1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007-2008 Marvell Semiconductor, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 16 * redistribution must be conditioned upon including a substantially 17 * similar Disclaimer requirement for further binary redistribution. 18 * 19 * NO WARRANTY 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 23 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 24 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 25 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 28 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGES. 31 */ 32 33 #include <sys/cdefs.h> 34 /* 35 * Driver for the Marvell 88W8363 Wireless LAN controller. 36 */ 37 38 #include "opt_inet.h" 39 #include "opt_mwl.h" 40 #include "opt_wlan.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/sysctl.h> 45 #include <sys/mbuf.h> 46 #include <sys/malloc.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/kernel.h> 50 #include <sys/socket.h> 51 #include <sys/sockio.h> 52 #include <sys/errno.h> 53 #include <sys/callout.h> 54 #include <sys/bus.h> 55 #include <sys/endian.h> 56 #include <sys/kthread.h> 57 #include <sys/taskqueue.h> 58 59 #include <machine/bus.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/if_media.h> 65 #include <net/if_types.h> 66 #include <net/if_arp.h> 67 #include <net/ethernet.h> 68 #include <net/if_llc.h> 69 70 #include <net/bpf.h> 71 72 #include <net80211/ieee80211_var.h> 73 #include <net80211/ieee80211_input.h> 74 #include <net80211/ieee80211_regdomain.h> 75 76 #ifdef INET 77 #include <netinet/in.h> 78 #include <netinet/if_ether.h> 79 #endif /* INET */ 80 81 #include <dev/mwl/if_mwlvar.h> 82 #include <dev/mwl/mwldiag.h> 83 84 static struct ieee80211vap *mwl_vap_create(struct ieee80211com *, 85 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 86 const uint8_t [IEEE80211_ADDR_LEN], 87 const uint8_t [IEEE80211_ADDR_LEN]); 88 static void mwl_vap_delete(struct ieee80211vap *); 89 static int mwl_setupdma(struct mwl_softc *); 90 static int mwl_hal_reset(struct mwl_softc *sc); 91 static int mwl_init(struct mwl_softc *); 92 static void mwl_parent(struct ieee80211com *); 93 static int mwl_reset(struct ieee80211vap *, u_long); 94 static void mwl_stop(struct mwl_softc *); 95 static void mwl_start(struct mwl_softc *); 96 static int mwl_transmit(struct ieee80211com *, struct mbuf *); 97 static int mwl_raw_xmit(struct ieee80211_node *, struct mbuf *, 98 const struct ieee80211_bpf_params *); 99 static int mwl_media_change(if_t); 100 static void mwl_watchdog(void *); 101 static int mwl_ioctl(struct ieee80211com *, u_long, void *); 102 static void mwl_radar_proc(void *, int); 103 static void mwl_chanswitch_proc(void *, int); 104 static void mwl_bawatchdog_proc(void *, int); 105 static int mwl_key_alloc(struct ieee80211vap *, 106 struct ieee80211_key *, 107 ieee80211_keyix *, ieee80211_keyix *); 108 static int mwl_key_delete(struct ieee80211vap *, 109 const struct ieee80211_key *); 110 static int mwl_key_set(struct ieee80211vap *, 111 const struct ieee80211_key *); 112 static int _mwl_key_set(struct ieee80211vap *, 113 const struct ieee80211_key *, 114 const uint8_t mac[IEEE80211_ADDR_LEN]); 115 static int mwl_mode_init(struct mwl_softc *); 116 static void mwl_update_mcast(struct ieee80211com *); 117 static void mwl_update_promisc(struct ieee80211com *); 118 static void mwl_updateslot(struct ieee80211com *); 119 static int mwl_beacon_setup(struct ieee80211vap *); 120 static void mwl_beacon_update(struct ieee80211vap *, int); 121 #ifdef MWL_HOST_PS_SUPPORT 122 static void mwl_update_ps(struct ieee80211vap *, int); 123 static int mwl_set_tim(struct ieee80211_node *, int); 124 #endif 125 static int mwl_dma_setup(struct mwl_softc *); 126 static void mwl_dma_cleanup(struct mwl_softc *); 127 static struct ieee80211_node *mwl_node_alloc(struct ieee80211vap *, 128 const uint8_t [IEEE80211_ADDR_LEN]); 129 static void mwl_node_cleanup(struct ieee80211_node *); 130 static void mwl_node_drain(struct ieee80211_node *); 131 static void mwl_node_getsignal(const struct ieee80211_node *, 132 int8_t *, int8_t *); 133 static void mwl_node_getmimoinfo(const struct ieee80211_node *, 134 struct ieee80211_mimo_info *); 135 static int mwl_rxbuf_init(struct mwl_softc *, struct mwl_rxbuf *); 136 static void mwl_rx_proc(void *, int); 137 static void mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *, int); 138 static int mwl_tx_setup(struct mwl_softc *, int, int); 139 static int mwl_wme_update(struct ieee80211com *); 140 static void mwl_tx_cleanupq(struct mwl_softc *, struct mwl_txq *); 141 static void mwl_tx_cleanup(struct mwl_softc *); 142 static uint16_t mwl_calcformat(uint8_t rate, const struct ieee80211_node *); 143 static int mwl_tx_start(struct mwl_softc *, struct ieee80211_node *, 144 struct mwl_txbuf *, struct mbuf *); 145 static void mwl_tx_proc(void *, int); 146 static int mwl_chan_set(struct mwl_softc *, struct ieee80211_channel *); 147 static void mwl_draintxq(struct mwl_softc *); 148 static void mwl_cleartxq(struct mwl_softc *, struct ieee80211vap *); 149 static int mwl_recv_action(struct ieee80211_node *, 150 const struct ieee80211_frame *, 151 const uint8_t *, const uint8_t *); 152 static int mwl_addba_request(struct ieee80211_node *, 153 struct ieee80211_tx_ampdu *, int dialogtoken, 154 int baparamset, int batimeout); 155 static int mwl_addba_response(struct ieee80211_node *, 156 struct ieee80211_tx_ampdu *, int status, 157 int baparamset, int batimeout); 158 static void mwl_addba_stop(struct ieee80211_node *, 159 struct ieee80211_tx_ampdu *); 160 static int mwl_startrecv(struct mwl_softc *); 161 static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *, 162 struct ieee80211_channel *); 163 static int mwl_setapmode(struct ieee80211vap *, struct ieee80211_channel*); 164 static void mwl_scan_start(struct ieee80211com *); 165 static void mwl_scan_end(struct ieee80211com *); 166 static void mwl_set_channel(struct ieee80211com *); 167 static int mwl_peerstadb(struct ieee80211_node *, 168 int aid, int staid, MWL_HAL_PEERINFO *pi); 169 static int mwl_localstadb(struct ieee80211vap *); 170 static int mwl_newstate(struct ieee80211vap *, enum ieee80211_state, int); 171 static int allocstaid(struct mwl_softc *sc, int aid); 172 static void delstaid(struct mwl_softc *sc, int staid); 173 static void mwl_newassoc(struct ieee80211_node *, int); 174 static void mwl_agestations(void *); 175 static int mwl_setregdomain(struct ieee80211com *, 176 struct ieee80211_regdomain *, int, 177 struct ieee80211_channel []); 178 static void mwl_getradiocaps(struct ieee80211com *, int, int *, 179 struct ieee80211_channel []); 180 static int mwl_getchannels(struct mwl_softc *); 181 182 static void mwl_sysctlattach(struct mwl_softc *); 183 static void mwl_announce(struct mwl_softc *); 184 185 SYSCTL_NODE(_hw, OID_AUTO, mwl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 186 "Marvell driver parameters"); 187 188 static int mwl_rxdesc = MWL_RXDESC; /* # rx desc's to allocate */ 189 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdesc, CTLFLAG_RW, &mwl_rxdesc, 190 0, "rx descriptors allocated"); 191 static int mwl_rxbuf = MWL_RXBUF; /* # rx buffers to allocate */ 192 SYSCTL_INT(_hw_mwl, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &mwl_rxbuf, 193 0, "rx buffers allocated"); 194 static int mwl_txbuf = MWL_TXBUF; /* # tx buffers to allocate */ 195 SYSCTL_INT(_hw_mwl, OID_AUTO, txbuf, CTLFLAG_RWTUN, &mwl_txbuf, 196 0, "tx buffers allocated"); 197 static int mwl_txcoalesce = 8; /* # tx packets to q before poking f/w*/ 198 SYSCTL_INT(_hw_mwl, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &mwl_txcoalesce, 199 0, "tx buffers to send at once"); 200 static int mwl_rxquota = MWL_RXBUF; /* # max buffers to process */ 201 SYSCTL_INT(_hw_mwl, OID_AUTO, rxquota, CTLFLAG_RWTUN, &mwl_rxquota, 202 0, "max rx buffers to process per interrupt"); 203 static int mwl_rxdmalow = 3; /* # min buffers for wakeup */ 204 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdmalow, CTLFLAG_RWTUN, &mwl_rxdmalow, 205 0, "min free rx buffers before restarting traffic"); 206 207 #ifdef MWL_DEBUG 208 static int mwl_debug = 0; 209 SYSCTL_INT(_hw_mwl, OID_AUTO, debug, CTLFLAG_RWTUN, &mwl_debug, 210 0, "control debugging printfs"); 211 enum { 212 MWL_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 213 MWL_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 214 MWL_DEBUG_RECV = 0x00000004, /* basic recv operation */ 215 MWL_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 216 MWL_DEBUG_RESET = 0x00000010, /* reset processing */ 217 MWL_DEBUG_BEACON = 0x00000020, /* beacon handling */ 218 MWL_DEBUG_INTR = 0x00000040, /* ISR */ 219 MWL_DEBUG_TX_PROC = 0x00000080, /* tx ISR proc */ 220 MWL_DEBUG_RX_PROC = 0x00000100, /* rx ISR proc */ 221 MWL_DEBUG_KEYCACHE = 0x00000200, /* key cache management */ 222 MWL_DEBUG_STATE = 0x00000400, /* 802.11 state transitions */ 223 MWL_DEBUG_NODE = 0x00000800, /* node management */ 224 MWL_DEBUG_RECV_ALL = 0x00001000, /* trace all frames (beacons) */ 225 MWL_DEBUG_TSO = 0x00002000, /* TSO processing */ 226 MWL_DEBUG_AMPDU = 0x00004000, /* BA stream handling */ 227 MWL_DEBUG_ANY = 0xffffffff 228 }; 229 #define IS_BEACON(wh) \ 230 ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) == \ 231 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON)) 232 #define IFF_DUMPPKTS_RECV(sc, wh) \ 233 ((sc->sc_debug & MWL_DEBUG_RECV) && \ 234 ((sc->sc_debug & MWL_DEBUG_RECV_ALL) || !IS_BEACON(wh))) 235 #define IFF_DUMPPKTS_XMIT(sc) \ 236 (sc->sc_debug & MWL_DEBUG_XMIT) 237 238 #define DPRINTF(sc, m, fmt, ...) do { \ 239 if (sc->sc_debug & (m)) \ 240 printf(fmt, __VA_ARGS__); \ 241 } while (0) 242 #define KEYPRINTF(sc, hk, mac) do { \ 243 if (sc->sc_debug & MWL_DEBUG_KEYCACHE) \ 244 mwl_keyprint(sc, __func__, hk, mac); \ 245 } while (0) 246 static void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix); 247 static void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix); 248 #else 249 #define IFF_DUMPPKTS_RECV(sc, wh) 0 250 #define IFF_DUMPPKTS_XMIT(sc) 0 251 #define DPRINTF(sc, m, fmt, ...) do { (void )sc; } while (0) 252 #define KEYPRINTF(sc, k, mac) do { (void )sc; } while (0) 253 #endif 254 255 static MALLOC_DEFINE(M_MWLDEV, "mwldev", "mwl driver dma buffers"); 256 257 /* 258 * Each packet has fixed front matter: a 2-byte length 259 * of the payload, followed by a 4-address 802.11 header 260 * (regardless of the actual header and always w/o any 261 * QoS header). The payload then follows. 262 */ 263 struct mwltxrec { 264 uint16_t fwlen; 265 struct ieee80211_frame_addr4 wh; 266 } __packed; 267 268 /* 269 * Read/Write shorthands for accesses to BAR 0. Note 270 * that all BAR 1 operations are done in the "hal" and 271 * there should be no reference to them here. 272 */ 273 #ifdef MWL_DEBUG 274 static __inline uint32_t 275 RD4(struct mwl_softc *sc, bus_size_t off) 276 { 277 return bus_space_read_4(sc->sc_io0t, sc->sc_io0h, off); 278 } 279 #endif 280 281 static __inline void 282 WR4(struct mwl_softc *sc, bus_size_t off, uint32_t val) 283 { 284 bus_space_write_4(sc->sc_io0t, sc->sc_io0h, off, val); 285 } 286 287 int 288 mwl_attach(uint16_t devid, struct mwl_softc *sc) 289 { 290 struct ieee80211com *ic = &sc->sc_ic; 291 struct mwl_hal *mh; 292 int error = 0; 293 294 DPRINTF(sc, MWL_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 295 296 /* 297 * Setup the RX free list lock early, so it can be consistently 298 * removed. 299 */ 300 MWL_RXFREE_INIT(sc); 301 302 mh = mwl_hal_attach(sc->sc_dev, devid, 303 sc->sc_io1h, sc->sc_io1t, sc->sc_dmat); 304 if (mh == NULL) { 305 device_printf(sc->sc_dev, "unable to attach HAL\n"); 306 error = EIO; 307 goto bad; 308 } 309 sc->sc_mh = mh; 310 /* 311 * Load firmware so we can get setup. We arbitrarily 312 * pick station firmware; we'll re-load firmware as 313 * needed so setting up the wrong mode isn't a big deal. 314 */ 315 if (mwl_hal_fwload(mh, NULL) != 0) { 316 device_printf(sc->sc_dev, "unable to setup builtin firmware\n"); 317 error = EIO; 318 goto bad1; 319 } 320 if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) { 321 device_printf(sc->sc_dev, "unable to fetch h/w specs\n"); 322 error = EIO; 323 goto bad1; 324 } 325 error = mwl_getchannels(sc); 326 if (error != 0) 327 goto bad1; 328 329 sc->sc_txantenna = 0; /* h/w default */ 330 sc->sc_rxantenna = 0; /* h/w default */ 331 sc->sc_invalid = 0; /* ready to go, enable int handling */ 332 sc->sc_ageinterval = MWL_AGEINTERVAL; 333 334 /* 335 * Allocate tx+rx descriptors and populate the lists. 336 * We immediately push the information to the firmware 337 * as otherwise it gets upset. 338 */ 339 error = mwl_dma_setup(sc); 340 if (error != 0) { 341 device_printf(sc->sc_dev, "failed to setup descriptors: %d\n", 342 error); 343 goto bad1; 344 } 345 error = mwl_setupdma(sc); /* push to firmware */ 346 if (error != 0) /* NB: mwl_setupdma prints msg */ 347 goto bad1; 348 349 callout_init(&sc->sc_timer, 1); 350 callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0); 351 mbufq_init(&sc->sc_snd, ifqmaxlen); 352 353 sc->sc_tq = taskqueue_create("mwl_taskq", M_NOWAIT, 354 taskqueue_thread_enqueue, &sc->sc_tq); 355 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 356 "%s taskq", device_get_nameunit(sc->sc_dev)); 357 358 NET_TASK_INIT(&sc->sc_rxtask, 0, mwl_rx_proc, sc); 359 TASK_INIT(&sc->sc_radartask, 0, mwl_radar_proc, sc); 360 TASK_INIT(&sc->sc_chanswitchtask, 0, mwl_chanswitch_proc, sc); 361 TASK_INIT(&sc->sc_bawatchdogtask, 0, mwl_bawatchdog_proc, sc); 362 363 /* NB: insure BK queue is the lowest priority h/w queue */ 364 if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) { 365 device_printf(sc->sc_dev, 366 "unable to setup xmit queue for %s traffic!\n", 367 ieee80211_wme_acnames[WME_AC_BK]); 368 error = EIO; 369 goto bad2; 370 } 371 if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) || 372 !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) || 373 !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) { 374 /* 375 * Not enough hardware tx queues to properly do WME; 376 * just punt and assign them all to the same h/w queue. 377 * We could do a better job of this if, for example, 378 * we allocate queues when we switch from station to 379 * AP mode. 380 */ 381 if (sc->sc_ac2q[WME_AC_VI] != NULL) 382 mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 383 if (sc->sc_ac2q[WME_AC_BE] != NULL) 384 mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 385 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 386 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 387 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 388 } 389 TASK_INIT(&sc->sc_txtask, 0, mwl_tx_proc, sc); 390 391 ic->ic_softc = sc; 392 ic->ic_name = device_get_nameunit(sc->sc_dev); 393 /* XXX not right but it's not used anywhere important */ 394 ic->ic_phytype = IEEE80211_T_OFDM; 395 ic->ic_opmode = IEEE80211_M_STA; 396 ic->ic_caps = 397 IEEE80211_C_STA /* station mode supported */ 398 | IEEE80211_C_HOSTAP /* hostap mode */ 399 | IEEE80211_C_MONITOR /* monitor mode */ 400 #if 0 401 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 402 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 403 #endif 404 | IEEE80211_C_MBSS /* mesh point link mode */ 405 | IEEE80211_C_WDS /* WDS supported */ 406 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 407 | IEEE80211_C_SHSLOT /* short slot time supported */ 408 | IEEE80211_C_WME /* WME/WMM supported */ 409 | IEEE80211_C_BURST /* xmit bursting supported */ 410 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 411 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 412 | IEEE80211_C_TXFRAG /* handle tx frags */ 413 | IEEE80211_C_TXPMGT /* capable of txpow mgt */ 414 | IEEE80211_C_DFS /* DFS supported */ 415 ; 416 417 ic->ic_htcaps = 418 IEEE80211_HTCAP_SMPS_ENA /* SM PS mode enabled */ 419 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width */ 420 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 421 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 422 | IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */ 423 #if MWL_AGGR_SIZE == 7935 424 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ 425 #else 426 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 427 #endif 428 #if 0 429 | IEEE80211_HTCAP_PSMP /* PSMP supported */ 430 | IEEE80211_HTCAP_40INTOLERANT /* 40MHz intolerant */ 431 #endif 432 /* s/w capabilities */ 433 | IEEE80211_HTC_HT /* HT operation */ 434 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 435 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 436 | IEEE80211_HTC_SMPS /* SMPS available */ 437 ; 438 439 /* 440 * Mark h/w crypto support. 441 * XXX no way to query h/w support. 442 */ 443 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP 444 | IEEE80211_CRYPTO_AES_CCM 445 | IEEE80211_CRYPTO_TKIP 446 | IEEE80211_CRYPTO_TKIPMIC 447 ; 448 /* 449 * Transmit requires space in the packet for a special 450 * format transmit record and optional padding between 451 * this record and the payload. Ask the net80211 layer 452 * to arrange this when encapsulating packets so we can 453 * add it efficiently. 454 */ 455 ic->ic_headroom = sizeof(struct mwltxrec) - 456 sizeof(struct ieee80211_frame); 457 458 IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->sc_hwspecs.macAddr); 459 460 /* call MI attach routine. */ 461 ieee80211_ifattach(ic); 462 ic->ic_setregdomain = mwl_setregdomain; 463 ic->ic_getradiocaps = mwl_getradiocaps; 464 /* override default methods */ 465 ic->ic_raw_xmit = mwl_raw_xmit; 466 ic->ic_newassoc = mwl_newassoc; 467 ic->ic_updateslot = mwl_updateslot; 468 ic->ic_update_mcast = mwl_update_mcast; 469 ic->ic_update_promisc = mwl_update_promisc; 470 ic->ic_wme.wme_update = mwl_wme_update; 471 ic->ic_transmit = mwl_transmit; 472 ic->ic_ioctl = mwl_ioctl; 473 ic->ic_parent = mwl_parent; 474 475 ic->ic_node_alloc = mwl_node_alloc; 476 sc->sc_node_cleanup = ic->ic_node_cleanup; 477 ic->ic_node_cleanup = mwl_node_cleanup; 478 sc->sc_node_drain = ic->ic_node_drain; 479 ic->ic_node_drain = mwl_node_drain; 480 ic->ic_node_getsignal = mwl_node_getsignal; 481 ic->ic_node_getmimoinfo = mwl_node_getmimoinfo; 482 483 ic->ic_scan_start = mwl_scan_start; 484 ic->ic_scan_end = mwl_scan_end; 485 ic->ic_set_channel = mwl_set_channel; 486 487 sc->sc_recv_action = ic->ic_recv_action; 488 ic->ic_recv_action = mwl_recv_action; 489 sc->sc_addba_request = ic->ic_addba_request; 490 ic->ic_addba_request = mwl_addba_request; 491 sc->sc_addba_response = ic->ic_addba_response; 492 ic->ic_addba_response = mwl_addba_response; 493 sc->sc_addba_stop = ic->ic_addba_stop; 494 ic->ic_addba_stop = mwl_addba_stop; 495 496 ic->ic_vap_create = mwl_vap_create; 497 ic->ic_vap_delete = mwl_vap_delete; 498 499 ieee80211_radiotap_attach(ic, 500 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 501 MWL_TX_RADIOTAP_PRESENT, 502 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 503 MWL_RX_RADIOTAP_PRESENT); 504 /* 505 * Setup dynamic sysctl's now that country code and 506 * regdomain are available from the hal. 507 */ 508 mwl_sysctlattach(sc); 509 510 if (bootverbose) 511 ieee80211_announce(ic); 512 mwl_announce(sc); 513 return 0; 514 bad2: 515 mwl_dma_cleanup(sc); 516 bad1: 517 mwl_hal_detach(mh); 518 bad: 519 MWL_RXFREE_DESTROY(sc); 520 sc->sc_invalid = 1; 521 return error; 522 } 523 524 int 525 mwl_detach(struct mwl_softc *sc) 526 { 527 struct ieee80211com *ic = &sc->sc_ic; 528 529 MWL_LOCK(sc); 530 mwl_stop(sc); 531 MWL_UNLOCK(sc); 532 /* 533 * NB: the order of these is important: 534 * o call the 802.11 layer before detaching the hal to 535 * insure callbacks into the driver to delete global 536 * key cache entries can be handled 537 * o reclaim the tx queue data structures after calling 538 * the 802.11 layer as we'll get called back to reclaim 539 * node state and potentially want to use them 540 * o to cleanup the tx queues the hal is called, so detach 541 * it last 542 * Other than that, it's straightforward... 