xref: /freebsd/sys/dev/mwl/if_mwl.c (revision ba00ec3d539f213abbda3a45ef8c539306cac098)
1 /*-
2  * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2007-2008 Marvell Semiconductor, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
14  *    redistribution must be conditioned upon including a substantially
15  *    similar Disclaimer requirement for further binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
21  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
23  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
26  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGES.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 /*
35  * Driver for the Marvell 88W8363 Wireless LAN controller.
36  */
37 
38 #include "opt_inet.h"
39 #include "opt_mwl.h"
40 #include "opt_wlan.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/kernel.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/errno.h>
53 #include <sys/callout.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kthread.h>
57 #include <sys/taskqueue.h>
58 
59 #include <machine/bus.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 #include <net/if_arp.h>
66 #include <net/ethernet.h>
67 #include <net/if_llc.h>
68 
69 #include <net/bpf.h>
70 
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_regdomain.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif /* INET */
78 
79 #include <dev/mwl/if_mwlvar.h>
80 #include <dev/mwl/mwldiag.h>
81 
82 /* idiomatic shorthands: MS = mask+shift, SM = shift+mask */
83 #define	MS(v,x)	(((v) & x) >> x##_S)
84 #define	SM(v,x)	(((v) << x##_S) & x)
85 
86 static struct ieee80211vap *mwl_vap_create(struct ieee80211com *,
87 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
88 		    const uint8_t [IEEE80211_ADDR_LEN],
89 		    const uint8_t [IEEE80211_ADDR_LEN]);
90 static void	mwl_vap_delete(struct ieee80211vap *);
91 static int	mwl_setupdma(struct mwl_softc *);
92 static int	mwl_hal_reset(struct mwl_softc *sc);
93 static int	mwl_init_locked(struct mwl_softc *);
94 static void	mwl_init(void *);
95 static void	mwl_stop_locked(struct ifnet *, int);
96 static int	mwl_reset(struct ieee80211vap *, u_long);
97 static void	mwl_stop(struct ifnet *, int);
98 static void	mwl_start(struct ifnet *);
99 static int	mwl_raw_xmit(struct ieee80211_node *, struct mbuf *,
100 			const struct ieee80211_bpf_params *);
101 static int	mwl_media_change(struct ifnet *);
102 static void	mwl_watchdog(void *);
103 static int	mwl_ioctl(struct ifnet *, u_long, caddr_t);
104 static void	mwl_radar_proc(void *, int);
105 static void	mwl_chanswitch_proc(void *, int);
106 static void	mwl_bawatchdog_proc(void *, int);
107 static int	mwl_key_alloc(struct ieee80211vap *,
108 			struct ieee80211_key *,
109 			ieee80211_keyix *, ieee80211_keyix *);
110 static int	mwl_key_delete(struct ieee80211vap *,
111 			const struct ieee80211_key *);
112 static int	mwl_key_set(struct ieee80211vap *, const struct ieee80211_key *,
113 			const uint8_t mac[IEEE80211_ADDR_LEN]);
114 static int	mwl_mode_init(struct mwl_softc *);
115 static void	mwl_update_mcast(struct ifnet *);
116 static void	mwl_update_promisc(struct ifnet *);
117 static void	mwl_updateslot(struct ifnet *);
118 static int	mwl_beacon_setup(struct ieee80211vap *);
119 static void	mwl_beacon_update(struct ieee80211vap *, int);
120 #ifdef MWL_HOST_PS_SUPPORT
121 static void	mwl_update_ps(struct ieee80211vap *, int);
122 static int	mwl_set_tim(struct ieee80211_node *, int);
123 #endif
124 static int	mwl_dma_setup(struct mwl_softc *);
125 static void	mwl_dma_cleanup(struct mwl_softc *);
126 static struct ieee80211_node *mwl_node_alloc(struct ieee80211vap *,
127 		    const uint8_t [IEEE80211_ADDR_LEN]);
128 static void	mwl_node_cleanup(struct ieee80211_node *);
129 static void	mwl_node_drain(struct ieee80211_node *);
130 static void	mwl_node_getsignal(const struct ieee80211_node *,
131 			int8_t *, int8_t *);
132 static void	mwl_node_getmimoinfo(const struct ieee80211_node *,
133 			struct ieee80211_mimo_info *);
134 static int	mwl_rxbuf_init(struct mwl_softc *, struct mwl_rxbuf *);
135 static void	mwl_rx_proc(void *, int);
136 static void	mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *, int);
137 static int	mwl_tx_setup(struct mwl_softc *, int, int);
138 static int	mwl_wme_update(struct ieee80211com *);
139 static void	mwl_tx_cleanupq(struct mwl_softc *, struct mwl_txq *);
140 static void	mwl_tx_cleanup(struct mwl_softc *);
141 static uint16_t	mwl_calcformat(uint8_t rate, const struct ieee80211_node *);
142 static int	mwl_tx_start(struct mwl_softc *, struct ieee80211_node *,
143 			     struct mwl_txbuf *, struct mbuf *);
144 static void	mwl_tx_proc(void *, int);
145 static int	mwl_chan_set(struct mwl_softc *, struct ieee80211_channel *);
146 static void	mwl_draintxq(struct mwl_softc *);
147 static void	mwl_cleartxq(struct mwl_softc *, struct ieee80211vap *);
148 static int	mwl_recv_action(struct ieee80211_node *,
149 			const struct ieee80211_frame *,
150 			const uint8_t *, const uint8_t *);
151 static int	mwl_addba_request(struct ieee80211_node *,
152 			struct ieee80211_tx_ampdu *, int dialogtoken,
153 			int baparamset, int batimeout);
154 static int	mwl_addba_response(struct ieee80211_node *,
155 			struct ieee80211_tx_ampdu *, int status,
156 			int baparamset, int batimeout);
157 static void	mwl_addba_stop(struct ieee80211_node *,
158 			struct ieee80211_tx_ampdu *);
159 static int	mwl_startrecv(struct mwl_softc *);
160 static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *,
161 			struct ieee80211_channel *);
162 static int	mwl_setapmode(struct ieee80211vap *, struct ieee80211_channel*);
163 static void	mwl_scan_start(struct ieee80211com *);
164 static void	mwl_scan_end(struct ieee80211com *);
165 static void	mwl_set_channel(struct ieee80211com *);
166 static int	mwl_peerstadb(struct ieee80211_node *,
167 			int aid, int staid, MWL_HAL_PEERINFO *pi);
168 static int	mwl_localstadb(struct ieee80211vap *);
169 static int	mwl_newstate(struct ieee80211vap *, enum ieee80211_state, int);
170 static int	allocstaid(struct mwl_softc *sc, int aid);
171 static void	delstaid(struct mwl_softc *sc, int staid);
172 static void	mwl_newassoc(struct ieee80211_node *, int);
173 static void	mwl_agestations(void *);
174 static int	mwl_setregdomain(struct ieee80211com *,
175 			struct ieee80211_regdomain *, int,
176 			struct ieee80211_channel []);
177 static void	mwl_getradiocaps(struct ieee80211com *, int, int *,
178 			struct ieee80211_channel []);
179 static int	mwl_getchannels(struct mwl_softc *);
180 
181 static void	mwl_sysctlattach(struct mwl_softc *);
182 static void	mwl_announce(struct mwl_softc *);
183 
184 SYSCTL_NODE(_hw, OID_AUTO, mwl, CTLFLAG_RD, 0, "Marvell driver parameters");
185 
186 static	int mwl_rxdesc = MWL_RXDESC;		/* # rx desc's to allocate */
187 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdesc, CTLFLAG_RW, &mwl_rxdesc,
188 	    0, "rx descriptors allocated");
189 static	int mwl_rxbuf = MWL_RXBUF;		/* # rx buffers to allocate */
190 SYSCTL_INT(_hw_mwl, OID_AUTO, rxbuf, CTLFLAG_RW, &mwl_rxbuf,
191 	    0, "rx buffers allocated");
192 TUNABLE_INT("hw.mwl.rxbuf", &mwl_rxbuf);
193 static	int mwl_txbuf = MWL_TXBUF;		/* # tx buffers to allocate */
194 SYSCTL_INT(_hw_mwl, OID_AUTO, txbuf, CTLFLAG_RW, &mwl_txbuf,
195 	    0, "tx buffers allocated");
196 TUNABLE_INT("hw.mwl.txbuf", &mwl_txbuf);
197 static	int mwl_txcoalesce = 8;		/* # tx packets to q before poking f/w*/
198 SYSCTL_INT(_hw_mwl, OID_AUTO, txcoalesce, CTLFLAG_RW, &mwl_txcoalesce,
199 	    0, "tx buffers to send at once");
200 TUNABLE_INT("hw.mwl.txcoalesce", &mwl_txcoalesce);
201 static	int mwl_rxquota = MWL_RXBUF;		/* # max buffers to process */
202 SYSCTL_INT(_hw_mwl, OID_AUTO, rxquota, CTLFLAG_RW, &mwl_rxquota,
203 	    0, "max rx buffers to process per interrupt");
204 TUNABLE_INT("hw.mwl.rxquota", &mwl_rxquota);
205 static	int mwl_rxdmalow = 3;			/* # min buffers for wakeup */
206 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdmalow, CTLFLAG_RW, &mwl_rxdmalow,
207 	    0, "min free rx buffers before restarting traffic");
208 TUNABLE_INT("hw.mwl.rxdmalow", &mwl_rxdmalow);
209 
210 #ifdef MWL_DEBUG
211 static	int mwl_debug = 0;
212 SYSCTL_INT(_hw_mwl, OID_AUTO, debug, CTLFLAG_RW, &mwl_debug,
213 	    0, "control debugging printfs");
214 TUNABLE_INT("hw.mwl.debug", &mwl_debug);
215 enum {
216 	MWL_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
217 	MWL_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
218 	MWL_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
219 	MWL_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
220 	MWL_DEBUG_RESET		= 0x00000010,	/* reset processing */
221 	MWL_DEBUG_BEACON 	= 0x00000020,	/* beacon handling */
222 	MWL_DEBUG_INTR		= 0x00000040,	/* ISR */
223 	MWL_DEBUG_TX_PROC	= 0x00000080,	/* tx ISR proc */
224 	MWL_DEBUG_RX_PROC	= 0x00000100,	/* rx ISR proc */
225 	MWL_DEBUG_KEYCACHE	= 0x00000200,	/* key cache management */
226 	MWL_DEBUG_STATE		= 0x00000400,	/* 802.11 state transitions */
227 	MWL_DEBUG_NODE		= 0x00000800,	/* node management */
228 	MWL_DEBUG_RECV_ALL	= 0x00001000,	/* trace all frames (beacons) */
229 	MWL_DEBUG_TSO		= 0x00002000,	/* TSO processing */
230 	MWL_DEBUG_AMPDU		= 0x00004000,	/* BA stream handling */
231 	MWL_DEBUG_ANY		= 0xffffffff
232 };
233 #define	IS_BEACON(wh) \
234     ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) == \
235 	 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON))
236 #define	IFF_DUMPPKTS_RECV(sc, wh) \
237     (((sc->sc_debug & MWL_DEBUG_RECV) && \
238       ((sc->sc_debug & MWL_DEBUG_RECV_ALL) || !IS_BEACON(wh))) || \
239      (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
240 #define	IFF_DUMPPKTS_XMIT(sc) \
241 	((sc->sc_debug & MWL_DEBUG_XMIT) || \
242 	 (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
243 #define	DPRINTF(sc, m, fmt, ...) do {				\
244 	if (sc->sc_debug & (m))					\
245 		printf(fmt, __VA_ARGS__);			\
246 } while (0)
247 #define	KEYPRINTF(sc, hk, mac) do {				\
248 	if (sc->sc_debug & MWL_DEBUG_KEYCACHE)			\
249 		mwl_keyprint(sc, __func__, hk, mac);		\
250 } while (0)
251 static	void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix);
252 static	void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix);
253 #else
254 #define	IFF_DUMPPKTS_RECV(sc, wh) \
255 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
256 #define	IFF_DUMPPKTS_XMIT(sc) \
257 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258 #define	DPRINTF(sc, m, fmt, ...) do {				\
259 	(void) sc;						\
260 } while (0)
261 #define	KEYPRINTF(sc, k, mac) do {				\
262 	(void) sc;						\
263 } while (0)
264 #endif
265 
266 static MALLOC_DEFINE(M_MWLDEV, "mwldev", "mwl driver dma buffers");
267 
268 /*
269  * Each packet has fixed front matter: a 2-byte length
270  * of the payload, followed by a 4-address 802.11 header
271  * (regardless of the actual header and always w/o any
272  * QoS header).  The payload then follows.
273  */
274 struct mwltxrec {
275 	uint16_t fwlen;
276 	struct ieee80211_frame_addr4 wh;
277 } __packed;
278 
279 /*
280  * Read/Write shorthands for accesses to BAR 0.  Note
281  * that all BAR 1 operations are done in the "hal" and
282  * there should be no reference to them here.
283  */
284 static __inline uint32_t
285 RD4(struct mwl_softc *sc, bus_size_t off)
286 {
287 	return bus_space_read_4(sc->sc_io0t, sc->sc_io0h, off);
288 }
289 
290 static __inline void
291 WR4(struct mwl_softc *sc, bus_size_t off, uint32_t val)
292 {
293 	bus_space_write_4(sc->sc_io0t, sc->sc_io0h, off, val);
294 }
295 
296 int
297 mwl_attach(uint16_t devid, struct mwl_softc *sc)
298 {
299 	struct ifnet *ifp;
300 	struct ieee80211com *ic;
301 	struct mwl_hal *mh;
302 	int error = 0;
303 
304 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
305 
306 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
307 	if (ifp == NULL) {
308 		device_printf(sc->sc_dev, "cannot if_alloc()\n");
309 		return ENOSPC;
310 	}
311 	ic = ifp->if_l2com;
312 
313 	/*
314 	 * Setup the RX free list lock early, so it can be consistently
315 	 * removed.
316 	 */
317 	MWL_RXFREE_INIT(sc);
318 
319 	/* set these up early for if_printf use */
320 	if_initname(ifp, device_get_name(sc->sc_dev),
321 		device_get_unit(sc->sc_dev));
322 
323 	mh = mwl_hal_attach(sc->sc_dev, devid,
324 	    sc->sc_io1h, sc->sc_io1t, sc->sc_dmat);
325 	if (mh == NULL) {
326 		if_printf(ifp, "unable to attach HAL\n");
327 		error = EIO;
328 		goto bad;
329 	}
330 	sc->sc_mh = mh;
331 	/*
332 	 * Load firmware so we can get setup.  We arbitrarily
333 	 * pick station firmware; we'll re-load firmware as
334 	 * needed so setting up the wrong mode isn't a big deal.
335 	 */
336 	if (mwl_hal_fwload(mh, NULL) != 0) {
337 		if_printf(ifp, "unable to setup builtin firmware\n");
338 		error = EIO;
339 		goto bad1;
340 	}
341 	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
342 		if_printf(ifp, "unable to fetch h/w specs\n");
343 		error = EIO;
344 		goto bad1;
345 	}
346 	error = mwl_getchannels(sc);
347 	if (error != 0)
348 		goto bad1;
349 
350 	sc->sc_txantenna = 0;		/* h/w default */
351 	sc->sc_rxantenna = 0;		/* h/w default */
352 	sc->sc_invalid = 0;		/* ready to go, enable int handling */
353 	sc->sc_ageinterval = MWL_AGEINTERVAL;
354 
355 	/*
356 	 * Allocate tx+rx descriptors and populate the lists.
357 	 * We immediately push the information to the firmware
358 	 * as otherwise it gets upset.
