xref: /freebsd/sys/dev/mwl/if_mwl.c (revision bdcbfde31e8e9b343f113a1956384bdf30d1ed62)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007-2008 Marvell Semiconductor, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
16  *    redistribution must be conditioned upon including a substantially
17  *    similar Disclaimer requirement for further binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
23  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
24  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
25  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
28  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGES.
31  */
32 
33 #include <sys/cdefs.h>
34 /*
35  * Driver for the Marvell 88W8363 Wireless LAN controller.
36  */
37 
38 #include "opt_inet.h"
39 #include "opt_mwl.h"
40 #include "opt_wlan.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/kernel.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/errno.h>
53 #include <sys/callout.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kthread.h>
57 #include <sys/taskqueue.h>
58 
59 #include <machine/bus.h>
60 
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_llc.h>
69 
70 #include <net/bpf.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_input.h>
74 #include <net80211/ieee80211_regdomain.h>
75 
76 #ifdef INET
77 #include <netinet/in.h>
78 #include <netinet/if_ether.h>
79 #endif /* INET */
80 
81 #include <dev/mwl/if_mwlvar.h>
82 #include <dev/mwl/mwldiag.h>
83 
84 static struct ieee80211vap *mwl_vap_create(struct ieee80211com *,
85 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
86 		    const uint8_t [IEEE80211_ADDR_LEN],
87 		    const uint8_t [IEEE80211_ADDR_LEN]);
88 static void	mwl_vap_delete(struct ieee80211vap *);
89 static int	mwl_setupdma(struct mwl_softc *);
90 static int	mwl_hal_reset(struct mwl_softc *sc);
91 static int	mwl_init(struct mwl_softc *);
92 static void	mwl_parent(struct ieee80211com *);
93 static int	mwl_reset(struct ieee80211vap *, u_long);
94 static void	mwl_stop(struct mwl_softc *);
95 static void	mwl_start(struct mwl_softc *);
96 static int	mwl_transmit(struct ieee80211com *, struct mbuf *);
97 static int	mwl_raw_xmit(struct ieee80211_node *, struct mbuf *,
98 			const struct ieee80211_bpf_params *);
99 static int	mwl_media_change(if_t);
100 static void	mwl_watchdog(void *);
101 static int	mwl_ioctl(struct ieee80211com *, u_long, void *);
102 static void	mwl_radar_proc(void *, int);
103 static void	mwl_chanswitch_proc(void *, int);
104 static void	mwl_bawatchdog_proc(void *, int);
105 static int	mwl_key_alloc(struct ieee80211vap *,
106 			struct ieee80211_key *,
107 			ieee80211_keyix *, ieee80211_keyix *);
108 static int	mwl_key_delete(struct ieee80211vap *,
109 			const struct ieee80211_key *);
110 static int	mwl_key_set(struct ieee80211vap *,
111 			const struct ieee80211_key *);
112 static int	_mwl_key_set(struct ieee80211vap *,
113 			const struct ieee80211_key *,
114 			const uint8_t mac[IEEE80211_ADDR_LEN]);
115 static int	mwl_mode_init(struct mwl_softc *);
116 static void	mwl_update_mcast(struct ieee80211com *);
117 static void	mwl_update_promisc(struct ieee80211com *);
118 static void	mwl_updateslot(struct ieee80211com *);
119 static int	mwl_beacon_setup(struct ieee80211vap *);
120 static void	mwl_beacon_update(struct ieee80211vap *, int);
121 #ifdef MWL_HOST_PS_SUPPORT
122 static void	mwl_update_ps(struct ieee80211vap *, int);
123 static int	mwl_set_tim(struct ieee80211_node *, int);
124 #endif
125 static int	mwl_dma_setup(struct mwl_softc *);
126 static void	mwl_dma_cleanup(struct mwl_softc *);
127 static struct ieee80211_node *mwl_node_alloc(struct ieee80211vap *,
128 		    const uint8_t [IEEE80211_ADDR_LEN]);
129 static void	mwl_node_cleanup(struct ieee80211_node *);
130 static void	mwl_node_drain(struct ieee80211_node *);
131 static void	mwl_node_getsignal(const struct ieee80211_node *,
132 			int8_t *, int8_t *);
133 static void	mwl_node_getmimoinfo(const struct ieee80211_node *,
134 			struct ieee80211_mimo_info *);
135 static int	mwl_rxbuf_init(struct mwl_softc *, struct mwl_rxbuf *);
136 static void	mwl_rx_proc(void *, int);
137 static void	mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *, int);
138 static int	mwl_tx_setup(struct mwl_softc *, int, int);
139 static int	mwl_wme_update(struct ieee80211com *);
140 static void	mwl_tx_cleanupq(struct mwl_softc *, struct mwl_txq *);
141 static void	mwl_tx_cleanup(struct mwl_softc *);
142 static uint16_t	mwl_calcformat(uint8_t rate, const struct ieee80211_node *);
143 static int	mwl_tx_start(struct mwl_softc *, struct ieee80211_node *,
144 			     struct mwl_txbuf *, struct mbuf *);
145 static void	mwl_tx_proc(void *, int);
146 static int	mwl_chan_set(struct mwl_softc *, struct ieee80211_channel *);
147 static void	mwl_draintxq(struct mwl_softc *);
148 static void	mwl_cleartxq(struct mwl_softc *, struct ieee80211vap *);
149 static int	mwl_recv_action(struct ieee80211_node *,
150 			const struct ieee80211_frame *,
151 			const uint8_t *, const uint8_t *);
152 static int	mwl_addba_request(struct ieee80211_node *,
153 			struct ieee80211_tx_ampdu *, int dialogtoken,
154 			int baparamset, int batimeout);
155 static int	mwl_addba_response(struct ieee80211_node *,
156 			struct ieee80211_tx_ampdu *, int status,
157 			int baparamset, int batimeout);
158 static void	mwl_addba_stop(struct ieee80211_node *,
159 			struct ieee80211_tx_ampdu *);
160 static int	mwl_startrecv(struct mwl_softc *);
161 static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *,
162 			struct ieee80211_channel *);
163 static int	mwl_setapmode(struct ieee80211vap *, struct ieee80211_channel*);
164 static void	mwl_scan_start(struct ieee80211com *);
165 static void	mwl_scan_end(struct ieee80211com *);
166 static void	mwl_set_channel(struct ieee80211com *);
167 static int	mwl_peerstadb(struct ieee80211_node *,
168 			int aid, int staid, MWL_HAL_PEERINFO *pi);
169 static int	mwl_localstadb(struct ieee80211vap *);
170 static int	mwl_newstate(struct ieee80211vap *, enum ieee80211_state, int);
171 static int	allocstaid(struct mwl_softc *sc, int aid);
172 static void	delstaid(struct mwl_softc *sc, int staid);
173 static void	mwl_newassoc(struct ieee80211_node *, int);
174 static void	mwl_agestations(void *);
175 static int	mwl_setregdomain(struct ieee80211com *,
176 			struct ieee80211_regdomain *, int,
177 			struct ieee80211_channel []);
178 static void	mwl_getradiocaps(struct ieee80211com *, int, int *,
179 			struct ieee80211_channel []);
180 static int	mwl_getchannels(struct mwl_softc *);
181 
182 static void	mwl_sysctlattach(struct mwl_softc *);
183 static void	mwl_announce(struct mwl_softc *);
184 
185 SYSCTL_NODE(_hw, OID_AUTO, mwl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
186     "Marvell driver parameters");
187 
188 static	int mwl_rxdesc = MWL_RXDESC;		/* # rx desc's to allocate */
189 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdesc, CTLFLAG_RW, &mwl_rxdesc,
190 	    0, "rx descriptors allocated");
191 static	int mwl_rxbuf = MWL_RXBUF;		/* # rx buffers to allocate */
192 SYSCTL_INT(_hw_mwl, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &mwl_rxbuf,
193 	    0, "rx buffers allocated");
194 static	int mwl_txbuf = MWL_TXBUF;		/* # tx buffers to allocate */
195 SYSCTL_INT(_hw_mwl, OID_AUTO, txbuf, CTLFLAG_RWTUN, &mwl_txbuf,
196 	    0, "tx buffers allocated");
197 static	int mwl_txcoalesce = 8;		/* # tx packets to q before poking f/w*/
198 SYSCTL_INT(_hw_mwl, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &mwl_txcoalesce,
199 	    0, "tx buffers to send at once");
200 static	int mwl_rxquota = MWL_RXBUF;		/* # max buffers to process */
201 SYSCTL_INT(_hw_mwl, OID_AUTO, rxquota, CTLFLAG_RWTUN, &mwl_rxquota,
202 	    0, "max rx buffers to process per interrupt");
203 static	int mwl_rxdmalow = 3;			/* # min buffers for wakeup */
204 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdmalow, CTLFLAG_RWTUN, &mwl_rxdmalow,
205 	    0, "min free rx buffers before restarting traffic");
206 
207 #ifdef MWL_DEBUG
208 static	int mwl_debug = 0;
209 SYSCTL_INT(_hw_mwl, OID_AUTO, debug, CTLFLAG_RWTUN, &mwl_debug,
210 	    0, "control debugging printfs");
211 enum {
212 	MWL_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
213 	MWL_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
214 	MWL_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
215 	MWL_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
216 	MWL_DEBUG_RESET		= 0x00000010,	/* reset processing */
217 	MWL_DEBUG_BEACON 	= 0x00000020,	/* beacon handling */
218 	MWL_DEBUG_INTR		= 0x00000040,	/* ISR */
219 	MWL_DEBUG_TX_PROC	= 0x00000080,	/* tx ISR proc */
220 	MWL_DEBUG_RX_PROC	= 0x00000100,	/* rx ISR proc */
221 	MWL_DEBUG_KEYCACHE	= 0x00000200,	/* key cache management */
222 	MWL_DEBUG_STATE		= 0x00000400,	/* 802.11 state transitions */
223 	MWL_DEBUG_NODE		= 0x00000800,	/* node management */
224 	MWL_DEBUG_RECV_ALL	= 0x00001000,	/* trace all frames (beacons) */
225 	MWL_DEBUG_TSO		= 0x00002000,	/* TSO processing */
226 	MWL_DEBUG_AMPDU		= 0x00004000,	/* BA stream handling */
227 	MWL_DEBUG_ANY		= 0xffffffff
228 };
229 #define	IS_BEACON(wh) \
230     ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) == \
231 	 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON))
232 #define	IFF_DUMPPKTS_RECV(sc, wh) \
233     ((sc->sc_debug & MWL_DEBUG_RECV) && \
234       ((sc->sc_debug & MWL_DEBUG_RECV_ALL) || !IS_BEACON(wh)))
235 #define	IFF_DUMPPKTS_XMIT(sc) \
236 	(sc->sc_debug & MWL_DEBUG_XMIT)
237 
238 #define	DPRINTF(sc, m, fmt, ...) do {				\
239 	if (sc->sc_debug & (m))					\
240 		printf(fmt, __VA_ARGS__);			\
241 } while (0)
242 #define	KEYPRINTF(sc, hk, mac) do {				\
243 	if (sc->sc_debug & MWL_DEBUG_KEYCACHE)			\
244 		mwl_keyprint(sc, __func__, hk, mac);		\
245 } while (0)
246 static	void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix);
247 static	void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix);
248 #else
249 #define	IFF_DUMPPKTS_RECV(sc, wh)	0
250 #define	IFF_DUMPPKTS_XMIT(sc)		0
251 #define	DPRINTF(sc, m, fmt, ...)	do { (void )sc; } while (0)
252 #define	KEYPRINTF(sc, k, mac)		do { (void )sc; } while (0)
253 #endif
254 
255 static MALLOC_DEFINE(M_MWLDEV, "mwldev", "mwl driver dma buffers");
256 
257 /*
258  * Each packet has fixed front matter: a 2-byte length
259  * of the payload, followed by a 4-address 802.11 header
260  * (regardless of the actual header and always w/o any
261  * QoS header).  The payload then follows.
262  */
263 struct mwltxrec {
264 	uint16_t fwlen;
265 	struct ieee80211_frame_addr4 wh;
266 } __packed;
267 
268 /*
269  * Read/Write shorthands for accesses to BAR 0.  Note
270  * that all BAR 1 operations are done in the "hal" and
271  * there should be no reference to them here.
272  */
273 #ifdef MWL_DEBUG
274 static __inline uint32_t
275 RD4(struct mwl_softc *sc, bus_size_t off)
276 {
277 	return bus_space_read_4(sc->sc_io0t, sc->sc_io0h, off);
278 }
279 #endif
280 
281 static __inline void
282 WR4(struct mwl_softc *sc, bus_size_t off, uint32_t val)
283 {
284 	bus_space_write_4(sc->sc_io0t, sc->sc_io0h, off, val);
285 }
286 
287 int
288 mwl_attach(uint16_t devid, struct mwl_softc *sc)
289 {
290 	struct ieee80211com *ic = &sc->sc_ic;
291 	struct mwl_hal *mh;
292 	int error = 0;
293 
294 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
295 
296 	/*
297 	 * Setup the RX free list lock early, so it can be consistently
298 	 * removed.
299 	 */
300 	MWL_RXFREE_INIT(sc);
301 
302 	mh = mwl_hal_attach(sc->sc_dev, devid,
303 	    sc->sc_io1h, sc->sc_io1t, sc->sc_dmat);
304 	if (mh == NULL) {
305 		device_printf(sc->sc_dev, "unable to attach HAL\n");
306 		error = EIO;
307 		goto bad;
308 	}
309 	sc->sc_mh = mh;
310 	/*
311 	 * Load firmware so we can get setup.  We arbitrarily
312 	 * pick station firmware; we'll re-load firmware as
313 	 * needed so setting up the wrong mode isn't a big deal.
314 	 */
315 	if (mwl_hal_fwload(mh, NULL) != 0) {
316 		device_printf(sc->sc_dev, "unable to setup builtin firmware\n");
317 		error = EIO;
318 		goto bad1;
319 	}
320 	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
321 		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
322 		error = EIO;
323 		goto bad1;
324 	}
325 	error = mwl_getchannels(sc);
326 	if (error != 0)
327 		goto bad1;
328 
329 	sc->sc_txantenna = 0;		/* h/w default */
330 	sc->sc_rxantenna = 0;		/* h/w default */
331 	sc->sc_invalid = 0;		/* ready to go, enable int handling */
332 	sc->sc_ageinterval = MWL_AGEINTERVAL;
333 
334 	/*
335 	 * Allocate tx+rx descriptors and populate the lists.
336 	 * We immediately push the information to the firmware
337 	 * as otherwise it gets upset.
338 	 */
339 	error = mwl_dma_setup(sc);
340 	if (error != 0) {
341 		device_printf(sc->sc_dev, "failed to setup descriptors: %d\n",
342 		    error);
343 		goto bad1;
344 	}
345 	error = mwl_setupdma(sc);	/* push to firmware */
346 	if (error != 0)			/* NB: mwl_setupdma prints msg */
347 		goto bad1;
348 
349 	callout_init(&sc->sc_timer, 1);
350 	callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
351 	mbufq_init(&sc->sc_snd, ifqmaxlen);
352 
353 	sc->sc_tq = taskqueue_create("mwl_taskq", M_NOWAIT,
354 		taskqueue_thread_enqueue, &sc->sc_tq);
355 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
356 		"%s taskq", device_get_nameunit(sc->sc_dev));
357 
358 	NET_TASK_INIT(&sc->sc_rxtask, 0, mwl_rx_proc, sc);
359 	TASK_INIT(&sc->sc_radartask, 0, mwl_radar_proc, sc);
360 	TASK_INIT(&sc->sc_chanswitchtask, 0, mwl_chanswitch_proc, sc);
361 	TASK_INIT(&sc->sc_bawatchdogtask, 0, mwl_bawatchdog_proc, sc);
362 
363 	/* NB: insure BK queue is the lowest priority h/w queue */
364 	if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) {
365 		device_printf(sc->sc_dev,
366 		    "unable to setup xmit queue for %s traffic!\n",
367 		     ieee80211_wme_acnames[WME_AC_BK]);
368 		error = EIO;
369 		goto bad2;
370 	}
371 	if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) ||
372 	    !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) ||
373 	    !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) {
374 		/*
375 		 * Not enough hardware tx queues to properly do WME;
376 		 * just punt and assign them all to the same h/w queue.
377 		 * We could do a better job of this if, for example,
378 		 * we allocate queues when we switch from station to
379 		 * AP mode.
380 		 */
381 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
382 			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
383 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
384 			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
385 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
386 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
387 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
388 	}
389 	TASK_INIT(&sc->sc_txtask, 0, mwl_tx_proc, sc);
390 
391 	ic->ic_softc = sc;
392 	ic->ic_name = device_get_nameunit(sc->sc_dev);
393 	/* XXX not right but it's not used anywhere important */
394 	ic->ic_phytype = IEEE80211_T_OFDM;
395 	ic->ic_opmode = IEEE80211_M_STA;
396 	ic->ic_caps =
397 		  IEEE80211_C_STA		/* station mode supported */
398 		| IEEE80211_C_HOSTAP		/* hostap mode */
399 		| IEEE80211_C_MONITOR		/* monitor mode */
400 #if 0
401 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
402 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
403 #endif
404 		| IEEE80211_C_MBSS		/* mesh point link mode */
405 		| IEEE80211_C_WDS		/* WDS supported */
406 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
407 		| IEEE80211_C_SHSLOT		/* short slot time supported */
408 		| IEEE80211_C_WME		/* WME/WMM supported */
409 		| IEEE80211_C_BURST		/* xmit bursting supported */
410 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
411 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
412 		| IEEE80211_C_TXFRAG		/* handle tx frags */
413 		| IEEE80211_C_TXPMGT		/* capable of txpow mgt */
414 		| IEEE80211_C_DFS		/* DFS supported */
415 		;
416 
417 	ic->ic_htcaps =
418 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
419 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
420 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
421 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
422 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
423 #if MWL_AGGR_SIZE == 7935
424 		| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
425 #else
426 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
427 #endif
428 #if 0
429 		| IEEE80211_HTCAP_PSMP		/* PSMP supported */
430 		| IEEE80211_HTCAP_40INTOLERANT	/* 40MHz intolerant */
431 #endif
432 		/* s/w capabilities */
433 		| IEEE80211_HTC_HT		/* HT operation */
434 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
435 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
436 		| IEEE80211_HTC_SMPS		/* SMPS available */
437 		;
438 
439 	/*
440 	 * Mark h/w crypto support.
441 	 * XXX no way to query h/w support.
442 	 */
443 	ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP
444 			  |  IEEE80211_CRYPTO_AES_CCM
445 			  |  IEEE80211_CRYPTO_TKIP
446 			  |  IEEE80211_CRYPTO_TKIPMIC
447 			  ;
448 	/*
449 	 * Transmit requires space in the packet for a special
450 	 * format transmit record and optional padding between
451 	 * this record and the payload.  Ask the net80211 layer
452 	 * to arrange this when encapsulating packets so we can
453 	 * add it efficiently.
454 	 */
455 	ic->ic_headroom = sizeof(struct mwltxrec) -
456 		sizeof(struct ieee80211_frame);
457 
458 	IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->sc_hwspecs.macAddr);
459 
460 	/* call MI attach routine. */
461 	ieee80211_ifattach(ic);
462 	ic->ic_setregdomain = mwl_setregdomain;
463 	ic->ic_getradiocaps = mwl_getradiocaps;
464 	/* override default methods */
465 	ic->ic_raw_xmit = mwl_raw_xmit;
466 	ic->ic_newassoc = mwl_newassoc;
467 	ic->ic_updateslot = mwl_updateslot;
468 	ic->ic_update_mcast = mwl_update_mcast;
469 	ic->ic_update_promisc = mwl_update_promisc;
470 	ic->ic_wme.wme_update = mwl_wme_update;
471 	ic->ic_transmit = mwl_transmit;
472 	ic->ic_ioctl = mwl_ioctl;
473 	ic->ic_parent = mwl_parent;
474 
475 	ic->ic_node_alloc = mwl_node_alloc;
476 	sc->sc_node_cleanup = ic->ic_node_cleanup;
477 	ic->ic_node_cleanup = mwl_node_cleanup;
478 	sc->sc_node_drain = ic->ic_node_drain;
479 	ic->ic_node_drain = mwl_node_drain;
480 	ic->ic_node_getsignal = mwl_node_getsignal;
481 	ic->ic_node_getmimoinfo = mwl_node_getmimoinfo;
482 
483 	ic->ic_scan_start = mwl_scan_start;
484 	ic->ic_scan_end = mwl_scan_end;
485 	ic->ic_set_channel = mwl_set_channel;
486 
487 	sc->sc_recv_action = ic->ic_recv_action;
488 	ic->ic_recv_action = mwl_recv_action;
489 	sc->sc_addba_request = ic->ic_addba_request;
490 	ic->ic_addba_request = mwl_addba_request;
491 	sc->sc_addba_response = ic->ic_addba_response;
492 	ic->ic_addba_response = mwl_addba_response;
493 	sc->sc_addba_stop = ic->ic_addba_stop;
494 	ic->ic_addba_stop = mwl_addba_stop;
495 
496 	ic->ic_vap_create = mwl_vap_create;
497 	ic->ic_vap_delete = mwl_vap_delete;
498 
499 	ieee80211_radiotap_attach(ic,
500 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
501 		MWL_TX_RADIOTAP_PRESENT,
502 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
503 		MWL_RX_RADIOTAP_PRESENT);
504 	/*
505 	 * Setup dynamic sysctl's now that country code and
506 	 * regdomain are available from the hal.
507 	 */
508 	mwl_sysctlattach(sc);
509 
510 	if (bootverbose)
511 		ieee80211_announce(ic);
512 	mwl_announce(sc);
513 	return 0;
514 bad2:
515 	mwl_dma_cleanup(sc);
516 bad1:
517 	mwl_hal_detach(mh);
518 bad:
519 	MWL_RXFREE_DESTROY(sc);
520 	sc->sc_invalid = 1;
521 	return error;
522 }
523 
524 int
525 mwl_detach(struct mwl_softc *sc)
526 {
527 	struct ieee80211com *ic = &sc->sc_ic;
528 
529 	MWL_LOCK(sc);
530 	mwl_stop(sc);
531 	MWL_UNLOCK(sc);
532 	/*
533 	 * NB: the order of these is important:
534 	 * o call the 802.11 layer before detaching the hal to
535 	 *   insure callbacks into the driver to delete global
536 	 *   key cache entries can be handled
537 	 * o reclaim the tx queue data structures after calling
538 	 *   the 802.11 layer as we'll get called back to reclaim
539 	 *   node state and potentially want to use them
540 	 * o to cleanup the tx queues the hal is called, so detach
541 	 *   it last
542 	 * Other than that, it's straightforward...
543 	 */
544 	ieee80211_ifdetach(ic);
545 	callout_drain(&sc->sc_watchdog);
546 	mwl_dma_cleanup(sc);
547 	MWL_RXFREE_DESTROY(sc);
548 	mwl_tx_cleanup(sc);
549 	mwl_hal_detach(sc->sc_mh);
550 	mbufq_drain(&sc->sc_snd);
551 
552 	return 0;
553 }
554 
555 /*
556  * MAC address handling for multiple BSS on the same radio.
557  * The first vap uses the MAC address from the EEPROM.  For
558  * subsequent vap's we set the U/L bit (bit 1) in the MAC
559  * address and use the next six bits as an index.