543 */ 544 ieee80211_ifdetach(ic); 545 callout_drain(&sc->sc_watchdog); 546 mwl_dma_cleanup(sc); 547 MWL_RXFREE_DESTROY(sc); 548 mwl_tx_cleanup(sc); 549 mwl_hal_detach(sc->sc_mh); 550 mbufq_drain(&sc->sc_snd); 551 552 return 0; 553 } 554 555 /* 556 * MAC address handling for multiple BSS on the same radio. 557 * The first vap uses the MAC address from the EEPROM. For 558 * subsequent vap's we set the U/L bit (bit 1) in the MAC 559 * address and use the next six bits as an index. 560 */ 561 static void 562 assign_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 563 { 564 int i; 565 566 if (clone && mwl_hal_ismbsscapable(sc->sc_mh)) { 567 /* NB: we only do this if h/w supports multiple bssid */ 568 for (i = 0; i < 32; i++) 569 if ((sc->sc_bssidmask & (1<<i)) == 0) 570 break; 571 if (i != 0) 572 mac[0] |= (i << 2)|0x2; 573 } else 574 i = 0; 575 sc->sc_bssidmask |= 1<<i; 576 if (i == 0) 577 sc->sc_nbssid0++; 578 } 579 580 static void 581 reclaim_address(struct mwl_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 582 { 583 int i = mac[0] >> 2; 584 if (i != 0 || --sc->sc_nbssid0 == 0) 585 sc->sc_bssidmask &= ~(1<<i); 586 } 587 588 static struct ieee80211vap * 589 mwl_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 590 enum ieee80211_opmode opmode, int flags, 591 const uint8_t bssid[IEEE80211_ADDR_LEN], 592 const uint8_t mac0[IEEE80211_ADDR_LEN]) 593 { 594 struct mwl_softc *sc = ic->ic_softc; 595 struct mwl_hal *mh = sc->sc_mh; 596 struct ieee80211vap *vap, *apvap; 597 struct mwl_hal_vap *hvap; 598 struct mwl_vap *mvp; 599 uint8_t mac[IEEE80211_ADDR_LEN]; 600 601 IEEE80211_ADDR_COPY(mac, mac0); 602 switch (opmode) { 603 case IEEE80211_M_HOSTAP: 604 case IEEE80211_M_MBSS: 605 if ((flags & IEEE80211_CLONE_MACADDR) == 0) 606 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 607 hvap = mwl_hal_newvap(mh, MWL_HAL_AP, mac); 608 if (hvap == NULL) { 609 if ((flags & IEEE80211_CLONE_MACADDR) == 0) 610 reclaim_address(sc, mac); 611 return NULL; 612 } 613 break; 614 case IEEE80211_M_STA: 615 if ((flags & IEEE80211_CLONE_MACADDR) == 0) 616 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 617 hvap = mwl_hal_newvap(mh, MWL_HAL_STA, mac); 618 if (hvap == NULL) { 619 if ((flags & IEEE80211_CLONE_MACADDR) == 0) 620 reclaim_address(sc, mac); 621 return NULL; 622 } 623 /* no h/w beacon miss support; always use s/w */ 624 flags |= IEEE80211_CLONE_NOBEACONS; 625 break; 626 case IEEE80211_M_WDS: 627 hvap = NULL; /* NB: we use associated AP vap */ 628 if (sc->sc_napvaps == 0) 629 return NULL; /* no existing AP vap */ 630 break; 631 case IEEE80211_M_MONITOR: 632 hvap = NULL; 633 break; 634 case IEEE80211_M_IBSS: 635 case IEEE80211_M_AHDEMO: 636 default: 637 return NULL; 638 } 639 640 mvp = malloc(sizeof(struct mwl_vap), M_80211_VAP, M_WAITOK | M_ZERO); 641 mvp->mv_hvap = hvap; 642 if (opmode == IEEE80211_M_WDS) { 643 /* 644 * WDS vaps must have an associated AP vap; find one. 645 * XXX not right. 646 */ 647 TAILQ_FOREACH(apvap, &ic->ic_vaps, iv_next) 648 if (apvap->iv_opmode == IEEE80211_M_HOSTAP) { 649 mvp->mv_ap_hvap = MWL_VAP(apvap)->mv_hvap; 650 break; 651 } 652 KASSERT(mvp->mv_ap_hvap != NULL, ("no ap vap")); 653 } 654 vap = &mvp->mv_vap; 655 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 656 /* override with driver methods */ 657 mvp->mv_newstate = vap->iv_newstate; 658 vap->iv_newstate = mwl_newstate; 659 vap->iv_max_keyix = 0; /* XXX */ 660 vap->iv_key_alloc = mwl_key_alloc; 661 vap->iv_key_delete = mwl_key_delete; 662 vap->iv_key_set = mwl_key_set; 663 #ifdef MWL_HOST_PS_SUPPORT 664 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 665 vap->iv_update_ps = mwl_update_ps; 666 mvp->mv_set_tim = vap->iv_set_tim; 667 vap->iv_set_tim = mwl_set_tim; 668 } 669 #endif 670 vap->iv_reset = mwl_reset; 671 vap->iv_update_beacon = mwl_beacon_update; 672 673 /* override max aid so sta's cannot assoc when we're out of sta id's */ 674 vap->iv_max_aid = MWL_MAXSTAID; 675 /* override default A-MPDU rx parameters */ 676 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 677 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; 678 679 /* complete setup */ 680 ieee80211_vap_attach(vap, mwl_media_change, ieee80211_media_status, 681 mac); 682 683 switch (vap->iv_opmode) { 684 case IEEE80211_M_HOSTAP: 685 case IEEE80211_M_MBSS: 686 case IEEE80211_M_STA: 687 /* 688 * Setup sta db entry for local address. 689 */ 690 mwl_localstadb(vap); 691 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 692 vap->iv_opmode == IEEE80211_M_MBSS) 693 sc->sc_napvaps++; 694 else 695 sc->sc_nstavaps++; 696 break; 697 case IEEE80211_M_WDS: 698 sc->sc_nwdsvaps++; 699 break; 700 default: 701 break; 702 } 703 /* 704 * Setup overall operating mode. 705 */ 706 if (sc->sc_napvaps) 707 ic->ic_opmode = IEEE80211_M_HOSTAP; 708 else if (sc->sc_nstavaps) 709 ic->ic_opmode = IEEE80211_M_STA; 710 else 711 ic->ic_opmode = opmode; 712 713 return vap; 714 } 715 716 static void 717 mwl_vap_delete(struct ieee80211vap *vap) 718 { 719 struct mwl_vap *mvp = MWL_VAP(vap); 720 struct mwl_softc *sc = vap->iv_ic->ic_softc; 721 struct mwl_hal *mh = sc->sc_mh; 722 struct mwl_hal_vap *hvap = mvp->mv_hvap; 723 enum ieee80211_opmode opmode = vap->iv_opmode; 724 725 /* XXX disallow ap vap delete if WDS still present */ 726 if (sc->sc_running) { 727 /* quiesce h/w while we remove the vap */ 728 mwl_hal_intrset(mh, 0); /* disable interrupts */ 729 } 730 ieee80211_vap_detach(vap); 731 switch (opmode) { 732 case IEEE80211_M_HOSTAP: 733 case IEEE80211_M_MBSS: 734 case IEEE80211_M_STA: 735 KASSERT(hvap != NULL, ("no hal vap handle")); 736 (void) mwl_hal_delstation(hvap, vap->iv_myaddr); 737 mwl_hal_delvap(hvap); 738 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) 739 sc->sc_napvaps--; 740 else 741 sc->sc_nstavaps--; 742 /* XXX don't do it for IEEE80211_CLONE_MACADDR */ 743 reclaim_address(sc, vap->iv_myaddr); 744 break; 745 case IEEE80211_M_WDS: 746 sc->sc_nwdsvaps--; 747 break; 748 default: 749 break; 750 } 751 mwl_cleartxq(sc, vap); 752 free(mvp, M_80211_VAP); 753 if (sc->sc_running) 754 mwl_hal_intrset(mh, sc->sc_imask); 755 } 756 757 void 758 mwl_suspend(struct mwl_softc *sc) 759 { 760 761 MWL_LOCK(sc); 762 mwl_stop(sc); 763 MWL_UNLOCK(sc); 764 } 765 766 void 767 mwl_resume(struct mwl_softc *sc) 768 { 769 int error = EDOOFUS; 770 771 MWL_LOCK(sc); 772 if (sc->sc_ic.ic_nrunning > 0) 773 error = mwl_init(sc); 774 MWL_UNLOCK(sc); 775 776 if (error == 0) 777 ieee80211_start_all(&sc->sc_ic); /* start all vap's */ 778 } 779 780 void 781 mwl_shutdown(void *arg) 782 { 783 struct mwl_softc *sc = arg; 784 785 MWL_LOCK(sc); 786 mwl_stop(sc); 787 MWL_UNLOCK(sc); 788 } 789 790 /* 791 * Interrupt handler. Most of the actual processing is deferred. 792 */ 793 void 794 mwl_intr(void *arg) 795 { 796 struct mwl_softc *sc = arg; 797 struct mwl_hal *mh = sc->sc_mh; 798 uint32_t status; 799 800 if (sc->sc_invalid) { 801 /* 802 * The hardware is not ready/present, don't touch anything. 803 * Note this can happen early on if the IRQ is shared. 804 */ 805 DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 806 return; 807 } 808 /* 809 * Figure out the reason(s) for the interrupt. 810 */ 811 mwl_hal_getisr(mh, &status); /* NB: clears ISR too */ 812 if (status == 0) /* must be a shared irq */ 813 return; 814 815 DPRINTF(sc, MWL_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n", 816 __func__, status, sc->sc_imask); 817 if (status & MACREG_A2HRIC_BIT_RX_RDY) 818 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 819 if (status & MACREG_A2HRIC_BIT_TX_DONE) 820 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 821 if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG) 822 taskqueue_enqueue(sc->sc_tq, &sc->sc_bawatchdogtask); 823 if (status & MACREG_A2HRIC_BIT_OPC_DONE) 824 mwl_hal_cmddone(mh); 825 if (status & MACREG_A2HRIC_BIT_MAC_EVENT) { 826 ; 827 } 828 if (status & MACREG_A2HRIC_BIT_ICV_ERROR) { 829 /* TKIP ICV error */ 830 sc->sc_stats.mst_rx_badtkipicv++; 831 } 832 if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) { 833 /* 11n aggregation queue is empty, re-fill */ 834 ; 835 } 836 if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) { 837 ; 838 } 839 if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) { 840 /* radar detected, process event */ 841 taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask); 842 } 843 if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) { 844 /* DFS channel switch */ 845 taskqueue_enqueue(sc->sc_tq, &sc->sc_chanswitchtask); 846 } 847 } 848 849 static void 850 mwl_radar_proc(void *arg, int pending) 851 { 852 struct mwl_softc *sc = arg; 853 struct ieee80211com *ic = &sc->sc_ic; 854 855 DPRINTF(sc, MWL_DEBUG_ANY, "%s: radar detected, pending %u\n", 856 __func__, pending); 857 858 sc->sc_stats.mst_radardetect++; 859 /* XXX stop h/w BA streams? */ 860 861 IEEE80211_LOCK(ic); 862 ieee80211_dfs_notify_radar(ic, ic->ic_curchan); 863 IEEE80211_UNLOCK(ic); 864 } 865 866 static void 867 mwl_chanswitch_proc(void *arg, int pending) 868 { 869 struct mwl_softc *sc = arg; 870 struct ieee80211com *ic = &sc->sc_ic; 871 872 DPRINTF(sc, MWL_DEBUG_ANY, "%s: channel switch notice, pending %u\n", 873 __func__, pending); 874 875 IEEE80211_LOCK(ic); 876 sc->sc_csapending = 0; 877 ieee80211_csa_completeswitch(ic); 878 IEEE80211_UNLOCK(ic); 879 } 880 881 static void 882 mwl_bawatchdog(const MWL_HAL_BASTREAM *sp) 883 { 884 struct ieee80211_node *ni = sp->data[0]; 885 886 /* send DELBA and drop the stream */ 887 ieee80211_ampdu_stop(ni, sp->data[1], IEEE80211_REASON_UNSPECIFIED); 888 } 889 890 static void 891 mwl_bawatchdog_proc(void *arg, int pending) 892 { 893 struct mwl_softc *sc = arg; 894 struct mwl_hal *mh = sc->sc_mh; 895 const MWL_HAL_BASTREAM *sp; 896 uint8_t bitmap, n; 897 898 sc->sc_stats.mst_bawatchdog++; 899 900 if (mwl_hal_getwatchdogbitmap(mh, &bitmap) != 0) { 901 DPRINTF(sc, MWL_DEBUG_AMPDU, 902 "%s: could not get bitmap\n", __func__); 903 sc->sc_stats.mst_bawatchdog_failed++; 904 return; 905 } 906 DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bitmap 0x%x\n", __func__, bitmap); 907 if (bitmap == 0xff) { 908 n = 0; 909 /* disable all ba streams */ 910 for (bitmap = 0; bitmap < 8; bitmap++) { 911 sp = mwl_hal_bastream_lookup(mh, bitmap); 912 if (sp != NULL) { 913 mwl_bawatchdog(sp); 914 n++; 915 } 916 } 917 if (n == 0) { 918 DPRINTF(sc, MWL_DEBUG_AMPDU, 919 "%s: no BA streams found\n", __func__); 920 sc->sc_stats.mst_bawatchdog_empty++; 921 } 922 } else if (bitmap != 0xaa) { 923 /* disable a single ba stream */ 924 sp = mwl_hal_bastream_lookup(mh, bitmap); 925 if (sp != NULL) { 926 mwl_bawatchdog(sp); 927 } else { 928 DPRINTF(sc, MWL_DEBUG_AMPDU, 929 "%s: no BA stream %d\n", __func__, bitmap); 930 sc->sc_stats.mst_bawatchdog_notfound++; 931 } 932 } 933 } 934 935 /* 936 * Convert net80211 channel to a HAL channel. 937 */ 938 static void 939 mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct ieee80211_channel *chan) 940 { 941 hc->channel = chan->ic_ieee; 942 943 *(uint32_t *)&hc->channelFlags = 0; 944 if (IEEE80211_IS_CHAN_2GHZ(chan)) 945 hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ; 946 else if (IEEE80211_IS_CHAN_5GHZ(chan)) 947 hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ; 948 if (IEEE80211_IS_CHAN_HT40(chan)) { 949 hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH; 950 if (IEEE80211_IS_CHAN_HT40U(chan)) 951 hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_ABOVE_CTRL_CH; 952 else 953 hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_BELOW_CTRL_CH; 954 } else 955 hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH; 956 /* XXX 10MHz channels */ 957 } 958 959 /* 960 * Inform firmware of our tx/rx dma setup. The BAR 0 961 * writes below are for compatibility with older firmware. 962 * For current firmware we send this information with a 963 * cmd block via mwl_hal_sethwdma. 964 */ 965 static int 966 mwl_setupdma(struct mwl_softc *sc) 967 { 968 int error, i; 969 970 sc->sc_hwdma.rxDescRead = sc->sc_rxdma.dd_desc_paddr; 971 WR4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead); 972 WR4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead); 973 974 for (i = 0; i < MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; i++) { 975 struct mwl_txq *txq = &sc->sc_txq[i]; 976 sc->sc_hwdma.wcbBase[i] = txq->dma.dd_desc_paddr; 977 WR4(sc, sc->sc_hwspecs.wcbBase[i], sc->sc_hwdma.wcbBase[i]); 978 } 979 sc->sc_hwdma.maxNumTxWcb = mwl_txbuf; 980 sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; 981 982 error = mwl_hal_sethwdma(sc->sc_mh, &sc->sc_hwdma); 983 if (error != 0) { 984 device_printf(sc->sc_dev, 985 "unable to setup tx/rx dma; hal status %u\n", error); 986 /* XXX */ 987 } 988 return error; 989 } 990 991 /* 992 * Inform firmware of tx rate parameters. 993 * Called after a channel change. 994 */ 995 static int 996 mwl_setcurchanrates(struct mwl_softc *sc) 997 { 998 struct ieee80211com *ic = &sc->sc_ic; 999 const struct ieee80211_rateset *rs; 1000 MWL_HAL_TXRATE rates; 1001 1002 memset(&rates, 0, sizeof(rates)); 1003 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 1004 /* rate used to send management frames */ 1005 rates.MgtRate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 1006 /* rate used to send multicast frames */ 1007 rates.McastRate = rates.MgtRate; 1008 1009 return mwl_hal_settxrate_auto(sc->sc_mh, &rates); 1010 } 1011 1012 /* 1013 * Inform firmware of tx rate parameters. Called whenever 1014 * user-settable params change and after a channel change. 1015 */ 1016 static int 1017 mwl_setrates(struct ieee80211vap *vap) 1018 { 1019 struct mwl_vap *mvp = MWL_VAP(vap); 1020 struct ieee80211_node *ni = vap->iv_bss; 1021 const struct ieee80211_txparam *tp = ni->ni_txparms; 1022 MWL_HAL_TXRATE rates; 1023 1024 KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state)); 1025 1026 /* 1027 * Update the h/w rate map. 1028 * NB: 0x80 for MCS is passed through unchanged 1029 */ 1030 memset(&rates, 0, sizeof(rates)); 1031 /* rate used to send management frames */ 1032 rates.MgtRate = tp->mgmtrate; 1033 /* rate used to send multicast frames */ 1034 rates.McastRate = tp->mcastrate; 1035 1036 /* while here calculate EAPOL fixed rate cookie */ 1037 mvp->mv_eapolformat = htole16(mwl_calcformat(rates.MgtRate, ni)); 1038 1039 return mwl_hal_settxrate(mvp->mv_hvap, 1040 tp->ucastrate != IEEE80211_FIXED_RATE_NONE ? 1041 RATE_FIXED : RATE_AUTO, &rates); 1042 } 1043 1044 /* 1045 * Setup a fixed xmit rate cookie for EAPOL frames. 1046 */ 1047 static void 1048 mwl_seteapolformat(struct ieee80211vap *vap) 1049 { 1050 struct mwl_vap *mvp = MWL_VAP(vap); 1051 struct ieee80211_node *ni = vap->iv_bss; 1052 enum ieee80211_phymode mode; 1053 uint8_t rate; 1054 1055 KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state)); 1056 1057 mode = ieee80211_chan2mode(ni->ni_chan); 1058 /* 1059 * Use legacy rates when operating a mixed HT+non-HT bss. 1060 * NB: this may violate POLA for sta and wds vap's. 1061 */ 1062 if (mode == IEEE80211_MODE_11NA && 1063 (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0) 1064 rate = vap->iv_txparms[IEEE80211_MODE_11A].mgmtrate; 1065 else if (mode == IEEE80211_MODE_11NG && 1066 (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0) 1067 rate = vap->iv_txparms[IEEE80211_MODE_11G].mgmtrate; 1068 else 1069 rate = vap->iv_txparms[mode].mgmtrate; 1070 1071 mvp->mv_eapolformat = htole16(mwl_calcformat(rate, ni)); 1072 } 1073 1074 /* 1075 * Map SKU+country code to region code for radar bin'ing. 1076 */ 1077 static int 1078 mwl_map2regioncode(const struct ieee80211_regdomain *rd) 1079 { 1080 switch (rd->regdomain) { 1081 case SKU_FCC: 1082 case SKU_FCC3: 1083 return DOMAIN_CODE_FCC; 1084 case SKU_CA: 1085 return DOMAIN_CODE_IC; 1086 case SKU_ETSI: 1087 case SKU_ETSI2: 1088 case SKU_ETSI3: 1089 if (rd->country == CTRY_SPAIN) 1090 return DOMAIN_CODE_SPAIN; 1091 if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2) 1092 return DOMAIN_CODE_FRANCE; 1093 /* XXX force 1.3.1 radar type */ 1094 return DOMAIN_CODE_ETSI_131; 1095 case SKU_JAPAN: 1096 return DOMAIN_CODE_MKK; 1097 case SKU_ROW: 1098 return DOMAIN_CODE_DGT; /* Taiwan */ 1099 case SKU_APAC: 1100 case SKU_APAC2: 1101 case SKU_APAC3: 1102 return DOMAIN_CODE_AUS; /* Australia */ 1103 } 1104 /* XXX KOREA? */ 1105 return DOMAIN_CODE_FCC; /* XXX? */ 1106 } 1107 1108 static int 1109 mwl_hal_reset(struct mwl_softc *sc) 1110 { 1111 struct ieee80211com *ic = &sc->sc_ic; 1112 struct mwl_hal *mh = sc->sc_mh; 1113 1114 mwl_hal_setantenna(mh, WL_ANTENNATYPE_RX, sc->sc_rxantenna); 1115 mwl_hal_setantenna(mh, WL_ANTENNATYPE_TX, sc->sc_txantenna); 1116 mwl_hal_setradio(mh, 1, WL_AUTO_PREAMBLE); 1117 mwl_hal_setwmm(sc->sc_mh, (ic->ic_flags & IEEE80211_F_WME) != 0); 1118 mwl_chan_set(sc, ic->ic_curchan); 1119 /* NB: RF/RA performance tuned for indoor mode */ 1120 mwl_hal_setrateadaptmode(mh, 0); 1121 mwl_hal_setoptimizationlevel(mh, 1122 (ic->ic_flags & IEEE80211_F_BURST) != 0); 1123 1124 mwl_hal_setregioncode(mh, mwl_map2regioncode(&ic->ic_regdomain)); 1125 1126 mwl_hal_setaggampduratemode(mh, 1, 80); /* XXX */ 1127 mwl_hal_setcfend(mh, 0); /* XXX */ 1128 1129 return 1; 1130 } 1131 1132 static int 1133 mwl_init(struct mwl_softc *sc) 1134 { 1135 struct mwl_hal *mh = sc->sc_mh; 1136 int error = 0; 1137 1138 MWL_LOCK_ASSERT(sc); 1139 1140 /* 1141 * Stop anything previously setup. This is safe 1142 * whether this is the first time through or not. 1143 */ 1144 mwl_stop(sc); 1145 1146 /* 1147 * Push vap-independent state to the firmware. 