359 	 */
360 	error = mwl_dma_setup(sc);
361 	if (error != 0) {
362 		if_printf(ifp, "failed to setup descriptors: %d\n", error);
363 		goto bad1;
364 	}
365 	error = mwl_setupdma(sc);	/* push to firmware */
366 	if (error != 0)			/* NB: mwl_setupdma prints msg */
367 		goto bad1;
368 
369 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
370 	callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
371 
372 	sc->sc_tq = taskqueue_create("mwl_taskq", M_NOWAIT,
373 		taskqueue_thread_enqueue, &sc->sc_tq);
374 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
375 		"%s taskq", ifp->if_xname);
376 
377 	TASK_INIT(&sc->sc_rxtask, 0, mwl_rx_proc, sc);
378 	TASK_INIT(&sc->sc_radartask, 0, mwl_radar_proc, sc);
379 	TASK_INIT(&sc->sc_chanswitchtask, 0, mwl_chanswitch_proc, sc);
380 	TASK_INIT(&sc->sc_bawatchdogtask, 0, mwl_bawatchdog_proc, sc);
381 
382 	/* NB: insure BK queue is the lowest priority h/w queue */
383 	if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) {
384 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
385 			ieee80211_wme_acnames[WME_AC_BK]);
386 		error = EIO;
387 		goto bad2;
388 	}
389 	if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) ||
390 	    !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) ||
391 	    !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) {
392 		/*
393 		 * Not enough hardware tx queues to properly do WME;
394 		 * just punt and assign them all to the same h/w queue.
395 		 * We could do a better job of this if, for example,
396 		 * we allocate queues when we switch from station to
397 		 * AP mode.
398 		 */
399 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
400 			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
401 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
402 			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
403 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
404 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
405 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
406 	}
407 	TASK_INIT(&sc->sc_txtask, 0, mwl_tx_proc, sc);
408 
409 	ifp->if_softc = sc;
410 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
411 	ifp->if_start = mwl_start;
412 	ifp->if_ioctl = mwl_ioctl;
413 	ifp->if_init = mwl_init;
414 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
415 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
416 	IFQ_SET_READY(&ifp->if_snd);
417 
418 	ic->ic_ifp = ifp;
419 	/* XXX not right but it's not used anywhere important */
420 	ic->ic_phytype = IEEE80211_T_OFDM;
421 	ic->ic_opmode = IEEE80211_M_STA;
422 	ic->ic_caps =
423 		  IEEE80211_C_STA		/* station mode supported */
424 		| IEEE80211_C_HOSTAP		/* hostap mode */
425 		| IEEE80211_C_MONITOR		/* monitor mode */
426 #if 0
427 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
428 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
429 #endif
430 		| IEEE80211_C_MBSS		/* mesh point link mode */
431 		| IEEE80211_C_WDS		/* WDS supported */
432 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
433 		| IEEE80211_C_SHSLOT		/* short slot time supported */
434 		| IEEE80211_C_WME		/* WME/WMM supported */
435 		| IEEE80211_C_BURST		/* xmit bursting supported */
436 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
437 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
438 		| IEEE80211_C_TXFRAG		/* handle tx frags */
439 		| IEEE80211_C_TXPMGT		/* capable of txpow mgt */
440 		| IEEE80211_C_DFS		/* DFS supported */
441 		;
442 
443 	ic->ic_htcaps =
444 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
445 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
446 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
447 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
448 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
449 #if MWL_AGGR_SIZE == 7935
450 		| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
451 #else
452 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
453 #endif
454 #if 0
455 		| IEEE80211_HTCAP_PSMP		/* PSMP supported */
456 		| IEEE80211_HTCAP_40INTOLERANT	/* 40MHz intolerant */
457 #endif
458 		/* s/w capabilities */
459 		| IEEE80211_HTC_HT		/* HT operation */
460 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
461 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
462 		| IEEE80211_HTC_SMPS		/* SMPS available */
463 		;
464 
465 	/*
466 	 * Mark h/w crypto support.
467 	 * XXX no way to query h/w support.
468 	 */
469 	ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP
470 			  |  IEEE80211_CRYPTO_AES_CCM
471 			  |  IEEE80211_CRYPTO_TKIP
472 			  |  IEEE80211_CRYPTO_TKIPMIC
473 			  ;
474 	/*
475 	 * Transmit requires space in the packet for a special
476 	 * format transmit record and optional padding between
477 	 * this record and the payload.  Ask the net80211 layer
478 	 * to arrange this when encapsulating packets so we can
479 	 * add it efficiently.
480 	 */
481 	ic->ic_headroom = sizeof(struct mwltxrec) -
482 		sizeof(struct ieee80211_frame);
483 
484 	/* call MI attach routine. */
485 	ieee80211_ifattach(ic, sc->sc_hwspecs.macAddr);
486 	ic->ic_setregdomain = mwl_setregdomain;
487 	ic->ic_getradiocaps = mwl_getradiocaps;
488 	/* override default methods */
489 	ic->ic_raw_xmit = mwl_raw_xmit;
490 	ic->ic_newassoc = mwl_newassoc;
491 	ic->ic_updateslot = mwl_updateslot;
492 	ic->ic_update_mcast = mwl_update_mcast;
493 	ic->ic_update_promisc = mwl_update_promisc;
494 	ic->ic_wme.wme_update = mwl_wme_update;
495 
496 	ic->ic_node_alloc = mwl_node_alloc;
497 	sc->sc_node_cleanup = ic->ic_node_cleanup;
498 	ic->ic_node_cleanup = mwl_node_cleanup;
499 	sc->sc_node_drain = ic->ic_node_drain;
500 	ic->ic_node_drain = mwl_node_drain;
501 	ic->ic_node_getsignal = mwl_node_getsignal;
502 	ic->ic_node_getmimoinfo = mwl_node_getmimoinfo;
503 
504 	ic->ic_scan_start = mwl_scan_start;
505 	ic->ic_scan_end = mwl_scan_end;
506 	ic->ic_set_channel = mwl_set_channel;
507 
508 	sc->sc_recv_action = ic->ic_recv_action;
509 	ic->ic_recv_action = mwl_recv_action;
510 	sc->sc_addba_request = ic->ic_addba_request;
511 	ic->ic_addba_request = mwl_addba_request;
512 	sc->sc_addba_response = ic->ic_addba_response;
513 	ic->ic_addba_response = mwl_addba_response;
514 	sc->sc_addba_stop = ic->ic_addba_stop;
515 	ic->ic_addba_stop = mwl_addba_stop;
516 
517 	ic->ic_vap_create = mwl_vap_create;
518 	ic->ic_vap_delete = mwl_vap_delete;
519 
520 	ieee80211_radiotap_attach(ic,
521 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
522 		MWL_TX_RADIOTAP_PRESENT,
523 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
524 		MWL_RX_RADIOTAP_PRESENT);
525 	/*
526 	 * Setup dynamic sysctl's now that country code and
527 	 * regdomain are available from the hal.
528 	 */
529 	mwl_sysctlattach(sc);
530 
531 	if (bootverbose)
532 		ieee80211_announce(ic);
533 	mwl_announce(sc);
534 	return 0;
535 bad2:
536 	mwl_dma_cleanup(sc);
537 bad1:
538 	mwl_hal_detach(mh);
539 bad:
540 	MWL_RXFREE_DESTROY(sc);
541 	if_free(ifp);
542 	sc->sc_invalid = 1;
543 	return error;
544 }
545 
546 int
547 mwl_detach(struct mwl_softc *sc)
548 {
549 	struct ifnet *ifp = sc->sc_ifp;
550 	struct ieee80211com *ic = ifp->if_l2com;
551 
552 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags %x\n",
553 		__func__, ifp->if_flags);
554 
555 	mwl_stop(ifp, 1);
556 	/*
557 	 * NB: the order of these is important:
558 	 * o call the 802.11 layer before detaching the hal to
559 	 *   insure callbacks into the driver to delete global
560 	 *   key cache entries can be handled
561 	 * o reclaim the tx queue data structures after calling
562 	 *   the 802.11 layer as we'll get called back to reclaim
563 	 *   node state and potentially want to use them
564 	 * o to cleanup the tx queues the hal is called, so detach
565 	 *   it last
566 	 * Other than that, it's straightforward...
567 	 */
568 	ieee80211_ifdetach(ic);
569 	callout_drain(&sc->sc_watchdog);
570 	mwl_dma_cleanup(sc);
571 	MWL_RXFREE_DESTROY(sc);
572 	mwl_tx_cleanup(sc);
573 	mwl_hal_detach(sc->sc_mh);
574 	if_free(ifp);
575 
576 	return 0;
577 }
578 
579 /*
580  * MAC address handling for multiple BSS on the same radio.
581  * The first vap uses the MAC address from the EEPROM.  For
582  * subsequent vap's we set the U/L bit (bit 1) in the MAC
583  * address and use the next six bits as an index.
584  */
585 static void
586 assign_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
587 {
588 	int i;
589 
590 	if (clone && mwl_hal_ismbsscapable(sc->sc_mh)) {
591 		/* NB: we only do this if h/w supports multiple bssid */
592 		for (i = 0; i < 32; i++)
593 			if ((sc->sc_bssidmask & (1<<i)) == 0)
594 				break;
595 		if (i != 0)
596 			mac[0] |= (i << 2)|0x2;
597 	} else
598 		i = 0;
599 	sc->sc_bssidmask |= 1<<i;
600 	if (i == 0)
601 		sc->sc_nbssid0++;
602 }
603 
604 static void
605 reclaim_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN])
606 {
607 	int i = mac[0] >> 2;
608 	if (i != 0 || --sc->sc_nbssid0 == 0)
609 		sc->sc_bssidmask &= ~(1<<i);
610 }
611 
612 static struct ieee80211vap *
613 mwl_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
614     enum ieee80211_opmode opmode, int flags,
615     const uint8_t bssid[IEEE80211_ADDR_LEN],
616     const uint8_t mac0[IEEE80211_ADDR_LEN])
617 {
618 	struct ifnet *ifp = ic->ic_ifp;
619 	struct mwl_softc *sc = ifp->if_softc;
620 	struct mwl_hal *mh = sc->sc_mh;
621 	struct ieee80211vap *vap, *apvap;
622 	struct mwl_hal_vap *hvap;
623 	struct mwl_vap *mvp;
624 	uint8_t mac[IEEE80211_ADDR_LEN];
625 
626 	IEEE80211_ADDR_COPY(mac, mac0);
627 	switch (opmode) {
628 	case IEEE80211_M_HOSTAP:
629 	case IEEE80211_M_MBSS:
630 		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
631 			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
632 		hvap = mwl_hal_newvap(mh, MWL_HAL_AP, mac);
633 		if (hvap == NULL) {
634 			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
635 				reclaim_address(sc, mac);
636 			return NULL;
637 		}
638 		break;
639 	case IEEE80211_M_STA:
640 		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
641 			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
642 		hvap = mwl_hal_newvap(mh, MWL_HAL_STA, mac);
643 		if (hvap == NULL) {
644 			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
645 				reclaim_address(sc, mac);
646 			return NULL;
647 		}
648 		/* no h/w beacon miss support; always use s/w */
649 		flags |= IEEE80211_CLONE_NOBEACONS;
650 		break;
651 	case IEEE80211_M_WDS:
652 		hvap = NULL;		/* NB: we use associated AP vap */
653 		if (sc->sc_napvaps == 0)
654 			return NULL;	/* no existing AP vap */
655 		break;
656 	case IEEE80211_M_MONITOR:
657 		hvap = NULL;
658 		break;
659 	case IEEE80211_M_IBSS:
660 	case IEEE80211_M_AHDEMO:
661 	default:
662 		return NULL;
663 	}
664 
665 	mvp = (struct mwl_vap *) malloc(sizeof(struct mwl_vap),
666 	    M_80211_VAP, M_NOWAIT | M_ZERO);
667 	if (mvp == NULL) {
668 		if (hvap != NULL) {
669 			mwl_hal_delvap(hvap);
670 			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
671 				reclaim_address(sc, mac);
672 		}
673 		/* XXX msg */
674 		return NULL;
675 	}
676 	mvp->mv_hvap = hvap;
677 	if (opmode == IEEE80211_M_WDS) {
678 		/*
679 		 * WDS vaps must have an associated AP vap; find one.
680 		 * XXX not right.
681 		 */
682 		TAILQ_FOREACH(apvap, &ic->ic_vaps, iv_next)
683 			if (apvap->iv_opmode == IEEE80211_M_HOSTAP) {
684 				mvp->mv_ap_hvap = MWL_VAP(apvap)->mv_hvap;
685 				break;
686 			}
687 		KASSERT(mvp->mv_ap_hvap != NULL, ("no ap vap"));
688 	}
689 	vap = &mvp->mv_vap;
690 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
691 	if (hvap != NULL)
692 		IEEE80211_ADDR_COPY(vap->iv_myaddr, mac);
693 	/* override with driver methods */
694 	mvp->mv_newstate = vap->iv_newstate;
695 	vap->iv_newstate = mwl_newstate;
696 	vap->iv_max_keyix = 0;	/* XXX */
697 	vap->iv_key_alloc = mwl_key_alloc;
698 	vap->iv_key_delete = mwl_key_delete;
699 	vap->iv_key_set = mwl_key_set;
700 #ifdef MWL_HOST_PS_SUPPORT
701 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
702 		vap->iv_update_ps = mwl_update_ps;
703 		mvp->mv_set_tim = vap->iv_set_tim;
704 		vap->iv_set_tim = mwl_set_tim;
705 	}
706 #endif
707 	vap->iv_reset = mwl_reset;
708 	vap->iv_update_beacon = mwl_beacon_update;
709 
710 	/* override max aid so sta's cannot assoc when we're out of sta id's */
711 	vap->iv_max_aid = MWL_MAXSTAID;
712 	/* override default A-MPDU rx parameters */
713 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
714 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4;
715 
716 	/* complete setup */
717 	ieee80211_vap_attach(vap, mwl_media_change, ieee80211_media_status);
718 
719 	switch (vap->iv_opmode) {
720 	case IEEE80211_M_HOSTAP:
721 	case IEEE80211_M_MBSS:
722 	case IEEE80211_M_STA:
723 		/*
724 		 * Setup sta db entry for local address.
725 		 */
726 		mwl_localstadb(vap);
727 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
728 		    vap->iv_opmode == IEEE80211_M_MBSS)
729 			sc->sc_napvaps++;
730 		else
731 			sc->sc_nstavaps++;
732 		break;
733 	case IEEE80211_M_WDS:
734 		sc->sc_nwdsvaps++;
735 		break;
736 	default:
737 		break;
738 	}
739 	/*
740 	 * Setup overall operating mode.