560  */
561 static void
562 assign_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
563 {
564 	int i;
565 
566 	if (clone && mwl_hal_ismbsscapable(sc->sc_mh)) {
567 		/* NB: we only do this if h/w supports multiple bssid */
568 		for (i = 0; i < 32; i++)
569 			if ((sc->sc_bssidmask & (1<<i)) == 0)
570 				break;
571 		if (i != 0)
572 			mac[0] |= (i << 2)|0x2;
573 	} else
574 		i = 0;
575 	sc->sc_bssidmask |= 1<<i;
576 	if (i == 0)
577 		sc->sc_nbssid0++;
578 }
579 
580 static void
581 reclaim_address(struct mwl_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
582 {
583 	int i = mac[0] >> 2;
584 	if (i != 0 || --sc->sc_nbssid0 == 0)
585 		sc->sc_bssidmask &= ~(1<<i);
586 }
587 
588 static struct ieee80211vap *
589 mwl_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
590     enum ieee80211_opmode opmode, int flags,
591     const uint8_t bssid[IEEE80211_ADDR_LEN],
592     const uint8_t mac0[IEEE80211_ADDR_LEN])
593 {
594 	struct mwl_softc *sc = ic->ic_softc;
595 	struct mwl_hal *mh = sc->sc_mh;
596 	struct ieee80211vap *vap, *apvap;
597 	struct mwl_hal_vap *hvap;
598 	struct mwl_vap *mvp;
599 	uint8_t mac[IEEE80211_ADDR_LEN];
600 
601 	IEEE80211_ADDR_COPY(mac, mac0);
602 	switch (opmode) {
603 	case IEEE80211_M_HOSTAP:
604 	case IEEE80211_M_MBSS:
605 		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
606 			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
607 		hvap = mwl_hal_newvap(mh, MWL_HAL_AP, mac);
608 		if (hvap == NULL) {
609 			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
610 				reclaim_address(sc, mac);
611 			return NULL;
612 		}
613 		break;
614 	case IEEE80211_M_STA:
615 		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
616 			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
617 		hvap = mwl_hal_newvap(mh, MWL_HAL_STA, mac);
618 		if (hvap == NULL) {
619 			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
620 				reclaim_address(sc, mac);
621 			return NULL;
622 		}
623 		/* no h/w beacon miss support; always use s/w */
624 		flags |= IEEE80211_CLONE_NOBEACONS;
625 		break;
626 	case IEEE80211_M_WDS:
627 		hvap = NULL;		/* NB: we use associated AP vap */
628 		if (sc->sc_napvaps == 0)
629 			return NULL;	/* no existing AP vap */
630 		break;
631 	case IEEE80211_M_MONITOR:
632 		hvap = NULL;
633 		break;
634 	case IEEE80211_M_IBSS:
635 	case IEEE80211_M_AHDEMO:
636 	default:
637 		return NULL;
638 	}
639 
640 	mvp = malloc(sizeof(struct mwl_vap), M_80211_VAP, M_WAITOK | M_ZERO);
641 	mvp->mv_hvap = hvap;
642 	if (opmode == IEEE80211_M_WDS) {
643 		/*
644 		 * WDS vaps must have an associated AP vap; find one.
645 		 * XXX not right.
646 		 */
647 		TAILQ_FOREACH(apvap, &ic->ic_vaps, iv_next)
648 			if (apvap->iv_opmode == IEEE80211_M_HOSTAP) {
649 				mvp->mv_ap_hvap = MWL_VAP(apvap)->mv_hvap;
650 				break;
651 			}
652 		KASSERT(mvp->mv_ap_hvap != NULL, ("no ap vap"));
653 	}
654 	vap = &mvp->mv_vap;
655 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
656 	/* override with driver methods */
657 	mvp->mv_newstate = vap->iv_newstate;
658 	vap->iv_newstate = mwl_newstate;
659 	vap->iv_max_keyix = 0;	/* XXX */
660 	vap->iv_key_alloc = mwl_key_alloc;
661 	vap->iv_key_delete = mwl_key_delete;
662 	vap->iv_key_set = mwl_key_set;
663 #ifdef MWL_HOST_PS_SUPPORT
664 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
665 		vap->iv_update_ps = mwl_update_ps;
666 		mvp->mv_set_tim = vap->iv_set_tim;
667 		vap->iv_set_tim = mwl_set_tim;
668 	}
669 #endif
670 	vap->iv_reset = mwl_reset;
671 	vap->iv_update_beacon = mwl_beacon_update;
672 
673 	/* override max aid so sta's cannot assoc when we're out of sta id's */
674 	vap->iv_max_aid = MWL_MAXSTAID;
675 	/* override default A-MPDU rx parameters */
676 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
677 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4;
678 
679 	/* complete setup */
680 	ieee80211_vap_attach(vap, mwl_media_change, ieee80211_media_status,
681 	    mac);
682 
683 	switch (vap->iv_opmode) {
684 	case IEEE80211_M_HOSTAP:
685 	case IEEE80211_M_MBSS:
686 	case IEEE80211_M_STA:
687 		/*
688 		 * Setup sta db entry for local address.
689 		 */
690 		mwl_localstadb(vap);
691 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
692 		    vap->iv_opmode == IEEE80211_M_MBSS)
693 			sc->sc_napvaps++;
694 		else
695 			sc->sc_nstavaps++;
696 		break;
697 	case IEEE80211_M_WDS:
698 		sc->sc_nwdsvaps++;
699 		break;
700 	default:
701 		break;
702 	}
703 	/*
704 	 * Setup overall operating mode.
705 	 */
706 	if (sc->sc_napvaps)
707 		ic->ic_opmode = IEEE80211_M_HOSTAP;
708 	else if (sc->sc_nstavaps)
709 		ic->ic_opmode = IEEE80211_M_STA;
710 	else
711 		ic->ic_opmode = opmode;
712 
713 	return vap;
714 }
715 
716 static void
717 mwl_vap_delete(struct ieee80211vap *vap)
718 {
719 	struct mwl_vap *mvp = MWL_VAP(vap);
720 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
721 	struct mwl_hal *mh = sc->sc_mh;
722 	struct mwl_hal_vap *hvap = mvp->mv_hvap;
723 	enum ieee80211_opmode opmode = vap->iv_opmode;
724 
725 	/* XXX disallow ap vap delete if WDS still present */
726 	if (sc->sc_running) {
727 		/* quiesce h/w while we remove the vap */
728 		mwl_hal_intrset(mh, 0);		/* disable interrupts */
729 	}
730 	ieee80211_vap_detach(vap);
731 	switch (opmode) {
732 	case IEEE80211_M_HOSTAP:
733 	case IEEE80211_M_MBSS:
734 	case IEEE80211_M_STA:
735 		KASSERT(hvap != NULL, ("no hal vap handle"));
736 		(void) mwl_hal_delstation(hvap, vap->iv_myaddr);
737 		mwl_hal_delvap(hvap);
738 		if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS)
739 			sc->sc_napvaps--;
740 		else
741 			sc->sc_nstavaps--;
742 		/* XXX don't do it for IEEE80211_CLONE_MACADDR */
743 		reclaim_address(sc, vap->iv_myaddr);
744 		break;
745 	case IEEE80211_M_WDS:
746 		sc->sc_nwdsvaps--;
747 		break;
748 	default:
749 		break;
750 	}
751 	mwl_cleartxq(sc, vap);
752 	free(mvp, M_80211_VAP);
753 	if (sc->sc_running)
754 		mwl_hal_intrset(mh, sc->sc_imask);
755 }
756 
757 void
758 mwl_suspend(struct mwl_softc *sc)
759 {
760 
761 	MWL_LOCK(sc);
762 	mwl_stop(sc);
763 	MWL_UNLOCK(sc);
764 }
765 
766 void
767 mwl_resume(struct mwl_softc *sc)
768 {
769 	int error = EDOOFUS;
770 
771 	MWL_LOCK(sc);
772 	if (sc->sc_ic.ic_nrunning > 0)
773 		error = mwl_init(sc);
774 	MWL_UNLOCK(sc);
775 
776 	if (error == 0)
777 		ieee80211_start_all(&sc->sc_ic);	/* start all vap's */
778 }
779 
780 void
781 mwl_shutdown(void *arg)
782 {
783 	struct mwl_softc *sc = arg;
784 
785 	MWL_LOCK(sc);
786 	mwl_stop(sc);
787 	MWL_UNLOCK(sc);
788 }
789 
790 /*
791  * Interrupt handler.  Most of the actual processing is deferred.
792  */
793 void
794 mwl_intr(void *arg)
795 {
796 	struct mwl_softc *sc = arg;
797 	struct mwl_hal *mh = sc->sc_mh;
798 	uint32_t status;
799 
800 	if (sc->sc_invalid) {
801 		/*
802 		 * The hardware is not ready/present, don't touch anything.
803 		 * Note this can happen early on if the IRQ is shared.
804 		 */
805 		DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
806 		return;
807 	}
808 	/*
809 	 * Figure out the reason(s) for the interrupt.
810 	 */
811 	mwl_hal_getisr(mh, &status);		/* NB: clears ISR too */
812 	if (status == 0)			/* must be a shared irq */
813 		return;
814 
815 	DPRINTF(sc, MWL_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n",
816 	    __func__, status, sc->sc_imask);
817 	if (status & MACREG_A2HRIC_BIT_RX_RDY)
818 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
819 	if (status & MACREG_A2HRIC_BIT_TX_DONE)
820 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
821 	if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG)
822 		taskqueue_enqueue(sc->sc_tq, &sc->sc_bawatchdogtask);
823 	if (status & MACREG_A2HRIC_BIT_OPC_DONE)
824 		mwl_hal_cmddone(mh);
825 	if (status & MACREG_A2HRIC_BIT_MAC_EVENT) {
826 		;
827 	}
828 	if (status & MACREG_A2HRIC_BIT_ICV_ERROR) {
829 		/* TKIP ICV error */
830 		sc->sc_stats.mst_rx_badtkipicv++;
831 	}
832 	if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) {
833 		/* 11n aggregation queue is empty, re-fill */
834 		;
835 	}
836 	if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) {
837 		;
838 	}
839 	if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) {
840 		/* radar detected, process event */
841 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
842 	}
843 	if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) {
844 		/* DFS channel switch */
845 		taskqueue_enqueue(sc->sc_tq, &sc->sc_chanswitchtask);
846 	}
847 }
848 
849 static void
850 mwl_radar_proc(void *arg, int pending)
851 {
852 	struct mwl_softc *sc = arg;
853 	struct ieee80211com *ic = &sc->sc_ic;
854 
855 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: radar detected, pending %u\n",
856 	    __func__, pending);
857 
858 	sc->sc_stats.mst_radardetect++;
859 	/* XXX stop h/w BA streams? */
860 
861 	IEEE80211_LOCK(ic);
862 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
863 	IEEE80211_UNLOCK(ic);
864 }
865 
866 static void
867 mwl_chanswitch_proc(void *arg, int pending)
868 {
869 	struct mwl_softc *sc = arg;
870 	struct ieee80211com *ic = &sc->sc_ic;
871 
872 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: channel switch notice, pending %u\n",
873 	    __func__, pending);
874 
875 	IEEE80211_LOCK(ic);
876 	sc->sc_csapending = 0;
877 	ieee80211_csa_completeswitch(ic);
878 	IEEE80211_UNLOCK(ic);
879 }
880 
881 static void
882 mwl_bawatchdog(const MWL_HAL_BASTREAM *sp)
883 {
884 	struct ieee80211_node *ni = sp->data[0];
885 
886 	/* send DELBA and drop the stream */
887 	ieee80211_ampdu_stop(ni, sp->data[1], IEEE80211_REASON_UNSPECIFIED);
888 }
889 
890 static void
891 mwl_bawatchdog_proc(void *arg, int pending)
892 {
893 	struct mwl_softc *sc = arg;
894 	struct mwl_hal *mh = sc->sc_mh;
895 	const MWL_HAL_BASTREAM *sp;
896 	uint8_t bitmap, n;
897 
898 	sc->sc_stats.mst_bawatchdog++;
899 
900 	if (mwl_hal_getwatchdogbitmap(mh, &bitmap) != 0) {
901 		DPRINTF(sc, MWL_DEBUG_AMPDU,
902 		    "%s: could not get bitmap\n", __func__);
903 		sc->sc_stats.mst_bawatchdog_failed++;
904 		return;
905 	}
906 	DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bitmap 0x%x\n", __func__, bitmap);
907 	if (bitmap == 0xff) {
908 		n = 0;
909 		/* disable all ba streams */
910 		for (bitmap = 0; bitmap < 8; bitmap++) {
911 			sp = mwl_hal_bastream_lookup(mh, bitmap);
912 			if (sp != NULL) {
913 				mwl_bawatchdog(sp);
914 				n++;
915 			}
916 		}
917 		if (n == 0) {
918 			DPRINTF(sc, MWL_DEBUG_AMPDU,
919 			    "%s: no BA streams found\n", __func__);
920 			sc->sc_stats.mst_bawatchdog_empty++;
921 		}
922 	} else if (bitmap != 0xaa) {
923 		/* disable a single ba stream */
924 		sp = mwl_hal_bastream_lookup(mh, bitmap);
925 		if (sp != NULL) {
926 			mwl_bawatchdog(sp);
927 		} else {
928 			DPRINTF(sc, MWL_DEBUG_AMPDU,
929 			    "%s: no BA stream %d\n", __func__, bitmap);
930 			sc->sc_stats.mst_bawatchdog_notfound++;
931 		}
932 	}
933 }
934 
935 /*
936  * Convert net80211 channel to a HAL channel.
937  */
938 static void
939 mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
940 {
941 	hc->channel = chan->ic_ieee;
942 
943 	*(uint32_t *)&hc->channelFlags = 0;
944 	if (IEEE80211_IS_CHAN_2GHZ(chan))
945 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ;
946 	else if (IEEE80211_IS_CHAN_5GHZ(chan))
947 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ;
948 	if (IEEE80211_IS_CHAN_HT40(chan)) {
949 		hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH;
950 		if (IEEE80211_IS_CHAN_HT40U(chan))
951 			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_ABOVE_CTRL_CH;
952 		else
953 			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_BELOW_CTRL_CH;
954 	} else
955 		hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH;
956 	/* XXX 10MHz channels */
957 }
958 
959 /*
960  * Inform firmware of our tx/rx dma setup.  The BAR 0
961  * writes below are for compatibility with older firmware.
962  * For current firmware we send this information with a
963  * cmd block via mwl_hal_sethwdma.
964  */
965 static int
966 mwl_setupdma(struct mwl_softc *sc)
967 {
968 	int error, i;
969 
970 	sc->sc_hwdma.rxDescRead = sc->sc_rxdma.dd_desc_paddr;
971 	WR4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead);
972 	WR4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead);
973 
974 	for (i = 0; i < MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; i++) {
975 		struct mwl_txq *txq = &sc->sc_txq[i];
976 		sc->sc_hwdma.wcbBase[i] = txq->dma.dd_desc_paddr;
977 		WR4(sc, sc->sc_hwspecs.wcbBase[i], sc->sc_hwdma.wcbBase[i]);
978 	}
979 	sc->sc_hwdma.maxNumTxWcb = mwl_txbuf;
980 	sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES;
981 
982 	error = mwl_hal_sethwdma(sc->sc_mh, &sc->sc_hwdma);
983 	if (error != 0) {
984 		device_printf(sc->sc_dev,
985 		    "unable to setup tx/rx dma; hal status %u\n", error);
986 		/* XXX */
987 	}
988 	return error;
989 }
990 
991 /*
992  * Inform firmware of tx rate parameters.
993  * Called after a channel change.
994  */
995 static int
996 mwl_setcurchanrates(struct mwl_softc *sc)
997 {
998 	struct ieee80211com *ic = &sc->sc_ic;
999 	const struct ieee80211_rateset *rs;
1000 	MWL_HAL_TXRATE rates;
1001 
1002 	memset(&rates, 0, sizeof(rates));
1003 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1004 	/* rate used to send management frames */
1005 	rates.MgtRate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
1006 	/* rate used to send multicast frames */
1007 	rates.McastRate = rates.MgtRate;
1008 
1009 	return mwl_hal_settxrate_auto(sc->sc_mh, &rates);
1010 }
1011 
1012 /*
1013  * Inform firmware of tx rate parameters.  Called whenever
1014  * user-settable params change and after a channel change.
1015  */
1016 static int
1017 mwl_setrates(struct ieee80211vap *vap)
1018 {
1019 	struct mwl_vap *mvp = MWL_VAP(vap);
1020 	struct ieee80211_node *ni = vap->iv_bss;
1021 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1022 	MWL_HAL_TXRATE rates;
1023 
1024 	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1025 
1026 	/*
1027 	 * Update the h/w rate map.
1028 	 * NB: 0x80 for MCS is passed through unchanged
1029 	 */
1030 	memset(&rates, 0, sizeof(rates));
1031 	/* rate used to send management frames */
1032 	rates.MgtRate = tp->mgmtrate;
1033 	/* rate used to send multicast frames */
1034 	rates.McastRate = tp->mcastrate;
1035 
1036 	/* while here calculate EAPOL fixed rate cookie */
1037 	mvp->mv_eapolformat = htole16(mwl_calcformat(rates.MgtRate, ni));
1038 
1039 	return mwl_hal_settxrate(mvp->mv_hvap,
1040 	    tp->ucastrate != IEEE80211_FIXED_RATE_NONE ?
1041 		RATE_FIXED : RATE_AUTO, &rates);
1042 }
1043 
1044 /*
1045  * Setup a fixed xmit rate cookie for EAPOL frames.
1046  */
1047 static void
1048 mwl_seteapolformat(struct ieee80211vap *vap)
1049 {
1050 	struct mwl_vap *mvp = MWL_VAP(vap);
1051 	struct ieee80211_node *ni = vap->iv_bss;
1052 	enum ieee80211_phymode mode;
1053 	uint8_t rate;
1054 
1055 	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1056 
1057 	mode = ieee80211_chan2mode(ni->ni_chan);
1058 	/*
1059 	 * Use legacy rates when operating a mixed HT+non-HT bss.
1060 	 * NB: this may violate POLA for sta and wds vap's.
1061 	 */
1062 	if (mode == IEEE80211_MODE_11NA &&
1063 	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1064 		rate = vap->iv_txparms[IEEE80211_MODE_11A].mgmtrate;
1065 	else if (mode == IEEE80211_MODE_11NG &&
1066 	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1067 		rate = vap->iv_txparms[IEEE80211_MODE_11G].mgmtrate;
1068 	else
1069 		rate = vap->iv_txparms[mode].mgmtrate;
1070 
1071 	mvp->mv_eapolformat = htole16(mwl_calcformat(rate, ni));
1072 }
1073 
1074 /*
1075  * Map SKU+country code to region code for radar bin'ing.
1076  */
1077 static int
1078 mwl_map2regioncode(const struct ieee80211_regdomain *rd)
1079 {
1080 	switch (rd->regdomain) {
1081 	case SKU_FCC:
1082 	case SKU_FCC3:
1083 		return DOMAIN_CODE_FCC;
1084 	case SKU_CA:
1085 		return DOMAIN_CODE_IC;
1086 	case SKU_ETSI:
1087 	case SKU_ETSI2:
1088 	case SKU_ETSI3:
1089 		if (rd->country == CTRY_SPAIN)
1090 			return DOMAIN_CODE_SPAIN;
1091 		if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2)
1092 			return DOMAIN_CODE_FRANCE;
1093 		/* XXX force 1.3.1 radar type */
1094 		return DOMAIN_CODE_ETSI_131;
1095 	case SKU_JAPAN:
1096 		return DOMAIN_CODE_MKK;
1097 	case SKU_ROW:
1098 		return DOMAIN_CODE_DGT;	/* Taiwan */
1099 	case SKU_APAC:
1100 	case SKU_APAC2:
1101 	case SKU_APAC3:
1102 		return DOMAIN_CODE_AUS;	/* Australia */
1103 	}
1104 	/* XXX KOREA? */
1105 	return DOMAIN_CODE_FCC;			/* XXX? */
1106 }
1107 
1108 static int
1109 mwl_hal_reset(struct mwl_softc *sc)
1110 {
1111 	struct ieee80211com *ic = &sc->sc_ic;
1112 	struct mwl_hal *mh = sc->sc_mh;
1113 
1114 	mwl_hal_setantenna(mh, WL_ANTENNATYPE_RX, sc->sc_rxantenna);
1115 	mwl_hal_setantenna(mh, WL_ANTENNATYPE_TX, sc->sc_txantenna);
1116 	mwl_hal_setradio(mh, 1, WL_AUTO_PREAMBLE);
1117 	mwl_hal_setwmm(sc->sc_mh, (ic->ic_flags & IEEE80211_F_WME) != 0);
1118 	mwl_chan_set(sc, ic->ic_curchan);
1119 	/* NB: RF/RA performance tuned for indoor mode */
1120 	mwl_hal_setrateadaptmode(mh, 0);
1121 	mwl_hal_setoptimizationlevel(mh,
1122 	    (ic->ic_flags & IEEE80211_F_BURST) != 0);
1123 
1124 	mwl_hal_setregioncode(mh, mwl_map2regioncode(&ic->ic_regdomain));
1125 
1126 	mwl_hal_setaggampduratemode(mh, 1, 80);		/* XXX */
1127 	mwl_hal_setcfend(mh, 0);			/* XXX */
1128 
1129 	return 1;
1130 }
1131 
1132 static int
1133 mwl_init(struct mwl_softc *sc)
1134 {
1135 	struct mwl_hal *mh = sc->sc_mh;
1136 	int error = 0;
1137 
1138 	MWL_LOCK_ASSERT(sc);
1139 
1140 	/*
1141 	 * Stop anything previously setup.  This is safe
1142 	 * whether this is the first time through or not.
1143 	 */
1144 	mwl_stop(sc);
1145 
1146 	/*
1147 	 * Push vap-independent state to the firmware.
1148 	 */
1149 	if (!mwl_hal_reset(sc)) {
1150 		device_printf(sc->sc_dev, "unable to reset hardware\n");
1151 		return EIO;
1152 	}
1153 
1154 	/*
1155 	 * Setup recv (once); transmit is already good to go.
1156 	 */
1157 	error = mwl_startrecv(sc);
1158 	if (error != 0) {
1159 		device_printf(sc->sc_dev, "unable to start recv logic\n");
1160 		return error;
1161 	}
1162 
1163 	/*
1164 	 * Enable interrupts.
1165 	 */
1166 	sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY
1167 		     | MACREG_A2HRIC_BIT_TX_DONE
1168 		     | MACREG_A2HRIC_BIT_OPC_DONE
1169 #if 0
1170 		     | MACREG_A2HRIC_BIT_MAC_EVENT
1171 #endif
1172 		     | MACREG_A2HRIC_BIT_ICV_ERROR
1173 		     | MACREG_A2HRIC_BIT_RADAR_DETECT
1174 		     | MACREG_A2HRIC_BIT_CHAN_SWITCH
1175 #if 0
1176 		     | MACREG_A2HRIC_BIT_QUEUE_EMPTY
1177 #endif
1178 		     | MACREG_A2HRIC_BIT_BA_WATCHDOG
1179 		     | MACREQ_A2HRIC_BIT_TX_ACK
1180 		     ;
1181 
1182 	sc->sc_running = 1;
1183 	mwl_hal_intrset(mh, sc->sc_imask);
1184 	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
1185 
1186 	return 0;
1187 }
1188 
1189 static void
1190 mwl_stop(struct mwl_softc *sc)
1191 {
1192 
1193 	MWL_LOCK_ASSERT(sc);
1194 	if (sc->sc_running) {
1195 		/*
1196 		 * Shutdown the hardware and driver.
1197 		 */
1198 		sc->sc_running = 0;
1199 		callout_stop(&sc->sc_watchdog);
1200 		sc->sc_tx_timer = 0;
1201 		mwl_draintxq(sc);
1202 	}
1203 }
1204 
1205 static int
1206 mwl_reset_vap(struct ieee80211vap *vap, int state)
1207 {
1208 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1209 	struct ieee80211com *ic = vap->iv_ic;
1210 
1211 	if (state == IEEE80211_S_RUN)
1212 		mwl_setrates(vap);
1213 	/* XXX off by 1? */
1214 	mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
1215 	/* XXX auto? 20/40 split? */
1216 	mwl_hal_sethtgi(hvap, (vap->iv_flags_ht &
1217 	    (IEEE80211_FHT_SHORTGI20|IEEE80211_FHT_SHORTGI40)) ? 1 : 0);
1218 	mwl_hal_setnprot(hvap, ic->ic_htprotmode == IEEE80211_PROT_NONE ?