1148 */ 1149 if (!mwl_hal_reset(sc)) { 1150 device_printf(sc->sc_dev, "unable to reset hardware\n"); 1151 return EIO; 1152 } 1153 1154 /* 1155 * Setup recv (once); transmit is already good to go. 1156 */ 1157 error = mwl_startrecv(sc); 1158 if (error != 0) { 1159 device_printf(sc->sc_dev, "unable to start recv logic\n"); 1160 return error; 1161 } 1162 1163 /* 1164 * Enable interrupts. 1165 */ 1166 sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY 1167 | MACREG_A2HRIC_BIT_TX_DONE 1168 | MACREG_A2HRIC_BIT_OPC_DONE 1169 #if 0 1170 | MACREG_A2HRIC_BIT_MAC_EVENT 1171 #endif 1172 | MACREG_A2HRIC_BIT_ICV_ERROR 1173 | MACREG_A2HRIC_BIT_RADAR_DETECT 1174 | MACREG_A2HRIC_BIT_CHAN_SWITCH 1175 #if 0 1176 | MACREG_A2HRIC_BIT_QUEUE_EMPTY 1177 #endif 1178 | MACREG_A2HRIC_BIT_BA_WATCHDOG 1179 | MACREQ_A2HRIC_BIT_TX_ACK 1180 ; 1181 1182 sc->sc_running = 1; 1183 mwl_hal_intrset(mh, sc->sc_imask); 1184 callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc); 1185 1186 return 0; 1187 } 1188 1189 static void 1190 mwl_stop(struct mwl_softc *sc) 1191 { 1192 1193 MWL_LOCK_ASSERT(sc); 1194 if (sc->sc_running) { 1195 /* 1196 * Shutdown the hardware and driver. 1197 */ 1198 sc->sc_running = 0; 1199 callout_stop(&sc->sc_watchdog); 1200 sc->sc_tx_timer = 0; 1201 mwl_draintxq(sc); 1202 } 1203 } 1204 1205 static int 1206 mwl_reset_vap(struct ieee80211vap *vap, int state) 1207 { 1208 struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; 1209 struct ieee80211com *ic = vap->iv_ic; 1210 1211 if (state == IEEE80211_S_RUN) 1212 mwl_setrates(vap); 1213 /* XXX off by 1? */ 1214 mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold); 1215 /* XXX auto? 20/40 split? */ 1216 mwl_hal_sethtgi(hvap, (vap->iv_flags_ht & 1217 (IEEE80211_FHT_SHORTGI20|IEEE80211_FHT_SHORTGI40)) ? 1 : 0); 1218 mwl_hal_setnprot(hvap, ic->ic_htprotmode == IEEE80211_PROT_NONE ? 1219 HTPROTECT_NONE : HTPROTECT_AUTO); 1220 /* XXX txpower cap */ 1221 1222 /* re-setup beacons */ 1223 if (state == IEEE80211_S_RUN && 1224 (vap->iv_opmode == IEEE80211_M_HOSTAP || 1225 vap->iv_opmode == IEEE80211_M_MBSS || 1226 vap->iv_opmode == IEEE80211_M_IBSS)) { 1227 mwl_setapmode(vap, vap->iv_bss->ni_chan); 1228 mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT( 1229 ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE)); 1230 return mwl_beacon_setup(vap); 1231 } 1232 return 0; 1233 } 1234 1235 /* 1236 * Reset the hardware w/o losing operational state. 1237 * Used to reset or reload hardware state for a vap. 1238 */ 1239 static int 1240 mwl_reset(struct ieee80211vap *vap, u_long cmd) 1241 { 1242 struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; 1243 int error = 0; 1244 1245 if (hvap != NULL) { /* WDS, MONITOR, etc. */ 1246 struct ieee80211com *ic = vap->iv_ic; 1247 struct mwl_softc *sc = ic->ic_softc; 1248 struct mwl_hal *mh = sc->sc_mh; 1249 1250 /* XXX handle DWDS sta vap change */ 1251 /* XXX do we need to disable interrupts? */ 1252 mwl_hal_intrset(mh, 0); /* disable interrupts */ 1253 error = mwl_reset_vap(vap, vap->iv_state); 1254 mwl_hal_intrset(mh, sc->sc_imask); 1255 } 1256 return error; 1257 } 1258 1259 /* 1260 * Allocate a tx buffer for sending a frame. The 1261 * packet is assumed to have the WME AC stored so 1262 * we can use it to select the appropriate h/w queue. 1263 */ 1264 static struct mwl_txbuf * 1265 mwl_gettxbuf(struct mwl_softc *sc, struct mwl_txq *txq) 1266 { 1267 struct mwl_txbuf *bf; 1268 1269 /* 1270 * Grab a TX buffer and associated resources. 1271 */ 1272 MWL_TXQ_LOCK(txq); 1273 bf = STAILQ_FIRST(&txq->free); 1274 if (bf != NULL) { 1275 STAILQ_REMOVE_HEAD(&txq->free, bf_list); 1276 txq->nfree--; 1277 } 1278 MWL_TXQ_UNLOCK(txq); 1279 if (bf == NULL) 1280 DPRINTF(sc, MWL_DEBUG_XMIT, 1281 "%s: out of xmit buffers on q %d\n", __func__, txq->qnum); 1282 return bf; 1283 } 1284 1285 /* 1286 * Return a tx buffer to the queue it came from. Note there 1287 * are two cases because we must preserve the order of buffers 1288 * as it reflects the fixed order of descriptors in memory 1289 * (the firmware pre-fetches descriptors so we cannot reorder). 1290 */ 1291 static void 1292 mwl_puttxbuf_head(struct mwl_txq *txq, struct mwl_txbuf *bf) 1293 { 1294 bf->bf_m = NULL; 1295 bf->bf_node = NULL; 1296 MWL_TXQ_LOCK(txq); 1297 STAILQ_INSERT_HEAD(&txq->free, bf, bf_list); 1298 txq->nfree++; 1299 MWL_TXQ_UNLOCK(txq); 1300 } 1301 1302 static void 1303 mwl_puttxbuf_tail(struct mwl_txq *txq, struct mwl_txbuf *bf) 1304 { 1305 bf->bf_m = NULL; 1306 bf->bf_node = NULL; 1307 MWL_TXQ_LOCK(txq); 1308 STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); 1309 txq->nfree++; 1310 MWL_TXQ_UNLOCK(txq); 1311 } 1312 1313 static int 1314 mwl_transmit(struct ieee80211com *ic, struct mbuf *m) 1315 { 1316 struct mwl_softc *sc = ic->ic_softc; 1317 int error; 1318 1319 MWL_LOCK(sc); 1320 if (!sc->sc_running) { 1321 MWL_UNLOCK(sc); 1322 return (ENXIO); 1323 } 1324 error = mbufq_enqueue(&sc->sc_snd, m); 1325 if (error) { 1326 MWL_UNLOCK(sc); 1327 return (error); 1328 } 1329 mwl_start(sc); 1330 MWL_UNLOCK(sc); 1331 return (0); 1332 } 1333 1334 static void 1335 mwl_start(struct mwl_softc *sc) 1336 { 1337 struct ieee80211_node *ni; 1338 struct mwl_txbuf *bf; 1339 struct mbuf *m; 1340 struct mwl_txq *txq = NULL; /* XXX silence gcc */ 1341 int nqueued; 1342 1343 MWL_LOCK_ASSERT(sc); 1344 if (!sc->sc_running || sc->sc_invalid) 1345 return; 1346 nqueued = 0; 1347 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1348 /* 1349 * Grab the node for the destination. 1350 */ 1351 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1352 KASSERT(ni != NULL, ("no node")); 1353 m->m_pkthdr.rcvif = NULL; /* committed, clear ref */ 1354 /* 1355 * Grab a TX buffer and associated resources. 1356 * We honor the classification by the 802.11 layer. 1357 */ 1358 txq = sc->sc_ac2q[M_WME_GETAC(m)]; 1359 bf = mwl_gettxbuf(sc, txq); 1360 if (bf == NULL) { 1361 m_freem(m); 1362 ieee80211_free_node(ni); 1363 #ifdef MWL_TX_NODROP 1364 sc->sc_stats.mst_tx_qstop++; 1365 break; 1366 #else 1367 DPRINTF(sc, MWL_DEBUG_XMIT, 1368 "%s: tail drop on q %d\n", __func__, txq->qnum); 1369 sc->sc_stats.mst_tx_qdrop++; 1370 continue; 1371 #endif /* MWL_TX_NODROP */ 1372 } 1373 1374 /* 1375 * Pass the frame to the h/w for transmission. 1376 */ 1377 if (mwl_tx_start(sc, ni, bf, m)) { 1378 if_inc_counter(ni->ni_vap->iv_ifp, 1379 IFCOUNTER_OERRORS, 1); 1380 mwl_puttxbuf_head(txq, bf); 1381 ieee80211_free_node(ni); 1382 continue; 1383 } 1384 nqueued++; 1385 if (nqueued >= mwl_txcoalesce) { 1386 /* 1387 * Poke the firmware to process queued frames; 1388 * see below about (lack of) locking. 1389 */ 1390 nqueued = 0; 1391 mwl_hal_txstart(sc->sc_mh, 0/*XXX*/); 1392 } 1393 } 1394 if (nqueued) { 1395 /* 1396 * NB: We don't need to lock against tx done because 1397 * this just prods the firmware to check the transmit 1398 * descriptors. The firmware will also start fetching 1399 * descriptors by itself if it notices new ones are 1400 * present when it goes to deliver a tx done interrupt 1401 * to the host. So if we race with tx done processing 1402 * it's ok. Delivering the kick here rather than in 1403 * mwl_tx_start is an optimization to avoid poking the 1404 * firmware for each packet. 1405 * 1406 * NB: the queue id isn't used so 0 is ok. 1407 */ 1408 mwl_hal_txstart(sc->sc_mh, 0/*XXX*/); 1409 } 1410 } 1411 1412 static int 1413 mwl_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1414 const struct ieee80211_bpf_params *params) 1415 { 1416 struct ieee80211com *ic = ni->ni_ic; 1417 struct mwl_softc *sc = ic->ic_softc; 1418 struct mwl_txbuf *bf; 1419 struct mwl_txq *txq; 1420 1421 if (!sc->sc_running || sc->sc_invalid) { 1422 m_freem(m); 1423 return ENETDOWN; 1424 } 1425 /* 1426 * Grab a TX buffer and associated resources. 1427 * Note that we depend on the classification 1428 * by the 802.11 layer to get to the right h/w 1429 * queue. Management frames must ALWAYS go on 1430 * queue 1 but we cannot just force that here 1431 * because we may receive non-mgt frames. 1432 */ 1433 txq = sc->sc_ac2q[M_WME_GETAC(m)]; 1434 bf = mwl_gettxbuf(sc, txq); 1435 if (bf == NULL) { 1436 sc->sc_stats.mst_tx_qstop++; 1437 m_freem(m); 1438 return ENOBUFS; 1439 } 1440 /* 1441 * Pass the frame to the h/w for transmission. 1442 */ 1443 if (mwl_tx_start(sc, ni, bf, m)) { 1444 mwl_puttxbuf_head(txq, bf); 1445 1446 return EIO; /* XXX */ 1447 } 1448 /* 1449 * NB: We don't need to lock against tx done because 1450 * this just prods the firmware to check the transmit 1451 * descriptors. The firmware will also start fetching 1452 * descriptors by itself if it notices new ones are 1453 * present when it goes to deliver a tx done interrupt 1454 * to the host. So if we race with tx done processing 1455 * it's ok. Delivering the kick here rather than in 1456 * mwl_tx_start is an optimization to avoid poking the 1457 * firmware for each packet. 1458 * 1459 * NB: the queue id isn't used so 0 is ok. 1460 */ 1461 mwl_hal_txstart(sc->sc_mh, 0/*XXX*/); 1462 return 0; 1463 } 1464 1465 static int 1466 mwl_media_change(if_t ifp) 1467 { 1468 struct ieee80211vap *vap; 1469 int error; 1470 1471 /* NB: only the fixed rate can change and that doesn't need a reset */ 1472 error = ieee80211_media_change(ifp); 1473 if (error != 0) 1474 return (error); 1475 1476 vap = if_getsoftc(ifp); 1477 mwl_setrates(vap); 1478 return (0); 1479 } 1480 1481 #ifdef MWL_DEBUG 1482 static void 1483 mwl_keyprint(struct mwl_softc *sc, const char *tag, 1484 const MWL_HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN]) 1485 { 1486 static const char *ciphers[] = { 1487 "WEP", 1488 "TKIP", 1489 "AES-CCM", 1490 }; 1491 int i, n; 1492 1493 printf("%s: [%u] %-7s", tag, hk->keyIndex, ciphers[hk->keyTypeId]); 1494 for (i = 0, n = hk->keyLen; i < n; i++) 1495 printf(" %02x", hk->key.aes[i]); 1496 printf(" mac %s", ether_sprintf(mac)); 1497 if (hk->keyTypeId == KEY_TYPE_ID_TKIP) { 1498 printf(" %s", "rxmic"); 1499 for (i = 0; i < sizeof(hk->key.tkip.rxMic); i++) 1500 printf(" %02x", hk->key.tkip.rxMic[i]); 1501 printf(" txmic"); 1502 for (i = 0; i < sizeof(hk->key.tkip.txMic); i++) 1503 printf(" %02x", hk->key.tkip.txMic[i]); 1504 } 1505 printf(" flags 0x%x\n", hk->keyFlags); 1506 } 1507 #endif 1508 1509 /* 1510 * Allocate a key cache slot for a unicast key. The 1511 * firmware handles key allocation and every station is 1512 * guaranteed key space so we are always successful. 1513 */ 1514 static int 1515 mwl_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 1516 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1517 { 1518 struct mwl_softc *sc = vap->iv_ic->ic_softc; 1519 1520 if (k->wk_keyix != IEEE80211_KEYIX_NONE || 1521 (k->wk_flags & IEEE80211_KEY_GROUP)) { 1522 if (!(&vap->iv_nw_keys[0] <= k && 1523 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 1524 /* should not happen */ 1525 DPRINTF(sc, MWL_DEBUG_KEYCACHE, 1526 "%s: bogus group key\n", __func__); 1527 return 0; 1528 } 1529 /* give the caller what they requested */ 1530 *keyix = *rxkeyix = ieee80211_crypto_get_key_wepidx(vap, k); 1531 } else { 1532 /* 1533 * Firmware handles key allocation. 1534 */ 1535 *keyix = *rxkeyix = 0; 1536 } 1537 return 1; 1538 } 1539 1540 /* 1541 * Delete a key entry allocated by mwl_key_alloc. 1542 */ 1543 static int 1544 mwl_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 1545 { 1546 struct mwl_softc *sc = vap->iv_ic->ic_softc; 1547 struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; 1548 MWL_HAL_KEYVAL hk; 1549 const uint8_t bcastaddr[IEEE80211_ADDR_LEN] = 1550 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1551 1552 if (hvap == NULL) { 1553 if (vap->iv_opmode != IEEE80211_M_WDS) { 1554 /* XXX monitor mode? */ 1555 DPRINTF(sc, MWL_DEBUG_KEYCACHE, 1556 "%s: no hvap for opmode %d\n", __func__, 1557 vap->iv_opmode); 1558 return 0; 1559 } 1560 hvap = MWL_VAP(vap)->mv_ap_hvap; 1561 } 1562 1563 DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: delete key %u\n", 1564 __func__, k->wk_keyix); 1565 1566 memset(&hk, 0, sizeof(hk)); 1567 hk.keyIndex = k->wk_keyix; 1568 switch (k->wk_cipher->ic_cipher) { 1569 case IEEE80211_CIPHER_WEP: 1570 hk.keyTypeId = KEY_TYPE_ID_WEP; 1571 break; 1572 case IEEE80211_CIPHER_TKIP: 1573 hk.keyTypeId = KEY_TYPE_ID_TKIP; 1574 break; 1575 case IEEE80211_CIPHER_AES_CCM: 1576 hk.keyTypeId = KEY_TYPE_ID_AES; 1577 break; 1578 default: 1579 /* XXX should not happen */ 1580 DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n", 1581 __func__, k->wk_cipher->ic_cipher); 1582 return 0; 1583 } 1584 return (mwl_hal_keyreset(hvap, &hk, bcastaddr) == 0); /*XXX*/ 1585 } 1586 1587 static __inline int 1588 addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k) 1589 { 1590 if (k->wk_flags & IEEE80211_KEY_GROUP) { 1591 if (k->wk_flags & IEEE80211_KEY_XMIT) 1592 hk->keyFlags |= KEY_FLAG_TXGROUPKEY; 1593 if (k->wk_flags & IEEE80211_KEY_RECV) 1594 hk->keyFlags |= KEY_FLAG_RXGROUPKEY; 1595 return 1; 1596 } else 1597 return 0; 1598 } 1599 1600 /* 1601 * Set the key cache contents for the specified key. Key cache 1602 * slot(s) must already have been allocated by mwl_key_alloc. 1603 */ 1604 static int 1605 mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 1606 { 1607 return (_mwl_key_set(vap, k, k->wk_macaddr)); 1608 } 1609 1610 static int 1611 _mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k, 1612 const uint8_t mac[IEEE80211_ADDR_LEN]) 1613 { 1614 #define GRPXMIT (IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP) 1615 /* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */ 1616 #define IEEE80211_IS_STATICKEY(k) \ 1617 (((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \ 1618 (GRPXMIT|IEEE80211_KEY_RECV)) 1619 struct mwl_softc *sc = vap->iv_ic->ic_softc; 1620 struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; 1621 const struct ieee80211_cipher *cip = k->wk_cipher; 1622 const uint8_t *macaddr; 1623 MWL_HAL_KEYVAL hk; 1624 1625 KASSERT((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0, 1626 ("s/w crypto set?")); 1627 1628 if (hvap == NULL) { 1629 if (vap->iv_opmode != IEEE80211_M_WDS) { 1630 /* XXX monitor mode? */ 1631 DPRINTF(sc, MWL_DEBUG_KEYCACHE, 1632 "%s: no hvap for opmode %d\n", __func__, 1633 vap->iv_opmode); 1634 return 0; 1635 } 1636 hvap = MWL_VAP(vap)->mv_ap_hvap; 1637 } 1638 memset(&hk, 0, sizeof(hk)); 1639 hk.keyIndex = k->wk_keyix; 1640 switch (cip->ic_cipher) { 1641 case IEEE80211_CIPHER_WEP: 1642 hk.keyTypeId = KEY_TYPE_ID_WEP; 1643 hk.keyLen = k->wk_keylen; 1644 if (k->wk_keyix == vap->iv_def_txkey) 1645 hk.keyFlags = KEY_FLAG_WEP_TXKEY; 1646 if (!IEEE80211_IS_STATICKEY(k)) { 1647 /* NB: WEP is never used for the PTK */ 1648 (void) addgroupflags(&hk, k); 1649 } 1650 break; 1651 case IEEE80211_CIPHER_TKIP: 1652 hk.keyTypeId = KEY_TYPE_ID_TKIP; 1653 hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16); 1654 hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc; 1655 hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID; 1656 hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE; 1657 if (!addgroupflags(&hk, k)) 1658 hk.keyFlags |= KEY_FLAG_PAIRWISE; 1659 break; 1660 case IEEE80211_CIPHER_AES_CCM: 1661 hk.keyTypeId = KEY_TYPE_ID_AES; 1662 hk.keyLen = k->wk_keylen; 1663 if (!addgroupflags(&hk, k)) 1664 hk.keyFlags |= KEY_FLAG_PAIRWISE; 1665 break; 1666 default: 1667 /* XXX should not happen */ 1668 DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n", 1669 __func__, k->wk_cipher->ic_cipher); 1670 return 0; 1671 } 1672 /* 1673 * NB: tkip mic keys get copied here too; the layout 1674 * just happens to match that in ieee80211_key. 1675 */ 1676 memcpy(hk.key.aes, k->wk_key, hk.keyLen); 1677 1678 /* 1679 * Locate address of sta db entry for writing key; 1680 * the convention unfortunately is somewhat different 1681 * than how net80211, hostapd, and wpa_supplicant think. 1682 */ 1683 if (vap->iv_opmode == IEEE80211_M_STA) { 1684 /* 1685 * NB: keys plumbed before the sta reaches AUTH state 1686 * will be discarded or written to the wrong sta db 1687 * entry because iv_bss is meaningless. This is ok 1688 * (right now) because we handle deferred plumbing of 1689 * WEP keys when the sta reaches AUTH state. 1690 */ 1691 macaddr = vap->iv_bss->ni_bssid; 1692 if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0) { 1693 /* XXX plumb to local sta db too for static key wep */ 1694 mwl_hal_keyset(hvap, &hk, vap->iv_myaddr); 1695 } 1696 } else if (vap->iv_opmode == IEEE80211_M_WDS && 1697 vap->iv_state != IEEE80211_S_RUN) { 1698 /* 1699 * Prior to RUN state a WDS vap will not it's BSS node 1700 * setup so we will plumb the key to the wrong mac 1701 * address (it'll be our local address). Workaround 1702 * this for the moment by grabbing the correct address. 1703 */ 1704 macaddr = vap->iv_des_bssid; 1705 } else if ((k->wk_flags & GRPXMIT) == GRPXMIT) 1706 macaddr = vap->iv_myaddr; 1707 else 1708 macaddr = mac; 1709 KEYPRINTF(sc, &hk, macaddr); 1710 return (mwl_hal_keyset(hvap, &hk, macaddr) == 0); 1711 #undef IEEE80211_IS_STATICKEY 1712 #undef GRPXMIT 1713 } 1714 1715 /* 1716 * Set the multicast filter contents into the hardware. 1717 * XXX f/w has no support; just defer to the os. 1718 */ 1719 static void 1720 mwl_setmcastfilter(struct mwl_softc *sc) 1721 { 1722 #if 0 1723 struct ether_multi *enm; 1724 struct ether_multistep estep; 1725 uint8_t macs[IEEE80211_ADDR_LEN*MWL_HAL_MCAST_MAX];/* XXX stack use */ 1726 uint8_t *mp; 1727 int nmc; 1728 1729 mp = macs; 1730 nmc = 0; 1731 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1732 while (enm != NULL) { 1733 /* XXX Punt on ranges. */ 1734 if (nmc == MWL_HAL_MCAST_MAX || 1735 !IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 1736 if_setflagsbit(ifp, IFF_ALLMULTI, 0); 1737 return; 1738 } 1739 IEEE80211_ADDR_COPY(mp, enm->enm_addrlo); 1740 mp += IEEE80211_ADDR_LEN, nmc++; 1741 ETHER_NEXT_MULTI(estep, enm); 1742 } 1743 if_setflagsbit(ifp, 0, IFF_ALLMULTI); 1744 mwl_hal_setmcast(sc->sc_mh, nmc, macs); 1745 #endif 1746 } 1747 1748 static int 1749 mwl_mode_init(struct mwl_softc *sc) 1750 { 1751 struct ieee80211com *ic = &sc->sc_ic; 1752 struct mwl_hal *mh = sc->sc_mh; 1753 1754 mwl_hal_setpromisc(mh, ic->ic_promisc > 0); 1755 mwl_setmcastfilter(sc); 1756 1757 return 0; 1758 } 1759 1760 /* 1761 * Callback from the 802.11 layer after a multicast state change. 1762 */ 1763 static void 1764 mwl_update_mcast(struct ieee80211com *ic) 1765 { 1766 struct mwl_softc *sc = ic->ic_softc; 1767 1768 mwl_setmcastfilter(sc); 1769 } 1770 1771 /* 1772 * Callback from the 802.11 layer after a promiscuous mode change. 1773 * Note this interface does not check the operating mode as this 1774 * is an internal callback and we are expected to honor the current 1775 * state (e.g. this is used for setting the interface in promiscuous 1776 * mode when operating in hostap mode to do ACS). 