741 	 */
742 	if (sc->sc_napvaps)
743 		ic->ic_opmode = IEEE80211_M_HOSTAP;
744 	else if (sc->sc_nstavaps)
745 		ic->ic_opmode = IEEE80211_M_STA;
746 	else
747 		ic->ic_opmode = opmode;
748 
749 	return vap;
750 }
751 
752 static void
753 mwl_vap_delete(struct ieee80211vap *vap)
754 {
755 	struct mwl_vap *mvp = MWL_VAP(vap);
756 	struct ifnet *parent = vap->iv_ic->ic_ifp;
757 	struct mwl_softc *sc = parent->if_softc;
758 	struct mwl_hal *mh = sc->sc_mh;
759 	struct mwl_hal_vap *hvap = mvp->mv_hvap;
760 	enum ieee80211_opmode opmode = vap->iv_opmode;
761 
762 	/* XXX disallow ap vap delete if WDS still present */
763 	if (parent->if_drv_flags & IFF_DRV_RUNNING) {
764 		/* quiesce h/w while we remove the vap */
765 		mwl_hal_intrset(mh, 0);		/* disable interrupts */
766 	}
767 	ieee80211_vap_detach(vap);
768 	switch (opmode) {
769 	case IEEE80211_M_HOSTAP:
770 	case IEEE80211_M_MBSS:
771 	case IEEE80211_M_STA:
772 		KASSERT(hvap != NULL, ("no hal vap handle"));
773 		(void) mwl_hal_delstation(hvap, vap->iv_myaddr);
774 		mwl_hal_delvap(hvap);
775 		if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS)
776 			sc->sc_napvaps--;
777 		else
778 			sc->sc_nstavaps--;
779 		/* XXX don't do it for IEEE80211_CLONE_MACADDR */
780 		reclaim_address(sc, vap->iv_myaddr);
781 		break;
782 	case IEEE80211_M_WDS:
783 		sc->sc_nwdsvaps--;
784 		break;
785 	default:
786 		break;
787 	}
788 	mwl_cleartxq(sc, vap);
789 	free(mvp, M_80211_VAP);
790 	if (parent->if_drv_flags & IFF_DRV_RUNNING)
791 		mwl_hal_intrset(mh, sc->sc_imask);
792 }
793 
794 void
795 mwl_suspend(struct mwl_softc *sc)
796 {
797 	struct ifnet *ifp = sc->sc_ifp;
798 
799 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags %x\n",
800 		__func__, ifp->if_flags);
801 
802 	mwl_stop(ifp, 1);
803 }
804 
805 void
806 mwl_resume(struct mwl_softc *sc)
807 {
808 	struct ifnet *ifp = sc->sc_ifp;
809 
810 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags %x\n",
811 		__func__, ifp->if_flags);
812 
813 	if (ifp->if_flags & IFF_UP)
814 		mwl_init(sc);
815 }
816 
817 void
818 mwl_shutdown(void *arg)
819 {
820 	struct mwl_softc *sc = arg;
821 
822 	mwl_stop(sc->sc_ifp, 1);
823 }
824 
825 /*
826  * Interrupt handler.  Most of the actual processing is deferred.
827  */
828 void
829 mwl_intr(void *arg)
830 {
831 	struct mwl_softc *sc = arg;
832 	struct mwl_hal *mh = sc->sc_mh;
833 	uint32_t status;
834 
835 	if (sc->sc_invalid) {
836 		/*
837 		 * The hardware is not ready/present, don't touch anything.
838 		 * Note this can happen early on if the IRQ is shared.
839 		 */
840 		DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
841 		return;
842 	}
843 	/*
844 	 * Figure out the reason(s) for the interrupt.
845 	 */
846 	mwl_hal_getisr(mh, &status);		/* NB: clears ISR too */
847 	if (status == 0)			/* must be a shared irq */
848 		return;
849 
850 	DPRINTF(sc, MWL_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n",
851 	    __func__, status, sc->sc_imask);
852 	if (status & MACREG_A2HRIC_BIT_RX_RDY)
853 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
854 	if (status & MACREG_A2HRIC_BIT_TX_DONE)
855 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
856 	if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG)
857 		taskqueue_enqueue(sc->sc_tq, &sc->sc_bawatchdogtask);
858 	if (status & MACREG_A2HRIC_BIT_OPC_DONE)
859 		mwl_hal_cmddone(mh);
860 	if (status & MACREG_A2HRIC_BIT_MAC_EVENT) {
861 		;
862 	}
863 	if (status & MACREG_A2HRIC_BIT_ICV_ERROR) {
864 		/* TKIP ICV error */
865 		sc->sc_stats.mst_rx_badtkipicv++;
866 	}
867 	if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) {
868 		/* 11n aggregation queue is empty, re-fill */
869 		;
870 	}
871 	if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) {
872 		;
873 	}
874 	if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) {
875 		/* radar detected, process event */
876 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
877 	}
878 	if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) {
879 		/* DFS channel switch */
880 		taskqueue_enqueue(sc->sc_tq, &sc->sc_chanswitchtask);
881 	}
882 }
883 
884 static void
885 mwl_radar_proc(void *arg, int pending)
886 {
887 	struct mwl_softc *sc = arg;
888 	struct ifnet *ifp = sc->sc_ifp;
889 	struct ieee80211com *ic = ifp->if_l2com;
890 
891 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: radar detected, pending %u\n",
892 	    __func__, pending);
893 
894 	sc->sc_stats.mst_radardetect++;
895 	/* XXX stop h/w BA streams? */
896 
897 	IEEE80211_LOCK(ic);
898 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
899 	IEEE80211_UNLOCK(ic);
900 }
901 
902 static void
903 mwl_chanswitch_proc(void *arg, int pending)
904 {
905 	struct mwl_softc *sc = arg;
906 	struct ifnet *ifp = sc->sc_ifp;
907 	struct ieee80211com *ic = ifp->if_l2com;
908 
909 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: channel switch notice, pending %u\n",
910 	    __func__, pending);
911 
912 	IEEE80211_LOCK(ic);
913 	sc->sc_csapending = 0;
914 	ieee80211_csa_completeswitch(ic);
915 	IEEE80211_UNLOCK(ic);
916 }
917 
918 static void
919 mwl_bawatchdog(const MWL_HAL_BASTREAM *sp)
920 {
921 	struct ieee80211_node *ni = sp->data[0];
922 
923 	/* send DELBA and drop the stream */
924 	ieee80211_ampdu_stop(ni, sp->data[1], IEEE80211_REASON_UNSPECIFIED);
925 }
926 
927 static void
928 mwl_bawatchdog_proc(void *arg, int pending)
929 {
930 	struct mwl_softc *sc = arg;
931 	struct mwl_hal *mh = sc->sc_mh;
932 	const MWL_HAL_BASTREAM *sp;
933 	uint8_t bitmap, n;
934 
935 	sc->sc_stats.mst_bawatchdog++;
936 
937 	if (mwl_hal_getwatchdogbitmap(mh, &bitmap) != 0) {
938 		DPRINTF(sc, MWL_DEBUG_AMPDU,
939 		    "%s: could not get bitmap\n", __func__);
940 		sc->sc_stats.mst_bawatchdog_failed++;
941 		return;
942 	}
943 	DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bitmap 0x%x\n", __func__, bitmap);
944 	if (bitmap == 0xff) {
945 		n = 0;
946 		/* disable all ba streams */
947 		for (bitmap = 0; bitmap < 8; bitmap++) {
948 			sp = mwl_hal_bastream_lookup(mh, bitmap);
949 			if (sp != NULL) {
950 				mwl_bawatchdog(sp);
951 				n++;
952 			}
953 		}
954 		if (n == 0) {
955 			DPRINTF(sc, MWL_DEBUG_AMPDU,
956 			    "%s: no BA streams found\n", __func__);
957 			sc->sc_stats.mst_bawatchdog_empty++;
958 		}
959 	} else if (bitmap != 0xaa) {
960 		/* disable a single ba stream */
961 		sp = mwl_hal_bastream_lookup(mh, bitmap);
962 		if (sp != NULL) {
963 			mwl_bawatchdog(sp);
964 		} else {
965 			DPRINTF(sc, MWL_DEBUG_AMPDU,
966 			    "%s: no BA stream %d\n", __func__, bitmap);
967 			sc->sc_stats.mst_bawatchdog_notfound++;
968 		}
969 	}
970 }
971 
972 /*
973  * Convert net80211 channel to a HAL channel.
974  */
975 static void
976 mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
977 {
978 	hc->channel = chan->ic_ieee;
979 
980 	*(uint32_t *)&hc->channelFlags = 0;
981 	if (IEEE80211_IS_CHAN_2GHZ(chan))
982 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ;
983 	else if (IEEE80211_IS_CHAN_5GHZ(chan))
984 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ;
985 	if (IEEE80211_IS_CHAN_HT40(chan)) {
986 		hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH;
987 		if (IEEE80211_IS_CHAN_HT40U(chan))
988 			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_ABOVE_CTRL_CH;
989 		else
990 			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_BELOW_CTRL_CH;
991 	} else
992 		hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH;
993 	/* XXX 10MHz channels */
994 }
995 
996 /*
997  * Inform firmware of our tx/rx dma setup.  The BAR 0
998  * writes below are for compatibility with older firmware.
999  * For current firmware we send this information with a
1000  * cmd block via mwl_hal_sethwdma.
1001  */
1002 static int
1003 mwl_setupdma(struct mwl_softc *sc)
1004 {
1005 	int error, i;
1006 
1007 	sc->sc_hwdma.rxDescRead = sc->sc_rxdma.dd_desc_paddr;
1008 	WR4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead);
1009 	WR4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead);
1010 
1011 	for (i = 0; i < MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; i++) {
1012 		struct mwl_txq *txq = &sc->sc_txq[i];
1013 		sc->sc_hwdma.wcbBase[i] = txq->dma.dd_desc_paddr;
1014 		WR4(sc, sc->sc_hwspecs.wcbBase[i], sc->sc_hwdma.wcbBase[i]);
1015 	}
1016 	sc->sc_hwdma.maxNumTxWcb = mwl_txbuf;
1017 	sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES;
1018 
1019 	error = mwl_hal_sethwdma(sc->sc_mh, &sc->sc_hwdma);
1020 	if (error != 0) {
1021 		device_printf(sc->sc_dev,
1022 		    "unable to setup tx/rx dma; hal status %u\n", error);
1023 		/* XXX */
1024 	}
1025 	return error;
1026 }
1027 
1028 /*
1029  * Inform firmware of tx rate parameters.
1030  * Called after a channel change.
1031  */
1032 static int
1033 mwl_setcurchanrates(struct mwl_softc *sc)
1034 {
1035 	struct ifnet *ifp = sc->sc_ifp;
1036 	struct ieee80211com *ic = ifp->if_l2com;
1037 	const struct ieee80211_rateset *rs;
1038 	MWL_HAL_TXRATE rates;
1039 
1040 	memset(&rates, 0, sizeof(rates));
1041 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1042 	/* rate used to send management frames */
1043 	rates.MgtRate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
1044 	/* rate used to send multicast frames */
1045 	rates.McastRate = rates.MgtRate;
1046 
1047 	return mwl_hal_settxrate_auto(sc->sc_mh, &rates);
1048 }
1049 
1050 /*
1051  * Inform firmware of tx rate parameters.  Called whenever
1052  * user-settable params change and after a channel change.
1053  */
1054 static int
1055 mwl_setrates(struct ieee80211vap *vap)
1056 {
1057 	struct mwl_vap *mvp = MWL_VAP(vap);
1058 	struct ieee80211_node *ni = vap->iv_bss;
1059 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1060 	MWL_HAL_TXRATE rates;
1061 
1062 	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1063 
1064 	/*
1065 	 * Update the h/w rate map.
1066 	 * NB: 0x80 for MCS is passed through unchanged
1067 	 */
1068 	memset(&rates, 0, sizeof(rates));
1069 	/* rate used to send management frames */
1070 	rates.MgtRate = tp->mgmtrate;
1071 	/* rate used to send multicast frames */
1072 	rates.McastRate = tp->mcastrate;
1073 
1074 	/* while here calculate EAPOL fixed rate cookie */
1075 	mvp->mv_eapolformat = htole16(mwl_calcformat(rates.MgtRate, ni));
1076 
1077 	return mwl_hal_settxrate(mvp->mv_hvap,
1078 	    tp->ucastrate != IEEE80211_FIXED_RATE_NONE ?
1079 		RATE_FIXED : RATE_AUTO, &rates);
1080 }
1081 
1082 /*
1083  * Setup a fixed xmit rate cookie for EAPOL frames.
1084  */
1085 static void
1086 mwl_seteapolformat(struct ieee80211vap *vap)
1087 {
1088 	struct mwl_vap *mvp = MWL_VAP(vap);
1089 	struct ieee80211_node *ni = vap->iv_bss;
1090 	enum ieee80211_phymode mode;
1091 	uint8_t rate;
1092 
1093 	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1094 
1095 	mode = ieee80211_chan2mode(ni->ni_chan);
1096 	/*
1097 	 * Use legacy rates when operating a mixed HT+non-HT bss.
1098 	 * NB: this may violate POLA for sta and wds vap's.
1099 	 */
1100 	if (mode == IEEE80211_MODE_11NA &&
1101 	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1102 		rate = vap->iv_txparms[IEEE80211_MODE_11A].mgmtrate;
1103 	else if (mode == IEEE80211_MODE_11NG &&
1104 	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1105 		rate = vap->iv_txparms[IEEE80211_MODE_11G].mgmtrate;
1106 	else
1107 		rate = vap->iv_txparms[mode].mgmtrate;
1108 
1109 	mvp->mv_eapolformat = htole16(mwl_calcformat(rate, ni));
1110 }
1111 
1112 /*
1113  * Map SKU+country code to region code for radar bin'ing.
1114  */
1115 static int
1116 mwl_map2regioncode(const struct ieee80211_regdomain *rd)
1117 {
1118 	switch (rd->regdomain) {
1119 	case SKU_FCC:
1120 	case SKU_FCC3:
1121 		return DOMAIN_CODE_FCC;
1122 	case SKU_CA:
1123 		return DOMAIN_CODE_IC;
1124 	case SKU_ETSI:
1125 	case SKU_ETSI2:
1126 	case SKU_ETSI3:
1127 		if (rd->country == CTRY_SPAIN)
1128 			return DOMAIN_CODE_SPAIN;
1129 		if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2)
1130 			return DOMAIN_CODE_FRANCE;
1131 		/* XXX force 1.3.1 radar type */
1132 		return DOMAIN_CODE_ETSI_131;
1133 	case SKU_JAPAN:
1134 		return DOMAIN_CODE_MKK;
1135 	case SKU_ROW:
1136 		return DOMAIN_CODE_DGT;	/* Taiwan */
1137 	case SKU_APAC:
1138 	case SKU_APAC2:
1139 	case SKU_APAC3:
1140 		return DOMAIN_CODE_AUS;	/* Australia */
1141 	}
1142 	/* XXX KOREA? */
1143 	return DOMAIN_CODE_FCC;			/* XXX? */
1144 }
1145 
1146 static int
1147 mwl_hal_reset(struct mwl_softc *sc)
1148 {
1149 	struct ifnet *ifp = sc->sc_ifp;
1150 	struct ieee80211com *ic = ifp->if_l2com;
1151 	struct mwl_hal *mh = sc->sc_mh;
1152 
1153 	mwl_hal_setantenna(mh, WL_ANTENNATYPE_RX, sc->sc_rxantenna);
1154 	mwl_hal_setantenna(mh, WL_ANTENNATYPE_TX, sc->sc_txantenna);
1155 	mwl_hal_setradio(mh, 1, WL_AUTO_PREAMBLE);
1156 	mwl_hal_setwmm(sc->sc_mh, (ic->ic_flags & IEEE80211_F_WME) != 0);
1157 	mwl_chan_set(sc, ic->ic_curchan);
1158 	/* NB: RF/RA performance tuned for indoor mode */
1159 	mwl_hal_setrateadaptmode(mh, 0);
1160 	mwl_hal_setoptimizationlevel(mh,
1161 	    (ic->ic_flags & IEEE80211_F_BURST) != 0);
1162 
1163 	mwl_hal_setregioncode(mh, mwl_map2regioncode(&ic->ic_regdomain));
1164 
1165 	mwl_hal_setaggampduratemode(mh, 1, 80);		/* XXX */
1166 	mwl_hal_setcfend(mh, 0);			/* XXX */
1167 
1168 	return 1;
1169 }
1170 
1171 static int
1172 mwl_init_locked(struct mwl_softc *sc)
1173 {
1174 	struct ifnet *ifp = sc->sc_ifp;
1175 	struct mwl_hal *mh = sc->sc_mh;
1176 	int error = 0;
1177 
1178 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags 0x%x\n",
1179 		__func__, ifp->if_flags);
1180 
1181 	MWL_LOCK_ASSERT(sc);
1182 
1183 	/*
1184 	 * Stop anything previously setup.  This is safe
1185 	 * whether this is the first time through or not.