1219 	    HTPROTECT_NONE : HTPROTECT_AUTO);
1220 	/* XXX txpower cap */
1221 
1222 	/* re-setup beacons */
1223 	if (state == IEEE80211_S_RUN &&
1224 	    (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1225 	     vap->iv_opmode == IEEE80211_M_MBSS ||
1226 	     vap->iv_opmode == IEEE80211_M_IBSS)) {
1227 		mwl_setapmode(vap, vap->iv_bss->ni_chan);
1228 		mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT(
1229 		    ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1230 		return mwl_beacon_setup(vap);
1231 	}
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Reset the hardware w/o losing operational state.
1237  * Used to reset or reload hardware state for a vap.
1238  */
1239 static int
1240 mwl_reset(struct ieee80211vap *vap, u_long cmd)
1241 {
1242 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1243 	int error = 0;
1244 
1245 	if (hvap != NULL) {			/* WDS, MONITOR, etc. */
1246 		struct ieee80211com *ic = vap->iv_ic;
1247 		struct mwl_softc *sc = ic->ic_softc;
1248 		struct mwl_hal *mh = sc->sc_mh;
1249 
1250 		/* XXX handle DWDS sta vap change */
1251 		/* XXX do we need to disable interrupts? */
1252 		mwl_hal_intrset(mh, 0);		/* disable interrupts */
1253 		error = mwl_reset_vap(vap, vap->iv_state);
1254 		mwl_hal_intrset(mh, sc->sc_imask);
1255 	}
1256 	return error;
1257 }
1258 
1259 /*
1260  * Allocate a tx buffer for sending a frame.  The
1261  * packet is assumed to have the WME AC stored so
1262  * we can use it to select the appropriate h/w queue.
1263  */
1264 static struct mwl_txbuf *
1265 mwl_gettxbuf(struct mwl_softc *sc, struct mwl_txq *txq)
1266 {
1267 	struct mwl_txbuf *bf;
1268 
1269 	/*
1270 	 * Grab a TX buffer and associated resources.
1271 	 */
1272 	MWL_TXQ_LOCK(txq);
1273 	bf = STAILQ_FIRST(&txq->free);
1274 	if (bf != NULL) {
1275 		STAILQ_REMOVE_HEAD(&txq->free, bf_list);
1276 		txq->nfree--;
1277 	}
1278 	MWL_TXQ_UNLOCK(txq);
1279 	if (bf == NULL)
1280 		DPRINTF(sc, MWL_DEBUG_XMIT,
1281 		    "%s: out of xmit buffers on q %d\n", __func__, txq->qnum);
1282 	return bf;
1283 }
1284 
1285 /*
1286  * Return a tx buffer to the queue it came from.  Note there
1287  * are two cases because we must preserve the order of buffers
1288  * as it reflects the fixed order of descriptors in memory
1289  * (the firmware pre-fetches descriptors so we cannot reorder).
1290  */
1291 static void
1292 mwl_puttxbuf_head(struct mwl_txq *txq, struct mwl_txbuf *bf)
1293 {
1294 	bf->bf_m = NULL;
1295 	bf->bf_node = NULL;
1296 	MWL_TXQ_LOCK(txq);
1297 	STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
1298 	txq->nfree++;
1299 	MWL_TXQ_UNLOCK(txq);
1300 }
1301 
1302 static void
1303 mwl_puttxbuf_tail(struct mwl_txq *txq, struct mwl_txbuf *bf)
1304 {
1305 	bf->bf_m = NULL;
1306 	bf->bf_node = NULL;
1307 	MWL_TXQ_LOCK(txq);
1308 	STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
1309 	txq->nfree++;
1310 	MWL_TXQ_UNLOCK(txq);
1311 }
1312 
1313 static int
1314 mwl_transmit(struct ieee80211com *ic, struct mbuf *m)
1315 {
1316 	struct mwl_softc *sc = ic->ic_softc;
1317 	int error;
1318 
1319 	MWL_LOCK(sc);
1320 	if (!sc->sc_running) {
1321 		MWL_UNLOCK(sc);
1322 		return (ENXIO);
1323 	}
1324 	error = mbufq_enqueue(&sc->sc_snd, m);
1325 	if (error) {
1326 		MWL_UNLOCK(sc);
1327 		return (error);
1328 	}
1329 	mwl_start(sc);
1330 	MWL_UNLOCK(sc);
1331 	return (0);
1332 }
1333 
1334 static void
1335 mwl_start(struct mwl_softc *sc)
1336 {
1337 	struct ieee80211_node *ni;
1338 	struct mwl_txbuf *bf;
1339 	struct mbuf *m;
1340 	struct mwl_txq *txq = NULL;	/* XXX silence gcc */
1341 	int nqueued;
1342 
1343 	MWL_LOCK_ASSERT(sc);
1344 	if (!sc->sc_running || sc->sc_invalid)
1345 		return;
1346 	nqueued = 0;
1347 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1348 		/*
1349 		 * Grab the node for the destination.
1350 		 */
1351 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1352 		KASSERT(ni != NULL, ("no node"));
1353 		m->m_pkthdr.rcvif = NULL;	/* committed, clear ref */
1354 		/*
1355 		 * Grab a TX buffer and associated resources.
1356 		 * We honor the classification by the 802.11 layer.
1357 		 */
1358 		txq = sc->sc_ac2q[M_WME_GETAC(m)];
1359 		bf = mwl_gettxbuf(sc, txq);
1360 		if (bf == NULL) {
1361 			m_freem(m);
1362 			ieee80211_free_node(ni);
1363 #ifdef MWL_TX_NODROP
1364 			sc->sc_stats.mst_tx_qstop++;
1365 			break;
1366 #else
1367 			DPRINTF(sc, MWL_DEBUG_XMIT,
1368 			    "%s: tail drop on q %d\n", __func__, txq->qnum);
1369 			sc->sc_stats.mst_tx_qdrop++;
1370 			continue;
1371 #endif /* MWL_TX_NODROP */
1372 		}
1373 
1374 		/*
1375 		 * Pass the frame to the h/w for transmission.
1376 		 */
1377 		if (mwl_tx_start(sc, ni, bf, m)) {
1378 			if_inc_counter(ni->ni_vap->iv_ifp,
1379 			    IFCOUNTER_OERRORS, 1);
1380 			mwl_puttxbuf_head(txq, bf);
1381 			ieee80211_free_node(ni);
1382 			continue;
1383 		}
1384 		nqueued++;
1385 		if (nqueued >= mwl_txcoalesce) {
1386 			/*
1387 			 * Poke the firmware to process queued frames;
1388 			 * see below about (lack of) locking.
1389 			 */
1390 			nqueued = 0;
1391 			mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1392 		}
1393 	}
1394 	if (nqueued) {
1395 		/*
1396 		 * NB: We don't need to lock against tx done because
1397 		 * this just prods the firmware to check the transmit
1398 		 * descriptors.  The firmware will also start fetching
1399 		 * descriptors by itself if it notices new ones are
1400 		 * present when it goes to deliver a tx done interrupt
1401 		 * to the host. So if we race with tx done processing
1402 		 * it's ok.  Delivering the kick here rather than in
1403 		 * mwl_tx_start is an optimization to avoid poking the
1404 		 * firmware for each packet.
1405 		 *
1406 		 * NB: the queue id isn't used so 0 is ok.
1407 		 */
1408 		mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1409 	}
1410 }
1411 
1412 static int
1413 mwl_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1414 	const struct ieee80211_bpf_params *params)
1415 {
1416 	struct ieee80211com *ic = ni->ni_ic;
1417 	struct mwl_softc *sc = ic->ic_softc;
1418 	struct mwl_txbuf *bf;
1419 	struct mwl_txq *txq;
1420 
1421 	if (!sc->sc_running || sc->sc_invalid) {
1422 		m_freem(m);
1423 		return ENETDOWN;
1424 	}
1425 	/*
1426 	 * Grab a TX buffer and associated resources.
1427 	 * Note that we depend on the classification
1428 	 * by the 802.11 layer to get to the right h/w
1429 	 * queue.  Management frames must ALWAYS go on
1430 	 * queue 1 but we cannot just force that here
1431 	 * because we may receive non-mgt frames.
1432 	 */
1433 	txq = sc->sc_ac2q[M_WME_GETAC(m)];
1434 	bf = mwl_gettxbuf(sc, txq);
1435 	if (bf == NULL) {
1436 		sc->sc_stats.mst_tx_qstop++;
1437 		m_freem(m);
1438 		return ENOBUFS;
1439 	}
1440 	/*
1441 	 * Pass the frame to the h/w for transmission.
1442 	 */
1443 	if (mwl_tx_start(sc, ni, bf, m)) {
1444 		mwl_puttxbuf_head(txq, bf);
1445 
1446 		return EIO;		/* XXX */
1447 	}
1448 	/*
1449 	 * NB: We don't need to lock against tx done because
1450 	 * this just prods the firmware to check the transmit
1451 	 * descriptors.  The firmware will also start fetching
1452 	 * descriptors by itself if it notices new ones are
1453 	 * present when it goes to deliver a tx done interrupt
1454 	 * to the host. So if we race with tx done processing
1455 	 * it's ok.  Delivering the kick here rather than in
1456 	 * mwl_tx_start is an optimization to avoid poking the
1457 	 * firmware for each packet.
1458 	 *
1459 	 * NB: the queue id isn't used so 0 is ok.
1460 	 */
1461 	mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1462 	return 0;
1463 }
1464 
1465 static int
1466 mwl_media_change(if_t ifp)
1467 {
1468 	struct ieee80211vap *vap;
1469 	int error;
1470 
1471 	/* NB: only the fixed rate can change and that doesn't need a reset */
1472 	error = ieee80211_media_change(ifp);
1473 	if (error != 0)
1474 		return (error);
1475 
1476 	vap = if_getsoftc(ifp);
1477 	mwl_setrates(vap);
1478 	return (0);
1479 }
1480 
1481 #ifdef MWL_DEBUG
1482 static void
1483 mwl_keyprint(struct mwl_softc *sc, const char *tag,
1484 	const MWL_HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1485 {
1486 	static const char *ciphers[] = {
1487 		"WEP",
1488 		"TKIP",
1489 		"AES-CCM",
1490 	};
1491 	int i, n;
1492 
1493 	printf("%s: [%u] %-7s", tag, hk->keyIndex, ciphers[hk->keyTypeId]);
1494 	for (i = 0, n = hk->keyLen; i < n; i++)
1495 		printf(" %02x", hk->key.aes[i]);
1496 	printf(" mac %s", ether_sprintf(mac));
1497 	if (hk->keyTypeId == KEY_TYPE_ID_TKIP) {
1498 		printf(" %s", "rxmic");
1499 		for (i = 0; i < sizeof(hk->key.tkip.rxMic); i++)
1500 			printf(" %02x", hk->key.tkip.rxMic[i]);
1501 		printf(" txmic");
1502 		for (i = 0; i < sizeof(hk->key.tkip.txMic); i++)
1503 			printf(" %02x", hk->key.tkip.txMic[i]);
1504 	}
1505 	printf(" flags 0x%x\n", hk->keyFlags);
1506 }
1507 #endif
1508 
1509 /*
1510  * Allocate a key cache slot for a unicast key.  The
1511  * firmware handles key allocation and every station is
1512  * guaranteed key space so we are always successful.
1513  */
1514 static int
1515 mwl_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
1516 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1517 {
1518 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1519 
1520 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||
1521 	    (k->wk_flags & IEEE80211_KEY_GROUP)) {
1522 		if (!(&vap->iv_nw_keys[0] <= k &&
1523 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
1524 			/* should not happen */
1525 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1526 				"%s: bogus group key\n", __func__);
1527 			return 0;
1528 		}
1529 		/* give the caller what they requested */
1530 		*keyix = *rxkeyix = ieee80211_crypto_get_key_wepidx(vap, k);
1531 	} else {
1532 		/*
1533 		 * Firmware handles key allocation.
1534 		 */
1535 		*keyix = *rxkeyix = 0;
1536 	}
1537 	return 1;
1538 }
1539 
1540 /*
1541  * Delete a key entry allocated by mwl_key_alloc.
1542  */
1543 static int
1544 mwl_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
1545 {
1546 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1547 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1548 	MWL_HAL_KEYVAL hk;
1549 	const uint8_t bcastaddr[IEEE80211_ADDR_LEN] =
1550 	    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1551 
1552 	if (hvap == NULL) {
1553 		if (vap->iv_opmode != IEEE80211_M_WDS) {
1554 			/* XXX monitor mode? */
1555 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1556 			    "%s: no hvap for opmode %d\n", __func__,
1557 			    vap->iv_opmode);
1558 			return 0;
1559 		}
1560 		hvap = MWL_VAP(vap)->mv_ap_hvap;
1561 	}
1562 
1563 	DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: delete key %u\n",
1564 	    __func__, k->wk_keyix);
1565 
1566 	memset(&hk, 0, sizeof(hk));
1567 	hk.keyIndex = k->wk_keyix;
1568 	switch (k->wk_cipher->ic_cipher) {
1569 	case IEEE80211_CIPHER_WEP:
1570 		hk.keyTypeId = KEY_TYPE_ID_WEP;
1571 		break;
1572 	case IEEE80211_CIPHER_TKIP:
1573 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1574 		break;
1575 	case IEEE80211_CIPHER_AES_CCM:
1576 		hk.keyTypeId = KEY_TYPE_ID_AES;
1577 		break;
1578 	default:
1579 		/* XXX should not happen */
1580 		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1581 		    __func__, k->wk_cipher->ic_cipher);
1582 		return 0;
1583 	}
1584 	return (mwl_hal_keyreset(hvap, &hk, bcastaddr) == 0);	/*XXX*/
1585 }
1586 
1587 static __inline int
1588 addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k)
1589 {
1590 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
1591 		if (k->wk_flags & IEEE80211_KEY_XMIT)
1592 			hk->keyFlags |= KEY_FLAG_TXGROUPKEY;
1593 		if (k->wk_flags & IEEE80211_KEY_RECV)
1594 			hk->keyFlags |= KEY_FLAG_RXGROUPKEY;
1595 		return 1;
1596 	} else
1597 		return 0;
1598 }
1599 
1600 /*
1601  * Set the key cache contents for the specified key.  Key cache
1602  * slot(s) must already have been allocated by mwl_key_alloc.
1603  */
1604 static int
1605 mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
1606 {
1607 	return (_mwl_key_set(vap, k, k->wk_macaddr));
1608 }
1609 
1610 static int
1611 _mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
1612 	const uint8_t mac[IEEE80211_ADDR_LEN])
1613 {
1614 #define	GRPXMIT	(IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP)
1615 /* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */
1616 #define	IEEE80211_IS_STATICKEY(k) \
1617 	(((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \
1618 	 (GRPXMIT|IEEE80211_KEY_RECV))
1619 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1620 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1621 	const struct ieee80211_cipher *cip = k->wk_cipher;
1622 	const uint8_t *macaddr;
1623 	MWL_HAL_KEYVAL hk;
1624 
1625 	KASSERT((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0,
1626 		("s/w crypto set?"));
1627 
1628 	if (hvap == NULL) {
1629 		if (vap->iv_opmode != IEEE80211_M_WDS) {
1630 			/* XXX monitor mode? */
1631 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1632 			    "%s: no hvap for opmode %d\n", __func__,
1633 			    vap->iv_opmode);
1634 			return 0;
1635 		}
1636 		hvap = MWL_VAP(vap)->mv_ap_hvap;
1637 	}
1638 	memset(&hk, 0, sizeof(hk));
1639 	hk.keyIndex = k->wk_keyix;
1640 	switch (cip->ic_cipher) {
1641 	case IEEE80211_CIPHER_WEP:
1642 		hk.keyTypeId = KEY_TYPE_ID_WEP;
1643 		hk.keyLen = k->wk_keylen;
1644 		if (k->wk_keyix == vap->iv_def_txkey)
1645 			hk.keyFlags = KEY_FLAG_WEP_TXKEY;
1646 		if (!IEEE80211_IS_STATICKEY(k)) {
1647 			/* NB: WEP is never used for the PTK */
1648 			(void) addgroupflags(&hk, k);
1649 		}
1650 		break;
1651 	case IEEE80211_CIPHER_TKIP:
1652 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1653 		hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16);
1654 		hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc;
1655 		hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID;
1656 		hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE;
1657 		if (!addgroupflags(&hk, k))
1658 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1659 		break;
1660 	case IEEE80211_CIPHER_AES_CCM:
1661 		hk.keyTypeId = KEY_TYPE_ID_AES;
1662 		hk.keyLen = k->wk_keylen;
1663 		if (!addgroupflags(&hk, k))
1664 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1665 		break;
1666 	default:
1667 		/* XXX should not happen */
1668 		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1669 		    __func__, k->wk_cipher->ic_cipher);
1670 		return 0;
1671 	}
1672 	/*
1673 	 * NB: tkip mic keys get copied here too; the layout
1674 	 *     just happens to match that in ieee80211_key.
1675 	 */
1676 	memcpy(hk.key.aes, k->wk_key, hk.keyLen);
1677 
1678 	/*
1679 	 * Locate address of sta db entry for writing key;
1680 	 * the convention unfortunately is somewhat different
1681 	 * than how net80211, hostapd, and wpa_supplicant think.
1682 	 */
1683 	if (vap->iv_opmode == IEEE80211_M_STA) {
1684 		/*
1685 		 * NB: keys plumbed before the sta reaches AUTH state
1686 		 * will be discarded or written to the wrong sta db
1687 		 * entry because iv_bss is meaningless.  This is ok
1688 		 * (right now) because we handle deferred plumbing of
1689 		 * WEP keys when the sta reaches AUTH state.
1690 		 */
1691 		macaddr = vap->iv_bss->ni_bssid;
1692 		if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0) {
1693 			/* XXX plumb to local sta db too for static key wep */
1694 			mwl_hal_keyset(hvap, &hk, vap->iv_myaddr);
1695 		}
1696 	} else if (vap->iv_opmode == IEEE80211_M_WDS &&
1697 	    vap->iv_state != IEEE80211_S_RUN) {
1698 		/*
1699 		 * Prior to RUN state a WDS vap will not it's BSS node
1700 		 * setup so we will plumb the key to the wrong mac
1701 		 * address (it'll be our local address).  Workaround
1702 		 * this for the moment by grabbing the correct address.
1703 		 */
1704 		macaddr = vap->iv_des_bssid;
1705 	} else if ((k->wk_flags & GRPXMIT) == GRPXMIT)
1706 		macaddr = vap->iv_myaddr;
1707 	else
1708 		macaddr = mac;
1709 	KEYPRINTF(sc, &hk, macaddr);
1710 	return (mwl_hal_keyset(hvap, &hk, macaddr) == 0);
1711 #undef IEEE80211_IS_STATICKEY
1712 #undef GRPXMIT
1713 }
1714 
1715 /*
1716  * Set the multicast filter contents into the hardware.
1717  * XXX f/w has no support; just defer to the os.
1718  */
1719 static void
1720 mwl_setmcastfilter(struct mwl_softc *sc)
1721 {
1722 #if 0
1723 	struct ether_multi *enm;
1724 	struct ether_multistep estep;
1725 	uint8_t macs[IEEE80211_ADDR_LEN*MWL_HAL_MCAST_MAX];/* XXX stack use */
1726 	uint8_t *mp;
1727 	int nmc;
1728 
1729 	mp = macs;
1730 	nmc = 0;
1731 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1732 	while (enm != NULL) {
1733 		/* XXX Punt on ranges. */
1734 		if (nmc == MWL_HAL_MCAST_MAX ||
1735 		    !IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1736 			if_setflagsbit(ifp, IFF_ALLMULTI, 0);
1737 			return;
1738 		}
1739 		IEEE80211_ADDR_COPY(mp, enm->enm_addrlo);
1740 		mp += IEEE80211_ADDR_LEN, nmc++;
1741 		ETHER_NEXT_MULTI(estep, enm);
1742 	}
1743 	if_setflagsbit(ifp, 0, IFF_ALLMULTI);
1744 	mwl_hal_setmcast(sc->sc_mh, nmc, macs);
1745 #endif
1746 }
1747 
1748 static int
1749 mwl_mode_init(struct mwl_softc *sc)
1750 {
1751 	struct ieee80211com *ic = &sc->sc_ic;
1752 	struct mwl_hal *mh = sc->sc_mh;
1753 
1754 	mwl_hal_setpromisc(mh, ic->ic_promisc > 0);
1755 	mwl_setmcastfilter(sc);
1756 
1757 	return 0;
1758 }
1759 
1760 /*
1761  * Callback from the 802.11 layer after a multicast state change.
1762  */
1763 static void
1764 mwl_update_mcast(struct ieee80211com *ic)
1765 {
1766 	struct mwl_softc *sc = ic->ic_softc;
1767 
1768 	mwl_setmcastfilter(sc);
1769 }
1770 
1771 /*
1772  * Callback from the 802.11 layer after a promiscuous mode change.
1773  * Note this interface does not check the operating mode as this
1774  * is an internal callback and we are expected to honor the current
1775  * state (e.g. this is used for setting the interface in promiscuous
1776  * mode when operating in hostap mode to do ACS).
1777  */
1778 static void
1779 mwl_update_promisc(struct ieee80211com *ic)
1780 {
1781 	struct mwl_softc *sc = ic->ic_softc;
1782 
1783 	mwl_hal_setpromisc(sc->sc_mh, ic->ic_promisc > 0);
1784 }
1785 
1786 /*
1787  * Callback from the 802.11 layer to update the slot time
1788  * based on the current setting.  We use it to notify the
1789  * firmware of ERP changes and the f/w takes care of things
1790  * like slot time and preamble.
1791  */
1792 static void
1793 mwl_updateslot(struct ieee80211com *ic)
1794 {
1795 	struct mwl_softc *sc = ic->ic_softc;
1796 	struct mwl_hal *mh = sc->sc_mh;
1797 	int prot;
1798 
1799 	/* NB: can be called early; suppress needless cmds */
1800 	if (!sc->sc_running)
1801 		return;
1802 
1803 	/*
1804 	 * Calculate the ERP flags.  The firwmare will use
1805 	 * this to carry out the appropriate measures.
1806 	 */
1807 	prot = 0;
1808 	if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
1809 		if ((ic->ic_flags & IEEE80211_F_SHSLOT) == 0)
1810 			prot |= IEEE80211_ERP_NON_ERP_PRESENT;
1811 		if (ic->ic_flags & IEEE80211_F_USEPROT)
1812 			prot |= IEEE80211_ERP_USE_PROTECTION;
1813 		if (ic->ic_flags & IEEE80211_F_USEBARKER)
1814 			prot |= IEEE80211_ERP_LONG_PREAMBLE;
1815 	}
1816 
1817 	DPRINTF(sc, MWL_DEBUG_RESET,
1818 	    "%s: chan %u MHz/flags 0x%x %s slot, (prot 0x%x ic_flags 0x%x)\n",
1819 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1820 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", prot,
1821 	    ic->ic_flags);
1822 
1823 	mwl_hal_setgprot(mh, prot);
1824 }
1825 
1826 /*
1827  * Setup the beacon frame.
1828  */
1829 static int
1830 mwl_beacon_setup(struct ieee80211vap *vap)
1831 {
1832 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1833 	struct ieee80211_node *ni = vap->iv_bss;
1834 	struct mbuf *m;
1835 
1836 	m = ieee80211_beacon_alloc(ni);
1837 	if (m == NULL)
1838 		return ENOBUFS;
1839 	mwl_hal_setbeacon(hvap, mtod(m, const void *), m->m_len);
1840 	m_free(m);
1841 
1842 	return 0;
1843 }
1844 
1845 /*
1846  * Update the beacon frame in response to a change.