1777 */ 1778 static void 1779 mwl_update_promisc(struct ieee80211com *ic) 1780 { 1781 struct mwl_softc *sc = ic->ic_softc; 1782 1783 mwl_hal_setpromisc(sc->sc_mh, ic->ic_promisc > 0); 1784 } 1785 1786 /* 1787 * Callback from the 802.11 layer to update the slot time 1788 * based on the current setting. We use it to notify the 1789 * firmware of ERP changes and the f/w takes care of things 1790 * like slot time and preamble. 1791 */ 1792 static void 1793 mwl_updateslot(struct ieee80211com *ic) 1794 { 1795 struct mwl_softc *sc = ic->ic_softc; 1796 struct mwl_hal *mh = sc->sc_mh; 1797 int prot; 1798 1799 /* NB: can be called early; suppress needless cmds */ 1800 if (!sc->sc_running) 1801 return; 1802 1803 /* 1804 * Calculate the ERP flags. The firwmare will use 1805 * this to carry out the appropriate measures. 1806 */ 1807 prot = 0; 1808 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 1809 if ((ic->ic_flags & IEEE80211_F_SHSLOT) == 0) 1810 prot |= IEEE80211_ERP_NON_ERP_PRESENT; 1811 if (ic->ic_flags & IEEE80211_F_USEPROT) 1812 prot |= IEEE80211_ERP_USE_PROTECTION; 1813 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1814 prot |= IEEE80211_ERP_LONG_PREAMBLE; 1815 } 1816 1817 DPRINTF(sc, MWL_DEBUG_RESET, 1818 "%s: chan %u MHz/flags 0x%x %s slot, (prot 0x%x ic_flags 0x%x)\n", 1819 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 1820 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", prot, 1821 ic->ic_flags); 1822 1823 mwl_hal_setgprot(mh, prot); 1824 } 1825 1826 /* 1827 * Setup the beacon frame. 1828 */ 1829 static int 1830 mwl_beacon_setup(struct ieee80211vap *vap) 1831 { 1832 struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; 1833 struct ieee80211_node *ni = vap->iv_bss; 1834 struct mbuf *m; 1835 1836 m = ieee80211_beacon_alloc(ni); 1837 if (m == NULL) 1838 return ENOBUFS; 1839 mwl_hal_setbeacon(hvap, mtod(m, const void *), m->m_len); 1840 m_free(m); 1841 1842 return 0; 1843 } 1844 1845 /* 1846 * Update the beacon frame in response to a change. 1847 */ 1848 static void 1849 mwl_beacon_update(struct ieee80211vap *vap, int item) 1850 { 1851 struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; 1852 struct ieee80211com *ic = vap->iv_ic; 1853 1854 KASSERT(hvap != NULL, ("no beacon")); 1855 switch (item) { 1856 case IEEE80211_BEACON_ERP: 1857 mwl_updateslot(ic); 1858 break; 1859 case IEEE80211_BEACON_HTINFO: 1860 mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT( 1861 ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE)); 1862 break; 1863 case IEEE80211_BEACON_CAPS: 1864 case IEEE80211_BEACON_WME: 1865 case IEEE80211_BEACON_APPIE: 1866 case IEEE80211_BEACON_CSA: 1867 break; 1868 case IEEE80211_BEACON_TIM: 1869 /* NB: firmware always forms TIM */ 1870 return; 1871 } 1872 /* XXX retain beacon frame and update */ 1873 mwl_beacon_setup(vap); 1874 } 1875 1876 static void 1877 mwl_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1878 { 1879 bus_addr_t *paddr = (bus_addr_t*) arg; 1880 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 1881 *paddr = segs->ds_addr; 1882 } 1883 1884 #ifdef MWL_HOST_PS_SUPPORT 1885 /* 1886 * Handle power save station occupancy changes. 1887 */ 1888 static void 1889 mwl_update_ps(struct ieee80211vap *vap, int nsta) 1890 { 1891 struct mwl_vap *mvp = MWL_VAP(vap); 1892 1893 if (nsta == 0 || mvp->mv_last_ps_sta == 0) 1894 mwl_hal_setpowersave_bss(mvp->mv_hvap, nsta); 1895 mvp->mv_last_ps_sta = nsta; 1896 } 1897 1898 /* 1899 * Handle associated station power save state changes. 1900 */ 1901 static int 1902 mwl_set_tim(struct ieee80211_node *ni, int set) 1903 { 1904 struct ieee80211vap *vap = ni->ni_vap; 1905 struct mwl_vap *mvp = MWL_VAP(vap); 1906 1907 if (mvp->mv_set_tim(ni, set)) { /* NB: state change */ 1908 mwl_hal_setpowersave_sta(mvp->mv_hvap, 1909 IEEE80211_AID(ni->ni_associd), set); 1910 return 1; 1911 } else 1912 return 0; 1913 } 1914 #endif /* MWL_HOST_PS_SUPPORT */ 1915 1916 static int 1917 mwl_desc_setup(struct mwl_softc *sc, const char *name, 1918 struct mwl_descdma *dd, 1919 int nbuf, size_t bufsize, int ndesc, size_t descsize) 1920 { 1921 uint8_t *ds; 1922 int error; 1923 1924 DPRINTF(sc, MWL_DEBUG_RESET, 1925 "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n", 1926 __func__, name, nbuf, (uintmax_t) bufsize, 1927 ndesc, (uintmax_t) descsize); 1928 1929 dd->dd_name = name; 1930 dd->dd_desc_len = nbuf * ndesc * descsize; 1931 1932 /* 1933 * Setup DMA descriptor area. 1934 */ 1935 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 1936 PAGE_SIZE, 0, /* alignment, bounds */ 1937 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1938 BUS_SPACE_MAXADDR, /* highaddr */ 1939 NULL, NULL, /* filter, filterarg */ 1940 dd->dd_desc_len, /* maxsize */ 1941 1, /* nsegments */ 1942 dd->dd_desc_len, /* maxsegsize */ 1943 BUS_DMA_ALLOCNOW, /* flags */ 1944 NULL, /* lockfunc */ 1945 NULL, /* lockarg */ 1946 &dd->dd_dmat); 1947 if (error != 0) { 1948 device_printf(sc->sc_dev, "cannot allocate %s DMA tag\n", dd->dd_name); 1949 return error; 1950 } 1951 1952 /* allocate descriptors */ 1953 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 1954 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 1955 &dd->dd_dmamap); 1956 if (error != 0) { 1957 device_printf(sc->sc_dev, "unable to alloc memory for %u %s descriptors, " 1958 "error %u\n", nbuf * ndesc, dd->dd_name, error); 1959 goto fail1; 1960 } 1961 1962 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 1963 dd->dd_desc, dd->dd_desc_len, 1964 mwl_load_cb, &dd->dd_desc_paddr, 1965 BUS_DMA_NOWAIT); 1966 if (error != 0) { 1967 device_printf(sc->sc_dev, "unable to map %s descriptors, error %u\n", 1968 dd->dd_name, error); 1969 goto fail2; 1970 } 1971 1972 ds = dd->dd_desc; 1973 memset(ds, 0, dd->dd_desc_len); 1974 DPRINTF(sc, MWL_DEBUG_RESET, 1975 "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n", 1976 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 1977 (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 1978 1979 return 0; 1980 fail2: 1981 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 1982 fail1: 1983 bus_dma_tag_destroy(dd->dd_dmat); 1984 memset(dd, 0, sizeof(*dd)); 1985 return error; 1986 #undef DS2PHYS 1987 } 1988 1989 static void 1990 mwl_desc_cleanup(struct mwl_softc *sc, struct mwl_descdma *dd) 1991 { 1992 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 1993 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 1994 bus_dma_tag_destroy(dd->dd_dmat); 1995 1996 memset(dd, 0, sizeof(*dd)); 1997 } 1998 1999 /* 2000 * Construct a tx q's free list. The order of entries on 2001 * the list must reflect the physical layout of tx descriptors 2002 * because the firmware pre-fetches descriptors. 2003 * 2004 * XXX might be better to use indices into the buffer array. 2005 */ 2006 static void 2007 mwl_txq_reset(struct mwl_softc *sc, struct mwl_txq *txq) 2008 { 2009 struct mwl_txbuf *bf; 2010 int i; 2011 2012 bf = txq->dma.dd_bufptr; 2013 STAILQ_INIT(&txq->free); 2014 for (i = 0; i < mwl_txbuf; i++, bf++) 2015 STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); 2016 txq->nfree = i; 2017 } 2018 2019 #define DS2PHYS(_dd, _ds) \ 2020 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2021 2022 static int 2023 mwl_txdma_setup(struct mwl_softc *sc, struct mwl_txq *txq) 2024 { 2025 int error, bsize, i; 2026 struct mwl_txbuf *bf; 2027 struct mwl_txdesc *ds; 2028 2029 error = mwl_desc_setup(sc, "tx", &txq->dma, 2030 mwl_txbuf, sizeof(struct mwl_txbuf), 2031 MWL_TXDESC, sizeof(struct mwl_txdesc)); 2032 if (error != 0) 2033 return error; 2034 2035 /* allocate and setup tx buffers */ 2036 bsize = mwl_txbuf * sizeof(struct mwl_txbuf); 2037 bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO); 2038 if (bf == NULL) { 2039 device_printf(sc->sc_dev, "malloc of %u tx buffers failed\n", 2040 mwl_txbuf); 2041 return ENOMEM; 2042 } 2043 txq->dma.dd_bufptr = bf; 2044 2045 ds = txq->dma.dd_desc; 2046 for (i = 0; i < mwl_txbuf; i++, bf++, ds += MWL_TXDESC) { 2047 bf->bf_desc = ds; 2048 bf->bf_daddr = DS2PHYS(&txq->dma, ds); 2049 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2050 &bf->bf_dmamap); 2051 if (error != 0) { 2052 device_printf(sc->sc_dev, "unable to create dmamap for tx " 2053 "buffer %u, error %u\n", i, error); 2054 return error; 2055 } 2056 } 2057 mwl_txq_reset(sc, txq); 2058 return 0; 2059 } 2060 2061 static void 2062 mwl_txdma_cleanup(struct mwl_softc *sc, struct mwl_txq *txq) 2063 { 2064 struct mwl_txbuf *bf; 2065 int i; 2066 2067 bf = txq->dma.dd_bufptr; 2068 for (i = 0; i < mwl_txbuf; i++, bf++) { 2069 KASSERT(bf->bf_m == NULL, ("mbuf on free list")); 2070 KASSERT(bf->bf_node == NULL, ("node on free list")); 2071 if (bf->bf_dmamap != NULL) 2072 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2073 } 2074 STAILQ_INIT(&txq->free); 2075 txq->nfree = 0; 2076 if (txq->dma.dd_bufptr != NULL) { 2077 free(txq->dma.dd_bufptr, M_MWLDEV); 2078 txq->dma.dd_bufptr = NULL; 2079 } 2080 if (txq->dma.dd_desc_len != 0) 2081 mwl_desc_cleanup(sc, &txq->dma); 2082 } 2083 2084 static int 2085 mwl_rxdma_setup(struct mwl_softc *sc) 2086 { 2087 int error, jumbosize, bsize, i; 2088 struct mwl_rxbuf *bf; 2089 struct mwl_jumbo *rbuf; 2090 struct mwl_rxdesc *ds; 2091 caddr_t data; 2092 2093 error = mwl_desc_setup(sc, "rx", &sc->sc_rxdma, 2094 mwl_rxdesc, sizeof(struct mwl_rxbuf), 2095 1, sizeof(struct mwl_rxdesc)); 2096 if (error != 0) 2097 return error; 2098 2099 /* 2100 * Receive is done to a private pool of jumbo buffers. 2101 * This allows us to attach to mbuf's and avoid re-mapping 2102 * memory on each rx we post. We allocate a large chunk 2103 * of memory and manage it in the driver. The mbuf free 2104 * callback method is used to reclaim frames after sending 2105 * them up the stack. By default we allocate 2x the number of 2106 * rx descriptors configured so we have some slop to hold 2107 * us while frames are processed. 2108 */ 2109 if (mwl_rxbuf < 2*mwl_rxdesc) { 2110 device_printf(sc->sc_dev, 2111 "too few rx dma buffers (%d); increasing to %d\n", 2112 mwl_rxbuf, 2*mwl_rxdesc); 2113 mwl_rxbuf = 2*mwl_rxdesc; 2114 } 2115 jumbosize = roundup(MWL_AGGR_SIZE, PAGE_SIZE); 2116 sc->sc_rxmemsize = mwl_rxbuf*jumbosize; 2117 2118 error = bus_dma_tag_create(sc->sc_dmat, /* parent */ 2119 PAGE_SIZE, 0, /* alignment, bounds */ 2120 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2121 BUS_SPACE_MAXADDR, /* highaddr */ 2122 NULL, NULL, /* filter, filterarg */ 2123 sc->sc_rxmemsize, /* maxsize */ 2124 1, /* nsegments */ 2125 sc->sc_rxmemsize, /* maxsegsize */ 2126 BUS_DMA_ALLOCNOW, /* flags */ 2127 NULL, /* lockfunc */ 2128 NULL, /* lockarg */ 2129 &sc->sc_rxdmat); 2130 if (error != 0) { 2131 device_printf(sc->sc_dev, "could not create rx DMA tag\n"); 2132 return error; 2133 } 2134 2135 error = bus_dmamem_alloc(sc->sc_rxdmat, (void**) &sc->sc_rxmem, 2136 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2137 &sc->sc_rxmap); 2138 if (error != 0) { 2139 device_printf(sc->sc_dev, "could not alloc %ju bytes of rx DMA memory\n", 2140 (uintmax_t) sc->sc_rxmemsize); 2141 return error; 2142 } 2143 2144 error = bus_dmamap_load(sc->sc_rxdmat, sc->sc_rxmap, 2145 sc->sc_rxmem, sc->sc_rxmemsize, 2146 mwl_load_cb, &sc->sc_rxmem_paddr, 2147 BUS_DMA_NOWAIT); 2148 if (error != 0) { 2149 device_printf(sc->sc_dev, "could not load rx DMA map\n"); 2150 return error; 2151 } 2152 2153 /* 2154 * Allocate rx buffers and set them up. 2155 */ 2156 bsize = mwl_rxdesc * sizeof(struct mwl_rxbuf); 2157 bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO); 2158 if (bf == NULL) { 2159 device_printf(sc->sc_dev, "malloc of %u rx buffers failed\n", bsize); 2160 return error; 2161 } 2162 sc->sc_rxdma.dd_bufptr = bf; 2163 2164 STAILQ_INIT(&sc->sc_rxbuf); 2165 ds = sc->sc_rxdma.dd_desc; 2166 for (i = 0; i < mwl_rxdesc; i++, bf++, ds++) { 2167 bf->bf_desc = ds; 2168 bf->bf_daddr = DS2PHYS(&sc->sc_rxdma, ds); 2169 /* pre-assign dma buffer */ 2170 bf->bf_data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize); 2171 /* NB: tail is intentional to preserve descriptor order */ 2172 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 2173 } 2174 2175 /* 2176 * Place remainder of dma memory buffers on the free list. 2177 */ 2178 SLIST_INIT(&sc->sc_rxfree); 2179 for (; i < mwl_rxbuf; i++) { 2180 data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize); 2181 rbuf = MWL_JUMBO_DATA2BUF(data); 2182 SLIST_INSERT_HEAD(&sc->sc_rxfree, rbuf, next); 2183 sc->sc_nrxfree++; 2184 } 2185 return 0; 2186 } 2187 #undef DS2PHYS 2188 2189 static void 2190 mwl_rxdma_cleanup(struct mwl_softc *sc) 2191 { 2192 if (sc->sc_rxmem_paddr != 0) { 2193 bus_dmamap_unload(sc->sc_rxdmat, sc->sc_rxmap); 2194 sc->sc_rxmem_paddr = 0; 2195 } 2196 if (sc->sc_rxmem != NULL) { 2197 bus_dmamem_free(sc->sc_rxdmat, sc->sc_rxmem, sc->sc_rxmap); 2198 sc->sc_rxmem = NULL; 2199 } 2200 if (sc->sc_rxdma.dd_bufptr != NULL) { 2201 free(sc->sc_rxdma.dd_bufptr, M_MWLDEV); 2202 sc->sc_rxdma.dd_bufptr = NULL; 2203 } 2204 if (sc->sc_rxdma.dd_desc_len != 0) 2205 mwl_desc_cleanup(sc, &sc->sc_rxdma); 2206 } 2207 2208 static int 2209 mwl_dma_setup(struct mwl_softc *sc) 2210 { 2211 int error, i; 2212 2213 error = mwl_rxdma_setup(sc); 2214 if (error != 0) { 2215 mwl_rxdma_cleanup(sc); 2216 return error; 2217 } 2218 2219 for (i = 0; i < MWL_NUM_TX_QUEUES; i++) { 2220 error = mwl_txdma_setup(sc, &sc->sc_txq[i]); 2221 if (error != 0) { 2222 mwl_dma_cleanup(sc); 2223 return error; 2224 } 2225 } 2226 return 0; 2227 } 2228 2229 static void 2230 mwl_dma_cleanup(struct mwl_softc *sc) 2231 { 2232 int i; 2233 2234 for (i = 0; i < MWL_NUM_TX_QUEUES; i++) 2235 mwl_txdma_cleanup(sc, &sc->sc_txq[i]); 2236 mwl_rxdma_cleanup(sc); 2237 } 2238 2239 static struct ieee80211_node * 2240 mwl_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2241 { 2242 struct ieee80211com *ic = vap->iv_ic; 2243 struct mwl_softc *sc = ic->ic_softc; 2244 const size_t space = sizeof(struct mwl_node); 2245 struct mwl_node *mn; 2246 2247 mn = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2248 if (mn == NULL) { 2249 /* XXX stat+msg */ 2250 return NULL; 2251 } 2252 DPRINTF(sc, MWL_DEBUG_NODE, "%s: mn %p\n", __func__, mn); 2253 return &mn->mn_node; 2254 } 2255 2256 static void 2257 mwl_node_cleanup(struct ieee80211_node *ni) 2258 { 2259 struct ieee80211com *ic = ni->ni_ic; 2260 struct mwl_softc *sc = ic->ic_softc; 2261 struct mwl_node *mn = MWL_NODE(ni); 2262 2263 DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p ic %p staid %d\n", 2264 __func__, ni, ni->ni_ic, mn->mn_staid); 2265 2266 if (mn->mn_staid != 0) { 2267 struct ieee80211vap *vap = ni->ni_vap; 2268 2269 if (mn->mn_hvap != NULL) { 2270 if (vap->iv_opmode == IEEE80211_M_STA) 2271 mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr); 2272 else 2273 mwl_hal_delstation(mn->mn_hvap, ni->ni_macaddr); 2274 } 2275 /* 2276 * NB: legacy WDS peer sta db entry is installed using 2277 * the associate ap's hvap; use it again to delete it. 2278 * XXX can vap be NULL? 2279 */ 2280 else if (vap->iv_opmode == IEEE80211_M_WDS && 2281 MWL_VAP(vap)->mv_ap_hvap != NULL) 2282 mwl_hal_delstation(MWL_VAP(vap)->mv_ap_hvap, 2283 ni->ni_macaddr); 2284 delstaid(sc, mn->mn_staid); 2285 mn->mn_staid = 0; 2286 } 2287 sc->sc_node_cleanup(ni); 2288 } 2289 2290 /* 2291 * Reclaim rx dma buffers from packets sitting on the ampdu 2292 * reorder queue for a station. We replace buffers with a 2293 * system cluster (if available). 2294 */ 2295 static void 2296 mwl_ampdu_rxdma_reclaim(struct ieee80211_rx_ampdu *rap) 2297 { 2298 #if 0 2299 int i, n, off; 2300 struct mbuf *m; 2301 void *cl; 2302 2303 n = rap->rxa_qframes; 2304 for (i = 0; i < rap->rxa_wnd && n > 0; i++) { 2305 m = rap->rxa_m[i]; 2306 if (m == NULL) 2307 continue; 2308 n--; 2309 /* our dma buffers have a well-known free routine */ 2310 if ((m->m_flags & M_EXT) == 0 || 2311 m->m_ext.ext_free != mwl_ext_free) 2312 continue; 2313 /* 2314 * Try to allocate a cluster and move the data. 2315 */ 2316 off = m->m_data - m->m_ext.ext_buf; 2317 if (off + m->m_pkthdr.len > MCLBYTES) { 2318 /* XXX no AMSDU for now */ 2319 continue; 2320 } 2321 cl = pool_cache_get_paddr(&mclpool_cache, 0, 2322 &m->m_ext.ext_paddr); 2323 if (cl != NULL) { 2324 /* 2325 * Copy the existing data to the cluster, remove 2326 * the rx dma buffer, and attach the cluster in 2327 * its place. Note we preserve the offset to the 2328 * data so frames being bridged can still prepend 2329 * their headers without adding another mbuf. 2330 */ 2331 memcpy((caddr_t) cl + off, m->m_data, m->m_pkthdr.len); 2332 MEXTREMOVE(m); 2333 MEXTADD(m, cl, MCLBYTES, 0, NULL, &mclpool_cache); 2334 /* setup mbuf like _MCLGET does */ 2335 m->m_flags |= M_CLUSTER | M_EXT_RW; 2336 _MOWNERREF(m, M_EXT | M_CLUSTER); 2337 /* NB: m_data is clobbered by MEXTADDR, adjust */ 2338 m->m_data += off; 2339 } 2340 } 2341 #endif 2342 } 2343 2344 /* 2345 * Callback to reclaim resources. We first let the 2346 * net80211 layer do it's thing, then if we are still 2347 * blocked by a lack of rx dma buffers we walk the ampdu 2348 * reorder q's to reclaim buffers by copying to a system 2349 * cluster. 2350 */ 2351 static void 2352 mwl_node_drain(struct ieee80211_node *ni) 2353 { 2354 struct ieee80211com *ic = ni->ni_ic; 2355 struct mwl_softc *sc = ic->ic_softc; 2356 struct mwl_node *mn = MWL_NODE(ni); 2357 2358 DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p vap %p staid %d\n", 2359 __func__, ni, ni->ni_vap, mn->mn_staid); 2360 2361 /* NB: call up first to age out ampdu q's */ 2362 sc->sc_node_drain(ni); 2363 2364 /* XXX better to not check low water mark? */ 2365 if (sc->sc_rxblocked && mn->mn_staid != 0 && 2366 (ni->ni_flags & IEEE80211_NODE_HT)) { 2367 uint8_t tid; 2368 /* 2369 * Walk the reorder q and reclaim rx dma buffers by copying 2370 * the packet contents into clusters. 2371 */ 2372 for (tid = 0; tid < WME_NUM_TID; tid++) { 2373 struct ieee80211_rx_ampdu *rap; 2374 2375 rap = &ni->ni_rx_ampdu[tid]; 2376 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 2377 continue; 2378 if (rap->rxa_qframes) 2379 mwl_ampdu_rxdma_reclaim(rap); 2380 } 2381 } 2382 } 2383 2384 static void 2385 mwl_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 2386 { 2387 *rssi = ni->ni_ic->ic_node_getrssi(ni); 2388 #ifdef MWL_ANT_INFO_SUPPORT 2389 #if 0 2390 /* XXX need to smooth data */ 2391 *noise = -MWL_NODE_CONST(ni)->mn_ai.nf; 2392 #else 2393 *noise = -95; /* XXX */ 2394 #endif 2395 #else 2396 *noise = -95; /* XXX */ 2397 #endif 2398 } 2399 2400 /* 2401 * Convert Hardware per-antenna rssi info to common format: 2402 * Let a1, a2, a3 represent the amplitudes per chain 2403 * Let amax represent max[a1, a2, a3] 2404 * Rssi1_dBm = RSSI_dBm + 20*log10(a1/amax) 2405 * Rssi1_dBm = RSSI_dBm + 20*log10(a1) - 20*log10(amax) 2406 * We store a table that is 4*20*log10(idx) - the extra 4 is to store or 2407 * maintain some extra precision. 