1186 	 */
1187 	mwl_stop_locked(ifp, 0);
1188 
1189 	/*
1190 	 * Push vap-independent state to the firmware.
1191 	 */
1192 	if (!mwl_hal_reset(sc)) {
1193 		if_printf(ifp, "unable to reset hardware\n");
1194 		return EIO;
1195 	}
1196 
1197 	/*
1198 	 * Setup recv (once); transmit is already good to go.
1199 	 */
1200 	error = mwl_startrecv(sc);
1201 	if (error != 0) {
1202 		if_printf(ifp, "unable to start recv logic\n");
1203 		return error;
1204 	}
1205 
1206 	/*
1207 	 * Enable interrupts.
1208 	 */
1209 	sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY
1210 		     | MACREG_A2HRIC_BIT_TX_DONE
1211 		     | MACREG_A2HRIC_BIT_OPC_DONE
1212 #if 0
1213 		     | MACREG_A2HRIC_BIT_MAC_EVENT
1214 #endif
1215 		     | MACREG_A2HRIC_BIT_ICV_ERROR
1216 		     | MACREG_A2HRIC_BIT_RADAR_DETECT
1217 		     | MACREG_A2HRIC_BIT_CHAN_SWITCH
1218 #if 0
1219 		     | MACREG_A2HRIC_BIT_QUEUE_EMPTY
1220 #endif
1221 		     | MACREG_A2HRIC_BIT_BA_WATCHDOG
1222 		     | MACREQ_A2HRIC_BIT_TX_ACK
1223 		     ;
1224 
1225 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1226 	mwl_hal_intrset(mh, sc->sc_imask);
1227 	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
1228 
1229 	return 0;
1230 }
1231 
1232 static void
1233 mwl_init(void *arg)
1234 {
1235 	struct mwl_softc *sc = arg;
1236 	struct ifnet *ifp = sc->sc_ifp;
1237 	struct ieee80211com *ic = ifp->if_l2com;
1238 	int error = 0;
1239 
1240 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags 0x%x\n",
1241 		__func__, ifp->if_flags);
1242 
1243 	MWL_LOCK(sc);
1244 	error = mwl_init_locked(sc);
1245 	MWL_UNLOCK(sc);
1246 
1247 	if (error == 0)
1248 		ieee80211_start_all(ic);	/* start all vap's */
1249 }
1250 
1251 static void
1252 mwl_stop_locked(struct ifnet *ifp, int disable)
1253 {
1254 	struct mwl_softc *sc = ifp->if_softc;
1255 
1256 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1257 		__func__, sc->sc_invalid, ifp->if_flags);
1258 
1259 	MWL_LOCK_ASSERT(sc);
1260 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1261 		/*
1262 		 * Shutdown the hardware and driver.
1263 		 */
1264 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1265 		callout_stop(&sc->sc_watchdog);
1266 		sc->sc_tx_timer = 0;
1267 		mwl_draintxq(sc);
1268 	}
1269 }
1270 
1271 static void
1272 mwl_stop(struct ifnet *ifp, int disable)
1273 {
1274 	struct mwl_softc *sc = ifp->if_softc;
1275 
1276 	MWL_LOCK(sc);
1277 	mwl_stop_locked(ifp, disable);
1278 	MWL_UNLOCK(sc);
1279 }
1280 
1281 static int
1282 mwl_reset_vap(struct ieee80211vap *vap, int state)
1283 {
1284 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1285 	struct ieee80211com *ic = vap->iv_ic;
1286 
1287 	if (state == IEEE80211_S_RUN)
1288 		mwl_setrates(vap);
1289 	/* XXX off by 1? */
1290 	mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
1291 	/* XXX auto? 20/40 split? */
1292 	mwl_hal_sethtgi(hvap, (vap->iv_flags_ht &
1293 	    (IEEE80211_FHT_SHORTGI20|IEEE80211_FHT_SHORTGI40)) ? 1 : 0);
1294 	mwl_hal_setnprot(hvap, ic->ic_htprotmode == IEEE80211_PROT_NONE ?
1295 	    HTPROTECT_NONE : HTPROTECT_AUTO);
1296 	/* XXX txpower cap */
1297 
1298 	/* re-setup beacons */
1299 	if (state == IEEE80211_S_RUN &&
1300 	    (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1301 	     vap->iv_opmode == IEEE80211_M_MBSS ||
1302 	     vap->iv_opmode == IEEE80211_M_IBSS)) {
1303 		mwl_setapmode(vap, vap->iv_bss->ni_chan);
1304 		mwl_hal_setnprotmode(hvap,
1305 		    MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1306 		return mwl_beacon_setup(vap);
1307 	}
1308 	return 0;
1309 }
1310 
1311 /*
1312  * Reset the hardware w/o losing operational state.
1313  * Used to to reset or reload hardware state for a vap.
1314  */
1315 static int
1316 mwl_reset(struct ieee80211vap *vap, u_long cmd)
1317 {
1318 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1319 	int error = 0;
1320 
1321 	if (hvap != NULL) {			/* WDS, MONITOR, etc. */
1322 		struct ieee80211com *ic = vap->iv_ic;
1323 		struct ifnet *ifp = ic->ic_ifp;
1324 		struct mwl_softc *sc = ifp->if_softc;
1325 		struct mwl_hal *mh = sc->sc_mh;
1326 
1327 		/* XXX handle DWDS sta vap change */
1328 		/* XXX do we need to disable interrupts? */
1329 		mwl_hal_intrset(mh, 0);		/* disable interrupts */
1330 		error = mwl_reset_vap(vap, vap->iv_state);
1331 		mwl_hal_intrset(mh, sc->sc_imask);
1332 	}
1333 	return error;
1334 }
1335 
1336 /*
1337  * Allocate a tx buffer for sending a frame.  The
1338  * packet is assumed to have the WME AC stored so
1339  * we can use it to select the appropriate h/w queue.
1340  */
1341 static struct mwl_txbuf *
1342 mwl_gettxbuf(struct mwl_softc *sc, struct mwl_txq *txq)
1343 {
1344 	struct mwl_txbuf *bf;
1345 
1346 	/*
1347 	 * Grab a TX buffer and associated resources.
1348 	 */
1349 	MWL_TXQ_LOCK(txq);
1350 	bf = STAILQ_FIRST(&txq->free);
1351 	if (bf != NULL) {
1352 		STAILQ_REMOVE_HEAD(&txq->free, bf_list);
1353 		txq->nfree--;
1354 	}
1355 	MWL_TXQ_UNLOCK(txq);
1356 	if (bf == NULL)
1357 		DPRINTF(sc, MWL_DEBUG_XMIT,
1358 		    "%s: out of xmit buffers on q %d\n", __func__, txq->qnum);
1359 	return bf;
1360 }
1361 
1362 /*
1363  * Return a tx buffer to the queue it came from.  Note there
1364  * are two cases because we must preserve the order of buffers
1365  * as it reflects the fixed order of descriptors in memory
1366  * (the firmware pre-fetches descriptors so we cannot reorder).
1367  */
1368 static void
1369 mwl_puttxbuf_head(struct mwl_txq *txq, struct mwl_txbuf *bf)
1370 {
1371 	bf->bf_m = NULL;
1372 	bf->bf_node = NULL;
1373 	MWL_TXQ_LOCK(txq);
1374 	STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
1375 	txq->nfree++;
1376 	MWL_TXQ_UNLOCK(txq);
1377 }
1378 
1379 static void
1380 mwl_puttxbuf_tail(struct mwl_txq *txq, struct mwl_txbuf *bf)
1381 {
1382 	bf->bf_m = NULL;
1383 	bf->bf_node = NULL;
1384 	MWL_TXQ_LOCK(txq);
1385 	STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
1386 	txq->nfree++;
1387 	MWL_TXQ_UNLOCK(txq);
1388 }
1389 
1390 static void
1391 mwl_start(struct ifnet *ifp)
1392 {
1393 	struct mwl_softc *sc = ifp->if_softc;
1394 	struct ieee80211_node *ni;
1395 	struct mwl_txbuf *bf;
1396 	struct mbuf *m;
1397 	struct mwl_txq *txq = NULL;	/* XXX silence gcc */
1398 	int nqueued;
1399 
1400 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1401 		return;
1402 	nqueued = 0;
1403 	for (;;) {
1404 		bf = NULL;
1405 		IFQ_DEQUEUE(&ifp->if_snd, m);
1406 		if (m == NULL)
1407 			break;
1408 		/*
1409 		 * Grab the node for the destination.
1410 		 */
1411 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1412 		KASSERT(ni != NULL, ("no node"));
1413 		m->m_pkthdr.rcvif = NULL;	/* committed, clear ref */
1414 		/*
1415 		 * Grab a TX buffer and associated resources.
1416 		 * We honor the classification by the 802.11 layer.
1417 		 */
1418 		txq = sc->sc_ac2q[M_WME_GETAC(m)];
1419 		bf = mwl_gettxbuf(sc, txq);
1420 		if (bf == NULL) {
1421 			m_freem(m);
1422 			ieee80211_free_node(ni);
1423 #ifdef MWL_TX_NODROP
1424 			sc->sc_stats.mst_tx_qstop++;
1425 			/* XXX blocks other traffic */
1426 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1427 			break;
1428 #else
1429 			DPRINTF(sc, MWL_DEBUG_XMIT,
1430 			    "%s: tail drop on q %d\n", __func__, txq->qnum);
1431 			sc->sc_stats.mst_tx_qdrop++;
1432 			continue;
1433 #endif /* MWL_TX_NODROP */
1434 		}
1435 
1436 		/*
1437 		 * Pass the frame to the h/w for transmission.
1438 		 */
1439 		if (mwl_tx_start(sc, ni, bf, m)) {
1440 			ifp->if_oerrors++;
1441 			mwl_puttxbuf_head(txq, bf);
1442 			ieee80211_free_node(ni);
1443 			continue;
1444 		}
1445 		nqueued++;
1446 		if (nqueued >= mwl_txcoalesce) {
1447 			/*
1448 			 * Poke the firmware to process queued frames;
1449 			 * see below about (lack of) locking.
1450 			 */
1451 			nqueued = 0;
1452 			mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1453 		}
1454 	}
1455 	if (nqueued) {
1456 		/*
1457 		 * NB: We don't need to lock against tx done because
1458 		 * this just prods the firmware to check the transmit
1459 		 * descriptors.  The firmware will also start fetching
1460 		 * descriptors by itself if it notices new ones are
1461 		 * present when it goes to deliver a tx done interrupt
1462 		 * to the host. So if we race with tx done processing
1463 		 * it's ok.  Delivering the kick here rather than in
1464 		 * mwl_tx_start is an optimization to avoid poking the
1465 		 * firmware for each packet.
1466 		 *
1467 		 * NB: the queue id isn't used so 0 is ok.
1468 		 */
1469 		mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1470 	}
1471 }
1472 
1473 static int
1474 mwl_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1475 	const struct ieee80211_bpf_params *params)
1476 {
1477 	struct ieee80211com *ic = ni->ni_ic;
1478 	struct ifnet *ifp = ic->ic_ifp;
1479 	struct mwl_softc *sc = ifp->if_softc;
1480 	struct mwl_txbuf *bf;
1481 	struct mwl_txq *txq;
1482 
1483 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
1484 		ieee80211_free_node(ni);
1485 		m_freem(m);
1486 		return ENETDOWN;
1487 	}
1488 	/*
1489 	 * Grab a TX buffer and associated resources.
1490 	 * Note that we depend on the classification
1491 	 * by the 802.11 layer to get to the right h/w
1492 	 * queue.  Management frames must ALWAYS go on
1493 	 * queue 1 but we cannot just force that here
1494 	 * because we may receive non-mgt frames.
1495 	 */
1496 	txq = sc->sc_ac2q[M_WME_GETAC(m)];
1497 	bf = mwl_gettxbuf(sc, txq);
1498 	if (bf == NULL) {
1499 		sc->sc_stats.mst_tx_qstop++;
1500 		/* XXX blocks other traffic */
1501 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1502 		ieee80211_free_node(ni);
1503 		m_freem(m);
1504 		return ENOBUFS;
1505 	}
1506 	/*
1507 	 * Pass the frame to the h/w for transmission.
1508 	 */
1509 	if (mwl_tx_start(sc, ni, bf, m)) {
1510 		ifp->if_oerrors++;
1511 		mwl_puttxbuf_head(txq, bf);
1512 
1513 		ieee80211_free_node(ni);
1514 		return EIO;		/* XXX */
1515 	}
1516 	/*
1517 	 * NB: We don't need to lock against tx done because
1518 	 * this just prods the firmware to check the transmit
1519 	 * descriptors.  The firmware will also start fetching
1520 	 * descriptors by itself if it notices new ones are
1521 	 * present when it goes to deliver a tx done interrupt
1522 	 * to the host. So if we race with tx done processing
1523 	 * it's ok.  Delivering the kick here rather than in
1524 	 * mwl_tx_start is an optimization to avoid poking the
1525 	 * firmware for each packet.
1526 	 *
1527 	 * NB: the queue id isn't used so 0 is ok.
1528 	 */
1529 	mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1530 	return 0;
1531 }
1532 
1533 static int
1534 mwl_media_change(struct ifnet *ifp)
1535 {
1536 	struct ieee80211vap *vap = ifp->if_softc;
1537 	int error;
1538 
1539 	error = ieee80211_media_change(ifp);
1540 	/* NB: only the fixed rate can change and that doesn't need a reset */
1541 	if (error == ENETRESET) {
1542 		mwl_setrates(vap);
1543 		error = 0;
1544 	}
1545 	return error;
1546 }
1547 
1548 #ifdef MWL_DEBUG
1549 static void
1550 mwl_keyprint(struct mwl_softc *sc, const char *tag,
1551 	const MWL_HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1552 {
1553 	static const char *ciphers[] = {
1554 		"WEP",
1555 		"TKIP",
1556 		"AES-CCM",
1557 	};
1558 	int i, n;
1559 
1560 	printf("%s: [%u] %-7s", tag, hk->keyIndex, ciphers[hk->keyTypeId]);
1561 	for (i = 0, n = hk->keyLen; i < n; i++)
1562 		printf(" %02x", hk->key.aes[i]);
1563 	printf(" mac %s", ether_sprintf(mac));
1564 	if (hk->keyTypeId == KEY_TYPE_ID_TKIP) {
1565 		printf(" %s", "rxmic");
1566 		for (i = 0; i < sizeof(hk->key.tkip.rxMic); i++)
1567 			printf(" %02x", hk->key.tkip.rxMic[i]);
1568 		printf(" txmic");
1569 		for (i = 0; i < sizeof(hk->key.tkip.txMic); i++)
1570 			printf(" %02x", hk->key.tkip.txMic[i]);
1571 	}
1572 	printf(" flags 0x%x\n", hk->keyFlags);
1573 }
1574 #endif
1575 
1576 /*
1577  * Allocate a key cache slot for a unicast key.  The
1578  * firmware handles key allocation and every station is
1579  * guaranteed key space so we are always successful.
1580  */
1581 static int
1582 mwl_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
1583 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1584 {
1585 	struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1586 
1587 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||
1588 	    (k->wk_flags & IEEE80211_KEY_GROUP)) {
1589 		if (!(&vap->iv_nw_keys[0] <= k &&
1590 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
1591 			/* should not happen */
1592 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1593 				"%s: bogus group key\n", __func__);
1594 			return 0;
1595 		}
1596 		/* give the caller what they requested */
1597 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
1598 	} else {
1599 		/*
1600 		 * Firmware handles key allocation.
1601 		 */
1602 		*keyix = *rxkeyix = 0;
1603 	}
1604 	return 1;
1605 }
1606 
1607 /*
1608  * Delete a key entry allocated by mwl_key_alloc.