1847  */
1848 static void
1849 mwl_beacon_update(struct ieee80211vap *vap, int item)
1850 {
1851 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1852 	struct ieee80211com *ic = vap->iv_ic;
1853 
1854 	KASSERT(hvap != NULL, ("no beacon"));
1855 	switch (item) {
1856 	case IEEE80211_BEACON_ERP:
1857 		mwl_updateslot(ic);
1858 		break;
1859 	case IEEE80211_BEACON_HTINFO:
1860 		mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT(
1861 		    ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1862 		break;
1863 	case IEEE80211_BEACON_CAPS:
1864 	case IEEE80211_BEACON_WME:
1865 	case IEEE80211_BEACON_APPIE:
1866 	case IEEE80211_BEACON_CSA:
1867 		break;
1868 	case IEEE80211_BEACON_TIM:
1869 		/* NB: firmware always forms TIM */
1870 		return;
1871 	}
1872 	/* XXX retain beacon frame and update */
1873 	mwl_beacon_setup(vap);
1874 }
1875 
1876 static void
1877 mwl_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1878 {
1879 	bus_addr_t *paddr = (bus_addr_t*) arg;
1880 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
1881 	*paddr = segs->ds_addr;
1882 }
1883 
1884 #ifdef MWL_HOST_PS_SUPPORT
1885 /*
1886  * Handle power save station occupancy changes.
1887  */
1888 static void
1889 mwl_update_ps(struct ieee80211vap *vap, int nsta)
1890 {
1891 	struct mwl_vap *mvp = MWL_VAP(vap);
1892 
1893 	if (nsta == 0 || mvp->mv_last_ps_sta == 0)
1894 		mwl_hal_setpowersave_bss(mvp->mv_hvap, nsta);
1895 	mvp->mv_last_ps_sta = nsta;
1896 }
1897 
1898 /*
1899  * Handle associated station power save state changes.
1900  */
1901 static int
1902 mwl_set_tim(struct ieee80211_node *ni, int set)
1903 {
1904 	struct ieee80211vap *vap = ni->ni_vap;
1905 	struct mwl_vap *mvp = MWL_VAP(vap);
1906 
1907 	if (mvp->mv_set_tim(ni, set)) {		/* NB: state change */
1908 		mwl_hal_setpowersave_sta(mvp->mv_hvap,
1909 		    IEEE80211_AID(ni->ni_associd), set);
1910 		return 1;
1911 	} else
1912 		return 0;
1913 }
1914 #endif /* MWL_HOST_PS_SUPPORT */
1915 
1916 static int
1917 mwl_desc_setup(struct mwl_softc *sc, const char *name,
1918 	struct mwl_descdma *dd,
1919 	int nbuf, size_t bufsize, int ndesc, size_t descsize)
1920 {
1921 	uint8_t *ds;
1922 	int error;
1923 
1924 	DPRINTF(sc, MWL_DEBUG_RESET,
1925 	    "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n",
1926 	    __func__, name, nbuf, (uintmax_t) bufsize,
1927 	    ndesc, (uintmax_t) descsize);
1928 
1929 	dd->dd_name = name;
1930 	dd->dd_desc_len = nbuf * ndesc * descsize;
1931 
1932 	/*
1933 	 * Setup DMA descriptor area.
1934 	 */
1935 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1936 		       PAGE_SIZE, 0,		/* alignment, bounds */
1937 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1938 		       BUS_SPACE_MAXADDR,	/* highaddr */
1939 		       NULL, NULL,		/* filter, filterarg */
1940 		       dd->dd_desc_len,		/* maxsize */
1941 		       1,			/* nsegments */
1942 		       dd->dd_desc_len,		/* maxsegsize */
1943 		       BUS_DMA_ALLOCNOW,	/* flags */
1944 		       NULL,			/* lockfunc */
1945 		       NULL,			/* lockarg */
1946 		       &dd->dd_dmat);
1947 	if (error != 0) {
1948 		device_printf(sc->sc_dev, "cannot allocate %s DMA tag\n", dd->dd_name);
1949 		return error;
1950 	}
1951 
1952 	/* allocate descriptors */
1953 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
1954 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1955 				 &dd->dd_dmamap);
1956 	if (error != 0) {
1957 		device_printf(sc->sc_dev, "unable to alloc memory for %u %s descriptors, "
1958 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
1959 		goto fail1;
1960 	}
1961 
1962 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
1963 				dd->dd_desc, dd->dd_desc_len,
1964 				mwl_load_cb, &dd->dd_desc_paddr,
1965 				BUS_DMA_NOWAIT);
1966 	if (error != 0) {
1967 		device_printf(sc->sc_dev, "unable to map %s descriptors, error %u\n",
1968 			dd->dd_name, error);
1969 		goto fail2;
1970 	}
1971 
1972 	ds = dd->dd_desc;
1973 	memset(ds, 0, dd->dd_desc_len);
1974 	DPRINTF(sc, MWL_DEBUG_RESET,
1975 	    "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n",
1976 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
1977 	    (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
1978 
1979 	return 0;
1980 fail2:
1981 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
1982 fail1:
1983 	bus_dma_tag_destroy(dd->dd_dmat);
1984 	memset(dd, 0, sizeof(*dd));
1985 	return error;
1986 #undef DS2PHYS
1987 }
1988 
1989 static void
1990 mwl_desc_cleanup(struct mwl_softc *sc, struct mwl_descdma *dd)
1991 {
1992 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
1993 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
1994 	bus_dma_tag_destroy(dd->dd_dmat);
1995 
1996 	memset(dd, 0, sizeof(*dd));
1997 }
1998 
1999 /*
2000  * Construct a tx q's free list.  The order of entries on
2001  * the list must reflect the physical layout of tx descriptors
2002  * because the firmware pre-fetches descriptors.
2003  *
2004  * XXX might be better to use indices into the buffer array.
2005  */
2006 static void
2007 mwl_txq_reset(struct mwl_softc *sc, struct mwl_txq *txq)
2008 {
2009 	struct mwl_txbuf *bf;
2010 	int i;
2011 
2012 	bf = txq->dma.dd_bufptr;
2013 	STAILQ_INIT(&txq->free);
2014 	for (i = 0; i < mwl_txbuf; i++, bf++)
2015 		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
2016 	txq->nfree = i;
2017 }
2018 
2019 #define	DS2PHYS(_dd, _ds) \
2020 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2021 
2022 static int
2023 mwl_txdma_setup(struct mwl_softc *sc, struct mwl_txq *txq)
2024 {
2025 	int error, bsize, i;
2026 	struct mwl_txbuf *bf;
2027 	struct mwl_txdesc *ds;
2028 
2029 	error = mwl_desc_setup(sc, "tx", &txq->dma,
2030 			mwl_txbuf, sizeof(struct mwl_txbuf),
2031 			MWL_TXDESC, sizeof(struct mwl_txdesc));
2032 	if (error != 0)
2033 		return error;
2034 
2035 	/* allocate and setup tx buffers */
2036 	bsize = mwl_txbuf * sizeof(struct mwl_txbuf);
2037 	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2038 	if (bf == NULL) {
2039 		device_printf(sc->sc_dev, "malloc of %u tx buffers failed\n",
2040 			mwl_txbuf);
2041 		return ENOMEM;
2042 	}
2043 	txq->dma.dd_bufptr = bf;
2044 
2045 	ds = txq->dma.dd_desc;
2046 	for (i = 0; i < mwl_txbuf; i++, bf++, ds += MWL_TXDESC) {
2047 		bf->bf_desc = ds;
2048 		bf->bf_daddr = DS2PHYS(&txq->dma, ds);
2049 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2050 				&bf->bf_dmamap);
2051 		if (error != 0) {
2052 			device_printf(sc->sc_dev, "unable to create dmamap for tx "
2053 				"buffer %u, error %u\n", i, error);
2054 			return error;
2055 		}
2056 	}
2057 	mwl_txq_reset(sc, txq);
2058 	return 0;
2059 }
2060 
2061 static void
2062 mwl_txdma_cleanup(struct mwl_softc *sc, struct mwl_txq *txq)
2063 {
2064 	struct mwl_txbuf *bf;
2065 	int i;
2066 
2067 	bf = txq->dma.dd_bufptr;
2068 	for (i = 0; i < mwl_txbuf; i++, bf++) {
2069 		KASSERT(bf->bf_m == NULL, ("mbuf on free list"));
2070 		KASSERT(bf->bf_node == NULL, ("node on free list"));
2071 		if (bf->bf_dmamap != NULL)
2072 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2073 	}
2074 	STAILQ_INIT(&txq->free);
2075 	txq->nfree = 0;
2076 	if (txq->dma.dd_bufptr != NULL) {
2077 		free(txq->dma.dd_bufptr, M_MWLDEV);
2078 		txq->dma.dd_bufptr = NULL;
2079 	}
2080 	if (txq->dma.dd_desc_len != 0)
2081 		mwl_desc_cleanup(sc, &txq->dma);
2082 }
2083 
2084 static int
2085 mwl_rxdma_setup(struct mwl_softc *sc)
2086 {
2087 	int error, jumbosize, bsize, i;
2088 	struct mwl_rxbuf *bf;
2089 	struct mwl_jumbo *rbuf;
2090 	struct mwl_rxdesc *ds;
2091 	caddr_t data;
2092 
2093 	error = mwl_desc_setup(sc, "rx", &sc->sc_rxdma,
2094 			mwl_rxdesc, sizeof(struct mwl_rxbuf),
2095 			1, sizeof(struct mwl_rxdesc));
2096 	if (error != 0)
2097 		return error;
2098 
2099 	/*
2100 	 * Receive is done to a private pool of jumbo buffers.
2101 	 * This allows us to attach to mbuf's and avoid re-mapping
2102 	 * memory on each rx we post.  We allocate a large chunk
2103 	 * of memory and manage it in the driver.  The mbuf free
2104 	 * callback method is used to reclaim frames after sending
2105 	 * them up the stack.  By default we allocate 2x the number of
2106 	 * rx descriptors configured so we have some slop to hold
2107 	 * us while frames are processed.
2108 	 */
2109 	if (mwl_rxbuf < 2*mwl_rxdesc) {
2110 		device_printf(sc->sc_dev,
2111 		    "too few rx dma buffers (%d); increasing to %d\n",
2112 		    mwl_rxbuf, 2*mwl_rxdesc);
2113 		mwl_rxbuf = 2*mwl_rxdesc;
2114 	}
2115 	jumbosize = roundup(MWL_AGGR_SIZE, PAGE_SIZE);
2116 	sc->sc_rxmemsize = mwl_rxbuf*jumbosize;
2117 
2118 	error = bus_dma_tag_create(sc->sc_dmat,	/* parent */
2119 		       PAGE_SIZE, 0,		/* alignment, bounds */
2120 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2121 		       BUS_SPACE_MAXADDR,	/* highaddr */
2122 		       NULL, NULL,		/* filter, filterarg */
2123 		       sc->sc_rxmemsize,	/* maxsize */
2124 		       1,			/* nsegments */
2125 		       sc->sc_rxmemsize,	/* maxsegsize */
2126 		       BUS_DMA_ALLOCNOW,	/* flags */
2127 		       NULL,			/* lockfunc */
2128 		       NULL,			/* lockarg */
2129 		       &sc->sc_rxdmat);
2130 	if (error != 0) {
2131 		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
2132 		return error;
2133 	}
2134 
2135 	error = bus_dmamem_alloc(sc->sc_rxdmat, (void**) &sc->sc_rxmem,
2136 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2137 				 &sc->sc_rxmap);
2138 	if (error != 0) {
2139 		device_printf(sc->sc_dev, "could not alloc %ju bytes of rx DMA memory\n",
2140 		    (uintmax_t) sc->sc_rxmemsize);
2141 		return error;
2142 	}
2143 
2144 	error = bus_dmamap_load(sc->sc_rxdmat, sc->sc_rxmap,
2145 				sc->sc_rxmem, sc->sc_rxmemsize,
2146 				mwl_load_cb, &sc->sc_rxmem_paddr,
2147 				BUS_DMA_NOWAIT);
2148 	if (error != 0) {
2149 		device_printf(sc->sc_dev, "could not load rx DMA map\n");
2150 		return error;
2151 	}
2152 
2153 	/*
2154 	 * Allocate rx buffers and set them up.
2155 	 */
2156 	bsize = mwl_rxdesc * sizeof(struct mwl_rxbuf);
2157 	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2158 	if (bf == NULL) {
2159 		device_printf(sc->sc_dev, "malloc of %u rx buffers failed\n", bsize);
2160 		return error;
2161 	}
2162 	sc->sc_rxdma.dd_bufptr = bf;
2163 
2164 	STAILQ_INIT(&sc->sc_rxbuf);
2165 	ds = sc->sc_rxdma.dd_desc;
2166 	for (i = 0; i < mwl_rxdesc; i++, bf++, ds++) {
2167 		bf->bf_desc = ds;
2168 		bf->bf_daddr = DS2PHYS(&sc->sc_rxdma, ds);
2169 		/* pre-assign dma buffer */
2170 		bf->bf_data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2171 		/* NB: tail is intentional to preserve descriptor order */
2172 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2173 	}
2174 
2175 	/*
2176 	 * Place remainder of dma memory buffers on the free list.
2177 	 */
2178 	SLIST_INIT(&sc->sc_rxfree);
2179 	for (; i < mwl_rxbuf; i++) {
2180 		data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2181 		rbuf = MWL_JUMBO_DATA2BUF(data);
2182 		SLIST_INSERT_HEAD(&sc->sc_rxfree, rbuf, next);
2183 		sc->sc_nrxfree++;
2184 	}
2185 	return 0;
2186 }
2187 #undef DS2PHYS
2188 
2189 static void
2190 mwl_rxdma_cleanup(struct mwl_softc *sc)
2191 {
2192 	if (sc->sc_rxmem_paddr != 0) {
2193 		bus_dmamap_unload(sc->sc_rxdmat, sc->sc_rxmap);
2194 		sc->sc_rxmem_paddr = 0;
2195 	}
2196 	if (sc->sc_rxmem != NULL) {
2197 		bus_dmamem_free(sc->sc_rxdmat, sc->sc_rxmem, sc->sc_rxmap);
2198 		sc->sc_rxmem = NULL;
2199 	}
2200 	if (sc->sc_rxdma.dd_bufptr != NULL) {
2201 		free(sc->sc_rxdma.dd_bufptr, M_MWLDEV);
2202 		sc->sc_rxdma.dd_bufptr = NULL;
2203 	}
2204 	if (sc->sc_rxdma.dd_desc_len != 0)
2205 		mwl_desc_cleanup(sc, &sc->sc_rxdma);
2206 }
2207 
2208 static int
2209 mwl_dma_setup(struct mwl_softc *sc)
2210 {
2211 	int error, i;
2212 
2213 	error = mwl_rxdma_setup(sc);
2214 	if (error != 0) {
2215 		mwl_rxdma_cleanup(sc);
2216 		return error;
2217 	}
2218 
2219 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
2220 		error = mwl_txdma_setup(sc, &sc->sc_txq[i]);
2221 		if (error != 0) {
2222 			mwl_dma_cleanup(sc);
2223 			return error;
2224 		}
2225 	}
2226 	return 0;
2227 }
2228 
2229 static void
2230 mwl_dma_cleanup(struct mwl_softc *sc)
2231 {
2232 	int i;
2233 
2234 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2235 		mwl_txdma_cleanup(sc, &sc->sc_txq[i]);
2236 	mwl_rxdma_cleanup(sc);
2237 }
2238 
2239 static struct ieee80211_node *
2240 mwl_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2241 {
2242 	struct ieee80211com *ic = vap->iv_ic;
2243 	struct mwl_softc *sc = ic->ic_softc;
2244 	const size_t space = sizeof(struct mwl_node);
2245 	struct mwl_node *mn;
2246 
2247 	mn = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2248 	if (mn == NULL) {
2249 		/* XXX stat+msg */
2250 		return NULL;
2251 	}
2252 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mn %p\n", __func__, mn);
2253 	return &mn->mn_node;
2254 }
2255 
2256 static void
2257 mwl_node_cleanup(struct ieee80211_node *ni)
2258 {
2259 	struct ieee80211com *ic = ni->ni_ic;
2260         struct mwl_softc *sc = ic->ic_softc;
2261 	struct mwl_node *mn = MWL_NODE(ni);
2262 
2263 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p ic %p staid %d\n",
2264 	    __func__, ni, ni->ni_ic, mn->mn_staid);
2265 
2266 	if (mn->mn_staid != 0) {
2267 		struct ieee80211vap *vap = ni->ni_vap;
2268 
2269 		if (mn->mn_hvap != NULL) {
2270 			if (vap->iv_opmode == IEEE80211_M_STA)
2271 				mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr);
2272 			else
2273 				mwl_hal_delstation(mn->mn_hvap, ni->ni_macaddr);
2274 		}
2275 		/*
2276 		 * NB: legacy WDS peer sta db entry is installed using
2277 		 * the associate ap's hvap; use it again to delete it.
2278 		 * XXX can vap be NULL?
2279 		 */
2280 		else if (vap->iv_opmode == IEEE80211_M_WDS &&
2281 		    MWL_VAP(vap)->mv_ap_hvap != NULL)
2282 			mwl_hal_delstation(MWL_VAP(vap)->mv_ap_hvap,
2283 			    ni->ni_macaddr);
2284 		delstaid(sc, mn->mn_staid);
2285 		mn->mn_staid = 0;
2286 	}
2287 	sc->sc_node_cleanup(ni);
2288 }
2289 
2290 /*
2291  * Reclaim rx dma buffers from packets sitting on the ampdu
2292  * reorder queue for a station.  We replace buffers with a
2293  * system cluster (if available).
2294  */
2295 static void
2296 mwl_ampdu_rxdma_reclaim(struct ieee80211_rx_ampdu *rap)
2297 {
2298 #if 0
2299 	int i, n, off;
2300 	struct mbuf *m;
2301 	void *cl;
2302 
2303 	n = rap->rxa_qframes;
2304 	for (i = 0; i < rap->rxa_wnd && n > 0; i++) {
2305 		m = rap->rxa_m[i];
2306 		if (m == NULL)
2307 			continue;
2308 		n--;
2309 		/* our dma buffers have a well-known free routine */
2310 		if ((m->m_flags & M_EXT) == 0 ||
2311 		    m->m_ext.ext_free != mwl_ext_free)
2312 			continue;
2313 		/*
2314 		 * Try to allocate a cluster and move the data.
2315 		 */
2316 		off = m->m_data - m->m_ext.ext_buf;
2317 		if (off + m->m_pkthdr.len > MCLBYTES) {
2318 			/* XXX no AMSDU for now */
2319 			continue;
2320 		}
2321 		cl = pool_cache_get_paddr(&mclpool_cache, 0,
2322 		    &m->m_ext.ext_paddr);
2323 		if (cl != NULL) {
2324 			/*
2325 			 * Copy the existing data to the cluster, remove
2326 			 * the rx dma buffer, and attach the cluster in
2327 			 * its place.  Note we preserve the offset to the
2328 			 * data so frames being bridged can still prepend
2329 			 * their headers without adding another mbuf.
2330 			 */
2331 			memcpy((caddr_t) cl + off, m->m_data, m->m_pkthdr.len);
2332 			MEXTREMOVE(m);
2333 			MEXTADD(m, cl, MCLBYTES, 0, NULL, &mclpool_cache);
2334 			/* setup mbuf like _MCLGET does */
2335 			m->m_flags |= M_CLUSTER | M_EXT_RW;
2336 			_MOWNERREF(m, M_EXT | M_CLUSTER);
2337 			/* NB: m_data is clobbered by MEXTADDR, adjust */
2338 			m->m_data += off;
2339 		}
2340 	}
2341 #endif
2342 }
2343 
2344 /*
2345  * Callback to reclaim resources.  We first let the
2346  * net80211 layer do it's thing, then if we are still
2347  * blocked by a lack of rx dma buffers we walk the ampdu
2348  * reorder q's to reclaim buffers by copying to a system
2349  * cluster.
2350  */
2351 static void
2352 mwl_node_drain(struct ieee80211_node *ni)
2353 {
2354 	struct ieee80211com *ic = ni->ni_ic;
2355         struct mwl_softc *sc = ic->ic_softc;
2356 	struct mwl_node *mn = MWL_NODE(ni);
2357 
2358 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p vap %p staid %d\n",
2359 	    __func__, ni, ni->ni_vap, mn->mn_staid);
2360 
2361 	/* NB: call up first to age out ampdu q's */
2362 	sc->sc_node_drain(ni);
2363 
2364 	/* XXX better to not check low water mark? */
2365 	if (sc->sc_rxblocked && mn->mn_staid != 0 &&
2366 	    (ni->ni_flags & IEEE80211_NODE_HT)) {
2367 		uint8_t tid;
2368 		/*
2369 		 * Walk the reorder q and reclaim rx dma buffers by copying
2370 		 * the packet contents into clusters.
2371 		 */
2372 		for (tid = 0; tid < WME_NUM_TID; tid++) {
2373 			struct ieee80211_rx_ampdu *rap;
2374 
2375 			rap = &ni->ni_rx_ampdu[tid];
2376 			if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
2377 				continue;
2378 			if (rap->rxa_qframes)
2379 				mwl_ampdu_rxdma_reclaim(rap);
2380 		}
2381 	}
2382 }
2383 
2384 static void
2385 mwl_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2386 {
2387 	*rssi = ni->ni_ic->ic_node_getrssi(ni);
2388 #ifdef MWL_ANT_INFO_SUPPORT
2389 #if 0
2390 	/* XXX need to smooth data */
2391 	*noise = -MWL_NODE_CONST(ni)->mn_ai.nf;
2392 #else
2393 	*noise = -95;		/* XXX */
2394 #endif
2395 #else
2396 	*noise = -95;		/* XXX */
2397 #endif
2398 }
2399 
2400 /*
2401  * Convert Hardware per-antenna rssi info to common format:
2402  * Let a1, a2, a3 represent the amplitudes per chain
2403  * Let amax represent max[a1, a2, a3]
2404  * Rssi1_dBm = RSSI_dBm + 20*log10(a1/amax)
2405  * Rssi1_dBm = RSSI_dBm + 20*log10(a1) - 20*log10(amax)
2406  * We store a table that is 4*20*log10(idx) - the extra 4 is to store or
2407  * maintain some extra precision.
2408  *
2409  * Values are stored in .5 db format capped at 127.
2410  */
2411 static void
2412 mwl_node_getmimoinfo(const struct ieee80211_node *ni,
2413 	struct ieee80211_mimo_info *mi)
2414 {
2415 #define	CVT(_dst, _src) do {						\
2416 	(_dst) = rssi + ((logdbtbl[_src] - logdbtbl[rssi_max]) >> 2);	\
2417 	(_dst) = (_dst) > 64 ? 127 : ((_dst) << 1);			\
2418 } while (0)
2419 	static const int8_t logdbtbl[32] = {
2420 	       0,   0,  24,  38,  48,  56,  62,  68,
2421 	      72,  76,  80,  83,  86,  89,  92,  94,
2422 	      96,  98, 100, 102, 104, 106, 107, 109,
2423 	     110, 112, 113, 115, 116, 117, 118, 119
2424 	};
2425 	const struct mwl_node *mn = MWL_NODE_CONST(ni);
2426 	uint8_t rssi = mn->mn_ai.rsvd1/2;		/* XXX */
2427 	uint32_t rssi_max;
2428 
2429 	rssi_max = mn->mn_ai.rssi_a;
2430 	if (mn->mn_ai.rssi_b > rssi_max)
2431 		rssi_max = mn->mn_ai.rssi_b;
2432 	if (mn->mn_ai.rssi_c > rssi_max)
2433 		rssi_max = mn->mn_ai.rssi_c;
2434 
2435 	CVT(mi->ch[0].rssi[0], mn->mn_ai.rssi_a);
2436 	CVT(mi->ch[1].rssi[0], mn->mn_ai.rssi_b);
2437 	CVT(mi->ch[2].rssi[0], mn->mn_ai.rssi_c);
2438 
2439 	mi->ch[0].noise[0] = mn->mn_ai.nf_a;
2440 	mi->ch[1].noise[0] = mn->mn_ai.nf_b;
2441 	mi->ch[2].noise[0] = mn->mn_ai.nf_c;
2442 #undef CVT
2443 }
2444 
2445 static __inline void *
2446 mwl_getrxdma(struct mwl_softc *sc)
2447 {
2448 	struct mwl_jumbo *buf;
2449 	void *data;
2450 
2451 	/*
2452 	 * Allocate from jumbo pool.