2408 * 2409 * Values are stored in .5 db format capped at 127. 2410 */ 2411 static void 2412 mwl_node_getmimoinfo(const struct ieee80211_node *ni, 2413 struct ieee80211_mimo_info *mi) 2414 { 2415 #define CVT(_dst, _src) do { \ 2416 (_dst) = rssi + ((logdbtbl[_src] - logdbtbl[rssi_max]) >> 2); \ 2417 (_dst) = (_dst) > 64 ? 127 : ((_dst) << 1); \ 2418 } while (0) 2419 static const int8_t logdbtbl[32] = { 2420 0, 0, 24, 38, 48, 56, 62, 68, 2421 72, 76, 80, 83, 86, 89, 92, 94, 2422 96, 98, 100, 102, 104, 106, 107, 109, 2423 110, 112, 113, 115, 116, 117, 118, 119 2424 }; 2425 const struct mwl_node *mn = MWL_NODE_CONST(ni); 2426 uint8_t rssi = mn->mn_ai.rsvd1/2; /* XXX */ 2427 uint32_t rssi_max; 2428 2429 rssi_max = mn->mn_ai.rssi_a; 2430 if (mn->mn_ai.rssi_b > rssi_max) 2431 rssi_max = mn->mn_ai.rssi_b; 2432 if (mn->mn_ai.rssi_c > rssi_max) 2433 rssi_max = mn->mn_ai.rssi_c; 2434 2435 CVT(mi->ch[0].rssi[0], mn->mn_ai.rssi_a); 2436 CVT(mi->ch[1].rssi[0], mn->mn_ai.rssi_b); 2437 CVT(mi->ch[2].rssi[0], mn->mn_ai.rssi_c); 2438 2439 mi->ch[0].noise[0] = mn->mn_ai.nf_a; 2440 mi->ch[1].noise[0] = mn->mn_ai.nf_b; 2441 mi->ch[2].noise[0] = mn->mn_ai.nf_c; 2442 #undef CVT 2443 } 2444 2445 static __inline void * 2446 mwl_getrxdma(struct mwl_softc *sc) 2447 { 2448 struct mwl_jumbo *buf; 2449 void *data; 2450 2451 /* 2452 * Allocate from jumbo pool. 2453 */ 2454 MWL_RXFREE_LOCK(sc); 2455 buf = SLIST_FIRST(&sc->sc_rxfree); 2456 if (buf == NULL) { 2457 DPRINTF(sc, MWL_DEBUG_ANY, 2458 "%s: out of rx dma buffers\n", __func__); 2459 sc->sc_stats.mst_rx_nodmabuf++; 2460 data = NULL; 2461 } else { 2462 SLIST_REMOVE_HEAD(&sc->sc_rxfree, next); 2463 sc->sc_nrxfree--; 2464 data = MWL_JUMBO_BUF2DATA(buf); 2465 } 2466 MWL_RXFREE_UNLOCK(sc); 2467 return data; 2468 } 2469 2470 static __inline void 2471 mwl_putrxdma(struct mwl_softc *sc, void *data) 2472 { 2473 struct mwl_jumbo *buf; 2474 2475 /* XXX bounds check data */ 2476 MWL_RXFREE_LOCK(sc); 2477 buf = MWL_JUMBO_DATA2BUF(data); 2478 SLIST_INSERT_HEAD(&sc->sc_rxfree, buf, next); 2479 sc->sc_nrxfree++; 2480 MWL_RXFREE_UNLOCK(sc); 2481 } 2482 2483 static int 2484 mwl_rxbuf_init(struct mwl_softc *sc, struct mwl_rxbuf *bf) 2485 { 2486 struct mwl_rxdesc *ds; 2487 2488 ds = bf->bf_desc; 2489 if (bf->bf_data == NULL) { 2490 bf->bf_data = mwl_getrxdma(sc); 2491 if (bf->bf_data == NULL) { 2492 /* mark descriptor to be skipped */ 2493 ds->RxControl = EAGLE_RXD_CTRL_OS_OWN; 2494 /* NB: don't need PREREAD */ 2495 MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE); 2496 sc->sc_stats.mst_rxbuf_failed++; 2497 return ENOMEM; 2498 } 2499 } 2500 /* 2501 * NB: DMA buffer contents is known to be unmodified 2502 * so there's no need to flush the data cache. 2503 */ 2504 2505 /* 2506 * Setup descriptor. 2507 */ 2508 ds->QosCtrl = 0; 2509 ds->RSSI = 0; 2510 ds->Status = EAGLE_RXD_STATUS_IDLE; 2511 ds->Channel = 0; 2512 ds->PktLen = htole16(MWL_AGGR_SIZE); 2513 ds->SQ2 = 0; 2514 ds->pPhysBuffData = htole32(MWL_JUMBO_DMA_ADDR(sc, bf->bf_data)); 2515 /* NB: don't touch pPhysNext, set once */ 2516 ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN; 2517 MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2518 2519 return 0; 2520 } 2521 2522 static void 2523 mwl_ext_free(struct mbuf *m) 2524 { 2525 struct mwl_softc *sc = m->m_ext.ext_arg1; 2526 2527 /* XXX bounds check data */ 2528 mwl_putrxdma(sc, m->m_ext.ext_buf); 2529 /* 2530 * If we were previously blocked by a lack of rx dma buffers 2531 * check if we now have enough to restart rx interrupt handling. 2532 */ 2533 if (sc->sc_rxblocked && sc->sc_nrxfree > mwl_rxdmalow) { 2534 sc->sc_rxblocked = 0; 2535 mwl_hal_intrset(sc->sc_mh, sc->sc_imask); 2536 } 2537 } 2538 2539 struct mwl_frame_bar { 2540 u_int8_t i_fc[2]; 2541 u_int8_t i_dur[2]; 2542 u_int8_t i_ra[IEEE80211_ADDR_LEN]; 2543 u_int8_t i_ta[IEEE80211_ADDR_LEN]; 2544 /* ctl, seq, FCS */ 2545 } __packed; 2546 2547 /* 2548 * Like ieee80211_anyhdrsize, but handles BAR frames 2549 * specially so the logic below to piece the 802.11 2550 * header together works. 2551 */ 2552 static __inline int 2553 mwl_anyhdrsize(const void *data) 2554 { 2555 const struct ieee80211_frame *wh = data; 2556 2557 if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 2558 switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) { 2559 case IEEE80211_FC0_SUBTYPE_CTS: 2560 case IEEE80211_FC0_SUBTYPE_ACK: 2561 return sizeof(struct ieee80211_frame_ack); 2562 case IEEE80211_FC0_SUBTYPE_BAR: 2563 return sizeof(struct mwl_frame_bar); 2564 } 2565 return sizeof(struct ieee80211_frame_min); 2566 } else 2567 return ieee80211_hdrsize(data); 2568 } 2569 2570 static void 2571 mwl_handlemicerror(struct ieee80211com *ic, const uint8_t *data) 2572 { 2573 const struct ieee80211_frame *wh; 2574 struct ieee80211_node *ni; 2575 2576 wh = (const struct ieee80211_frame *)(data + sizeof(uint16_t)); 2577 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 2578 if (ni != NULL) { 2579 ieee80211_notify_michael_failure(ni->ni_vap, wh, 0); 2580 ieee80211_free_node(ni); 2581 } 2582 } 2583 2584 /* 2585 * Convert hardware signal strength to rssi. The value 2586 * provided by the device has the noise floor added in; 2587 * we need to compensate for this but we don't have that 2588 * so we use a fixed value. 2589 * 2590 * The offset of 8 is good for both 2.4 and 5GHz. The LNA 2591 * offset is already set as part of the initial gain. This 2592 * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz. 2593 */ 2594 static __inline int 2595 cvtrssi(uint8_t ssi) 2596 { 2597 int rssi = (int) ssi + 8; 2598 /* XXX hack guess until we have a real noise floor */ 2599 rssi = 2*(87 - rssi); /* NB: .5 dBm units */ 2600 return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi); 2601 } 2602 2603 static void 2604 mwl_rx_proc(void *arg, int npending) 2605 { 2606 struct epoch_tracker et; 2607 struct mwl_softc *sc = arg; 2608 struct ieee80211com *ic = &sc->sc_ic; 2609 struct mwl_rxbuf *bf; 2610 struct mwl_rxdesc *ds; 2611 struct mbuf *m; 2612 struct ieee80211_qosframe *wh; 2613 struct ieee80211_node *ni; 2614 struct mwl_node *mn; 2615 int off, len, hdrlen, pktlen, rssi, ntodo; 2616 uint8_t *data, status; 2617 void *newdata; 2618 int16_t nf; 2619 2620 DPRINTF(sc, MWL_DEBUG_RX_PROC, "%s: pending %u rdptr 0x%x wrptr 0x%x\n", 2621 __func__, npending, RD4(sc, sc->sc_hwspecs.rxDescRead), 2622 RD4(sc, sc->sc_hwspecs.rxDescWrite)); 2623 nf = -96; /* XXX */ 2624 bf = sc->sc_rxnext; 2625 for (ntodo = mwl_rxquota; ntodo > 0; ntodo--) { 2626 if (bf == NULL) 2627 bf = STAILQ_FIRST(&sc->sc_rxbuf); 2628 ds = bf->bf_desc; 2629 data = bf->bf_data; 2630 if (data == NULL) { 2631 /* 2632 * If data allocation failed previously there 2633 * will be no buffer; try again to re-populate it. 2634 * Note the firmware will not advance to the next 2635 * descriptor with a dma buffer so we must mimic 2636 * this or we'll get out of sync. 2637 */ 2638 DPRINTF(sc, MWL_DEBUG_ANY, 2639 "%s: rx buf w/o dma memory\n", __func__); 2640 (void) mwl_rxbuf_init(sc, bf); 2641 sc->sc_stats.mst_rx_dmabufmissing++; 2642 break; 2643 } 2644 MWL_RXDESC_SYNC(sc, ds, 2645 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2646 if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN) 2647 break; 2648 #ifdef MWL_DEBUG 2649 if (sc->sc_debug & MWL_DEBUG_RECV_DESC) 2650 mwl_printrxbuf(bf, 0); 2651 #endif 2652 status = ds->Status; 2653 if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) { 2654 counter_u64_add(ic->ic_ierrors, 1); 2655 sc->sc_stats.mst_rx_crypto++; 2656 /* 2657 * NB: Check EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR 2658 * for backwards compatibility. 2659 */ 2660 if (status != EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR && 2661 (status & EAGLE_RXD_STATUS_TKIP_MIC_DECRYPT_ERR)) { 2662 /* 2663 * MIC error, notify upper layers. 2664 */ 2665 bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, 2666 BUS_DMASYNC_POSTREAD); 2667 mwl_handlemicerror(ic, data); 2668 sc->sc_stats.mst_rx_tkipmic++; 2669 } 2670 /* XXX too painful to tap packets */ 2671 goto rx_next; 2672 } 2673 /* 2674 * Sync the data buffer. 2675 */ 2676 len = le16toh(ds->PktLen); 2677 bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD); 2678 /* 2679 * The 802.11 header is provided all or in part at the front; 2680 * use it to calculate the true size of the header that we'll 2681 * construct below. We use this to figure out where to copy 2682 * payload prior to constructing the header. 2683 */ 2684 hdrlen = mwl_anyhdrsize(data + sizeof(uint16_t)); 2685 off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4); 2686 2687 /* calculate rssi early so we can re-use for each aggregate */ 2688 rssi = cvtrssi(ds->RSSI); 2689 2690 pktlen = hdrlen + (len - off); 2691 /* 2692 * NB: we know our frame is at least as large as 2693 * IEEE80211_MIN_LEN because there is a 4-address 2694 * frame at the front. Hence there's no need to 2695 * vet the packet length. If the frame in fact 2696 * is too small it should be discarded at the 2697 * net80211 layer. 2698 */ 2699 2700 /* 2701 * Attach dma buffer to an mbuf. We tried 2702 * doing this based on the packet size (i.e. 2703 * copying small packets) but it turns out to 2704 * be a net loss. The tradeoff might be system 2705 * dependent (cache architecture is important). 2706 */ 2707 MGETHDR(m, M_NOWAIT, MT_DATA); 2708 if (m == NULL) { 2709 DPRINTF(sc, MWL_DEBUG_ANY, 2710 "%s: no rx mbuf\n", __func__); 2711 sc->sc_stats.mst_rx_nombuf++; 2712 goto rx_next; 2713 } 2714 /* 2715 * Acquire the replacement dma buffer before 2716 * processing the frame. If we're out of dma 2717 * buffers we disable rx interrupts and wait 2718 * for the free pool to reach mlw_rxdmalow buffers 2719 * before starting to do work again. If the firmware 2720 * runs out of descriptors then it will toss frames 2721 * which is better than our doing it as that can 2722 * starve our processing. It is also important that 2723 * we always process rx'd frames in case they are 2724 * A-MPDU as otherwise the host's view of the BA 2725 * window may get out of sync with the firmware. 2726 */ 2727 newdata = mwl_getrxdma(sc); 2728 if (newdata == NULL) { 2729 /* NB: stat+msg in mwl_getrxdma */ 2730 m_free(m); 2731 /* disable RX interrupt and mark state */ 2732 mwl_hal_intrset(sc->sc_mh, 2733 sc->sc_imask &~ MACREG_A2HRIC_BIT_RX_RDY); 2734 sc->sc_rxblocked = 1; 2735 ieee80211_drain(ic); 2736 /* XXX check rxblocked and immediately start again? */ 2737 goto rx_stop; 2738 } 2739 bf->bf_data = newdata; 2740 /* 2741 * Attach the dma buffer to the mbuf; 2742 * mwl_rxbuf_init will re-setup the rx 2743 * descriptor using the replacement dma 2744 * buffer we just installed above. 2745 */ 2746 m_extadd(m, data, MWL_AGGR_SIZE, mwl_ext_free, sc, NULL, 0, 2747 EXT_NET_DRV); 2748 m->m_data += off - hdrlen; 2749 m->m_pkthdr.len = m->m_len = pktlen; 2750 /* NB: dma buffer assumed read-only */ 2751 2752 /* 2753 * Piece 802.11 header together. 2754 */ 2755 wh = mtod(m, struct ieee80211_qosframe *); 2756 /* NB: don't need to do this sometimes but ... */ 2757 /* XXX special case so we can memcpy after m_devget? */ 2758 ovbcopy(data + sizeof(uint16_t), wh, hdrlen); 2759 if (IEEE80211_QOS_HAS_SEQ(wh)) 2760 *(uint16_t *)ieee80211_getqos(wh) = ds->QosCtrl; 2761 /* 2762 * The f/w strips WEP header but doesn't clear 2763 * the WEP bit; mark the packet with M_WEP so 2764 * net80211 will treat the data as decrypted. 2765 * While here also clear the PWR_MGT bit since 2766 * power save is handled by the firmware and 2767 * passing this up will potentially cause the 2768 * upper layer to put a station in power save 2769 * (except when configured with MWL_HOST_PS_SUPPORT). 2770 */ 2771 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 2772 m->m_flags |= M_WEP; 2773 #ifdef MWL_HOST_PS_SUPPORT 2774 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 2775 #else 2776 wh->i_fc[1] &= ~(IEEE80211_FC1_PROTECTED | 2777 IEEE80211_FC1_PWR_MGT); 2778 #endif 2779 2780 if (ieee80211_radiotap_active(ic)) { 2781 struct mwl_rx_radiotap_header *tap = &sc->sc_rx_th; 2782 2783 tap->wr_flags = 0; 2784 tap->wr_rate = ds->Rate; 2785 tap->wr_antsignal = rssi + nf; 2786 tap->wr_antnoise = nf; 2787 } 2788 if (IFF_DUMPPKTS_RECV(sc, wh)) { 2789 ieee80211_dump_pkt(ic, mtod(m, caddr_t), 2790 len, ds->Rate, rssi); 2791 } 2792 /* dispatch */ 2793 ni = ieee80211_find_rxnode(ic, 2794 (const struct ieee80211_frame_min *) wh); 2795 2796 NET_EPOCH_ENTER(et); 2797 if (ni != NULL) { 2798 mn = MWL_NODE(ni); 2799 #ifdef MWL_ANT_INFO_SUPPORT 2800 mn->mn_ai.rssi_a = ds->ai.rssi_a; 2801 mn->mn_ai.rssi_b = ds->ai.rssi_b; 2802 mn->mn_ai.rssi_c = ds->ai.rssi_c; 2803 mn->mn_ai.rsvd1 = rssi; 2804 #endif 2805 /* tag AMPDU aggregates for reorder processing */ 2806 if (ni->ni_flags & IEEE80211_NODE_HT) 2807 m->m_flags |= M_AMPDU; 2808 (void) ieee80211_input(ni, m, rssi, nf); 2809 ieee80211_free_node(ni); 2810 } else 2811 (void) ieee80211_input_all(ic, m, rssi, nf); 2812 NET_EPOCH_EXIT(et); 2813 rx_next: 2814 /* NB: ignore ENOMEM so we process more descriptors */ 2815 (void) mwl_rxbuf_init(sc, bf); 2816 bf = STAILQ_NEXT(bf, bf_list); 2817 } 2818 rx_stop: 2819 sc->sc_rxnext = bf; 2820 2821 if (mbufq_first(&sc->sc_snd) != NULL) { 2822 /* NB: kick fw; the tx thread may have been preempted */ 2823 mwl_hal_txstart(sc->sc_mh, 0); 2824 mwl_start(sc); 2825 } 2826 } 2827 2828 static void 2829 mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *txq, int qnum) 2830 { 2831 struct mwl_txbuf *bf, *bn; 2832 struct mwl_txdesc *ds; 2833 2834 MWL_TXQ_LOCK_INIT(sc, txq); 2835 txq->qnum = qnum; 2836 txq->txpri = 0; /* XXX */ 2837 #if 0 2838 /* NB: q setup by mwl_txdma_setup XXX */ 2839 STAILQ_INIT(&txq->free); 2840 #endif 2841 STAILQ_FOREACH(bf, &txq->free, bf_list) { 2842 bf->bf_txq = txq; 2843 2844 ds = bf->bf_desc; 2845 bn = STAILQ_NEXT(bf, bf_list); 2846 if (bn == NULL) 2847 bn = STAILQ_FIRST(&txq->free); 2848 ds->pPhysNext = htole32(bn->bf_daddr); 2849 } 2850 STAILQ_INIT(&txq->active); 2851 } 2852 2853 /* 2854 * Setup a hardware data transmit queue for the specified 2855 * access control. We record the mapping from ac's 2856 * to h/w queues for use by mwl_tx_start. 2857 */ 2858 static int 2859 mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype) 2860 { 2861 struct mwl_txq *txq; 2862 2863 if (ac >= nitems(sc->sc_ac2q)) { 2864 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 2865 ac, nitems(sc->sc_ac2q)); 2866 return 0; 2867 } 2868 if (mvtype >= MWL_NUM_TX_QUEUES) { 2869 device_printf(sc->sc_dev, "mvtype %u out of range, max %u!\n", 2870 mvtype, MWL_NUM_TX_QUEUES); 2871 return 0; 2872 } 2873 txq = &sc->sc_txq[mvtype]; 2874 mwl_txq_init(sc, txq, mvtype); 2875 sc->sc_ac2q[ac] = txq; 2876 return 1; 2877 } 2878 2879 /* 2880 * Update WME parameters for a transmit queue. 2881 */ 2882 static int 2883 mwl_txq_update(struct mwl_softc *sc, int ac) 2884 { 2885 #define MWL_EXPONENT_TO_VALUE(v) ((1<<v)-1) 2886 struct ieee80211com *ic = &sc->sc_ic; 2887 struct chanAccParams chp; 2888 struct mwl_txq *txq = sc->sc_ac2q[ac]; 2889 struct wmeParams *wmep; 2890 struct mwl_hal *mh = sc->sc_mh; 2891 int aifs, cwmin, cwmax, txoplim; 2892 2893 ieee80211_wme_ic_getparams(ic, &chp); 2894 wmep = &chp.cap_wmeParams[ac]; 2895 2896 aifs = wmep->wmep_aifsn; 2897 /* XXX in sta mode need to pass log values for cwmin/max */ 2898 cwmin = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2899 cwmax = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2900 txoplim = wmep->wmep_txopLimit; /* NB: units of 32us */ 2901 2902 if (mwl_hal_setedcaparams(mh, txq->qnum, cwmin, cwmax, aifs, txoplim)) { 2903 device_printf(sc->sc_dev, "unable to update hardware queue " 2904 "parameters for %s traffic!\n", 2905 ieee80211_wme_acnames[ac]); 2906 return 0; 2907 } 2908 return 1; 2909 #undef MWL_EXPONENT_TO_VALUE 2910 } 2911 2912 /* 2913 * Callback from the 802.11 layer to update WME parameters. 2914 */ 2915 static int 2916 mwl_wme_update(struct ieee80211com *ic) 2917 { 2918 struct mwl_softc *sc = ic->ic_softc; 2919 2920 return !mwl_txq_update(sc, WME_AC_BE) || 2921 !mwl_txq_update(sc, WME_AC_BK) || 2922 !mwl_txq_update(sc, WME_AC_VI) || 2923 !mwl_txq_update(sc, WME_AC_VO) ? EIO : 0; 2924 } 2925 2926 /* 2927 * Reclaim resources for a setup queue. 2928 */ 2929 static void 2930 mwl_tx_cleanupq(struct mwl_softc *sc, struct mwl_txq *txq) 2931 { 2932 /* XXX hal work? */ 2933 MWL_TXQ_LOCK_DESTROY(txq); 2934 } 2935 2936 /* 2937 * Reclaim all tx queue resources. 2938 */ 2939 static void 2940 mwl_tx_cleanup(struct mwl_softc *sc) 2941 { 2942 int i; 2943 2944 for (i = 0; i < MWL_NUM_TX_QUEUES; i++) 2945 mwl_tx_cleanupq(sc, &sc->sc_txq[i]); 2946 } 2947 2948 static int 2949 mwl_tx_dmasetup(struct mwl_softc *sc, struct mwl_txbuf *bf, struct mbuf *m0) 2950 { 2951 struct mbuf *m; 2952 int error; 2953 2954 /* 2955 * Load the DMA map so any coalescing is done. This 2956 * also calculates the number of descriptors we need. 2957 */ 2958 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 2959 bf->bf_segs, &bf->bf_nseg, 2960 BUS_DMA_NOWAIT); 2961 if (error == EFBIG) { 2962 /* XXX packet requires too many descriptors */ 2963 bf->bf_nseg = MWL_TXDESC+1; 2964 } else if (error != 0) { 2965 sc->sc_stats.mst_tx_busdma++; 2966 m_freem(m0); 2967 return error; 2968 } 2969 /* 2970 * Discard null packets and check for packets that 2971 * require too many TX descriptors. We try to convert 2972 * the latter to a cluster. 2973 */ 2974 if (error == EFBIG) { /* too many desc's, linearize */ 2975 sc->sc_stats.mst_tx_linear++; 2976 #if MWL_TXDESC > 1 2977 m = m_collapse(m0, M_NOWAIT, MWL_TXDESC); 2978 #else 2979 m = m_defrag(m0, M_NOWAIT); 2980 #endif 2981 if (m == NULL) { 2982 m_freem(m0); 2983 sc->sc_stats.mst_tx_nombuf++; 2984 return ENOMEM; 2985 } 2986 m0 = m; 2987 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 2988 bf->bf_segs, &bf->bf_nseg, 2989 BUS_DMA_NOWAIT); 2990 if (error != 0) { 2991 sc->sc_stats.mst_tx_busdma++; 2992 m_freem(m0); 2993 return error; 2994 } 2995 KASSERT(bf->bf_nseg <= MWL_TXDESC, 2996 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 2997 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 2998 sc->sc_stats.mst_tx_nodata++; 2999 m_freem(m0); 3000 return EIO; 3001 } 3002 DPRINTF(sc, MWL_DEBUG_XMIT, "%s: m %p len %u\n", 3003 __func__, m0, m0->m_pkthdr.len); 3004 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3005 bf->bf_m = m0; 3006 3007 return 0; 3008 } 3009 3010 static __inline int 3011 mwl_cvtlegacyrate(int rate) 3012 { 3013 switch (rate) { 3014 case 2: return 0; 3015 case 4: return 1; 3016 case 11: return 2; 3017 case 22: return 3; 3018 case 44: return 4; 3019 case 12: return 5; 3020 case 18: return 6; 3021 case 24: return 7; 3022 case 36: return 8; 3023 case 48: return 9; 3024 case 72: return 10; 3025 case 96: return 11; 3026 case 108:return 12; 3027 } 3028 return 0; 3029 } 3030 3031 /* 3032 * Calculate fixed tx rate information per client state; 3033 * this value is suitable for writing to the Format field 3034 * of a tx descriptor. 