIZE, fp, nbytes)) {
2642 				error = EIO;
2643 				goto bad;
2644 			}
2645 			fp += nbytes;
2646 		}
2647 	}
2648 	/* done with firmware... */
2649 	if (fwboot != NULL)
2650 		firmware_put(fwboot, FIRMWARE_UNLOAD);
2651 	firmware_put(fw, FIRMWARE_UNLOAD);
2652 	/*
2653 	 * Wait for firmware to startup; we monitor the
2654 	 * INT_CODE register waiting for a signature to
2655 	 * written back indicating it's ready to go.
2656 	 */
2657 	mh->mh_cmdbuf[1] = 0;
2658 	/*
2659 	 * XXX WAR for mfg fw download
2660 	 */
2661 	if (OpMode != HostCmd_STA_MODE)
2662 		mwlTriggerPciCmd(mh);
2663 	for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
2664 		WR4(mh, MACREG_REG_GEN_PTR, OpMode);
2665 		DELAY(FW_CHECK_USECS);
2666 		if (RD4(mh, MACREG_REG_INT_CODE) == FwReadySignature) {
2667 			WR4(mh, MACREG_REG_INT_CODE, 0x00);
2668 			return mwlResetHalState(mh);
2669 		}
2670 	}
2671 	return ETIMEDOUT;
2672 bad:
2673 	mwlFwReset(mh);
2674 bad2:
2675 	/* done with firmware... */
2676 	if (fwboot != NULL)
2677 		firmware_put(fwboot, FIRMWARE_UNLOAD);
2678 	firmware_put(fw, FIRMWARE_UNLOAD);
2679 	return error;
2680 }
2681 
2682 #ifdef MWLHAL_DEBUG
2683 static const char *
2684 mwlcmdname(int cmd)
2685 {
2686 	static char buf[12];
2687 #define	CMD(x)	case HostCmd_CMD_##x: return #x
2688 	switch (cmd) {
2689 	CMD(CODE_DNLD);
2690 	CMD(GET_HW_SPEC);
2691 	CMD(SET_HW_SPEC);
2692 	CMD(MAC_MULTICAST_ADR);
2693 	CMD(802_11_GET_STAT);
2694 	CMD(MAC_REG_ACCESS);
2695 	CMD(BBP_REG_ACCESS);
2696 	CMD(RF_REG_ACCESS);
2697 	CMD(802_11_RADIO_CONTROL);
2698 	CMD(802_11_RF_TX_POWER);
2699 	CMD(802_11_RF_ANTENNA);
2700 	CMD(SET_BEACON);
2701 	CMD(SET_RF_CHANNEL);
2702 	CMD(SET_AID);
2703 	CMD(SET_INFRA_MODE);
2704 	CMD(SET_G_PROTECT_FLAG);
2705 	CMD(802_11_RTS_THSD);
2706 	CMD(802_11_SET_SLOT);
2707 	CMD(SET_EDCA_PARAMS);
2708 	CMD(802_11H_DETECT_RADAR);
2709 	CMD(SET_WMM_MODE);
2710 	CMD(HT_GUARD_INTERVAL);
2711 	CMD(SET_FIXED_RATE);
2712 	CMD(SET_LINKADAPT_CS_MODE);
2713 	CMD(SET_MAC_ADDR);
2714 	CMD(SET_RATE_ADAPT_MODE);
2715 	CMD(BSS_START);
2716 	CMD(SET_NEW_STN);
2717 	CMD(SET_KEEP_ALIVE);
2718 	CMD(SET_APMODE);
2719 	CMD(SET_SWITCH_CHANNEL);
2720 	CMD(UPDATE_ENCRYPTION);
2721 	CMD(BASTREAM);
2722 	CMD(SET_RIFS);
2723 	CMD(SET_N_PROTECT_FLAG);
2724 	CMD(SET_N_PROTECT_OPMODE);
2725 	CMD(SET_OPTIMIZATION_LEVEL);
2726 	CMD(GET_CALTABLE);
2727 	CMD(SET_MIMOPSHT);
2728 	CMD(GET_BEACON);
2729 	CMD(SET_REGION_CODE);
2730 	CMD(SET_POWERSAVESTATION);
2731 	CMD(SET_TIM);
2732 	CMD(GET_TIM);
2733 	CMD(GET_SEQNO);
2734 	CMD(DWDS_ENABLE);
2735 	CMD(AMPDU_RETRY_RATEDROP_MODE);
2736 	CMD(CFEND_ENABLE);
2737 	}
2738 	snprintf(buf, sizeof(buf), "0x%x", cmd);
2739 	return buf;
2740 #undef CMD
2741 }
2742 
2743 static void
2744 dumpresult(struct mwl_hal_priv *mh, int showresult)
2745 {
2746 	const FWCmdHdr *h = (const FWCmdHdr *)mh->mh_cmdbuf;
2747 	const uint8_t *cp;
2748 	int len, i;
2749 
2750 	len = le16toh(h->Length);
2751 #ifdef MWL_MBSS_SUPPORT
2752 	device_printf(mh->mh_dev, "Cmd %s Length %d SeqNum %d MacId %d",
2753 	    mwlcmdname(le16toh(h->Cmd) &~ 0x8000), len, h->SeqNum, h->MacId);
2754 #else
2755 	device_printf(mh->mh_dev, "Cmd %s Length %d SeqNum %d",
2756 	    mwlcmdname(le16toh(h->Cmd) &~ 0x8000), len, le16toh(h->SeqNum));
2757 #endif
2758 	if (showresult) {
2759 		const char *results[] =
2760 		    { "OK", "ERROR", "NOT_SUPPORT", "PENDING", "BUSY",
2761 		      "PARTIAL_DATA" };
2762 		int result = le16toh(h->Result);
2763 
2764 		if (result <= HostCmd_RESULT_PARTIAL_DATA)
2765 			printf(" Result %s", results[result]);
2766 		else
2767 			printf(" Result %d", result);
2768 	}
2769 	cp = (const uint8_t *)h;
2770 	for (i = 0; i < len; i++) {
2771 		if ((i % 16) == 0)
2772 			printf("\n%02x", cp[i]);
2773 		else
2774 			printf(" %02x", cp[i]);
2775 	}
2776 	printf("\n");
2777 }
2778 #endif /* MWLHAL_DEBUG */
2779