1609  */
1610 static int
1611 mwl_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
1612 {
1613 	struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1614 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1615 	MWL_HAL_KEYVAL hk;
1616 	const uint8_t bcastaddr[IEEE80211_ADDR_LEN] =
1617 	    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1618 
1619 	if (hvap == NULL) {
1620 		if (vap->iv_opmode != IEEE80211_M_WDS) {
1621 			/* XXX monitor mode? */
1622 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1623 			    "%s: no hvap for opmode %d\n", __func__,
1624 			    vap->iv_opmode);
1625 			return 0;
1626 		}
1627 		hvap = MWL_VAP(vap)->mv_ap_hvap;
1628 	}
1629 
1630 	DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: delete key %u\n",
1631 	    __func__, k->wk_keyix);
1632 
1633 	memset(&hk, 0, sizeof(hk));
1634 	hk.keyIndex = k->wk_keyix;
1635 	switch (k->wk_cipher->ic_cipher) {
1636 	case IEEE80211_CIPHER_WEP:
1637 		hk.keyTypeId = KEY_TYPE_ID_WEP;
1638 		break;
1639 	case IEEE80211_CIPHER_TKIP:
1640 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1641 		break;
1642 	case IEEE80211_CIPHER_AES_CCM:
1643 		hk.keyTypeId = KEY_TYPE_ID_AES;
1644 		break;
1645 	default:
1646 		/* XXX should not happen */
1647 		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1648 		    __func__, k->wk_cipher->ic_cipher);
1649 		return 0;
1650 	}
1651 	return (mwl_hal_keyreset(hvap, &hk, bcastaddr) == 0);	/*XXX*/
1652 }
1653 
1654 static __inline int
1655 addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k)
1656 {
1657 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
1658 		if (k->wk_flags & IEEE80211_KEY_XMIT)
1659 			hk->keyFlags |= KEY_FLAG_TXGROUPKEY;
1660 		if (k->wk_flags & IEEE80211_KEY_RECV)
1661 			hk->keyFlags |= KEY_FLAG_RXGROUPKEY;
1662 		return 1;
1663 	} else
1664 		return 0;
1665 }
1666 
1667 /*
1668  * Set the key cache contents for the specified key.  Key cache
1669  * slot(s) must already have been allocated by mwl_key_alloc.
1670  */
1671 static int
1672 mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
1673 	const uint8_t mac[IEEE80211_ADDR_LEN])
1674 {
1675 #define	GRPXMIT	(IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP)
1676 /* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */
1677 #define	IEEE80211_IS_STATICKEY(k) \
1678 	(((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \
1679 	 (GRPXMIT|IEEE80211_KEY_RECV))
1680 	struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1681 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1682 	const struct ieee80211_cipher *cip = k->wk_cipher;
1683 	const uint8_t *macaddr;
1684 	MWL_HAL_KEYVAL hk;
1685 
1686 	KASSERT((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0,
1687 		("s/w crypto set?"));
1688 
1689 	if (hvap == NULL) {
1690 		if (vap->iv_opmode != IEEE80211_M_WDS) {
1691 			/* XXX monitor mode? */
1692 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1693 			    "%s: no hvap for opmode %d\n", __func__,
1694 			    vap->iv_opmode);
1695 			return 0;
1696 		}
1697 		hvap = MWL_VAP(vap)->mv_ap_hvap;
1698 	}
1699 	memset(&hk, 0, sizeof(hk));
1700 	hk.keyIndex = k->wk_keyix;
1701 	switch (cip->ic_cipher) {
1702 	case IEEE80211_CIPHER_WEP:
1703 		hk.keyTypeId = KEY_TYPE_ID_WEP;
1704 		hk.keyLen = k->wk_keylen;
1705 		if (k->wk_keyix == vap->iv_def_txkey)
1706 			hk.keyFlags = KEY_FLAG_WEP_TXKEY;
1707 		if (!IEEE80211_IS_STATICKEY(k)) {
1708 			/* NB: WEP is never used for the PTK */
1709 			(void) addgroupflags(&hk, k);
1710 		}
1711 		break;
1712 	case IEEE80211_CIPHER_TKIP:
1713 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1714 		hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16);
1715 		hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc;
1716 		hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID;
1717 		hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE;
1718 		if (!addgroupflags(&hk, k))
1719 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1720 		break;
1721 	case IEEE80211_CIPHER_AES_CCM:
1722 		hk.keyTypeId = KEY_TYPE_ID_AES;
1723 		hk.keyLen = k->wk_keylen;
1724 		if (!addgroupflags(&hk, k))
1725 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1726 		break;
1727 	default:
1728 		/* XXX should not happen */
1729 		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1730 		    __func__, k->wk_cipher->ic_cipher);
1731 		return 0;
1732 	}
1733 	/*
1734 	 * NB: tkip mic keys get copied here too; the layout
1735 	 *     just happens to match that in ieee80211_key.
1736 	 */
1737 	memcpy(hk.key.aes, k->wk_key, hk.keyLen);
1738 
1739 	/*
1740 	 * Locate address of sta db entry for writing key;
1741 	 * the convention unfortunately is somewhat different
1742 	 * than how net80211, hostapd, and wpa_supplicant think.
1743 	 */
1744 	if (vap->iv_opmode == IEEE80211_M_STA) {
1745 		/*
1746 		 * NB: keys plumbed before the sta reaches AUTH state
1747 		 * will be discarded or written to the wrong sta db
1748 		 * entry because iv_bss is meaningless.  This is ok
1749 		 * (right now) because we handle deferred plumbing of
1750 		 * WEP keys when the sta reaches AUTH state.
1751 		 */
1752 		macaddr = vap->iv_bss->ni_bssid;
1753 		if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0) {
1754 			/* XXX plumb to local sta db too for static key wep */
1755 			mwl_hal_keyset(hvap, &hk, vap->iv_myaddr);
1756 		}
1757 	} else if (vap->iv_opmode == IEEE80211_M_WDS &&
1758 	    vap->iv_state != IEEE80211_S_RUN) {
1759 		/*
1760 		 * Prior to RUN state a WDS vap will not it's BSS node
1761 		 * setup so we will plumb the key to the wrong mac
1762 		 * address (it'll be our local address).  Workaround
1763 		 * this for the moment by grabbing the correct address.
1764 		 */
1765 		macaddr = vap->iv_des_bssid;
1766 	} else if ((k->wk_flags & GRPXMIT) == GRPXMIT)
1767 		macaddr = vap->iv_myaddr;
1768 	else
1769 		macaddr = mac;
1770 	KEYPRINTF(sc, &hk, macaddr);
1771 	return (mwl_hal_keyset(hvap, &hk, macaddr) == 0);
1772 #undef IEEE80211_IS_STATICKEY
1773 #undef GRPXMIT
1774 }
1775 
1776 /* unaligned little endian access */
1777 #define LE_READ_2(p)				\
1778 	((uint16_t)				\
1779 	 ((((const uint8_t *)(p))[0]      ) |	\
1780 	  (((const uint8_t *)(p))[1] <<  8)))
1781 #define LE_READ_4(p)				\
1782 	((uint32_t)				\
1783 	 ((((const uint8_t *)(p))[0]      ) |	\
1784 	  (((const uint8_t *)(p))[1] <<  8) |	\
1785 	  (((const uint8_t *)(p))[2] << 16) |	\
1786 	  (((const uint8_t *)(p))[3] << 24)))
1787 
1788 /*
1789  * Set the multicast filter contents into the hardware.
1790  * XXX f/w has no support; just defer to the os.
1791  */
1792 static void
1793 mwl_setmcastfilter(struct mwl_softc *sc)
1794 {
1795 	struct ifnet *ifp = sc->sc_ifp;
1796 #if 0
1797 	struct ether_multi *enm;
1798 	struct ether_multistep estep;
1799 	uint8_t macs[IEEE80211_ADDR_LEN*MWL_HAL_MCAST_MAX];/* XXX stack use */
1800 	uint8_t *mp;
1801 	int nmc;
1802 
1803 	mp = macs;
1804 	nmc = 0;
1805 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1806 	while (enm != NULL) {
1807 		/* XXX Punt on ranges. */
1808 		if (nmc == MWL_HAL_MCAST_MAX ||
1809 		    !IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1810 			ifp->if_flags |= IFF_ALLMULTI;
1811 			return;
1812 		}
1813 		IEEE80211_ADDR_COPY(mp, enm->enm_addrlo);
1814 		mp += IEEE80211_ADDR_LEN, nmc++;
1815 		ETHER_NEXT_MULTI(estep, enm);
1816 	}
1817 	ifp->if_flags &= ~IFF_ALLMULTI;
1818 	mwl_hal_setmcast(sc->sc_mh, nmc, macs);
1819 #else
1820 	/* XXX no mcast filter support; we get everything */
1821 	ifp->if_flags |= IFF_ALLMULTI;
1822 #endif
1823 }
1824 
1825 static int
1826 mwl_mode_init(struct mwl_softc *sc)
1827 {
1828 	struct ifnet *ifp = sc->sc_ifp;
1829 	struct ieee80211com *ic = ifp->if_l2com;
1830 	struct mwl_hal *mh = sc->sc_mh;
1831 
1832 	/*
1833 	 * NB: Ignore promisc in hostap mode; it's set by the
1834 	 * bridge.  This is wrong but we have no way to
1835 	 * identify internal requests (from the bridge)
1836 	 * versus external requests such as for tcpdump.
1837 	 */
1838 	mwl_hal_setpromisc(mh, (ifp->if_flags & IFF_PROMISC) &&
1839 	    ic->ic_opmode != IEEE80211_M_HOSTAP);
1840 	mwl_setmcastfilter(sc);
1841 
1842 	return 0;
1843 }
1844 
1845 /*
1846  * Callback from the 802.11 layer after a multicast state change.
1847  */
1848 static void
1849 mwl_update_mcast(struct ifnet *ifp)
1850 {
1851 	struct mwl_softc *sc = ifp->if_softc;
1852 
1853 	mwl_setmcastfilter(sc);
1854 }
1855 
1856 /*
1857  * Callback from the 802.11 layer after a promiscuous mode change.
1858  * Note this interface does not check the operating mode as this
1859  * is an internal callback and we are expected to honor the current
1860  * state (e.g. this is used for setting the interface in promiscuous
1861  * mode when operating in hostap mode to do ACS).
1862  */
1863 static void
1864 mwl_update_promisc(struct ifnet *ifp)
1865 {
1866 	struct mwl_softc *sc = ifp->if_softc;
1867 
1868 	mwl_hal_setpromisc(sc->sc_mh, (ifp->if_flags & IFF_PROMISC) != 0);
1869 }
1870 
1871 /*
1872  * Callback from the 802.11 layer to update the slot time
1873  * based on the current setting.  We use it to notify the
1874  * firmware of ERP changes and the f/w takes care of things
1875  * like slot time and preamble.
1876  */
1877 static void
1878 mwl_updateslot(struct ifnet *ifp)
1879 {
1880 	struct mwl_softc *sc = ifp->if_softc;
1881 	struct ieee80211com *ic = ifp->if_l2com;
1882 	struct mwl_hal *mh = sc->sc_mh;
1883 	int prot;
1884 
1885 	/* NB: can be called early; suppress needless cmds */
1886 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1887 		return;
1888 
1889 	/*
1890 	 * Calculate the ERP flags.  The firwmare will use
1891 	 * this to carry out the appropriate measures.
1892 	 */
1893 	prot = 0;
1894 	if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
1895 		if ((ic->ic_flags & IEEE80211_F_SHSLOT) == 0)
1896 			prot |= IEEE80211_ERP_NON_ERP_PRESENT;
1897 		if (ic->ic_flags & IEEE80211_F_USEPROT)
1898 			prot |= IEEE80211_ERP_USE_PROTECTION;
1899 		if (ic->ic_flags & IEEE80211_F_USEBARKER)
1900 			prot |= IEEE80211_ERP_LONG_PREAMBLE;
1901 	}
1902 
1903 	DPRINTF(sc, MWL_DEBUG_RESET,
1904 	    "%s: chan %u MHz/flags 0x%x %s slot, (prot 0x%x ic_flags 0x%x)\n",
1905 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1906 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", prot,
1907 	    ic->ic_flags);
1908 
1909 	mwl_hal_setgprot(mh, prot);
1910 }
1911 
1912 /*
1913  * Setup the beacon frame.
1914  */
1915 static int
1916 mwl_beacon_setup(struct ieee80211vap *vap)
1917 {
1918 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1919 	struct ieee80211_node *ni = vap->iv_bss;
1920 	struct ieee80211_beacon_offsets bo;
1921 	struct mbuf *m;
1922 
1923 	m = ieee80211_beacon_alloc(ni, &bo);
1924 	if (m == NULL)
1925 		return ENOBUFS;
1926 	mwl_hal_setbeacon(hvap, mtod(m, const void *), m->m_len);
1927 	m_free(m);
1928 
1929 	return 0;
1930 }
1931 
1932 /*
1933  * Update the beacon frame in response to a change.
1934  */
1935 static void
1936 mwl_beacon_update(struct ieee80211vap *vap, int item)
1937 {
1938 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1939 	struct ieee80211com *ic = vap->iv_ic;
1940 
1941 	KASSERT(hvap != NULL, ("no beacon"));
1942 	switch (item) {
1943 	case IEEE80211_BEACON_ERP:
1944 		mwl_updateslot(ic->ic_ifp);
1945 		break;
1946 	case IEEE80211_BEACON_HTINFO:
1947 		mwl_hal_setnprotmode(hvap,
1948 		    MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1949 		break;
1950 	case IEEE80211_BEACON_CAPS:
1951 	case IEEE80211_BEACON_WME:
1952 	case IEEE80211_BEACON_APPIE:
1953 	case IEEE80211_BEACON_CSA:
1954 		break;
1955 	case IEEE80211_BEACON_TIM:
1956 		/* NB: firmware always forms TIM */
1957 		return;
1958 	}
1959 	/* XXX retain beacon frame and update */
1960 	mwl_beacon_setup(vap);
1961 }
1962 
1963 static void
1964 mwl_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1965 {
1966 	bus_addr_t *paddr = (bus_addr_t*) arg;
1967 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
1968 	*paddr = segs->ds_addr;
1969 }
1970 
1971 #ifdef MWL_HOST_PS_SUPPORT
1972 /*
1973  * Handle power save station occupancy changes.
1974  */
1975 static void
1976 mwl_update_ps(struct ieee80211vap *vap, int nsta)
1977 {
1978 	struct mwl_vap *mvp = MWL_VAP(vap);
1979 
1980 	if (nsta == 0 || mvp->mv_last_ps_sta == 0)
1981 		mwl_hal_setpowersave_bss(mvp->mv_hvap, nsta);
1982 	mvp->mv_last_ps_sta = nsta;
1983 }
1984 
1985 /*
1986  * Handle associated station power save state changes.
1987  */
1988 static int
1989 mwl_set_tim(struct ieee80211_node *ni, int set)
1990 {
1991 	struct ieee80211vap *vap = ni->ni_vap;
1992 	struct mwl_vap *mvp = MWL_VAP(vap);
1993 
1994 	if (mvp->mv_set_tim(ni, set)) {		/* NB: state change */
1995 		mwl_hal_setpowersave_sta(mvp->mv_hvap,
1996 		    IEEE80211_AID(ni->ni_associd), set);
1997 		return 1;
1998 	} else
1999 		return 0;
2000 }
2001 #endif /* MWL_HOST_PS_SUPPORT */
2002 
2003 static int
2004 mwl_desc_setup(struct mwl_softc *sc, const char *name,
2005 	struct mwl_descdma *dd,
2006 	int nbuf, size_t bufsize, int ndesc, size_t descsize)
2007 {
2008 	struct ifnet *ifp = sc->sc_ifp;
2009 	uint8_t *ds;
2010 	int error;
2011 
2012 	DPRINTF(sc, MWL_DEBUG_RESET,
2013 	    "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n",
2014 	    __func__, name, nbuf, (uintmax_t) bufsize,
2015 	    ndesc, (uintmax_t) descsize);
2016 
2017 	dd->dd_name = name;
2018 	dd->dd_desc_len = nbuf * ndesc * descsize;
2019 
2020 	/*
2021 	 * Setup DMA descriptor area.