3035 */ 3036 static uint16_t 3037 mwl_calcformat(uint8_t rate, const struct ieee80211_node *ni) 3038 { 3039 uint16_t fmt; 3040 3041 fmt = _IEEE80211_SHIFTMASK(3, EAGLE_TXD_ANTENNA) 3042 | (IEEE80211_IS_CHAN_HT40D(ni->ni_chan) ? 3043 EAGLE_TXD_EXTCHAN_LO : EAGLE_TXD_EXTCHAN_HI); 3044 if (rate & IEEE80211_RATE_MCS) { /* HT MCS */ 3045 fmt |= EAGLE_TXD_FORMAT_HT 3046 /* NB: 0x80 implicitly stripped from ucastrate */ 3047 | _IEEE80211_SHIFTMASK(rate, EAGLE_TXD_RATE); 3048 /* XXX short/long GI may be wrong; re-check */ 3049 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 3050 fmt |= EAGLE_TXD_CHW_40 3051 | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 ? 3052 EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG); 3053 } else { 3054 fmt |= EAGLE_TXD_CHW_20 3055 | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 ? 3056 EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG); 3057 } 3058 } else { /* legacy rate */ 3059 fmt |= EAGLE_TXD_FORMAT_LEGACY 3060 | _IEEE80211_SHIFTMASK(mwl_cvtlegacyrate(rate), 3061 EAGLE_TXD_RATE) 3062 | EAGLE_TXD_CHW_20 3063 /* XXX iv_flags & IEEE80211_F_SHPREAMBLE? */ 3064 | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE ? 3065 EAGLE_TXD_PREAMBLE_SHORT : EAGLE_TXD_PREAMBLE_LONG); 3066 } 3067 return fmt; 3068 } 3069 3070 static int 3071 mwl_tx_start(struct mwl_softc *sc, struct ieee80211_node *ni, struct mwl_txbuf *bf, 3072 struct mbuf *m0) 3073 { 3074 struct ieee80211com *ic = &sc->sc_ic; 3075 struct ieee80211vap *vap = ni->ni_vap; 3076 int error, iswep, ismcast; 3077 int hdrlen, pktlen; 3078 struct mwl_txdesc *ds; 3079 struct mwl_txq *txq; 3080 struct ieee80211_frame *wh; 3081 struct mwltxrec *tr; 3082 struct mwl_node *mn; 3083 uint16_t qos; 3084 #if MWL_TXDESC > 1 3085 int i; 3086 #endif 3087 3088 wh = mtod(m0, struct ieee80211_frame *); 3089 iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED; 3090 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3091 hdrlen = ieee80211_anyhdrsize(wh); 3092 pktlen = m0->m_pkthdr.len; 3093 if (IEEE80211_QOS_HAS_SEQ(wh)) { 3094 qos = *(uint16_t *)ieee80211_getqos(wh); 3095 } else 3096 qos = 0; 3097 3098 if (iswep) { 3099 const struct ieee80211_cipher *cip; 3100 struct ieee80211_key *k; 3101 3102 /* 3103 * Construct the 802.11 header+trailer for an encrypted 3104 * frame. The only reason this can fail is because of an 3105 * unknown or unsupported cipher/key type. 3106 * 3107 * NB: we do this even though the firmware will ignore 3108 * what we've done for WEP and TKIP as we need the 3109 * ExtIV filled in for CCMP and this also adjusts 3110 * the headers which simplifies our work below. 3111 */ 3112 k = ieee80211_crypto_encap(ni, m0); 3113 if (k == NULL) { 3114 /* 3115 * This can happen when the key is yanked after the 3116 * frame was queued. Just discard the frame; the 3117 * 802.11 layer counts failures and provides 3118 * debugging/diagnostics. 3119 */ 3120 m_freem(m0); 3121 return EIO; 3122 } 3123 /* 3124 * Adjust the packet length for the crypto additions 3125 * done during encap and any other bits that the f/w 3126 * will add later on. 3127 */ 3128 cip = k->wk_cipher; 3129 pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer; 3130 3131 /* packet header may have moved, reset our local pointer */ 3132 wh = mtod(m0, struct ieee80211_frame *); 3133 } 3134 3135 if (ieee80211_radiotap_active_vap(vap)) { 3136 sc->sc_tx_th.wt_flags = 0; /* XXX */ 3137 if (iswep) 3138 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3139 #if 0 3140 sc->sc_tx_th.wt_rate = ds->DataRate; 3141 #endif 3142 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3143 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3144 3145 ieee80211_radiotap_tx(vap, m0); 3146 } 3147 /* 3148 * Copy up/down the 802.11 header; the firmware requires 3149 * we present a 2-byte payload length followed by a 3150 * 4-address header (w/o QoS), followed (optionally) by 3151 * any WEP/ExtIV header (but only filled in for CCMP). 3152 * We are assured the mbuf has sufficient headroom to 3153 * prepend in-place by the setup of ic_headroom in 3154 * mwl_attach. 3155 */ 3156 if (hdrlen < sizeof(struct mwltxrec)) { 3157 const int space = sizeof(struct mwltxrec) - hdrlen; 3158 if (M_LEADINGSPACE(m0) < space) { 3159 /* NB: should never happen */ 3160 device_printf(sc->sc_dev, 3161 "not enough headroom, need %d found %zd, " 3162 "m_flags 0x%x m_len %d\n", 3163 space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len); 3164 ieee80211_dump_pkt(ic, 3165 mtod(m0, const uint8_t *), m0->m_len, 0, -1); 3166 m_freem(m0); 3167 sc->sc_stats.mst_tx_noheadroom++; 3168 return EIO; 3169 } 3170 M_PREPEND(m0, space, M_NOWAIT); 3171 } 3172 tr = mtod(m0, struct mwltxrec *); 3173 if (wh != (struct ieee80211_frame *) &tr->wh) 3174 ovbcopy(wh, &tr->wh, hdrlen); 3175 /* 3176 * Note: the "firmware length" is actually the length 3177 * of the fully formed "802.11 payload". That is, it's 3178 * everything except for the 802.11 header. In particular 3179 * this includes all crypto material including the MIC! 3180 */ 3181 tr->fwlen = htole16(pktlen - hdrlen); 3182 3183 /* 3184 * Load the DMA map so any coalescing is done. This 3185 * also calculates the number of descriptors we need. 3186 */ 3187 error = mwl_tx_dmasetup(sc, bf, m0); 3188 if (error != 0) { 3189 /* NB: stat collected in mwl_tx_dmasetup */ 3190 DPRINTF(sc, MWL_DEBUG_XMIT, 3191 "%s: unable to setup dma\n", __func__); 3192 return error; 3193 } 3194 bf->bf_node = ni; /* NB: held reference */ 3195 m0 = bf->bf_m; /* NB: may have changed */ 3196 tr = mtod(m0, struct mwltxrec *); 3197 wh = (struct ieee80211_frame *)&tr->wh; 3198 3199 /* 3200 * Formulate tx descriptor. 3201 */ 3202 ds = bf->bf_desc; 3203 txq = bf->bf_txq; 3204 3205 ds->QosCtrl = qos; /* NB: already little-endian */ 3206 #if MWL_TXDESC == 1 3207 /* 3208 * NB: multiframes should be zero because the descriptors 3209 * are initialized to zero. This should handle the case 3210 * where the driver is built with MWL_TXDESC=1 but we are 3211 * using firmware with multi-segment support. 3212 */ 3213 ds->PktPtr = htole32(bf->bf_segs[0].ds_addr); 3214 ds->PktLen = htole16(bf->bf_segs[0].ds_len); 3215 #else 3216 ds->multiframes = htole32(bf->bf_nseg); 3217 ds->PktLen = htole16(m0->m_pkthdr.len); 3218 for (i = 0; i < bf->bf_nseg; i++) { 3219 ds->PktPtrArray[i] = htole32(bf->bf_segs[i].ds_addr); 3220 ds->PktLenArray[i] = htole16(bf->bf_segs[i].ds_len); 3221 } 3222 #endif 3223 /* NB: pPhysNext, DataRate, and SapPktInfo setup once, don't touch */ 3224 ds->Format = 0; 3225 ds->pad = 0; 3226 ds->ack_wcb_addr = 0; 3227 3228 mn = MWL_NODE(ni); 3229 /* 3230 * Select transmit rate. 3231 */ 3232 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3233 case IEEE80211_FC0_TYPE_MGT: 3234 sc->sc_stats.mst_tx_mgmt++; 3235 /* fall thru... */ 3236 case IEEE80211_FC0_TYPE_CTL: 3237 /* NB: assign to BE q to avoid bursting */ 3238 ds->TxPriority = MWL_WME_AC_BE; 3239 break; 3240 case IEEE80211_FC0_TYPE_DATA: 3241 if (!ismcast) { 3242 const struct ieee80211_txparam *tp = ni->ni_txparms; 3243 /* 3244 * EAPOL frames get forced to a fixed rate and w/o 3245 * aggregation; otherwise check for any fixed rate 3246 * for the client (may depend on association state). 3247 */ 3248 if (m0->m_flags & M_EAPOL) { 3249 const struct mwl_vap *mvp = MWL_VAP_CONST(vap); 3250 ds->Format = mvp->mv_eapolformat; 3251 ds->pad = htole16( 3252 EAGLE_TXD_FIXED_RATE | EAGLE_TXD_DONT_AGGR); 3253 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 3254 /* XXX pre-calculate per node */ 3255 ds->Format = htole16( 3256 mwl_calcformat(tp->ucastrate, ni)); 3257 ds->pad = htole16(EAGLE_TXD_FIXED_RATE); 3258 } 3259 /* NB: EAPOL frames will never have qos set */ 3260 if (qos == 0) 3261 ds->TxPriority = txq->qnum; 3262 #if MWL_MAXBA > 3 3263 else if (mwl_bastream_match(&mn->mn_ba[3], qos)) 3264 ds->TxPriority = mn->mn_ba[3].txq; 3265 #endif 3266 #if MWL_MAXBA > 2 3267 else if (mwl_bastream_match(&mn->mn_ba[2], qos)) 3268 ds->TxPriority = mn->mn_ba[2].txq; 3269 #endif 3270 #if MWL_MAXBA > 1 3271 else if (mwl_bastream_match(&mn->mn_ba[1], qos)) 3272 ds->TxPriority = mn->mn_ba[1].txq; 3273 #endif 3274 #if MWL_MAXBA > 0 3275 else if (mwl_bastream_match(&mn->mn_ba[0], qos)) 3276 ds->TxPriority = mn->mn_ba[0].txq; 3277 #endif 3278 else 3279 ds->TxPriority = txq->qnum; 3280 } else 3281 ds->TxPriority = txq->qnum; 3282 break; 3283 default: 3284 device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", 3285 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3286 sc->sc_stats.mst_tx_badframetype++; 3287 m_freem(m0); 3288 return EIO; 3289 } 3290 3291 if (IFF_DUMPPKTS_XMIT(sc)) 3292 ieee80211_dump_pkt(ic, 3293 mtod(m0, const uint8_t *)+sizeof(uint16_t), 3294 m0->m_len - sizeof(uint16_t), ds->DataRate, -1); 3295 3296 MWL_TXQ_LOCK(txq); 3297 ds->Status = htole32(EAGLE_TXD_STATUS_FW_OWNED); 3298 STAILQ_INSERT_TAIL(&txq->active, bf, bf_list); 3299 MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3300 3301 sc->sc_tx_timer = 5; 3302 MWL_TXQ_UNLOCK(txq); 3303 3304 return 0; 3305 } 3306 3307 static __inline int 3308 mwl_cvtlegacyrix(int rix) 3309 { 3310 static const int ieeerates[] = 3311 { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 }; 3312 return (rix < nitems(ieeerates) ? ieeerates[rix] : 0); 3313 } 3314 3315 /* 3316 * Process completed xmit descriptors from the specified queue. 3317 */ 3318 static int 3319 mwl_tx_processq(struct mwl_softc *sc, struct mwl_txq *txq) 3320 { 3321 #define EAGLE_TXD_STATUS_MCAST \ 3322 (EAGLE_TXD_STATUS_MULTICAST_TX | EAGLE_TXD_STATUS_BROADCAST_TX) 3323 struct ieee80211com *ic = &sc->sc_ic; 3324 struct mwl_txbuf *bf; 3325 struct mwl_txdesc *ds; 3326 struct ieee80211_node *ni; 3327 int nreaped; 3328 uint32_t status; 3329 3330 DPRINTF(sc, MWL_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum); 3331 for (nreaped = 0;; nreaped++) { 3332 MWL_TXQ_LOCK(txq); 3333 bf = STAILQ_FIRST(&txq->active); 3334 if (bf == NULL) { 3335 MWL_TXQ_UNLOCK(txq); 3336 break; 3337 } 3338 ds = bf->bf_desc; 3339 MWL_TXDESC_SYNC(txq, ds, 3340 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3341 if (ds->Status & htole32(EAGLE_TXD_STATUS_FW_OWNED)) { 3342 MWL_TXQ_UNLOCK(txq); 3343 break; 3344 } 3345 STAILQ_REMOVE_HEAD(&txq->active, bf_list); 3346 MWL_TXQ_UNLOCK(txq); 3347 3348 #ifdef MWL_DEBUG 3349 if (sc->sc_debug & MWL_DEBUG_XMIT_DESC) 3350 mwl_printtxbuf(bf, txq->qnum, nreaped); 3351 #endif 3352 ni = bf->bf_node; 3353 if (ni != NULL) { 3354 status = le32toh(ds->Status); 3355 if (status & EAGLE_TXD_STATUS_OK) { 3356 uint16_t Format = le16toh(ds->Format); 3357 uint8_t txant = _IEEE80211_MASKSHIFT(Format, 3358 EAGLE_TXD_ANTENNA); 3359 3360 sc->sc_stats.mst_ant_tx[txant]++; 3361 if (status & EAGLE_TXD_STATUS_OK_RETRY) 3362 sc->sc_stats.mst_tx_retries++; 3363 if (status & EAGLE_TXD_STATUS_OK_MORE_RETRY) 3364 sc->sc_stats.mst_tx_mretries++; 3365 if (txq->qnum >= MWL_WME_AC_VO) 3366 ic->ic_wme.wme_hipri_traffic++; 3367 ni->ni_txrate = _IEEE80211_MASKSHIFT(Format, 3368 EAGLE_TXD_RATE); 3369 if ((Format & EAGLE_TXD_FORMAT_HT) == 0) { 3370 ni->ni_txrate = mwl_cvtlegacyrix( 3371 ni->ni_txrate); 3372 } else 3373 ni->ni_txrate |= IEEE80211_RATE_MCS; 3374 sc->sc_stats.mst_tx_rate = ni->ni_txrate; 3375 } else { 3376 if (status & EAGLE_TXD_STATUS_FAILED_LINK_ERROR) 3377 sc->sc_stats.mst_tx_linkerror++; 3378 if (status & EAGLE_TXD_STATUS_FAILED_XRETRY) 3379 sc->sc_stats.mst_tx_xretries++; 3380 if (status & EAGLE_TXD_STATUS_FAILED_AGING) 3381 sc->sc_stats.mst_tx_aging++; 3382 if (bf->bf_m->m_flags & M_FF) 3383 sc->sc_stats.mst_ff_txerr++; 3384 } 3385 if (bf->bf_m->m_flags & M_TXCB) 3386 /* XXX strip fw len in case header inspected */ 3387 m_adj(bf->bf_m, sizeof(uint16_t)); 3388 ieee80211_tx_complete(ni, bf->bf_m, 3389 (status & EAGLE_TXD_STATUS_OK) == 0); 3390 } else 3391 m_freem(bf->bf_m); 3392 ds->Status = htole32(EAGLE_TXD_STATUS_IDLE); 3393 3394 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3395 BUS_DMASYNC_POSTWRITE); 3396 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3397 3398 mwl_puttxbuf_tail(txq, bf); 3399 } 3400 return nreaped; 3401 #undef EAGLE_TXD_STATUS_MCAST 3402 } 3403 3404 /* 3405 * Deferred processing of transmit interrupt; special-cased 3406 * for four hardware queues, 0-3. 3407 */ 3408 static void 3409 mwl_tx_proc(void *arg, int npending) 3410 { 3411 struct mwl_softc *sc = arg; 3412 int nreaped; 3413 3414 /* 3415 * Process each active queue. 3416 */ 3417 nreaped = 0; 3418 if (!STAILQ_EMPTY(&sc->sc_txq[0].active)) 3419 nreaped += mwl_tx_processq(sc, &sc->sc_txq[0]); 3420 if (!STAILQ_EMPTY(&sc->sc_txq[1].active)) 3421 nreaped += mwl_tx_processq(sc, &sc->sc_txq[1]); 3422 if (!STAILQ_EMPTY(&sc->sc_txq[2].active)) 3423 nreaped += mwl_tx_processq(sc, &sc->sc_txq[2]); 3424 if (!STAILQ_EMPTY(&sc->sc_txq[3].active)) 3425 nreaped += mwl_tx_processq(sc, &sc->sc_txq[3]); 3426 3427 if (nreaped != 0) { 3428 sc->sc_tx_timer = 0; 3429 if (mbufq_first(&sc->sc_snd) != NULL) { 3430 /* NB: kick fw; the tx thread may have been preempted */ 3431 mwl_hal_txstart(sc->sc_mh, 0); 3432 mwl_start(sc); 3433 } 3434 } 3435 } 3436 3437 static void 3438 mwl_tx_draintxq(struct mwl_softc *sc, struct mwl_txq *txq) 3439 { 3440 struct ieee80211_node *ni; 3441 struct mwl_txbuf *bf; 3442 u_int ix __unused; 3443 3444 /* 3445 * NB: this assumes output has been stopped and 3446 * we do not need to block mwl_tx_tasklet 3447 */ 3448 for (ix = 0;; ix++) { 3449 MWL_TXQ_LOCK(txq); 3450 bf = STAILQ_FIRST(&txq->active); 3451 if (bf == NULL) { 3452 MWL_TXQ_UNLOCK(txq); 3453 break; 3454 } 3455 STAILQ_REMOVE_HEAD(&txq->active, bf_list); 3456 MWL_TXQ_UNLOCK(txq); 3457 #ifdef MWL_DEBUG 3458 if (sc->sc_debug & MWL_DEBUG_RESET) { 3459 struct ieee80211com *ic = &sc->sc_ic; 3460 const struct mwltxrec *tr = 3461 mtod(bf->bf_m, const struct mwltxrec *); 3462 mwl_printtxbuf(bf, txq->qnum, ix); 3463 ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh, 3464 bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1); 3465 } 3466 #endif /* MWL_DEBUG */ 3467 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3468 ni = bf->bf_node; 3469 if (ni != NULL) { 3470 /* 3471 * Reclaim node reference. 3472 */ 3473 ieee80211_free_node(ni); 3474 } 3475 m_freem(bf->bf_m); 3476 3477 mwl_puttxbuf_tail(txq, bf); 3478 } 3479 } 3480 3481 /* 3482 * Drain the transmit queues and reclaim resources. 3483 */ 3484 static void 3485 mwl_draintxq(struct mwl_softc *sc) 3486 { 3487 int i; 3488 3489 for (i = 0; i < MWL_NUM_TX_QUEUES; i++) 3490 mwl_tx_draintxq(sc, &sc->sc_txq[i]); 3491 sc->sc_tx_timer = 0; 3492 } 3493 3494 #ifdef MWL_DIAGAPI 3495 /* 3496 * Reset the transmit queues to a pristine state after a fw download. 3497 */ 3498 static void 3499 mwl_resettxq(struct mwl_softc *sc) 3500 { 3501 int i; 3502 3503 for (i = 0; i < MWL_NUM_TX_QUEUES; i++) 3504 mwl_txq_reset(sc, &sc->sc_txq[i]); 3505 } 3506 #endif /* MWL_DIAGAPI */ 3507 3508 /* 3509 * Clear the transmit queues of any frames submitted for the 3510 * specified vap. This is done when the vap is deleted so we 3511 * don't potentially reference the vap after it is gone. 3512 * Note we cannot remove the frames; we only reclaim the node 3513 * reference. 3514 */ 3515 static void 3516 mwl_cleartxq(struct mwl_softc *sc, struct ieee80211vap *vap) 3517 { 3518 struct mwl_txq *txq; 3519 struct mwl_txbuf *bf; 3520 int i; 3521 3522 for (i = 0; i < MWL_NUM_TX_QUEUES; i++) { 3523 txq = &sc->sc_txq[i]; 3524 MWL_TXQ_LOCK(txq); 3525 STAILQ_FOREACH(bf, &txq->active, bf_list) { 3526 struct ieee80211_node *ni = bf->bf_node; 3527 if (ni != NULL && ni->ni_vap == vap) { 3528 bf->bf_node = NULL; 3529 ieee80211_free_node(ni); 3530 } 3531 } 3532 MWL_TXQ_UNLOCK(txq); 3533 } 3534 } 3535 3536 static int 3537 mwl_recv_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh, 3538 const uint8_t *frm, const uint8_t *efrm) 3539 { 3540 struct mwl_softc *sc = ni->ni_ic->ic_softc; 3541 const struct ieee80211_action *ia; 3542 3543 ia = (const struct ieee80211_action *) frm; 3544 if (ia->ia_category == IEEE80211_ACTION_CAT_HT && 3545 ia->ia_action == IEEE80211_ACTION_HT_MIMOPWRSAVE) { 3546 const struct ieee80211_action_ht_mimopowersave *mps = 3547 (const struct ieee80211_action_ht_mimopowersave *) ia; 3548 3549 mwl_hal_setmimops(sc->sc_mh, ni->ni_macaddr, 3550 mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA, 3551 _IEEE80211_MASKSHIFT(mps->am_control, 3552 IEEE80211_A_HT_MIMOPWRSAVE_MODE)); 3553 return 0; 3554 } else 3555 return sc->sc_recv_action(ni, wh, frm, efrm); 3556 } 3557 3558 static int 3559 mwl_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 3560 int dialogtoken, int baparamset, int batimeout) 3561 { 3562 struct mwl_softc *sc = ni->ni_ic->ic_softc; 3563 struct ieee80211vap *vap = ni->ni_vap; 3564 struct mwl_node *mn = MWL_NODE(ni); 3565 struct mwl_bastate *bas; 3566 3567 bas = tap->txa_private; 3568 if (bas == NULL) { 3569 const MWL_HAL_BASTREAM *sp; 3570 /* 3571 * Check for a free BA stream slot. 3572 */ 3573 #if MWL_MAXBA > 3 3574 if (mn->mn_ba[3].bastream == NULL) 3575 bas = &mn->mn_ba[3]; 3576 else 3577 #endif 3578 #if MWL_MAXBA > 2 3579 if (mn->mn_ba[2].bastream == NULL) 3580 bas = &mn->mn_ba[2]; 3581 else 3582 #endif 3583 #if MWL_MAXBA > 1 3584 if (mn->mn_ba[1].bastream == NULL) 3585 bas = &mn->mn_ba[1]; 3586 else 3587 #endif 3588 #if MWL_MAXBA > 0 3589 if (mn->mn_ba[0].bastream == NULL) 3590 bas = &mn->mn_ba[0]; 3591 else 3592 #endif 3593 { 3594 /* sta already has max BA streams */ 3595 /* XXX assign BA stream to highest priority tid */ 3596 DPRINTF(sc, MWL_DEBUG_AMPDU, 3597 "%s: already has max bastreams\n", __func__); 3598 sc->sc_stats.mst_ampdu_reject++; 3599 return 0; 3600 } 3601 /* NB: no held reference to ni */ 3602 sp = mwl_hal_bastream_alloc(MWL_VAP(vap)->mv_hvap, 3603 (baparamset & IEEE80211_BAPS_POLICY_IMMEDIATE) != 0, 3604 ni->ni_macaddr, tap->txa_tid, ni->ni_htparam, 3605 ni, tap); 3606 if (sp == NULL) { 3607 /* 3608 * No available stream, return 0 so no 3609 * a-mpdu aggregation will be done. 3610 */ 3611 DPRINTF(sc, MWL_DEBUG_AMPDU, 3612 "%s: no bastream available\n", __func__); 3613 sc->sc_stats.mst_ampdu_nostream++; 3614 return 0; 3615 } 3616 DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: alloc bastream %p\n", 3617 __func__, sp); 3618 /* NB: qos is left zero so we won't match in mwl_tx_start */ 3619 bas->bastream = sp; 3620 tap->txa_private = bas; 3621 } 3622 /* fetch current seq# from the firmware; if available */ 3623 if (mwl_hal_bastream_get_seqno(sc->sc_mh, bas->bastream, 3624 vap->iv_opmode == IEEE80211_M_STA ? vap->iv_myaddr : ni->ni_macaddr, 3625 &tap->txa_start) != 0) 3626 tap->txa_start = 0; 3627 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout); 3628 } 3629 3630 static int 3631 mwl_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 3632 int code, int baparamset, int batimeout) 3633 { 3634 struct mwl_softc *sc = ni->ni_ic->ic_softc; 3635 struct mwl_bastate *bas; 3636 3637 bas = tap->txa_private; 3638 if (bas == NULL) { 3639 /* XXX should not happen */ 3640 DPRINTF(sc, MWL_DEBUG_AMPDU, 3641 "%s: no BA stream allocated, TID %d\n", 3642 __func__, tap->txa_tid); 3643 sc->sc_stats.mst_addba_nostream++; 3644 return 0; 3645 } 3646 if (code == IEEE80211_STATUS_SUCCESS) { 3647 struct ieee80211vap *vap = ni->ni_vap; 3648 int bufsiz, error; 3649 3650 /* 3651 * Tell the firmware to setup the BA stream; 3652 * we know resources are available because we 3653 * pre-allocated one before forming the request. 