2453 	 */
2454 	MWL_RXFREE_LOCK(sc);
2455 	buf = SLIST_FIRST(&sc->sc_rxfree);
2456 	if (buf == NULL) {
2457 		DPRINTF(sc, MWL_DEBUG_ANY,
2458 		    "%s: out of rx dma buffers\n", __func__);
2459 		sc->sc_stats.mst_rx_nodmabuf++;
2460 		data = NULL;
2461 	} else {
2462 		SLIST_REMOVE_HEAD(&sc->sc_rxfree, next);
2463 		sc->sc_nrxfree--;
2464 		data = MWL_JUMBO_BUF2DATA(buf);
2465 	}
2466 	MWL_RXFREE_UNLOCK(sc);
2467 	return data;
2468 }
2469 
2470 static __inline void
2471 mwl_putrxdma(struct mwl_softc *sc, void *data)
2472 {
2473 	struct mwl_jumbo *buf;
2474 
2475 	/* XXX bounds check data */
2476 	MWL_RXFREE_LOCK(sc);
2477 	buf = MWL_JUMBO_DATA2BUF(data);
2478 	SLIST_INSERT_HEAD(&sc->sc_rxfree, buf, next);
2479 	sc->sc_nrxfree++;
2480 	MWL_RXFREE_UNLOCK(sc);
2481 }
2482 
2483 static int
2484 mwl_rxbuf_init(struct mwl_softc *sc, struct mwl_rxbuf *bf)
2485 {
2486 	struct mwl_rxdesc *ds;
2487 
2488 	ds = bf->bf_desc;
2489 	if (bf->bf_data == NULL) {
2490 		bf->bf_data = mwl_getrxdma(sc);
2491 		if (bf->bf_data == NULL) {
2492 			/* mark descriptor to be skipped */
2493 			ds->RxControl = EAGLE_RXD_CTRL_OS_OWN;
2494 			/* NB: don't need PREREAD */
2495 			MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE);
2496 			sc->sc_stats.mst_rxbuf_failed++;
2497 			return ENOMEM;
2498 		}
2499 	}
2500 	/*
2501 	 * NB: DMA buffer contents is known to be unmodified
2502 	 *     so there's no need to flush the data cache.
2503 	 */
2504 
2505 	/*
2506 	 * Setup descriptor.
2507 	 */
2508 	ds->QosCtrl = 0;
2509 	ds->RSSI = 0;
2510 	ds->Status = EAGLE_RXD_STATUS_IDLE;
2511 	ds->Channel = 0;
2512 	ds->PktLen = htole16(MWL_AGGR_SIZE);
2513 	ds->SQ2 = 0;
2514 	ds->pPhysBuffData = htole32(MWL_JUMBO_DMA_ADDR(sc, bf->bf_data));
2515 	/* NB: don't touch pPhysNext, set once */
2516 	ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
2517 	MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2518 
2519 	return 0;
2520 }
2521 
2522 static void
2523 mwl_ext_free(struct mbuf *m)
2524 {
2525 	struct mwl_softc *sc = m->m_ext.ext_arg1;
2526 
2527 	/* XXX bounds check data */
2528 	mwl_putrxdma(sc, m->m_ext.ext_buf);
2529 	/*
2530 	 * If we were previously blocked by a lack of rx dma buffers
2531 	 * check if we now have enough to restart rx interrupt handling.
2532 	 */
2533 	if (sc->sc_rxblocked && sc->sc_nrxfree > mwl_rxdmalow) {
2534 		sc->sc_rxblocked = 0;
2535 		mwl_hal_intrset(sc->sc_mh, sc->sc_imask);
2536 	}
2537 }
2538 
2539 struct mwl_frame_bar {
2540 	u_int8_t	i_fc[2];
2541 	u_int8_t	i_dur[2];
2542 	u_int8_t	i_ra[IEEE80211_ADDR_LEN];
2543 	u_int8_t	i_ta[IEEE80211_ADDR_LEN];
2544 	/* ctl, seq, FCS */
2545 } __packed;
2546 
2547 /*
2548  * Like ieee80211_anyhdrsize, but handles BAR frames
2549  * specially so the logic below to piece the 802.11
2550  * header together works.
2551  */
2552 static __inline int
2553 mwl_anyhdrsize(const void *data)
2554 {
2555 	const struct ieee80211_frame *wh = data;
2556 
2557 	if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2558 		switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) {
2559 		case IEEE80211_FC0_SUBTYPE_CTS:
2560 		case IEEE80211_FC0_SUBTYPE_ACK:
2561 			return sizeof(struct ieee80211_frame_ack);
2562 		case IEEE80211_FC0_SUBTYPE_BAR:
2563 			return sizeof(struct mwl_frame_bar);
2564 		}
2565 		return sizeof(struct ieee80211_frame_min);
2566 	} else
2567 		return ieee80211_hdrsize(data);
2568 }
2569 
2570 static void
2571 mwl_handlemicerror(struct ieee80211com *ic, const uint8_t *data)
2572 {
2573 	const struct ieee80211_frame *wh;
2574 	struct ieee80211_node *ni;
2575 
2576 	wh = (const struct ieee80211_frame *)(data + sizeof(uint16_t));
2577 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
2578 	if (ni != NULL) {
2579 		ieee80211_notify_michael_failure(ni->ni_vap, wh, 0);
2580 		ieee80211_free_node(ni);
2581 	}
2582 }
2583 
2584 /*
2585  * Convert hardware signal strength to rssi.  The value
2586  * provided by the device has the noise floor added in;
2587  * we need to compensate for this but we don't have that
2588  * so we use a fixed value.
2589  *
2590  * The offset of 8 is good for both 2.4 and 5GHz.  The LNA
2591  * offset is already set as part of the initial gain.  This
2592  * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz.
2593  */
2594 static __inline int
2595 cvtrssi(uint8_t ssi)
2596 {
2597 	int rssi = (int) ssi + 8;
2598 	/* XXX hack guess until we have a real noise floor */
2599 	rssi = 2*(87 - rssi);	/* NB: .5 dBm units */
2600 	return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi);
2601 }
2602 
2603 static void
2604 mwl_rx_proc(void *arg, int npending)
2605 {
2606 	struct epoch_tracker et;
2607 	struct mwl_softc *sc = arg;
2608 	struct ieee80211com *ic = &sc->sc_ic;
2609 	struct mwl_rxbuf *bf;
2610 	struct mwl_rxdesc *ds;
2611 	struct mbuf *m;
2612 	struct ieee80211_qosframe *wh;
2613 	struct ieee80211_node *ni;
2614 	struct mwl_node *mn;
2615 	int off, len, hdrlen, pktlen, rssi, ntodo;
2616 	uint8_t *data, status;
2617 	void *newdata;
2618 	int16_t nf;
2619 
2620 	DPRINTF(sc, MWL_DEBUG_RX_PROC, "%s: pending %u rdptr 0x%x wrptr 0x%x\n",
2621 	    __func__, npending, RD4(sc, sc->sc_hwspecs.rxDescRead),
2622 	    RD4(sc, sc->sc_hwspecs.rxDescWrite));
2623 	nf = -96;			/* XXX */
2624 	bf = sc->sc_rxnext;
2625 	for (ntodo = mwl_rxquota; ntodo > 0; ntodo--) {
2626 		if (bf == NULL)
2627 			bf = STAILQ_FIRST(&sc->sc_rxbuf);
2628 		ds = bf->bf_desc;
2629 		data = bf->bf_data;
2630 		if (data == NULL) {
2631 			/*
2632 			 * If data allocation failed previously there
2633 			 * will be no buffer; try again to re-populate it.
2634 			 * Note the firmware will not advance to the next
2635 			 * descriptor with a dma buffer so we must mimic
2636 			 * this or we'll get out of sync.
2637 			 */
2638 			DPRINTF(sc, MWL_DEBUG_ANY,
2639 			    "%s: rx buf w/o dma memory\n", __func__);
2640 			(void) mwl_rxbuf_init(sc, bf);
2641 			sc->sc_stats.mst_rx_dmabufmissing++;
2642 			break;
2643 		}
2644 		MWL_RXDESC_SYNC(sc, ds,
2645 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2646 		if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN)
2647 			break;
2648 #ifdef MWL_DEBUG
2649 		if (sc->sc_debug & MWL_DEBUG_RECV_DESC)
2650 			mwl_printrxbuf(bf, 0);
2651 #endif
2652 		status = ds->Status;
2653 		if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) {
2654 			counter_u64_add(ic->ic_ierrors, 1);
2655 			sc->sc_stats.mst_rx_crypto++;
2656 			/*
2657 			 * NB: Check EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR
2658 			 *     for backwards compatibility.
2659 			 */
2660 			if (status != EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR &&
2661 			    (status & EAGLE_RXD_STATUS_TKIP_MIC_DECRYPT_ERR)) {
2662 				/*
2663 				 * MIC error, notify upper layers.
2664 				 */
2665 				bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap,
2666 				    BUS_DMASYNC_POSTREAD);
2667 				mwl_handlemicerror(ic, data);
2668 				sc->sc_stats.mst_rx_tkipmic++;
2669 			}
2670 			/* XXX too painful to tap packets */
2671 			goto rx_next;
2672 		}
2673 		/*
2674 		 * Sync the data buffer.
2675 		 */
2676 		len = le16toh(ds->PktLen);
2677 		bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD);
2678 		/*
2679 		 * The 802.11 header is provided all or in part at the front;
2680 		 * use it to calculate the true size of the header that we'll
2681 		 * construct below.  We use this to figure out where to copy
2682 		 * payload prior to constructing the header.
2683 		 */
2684 		hdrlen = mwl_anyhdrsize(data + sizeof(uint16_t));
2685 		off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4);
2686 
2687 		/* calculate rssi early so we can re-use for each aggregate */
2688 		rssi = cvtrssi(ds->RSSI);
2689 
2690 		pktlen = hdrlen + (len - off);
2691 		/*
2692 		 * NB: we know our frame is at least as large as
2693 		 * IEEE80211_MIN_LEN because there is a 4-address
2694 		 * frame at the front.  Hence there's no need to
2695 		 * vet the packet length.  If the frame in fact
2696 		 * is too small it should be discarded at the
2697 		 * net80211 layer.
2698 		 */
2699 
2700 		/*
2701 		 * Attach dma buffer to an mbuf.  We tried
2702 		 * doing this based on the packet size (i.e.
2703 		 * copying small packets) but it turns out to
2704 		 * be a net loss.  The tradeoff might be system
2705 		 * dependent (cache architecture is important).
2706 		 */
2707 		MGETHDR(m, M_NOWAIT, MT_DATA);
2708 		if (m == NULL) {
2709 			DPRINTF(sc, MWL_DEBUG_ANY,
2710 			    "%s: no rx mbuf\n", __func__);
2711 			sc->sc_stats.mst_rx_nombuf++;
2712 			goto rx_next;
2713 		}
2714 		/*
2715 		 * Acquire the replacement dma buffer before
2716 		 * processing the frame.  If we're out of dma
2717 		 * buffers we disable rx interrupts and wait
2718 		 * for the free pool to reach mlw_rxdmalow buffers
2719 		 * before starting to do work again.  If the firmware
2720 		 * runs out of descriptors then it will toss frames
2721 		 * which is better than our doing it as that can
2722 		 * starve our processing.  It is also important that
2723 		 * we always process rx'd frames in case they are
2724 		 * A-MPDU as otherwise the host's view of the BA
2725 		 * window may get out of sync with the firmware.
2726 		 */
2727 		newdata = mwl_getrxdma(sc);
2728 		if (newdata == NULL) {
2729 			/* NB: stat+msg in mwl_getrxdma */
2730 			m_free(m);
2731 			/* disable RX interrupt and mark state */
2732 			mwl_hal_intrset(sc->sc_mh,
2733 			    sc->sc_imask &~ MACREG_A2HRIC_BIT_RX_RDY);
2734 			sc->sc_rxblocked = 1;
2735 			ieee80211_drain(ic);
2736 			/* XXX check rxblocked and immediately start again? */
2737 			goto rx_stop;
2738 		}
2739 		bf->bf_data = newdata;
2740 		/*
2741 		 * Attach the dma buffer to the mbuf;
2742 		 * mwl_rxbuf_init will re-setup the rx
2743 		 * descriptor using the replacement dma
2744 		 * buffer we just installed above.
2745 		 */
2746 		m_extadd(m, data, MWL_AGGR_SIZE, mwl_ext_free, sc, NULL, 0,
2747 		    EXT_NET_DRV);
2748 		m->m_data += off - hdrlen;
2749 		m->m_pkthdr.len = m->m_len = pktlen;
2750 		/* NB: dma buffer assumed read-only */
2751 
2752 		/*
2753 		 * Piece 802.11 header together.
2754 		 */
2755 		wh = mtod(m, struct ieee80211_qosframe *);
2756 		/* NB: don't need to do this sometimes but ... */
2757 		/* XXX special case so we can memcpy after m_devget? */
2758 		ovbcopy(data + sizeof(uint16_t), wh, hdrlen);
2759 		if (IEEE80211_QOS_HAS_SEQ(wh))
2760 			*(uint16_t *)ieee80211_getqos(wh) = ds->QosCtrl;
2761 		/*
2762 		 * The f/w strips WEP header but doesn't clear
2763 		 * the WEP bit; mark the packet with M_WEP so
2764 		 * net80211 will treat the data as decrypted.
2765 		 * While here also clear the PWR_MGT bit since
2766 		 * power save is handled by the firmware and
2767 		 * passing this up will potentially cause the
2768 		 * upper layer to put a station in power save
2769 		 * (except when configured with MWL_HOST_PS_SUPPORT).
2770 		 */
2771 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2772 			m->m_flags |= M_WEP;
2773 #ifdef MWL_HOST_PS_SUPPORT
2774 		wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
2775 #else
2776 		wh->i_fc[1] &= ~(IEEE80211_FC1_PROTECTED |
2777 		    IEEE80211_FC1_PWR_MGT);
2778 #endif
2779 
2780 		if (ieee80211_radiotap_active(ic)) {
2781 			struct mwl_rx_radiotap_header *tap = &sc->sc_rx_th;
2782 
2783 			tap->wr_flags = 0;
2784 			tap->wr_rate = ds->Rate;
2785 			tap->wr_antsignal = rssi + nf;
2786 			tap->wr_antnoise = nf;
2787 		}
2788 		if (IFF_DUMPPKTS_RECV(sc, wh)) {
2789 			ieee80211_dump_pkt(ic, mtod(m, caddr_t),
2790 			    len, ds->Rate, rssi);
2791 		}
2792 		/* dispatch */
2793 		ni = ieee80211_find_rxnode(ic,
2794 		    (const struct ieee80211_frame_min *) wh);
2795 
2796 		NET_EPOCH_ENTER(et);
2797 		if (ni != NULL) {
2798 			mn = MWL_NODE(ni);
2799 #ifdef MWL_ANT_INFO_SUPPORT
2800 			mn->mn_ai.rssi_a = ds->ai.rssi_a;
2801 			mn->mn_ai.rssi_b = ds->ai.rssi_b;
2802 			mn->mn_ai.rssi_c = ds->ai.rssi_c;
2803 			mn->mn_ai.rsvd1 = rssi;
2804 #endif
2805 			/* tag AMPDU aggregates for reorder processing */
2806 			if (ni->ni_flags & IEEE80211_NODE_HT)
2807 				m->m_flags |= M_AMPDU;
2808 			(void) ieee80211_input(ni, m, rssi, nf);
2809 			ieee80211_free_node(ni);
2810 		} else
2811 			(void) ieee80211_input_all(ic, m, rssi, nf);
2812 		NET_EPOCH_EXIT(et);
2813 rx_next:
2814 		/* NB: ignore ENOMEM so we process more descriptors */
2815 		(void) mwl_rxbuf_init(sc, bf);
2816 		bf = STAILQ_NEXT(bf, bf_list);
2817 	}
2818 rx_stop:
2819 	sc->sc_rxnext = bf;
2820 
2821 	if (mbufq_first(&sc->sc_snd) != NULL) {
2822 		/* NB: kick fw; the tx thread may have been preempted */
2823 		mwl_hal_txstart(sc->sc_mh, 0);
2824 		mwl_start(sc);
2825 	}
2826 }
2827 
2828 static void
2829 mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *txq, int qnum)
2830 {
2831 	struct mwl_txbuf *bf, *bn;
2832 	struct mwl_txdesc *ds;
2833 
2834 	MWL_TXQ_LOCK_INIT(sc, txq);
2835 	txq->qnum = qnum;
2836 	txq->txpri = 0;	/* XXX */
2837 #if 0
2838 	/* NB: q setup by mwl_txdma_setup XXX */
2839 	STAILQ_INIT(&txq->free);
2840 #endif
2841 	STAILQ_FOREACH(bf, &txq->free, bf_list) {
2842 		bf->bf_txq = txq;
2843 
2844 		ds = bf->bf_desc;
2845 		bn = STAILQ_NEXT(bf, bf_list);
2846 		if (bn == NULL)
2847 			bn = STAILQ_FIRST(&txq->free);
2848 		ds->pPhysNext = htole32(bn->bf_daddr);
2849 	}
2850 	STAILQ_INIT(&txq->active);
2851 }
2852 
2853 /*
2854  * Setup a hardware data transmit queue for the specified
2855  * access control.  We record the mapping from ac's
2856  * to h/w queues for use by mwl_tx_start.
2857  */
2858 static int
2859 mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype)
2860 {
2861 	struct mwl_txq *txq;
2862 
2863 	if (ac >= nitems(sc->sc_ac2q)) {
2864 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2865 			ac, nitems(sc->sc_ac2q));
2866 		return 0;
2867 	}
2868 	if (mvtype >= MWL_NUM_TX_QUEUES) {
2869 		device_printf(sc->sc_dev, "mvtype %u out of range, max %u!\n",
2870 			mvtype, MWL_NUM_TX_QUEUES);
2871 		return 0;
2872 	}
2873 	txq = &sc->sc_txq[mvtype];
2874 	mwl_txq_init(sc, txq, mvtype);
2875 	sc->sc_ac2q[ac] = txq;
2876 	return 1;
2877 }
2878 
2879 /*
2880  * Update WME parameters for a transmit queue.
2881  */
2882 static int
2883 mwl_txq_update(struct mwl_softc *sc, int ac)
2884 {
2885 #define	MWL_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2886 	struct ieee80211com *ic = &sc->sc_ic;
2887 	struct chanAccParams chp;
2888 	struct mwl_txq *txq = sc->sc_ac2q[ac];
2889 	struct wmeParams *wmep;
2890 	struct mwl_hal *mh = sc->sc_mh;
2891 	int aifs, cwmin, cwmax, txoplim;
2892 
2893 	ieee80211_wme_ic_getparams(ic, &chp);
2894 	wmep = &chp.cap_wmeParams[ac];
2895 
2896 	aifs = wmep->wmep_aifsn;
2897 	/* XXX in sta mode need to pass log values for cwmin/max */
2898 	cwmin = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2899 	cwmax = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2900 	txoplim = wmep->wmep_txopLimit;		/* NB: units of 32us */
2901 
2902 	if (mwl_hal_setedcaparams(mh, txq->qnum, cwmin, cwmax, aifs, txoplim)) {
2903 		device_printf(sc->sc_dev, "unable to update hardware queue "
2904 			"parameters for %s traffic!\n",
2905 			ieee80211_wme_acnames[ac]);
2906 		return 0;
2907 	}
2908 	return 1;
2909 #undef MWL_EXPONENT_TO_VALUE
2910 }
2911 
2912 /*
2913  * Callback from the 802.11 layer to update WME parameters.
2914  */
2915 static int
2916 mwl_wme_update(struct ieee80211com *ic)
2917 {
2918 	struct mwl_softc *sc = ic->ic_softc;
2919 
2920 	return !mwl_txq_update(sc, WME_AC_BE) ||
2921 	    !mwl_txq_update(sc, WME_AC_BK) ||
2922 	    !mwl_txq_update(sc, WME_AC_VI) ||
2923 	    !mwl_txq_update(sc, WME_AC_VO) ? EIO : 0;
2924 }
2925 
2926 /*
2927  * Reclaim resources for a setup queue.
2928  */
2929 static void
2930 mwl_tx_cleanupq(struct mwl_softc *sc, struct mwl_txq *txq)
2931 {
2932 	/* XXX hal work? */
2933 	MWL_TXQ_LOCK_DESTROY(txq);
2934 }
2935 
2936 /*
2937  * Reclaim all tx queue resources.
2938  */
2939 static void
2940 mwl_tx_cleanup(struct mwl_softc *sc)
2941 {
2942 	int i;
2943 
2944 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2945 		mwl_tx_cleanupq(sc, &sc->sc_txq[i]);
2946 }
2947 
2948 static int
2949 mwl_tx_dmasetup(struct mwl_softc *sc, struct mwl_txbuf *bf, struct mbuf *m0)
2950 {
2951 	struct mbuf *m;
2952 	int error;
2953 
2954 	/*
2955 	 * Load the DMA map so any coalescing is done.  This
2956 	 * also calculates the number of descriptors we need.
2957 	 */
2958 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2959 				     bf->bf_segs, &bf->bf_nseg,
2960 				     BUS_DMA_NOWAIT);
2961 	if (error == EFBIG) {
2962 		/* XXX packet requires too many descriptors */
2963 		bf->bf_nseg = MWL_TXDESC+1;
2964 	} else if (error != 0) {
2965 		sc->sc_stats.mst_tx_busdma++;
2966 		m_freem(m0);
2967 		return error;
2968 	}
2969 	/*
2970 	 * Discard null packets and check for packets that
2971 	 * require too many TX descriptors.  We try to convert
2972 	 * the latter to a cluster.
2973 	 */
2974 	if (error == EFBIG) {		/* too many desc's, linearize */
2975 		sc->sc_stats.mst_tx_linear++;
2976 #if MWL_TXDESC > 1
2977 		m = m_collapse(m0, M_NOWAIT, MWL_TXDESC);
2978 #else
2979 		m = m_defrag(m0, M_NOWAIT);
2980 #endif
2981 		if (m == NULL) {
2982 			m_freem(m0);
2983 			sc->sc_stats.mst_tx_nombuf++;
2984 			return ENOMEM;
2985 		}
2986 		m0 = m;
2987 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2988 					     bf->bf_segs, &bf->bf_nseg,
2989 					     BUS_DMA_NOWAIT);
2990 		if (error != 0) {
2991 			sc->sc_stats.mst_tx_busdma++;
2992 			m_freem(m0);
2993 			return error;
2994 		}
2995 		KASSERT(bf->bf_nseg <= MWL_TXDESC,
2996 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
2997 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
2998 		sc->sc_stats.mst_tx_nodata++;
2999 		m_freem(m0);
3000 		return EIO;
3001 	}
3002 	DPRINTF(sc, MWL_DEBUG_XMIT, "%s: m %p len %u\n",
3003 		__func__, m0, m0->m_pkthdr.len);
3004 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3005 	bf->bf_m = m0;
3006 
3007 	return 0;
3008 }
3009 
3010 static __inline int
3011 mwl_cvtlegacyrate(int rate)
3012 {
3013 	switch (rate) {
3014 	case 2:	 return 0;
3015 	case 4:	 return 1;
3016 	case 11: return 2;
3017 	case 22: return 3;
3018 	case 44: return 4;
3019 	case 12: return 5;
3020 	case 18: return 6;
3021 	case 24: return 7;
3022 	case 36: return 8;
3023 	case 48: return 9;
3024 	case 72: return 10;
3025 	case 96: return 11;
3026 	case 108:return 12;
3027 	}
3028 	return 0;
3029 }
3030 
3031 /*
3032  * Calculate fixed tx rate information per client state;
3033  * this value is suitable for writing to the Format field
3034  * of a tx descriptor.