2022 	 */
2023 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2024 		       PAGE_SIZE, 0,		/* alignment, bounds */
2025 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2026 		       BUS_SPACE_MAXADDR,	/* highaddr */
2027 		       NULL, NULL,		/* filter, filterarg */
2028 		       dd->dd_desc_len,		/* maxsize */
2029 		       1,			/* nsegments */
2030 		       dd->dd_desc_len,		/* maxsegsize */
2031 		       BUS_DMA_ALLOCNOW,	/* flags */
2032 		       NULL,			/* lockfunc */
2033 		       NULL,			/* lockarg */
2034 		       &dd->dd_dmat);
2035 	if (error != 0) {
2036 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2037 		return error;
2038 	}
2039 
2040 	/* allocate descriptors */
2041 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2042 	if (error != 0) {
2043 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2044 			"error %u\n", dd->dd_name, error);
2045 		goto fail0;
2046 	}
2047 
2048 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2049 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2050 				 &dd->dd_dmamap);
2051 	if (error != 0) {
2052 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2053 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2054 		goto fail1;
2055 	}
2056 
2057 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2058 				dd->dd_desc, dd->dd_desc_len,
2059 				mwl_load_cb, &dd->dd_desc_paddr,
2060 				BUS_DMA_NOWAIT);
2061 	if (error != 0) {
2062 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2063 			dd->dd_name, error);
2064 		goto fail2;
2065 	}
2066 
2067 	ds = dd->dd_desc;
2068 	memset(ds, 0, dd->dd_desc_len);
2069 	DPRINTF(sc, MWL_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2070 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2071 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2072 
2073 	return 0;
2074 fail2:
2075 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2076 fail1:
2077 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2078 fail0:
2079 	bus_dma_tag_destroy(dd->dd_dmat);
2080 	memset(dd, 0, sizeof(*dd));
2081 	return error;
2082 #undef DS2PHYS
2083 }
2084 
2085 static void
2086 mwl_desc_cleanup(struct mwl_softc *sc, struct mwl_descdma *dd)
2087 {
2088 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2089 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2090 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2091 	bus_dma_tag_destroy(dd->dd_dmat);
2092 
2093 	memset(dd, 0, sizeof(*dd));
2094 }
2095 
2096 /*
2097  * Construct a tx q's free list.  The order of entries on
2098  * the list must reflect the physical layout of tx descriptors
2099  * because the firmware pre-fetches descriptors.
2100  *
2101  * XXX might be better to use indices into the buffer array.
2102  */
2103 static void
2104 mwl_txq_reset(struct mwl_softc *sc, struct mwl_txq *txq)
2105 {
2106 	struct mwl_txbuf *bf;
2107 	int i;
2108 
2109 	bf = txq->dma.dd_bufptr;
2110 	STAILQ_INIT(&txq->free);
2111 	for (i = 0; i < mwl_txbuf; i++, bf++)
2112 		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
2113 	txq->nfree = i;
2114 }
2115 
2116 #define	DS2PHYS(_dd, _ds) \
2117 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2118 
2119 static int
2120 mwl_txdma_setup(struct mwl_softc *sc, struct mwl_txq *txq)
2121 {
2122 	struct ifnet *ifp = sc->sc_ifp;
2123 	int error, bsize, i;
2124 	struct mwl_txbuf *bf;
2125 	struct mwl_txdesc *ds;
2126 
2127 	error = mwl_desc_setup(sc, "tx", &txq->dma,
2128 			mwl_txbuf, sizeof(struct mwl_txbuf),
2129 			MWL_TXDESC, sizeof(struct mwl_txdesc));
2130 	if (error != 0)
2131 		return error;
2132 
2133 	/* allocate and setup tx buffers */
2134 	bsize = mwl_txbuf * sizeof(struct mwl_txbuf);
2135 	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2136 	if (bf == NULL) {
2137 		if_printf(ifp, "malloc of %u tx buffers failed\n",
2138 			mwl_txbuf);
2139 		return ENOMEM;
2140 	}
2141 	txq->dma.dd_bufptr = bf;
2142 
2143 	ds = txq->dma.dd_desc;
2144 	for (i = 0; i < mwl_txbuf; i++, bf++, ds += MWL_TXDESC) {
2145 		bf->bf_desc = ds;
2146 		bf->bf_daddr = DS2PHYS(&txq->dma, ds);
2147 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2148 				&bf->bf_dmamap);
2149 		if (error != 0) {
2150 			if_printf(ifp, "unable to create dmamap for tx "
2151 				"buffer %u, error %u\n", i, error);
2152 			return error;
2153 		}
2154 	}
2155 	mwl_txq_reset(sc, txq);
2156 	return 0;
2157 }
2158 
2159 static void
2160 mwl_txdma_cleanup(struct mwl_softc *sc, struct mwl_txq *txq)
2161 {
2162 	struct mwl_txbuf *bf;
2163 	int i;
2164 
2165 	bf = txq->dma.dd_bufptr;
2166 	for (i = 0; i < mwl_txbuf; i++, bf++) {
2167 		KASSERT(bf->bf_m == NULL, ("mbuf on free list"));
2168 		KASSERT(bf->bf_node == NULL, ("node on free list"));
2169 		if (bf->bf_dmamap != NULL)
2170 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2171 	}
2172 	STAILQ_INIT(&txq->free);
2173 	txq->nfree = 0;
2174 	if (txq->dma.dd_bufptr != NULL) {
2175 		free(txq->dma.dd_bufptr, M_MWLDEV);
2176 		txq->dma.dd_bufptr = NULL;
2177 	}
2178 	if (txq->dma.dd_desc_len != 0)
2179 		mwl_desc_cleanup(sc, &txq->dma);
2180 }
2181 
2182 static int
2183 mwl_rxdma_setup(struct mwl_softc *sc)
2184 {
2185 	struct ifnet *ifp = sc->sc_ifp;
2186 	int error, jumbosize, bsize, i;
2187 	struct mwl_rxbuf *bf;
2188 	struct mwl_jumbo *rbuf;
2189 	struct mwl_rxdesc *ds;
2190 	caddr_t data;
2191 
2192 	error = mwl_desc_setup(sc, "rx", &sc->sc_rxdma,
2193 			mwl_rxdesc, sizeof(struct mwl_rxbuf),
2194 			1, sizeof(struct mwl_rxdesc));
2195 	if (error != 0)
2196 		return error;
2197 
2198 	/*
2199 	 * Receive is done to a private pool of jumbo buffers.
2200 	 * This allows us to attach to mbuf's and avoid re-mapping
2201 	 * memory on each rx we post.  We allocate a large chunk
2202 	 * of memory and manage it in the driver.  The mbuf free
2203 	 * callback method is used to reclaim frames after sending
2204 	 * them up the stack.  By default we allocate 2x the number of
2205 	 * rx descriptors configured so we have some slop to hold
2206 	 * us while frames are processed.
2207 	 */
2208 	if (mwl_rxbuf < 2*mwl_rxdesc) {
2209 		if_printf(ifp,
2210 		    "too few rx dma buffers (%d); increasing to %d\n",
2211 		    mwl_rxbuf, 2*mwl_rxdesc);
2212 		mwl_rxbuf = 2*mwl_rxdesc;
2213 	}
2214 	jumbosize = roundup(MWL_AGGR_SIZE, PAGE_SIZE);
2215 	sc->sc_rxmemsize = mwl_rxbuf*jumbosize;
2216 
2217 	error = bus_dma_tag_create(sc->sc_dmat,	/* parent */
2218 		       PAGE_SIZE, 0,		/* alignment, bounds */
2219 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2220 		       BUS_SPACE_MAXADDR,	/* highaddr */
2221 		       NULL, NULL,		/* filter, filterarg */
2222 		       sc->sc_rxmemsize,	/* maxsize */
2223 		       1,			/* nsegments */
2224 		       sc->sc_rxmemsize,	/* maxsegsize */
2225 		       BUS_DMA_ALLOCNOW,	/* flags */
2226 		       NULL,			/* lockfunc */
2227 		       NULL,			/* lockarg */
2228 		       &sc->sc_rxdmat);
2229 	error = bus_dmamap_create(sc->sc_rxdmat, BUS_DMA_NOWAIT, &sc->sc_rxmap);
2230 	if (error != 0) {
2231 		if_printf(ifp, "could not create rx DMA map\n");
2232 		return error;
2233 	}
2234 
2235 	error = bus_dmamem_alloc(sc->sc_rxdmat, (void**) &sc->sc_rxmem,
2236 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2237 				 &sc->sc_rxmap);
2238 	if (error != 0) {
2239 		if_printf(ifp, "could not alloc %ju bytes of rx DMA memory\n",
2240 		    (uintmax_t) sc->sc_rxmemsize);
2241 		return error;
2242 	}
2243 
2244 	error = bus_dmamap_load(sc->sc_rxdmat, sc->sc_rxmap,
2245 				sc->sc_rxmem, sc->sc_rxmemsize,
2246 				mwl_load_cb, &sc->sc_rxmem_paddr,
2247 				BUS_DMA_NOWAIT);
2248 	if (error != 0) {
2249 		if_printf(ifp, "could not load rx DMA map\n");
2250 		return error;
2251 	}
2252 
2253 	/*
2254 	 * Allocate rx buffers and set them up.
2255 	 */
2256 	bsize = mwl_rxdesc * sizeof(struct mwl_rxbuf);
2257 	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2258 	if (bf == NULL) {
2259 		if_printf(ifp, "malloc of %u rx buffers failed\n", bsize);
2260 		return error;
2261 	}
2262 	sc->sc_rxdma.dd_bufptr = bf;
2263 
2264 	STAILQ_INIT(&sc->sc_rxbuf);
2265 	ds = sc->sc_rxdma.dd_desc;
2266 	for (i = 0; i < mwl_rxdesc; i++, bf++, ds++) {
2267 		bf->bf_desc = ds;
2268 		bf->bf_daddr = DS2PHYS(&sc->sc_rxdma, ds);
2269 		/* pre-assign dma buffer */
2270 		bf->bf_data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2271 		/* NB: tail is intentional to preserve descriptor order */
2272 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2273 	}
2274 
2275 	/*
2276 	 * Place remainder of dma memory buffers on the free list.
2277 	 */
2278 	SLIST_INIT(&sc->sc_rxfree);
2279 	for (; i < mwl_rxbuf; i++) {
2280 		data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2281 		rbuf = MWL_JUMBO_DATA2BUF(data);
2282 		SLIST_INSERT_HEAD(&sc->sc_rxfree, rbuf, next);
2283 		sc->sc_nrxfree++;
2284 	}
2285 	return 0;
2286 }
2287 #undef DS2PHYS
2288 
2289 static void
2290 mwl_rxdma_cleanup(struct mwl_softc *sc)
2291 {
2292 	if (sc->sc_rxmap != NULL)
2293 		bus_dmamap_unload(sc->sc_rxdmat, sc->sc_rxmap);
2294 	if (sc->sc_rxmem != NULL) {
2295 		bus_dmamem_free(sc->sc_rxdmat, sc->sc_rxmem, sc->sc_rxmap);
2296 		sc->sc_rxmem = NULL;
2297 	}
2298 	if (sc->sc_rxmap != NULL) {
2299 		bus_dmamap_destroy(sc->sc_rxdmat, sc->sc_rxmap);
2300 		sc->sc_rxmap = NULL;
2301 	}
2302 	if (sc->sc_rxdma.dd_bufptr != NULL) {
2303 		free(sc->sc_rxdma.dd_bufptr, M_MWLDEV);
2304 		sc->sc_rxdma.dd_bufptr = NULL;
2305 	}
2306 	if (sc->sc_rxdma.dd_desc_len != 0)
2307 		mwl_desc_cleanup(sc, &sc->sc_rxdma);
2308 }
2309 
2310 static int
2311 mwl_dma_setup(struct mwl_softc *sc)
2312 {
2313 	int error, i;
2314 
2315 	error = mwl_rxdma_setup(sc);
2316 	if (error != 0) {
2317 		mwl_rxdma_cleanup(sc);
2318 		return error;
2319 	}
2320 
2321 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
2322 		error = mwl_txdma_setup(sc, &sc->sc_txq[i]);
2323 		if (error != 0) {
2324 			mwl_dma_cleanup(sc);
2325 			return error;
2326 		}
2327 	}
2328 	return 0;
2329 }
2330 
2331 static void
2332 mwl_dma_cleanup(struct mwl_softc *sc)
2333 {
2334 	int i;
2335 
2336 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2337 		mwl_txdma_cleanup(sc, &sc->sc_txq[i]);
2338 	mwl_rxdma_cleanup(sc);
2339 }
2340 
2341 static struct ieee80211_node *
2342 mwl_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2343 {
2344 	struct ieee80211com *ic = vap->iv_ic;
2345 	struct mwl_softc *sc = ic->ic_ifp->if_softc;
2346 	const size_t space = sizeof(struct mwl_node);
2347 	struct mwl_node *mn;
2348 
2349 	mn = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2350 	if (mn == NULL) {
2351 		/* XXX stat+msg */
2352 		return NULL;
2353 	}
2354 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mn %p\n", __func__, mn);
2355 	return &mn->mn_node;
2356 }
2357 
2358 static void
2359 mwl_node_cleanup(struct ieee80211_node *ni)
2360 {
2361 	struct ieee80211com *ic = ni->ni_ic;
2362         struct mwl_softc *sc = ic->ic_ifp->if_softc;
2363 	struct mwl_node *mn = MWL_NODE(ni);
2364 
2365 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p ic %p staid %d\n",
2366 	    __func__, ni, ni->ni_ic, mn->mn_staid);
2367 
2368 	if (mn->mn_staid != 0) {
2369 		struct ieee80211vap *vap = ni->ni_vap;
2370 
2371 		if (mn->mn_hvap != NULL) {
2372 			if (vap->iv_opmode == IEEE80211_M_STA)
2373 				mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr);
2374 			else
2375 				mwl_hal_delstation(mn->mn_hvap, ni->ni_macaddr);
2376 		}
2377 		/*
2378 		 * NB: legacy WDS peer sta db entry is installed using
2379 		 * the associate ap's hvap; use it again to delete it.
2380 		 * XXX can vap be NULL?
2381 		 */
2382 		else if (vap->iv_opmode == IEEE80211_M_WDS &&
2383 		    MWL_VAP(vap)->mv_ap_hvap != NULL)
2384 			mwl_hal_delstation(MWL_VAP(vap)->mv_ap_hvap,
2385 			    ni->ni_macaddr);
2386 		delstaid(sc, mn->mn_staid);
2387 		mn->mn_staid = 0;
2388 	}
2389 	sc->sc_node_cleanup(ni);
2390 }
2391 
2392 /*
2393  * Reclaim rx dma buffers from packets sitting on the ampdu
2394  * reorder queue for a station.  We replace buffers with a
2395  * system cluster (if available).
2396  */
2397 static void
2398 mwl_ampdu_rxdma_reclaim(struct ieee80211_rx_ampdu *rap)
2399 {
2400 #if 0
2401 	int i, n, off;
2402 	struct mbuf *m;
2403 	void *cl;
2404 
2405 	n = rap->rxa_qframes;
2406 	for (i = 0; i < rap->rxa_wnd && n > 0; i++) {
2407 		m = rap->rxa_m[i];
2408 		if (m == NULL)
2409 			continue;
2410 		n--;
2411 		/* our dma buffers have a well-known free routine */
2412 		if ((m->m_flags & M_EXT) == 0 ||
2413 		    m->m_ext.ext_free != mwl_ext_free)
2414 			continue;
2415 		/*
2416 		 * Try to allocate a cluster and move the data.