3654 */ 3655 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 3656 if (bufsiz == 0) 3657 bufsiz = IEEE80211_AGGR_BAWMAX; 3658 error = mwl_hal_bastream_create(MWL_VAP(vap)->mv_hvap, 3659 bas->bastream, bufsiz, bufsiz, tap->txa_start); 3660 if (error != 0) { 3661 /* 3662 * Setup failed, return immediately so no a-mpdu 3663 * aggregation will be done. 3664 */ 3665 mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream); 3666 mwl_bastream_free(bas); 3667 tap->txa_private = NULL; 3668 3669 DPRINTF(sc, MWL_DEBUG_AMPDU, 3670 "%s: create failed, error %d, bufsiz %d TID %d " 3671 "htparam 0x%x\n", __func__, error, bufsiz, 3672 tap->txa_tid, ni->ni_htparam); 3673 sc->sc_stats.mst_bacreate_failed++; 3674 return 0; 3675 } 3676 /* NB: cache txq to avoid ptr indirect */ 3677 mwl_bastream_setup(bas, tap->txa_tid, bas->bastream->txq); 3678 DPRINTF(sc, MWL_DEBUG_AMPDU, 3679 "%s: bastream %p assigned to txq %d TID %d bufsiz %d " 3680 "htparam 0x%x\n", __func__, bas->bastream, 3681 bas->txq, tap->txa_tid, bufsiz, ni->ni_htparam); 3682 } else { 3683 /* 3684 * Other side NAK'd us; return the resources. 3685 */ 3686 DPRINTF(sc, MWL_DEBUG_AMPDU, 3687 "%s: request failed with code %d, destroy bastream %p\n", 3688 __func__, code, bas->bastream); 3689 mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream); 3690 mwl_bastream_free(bas); 3691 tap->txa_private = NULL; 3692 } 3693 /* NB: firmware sends BAR so we don't need to */ 3694 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); 3695 } 3696 3697 static void 3698 mwl_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 3699 { 3700 struct mwl_softc *sc = ni->ni_ic->ic_softc; 3701 struct mwl_bastate *bas; 3702 3703 bas = tap->txa_private; 3704 if (bas != NULL) { 3705 DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: destroy bastream %p\n", 3706 __func__, bas->bastream); 3707 mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream); 3708 mwl_bastream_free(bas); 3709 tap->txa_private = NULL; 3710 } 3711 sc->sc_addba_stop(ni, tap); 3712 } 3713 3714 /* 3715 * Setup the rx data structures. This should only be 3716 * done once or we may get out of sync with the firmware. 3717 */ 3718 static int 3719 mwl_startrecv(struct mwl_softc *sc) 3720 { 3721 if (!sc->sc_recvsetup) { 3722 struct mwl_rxbuf *bf, *prev; 3723 struct mwl_rxdesc *ds; 3724 3725 prev = NULL; 3726 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3727 int error = mwl_rxbuf_init(sc, bf); 3728 if (error != 0) { 3729 DPRINTF(sc, MWL_DEBUG_RECV, 3730 "%s: mwl_rxbuf_init failed %d\n", 3731 __func__, error); 3732 return error; 3733 } 3734 if (prev != NULL) { 3735 ds = prev->bf_desc; 3736 ds->pPhysNext = htole32(bf->bf_daddr); 3737 } 3738 prev = bf; 3739 } 3740 if (prev != NULL) { 3741 ds = prev->bf_desc; 3742 ds->pPhysNext = 3743 htole32(STAILQ_FIRST(&sc->sc_rxbuf)->bf_daddr); 3744 } 3745 sc->sc_recvsetup = 1; 3746 } 3747 mwl_mode_init(sc); /* set filters, etc. */ 3748 return 0; 3749 } 3750 3751 static MWL_HAL_APMODE 3752 mwl_getapmode(const struct ieee80211vap *vap, struct ieee80211_channel *chan) 3753 { 3754 MWL_HAL_APMODE mode; 3755 3756 if (IEEE80211_IS_CHAN_HT(chan)) { 3757 if (vap->iv_flags_ht & IEEE80211_FHT_PUREN) 3758 mode = AP_MODE_N_ONLY; 3759 else if (IEEE80211_IS_CHAN_5GHZ(chan)) 3760 mode = AP_MODE_AandN; 3761 else if (vap->iv_flags & IEEE80211_F_PUREG) 3762 mode = AP_MODE_GandN; 3763 else 3764 mode = AP_MODE_BandGandN; 3765 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 3766 if (vap->iv_flags & IEEE80211_F_PUREG) 3767 mode = AP_MODE_G_ONLY; 3768 else 3769 mode = AP_MODE_MIXED; 3770 } else if (IEEE80211_IS_CHAN_B(chan)) 3771 mode = AP_MODE_B_ONLY; 3772 else if (IEEE80211_IS_CHAN_A(chan)) 3773 mode = AP_MODE_A_ONLY; 3774 else 3775 mode = AP_MODE_MIXED; /* XXX should not happen? */ 3776 return mode; 3777 } 3778 3779 static int 3780 mwl_setapmode(struct ieee80211vap *vap, struct ieee80211_channel *chan) 3781 { 3782 struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; 3783 return mwl_hal_setapmode(hvap, mwl_getapmode(vap, chan)); 3784 } 3785 3786 /* 3787 * Set/change channels. 3788 */ 3789 static int 3790 mwl_chan_set(struct mwl_softc *sc, struct ieee80211_channel *chan) 3791 { 3792 struct mwl_hal *mh = sc->sc_mh; 3793 struct ieee80211com *ic = &sc->sc_ic; 3794 MWL_HAL_CHANNEL hchan; 3795 int maxtxpow; 3796 3797 DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n", 3798 __func__, chan->ic_freq, chan->ic_flags); 3799 3800 /* 3801 * Convert to a HAL channel description with 3802 * the flags constrained to reflect the current 3803 * operating mode. 3804 */ 3805 mwl_mapchan(&hchan, chan); 3806 mwl_hal_intrset(mh, 0); /* disable interrupts */ 3807 #if 0 3808 mwl_draintxq(sc); /* clear pending tx frames */ 3809 #endif 3810 mwl_hal_setchannel(mh, &hchan); 3811 /* 3812 * Tx power is cap'd by the regulatory setting and 3813 * possibly a user-set limit. We pass the min of 3814 * these to the hal to apply them to the cal data 3815 * for this channel. 3816 * XXX min bound? 3817 */ 3818 maxtxpow = 2*chan->ic_maxregpower; 3819 if (maxtxpow > ic->ic_txpowlimit) 3820 maxtxpow = ic->ic_txpowlimit; 3821 mwl_hal_settxpower(mh, &hchan, maxtxpow / 2); 3822 /* NB: potentially change mcast/mgt rates */ 3823 mwl_setcurchanrates(sc); 3824 3825 /* 3826 * Update internal state. 3827 */ 3828 sc->sc_tx_th.wt_chan_freq = htole16(chan->ic_freq); 3829 sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq); 3830 if (IEEE80211_IS_CHAN_A(chan)) { 3831 sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_A); 3832 sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_A); 3833 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 3834 sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G); 3835 sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G); 3836 } else { 3837 sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B); 3838 sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B); 3839 } 3840 sc->sc_curchan = hchan; 3841 mwl_hal_intrset(mh, sc->sc_imask); 3842 3843 return 0; 3844 } 3845 3846 static void 3847 mwl_scan_start(struct ieee80211com *ic) 3848 { 3849 struct mwl_softc *sc = ic->ic_softc; 3850 3851 DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__); 3852 } 3853 3854 static void 3855 mwl_scan_end(struct ieee80211com *ic) 3856 { 3857 struct mwl_softc *sc = ic->ic_softc; 3858 3859 DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__); 3860 } 3861 3862 static void 3863 mwl_set_channel(struct ieee80211com *ic) 3864 { 3865 struct mwl_softc *sc = ic->ic_softc; 3866 3867 (void) mwl_chan_set(sc, ic->ic_curchan); 3868 } 3869 3870 /* 3871 * Handle a channel switch request. We inform the firmware 3872 * and mark the global state to suppress various actions. 3873 * NB: we issue only one request to the fw; we may be called 3874 * multiple times if there are multiple vap's. 3875 */ 3876 static void 3877 mwl_startcsa(struct ieee80211vap *vap) 3878 { 3879 struct ieee80211com *ic = vap->iv_ic; 3880 struct mwl_softc *sc = ic->ic_softc; 3881 MWL_HAL_CHANNEL hchan; 3882 3883 if (sc->sc_csapending) 3884 return; 3885 3886 mwl_mapchan(&hchan, ic->ic_csa_newchan); 3887 /* 1 =>'s quiet channel */ 3888 mwl_hal_setchannelswitchie(sc->sc_mh, &hchan, 1, ic->ic_csa_count); 3889 sc->sc_csapending = 1; 3890 } 3891 3892 /* 3893 * Plumb any static WEP key for the station. This is 3894 * necessary as we must propagate the key from the 3895 * global key table of the vap to each sta db entry. 3896 */ 3897 static void 3898 mwl_setanywepkey(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3899 { 3900 if ((vap->iv_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) == 3901 IEEE80211_F_PRIVACY && 3902 vap->iv_def_txkey != IEEE80211_KEYIX_NONE && 3903 vap->iv_nw_keys[vap->iv_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE) 3904 (void) _mwl_key_set(vap, &vap->iv_nw_keys[vap->iv_def_txkey], 3905 mac); 3906 } 3907 3908 static int 3909 mwl_peerstadb(struct ieee80211_node *ni, int aid, int staid, MWL_HAL_PEERINFO *pi) 3910 { 3911 #define WME(ie) ((const struct ieee80211_wme_info *) ie) 3912 struct ieee80211vap *vap = ni->ni_vap; 3913 struct mwl_hal_vap *hvap; 3914 int error; 3915 3916 if (vap->iv_opmode == IEEE80211_M_WDS) { 3917 /* 3918 * WDS vap's do not have a f/w vap; instead they piggyback 3919 * on an AP vap and we must install the sta db entry and 3920 * crypto state using that AP's handle (the WDS vap has none). 3921 */ 3922 hvap = MWL_VAP(vap)->mv_ap_hvap; 3923 } else 3924 hvap = MWL_VAP(vap)->mv_hvap; 3925 error = mwl_hal_newstation(hvap, ni->ni_macaddr, 3926 aid, staid, pi, 3927 ni->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT), 3928 ni->ni_ies.wme_ie != NULL ? WME(ni->ni_ies.wme_ie)->wme_info : 0); 3929 if (error == 0) { 3930 /* 3931 * Setup security for this station. For sta mode this is 3932 * needed even though do the same thing on transition to 3933 * AUTH state because the call to mwl_hal_newstation 3934 * clobbers the crypto state we setup. 3935 */ 3936 mwl_setanywepkey(vap, ni->ni_macaddr); 3937 } 3938 return error; 3939 #undef WME 3940 } 3941 3942 static void 3943 mwl_setglobalkeys(struct ieee80211vap *vap) 3944 { 3945 struct ieee80211_key *wk; 3946 3947 wk = &vap->iv_nw_keys[0]; 3948 for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; wk++) 3949 if (wk->wk_keyix != IEEE80211_KEYIX_NONE) 3950 (void) _mwl_key_set(vap, wk, vap->iv_myaddr); 3951 } 3952 3953 /* 3954 * Convert a legacy rate set to a firmware bitmask. 3955 */ 3956 static uint32_t 3957 get_rate_bitmap(const struct ieee80211_rateset *rs) 3958 { 3959 uint32_t rates; 3960 int i; 3961 3962 rates = 0; 3963 for (i = 0; i < rs->rs_nrates; i++) 3964 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) { 3965 case 2: rates |= 0x001; break; 3966 case 4: rates |= 0x002; break; 3967 case 11: rates |= 0x004; break; 3968 case 22: rates |= 0x008; break; 3969 case 44: rates |= 0x010; break; 3970 case 12: rates |= 0x020; break; 3971 case 18: rates |= 0x040; break; 3972 case 24: rates |= 0x080; break; 3973 case 36: rates |= 0x100; break; 3974 case 48: rates |= 0x200; break; 3975 case 72: rates |= 0x400; break; 3976 case 96: rates |= 0x800; break; 3977 case 108: rates |= 0x1000; break; 3978 } 3979 return rates; 3980 } 3981 3982 /* 3983 * Construct an HT firmware bitmask from an HT rate set. 3984 */ 3985 static uint32_t 3986 get_htrate_bitmap(const struct ieee80211_htrateset *rs) 3987 { 3988 uint32_t rates; 3989 int i; 3990 3991 rates = 0; 3992 for (i = 0; i < rs->rs_nrates; i++) { 3993 if (rs->rs_rates[i] < 16) 3994 rates |= 1<<rs->rs_rates[i]; 3995 } 3996 return rates; 3997 } 3998 3999 /* 4000 * Craft station database entry for station. 4001 * NB: use host byte order here, the hal handles byte swapping. 4002 */ 4003 static MWL_HAL_PEERINFO * 4004 mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni) 4005 { 4006 const struct ieee80211vap *vap = ni->ni_vap; 4007 4008 memset(pi, 0, sizeof(*pi)); 4009 pi->LegacyRateBitMap = get_rate_bitmap(&ni->ni_rates); 4010 pi->CapInfo = ni->ni_capinfo; 4011 if (ni->ni_flags & IEEE80211_NODE_HT) { 4012 /* HT capabilities, etc */ 4013 pi->HTCapabilitiesInfo = ni->ni_htcap; 4014 /* XXX pi.HTCapabilitiesInfo */ 4015 pi->MacHTParamInfo = ni->ni_htparam; 4016 pi->HTRateBitMap = get_htrate_bitmap(&ni->ni_htrates); 4017 pi->AddHtInfo.ControlChan = ni->ni_htctlchan; 4018 pi->AddHtInfo.AddChan = ni->ni_ht2ndchan; 4019 pi->AddHtInfo.OpMode = ni->ni_htopmode; 4020 pi->AddHtInfo.stbc = ni->ni_htstbc; 4021 4022 /* constrain according to local configuration */ 4023 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0) 4024 pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI40; 4025 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 4026 pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI20; 4027 if (ni->ni_chw != 40) 4028 pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_CHWIDTH40; 4029 } 4030 return pi; 4031 } 4032 4033 /* 4034 * Re-create the local sta db entry for a vap to ensure 4035 * up to date WME state is pushed to the firmware. Because 4036 * this resets crypto state this must be followed by a 4037 * reload of any keys in the global key table. 4038 */ 4039 static int 4040 mwl_localstadb(struct ieee80211vap *vap) 4041 { 4042 #define WME(ie) ((const struct ieee80211_wme_info *) ie) 4043 struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; 4044 struct ieee80211_node *bss; 4045 MWL_HAL_PEERINFO pi; 4046 int error; 4047 4048 switch (vap->iv_opmode) { 4049 case IEEE80211_M_STA: 4050 bss = vap->iv_bss; 4051 error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0, 4052 vap->iv_state == IEEE80211_S_RUN ? 4053 mkpeerinfo(&pi, bss) : NULL, 4054 (bss->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)), 4055 bss->ni_ies.wme_ie != NULL ? 4056 WME(bss->ni_ies.wme_ie)->wme_info : 0); 4057 if (error == 0) 4058 mwl_setglobalkeys(vap); 4059 break; 4060 case IEEE80211_M_HOSTAP: 4061 case IEEE80211_M_MBSS: 4062 error = mwl_hal_newstation(hvap, vap->iv_myaddr, 4063 0, 0, NULL, vap->iv_flags & IEEE80211_F_WME, 0); 4064 if (error == 0) 4065 mwl_setglobalkeys(vap); 4066 break; 4067 default: 4068 error = 0; 4069 break; 4070 } 4071 return error; 4072 #undef WME 4073 } 4074 4075 static int 4076 mwl_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4077 { 4078 struct mwl_vap *mvp = MWL_VAP(vap); 4079 struct mwl_hal_vap *hvap = mvp->mv_hvap; 4080 struct ieee80211com *ic = vap->iv_ic; 4081 struct ieee80211_node *ni = NULL; 4082 struct mwl_softc *sc = ic->ic_softc; 4083 struct mwl_hal *mh = sc->sc_mh; 4084 enum ieee80211_state ostate = vap->iv_state; 4085 int error; 4086 4087 DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: %s -> %s\n", 4088 if_name(vap->iv_ifp), __func__, 4089 ieee80211_state_name[ostate], ieee80211_state_name[nstate]); 4090 4091 callout_stop(&sc->sc_timer); 4092 /* 4093 * Clear current radar detection state. 4094 */ 4095 if (ostate == IEEE80211_S_CAC) { 4096 /* stop quiet mode radar detection */ 4097 mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_STOP); 4098 } else if (sc->sc_radarena) { 4099 /* stop in-service radar detection */ 4100 mwl_hal_setradardetection(mh, DR_DFS_DISABLE); 4101 sc->sc_radarena = 0; 4102 } 4103 /* 4104 * Carry out per-state actions before doing net80211 work. 4105 */ 4106 if (nstate == IEEE80211_S_INIT) { 4107 /* NB: only ap+sta vap's have a fw entity */ 4108 if (hvap != NULL) 4109 mwl_hal_stop(hvap); 4110 } else if (nstate == IEEE80211_S_SCAN) { 4111 mwl_hal_start(hvap); 4112 /* NB: this disables beacon frames */ 4113 mwl_hal_setinframode(hvap); 4114 } else if (nstate == IEEE80211_S_AUTH) { 4115 /* 4116 * Must create a sta db entry in case a WEP key needs to 4117 * be plumbed. This entry will be overwritten if we 4118 * associate; otherwise it will be reclaimed on node free. 4119 */ 4120 ni = vap->iv_bss; 4121 MWL_NODE(ni)->mn_hvap = hvap; 4122 (void) mwl_peerstadb(ni, 0, 0, NULL); 4123 } else if (nstate == IEEE80211_S_CSA) { 4124 /* XXX move to below? */ 4125 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 4126 vap->iv_opmode == IEEE80211_M_MBSS) 4127 mwl_startcsa(vap); 4128 } else if (nstate == IEEE80211_S_CAC) { 4129 /* XXX move to below? */ 4130 /* stop ap xmit and enable quiet mode radar detection */ 4131 mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_START); 4132 } 4133 4134 /* 4135 * Invoke the parent method to do net80211 work. 4136 */ 4137 error = mvp->mv_newstate(vap, nstate, arg); 4138 4139 /* 4140 * Carry out work that must be done after net80211 runs; 4141 * this work requires up to date state (e.g. iv_bss). 4142 */ 4143 if (error == 0 && nstate == IEEE80211_S_RUN) { 4144 /* NB: collect bss node again, it may have changed */ 4145 ni = vap->iv_bss; 4146 4147 DPRINTF(sc, MWL_DEBUG_STATE, 4148 "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4149 "capinfo 0x%04x chan %d\n", 4150 if_name(vap->iv_ifp), __func__, vap->iv_flags, 4151 ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo, 4152 ieee80211_chan2ieee(ic, ic->ic_curchan)); 4153 4154 /* 4155 * Recreate local sta db entry to update WME/HT state. 4156 */ 4157 mwl_localstadb(vap); 4158 switch (vap->iv_opmode) { 4159 case IEEE80211_M_HOSTAP: 4160 case IEEE80211_M_MBSS: 4161 if (ostate == IEEE80211_S_CAC) { 4162 /* enable in-service radar detection */ 4163 mwl_hal_setradardetection(mh, 4164 DR_IN_SERVICE_MONITOR_START); 4165 sc->sc_radarena = 1; 4166 } 4167 /* 4168 * Allocate and setup the beacon frame 4169 * (and related state). 4170 */ 4171 error = mwl_reset_vap(vap, IEEE80211_S_RUN); 4172 if (error != 0) { 4173 DPRINTF(sc, MWL_DEBUG_STATE, 4174 "%s: beacon setup failed, error %d\n", 4175 __func__, error); 4176 goto bad; 4177 } 4178 /* NB: must be after setting up beacon */ 4179 mwl_hal_start(hvap); 4180 break; 4181 case IEEE80211_M_STA: 4182 DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: aid 0x%x\n", 4183 if_name(vap->iv_ifp), __func__, ni->ni_associd); 4184 /* 4185 * Set state now that we're associated. 4186 */ 4187 mwl_hal_setassocid(hvap, ni->ni_bssid, ni->ni_associd); 4188 mwl_setrates(vap); 4189 mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold); 4190 if ((vap->iv_flags & IEEE80211_F_DWDS) && 4191 sc->sc_ndwdsvaps++ == 0) 4192 mwl_hal_setdwds(mh, 1); 4193 break; 4194 case IEEE80211_M_WDS: 4195 DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: bssid %s\n", 4196 if_name(vap->iv_ifp), __func__, 4197 ether_sprintf(ni->ni_bssid)); 4198 mwl_seteapolformat(vap); 4199 break; 4200 default: 4201 break; 4202 } 4203 /* 4204 * Set CS mode according to operating channel; 4205 * this mostly an optimization for 5GHz. 4206 * 4207 * NB: must follow mwl_hal_start which resets csmode 4208 */ 4209 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) 4210 mwl_hal_setcsmode(mh, CSMODE_AGGRESSIVE); 4211 else 4212 mwl_hal_setcsmode(mh, CSMODE_AUTO_ENA); 4213 /* 4214 * Start timer to prod firmware. 