3035  */
3036 static uint16_t
3037 mwl_calcformat(uint8_t rate, const struct ieee80211_node *ni)
3038 {
3039 	uint16_t fmt;
3040 
3041 	fmt = _IEEE80211_SHIFTMASK(3, EAGLE_TXD_ANTENNA)
3042 	    | (IEEE80211_IS_CHAN_HT40D(ni->ni_chan) ?
3043 		EAGLE_TXD_EXTCHAN_LO : EAGLE_TXD_EXTCHAN_HI);
3044 	if (rate & IEEE80211_RATE_MCS) {	/* HT MCS */
3045 		fmt |= EAGLE_TXD_FORMAT_HT
3046 		    /* NB: 0x80 implicitly stripped from ucastrate */
3047 		    | _IEEE80211_SHIFTMASK(rate, EAGLE_TXD_RATE);
3048 		/* XXX short/long GI may be wrong; re-check */
3049 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
3050 			fmt |= EAGLE_TXD_CHW_40
3051 			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 ?
3052 			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3053 		} else {
3054 			fmt |= EAGLE_TXD_CHW_20
3055 			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 ?
3056 			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3057 		}
3058 	} else {			/* legacy rate */
3059 		fmt |= EAGLE_TXD_FORMAT_LEGACY
3060 		    | _IEEE80211_SHIFTMASK(mwl_cvtlegacyrate(rate),
3061 			EAGLE_TXD_RATE)
3062 		    | EAGLE_TXD_CHW_20
3063 		    /* XXX iv_flags & IEEE80211_F_SHPREAMBLE? */
3064 		    | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE ?
3065 			EAGLE_TXD_PREAMBLE_SHORT : EAGLE_TXD_PREAMBLE_LONG);
3066 	}
3067 	return fmt;
3068 }
3069 
3070 static int
3071 mwl_tx_start(struct mwl_softc *sc, struct ieee80211_node *ni, struct mwl_txbuf *bf,
3072     struct mbuf *m0)
3073 {
3074 	struct ieee80211com *ic = &sc->sc_ic;
3075 	struct ieee80211vap *vap = ni->ni_vap;
3076 	int error, iswep, ismcast;
3077 	int hdrlen, pktlen;
3078 	struct mwl_txdesc *ds;
3079 	struct mwl_txq *txq;
3080 	struct ieee80211_frame *wh;
3081 	struct mwltxrec *tr;
3082 	struct mwl_node *mn;
3083 	uint16_t qos;
3084 #if MWL_TXDESC > 1
3085 	int i;
3086 #endif
3087 
3088 	wh = mtod(m0, struct ieee80211_frame *);
3089 	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
3090 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3091 	hdrlen = ieee80211_anyhdrsize(wh);
3092 	pktlen = m0->m_pkthdr.len;
3093 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3094 		qos = *(uint16_t *)ieee80211_getqos(wh);
3095 	} else
3096 		qos = 0;
3097 
3098 	if (iswep) {
3099 		const struct ieee80211_cipher *cip;
3100 		struct ieee80211_key *k;
3101 
3102 		/*
3103 		 * Construct the 802.11 header+trailer for an encrypted
3104 		 * frame. The only reason this can fail is because of an
3105 		 * unknown or unsupported cipher/key type.
3106 		 *
3107 		 * NB: we do this even though the firmware will ignore
3108 		 *     what we've done for WEP and TKIP as we need the
3109 		 *     ExtIV filled in for CCMP and this also adjusts
3110 		 *     the headers which simplifies our work below.
3111 		 */
3112 		k = ieee80211_crypto_encap(ni, m0);
3113 		if (k == NULL) {
3114 			/*
3115 			 * This can happen when the key is yanked after the
3116 			 * frame was queued.  Just discard the frame; the
3117 			 * 802.11 layer counts failures and provides
3118 			 * debugging/diagnostics.
3119 			 */
3120 			m_freem(m0);
3121 			return EIO;
3122 		}
3123 		/*
3124 		 * Adjust the packet length for the crypto additions
3125 		 * done during encap and any other bits that the f/w
3126 		 * will add later on.
3127 		 */
3128 		cip = k->wk_cipher;
3129 		pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer;
3130 
3131 		/* packet header may have moved, reset our local pointer */
3132 		wh = mtod(m0, struct ieee80211_frame *);
3133 	}
3134 
3135 	if (ieee80211_radiotap_active_vap(vap)) {
3136 		sc->sc_tx_th.wt_flags = 0;	/* XXX */
3137 		if (iswep)
3138 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3139 #if 0
3140 		sc->sc_tx_th.wt_rate = ds->DataRate;
3141 #endif
3142 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3143 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3144 
3145 		ieee80211_radiotap_tx(vap, m0);
3146 	}
3147 	/*
3148 	 * Copy up/down the 802.11 header; the firmware requires
3149 	 * we present a 2-byte payload length followed by a
3150 	 * 4-address header (w/o QoS), followed (optionally) by
3151 	 * any WEP/ExtIV header (but only filled in for CCMP).
3152 	 * We are assured the mbuf has sufficient headroom to
3153 	 * prepend in-place by the setup of ic_headroom in
3154 	 * mwl_attach.
3155 	 */
3156 	if (hdrlen < sizeof(struct mwltxrec)) {
3157 		const int space = sizeof(struct mwltxrec) - hdrlen;
3158 		if (M_LEADINGSPACE(m0) < space) {
3159 			/* NB: should never happen */
3160 			device_printf(sc->sc_dev,
3161 			    "not enough headroom, need %d found %zd, "
3162 			    "m_flags 0x%x m_len %d\n",
3163 			    space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len);
3164 			ieee80211_dump_pkt(ic,
3165 			    mtod(m0, const uint8_t *), m0->m_len, 0, -1);
3166 			m_freem(m0);
3167 			sc->sc_stats.mst_tx_noheadroom++;
3168 			return EIO;
3169 		}
3170 		M_PREPEND(m0, space, M_NOWAIT);
3171 	}
3172 	tr = mtod(m0, struct mwltxrec *);
3173 	if (wh != (struct ieee80211_frame *) &tr->wh)
3174 		ovbcopy(wh, &tr->wh, hdrlen);
3175 	/*
3176 	 * Note: the "firmware length" is actually the length
3177 	 * of the fully formed "802.11 payload".  That is, it's
3178 	 * everything except for the 802.11 header.  In particular
3179 	 * this includes all crypto material including the MIC!
3180 	 */
3181 	tr->fwlen = htole16(pktlen - hdrlen);
3182 
3183 	/*
3184 	 * Load the DMA map so any coalescing is done.  This
3185 	 * also calculates the number of descriptors we need.
3186 	 */
3187 	error = mwl_tx_dmasetup(sc, bf, m0);
3188 	if (error != 0) {
3189 		/* NB: stat collected in mwl_tx_dmasetup */
3190 		DPRINTF(sc, MWL_DEBUG_XMIT,
3191 		    "%s: unable to setup dma\n", __func__);
3192 		return error;
3193 	}
3194 	bf->bf_node = ni;			/* NB: held reference */
3195 	m0 = bf->bf_m;				/* NB: may have changed */
3196 	tr = mtod(m0, struct mwltxrec *);
3197 	wh = (struct ieee80211_frame *)&tr->wh;
3198 
3199 	/*
3200 	 * Formulate tx descriptor.
3201 	 */
3202 	ds = bf->bf_desc;
3203 	txq = bf->bf_txq;
3204 
3205 	ds->QosCtrl = qos;			/* NB: already little-endian */
3206 #if MWL_TXDESC == 1
3207 	/*
3208 	 * NB: multiframes should be zero because the descriptors
3209 	 *     are initialized to zero.  This should handle the case
3210 	 *     where the driver is built with MWL_TXDESC=1 but we are
3211 	 *     using firmware with multi-segment support.
3212 	 */
3213 	ds->PktPtr = htole32(bf->bf_segs[0].ds_addr);
3214 	ds->PktLen = htole16(bf->bf_segs[0].ds_len);
3215 #else
3216 	ds->multiframes = htole32(bf->bf_nseg);
3217 	ds->PktLen = htole16(m0->m_pkthdr.len);
3218 	for (i = 0; i < bf->bf_nseg; i++) {
3219 		ds->PktPtrArray[i] = htole32(bf->bf_segs[i].ds_addr);
3220 		ds->PktLenArray[i] = htole16(bf->bf_segs[i].ds_len);
3221 	}
3222 #endif
3223 	/* NB: pPhysNext, DataRate, and SapPktInfo setup once, don't touch */
3224 	ds->Format = 0;
3225 	ds->pad = 0;
3226 	ds->ack_wcb_addr = 0;
3227 
3228 	mn = MWL_NODE(ni);
3229 	/*
3230 	 * Select transmit rate.
3231 	 */
3232 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3233 	case IEEE80211_FC0_TYPE_MGT:
3234 		sc->sc_stats.mst_tx_mgmt++;
3235 		/* fall thru... */
3236 	case IEEE80211_FC0_TYPE_CTL:
3237 		/* NB: assign to BE q to avoid bursting */
3238 		ds->TxPriority = MWL_WME_AC_BE;
3239 		break;
3240 	case IEEE80211_FC0_TYPE_DATA:
3241 		if (!ismcast) {
3242 			const struct ieee80211_txparam *tp = ni->ni_txparms;
3243 			/*
3244 			 * EAPOL frames get forced to a fixed rate and w/o
3245 			 * aggregation; otherwise check for any fixed rate
3246 			 * for the client (may depend on association state).
3247 			 */
3248 			if (m0->m_flags & M_EAPOL) {
3249 				const struct mwl_vap *mvp = MWL_VAP_CONST(vap);
3250 				ds->Format = mvp->mv_eapolformat;
3251 				ds->pad = htole16(
3252 				    EAGLE_TXD_FIXED_RATE | EAGLE_TXD_DONT_AGGR);
3253 			} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3254 				/* XXX pre-calculate per node */
3255 				ds->Format = htole16(
3256 				    mwl_calcformat(tp->ucastrate, ni));
3257 				ds->pad = htole16(EAGLE_TXD_FIXED_RATE);
3258 			}
3259 			/* NB: EAPOL frames will never have qos set */
3260 			if (qos == 0)
3261 				ds->TxPriority = txq->qnum;
3262 #if MWL_MAXBA > 3
3263 			else if (mwl_bastream_match(&mn->mn_ba[3], qos))
3264 				ds->TxPriority = mn->mn_ba[3].txq;
3265 #endif
3266 #if MWL_MAXBA > 2
3267 			else if (mwl_bastream_match(&mn->mn_ba[2], qos))
3268 				ds->TxPriority = mn->mn_ba[2].txq;
3269 #endif
3270 #if MWL_MAXBA > 1
3271 			else if (mwl_bastream_match(&mn->mn_ba[1], qos))
3272 				ds->TxPriority = mn->mn_ba[1].txq;
3273 #endif
3274 #if MWL_MAXBA > 0
3275 			else if (mwl_bastream_match(&mn->mn_ba[0], qos))
3276 				ds->TxPriority = mn->mn_ba[0].txq;
3277 #endif
3278 			else
3279 				ds->TxPriority = txq->qnum;
3280 		} else
3281 			ds->TxPriority = txq->qnum;
3282 		break;
3283 	default:
3284 		device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
3285 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3286 		sc->sc_stats.mst_tx_badframetype++;
3287 		m_freem(m0);
3288 		return EIO;
3289 	}
3290 
3291 	if (IFF_DUMPPKTS_XMIT(sc))
3292 		ieee80211_dump_pkt(ic,
3293 		    mtod(m0, const uint8_t *)+sizeof(uint16_t),
3294 		    m0->m_len - sizeof(uint16_t), ds->DataRate, -1);
3295 
3296 	MWL_TXQ_LOCK(txq);
3297 	ds->Status = htole32(EAGLE_TXD_STATUS_FW_OWNED);
3298 	STAILQ_INSERT_TAIL(&txq->active, bf, bf_list);
3299 	MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3300 
3301 	sc->sc_tx_timer = 5;
3302 	MWL_TXQ_UNLOCK(txq);
3303 
3304 	return 0;
3305 }
3306 
3307 static __inline int
3308 mwl_cvtlegacyrix(int rix)
3309 {
3310 	static const int ieeerates[] =
3311 	    { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 };
3312 	return (rix < nitems(ieeerates) ? ieeerates[rix] : 0);
3313 }
3314 
3315 /*
3316  * Process completed xmit descriptors from the specified queue.
3317  */
3318 static int
3319 mwl_tx_processq(struct mwl_softc *sc, struct mwl_txq *txq)
3320 {
3321 #define	EAGLE_TXD_STATUS_MCAST \
3322 	(EAGLE_TXD_STATUS_MULTICAST_TX | EAGLE_TXD_STATUS_BROADCAST_TX)
3323 	struct ieee80211com *ic = &sc->sc_ic;
3324 	struct mwl_txbuf *bf;
3325 	struct mwl_txdesc *ds;
3326 	struct ieee80211_node *ni;
3327 	int nreaped;
3328 	uint32_t status;
3329 
3330 	DPRINTF(sc, MWL_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum);
3331 	for (nreaped = 0;; nreaped++) {
3332 		MWL_TXQ_LOCK(txq);
3333 		bf = STAILQ_FIRST(&txq->active);
3334 		if (bf == NULL) {
3335 			MWL_TXQ_UNLOCK(txq);
3336 			break;
3337 		}
3338 		ds = bf->bf_desc;
3339 		MWL_TXDESC_SYNC(txq, ds,
3340 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3341 		if (ds->Status & htole32(EAGLE_TXD_STATUS_FW_OWNED)) {
3342 			MWL_TXQ_UNLOCK(txq);
3343 			break;
3344 		}
3345 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3346 		MWL_TXQ_UNLOCK(txq);
3347 
3348 #ifdef MWL_DEBUG
3349 		if (sc->sc_debug & MWL_DEBUG_XMIT_DESC)
3350 			mwl_printtxbuf(bf, txq->qnum, nreaped);
3351 #endif
3352 		ni = bf->bf_node;
3353 		if (ni != NULL) {
3354 			status = le32toh(ds->Status);
3355 			if (status & EAGLE_TXD_STATUS_OK) {
3356 				uint16_t Format = le16toh(ds->Format);
3357 				uint8_t txant = _IEEE80211_MASKSHIFT(Format,
3358 				    EAGLE_TXD_ANTENNA);
3359 
3360 				sc->sc_stats.mst_ant_tx[txant]++;
3361 				if (status & EAGLE_TXD_STATUS_OK_RETRY)
3362 					sc->sc_stats.mst_tx_retries++;
3363 				if (status & EAGLE_TXD_STATUS_OK_MORE_RETRY)
3364 					sc->sc_stats.mst_tx_mretries++;
3365 				if (txq->qnum >= MWL_WME_AC_VO)
3366 					ic->ic_wme.wme_hipri_traffic++;
3367 				ni->ni_txrate = _IEEE80211_MASKSHIFT(Format,
3368 				    EAGLE_TXD_RATE);
3369 				if ((Format & EAGLE_TXD_FORMAT_HT) == 0) {
3370 					ni->ni_txrate = mwl_cvtlegacyrix(
3371 					    ni->ni_txrate);
3372 				} else
3373 					ni->ni_txrate |= IEEE80211_RATE_MCS;
3374 				sc->sc_stats.mst_tx_rate = ni->ni_txrate;
3375 			} else {
3376 				if (status & EAGLE_TXD_STATUS_FAILED_LINK_ERROR)
3377 					sc->sc_stats.mst_tx_linkerror++;
3378 				if (status & EAGLE_TXD_STATUS_FAILED_XRETRY)
3379 					sc->sc_stats.mst_tx_xretries++;
3380 				if (status & EAGLE_TXD_STATUS_FAILED_AGING)
3381 					sc->sc_stats.mst_tx_aging++;
3382 				if (bf->bf_m->m_flags & M_FF)
3383 					sc->sc_stats.mst_ff_txerr++;
3384 			}
3385 			if (bf->bf_m->m_flags & M_TXCB)
3386 				/* XXX strip fw len in case header inspected */
3387 				m_adj(bf->bf_m, sizeof(uint16_t));
3388 			ieee80211_tx_complete(ni, bf->bf_m,
3389 			    (status & EAGLE_TXD_STATUS_OK) == 0);
3390 		} else
3391 			m_freem(bf->bf_m);
3392 		ds->Status = htole32(EAGLE_TXD_STATUS_IDLE);
3393 
3394 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3395 		    BUS_DMASYNC_POSTWRITE);
3396 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3397 
3398 		mwl_puttxbuf_tail(txq, bf);
3399 	}
3400 	return nreaped;
3401 #undef EAGLE_TXD_STATUS_MCAST
3402 }
3403 
3404 /*
3405  * Deferred processing of transmit interrupt; special-cased
3406  * for four hardware queues, 0-3.
3407  */
3408 static void
3409 mwl_tx_proc(void *arg, int npending)
3410 {
3411 	struct mwl_softc *sc = arg;
3412 	int nreaped;
3413 
3414 	/*
3415 	 * Process each active queue.
3416 	 */
3417 	nreaped = 0;
3418 	if (!STAILQ_EMPTY(&sc->sc_txq[0].active))
3419 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[0]);
3420 	if (!STAILQ_EMPTY(&sc->sc_txq[1].active))
3421 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[1]);
3422 	if (!STAILQ_EMPTY(&sc->sc_txq[2].active))
3423 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[2]);
3424 	if (!STAILQ_EMPTY(&sc->sc_txq[3].active))
3425 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[3]);
3426 
3427 	if (nreaped != 0) {
3428 		sc->sc_tx_timer = 0;
3429 		if (mbufq_first(&sc->sc_snd) != NULL) {
3430 			/* NB: kick fw; the tx thread may have been preempted */
3431 			mwl_hal_txstart(sc->sc_mh, 0);
3432 			mwl_start(sc);
3433 		}
3434 	}
3435 }
3436 
3437 static void
3438 mwl_tx_draintxq(struct mwl_softc *sc, struct mwl_txq *txq)
3439 {
3440 	struct ieee80211_node *ni;
3441 	struct mwl_txbuf *bf;
3442 	u_int ix __unused;
3443 
3444 	/*
3445 	 * NB: this assumes output has been stopped and
3446 	 *     we do not need to block mwl_tx_tasklet
3447 	 */
3448 	for (ix = 0;; ix++) {
3449 		MWL_TXQ_LOCK(txq);
3450 		bf = STAILQ_FIRST(&txq->active);
3451 		if (bf == NULL) {
3452 			MWL_TXQ_UNLOCK(txq);
3453 			break;
3454 		}
3455 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3456 		MWL_TXQ_UNLOCK(txq);
3457 #ifdef MWL_DEBUG
3458 		if (sc->sc_debug & MWL_DEBUG_RESET) {
3459 			struct ieee80211com *ic = &sc->sc_ic;
3460 			const struct mwltxrec *tr =
3461 			    mtod(bf->bf_m, const struct mwltxrec *);
3462 			mwl_printtxbuf(bf, txq->qnum, ix);
3463 			ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh,
3464 				bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1);
3465 		}
3466 #endif /* MWL_DEBUG */
3467 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3468 		ni = bf->bf_node;
3469 		if (ni != NULL) {
3470 			/*
3471 			 * Reclaim node reference.
3472 			 */
3473 			ieee80211_free_node(ni);
3474 		}
3475 		m_freem(bf->bf_m);
3476 
3477 		mwl_puttxbuf_tail(txq, bf);
3478 	}
3479 }
3480 
3481 /*
3482  * Drain the transmit queues and reclaim resources.
3483  */
3484 static void
3485 mwl_draintxq(struct mwl_softc *sc)
3486 {
3487 	int i;
3488 
3489 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3490 		mwl_tx_draintxq(sc, &sc->sc_txq[i]);
3491 	sc->sc_tx_timer = 0;
3492 }
3493 
3494 #ifdef MWL_DIAGAPI
3495 /*
3496  * Reset the transmit queues to a pristine state after a fw download.
3497  */
3498 static void
3499 mwl_resettxq(struct mwl_softc *sc)
3500 {
3501 	int i;
3502 
3503 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3504 		mwl_txq_reset(sc, &sc->sc_txq[i]);
3505 }
3506 #endif /* MWL_DIAGAPI */
3507 
3508 /*
3509  * Clear the transmit queues of any frames submitted for the
3510  * specified vap.  This is done when the vap is deleted so we
3511  * don't potentially reference the vap after it is gone.
3512  * Note we cannot remove the frames; we only reclaim the node
3513  * reference.
3514  */
3515 static void
3516 mwl_cleartxq(struct mwl_softc *sc, struct ieee80211vap *vap)
3517 {
3518 	struct mwl_txq *txq;
3519 	struct mwl_txbuf *bf;
3520 	int i;
3521 
3522 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
3523 		txq = &sc->sc_txq[i];
3524 		MWL_TXQ_LOCK(txq);
3525 		STAILQ_FOREACH(bf, &txq->active, bf_list) {
3526 			struct ieee80211_node *ni = bf->bf_node;
3527 			if (ni != NULL && ni->ni_vap == vap) {
3528 				bf->bf_node = NULL;
3529 				ieee80211_free_node(ni);
3530 			}
3531 		}
3532 		MWL_TXQ_UNLOCK(txq);
3533 	}
3534 }
3535 
3536 static int
3537 mwl_recv_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
3538 	const uint8_t *frm, const uint8_t *efrm)
3539 {
3540 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3541 	const struct ieee80211_action *ia;
3542 
3543 	ia = (const struct ieee80211_action *) frm;
3544 	if (ia->ia_category == IEEE80211_ACTION_CAT_HT &&
3545 	    ia->ia_action == IEEE80211_ACTION_HT_MIMOPWRSAVE) {
3546 		const struct ieee80211_action_ht_mimopowersave *mps =
3547 		    (const struct ieee80211_action_ht_mimopowersave *) ia;
3548 
3549 		mwl_hal_setmimops(sc->sc_mh, ni->ni_macaddr,
3550 		    mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA,
3551 		    _IEEE80211_MASKSHIFT(mps->am_control,
3552 			IEEE80211_A_HT_MIMOPWRSAVE_MODE));
3553 		return 0;
3554 	} else
3555 		return sc->sc_recv_action(ni, wh, frm, efrm);
3556 }
3557 
3558 static int
3559 mwl_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3560 	int dialogtoken, int baparamset, int batimeout)
3561 {
3562 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3563 	struct ieee80211vap *vap = ni->ni_vap;
3564 	struct mwl_node *mn = MWL_NODE(ni);
3565 	struct mwl_bastate *bas;
3566 
3567 	bas = tap->txa_private;
3568 	if (bas == NULL) {
3569 		const MWL_HAL_BASTREAM *sp;
3570 		/*
3571 		 * Check for a free BA stream slot.
3572 		 */
3573 #if MWL_MAXBA > 3
3574 		if (mn->mn_ba[3].bastream == NULL)
3575 			bas = &mn->mn_ba[3];
3576 		else
3577 #endif
3578 #if MWL_MAXBA > 2
3579 		if (mn->mn_ba[2].bastream == NULL)
3580 			bas = &mn->mn_ba[2];
3581 		else
3582 #endif
3583 #if MWL_MAXBA > 1
3584 		if (mn->mn_ba[1].bastream == NULL)
3585 			bas = &mn->mn_ba[1];
3586 		else
3587 #endif
3588 #if MWL_MAXBA > 0
3589 		if (mn->mn_ba[0].bastream == NULL)
3590 			bas = &mn->mn_ba[0];
3591 		else
3592 #endif
3593 		{
3594 			/* sta already has max BA streams */
3595 			/* XXX assign BA stream to highest priority tid */
3596 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3597 			    "%s: already has max bastreams\n", __func__);
3598 			sc->sc_stats.mst_ampdu_reject++;
3599 			return 0;
3600 		}
3601 		/* NB: no held reference to ni */
3602 		sp = mwl_hal_bastream_alloc(MWL_VAP(vap)->mv_hvap,
3603 		    (baparamset & IEEE80211_BAPS_POLICY_IMMEDIATE) != 0,
3604 		    ni->ni_macaddr, tap->txa_tid, ni->ni_htparam,
3605 		    ni, tap);
3606 		if (sp == NULL) {
3607 			/*
3608 			 * No available stream, return 0 so no
3609 			 * a-mpdu aggregation will be done.