2417 		 */
2418 		off = m->m_data - m->m_ext.ext_buf;
2419 		if (off + m->m_pkthdr.len > MCLBYTES) {
2420 			/* XXX no AMSDU for now */
2421 			continue;
2422 		}
2423 		cl = pool_cache_get_paddr(&mclpool_cache, 0,
2424 		    &m->m_ext.ext_paddr);
2425 		if (cl != NULL) {
2426 			/*
2427 			 * Copy the existing data to the cluster, remove
2428 			 * the rx dma buffer, and attach the cluster in
2429 			 * its place.  Note we preserve the offset to the
2430 			 * data so frames being bridged can still prepend
2431 			 * their headers without adding another mbuf.
2432 			 */
2433 			memcpy((caddr_t) cl + off, m->m_data, m->m_pkthdr.len);
2434 			MEXTREMOVE(m);
2435 			MEXTADD(m, cl, MCLBYTES, 0, NULL, &mclpool_cache);
2436 			/* setup mbuf like _MCLGET does */
2437 			m->m_flags |= M_CLUSTER | M_EXT_RW;
2438 			_MOWNERREF(m, M_EXT | M_CLUSTER);
2439 			/* NB: m_data is clobbered by MEXTADDR, adjust */
2440 			m->m_data += off;
2441 		}
2442 	}
2443 #endif
2444 }
2445 
2446 /*
2447  * Callback to reclaim resources.  We first let the
2448  * net80211 layer do it's thing, then if we are still
2449  * blocked by a lack of rx dma buffers we walk the ampdu
2450  * reorder q's to reclaim buffers by copying to a system
2451  * cluster.
2452  */
2453 static void
2454 mwl_node_drain(struct ieee80211_node *ni)
2455 {
2456 	struct ieee80211com *ic = ni->ni_ic;
2457         struct mwl_softc *sc = ic->ic_ifp->if_softc;
2458 	struct mwl_node *mn = MWL_NODE(ni);
2459 
2460 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p vap %p staid %d\n",
2461 	    __func__, ni, ni->ni_vap, mn->mn_staid);
2462 
2463 	/* NB: call up first to age out ampdu q's */
2464 	sc->sc_node_drain(ni);
2465 
2466 	/* XXX better to not check low water mark? */
2467 	if (sc->sc_rxblocked && mn->mn_staid != 0 &&
2468 	    (ni->ni_flags & IEEE80211_NODE_HT)) {
2469 		uint8_t tid;
2470 		/*
2471 		 * Walk the reorder q and reclaim rx dma buffers by copying
2472 		 * the packet contents into clusters.
2473 		 */
2474 		for (tid = 0; tid < WME_NUM_TID; tid++) {
2475 			struct ieee80211_rx_ampdu *rap;
2476 
2477 			rap = &ni->ni_rx_ampdu[tid];
2478 			if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
2479 				continue;
2480 			if (rap->rxa_qframes)
2481 				mwl_ampdu_rxdma_reclaim(rap);
2482 		}
2483 	}
2484 }
2485 
2486 static void
2487 mwl_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2488 {
2489 	*rssi = ni->ni_ic->ic_node_getrssi(ni);
2490 #ifdef MWL_ANT_INFO_SUPPORT
2491 #if 0
2492 	/* XXX need to smooth data */
2493 	*noise = -MWL_NODE_CONST(ni)->mn_ai.nf;
2494 #else
2495 	*noise = -95;		/* XXX */
2496 #endif
2497 #else
2498 	*noise = -95;		/* XXX */
2499 #endif
2500 }
2501 
2502 /*
2503  * Convert Hardware per-antenna rssi info to common format:
2504  * Let a1, a2, a3 represent the amplitudes per chain
2505  * Let amax represent max[a1, a2, a3]
2506  * Rssi1_dBm = RSSI_dBm + 20*log10(a1/amax)
2507  * Rssi1_dBm = RSSI_dBm + 20*log10(a1) - 20*log10(amax)
2508  * We store a table that is 4*20*log10(idx) - the extra 4 is to store or
2509  * maintain some extra precision.
2510  *
2511  * Values are stored in .5 db format capped at 127.
2512  */
2513 static void
2514 mwl_node_getmimoinfo(const struct ieee80211_node *ni,
2515 	struct ieee80211_mimo_info *mi)
2516 {
2517 #define	CVT(_dst, _src) do {						\
2518 	(_dst) = rssi + ((logdbtbl[_src] - logdbtbl[rssi_max]) >> 2);	\
2519 	(_dst) = (_dst) > 64 ? 127 : ((_dst) << 1);			\
2520 } while (0)
2521 	static const int8_t logdbtbl[32] = {
2522 	       0,   0,  24,  38,  48,  56,  62,  68,
2523 	      72,  76,  80,  83,  86,  89,  92,  94,
2524 	      96,  98, 100, 102, 104, 106, 107, 109,
2525 	     110, 112, 113, 115, 116, 117, 118, 119
2526 	};
2527 	const struct mwl_node *mn = MWL_NODE_CONST(ni);
2528 	uint8_t rssi = mn->mn_ai.rsvd1/2;		/* XXX */
2529 	uint32_t rssi_max;
2530 
2531 	rssi_max = mn->mn_ai.rssi_a;
2532 	if (mn->mn_ai.rssi_b > rssi_max)
2533 		rssi_max = mn->mn_ai.rssi_b;
2534 	if (mn->mn_ai.rssi_c > rssi_max)
2535 		rssi_max = mn->mn_ai.rssi_c;
2536 
2537 	CVT(mi->rssi[0], mn->mn_ai.rssi_a);
2538 	CVT(mi->rssi[1], mn->mn_ai.rssi_b);
2539 	CVT(mi->rssi[2], mn->mn_ai.rssi_c);
2540 
2541 	mi->noise[0] = mn->mn_ai.nf_a;
2542 	mi->noise[1] = mn->mn_ai.nf_b;
2543 	mi->noise[2] = mn->mn_ai.nf_c;
2544 #undef CVT
2545 }
2546 
2547 static __inline void *
2548 mwl_getrxdma(struct mwl_softc *sc)
2549 {
2550 	struct mwl_jumbo *buf;
2551 	void *data;
2552 
2553 	/*
2554 	 * Allocate from jumbo pool.
2555 	 */
2556 	MWL_RXFREE_LOCK(sc);
2557 	buf = SLIST_FIRST(&sc->sc_rxfree);
2558 	if (buf == NULL) {
2559 		DPRINTF(sc, MWL_DEBUG_ANY,
2560 		    "%s: out of rx dma buffers\n", __func__);
2561 		sc->sc_stats.mst_rx_nodmabuf++;
2562 		data = NULL;
2563 	} else {
2564 		SLIST_REMOVE_HEAD(&sc->sc_rxfree, next);
2565 		sc->sc_nrxfree--;
2566 		data = MWL_JUMBO_BUF2DATA(buf);
2567 	}
2568 	MWL_RXFREE_UNLOCK(sc);
2569 	return data;
2570 }
2571 
2572 static __inline void
2573 mwl_putrxdma(struct mwl_softc *sc, void *data)
2574 {
2575 	struct mwl_jumbo *buf;
2576 
2577 	/* XXX bounds check data */
2578 	MWL_RXFREE_LOCK(sc);
2579 	buf = MWL_JUMBO_DATA2BUF(data);
2580 	SLIST_INSERT_HEAD(&sc->sc_rxfree, buf, next);
2581 	sc->sc_nrxfree++;
2582 	MWL_RXFREE_UNLOCK(sc);
2583 }
2584 
2585 static int
2586 mwl_rxbuf_init(struct mwl_softc *sc, struct mwl_rxbuf *bf)
2587 {
2588 	struct mwl_rxdesc *ds;
2589 
2590 	ds = bf->bf_desc;
2591 	if (bf->bf_data == NULL) {
2592 		bf->bf_data = mwl_getrxdma(sc);
2593 		if (bf->bf_data == NULL) {
2594 			/* mark descriptor to be skipped */
2595 			ds->RxControl = EAGLE_RXD_CTRL_OS_OWN;
2596 			/* NB: don't need PREREAD */
2597 			MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE);
2598 			sc->sc_stats.mst_rxbuf_failed++;
2599 			return ENOMEM;
2600 		}
2601 	}
2602 	/*
2603 	 * NB: DMA buffer contents is known to be unmodified
2604 	 *     so there's no need to flush the data cache.
2605 	 */
2606 
2607 	/*
2608 	 * Setup descriptor.
2609 	 */
2610 	ds->QosCtrl = 0;
2611 	ds->RSSI = 0;
2612 	ds->Status = EAGLE_RXD_STATUS_IDLE;
2613 	ds->Channel = 0;
2614 	ds->PktLen = htole16(MWL_AGGR_SIZE);
2615 	ds->SQ2 = 0;
2616 	ds->pPhysBuffData = htole32(MWL_JUMBO_DMA_ADDR(sc, bf->bf_data));
2617 	/* NB: don't touch pPhysNext, set once */
2618 	ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
2619 	MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2620 
2621 	return 0;
2622 }
2623 
2624 static void
2625 mwl_ext_free(void *data, void *arg)
2626 {
2627 	struct mwl_softc *sc = arg;
2628 
2629 	/* XXX bounds check data */
2630 	mwl_putrxdma(sc, data);
2631 	/*
2632 	 * If we were previously blocked by a lack of rx dma buffers
2633 	 * check if we now have enough to restart rx interrupt handling.
2634 	 * NB: we know we are called at splvm which is above splnet.
2635 	 */
2636 	if (sc->sc_rxblocked && sc->sc_nrxfree > mwl_rxdmalow) {
2637 		sc->sc_rxblocked = 0;
2638 		mwl_hal_intrset(sc->sc_mh, sc->sc_imask);
2639 	}
2640 }
2641 
2642 struct mwl_frame_bar {
2643 	u_int8_t	i_fc[2];
2644 	u_int8_t	i_dur[2];
2645 	u_int8_t	i_ra[IEEE80211_ADDR_LEN];
2646 	u_int8_t	i_ta[IEEE80211_ADDR_LEN];
2647 	/* ctl, seq, FCS */
2648 } __packed;
2649 
2650 /*
2651  * Like ieee80211_anyhdrsize, but handles BAR frames
2652  * specially so the logic below to piece the 802.11
2653  * header together works.
2654  */
2655 static __inline int
2656 mwl_anyhdrsize(const void *data)
2657 {
2658 	const struct ieee80211_frame *wh = data;
2659 
2660 	if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2661 		switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) {
2662 		case IEEE80211_FC0_SUBTYPE_CTS:
2663 		case IEEE80211_FC0_SUBTYPE_ACK:
2664 			return sizeof(struct ieee80211_frame_ack);
2665 		case IEEE80211_FC0_SUBTYPE_BAR:
2666 			return sizeof(struct mwl_frame_bar);
2667 		}
2668 		return sizeof(struct ieee80211_frame_min);
2669 	} else
2670 		return ieee80211_hdrsize(data);
2671 }
2672 
2673 static void
2674 mwl_handlemicerror(struct ieee80211com *ic, const uint8_t *data)
2675 {
2676 	const struct ieee80211_frame *wh;
2677 	struct ieee80211_node *ni;
2678 
2679 	wh = (const struct ieee80211_frame *)(data + sizeof(uint16_t));
2680 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
2681 	if (ni != NULL) {
2682 		ieee80211_notify_michael_failure(ni->ni_vap, wh, 0);
2683 		ieee80211_free_node(ni);
2684 	}
2685 }
2686 
2687 /*
2688  * Convert hardware signal strength to rssi.  The value
2689  * provided by the device has the noise floor added in;
2690  * we need to compensate for this but we don't have that
2691  * so we use a fixed value.
2692  *
2693  * The offset of 8 is good for both 2.4 and 5GHz.  The LNA
2694  * offset is already set as part of the initial gain.  This
2695  * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz.
2696  */
2697 static __inline int
2698 cvtrssi(uint8_t ssi)
2699 {
2700 	int rssi = (int) ssi + 8;
2701 	/* XXX hack guess until we have a real noise floor */
2702 	rssi = 2*(87 - rssi);	/* NB: .5 dBm units */
2703 	return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi);
2704 }
2705 
2706 static void
2707 mwl_rx_proc(void *arg, int npending)
2708 {
2709 #define	IEEE80211_DIR_DSTODS(wh) \
2710 	((((const struct ieee80211_frame *)wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
2711 	struct mwl_softc *sc = arg;
2712 	struct ifnet *ifp = sc->sc_ifp;
2713 	struct ieee80211com *ic = ifp->if_l2com;
2714 	struct mwl_rxbuf *bf;
2715 	struct mwl_rxdesc *ds;
2716 	struct mbuf *m;
2717 	struct ieee80211_qosframe *wh;
2718 	struct ieee80211_qosframe_addr4 *wh4;
2719 	struct ieee80211_node *ni;
2720 	struct mwl_node *mn;
2721 	int off, len, hdrlen, pktlen, rssi, ntodo;
2722 	uint8_t *data, status;
2723 	void *newdata;
2724 	int16_t nf;
2725 
2726 	DPRINTF(sc, MWL_DEBUG_RX_PROC, "%s: pending %u rdptr 0x%x wrptr 0x%x\n",
2727 	    __func__, npending, RD4(sc, sc->sc_hwspecs.rxDescRead),
2728 	    RD4(sc, sc->sc_hwspecs.rxDescWrite));
2729 	nf = -96;			/* XXX */
2730 	bf = sc->sc_rxnext;
2731 	for (ntodo = mwl_rxquota; ntodo > 0; ntodo--) {
2732 		if (bf == NULL)
2733 			bf = STAILQ_FIRST(&sc->sc_rxbuf);
2734 		ds = bf->bf_desc;
2735 		data = bf->bf_data;
2736 		if (data == NULL) {
2737 			/*
2738 			 * If data allocation failed previously there
2739 			 * will be no buffer; try again to re-populate it.
2740 			 * Note the firmware will not advance to the next
2741 			 * descriptor with a dma buffer so we must mimic
2742 			 * this or we'll get out of sync.
2743 			 */
2744 			DPRINTF(sc, MWL_DEBUG_ANY,
2745 			    "%s: rx buf w/o dma memory\n", __func__);
2746 			(void) mwl_rxbuf_init(sc, bf);
2747 			sc->sc_stats.mst_rx_dmabufmissing++;
2748 			break;
2749 		}
2750 		MWL_RXDESC_SYNC(sc, ds,
2751 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2752 		if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN)
2753 			break;
2754 #ifdef MWL_DEBUG
2755 		if (sc->sc_debug & MWL_DEBUG_RECV_DESC)
2756 			mwl_printrxbuf(bf, 0);
2757 #endif
2758 		status = ds->Status;
2759 		if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) {
2760 			ifp->if_ierrors++;
2761 			sc->sc_stats.mst_rx_crypto++;
2762 			/*
2763 			 * NB: Check EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR
2764 			 *     for backwards compatibility.
2765 			 */
2766 			if (status != EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR &&
2767 			    (status & EAGLE_RXD_STATUS_TKIP_MIC_DECRYPT_ERR)) {
2768 				/*
2769 				 * MIC error, notify upper layers.
2770 				 */
2771 				bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap,
2772 				    BUS_DMASYNC_POSTREAD);
2773 				mwl_handlemicerror(ic, data);
2774 				sc->sc_stats.mst_rx_tkipmic++;
2775 			}
2776 			/* XXX too painful to tap packets */
2777 			goto rx_next;
2778 		}
2779 		/*
2780 		 * Sync the data buffer.