4215 */ 4216 if (sc->sc_ageinterval != 0) 4217 callout_reset(&sc->sc_timer, sc->sc_ageinterval*hz, 4218 mwl_agestations, sc); 4219 } else if (nstate == IEEE80211_S_SLEEP) { 4220 /* XXX set chip in power save */ 4221 } else if ((vap->iv_flags & IEEE80211_F_DWDS) && 4222 --sc->sc_ndwdsvaps == 0) 4223 mwl_hal_setdwds(mh, 0); 4224 bad: 4225 return error; 4226 } 4227 4228 /* 4229 * Manage station id's; these are separate from AID's 4230 * as AID's may have values out of the range of possible 4231 * station id's acceptable to the firmware. 4232 */ 4233 static int 4234 allocstaid(struct mwl_softc *sc, int aid) 4235 { 4236 int staid; 4237 4238 if (!(0 < aid && aid < MWL_MAXSTAID) || isset(sc->sc_staid, aid)) { 4239 /* NB: don't use 0 */ 4240 for (staid = 1; staid < MWL_MAXSTAID; staid++) 4241 if (isclr(sc->sc_staid, staid)) 4242 break; 4243 } else 4244 staid = aid; 4245 setbit(sc->sc_staid, staid); 4246 return staid; 4247 } 4248 4249 static void 4250 delstaid(struct mwl_softc *sc, int staid) 4251 { 4252 clrbit(sc->sc_staid, staid); 4253 } 4254 4255 /* 4256 * Setup driver-specific state for a newly associated node. 4257 * Note that we're called also on a re-associate, the isnew 4258 * param tells us if this is the first time or not. 4259 */ 4260 static void 4261 mwl_newassoc(struct ieee80211_node *ni, int isnew) 4262 { 4263 struct ieee80211vap *vap = ni->ni_vap; 4264 struct mwl_softc *sc = vap->iv_ic->ic_softc; 4265 struct mwl_node *mn = MWL_NODE(ni); 4266 MWL_HAL_PEERINFO pi; 4267 uint16_t aid; 4268 int error; 4269 4270 aid = IEEE80211_AID(ni->ni_associd); 4271 if (isnew) { 4272 mn->mn_staid = allocstaid(sc, aid); 4273 mn->mn_hvap = MWL_VAP(vap)->mv_hvap; 4274 } else { 4275 mn = MWL_NODE(ni); 4276 /* XXX reset BA stream? */ 4277 } 4278 DPRINTF(sc, MWL_DEBUG_NODE, "%s: mac %s isnew %d aid %d staid %d\n", 4279 __func__, ether_sprintf(ni->ni_macaddr), isnew, aid, mn->mn_staid); 4280 error = mwl_peerstadb(ni, aid, mn->mn_staid, mkpeerinfo(&pi, ni)); 4281 if (error != 0) { 4282 DPRINTF(sc, MWL_DEBUG_NODE, 4283 "%s: error %d creating sta db entry\n", 4284 __func__, error); 4285 /* XXX how to deal with error? */ 4286 } 4287 } 4288 4289 /* 4290 * Periodically poke the firmware to age out station state 4291 * (power save queues, pending tx aggregates). 4292 */ 4293 static void 4294 mwl_agestations(void *arg) 4295 { 4296 struct mwl_softc *sc = arg; 4297 4298 mwl_hal_setkeepalive(sc->sc_mh); 4299 if (sc->sc_ageinterval != 0) /* NB: catch dynamic changes */ 4300 callout_schedule(&sc->sc_timer, sc->sc_ageinterval*hz); 4301 } 4302 4303 static const struct mwl_hal_channel * 4304 findhalchannel(const MWL_HAL_CHANNELINFO *ci, int ieee) 4305 { 4306 int i; 4307 4308 for (i = 0; i < ci->nchannels; i++) { 4309 const struct mwl_hal_channel *hc = &ci->channels[i]; 4310 if (hc->ieee == ieee) 4311 return hc; 4312 } 4313 return NULL; 4314 } 4315 4316 static int 4317 mwl_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 4318 int nchan, struct ieee80211_channel chans[]) 4319 { 4320 struct mwl_softc *sc = ic->ic_softc; 4321 struct mwl_hal *mh = sc->sc_mh; 4322 const MWL_HAL_CHANNELINFO *ci; 4323 int i; 4324 4325 for (i = 0; i < nchan; i++) { 4326 struct ieee80211_channel *c = &chans[i]; 4327 const struct mwl_hal_channel *hc; 4328 4329 if (IEEE80211_IS_CHAN_2GHZ(c)) { 4330 mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_2DOT4GHZ, 4331 IEEE80211_IS_CHAN_HT40(c) ? 4332 MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci); 4333 } else if (IEEE80211_IS_CHAN_5GHZ(c)) { 4334 mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_5GHZ, 4335 IEEE80211_IS_CHAN_HT40(c) ? 4336 MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci); 4337 } else { 4338 device_printf(sc->sc_dev, 4339 "%s: channel %u freq %u/0x%x not 2.4/5GHz\n", 4340 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 4341 return EINVAL; 4342 } 4343 /* 4344 * Verify channel has cal data and cap tx power. 4345 */ 4346 hc = findhalchannel(ci, c->ic_ieee); 4347 if (hc != NULL) { 4348 if (c->ic_maxpower > 2*hc->maxTxPow) 4349 c->ic_maxpower = 2*hc->maxTxPow; 4350 goto next; 4351 } 4352 if (IEEE80211_IS_CHAN_HT40(c)) { 4353 /* 4354 * Look for the extension channel since the 4355 * hal table only has the primary channel. 4356 */ 4357 hc = findhalchannel(ci, c->ic_extieee); 4358 if (hc != NULL) { 4359 if (c->ic_maxpower > 2*hc->maxTxPow) 4360 c->ic_maxpower = 2*hc->maxTxPow; 4361 goto next; 4362 } 4363 } 4364 device_printf(sc->sc_dev, 4365 "%s: no cal data for channel %u ext %u freq %u/0x%x\n", 4366 __func__, c->ic_ieee, c->ic_extieee, 4367 c->ic_freq, c->ic_flags); 4368 return EINVAL; 4369 next: 4370 ; 4371 } 4372 return 0; 4373 } 4374 4375 #define IEEE80211_CHAN_HTG (IEEE80211_CHAN_HT|IEEE80211_CHAN_G) 4376 #define IEEE80211_CHAN_HTA (IEEE80211_CHAN_HT|IEEE80211_CHAN_A) 4377 4378 static void 4379 addht40channels(struct ieee80211_channel chans[], int maxchans, int *nchans, 4380 const MWL_HAL_CHANNELINFO *ci, int flags) 4381 { 4382 int i, error; 4383 4384 for (i = 0; i < ci->nchannels; i++) { 4385 const struct mwl_hal_channel *hc = &ci->channels[i]; 4386 4387 error = ieee80211_add_channel_ht40(chans, maxchans, nchans, 4388 hc->ieee, hc->maxTxPow, flags); 4389 if (error != 0 && error != ENOENT) 4390 break; 4391 } 4392 } 4393 4394 static void 4395 addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans, 4396 const MWL_HAL_CHANNELINFO *ci, const uint8_t bands[]) 4397 { 4398 int i, error; 4399 4400 error = 0; 4401 for (i = 0; i < ci->nchannels && error == 0; i++) { 4402 const struct mwl_hal_channel *hc = &ci->channels[i]; 4403 4404 error = ieee80211_add_channel(chans, maxchans, nchans, 4405 hc->ieee, hc->freq, hc->maxTxPow, 0, bands); 4406 } 4407 } 4408 4409 static void 4410 getchannels(struct mwl_softc *sc, int maxchans, int *nchans, 4411 struct ieee80211_channel chans[]) 4412 { 4413 const MWL_HAL_CHANNELINFO *ci; 4414 uint8_t bands[IEEE80211_MODE_BYTES]; 4415 4416 /* 4417 * Use the channel info from the hal to craft the 4418 * channel list. Note that we pass back an unsorted 4419 * list; the caller is required to sort it for us 4420 * (if desired). 4421 */ 4422 *nchans = 0; 4423 if (mwl_hal_getchannelinfo(sc->sc_mh, 4424 MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) { 4425 memset(bands, 0, sizeof(bands)); 4426 setbit(bands, IEEE80211_MODE_11B); 4427 setbit(bands, IEEE80211_MODE_11G); 4428 setbit(bands, IEEE80211_MODE_11NG); 4429 addchannels(chans, maxchans, nchans, ci, bands); 4430 } 4431 if (mwl_hal_getchannelinfo(sc->sc_mh, 4432 MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) { 4433 memset(bands, 0, sizeof(bands)); 4434 setbit(bands, IEEE80211_MODE_11A); 4435 setbit(bands, IEEE80211_MODE_11NA); 4436 addchannels(chans, maxchans, nchans, ci, bands); 4437 } 4438 if (mwl_hal_getchannelinfo(sc->sc_mh, 4439 MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0) 4440 addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG); 4441 if (mwl_hal_getchannelinfo(sc->sc_mh, 4442 MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0) 4443 addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA); 4444 } 4445 4446 static void 4447 mwl_getradiocaps(struct ieee80211com *ic, 4448 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4449 { 4450 struct mwl_softc *sc = ic->ic_softc; 4451 4452 getchannels(sc, maxchans, nchans, chans); 4453 } 4454 4455 static int 4456 mwl_getchannels(struct mwl_softc *sc) 4457 { 4458 struct ieee80211com *ic = &sc->sc_ic; 4459 4460 /* 4461 * Use the channel info from the hal to craft the 4462 * channel list for net80211. Note that we pass up 4463 * an unsorted list; net80211 will sort it for us. 4464 */ 4465 memset(ic->ic_channels, 0, sizeof(ic->ic_channels)); 4466 ic->ic_nchans = 0; 4467 getchannels(sc, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); 4468 4469 ic->ic_regdomain.regdomain = SKU_DEBUG; 4470 ic->ic_regdomain.country = CTRY_DEFAULT; 4471 ic->ic_regdomain.location = 'I'; 4472 ic->ic_regdomain.isocc[0] = ' '; /* XXX? */ 4473 ic->ic_regdomain.isocc[1] = ' '; 4474 return (ic->ic_nchans == 0 ? EIO : 0); 4475 } 4476 #undef IEEE80211_CHAN_HTA 4477 #undef IEEE80211_CHAN_HTG 4478 4479 #ifdef MWL_DEBUG 4480 static void 4481 mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix) 4482 { 4483 const struct mwl_rxdesc *ds = bf->bf_desc; 4484 uint32_t status = le32toh(ds->Status); 4485 4486 printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n" 4487 " STAT:%02x LEN:%04x RSSI:%02x CHAN:%02x RATE:%02x QOS:%04x HT:%04x\n", 4488 ix, ds, (uintmax_t)bf->bf_daddr, le32toh(ds->pPhysNext), 4489 le32toh(ds->pPhysBuffData), ds->RxControl, 4490 ds->RxControl != EAGLE_RXD_CTRL_DRIVER_OWN ? 4491 "" : (status & EAGLE_RXD_STATUS_OK) ? " *" : " !", 4492 ds->Status, le16toh(ds->PktLen), ds->RSSI, ds->Channel, 4493 ds->Rate, le16toh(ds->QosCtrl), le16toh(ds->HtSig2)); 4494 } 4495 4496 static void 4497 mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix) 4498 { 4499 const struct mwl_txdesc *ds = bf->bf_desc; 4500 uint32_t status = le32toh(ds->Status); 4501 4502 printf("Q%u[%3u]", qnum, ix); 4503 printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr); 4504 printf(" NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n", 4505 le32toh(ds->pPhysNext), 4506 le32toh(ds->PktPtr), le16toh(ds->PktLen), status, 4507 status & EAGLE_TXD_STATUS_USED ? 4508 "" : (status & 3) != 0 ? " *" : " !"); 4509 printf(" RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n", 4510 ds->DataRate, ds->TxPriority, le16toh(ds->QosCtrl), 4511 le32toh(ds->SapPktInfo), le16toh(ds->Format)); 4512 #if MWL_TXDESC > 1 4513 printf(" MULTIFRAMES:%u LEN:%04x %04x %04x %04x %04x %04x\n" 4514 , le32toh(ds->multiframes) 4515 , le16toh(ds->PktLenArray[0]), le16toh(ds->PktLenArray[1]) 4516 , le16toh(ds->PktLenArray[2]), le16toh(ds->PktLenArray[3]) 4517 , le16toh(ds->PktLenArray[4]), le16toh(ds->PktLenArray[5]) 4518 ); 4519 printf(" DATA:%08x %08x %08x %08x %08x %08x\n" 4520 , le32toh(ds->PktPtrArray[0]), le32toh(ds->PktPtrArray[1]) 4521 , le32toh(ds->PktPtrArray[2]), le32toh(ds->PktPtrArray[3]) 4522 , le32toh(ds->PktPtrArray[4]), le32toh(ds->PktPtrArray[5]) 4523 ); 4524 #endif 4525 #if 0 4526 { const uint8_t *cp = (const uint8_t *) ds; 4527 int i; 4528 for (i = 0; i < sizeof(struct mwl_txdesc); i++) { 4529 printf("%02x ", cp[i]); 4530 if (((i+1) % 16) == 0) 4531 printf("\n"); 4532 } 4533 printf("\n"); 4534 } 4535 #endif 4536 } 4537 #endif /* MWL_DEBUG */ 4538 4539 #if 0 4540 static void 4541 mwl_txq_dump(struct mwl_txq *txq) 4542 { 4543 struct mwl_txbuf *bf; 4544 int i = 0; 4545 4546 MWL_TXQ_LOCK(txq); 4547 STAILQ_FOREACH(bf, &txq->active, bf_list) { 4548 struct mwl_txdesc *ds = bf->bf_desc; 4549 MWL_TXDESC_SYNC(txq, ds, 4550 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4551 #ifdef MWL_DEBUG 4552 mwl_printtxbuf(bf, txq->qnum, i); 4553 #endif 4554 i++; 4555 } 4556 MWL_TXQ_UNLOCK(txq); 4557 } 4558 #endif 4559 4560 static void 4561 mwl_watchdog(void *arg) 4562 { 4563 struct mwl_softc *sc = arg; 4564 4565 callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc); 4566 if (sc->sc_tx_timer == 0 || --sc->sc_tx_timer > 0) 4567 return; 4568 4569 if (sc->sc_running && !sc->sc_invalid) { 4570 if (mwl_hal_setkeepalive(sc->sc_mh)) 4571 device_printf(sc->sc_dev, 4572 "transmit timeout (firmware hung?)\n"); 4573 else 4574 device_printf(sc->sc_dev, 4575 "transmit timeout\n"); 4576 #if 0 4577 mwl_reset(sc); 4578 mwl_txq_dump(&sc->sc_txq[0]);/*XXX*/ 4579 #endif 4580 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 4581 sc->sc_stats.mst_watchdog++; 4582 } 4583 } 4584 4585 #ifdef MWL_DIAGAPI 4586 /* 4587 * Diagnostic interface to the HAL. This is used by various 4588 * tools to do things like retrieve register contents for 4589 * debugging. The mechanism is intentionally opaque so that 4590 * it can change frequently w/o concern for compatibility. 4591 */ 4592 static int 4593 mwl_ioctl_diag(struct mwl_softc *sc, struct mwl_diag *md) 4594 { 4595 struct mwl_hal *mh = sc->sc_mh; 4596 u_int id = md->md_id & MWL_DIAG_ID; 4597 void *indata = NULL; 4598 void *outdata = NULL; 4599 u_int32_t insize = md->md_in_size; 4600 u_int32_t outsize = md->md_out_size; 4601 int error = 0; 4602 4603 if (md->md_id & MWL_DIAG_IN) { 4604 /* 4605 * Copy in data. 4606 */ 4607 indata = malloc(insize, M_TEMP, M_NOWAIT); 4608 if (indata == NULL) { 4609 error = ENOMEM; 4610 goto bad; 4611 } 4612 error = copyin(md->md_in_data, indata, insize); 4613 if (error) 4614 goto bad; 4615 } 4616 if (md->md_id & MWL_DIAG_DYN) { 4617 /* 4618 * Allocate a buffer for the results (otherwise the HAL 4619 * returns a pointer to a buffer where we can read the 4620 * results). Note that we depend on the HAL leaving this 4621 * pointer for us to use below in reclaiming the buffer; 4622 * may want to be more defensive. 4623 */ 4624 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4625 if (outdata == NULL) { 4626 error = ENOMEM; 4627 goto bad; 4628 } 4629 } 4630 if (mwl_hal_getdiagstate(mh, id, indata, insize, &outdata, &outsize)) { 4631 if (outsize < md->md_out_size) 4632 md->md_out_size = outsize; 4633 if (outdata != NULL) 4634 error = copyout(outdata, md->md_out_data, 4635 md->md_out_size); 4636 } else { 4637 error = EINVAL; 4638 } 4639 bad: 4640 if ((md->md_id & MWL_DIAG_IN) && indata != NULL) 4641 free(indata, M_TEMP); 4642 if ((md->md_id & MWL_DIAG_DYN) && outdata != NULL) 4643 free(outdata, M_TEMP); 4644 return error; 4645 } 4646 4647 static int 4648 mwl_ioctl_reset(struct mwl_softc *sc, struct mwl_diag *md) 4649 { 4650 struct mwl_hal *mh = sc->sc_mh; 4651 int error; 4652 4653 MWL_LOCK_ASSERT(sc); 4654 4655 if (md->md_id == 0 && mwl_hal_fwload(mh, NULL) != 0) { 4656 device_printf(sc->sc_dev, "unable to load firmware\n"); 4657 return EIO; 4658 } 4659 if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) { 4660 device_printf(sc->sc_dev, "unable to fetch h/w specs\n"); 4661 return EIO; 4662 } 4663 error = mwl_setupdma(sc); 4664 if (error != 0) { 4665 /* NB: mwl_setupdma prints a msg */ 4666 return error; 4667 } 4668 /* 4669 * Reset tx/rx data structures; after reload we must 4670 * re-start the driver's notion of the next xmit/recv. 4671 */ 4672 mwl_draintxq(sc); /* clear pending frames */ 4673 mwl_resettxq(sc); /* rebuild tx q lists */ 4674 sc->sc_rxnext = NULL; /* force rx to start at the list head */ 4675 return 0; 4676 } 4677 #endif /* MWL_DIAGAPI */ 4678 4679 static void 4680 mwl_parent(struct ieee80211com *ic) 4681 { 4682 struct mwl_softc *sc = ic->ic_softc; 4683 int startall = 0; 4684 4685 MWL_LOCK(sc); 4686 if (ic->ic_nrunning > 0) { 4687 if (sc->sc_running) { 4688 /* 4689 * To avoid rescanning another access point, 4690 * do not call mwl_init() here. Instead, 4691 * only reflect promisc mode settings. 4692 */ 4693 mwl_mode_init(sc); 4694 } else { 4695 /* 4696 * Beware of being called during attach/detach 4697 * to reset promiscuous mode. In that case we 4698 * will still be marked UP but not RUNNING. 4699 * However trying to re-init the interface 4700 * is the wrong thing to do as we've already 4701 * torn down much of our state. There's 4702 * probably a better way to deal with this. 4703 */ 4704 if (!sc->sc_invalid) { 4705 mwl_init(sc); /* XXX lose error */ 4706 startall = 1; 4707 } 4708 } 4709 } else 4710 mwl_stop(sc); 4711 MWL_UNLOCK(sc); 4712 if (startall) 4713 ieee80211_start_all(ic); 4714 } 4715 4716 static int 4717 mwl_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 4718 { 4719 struct mwl_softc *sc = ic->ic_softc; 4720 struct ifreq *ifr = data; 4721 int error = 0; 4722 4723 switch (cmd) { 4724 case SIOCGMVSTATS: 4725 mwl_hal_gethwstats(sc->sc_mh, &sc->sc_stats.hw_stats); 4726 #if 0 4727 /* NB: embed these numbers to get a consistent view */ 4728 sc->sc_stats.mst_tx_packets = 4729 if_get_counter(ifp, IFCOUNTER_OPACKETS); 4730 sc->sc_stats.mst_rx_packets = 4731 if_get_counter(ifp, IFCOUNTER_IPACKETS); 4732 #endif 4733 /* 4734 * NB: Drop the softc lock in case of a page fault; 4735 * we'll accept any potential inconsisentcy in the 4736 * statistics. The alternative is to copy the data 4737 * to a local structure. 4738 */ 4739 return (copyout(&sc->sc_stats, ifr_data_get_ptr(ifr), 4740 sizeof (sc->sc_stats))); 4741 #ifdef MWL_DIAGAPI 4742 case SIOCGMVDIAG: 4743 /* XXX check privs */ 4744 return mwl_ioctl_diag(sc, (struct mwl_diag *) ifr); 4745 case SIOCGMVRESET: 4746 /* XXX check privs */ 4747 MWL_LOCK(sc); 4748 error = mwl_ioctl_reset(sc,(struct mwl_diag *) ifr); 4749 MWL_UNLOCK(sc); 4750 break; 4751 #endif /* MWL_DIAGAPI */ 4752 default: 4753 error = ENOTTY; 4754 break; 4755 } 4756 return (error); 4757 } 4758 4759 #ifdef MWL_DEBUG 4760 static int 4761 mwl_sysctl_debug(SYSCTL_HANDLER_ARGS) 4762 { 4763 struct mwl_softc *sc = arg1; 4764 int debug, error; 4765 4766 debug = sc->sc_debug | (mwl_hal_getdebug(sc->sc_mh) << 24); 4767 error = sysctl_handle_int(oidp, &debug, 0, req); 4768 if (error || !req->newptr) 4769 return error; 4770 mwl_hal_setdebug(sc->sc_mh, debug >> 24); 4771 sc->sc_debug = debug & 0x00ffffff; 4772 return 0; 4773 } 4774 #endif /* MWL_DEBUG */ 4775 4776 static void 4777 mwl_sysctlattach(struct mwl_softc *sc) 4778 { 4779 #ifdef MWL_DEBUG 4780 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 4781 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 4782 4783 sc->sc_debug = mwl_debug; 4784 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", 4785 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 4786 mwl_sysctl_debug, "I", "control debugging printfs"); 4787 #endif 4788 } 4789 4790 /* 4791 * Announce various information on device/driver attach. 4792 */ 4793 static void 4794 mwl_announce(struct mwl_softc *sc) 4795 { 4796 4797 device_printf(sc->sc_dev, "Rev A%d hardware, v%d.%d.%d.%d firmware (regioncode %d)\n", 4798 sc->sc_hwspecs.hwVersion, 4799 (sc->sc_hwspecs.fwReleaseNumber>>24) & 0xff, 4800 (sc->sc_hwspecs.fwReleaseNumber>>16) & 0xff, 4801 (sc->sc_hwspecs.fwReleaseNumber>>8) & 0xff, 4802 (sc->sc_hwspecs.fwReleaseNumber>>0) & 0xff, 4803 sc->sc_hwspecs.regionCode); 4804 sc->sc_fwrelease = sc->sc_hwspecs.fwReleaseNumber; 4805 4806 if (bootverbose) { 4807 int i; 4808 for (i = 0; i <= WME_AC_VO; i++) { 4809 struct mwl_txq *txq = sc->sc_ac2q[i]; 4810 device_printf(sc->sc_dev, "Use hw queue %u for %s traffic\n", 4811 txq->qnum, ieee80211_wme_acnames[i]); 4812 } 4813 } 4814 if (bootverbose || mwl_rxdesc != MWL_RXDESC) 4815 device_printf(sc->sc_dev, "using %u rx descriptors\n", mwl_rxdesc); 4816 if (bootverbose || mwl_rxbuf != MWL_RXBUF) 4817 device_printf(sc->sc_dev, "using %u rx buffers\n", mwl_rxbuf); 4818 if (bootverbose || mwl_txbuf != MWL_TXBUF) 4819 device_printf(sc->sc_dev, "using %u tx buffers\n", mwl_txbuf); 4820 if (bootverbose && mwl_hal_ismbsscapable(sc->sc_mh)) 4821 device_printf(sc->sc_dev, "multi-bss support\n"); 4822 #ifdef MWL_TX_NODROP 4823 if (bootverbose) 4824 device_printf(sc->sc_dev, "no tx drop\n"); 4825 #endif 4826 } 4827