3610 			 */
3611 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3612 			    "%s: no bastream available\n", __func__);
3613 			sc->sc_stats.mst_ampdu_nostream++;
3614 			return 0;
3615 		}
3616 		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: alloc bastream %p\n",
3617 		    __func__, sp);
3618 		/* NB: qos is left zero so we won't match in mwl_tx_start */
3619 		bas->bastream = sp;
3620 		tap->txa_private = bas;
3621 	}
3622 	/* fetch current seq# from the firmware; if available */
3623 	if (mwl_hal_bastream_get_seqno(sc->sc_mh, bas->bastream,
3624 	    vap->iv_opmode == IEEE80211_M_STA ? vap->iv_myaddr : ni->ni_macaddr,
3625 	    &tap->txa_start) != 0)
3626 		tap->txa_start = 0;
3627 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout);
3628 }
3629 
3630 static int
3631 mwl_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3632 	int code, int baparamset, int batimeout)
3633 {
3634 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3635 	struct mwl_bastate *bas;
3636 
3637 	bas = tap->txa_private;
3638 	if (bas == NULL) {
3639 		/* XXX should not happen */
3640 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3641 		    "%s: no BA stream allocated, TID %d\n",
3642 		    __func__, tap->txa_tid);
3643 		sc->sc_stats.mst_addba_nostream++;
3644 		return 0;
3645 	}
3646 	if (code == IEEE80211_STATUS_SUCCESS) {
3647 		struct ieee80211vap *vap = ni->ni_vap;
3648 		int bufsiz, error;
3649 
3650 		/*
3651 		 * Tell the firmware to setup the BA stream;
3652 		 * we know resources are available because we
3653 		 * pre-allocated one before forming the request.
3654 		 */
3655 		bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
3656 		if (bufsiz == 0)
3657 			bufsiz = IEEE80211_AGGR_BAWMAX;
3658 		error = mwl_hal_bastream_create(MWL_VAP(vap)->mv_hvap,
3659 		    bas->bastream, bufsiz, bufsiz, tap->txa_start);
3660 		if (error != 0) {
3661 			/*
3662 			 * Setup failed, return immediately so no a-mpdu
3663 			 * aggregation will be done.
3664 			 */
3665 			mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3666 			mwl_bastream_free(bas);
3667 			tap->txa_private = NULL;
3668 
3669 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3670 			    "%s: create failed, error %d, bufsiz %d TID %d "
3671 			    "htparam 0x%x\n", __func__, error, bufsiz,
3672 			    tap->txa_tid, ni->ni_htparam);
3673 			sc->sc_stats.mst_bacreate_failed++;
3674 			return 0;
3675 		}
3676 		/* NB: cache txq to avoid ptr indirect */
3677 		mwl_bastream_setup(bas, tap->txa_tid, bas->bastream->txq);
3678 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3679 		    "%s: bastream %p assigned to txq %d TID %d bufsiz %d "
3680 		    "htparam 0x%x\n", __func__, bas->bastream,
3681 		    bas->txq, tap->txa_tid, bufsiz, ni->ni_htparam);
3682 	} else {
3683 		/*
3684 		 * Other side NAK'd us; return the resources.
3685 		 */
3686 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3687 		    "%s: request failed with code %d, destroy bastream %p\n",
3688 		    __func__, code, bas->bastream);
3689 		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3690 		mwl_bastream_free(bas);
3691 		tap->txa_private = NULL;
3692 	}
3693 	/* NB: firmware sends BAR so we don't need to */
3694 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
3695 }
3696 
3697 static void
3698 mwl_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3699 {
3700 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3701 	struct mwl_bastate *bas;
3702 
3703 	bas = tap->txa_private;
3704 	if (bas != NULL) {
3705 		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: destroy bastream %p\n",
3706 		    __func__, bas->bastream);
3707 		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3708 		mwl_bastream_free(bas);
3709 		tap->txa_private = NULL;
3710 	}
3711 	sc->sc_addba_stop(ni, tap);
3712 }
3713 
3714 /*
3715  * Setup the rx data structures.  This should only be
3716  * done once or we may get out of sync with the firmware.
3717  */
3718 static int
3719 mwl_startrecv(struct mwl_softc *sc)
3720 {
3721 	if (!sc->sc_recvsetup) {
3722 		struct mwl_rxbuf *bf, *prev;
3723 		struct mwl_rxdesc *ds;
3724 
3725 		prev = NULL;
3726 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3727 			int error = mwl_rxbuf_init(sc, bf);
3728 			if (error != 0) {
3729 				DPRINTF(sc, MWL_DEBUG_RECV,
3730 					"%s: mwl_rxbuf_init failed %d\n",
3731 					__func__, error);
3732 				return error;
3733 			}
3734 			if (prev != NULL) {
3735 				ds = prev->bf_desc;
3736 				ds->pPhysNext = htole32(bf->bf_daddr);
3737 			}
3738 			prev = bf;
3739 		}
3740 		if (prev != NULL) {
3741 			ds = prev->bf_desc;
3742 			ds->pPhysNext =
3743 			    htole32(STAILQ_FIRST(&sc->sc_rxbuf)->bf_daddr);
3744 		}
3745 		sc->sc_recvsetup = 1;
3746 	}
3747 	mwl_mode_init(sc);		/* set filters, etc. */
3748 	return 0;
3749 }
3750 
3751 static MWL_HAL_APMODE
3752 mwl_getapmode(const struct ieee80211vap *vap, struct ieee80211_channel *chan)
3753 {
3754 	MWL_HAL_APMODE mode;
3755 
3756 	if (IEEE80211_IS_CHAN_HT(chan)) {
3757 		if (vap->iv_flags_ht & IEEE80211_FHT_PUREN)
3758 			mode = AP_MODE_N_ONLY;
3759 		else if (IEEE80211_IS_CHAN_5GHZ(chan))
3760 			mode = AP_MODE_AandN;
3761 		else if (vap->iv_flags & IEEE80211_F_PUREG)
3762 			mode = AP_MODE_GandN;
3763 		else
3764 			mode = AP_MODE_BandGandN;
3765 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3766 		if (vap->iv_flags & IEEE80211_F_PUREG)
3767 			mode = AP_MODE_G_ONLY;
3768 		else
3769 			mode = AP_MODE_MIXED;
3770 	} else if (IEEE80211_IS_CHAN_B(chan))
3771 		mode = AP_MODE_B_ONLY;
3772 	else if (IEEE80211_IS_CHAN_A(chan))
3773 		mode = AP_MODE_A_ONLY;
3774 	else
3775 		mode = AP_MODE_MIXED;		/* XXX should not happen? */
3776 	return mode;
3777 }
3778 
3779 static int
3780 mwl_setapmode(struct ieee80211vap *vap, struct ieee80211_channel *chan)
3781 {
3782 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
3783 	return mwl_hal_setapmode(hvap, mwl_getapmode(vap, chan));
3784 }
3785 
3786 /*
3787  * Set/change channels.
3788  */
3789 static int
3790 mwl_chan_set(struct mwl_softc *sc, struct ieee80211_channel *chan)
3791 {
3792 	struct mwl_hal *mh = sc->sc_mh;
3793 	struct ieee80211com *ic = &sc->sc_ic;
3794 	MWL_HAL_CHANNEL hchan;
3795 	int maxtxpow;
3796 
3797 	DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n",
3798 	    __func__, chan->ic_freq, chan->ic_flags);
3799 
3800 	/*
3801 	 * Convert to a HAL channel description with
3802 	 * the flags constrained to reflect the current
3803 	 * operating mode.
3804 	 */
3805 	mwl_mapchan(&hchan, chan);
3806 	mwl_hal_intrset(mh, 0);		/* disable interrupts */
3807 #if 0
3808 	mwl_draintxq(sc);		/* clear pending tx frames */
3809 #endif
3810 	mwl_hal_setchannel(mh, &hchan);
3811 	/*
3812 	 * Tx power is cap'd by the regulatory setting and
3813 	 * possibly a user-set limit.  We pass the min of
3814 	 * these to the hal to apply them to the cal data
3815 	 * for this channel.
3816 	 * XXX min bound?
3817 	 */
3818 	maxtxpow = 2*chan->ic_maxregpower;
3819 	if (maxtxpow > ic->ic_txpowlimit)
3820 		maxtxpow = ic->ic_txpowlimit;
3821 	mwl_hal_settxpower(mh, &hchan, maxtxpow / 2);
3822 	/* NB: potentially change mcast/mgt rates */
3823 	mwl_setcurchanrates(sc);
3824 
3825 	/*
3826 	 * Update internal state.
3827 	 */
3828 	sc->sc_tx_th.wt_chan_freq = htole16(chan->ic_freq);
3829 	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
3830 	if (IEEE80211_IS_CHAN_A(chan)) {
3831 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_A);
3832 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_A);
3833 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3834 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G);
3835 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G);
3836 	} else {
3837 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B);
3838 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B);
3839 	}
3840 	sc->sc_curchan = hchan;
3841 	mwl_hal_intrset(mh, sc->sc_imask);
3842 
3843 	return 0;
3844 }
3845 
3846 static void
3847 mwl_scan_start(struct ieee80211com *ic)
3848 {
3849 	struct mwl_softc *sc = ic->ic_softc;
3850 
3851 	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3852 }
3853 
3854 static void
3855 mwl_scan_end(struct ieee80211com *ic)
3856 {
3857 	struct mwl_softc *sc = ic->ic_softc;
3858 
3859 	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3860 }
3861 
3862 static void
3863 mwl_set_channel(struct ieee80211com *ic)
3864 {
3865 	struct mwl_softc *sc = ic->ic_softc;
3866 
3867 	(void) mwl_chan_set(sc, ic->ic_curchan);
3868 }
3869 
3870 /*
3871  * Handle a channel switch request.  We inform the firmware
3872  * and mark the global state to suppress various actions.
3873  * NB: we issue only one request to the fw; we may be called
3874  * multiple times if there are multiple vap's.
3875  */
3876 static void
3877 mwl_startcsa(struct ieee80211vap *vap)
3878 {
3879 	struct ieee80211com *ic = vap->iv_ic;
3880 	struct mwl_softc *sc = ic->ic_softc;
3881 	MWL_HAL_CHANNEL hchan;
3882 
3883 	if (sc->sc_csapending)
3884 		return;
3885 
3886 	mwl_mapchan(&hchan, ic->ic_csa_newchan);
3887 	/* 1 =>'s quiet channel */
3888 	mwl_hal_setchannelswitchie(sc->sc_mh, &hchan, 1, ic->ic_csa_count);
3889 	sc->sc_csapending = 1;
3890 }
3891 
3892 /*
3893  * Plumb any static WEP key for the station.  This is
3894  * necessary as we must propagate the key from the
3895  * global key table of the vap to each sta db entry.
3896  */
3897 static void
3898 mwl_setanywepkey(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3899 {
3900 	if ((vap->iv_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) ==
3901 		IEEE80211_F_PRIVACY &&
3902 	    vap->iv_def_txkey != IEEE80211_KEYIX_NONE &&
3903 	    vap->iv_nw_keys[vap->iv_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE)
3904 		(void) _mwl_key_set(vap, &vap->iv_nw_keys[vap->iv_def_txkey],
3905 				    mac);
3906 }
3907 
3908 static int
3909 mwl_peerstadb(struct ieee80211_node *ni, int aid, int staid, MWL_HAL_PEERINFO *pi)
3910 {
3911 #define	WME(ie) ((const struct ieee80211_wme_info *) ie)
3912 	struct ieee80211vap *vap = ni->ni_vap;
3913 	struct mwl_hal_vap *hvap;
3914 	int error;
3915 
3916 	if (vap->iv_opmode == IEEE80211_M_WDS) {
3917 		/*
3918 		 * WDS vap's do not have a f/w vap; instead they piggyback
3919 		 * on an AP vap and we must install the sta db entry and
3920 		 * crypto state using that AP's handle (the WDS vap has none).
3921 		 */
3922 		hvap = MWL_VAP(vap)->mv_ap_hvap;
3923 	} else
3924 		hvap = MWL_VAP(vap)->mv_hvap;
3925 	error = mwl_hal_newstation(hvap, ni->ni_macaddr,
3926 	    aid, staid, pi,
3927 	    ni->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT),
3928 	    ni->ni_ies.wme_ie != NULL ? WME(ni->ni_ies.wme_ie)->wme_info : 0);
3929 	if (error == 0) {
3930 		/*
3931 		 * Setup security for this station.  For sta mode this is
3932 		 * needed even though do the same thing on transition to
3933 		 * AUTH state because the call to mwl_hal_newstation
3934 		 * clobbers the crypto state we setup.
3935 		 */
3936 		mwl_setanywepkey(vap, ni->ni_macaddr);
3937 	}
3938 	return error;
3939 #undef WME
3940 }
3941 
3942 static void
3943 mwl_setglobalkeys(struct ieee80211vap *vap)
3944 {
3945 	struct ieee80211_key *wk;
3946 
3947 	wk = &vap->iv_nw_keys[0];
3948 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; wk++)
3949 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
3950 			(void) _mwl_key_set(vap, wk, vap->iv_myaddr);
3951 }
3952 
3953 /*
3954  * Convert a legacy rate set to a firmware bitmask.
3955  */
3956 static uint32_t
3957 get_rate_bitmap(const struct ieee80211_rateset *rs)
3958 {
3959 	uint32_t rates;
3960 	int i;
3961 
3962 	rates = 0;
3963 	for (i = 0; i < rs->rs_nrates; i++)
3964 		switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
3965 		case 2:	  rates |= 0x001; break;
3966 		case 4:	  rates |= 0x002; break;
3967 		case 11:  rates |= 0x004; break;
3968 		case 22:  rates |= 0x008; break;
3969 		case 44:  rates |= 0x010; break;
3970 		case 12:  rates |= 0x020; break;
3971 		case 18:  rates |= 0x040; break;
3972 		case 24:  rates |= 0x080; break;
3973 		case 36:  rates |= 0x100; break;
3974 		case 48:  rates |= 0x200; break;
3975 		case 72:  rates |= 0x400; break;
3976 		case 96:  rates |= 0x800; break;
3977 		case 108: rates |= 0x1000; break;
3978 		}
3979 	return rates;
3980 }
3981 
3982 /*
3983  * Construct an HT firmware bitmask from an HT rate set.
3984  */
3985 static uint32_t
3986 get_htrate_bitmap(const struct ieee80211_htrateset *rs)
3987 {
3988 	uint32_t rates;
3989 	int i;
3990 
3991 	rates = 0;
3992 	for (i = 0; i < rs->rs_nrates; i++) {
3993 		if (rs->rs_rates[i] < 16)
3994 			rates |= 1<<rs->rs_rates[i];
3995 	}
3996 	return rates;
3997 }
3998 
3999 /*
4000  * Craft station database entry for station.
4001  * NB: use host byte order here, the hal handles byte swapping.
4002  */
4003 static MWL_HAL_PEERINFO *
4004 mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni)
4005 {
4006 	const struct ieee80211vap *vap = ni->ni_vap;
4007 
4008 	memset(pi, 0, sizeof(*pi));
4009 	pi->LegacyRateBitMap = get_rate_bitmap(&ni->ni_rates);
4010 	pi->CapInfo = ni->ni_capinfo;
4011 	if (ni->ni_flags & IEEE80211_NODE_HT) {
4012 		/* HT capabilities, etc */
4013 		pi->HTCapabilitiesInfo = ni->ni_htcap;
4014 		/* XXX pi.HTCapabilitiesInfo */
4015 	        pi->MacHTParamInfo = ni->ni_htparam;
4016 		pi->HTRateBitMap = get_htrate_bitmap(&ni->ni_htrates);
4017 		pi->AddHtInfo.ControlChan = ni->ni_htctlchan;
4018 		pi->AddHtInfo.AddChan = ni->ni_ht2ndchan;
4019 		pi->AddHtInfo.OpMode = ni->ni_htopmode;
4020 		pi->AddHtInfo.stbc = ni->ni_htstbc;
4021 
4022 		/* constrain according to local configuration */
4023 		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0)
4024 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI40;
4025 		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
4026 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI20;
4027 		if (ni->ni_chw != 40)
4028 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_CHWIDTH40;
4029 	}
4030 	return pi;
4031 }
4032 
4033 /*
4034  * Re-create the local sta db entry for a vap to ensure
4035  * up to date WME state is pushed to the firmware.  Because
4036  * this resets crypto state this must be followed by a
4037  * reload of any keys in the global key table.
4038  */
4039 static int
4040 mwl_localstadb(struct ieee80211vap *vap)
4041 {
4042 #define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4043 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
4044 	struct ieee80211_node *bss;
4045 	MWL_HAL_PEERINFO pi;
4046 	int error;
4047 
4048 	switch (vap->iv_opmode) {
4049 	case IEEE80211_M_STA:
4050 		bss = vap->iv_bss;
4051 		error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0,
4052 		    vap->iv_state == IEEE80211_S_RUN ?
4053 			mkpeerinfo(&pi, bss) : NULL,
4054 		    (bss->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)),
4055 		    bss->ni_ies.wme_ie != NULL ?
4056 			WME(bss->ni_ies.wme_ie)->wme_info : 0);
4057 		if (error == 0)
4058 			mwl_setglobalkeys(vap);
4059 		break;
4060 	case IEEE80211_M_HOSTAP:
4061 	case IEEE80211_M_MBSS:
4062 		error = mwl_hal_newstation(hvap, vap->iv_myaddr,
4063 		    0, 0, NULL, vap->iv_flags & IEEE80211_F_WME, 0);
4064 		if (error == 0)
4065 			mwl_setglobalkeys(vap);
4066 		break;
4067 	default:
4068 		error = 0;
4069 		break;
4070 	}
4071 	return error;
4072 #undef WME
4073 }
4074 
4075 static int
4076 mwl_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4077 {
4078 	struct mwl_vap *mvp = MWL_VAP(vap);
4079 	struct mwl_hal_vap *hvap = mvp->mv_hvap;
4080 	struct ieee80211com *ic = vap->iv_ic;
4081 	struct ieee80211_node *ni = NULL;
4082 	struct mwl_softc *sc = ic->ic_softc;
4083 	struct mwl_hal *mh = sc->sc_mh;
4084 	enum ieee80211_state ostate = vap->iv_state;
4085 	int error;
4086 
4087 	DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: %s -> %s\n",
4088 	    if_name(vap->iv_ifp), __func__,
4089 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
4090 
4091 	callout_stop(&sc->sc_timer);
4092 	/*
4093 	 * Clear current radar detection state.
4094 	 */
4095 	if (ostate == IEEE80211_S_CAC) {
4096 		/* stop quiet mode radar detection */
4097 		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_STOP);
4098 	} else if (sc->sc_radarena) {
4099 		/* stop in-service radar detection */
4100 		mwl_hal_setradardetection(mh, DR_DFS_DISABLE);
4101 		sc->sc_radarena = 0;
4102 	}
4103 	/*
4104 	 * Carry out per-state actions before doing net80211 work.
4105 	 */
4106 	if (nstate == IEEE80211_S_INIT) {
4107 		/* NB: only ap+sta vap's have a fw entity */
4108 		if (hvap != NULL)
4109 			mwl_hal_stop(hvap);
4110 	} else if (nstate == IEEE80211_S_SCAN) {
4111 		mwl_hal_start(hvap);
4112 		/* NB: this disables beacon frames */
4113 		mwl_hal_setinframode(hvap);
4114 	} else if (nstate == IEEE80211_S_AUTH) {
4115 		/*
4116 		 * Must create a sta db entry in case a WEP key needs to
4117 		 * be plumbed.  This entry will be overwritten if we
4118 		 * associate; otherwise it will be reclaimed on node free.
4119 		 */
4120 		ni = vap->iv_bss;
4121 		MWL_NODE(ni)->mn_hvap = hvap;
4122 		(void) mwl_peerstadb(ni, 0, 0, NULL);
4123 	} else if (nstate == IEEE80211_S_CSA) {
4124 		/* XXX move to below? */
4125 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
4126 		    vap->iv_opmode == IEEE80211_M_MBSS)
4127 			mwl_startcsa(vap);
4128 	} else if (nstate == IEEE80211_S_CAC) {
4129 		/* XXX move to below? */
4130 		/* stop ap xmit and enable quiet mode radar detection */
4131 		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_START);
4132 	}
4133 
4134 	/*
4135 	 * Invoke the parent method to do net80211 work.
4136 	 */
4137 	error = mvp->mv_newstate(vap, nstate, arg);
4138 
4139 	/*
4140 	 * Carry out work that must be done after net80211 runs;
4141 	 * this work requires up to date state (e.g. iv_bss).
4142 	 */
4143 	if (error == 0 && nstate == IEEE80211_S_RUN) {
4144 		/* NB: collect bss node again, it may have changed */
4145 		ni = vap->iv_bss;
4146 
4147 		DPRINTF(sc, MWL_DEBUG_STATE,
4148 		    "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4149 		    "capinfo 0x%04x chan %d\n",
4150 		    if_name(vap->iv_ifp), __func__, vap->iv_flags,
4151 		    ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo,
4152 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
4153 
4154 		/*
4155 		 * Recreate local sta db entry to update WME/HT state.
4156 		 */
4157 		mwl_localstadb(vap);
4158 		switch (vap->iv_opmode) {
4159 		case IEEE80211_M_HOSTAP:
4160 		case IEEE80211_M_MBSS:
4161 			if (ostate == IEEE80211_S_CAC) {
4162 				/* enable in-service radar detection */
4163 				mwl_hal_setradardetection(mh,
4164 				    DR_IN_SERVICE_MONITOR_START);
4165 				sc->sc_radarena = 1;
4166 			}
4167 			/*
4168 			 * Allocate and setup the beacon frame
4169 			 * (and related state).
4170 			 */
4171 			error = mwl_reset_vap(vap, IEEE80211_S_RUN);
4172 			if (error != 0) {
4173 				DPRINTF(sc, MWL_DEBUG_STATE,
4174 				    "%s: beacon setup failed, error %d\n",
4175 				    __func__, error);
4176 				goto bad;
4177 			}
4178 			/* NB: must be after setting up beacon */
4179 			mwl_hal_start(hvap);
4180 			break;
4181 		case IEEE80211_M_STA:
4182 			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: aid 0x%x\n",
4183 			    if_name(vap->iv_ifp), __func__, ni->ni_associd);
4184 			/*
4185 			 * Set state now that we're associated.
4186 			 */
4187 			mwl_hal_setassocid(hvap, ni->ni_bssid, ni->ni_associd);
4188 			mwl_setrates(vap);
4189 			mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
4190 			if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4191 			    sc->sc_ndwdsvaps++ == 0)
4192 				mwl_hal_setdwds(mh, 1);
4193 			break;
4194 		case IEEE80211_M_WDS:
4195 			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: bssid %s\n",
4196 			    if_name(vap->iv_ifp), __func__,
4197 			    ether_sprintf(ni->ni_bssid));
4198 			mwl_seteapolformat(vap);
4199 			break;
4200 		default:
4201 			break;
4202 		}
4203 		/*
4204 		 * Set CS mode according to operating channel;
4205 		 * this mostly an optimization for 5GHz.
4206 		 *
4207 		 * NB: must follow mwl_hal_start which resets csmode
4208 		 */
4209 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
4210 			mwl_hal_setcsmode(mh, CSMODE_AGGRESSIVE);
4211 		else
4212 			mwl_hal_setcsmode(mh, CSMODE_AUTO_ENA);
4213 		/*
4214 		 * Start timer to prod firmware.
4215 		 */
4216 		if (sc->sc_ageinterval != 0)
4217 			callout_reset(&sc->sc_timer, sc->sc_ageinterval*hz,
4218 			    mwl_agestations, sc);
4219 	} else if (nstate == IEEE80211_S_SLEEP) {
4220 		/* XXX set chip in power save */
4221 	} else if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4222 	    --sc->sc_ndwdsvaps == 0)
4223 		mwl_hal_setdwds(mh, 0);
4224 bad:
4225 	return error;
4226 }
4227 
4228 /*
4229  * Manage station id's; these are separate from AID's
4230  * as AID's may have values out of the range of possible
4231  * station id's acceptable to the firmware.
4232  */
4233 static int
4234 allocstaid(struct mwl_softc *sc, int aid)
4235 {
4236 	int staid;
4237 
4238 	if (!(0 < aid && aid < MWL_MAXSTAID) || isset(sc->sc_staid, aid)) {
4239 		/* NB: don't use 0 */
4240 		for (staid = 1; staid < MWL_MAXSTAID; staid++)
4241 			if (isclr(sc->sc_staid, staid))
4242 				break;
4243 	} else
4244 		staid = aid;
4245 	setbit(sc->sc_staid, staid);
4246 	return staid;
4247 }
4248 
4249 static void
4250 delstaid(struct mwl_softc *sc, int staid)
4251 {
4252 	clrbit(sc->sc_staid, staid);
4253 }
4254 
4255 /*
4256  * Setup driver-specific state for a newly associated node.
4257  * Note that we're called also on a re-associate, the isnew
4258  * param tells us if this is the first time or not.
4259  */
4260 static void
4261 mwl_newassoc(struct ieee80211_node *ni, int isnew)
4262 {
4263 	struct ieee80211vap *vap = ni->ni_vap;
4264         struct mwl_softc *sc = vap->iv_ic->ic_softc;
4265 	struct mwl_node *mn = MWL_NODE(ni);
4266 	MWL_HAL_PEERINFO pi;
4267 	uint16_t aid;
4268 	int error;
4269 
4270 	aid = IEEE80211_AID(ni->ni_associd);
4271 	if (isnew) {
4272 		mn->mn_staid = allocstaid(sc, aid);
4273 		mn->mn_hvap = MWL_VAP(vap)->mv_hvap;
4274 	} else {
4275 		mn = MWL_NODE(ni);
4276 		/* XXX reset BA stream? */
4277 	}
4278 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mac %s isnew %d aid %d staid %d\n",
4279 	    __func__, ether_sprintf(ni->ni_macaddr), isnew, aid, mn->mn_staid);
4280 	error = mwl_peerstadb(ni, aid, mn->mn_staid, mkpeerinfo(&pi, ni));
4281 	if (error != 0) {
4282 		DPRINTF(sc, MWL_DEBUG_NODE,
4283 		    "%s: error %d creating sta db entry\n",
4284 		    __func__, error);
4285 		/* XXX how to deal with error? */
4286 	}
4287 }
4288 
4289 /*
4290  * Periodically poke the firmware to age out station state
4291  * (power save queues, pending tx aggregates).
4292  */
4293 static void
4294 mwl_agestations(void *arg)
4295 {
4296 	struct mwl_softc *sc = arg;
4297 
4298 	mwl_hal_setkeepalive(sc->sc_mh);
4299 	if (sc->sc_ageinterval != 0)		/* NB: catch dynamic changes */
4300 		callout_schedule(&sc->sc_timer, sc->sc_ageinterval*hz);
4301 }
4302 
4303 static const struct mwl_hal_channel *
4304 findhalchannel(const MWL_HAL_CHANNELINFO *ci, int ieee)
4305 {
4306 	int i;
4307 
4308 	for (i = 0; i < ci->nchannels; i++) {
4309 		const struct mwl_hal_channel *hc = &ci->channels[i];
4310 		if (hc->ieee == ieee)
4311 			return hc;
4312 	}
4313 	return NULL;
4314 }
4315 
4316 static int
4317 mwl_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
4318 	int nchan, struct ieee80211_channel chans[])
4319 {
4320 	struct mwl_softc *sc = ic->ic_softc;
4321 	struct mwl_hal *mh = sc->sc_mh;
4322 	const MWL_HAL_CHANNELINFO *ci;
4323 	int i;
4324 
4325 	for (i = 0; i < nchan; i++) {
4326 		struct ieee80211_channel *c = &chans[i];
4327 		const struct mwl_hal_channel *hc;
4328 
4329 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4330 			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_2DOT4GHZ,
4331 			    IEEE80211_IS_CHAN_HT40(c) ?
4332 				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4333 		} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4334 			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_5GHZ,
4335 			    IEEE80211_IS_CHAN_HT40(c) ?
4336 				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4337 		} else {
4338 			device_printf(sc->sc_dev,
4339 			    "%s: channel %u freq %u/0x%x not 2.4/5GHz\n",
4340 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
4341 			return EINVAL;
4342 		}
4343 		/*
4344 		 * Verify channel has cal data and cap tx power.
4345 		 */
4346 		hc = findhalchannel(ci, c->ic_ieee);
4347 		if (hc != NULL) {
4348 			if (c->ic_maxpower > 2*hc->maxTxPow)
4349 				c->ic_maxpower = 2*hc->maxTxPow;
4350 			goto next;
4351 		}
4352 		if (IEEE80211_IS_CHAN_HT40(c)) {
4353 			/*
4354 			 * Look for the extension channel since the
4355 			 * hal table only has the primary channel.
4356 			 */
4357 			hc = findhalchannel(ci, c->ic_extieee);
4358 			if (hc != NULL) {
4359 				if (c->ic_maxpower > 2*hc->maxTxPow)
4360 					c->ic_maxpower = 2*hc->maxTxPow;
4361 				goto next;
4362 			}
4363 		}
4364 		device_printf(sc->sc_dev,
4365 		    "%s: no cal data for channel %u ext %u freq %u/0x%x\n",
4366 		    __func__, c->ic_ieee, c->ic_extieee,
4367 		    c->ic_freq, c->ic_flags);
4368 		return EINVAL;
4369 	next:
4370 		;
4371 	}
4372 	return 0;
4373 }
4374 
4375 #define	IEEE80211_CHAN_HTG	(IEEE80211_CHAN_HT|IEEE80211_CHAN_G)
4376 #define	IEEE80211_CHAN_HTA	(IEEE80211_CHAN_HT|IEEE80211_CHAN_A)
4377 
4378 static void
4379 addht40channels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4380 	const MWL_HAL_CHANNELINFO *ci, int flags)
4381 {
4382 	int i, error;
4383 
4384 	for (i = 0; i < ci->nchannels; i++) {
4385 		const struct mwl_hal_channel *hc = &ci->channels[i];
4386 
4387 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
4388 		    hc->ieee, hc->maxTxPow, flags);
4389 		if (error != 0 && error != ENOENT)
4390 			break;
4391 	}
4392 }
4393 
4394 static void
4395 addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4396 	const MWL_HAL_CHANNELINFO *ci, const uint8_t bands[])
4397 {
4398 	int i, error;
4399 
4400 	error = 0;
4401 	for (i = 0; i < ci->nchannels && error == 0; i++) {
4402 		const struct mwl_hal_channel *hc = &ci->channels[i];
4403 
4404 		error = ieee80211_add_channel(chans, maxchans, nchans,
4405 		    hc->ieee, hc->freq, hc->maxTxPow, 0, bands);
4406 	}
4407 }
4408 
4409 static void
4410 getchannels(struct mwl_softc *sc, int maxchans, int *nchans,
4411 	struct ieee80211_channel chans[])
4412 {
4413 	const MWL_HAL_CHANNELINFO *ci;
4414 	uint8_t bands[IEEE80211_MODE_BYTES];
4415 
4416 	/*
4417 	 * Use the channel info from the hal to craft the
4418 	 * channel list.  Note that we pass back an unsorted
4419 	 * list; the caller is required to sort it for us
4420 	 * (if desired).
4421 	 */
4422 	*nchans = 0;
4423 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4424 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) {
4425 		memset(bands, 0, sizeof(bands));
4426 		setbit(bands, IEEE80211_MODE_11B);
4427 		setbit(bands, IEEE80211_MODE_11G);
4428 		setbit(bands, IEEE80211_MODE_11NG);
4429 		addchannels(chans, maxchans, nchans, ci, bands);
4430 	}
4431 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4432 	    MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) {
4433 		memset(bands, 0, sizeof(bands));
4434 		setbit(bands, IEEE80211_MODE_11A);
4435 		setbit(bands, IEEE80211_MODE_11NA);
4436 		addchannels(chans, maxchans, nchans, ci, bands);
4437 	}
4438 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4439 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4440 		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4441 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4442 	    MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4443 		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4444 }
4445 
4446 static void
4447 mwl_getradiocaps(struct ieee80211com *ic,
4448 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4449 {
4450 	struct mwl_softc *sc = ic->ic_softc;
4451 
4452 	getchannels(sc, maxchans, nchans, chans);
4453 }
4454 
4455 static int
4456 mwl_getchannels(struct mwl_softc *sc)
4457 {
4458 	struct ieee80211com *ic = &sc->sc_ic;
4459 
4460 	/*
4461 	 * Use the channel info from the hal to craft the
4462 	 * channel list for net80211.  Note that we pass up
4463 	 * an unsorted list; net80211 will sort it for us.
4464 	 */
4465 	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
4466 	ic->ic_nchans = 0;
4467 	getchannels(sc, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels);
4468 
4469 	ic->ic_regdomain.regdomain = SKU_DEBUG;
4470 	ic->ic_regdomain.country = CTRY_DEFAULT;
4471 	ic->ic_regdomain.location = 'I';
4472 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX? */
4473 	ic->ic_regdomain.isocc[1] = ' ';
4474 	return (ic->ic_nchans == 0 ? EIO : 0);
4475 }
4476 #undef IEEE80211_CHAN_HTA
4477 #undef IEEE80211_CHAN_HTG
4478 
4479 #ifdef MWL_DEBUG
4480 static void
4481 mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix)
4482 {
4483 	const struct mwl_rxdesc *ds = bf->bf_desc;
4484 	uint32_t status = le32toh(ds->Status);
4485 
4486 	printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n"
4487 	       "      STAT:%02x LEN:%04x RSSI:%02x CHAN:%02x RATE:%02x QOS:%04x HT:%04x\n",
4488 	    ix, ds, (uintmax_t)bf->bf_daddr, le32toh(ds->pPhysNext),
4489 	    le32toh(ds->pPhysBuffData), ds->RxControl,
4490 	    ds->RxControl != EAGLE_RXD_CTRL_DRIVER_OWN ?
4491 	        "" : (status & EAGLE_RXD_STATUS_OK) ? " *" : " !",
4492 	    ds->Status, le16toh(ds->PktLen), ds->RSSI, ds->Channel,
4493 	    ds->Rate, le16toh(ds->QosCtrl), le16toh(ds->HtSig2));
4494 }
4495 
4496 static void
4497 mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix)
4498 {
4499 	const struct mwl_txdesc *ds = bf->bf_desc;
4500 	uint32_t status = le32toh(ds->Status);
4501 
4502 	printf("Q%u[%3u]", qnum, ix);
4503 	printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr);
4504 	printf("    NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n",
4505 	    le32toh(ds->pPhysNext),
4506 	    le32toh(ds->PktPtr), le16toh(ds->PktLen), status,
4507 	    status & EAGLE_TXD_STATUS_USED ?
4508 		"" : (status & 3) != 0 ? " *" : " !");
4509 	printf("    RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n",
4510 	    ds->DataRate, ds->TxPriority, le16toh(ds->QosCtrl),
4511 	    le32toh(ds->SapPktInfo), le16toh(ds->Format));
4512 #if MWL_TXDESC > 1
4513 	printf("    MULTIFRAMES:%u LEN:%04x %04x %04x %04x %04x %04x\n"
4514 	    , le32toh(ds->multiframes)
4515 	    , le16toh(ds->PktLenArray[0]), le16toh(ds->PktLenArray[1])
4516 	    , le16toh(ds->PktLenArray[2]), le16toh(ds->PktLenArray[3])
4517 	    , le16toh(ds->PktLenArray[4]), le16toh(ds->PktLenArray[5])
4518 	);
4519 	printf("    DATA:%08x %08x %08x %08x %08x %08x\n"
4520 	    , le32toh(ds->PktPtrArray[0]), le32toh(ds->PktPtrArray[1])
4521 	    , le32toh(ds->PktPtrArray[2]), le32toh(ds->PktPtrArray[3])
4522 	    , le32toh(ds->PktPtrArray[4]), le32toh(ds->PktPtrArray[5])
4523 	);
4524 #endif
4525 #if 0
4526 { const uint8_t *cp = (const uint8_t *) ds;
4527   int i;
4528   for (i = 0; i < sizeof(struct mwl_txdesc); i++) {
4529 	printf("%02x ", cp[i]);
4530 	if (((i+1) % 16) == 0)
4531 		printf("\n");
4532   }
4533   printf("\n");
4534 }
4535 #endif
4536 }
4537 #endif /* MWL_DEBUG */
4538 
4539 #if 0
4540 static void
4541 mwl_txq_dump(struct mwl_txq *txq)
4542 {
4543 	struct mwl_txbuf *bf;
4544 	int i = 0;
4545 
4546 	MWL_TXQ_LOCK(txq);
4547 	STAILQ_FOREACH(bf, &txq->active, bf_list) {
4548 		struct mwl_txdesc *ds = bf->bf_desc;
4549 		MWL_TXDESC_SYNC(txq, ds,
4550 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4551 #ifdef MWL_DEBUG
4552 		mwl_printtxbuf(bf, txq->qnum, i);
4553 #endif
4554 		i++;
4555 	}
4556 	MWL_TXQ_UNLOCK(txq);
4557 }
4558 #endif
4559 
4560 static void
4561 mwl_watchdog(void *arg)
4562 {
4563 	struct mwl_softc *sc = arg;
4564 
4565 	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
4566 	if (sc->sc_tx_timer == 0 || --sc->sc_tx_timer > 0)
4567 		return;
4568 
4569 	if (sc->sc_running && !sc->sc_invalid) {
4570 		if (mwl_hal_setkeepalive(sc->sc_mh))
4571 			device_printf(sc->sc_dev,
4572 			    "transmit timeout (firmware hung?)\n");
4573 		else
4574 			device_printf(sc->sc_dev,
4575 			    "transmit timeout\n");
4576 #if 0
4577 		mwl_reset(sc);
4578 mwl_txq_dump(&sc->sc_txq[0]);/*XXX*/
4579 #endif
4580 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4581 		sc->sc_stats.mst_watchdog++;
4582 	}
4583 }
4584 
4585 #ifdef MWL_DIAGAPI
4586 /*
4587  * Diagnostic interface to the HAL.  This is used by various
4588  * tools to do things like retrieve register contents for
4589  * debugging.  The mechanism is intentionally opaque so that
4590  * it can change frequently w/o concern for compatibility.
4591  */
4592 static int
4593 mwl_ioctl_diag(struct mwl_softc *sc, struct mwl_diag *md)
4594 {
4595 	struct mwl_hal *mh = sc->sc_mh;
4596 	u_int id = md->md_id & MWL_DIAG_ID;
4597 	void *indata = NULL;
4598 	void *outdata = NULL;
4599 	u_int32_t insize = md->md_in_size;
4600 	u_int32_t outsize = md->md_out_size;
4601 	int error = 0;
4602 
4603 	if (md->md_id & MWL_DIAG_IN) {
4604 		/*
4605 		 * Copy in data.
4606 		 */
4607 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4608 		if (indata == NULL) {
4609 			error = ENOMEM;
4610 			goto bad;
4611 		}
4612 		error = copyin(md->md_in_data, indata, insize);
4613 		if (error)
4614 			goto bad;
4615 	}
4616 	if (md->md_id & MWL_DIAG_DYN) {
4617 		/*
4618 		 * Allocate a buffer for the results (otherwise the HAL
4619 		 * returns a pointer to a buffer where we can read the
4620 		 * results).  Note that we depend on the HAL leaving this
4621 		 * pointer for us to use below in reclaiming the buffer;
4622 		 * may want to be more defensive.
4623 		 */
4624 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4625 		if (outdata == NULL) {
4626 			error = ENOMEM;
4627 			goto bad;
4628 		}
4629 	}
4630 	if (mwl_hal_getdiagstate(mh, id, indata, insize, &outdata, &outsize)) {
4631 		if (outsize < md->md_out_size)
4632 			md->md_out_size = outsize;
4633 		if (outdata != NULL)
4634 			error = copyout(outdata, md->md_out_data,
4635 					md->md_out_size);
4636 	} else {
4637 		error = EINVAL;
4638 	}
4639 bad:
4640 	if ((md->md_id & MWL_DIAG_IN) && indata != NULL)
4641 		free(indata, M_TEMP);
4642 	if ((md->md_id & MWL_DIAG_DYN) && outdata != NULL)
4643 		free(outdata, M_TEMP);
4644 	return error;
4645 }
4646 
4647 static int
4648 mwl_ioctl_reset(struct mwl_softc *sc, struct mwl_diag *md)
4649 {
4650 	struct mwl_hal *mh = sc->sc_mh;
4651 	int error;
4652 
4653 	MWL_LOCK_ASSERT(sc);
4654 
4655 	if (md->md_id == 0 && mwl_hal_fwload(mh, NULL) != 0) {
4656 		device_printf(sc->sc_dev, "unable to load firmware\n");
4657 		return EIO;
4658 	}
4659 	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
4660 		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
4661 		return EIO;
4662 	}
4663 	error = mwl_setupdma(sc);
4664 	if (error != 0) {
4665 		/* NB: mwl_setupdma prints a msg */
4666 		return error;
4667 	}
4668 	/*
4669 	 * Reset tx/rx data structures; after reload we must
4670 	 * re-start the driver's notion of the next xmit/recv.
4671 	 */
4672 	mwl_draintxq(sc);		/* clear pending frames */
4673 	mwl_resettxq(sc);		/* rebuild tx q lists */
4674 	sc->sc_rxnext = NULL;		/* force rx to start at the list head */
4675 	return 0;
4676 }
4677 #endif /* MWL_DIAGAPI */
4678 
4679 static void
4680 mwl_parent(struct ieee80211com *ic)
4681 {
4682 	struct mwl_softc *sc = ic->ic_softc;
4683 	int startall = 0;
4684 
4685 	MWL_LOCK(sc);
4686 	if (ic->ic_nrunning > 0) {
4687 		if (sc->sc_running) {
4688 			/*
4689 			 * To avoid rescanning another access point,
4690 			 * do not call mwl_init() here.  Instead,
4691 			 * only reflect promisc mode settings.
4692 			 */
4693 			mwl_mode_init(sc);
4694 		} else {
4695 			/*
4696 			 * Beware of being called during attach/detach
4697 			 * to reset promiscuous mode.  In that case we
4698 			 * will still be marked UP but not RUNNING.
4699 			 * However trying to re-init the interface
4700 			 * is the wrong thing to do as we've already
4701 			 * torn down much of our state.  There's
4702 			 * probably a better way to deal with this.
4703 			 */
4704 			if (!sc->sc_invalid) {
4705 				mwl_init(sc);	/* XXX lose error */
4706 				startall = 1;
4707 			}
4708 		}
4709 	} else
4710 		mwl_stop(sc);
4711 	MWL_UNLOCK(sc);
4712 	if (startall)
4713 		ieee80211_start_all(ic);
4714 }
4715 
4716 static int
4717 mwl_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
4718 {
4719 	struct mwl_softc *sc = ic->ic_softc;
4720 	struct ifreq *ifr = data;
4721 	int error = 0;
4722 
4723 	switch (cmd) {
4724 	case SIOCGMVSTATS:
4725 		mwl_hal_gethwstats(sc->sc_mh, &sc->sc_stats.hw_stats);
4726 #if 0
4727 		/* NB: embed these numbers to get a consistent view */
4728 		sc->sc_stats.mst_tx_packets =
4729 		    if_get_counter(ifp, IFCOUNTER_OPACKETS);
4730 		sc->sc_stats.mst_rx_packets =
4731 		    if_get_counter(ifp, IFCOUNTER_IPACKETS);
4732 #endif
4733 		/*
4734 		 * NB: Drop the softc lock in case of a page fault;
4735 		 * we'll accept any potential inconsisentcy in the
4736 		 * statistics.  The alternative is to copy the data
4737 		 * to a local structure.
4738 		 */
4739 		return (copyout(&sc->sc_stats, ifr_data_get_ptr(ifr),
4740 		    sizeof (sc->sc_stats)));
4741 #ifdef MWL_DIAGAPI
4742 	case SIOCGMVDIAG:
4743 		/* XXX check privs */
4744 		return mwl_ioctl_diag(sc, (struct mwl_diag *) ifr);
4745 	case SIOCGMVRESET:
4746 		/* XXX check privs */
4747 		MWL_LOCK(sc);
4748 		error = mwl_ioctl_reset(sc,(struct mwl_diag *) ifr);
4749 		MWL_UNLOCK(sc);
4750 		break;
4751 #endif /* MWL_DIAGAPI */
4752 	default:
4753 		error = ENOTTY;
4754 		break;
4755 	}
4756 	return (error);
4757 }
4758 
4759 #ifdef	MWL_DEBUG
4760 static int
4761 mwl_sysctl_debug(SYSCTL_HANDLER_ARGS)
4762 {
4763 	struct mwl_softc *sc = arg1;
4764 	int debug, error;
4765 
4766 	debug = sc->sc_debug | (mwl_hal_getdebug(sc->sc_mh) << 24);
4767 	error = sysctl_handle_int(oidp, &debug, 0, req);
4768 	if (error || !req->newptr)
4769 		return error;
4770 	mwl_hal_setdebug(sc->sc_mh, debug >> 24);
4771 	sc->sc_debug = debug & 0x00ffffff;
4772 	return 0;
4773 }
4774 #endif /* MWL_DEBUG */
4775 
4776 static void
4777 mwl_sysctlattach(struct mwl_softc *sc)
4778 {
4779 #ifdef	MWL_DEBUG
4780 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4781 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4782 
4783 	sc->sc_debug = mwl_debug;
4784 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug",
4785 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
4786 	    mwl_sysctl_debug, "I", "control debugging printfs");
4787 #endif
4788 }
4789 
4790 /*
4791  * Announce various information on device/driver attach.
4792  */
4793 static void
4794 mwl_announce(struct mwl_softc *sc)
4795 {
4796 
4797 	device_printf(sc->sc_dev, "Rev A%d hardware, v%d.%d.%d.%d firmware (regioncode %d)\n",
4798 		sc->sc_hwspecs.hwVersion,
4799 		(sc->sc_hwspecs.fwReleaseNumber>>24) & 0xff,
4800 		(sc->sc_hwspecs.fwReleaseNumber>>16) & 0xff,
4801 		(sc->sc_hwspecs.fwReleaseNumber>>8) & 0xff,
4802 		(sc->sc_hwspecs.fwReleaseNumber>>0) & 0xff,
4803 		sc->sc_hwspecs.regionCode);
4804 	sc->sc_fwrelease = sc->sc_hwspecs.fwReleaseNumber;
4805 
4806 	if (bootverbose) {
4807 		int i;
4808 		for (i = 0; i <= WME_AC_VO; i++) {
4809 			struct mwl_txq *txq = sc->sc_ac2q[i];
4810 			device_printf(sc->sc_dev, "Use hw queue %u for %s traffic\n",
4811 				txq->qnum, ieee80211_wme_acnames[i]);
4812 		}
4813 	}
4814 	if (bootverbose || mwl_rxdesc != MWL_RXDESC)
4815 		device_printf(sc->sc_dev, "using %u rx descriptors\n", mwl_rxdesc);
4816 	if (bootverbose || mwl_rxbuf != MWL_RXBUF)
4817 		device_printf(sc->sc_dev, "using %u rx buffers\n", mwl_rxbuf);
4818 	if (bootverbose || mwl_txbuf != MWL_TXBUF)
4819 		device_printf(sc->sc_dev, "using %u tx buffers\n", mwl_txbuf);
4820 	if (bootverbose && mwl_hal_ismbsscapable(sc->sc_mh))
4821 		device_printf(sc->sc_dev, "multi-bss support\n");
4822 #ifdef MWL_TX_NODROP
4823 	if (bootverbose)
4824 		device_printf(sc->sc_dev, "no tx drop\n");
4825 #endif
4826 }
4827