2781 		 */
2782 		len = le16toh(ds->PktLen);
2783 		bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD);
2784 		/*
2785 		 * The 802.11 header is provided all or in part at the front;
2786 		 * use it to calculate the true size of the header that we'll
2787 		 * construct below.  We use this to figure out where to copy
2788 		 * payload prior to constructing the header.
2789 		 */
2790 		hdrlen = mwl_anyhdrsize(data + sizeof(uint16_t));
2791 		off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4);
2792 
2793 		/* calculate rssi early so we can re-use for each aggregate */
2794 		rssi = cvtrssi(ds->RSSI);
2795 
2796 		pktlen = hdrlen + (len - off);
2797 		/*
2798 		 * NB: we know our frame is at least as large as
2799 		 * IEEE80211_MIN_LEN because there is a 4-address
2800 		 * frame at the front.  Hence there's no need to
2801 		 * vet the packet length.  If the frame in fact
2802 		 * is too small it should be discarded at the
2803 		 * net80211 layer.
2804 		 */
2805 
2806 		/*
2807 		 * Attach dma buffer to an mbuf.  We tried
2808 		 * doing this based on the packet size (i.e.
2809 		 * copying small packets) but it turns out to
2810 		 * be a net loss.  The tradeoff might be system
2811 		 * dependent (cache architecture is important).
2812 		 */
2813 		MGETHDR(m, M_NOWAIT, MT_DATA);
2814 		if (m == NULL) {
2815 			DPRINTF(sc, MWL_DEBUG_ANY,
2816 			    "%s: no rx mbuf\n", __func__);
2817 			sc->sc_stats.mst_rx_nombuf++;
2818 			goto rx_next;
2819 		}
2820 		/*
2821 		 * Acquire the replacement dma buffer before
2822 		 * processing the frame.  If we're out of dma
2823 		 * buffers we disable rx interrupts and wait
2824 		 * for the free pool to reach mlw_rxdmalow buffers
2825 		 * before starting to do work again.  If the firmware
2826 		 * runs out of descriptors then it will toss frames
2827 		 * which is better than our doing it as that can
2828 		 * starve our processing.  It is also important that
2829 		 * we always process rx'd frames in case they are
2830 		 * A-MPDU as otherwise the host's view of the BA
2831 		 * window may get out of sync with the firmware.
2832 		 */
2833 		newdata = mwl_getrxdma(sc);
2834 		if (newdata == NULL) {
2835 			/* NB: stat+msg in mwl_getrxdma */
2836 			m_free(m);
2837 			/* disable RX interrupt and mark state */
2838 			mwl_hal_intrset(sc->sc_mh,
2839 			    sc->sc_imask &~ MACREG_A2HRIC_BIT_RX_RDY);
2840 			sc->sc_rxblocked = 1;
2841 			ieee80211_drain(ic);
2842 			/* XXX check rxblocked and immediately start again? */
2843 			goto rx_stop;
2844 		}
2845 		bf->bf_data = newdata;
2846 		/*
2847 		 * Attach the dma buffer to the mbuf;
2848 		 * mwl_rxbuf_init will re-setup the rx
2849 		 * descriptor using the replacement dma
2850 		 * buffer we just installed above.
2851 		 */
2852 		MEXTADD(m, data, MWL_AGGR_SIZE, mwl_ext_free,
2853 		    data, sc, 0, EXT_NET_DRV);
2854 		m->m_data += off - hdrlen;
2855 		m->m_pkthdr.len = m->m_len = pktlen;
2856 		m->m_pkthdr.rcvif = ifp;
2857 		/* NB: dma buffer assumed read-only */
2858 
2859 		/*
2860 		 * Piece 802.11 header together.
2861 		 */
2862 		wh = mtod(m, struct ieee80211_qosframe *);
2863 		/* NB: don't need to do this sometimes but ... */
2864 		/* XXX special case so we can memcpy after m_devget? */
2865 		ovbcopy(data + sizeof(uint16_t), wh, hdrlen);
2866 		if (IEEE80211_QOS_HAS_SEQ(wh)) {
2867 			if (IEEE80211_DIR_DSTODS(wh)) {
2868 				wh4 = mtod(m,
2869 				    struct ieee80211_qosframe_addr4*);
2870 				*(uint16_t *)wh4->i_qos = ds->QosCtrl;
2871 			} else {
2872 				*(uint16_t *)wh->i_qos = ds->QosCtrl;
2873 			}
2874 		}
2875 		/*
2876 		 * The f/w strips WEP header but doesn't clear
2877 		 * the WEP bit; mark the packet with M_WEP so
2878 		 * net80211 will treat the data as decrypted.
2879 		 * While here also clear the PWR_MGT bit since
2880 		 * power save is handled by the firmware and
2881 		 * passing this up will potentially cause the
2882 		 * upper layer to put a station in power save
2883 		 * (except when configured with MWL_HOST_PS_SUPPORT).
2884 		 */
2885 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2886 			m->m_flags |= M_WEP;
2887 #ifdef MWL_HOST_PS_SUPPORT
2888 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2889 #else
2890 		wh->i_fc[1] &= ~(IEEE80211_FC1_WEP | IEEE80211_FC1_PWR_MGT);
2891 #endif
2892 
2893 		if (ieee80211_radiotap_active(ic)) {
2894 			struct mwl_rx_radiotap_header *tap = &sc->sc_rx_th;
2895 
2896 			tap->wr_flags = 0;
2897 			tap->wr_rate = ds->Rate;
2898 			tap->wr_antsignal = rssi + nf;
2899 			tap->wr_antnoise = nf;
2900 		}
2901 		if (IFF_DUMPPKTS_RECV(sc, wh)) {
2902 			ieee80211_dump_pkt(ic, mtod(m, caddr_t),
2903 			    len, ds->Rate, rssi);
2904 		}
2905 		ifp->if_ipackets++;
2906 
2907 		/* dispatch */
2908 		ni = ieee80211_find_rxnode(ic,
2909 		    (const struct ieee80211_frame_min *) wh);
2910 		if (ni != NULL) {
2911 			mn = MWL_NODE(ni);
2912 #ifdef MWL_ANT_INFO_SUPPORT
2913 			mn->mn_ai.rssi_a = ds->ai.rssi_a;
2914 			mn->mn_ai.rssi_b = ds->ai.rssi_b;
2915 			mn->mn_ai.rssi_c = ds->ai.rssi_c;
2916 			mn->mn_ai.rsvd1 = rssi;
2917 #endif
2918 			/* tag AMPDU aggregates for reorder processing */
2919 			if (ni->ni_flags & IEEE80211_NODE_HT)
2920 				m->m_flags |= M_AMPDU;
2921 			(void) ieee80211_input(ni, m, rssi, nf);
2922 			ieee80211_free_node(ni);
2923 		} else
2924 			(void) ieee80211_input_all(ic, m, rssi, nf);
2925 rx_next:
2926 		/* NB: ignore ENOMEM so we process more descriptors */
2927 		(void) mwl_rxbuf_init(sc, bf);
2928 		bf = STAILQ_NEXT(bf, bf_list);
2929 	}
2930 rx_stop:
2931 	sc->sc_rxnext = bf;
2932 
2933 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2934 	    !IFQ_IS_EMPTY(&ifp->if_snd)) {
2935 		/* NB: kick fw; the tx thread may have been preempted */
2936 		mwl_hal_txstart(sc->sc_mh, 0);
2937 		mwl_start(ifp);
2938 	}
2939 #undef IEEE80211_DIR_DSTODS
2940 }
2941 
2942 static void
2943 mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *txq, int qnum)
2944 {
2945 	struct mwl_txbuf *bf, *bn;
2946 	struct mwl_txdesc *ds;
2947 
2948 	MWL_TXQ_LOCK_INIT(sc, txq);
2949 	txq->qnum = qnum;
2950 	txq->txpri = 0;	/* XXX */
2951 #if 0
2952 	/* NB: q setup by mwl_txdma_setup XXX */
2953 	STAILQ_INIT(&txq->free);
2954 #endif
2955 	STAILQ_FOREACH(bf, &txq->free, bf_list) {
2956 		bf->bf_txq = txq;
2957 
2958 		ds = bf->bf_desc;
2959 		bn = STAILQ_NEXT(bf, bf_list);
2960 		if (bn == NULL)
2961 			bn = STAILQ_FIRST(&txq->free);
2962 		ds->pPhysNext = htole32(bn->bf_daddr);
2963 	}
2964 	STAILQ_INIT(&txq->active);
2965 }
2966 
2967 /*
2968  * Setup a hardware data transmit queue for the specified
2969  * access control.  We record the mapping from ac's
2970  * to h/w queues for use by mwl_tx_start.
2971  */
2972 static int
2973 mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype)
2974 {
2975 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2976 	struct mwl_txq *txq;
2977 
2978 	if (ac >= N(sc->sc_ac2q)) {
2979 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2980 			ac, N(sc->sc_ac2q));
2981 		return 0;
2982 	}
2983 	if (mvtype >= MWL_NUM_TX_QUEUES) {
2984 		device_printf(sc->sc_dev, "mvtype %u out of range, max %u!\n",
2985 			mvtype, MWL_NUM_TX_QUEUES);
2986 		return 0;
2987 	}
2988 	txq = &sc->sc_txq[mvtype];
2989 	mwl_txq_init(sc, txq, mvtype);
2990 	sc->sc_ac2q[ac] = txq;
2991 	return 1;
2992 #undef N
2993 }
2994 
2995 /*
2996  * Update WME parameters for a transmit queue.
2997  */
2998 static int
2999 mwl_txq_update(struct mwl_softc *sc, int ac)
3000 {
3001 #define	MWL_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3002 	struct ifnet *ifp = sc->sc_ifp;
3003 	struct ieee80211com *ic = ifp->if_l2com;
3004 	struct mwl_txq *txq = sc->sc_ac2q[ac];
3005 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3006 	struct mwl_hal *mh = sc->sc_mh;
3007 	int aifs, cwmin, cwmax, txoplim;
3008 
3009 	aifs = wmep->wmep_aifsn;
3010 	/* XXX in sta mode need to pass log values for cwmin/max */
3011 	cwmin = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3012 	cwmax = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3013 	txoplim = wmep->wmep_txopLimit;		/* NB: units of 32us */
3014 
3015 	if (mwl_hal_setedcaparams(mh, txq->qnum, cwmin, cwmax, aifs, txoplim)) {
3016 		device_printf(sc->sc_dev, "unable to update hardware queue "
3017 			"parameters for %s traffic!\n",
3018 			ieee80211_wme_acnames[ac]);
3019 		return 0;
3020 	}
3021 	return 1;
3022 #undef MWL_EXPONENT_TO_VALUE
3023 }
3024 
3025 /*
3026  * Callback from the 802.11 layer to update WME parameters.
3027  */
3028 static int
3029 mwl_wme_update(struct ieee80211com *ic)
3030 {
3031 	struct mwl_softc *sc = ic->ic_ifp->if_softc;
3032 
3033 	return !mwl_txq_update(sc, WME_AC_BE) ||
3034 	    !mwl_txq_update(sc, WME_AC_BK) ||
3035 	    !mwl_txq_update(sc, WME_AC_VI) ||
3036 	    !mwl_txq_update(sc, WME_AC_VO) ? EIO : 0;
3037 }
3038 
3039 /*
3040  * Reclaim resources for a setup queue.
3041  */
3042 static void
3043 mwl_tx_cleanupq(struct mwl_softc *sc, struct mwl_txq *txq)
3044 {
3045 	/* XXX hal work? */
3046 	MWL_TXQ_LOCK_DESTROY(txq);
3047 }
3048 
3049 /*
3050  * Reclaim all tx queue resources.
3051  */
3052 static void
3053 mwl_tx_cleanup(struct mwl_softc *sc)
3054 {
3055 	int i;
3056 
3057 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3058 		mwl_tx_cleanupq(sc, &sc->sc_txq[i]);
3059 }
3060 
3061 static int
3062 mwl_tx_dmasetup(struct mwl_softc *sc, struct mwl_txbuf *bf, struct mbuf *m0)
3063 {
3064 	struct mbuf *m;
3065 	int error;
3066 
3067 	/*
3068 	 * Load the DMA map so any coalescing is done.  This
3069 	 * also calculates the number of descriptors we need.
3070 	 */
3071 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3072 				     bf->bf_segs, &bf->bf_nseg,
3073 				     BUS_DMA_NOWAIT);
3074 	if (error == EFBIG) {
3075 		/* XXX packet requires too many descriptors */
3076 		bf->bf_nseg = MWL_TXDESC+1;
3077 	} else if (error != 0) {
3078 		sc->sc_stats.mst_tx_busdma++;
3079 		m_freem(m0);
3080 		return error;
3081 	}
3082 	/*
3083 	 * Discard null packets and check for packets that
3084 	 * require too many TX descriptors.  We try to convert
3085 	 * the latter to a cluster.
3086 	 */
3087 	if (error == EFBIG) {		/* too many desc's, linearize */
3088 		sc->sc_stats.mst_tx_linear++;
3089 #if MWL_TXDESC > 1
3090 		m = m_collapse(m0, M_NOWAIT, MWL_TXDESC);
3091 #else
3092 		m = m_defrag(m0, M_NOWAIT);
3093 #endif
3094 		if (m == NULL) {
3095 			m_freem(m0);
3096 			sc->sc_stats.mst_tx_nombuf++;
3097 			return ENOMEM;
3098 		}
3099 		m0 = m;
3100 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3101 					     bf->bf_segs, &bf->bf_nseg,
3102 					     BUS_DMA_NOWAIT);
3103 		if (error != 0) {
3104 			sc->sc_stats.mst_tx_busdma++;
3105 			m_freem(m0);
3106 			return error;
3107 		}
3108 		KASSERT(bf->bf_nseg <= MWL_TXDESC,
3109 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3110 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3111 		sc->sc_stats.mst_tx_nodata++;
3112 		m_freem(m0);
3113 		return EIO;
3114 	}
3115 	DPRINTF(sc, MWL_DEBUG_XMIT, "%s: m %p len %u\n",
3116 		__func__, m0, m0->m_pkthdr.len);
3117 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3118 	bf->bf_m = m0;
3119 
3120 	return 0;
3121 }
3122 
3123 static __inline int
3124 mwl_cvtlegacyrate(int rate)
3125 {
3126 	switch (rate) {
3127 	case 2:	 return 0;
3128 	case 4:	 return 1;
3129 	case 11: return 2;
3130 	case 22: return 3;
3131 	case 44: return 4;
3132 	case 12: return 5;
3133 	case 18: return 6;
3134 	case 24: return 7;
3135 	case 36: return 8;
3136 	case 48: return 9;
3137 	case 72: return 10;
3138 	case 96: return 11;
3139 	case 108:return 12;
3140 	}
3141 	return 0;
3142 }
3143 
3144 /*
3145  * Calculate fixed tx rate information per client state;
3146  * this value is suitable for writing to the Format field
3147  * of a tx descriptor.
3148  */
3149 static uint16_t
3150 mwl_calcformat(uint8_t rate, const struct ieee80211_node *ni)
3151 {
3152 	uint16_t fmt;
3153 
3154 	fmt = SM(3, EAGLE_TXD_ANTENNA)
3155 	    | (IEEE80211_IS_CHAN_HT40D(ni->ni_chan) ?
3156 		EAGLE_TXD_EXTCHAN_LO : EAGLE_TXD_EXTCHAN_HI);
3157 	if (rate & IEEE80211_RATE_MCS) {	/* HT MCS */
3158 		fmt |= EAGLE_TXD_FORMAT_HT
3159 		    /* NB: 0x80 implicitly stripped from ucastrate */
3160 		    | SM(rate, EAGLE_TXD_RATE);
3161 		/* XXX short/long GI may be wrong; re-check */
3162 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
3163 			fmt |= EAGLE_TXD_CHW_40
3164 			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 ?
3165 			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3166 		} else {
3167 			fmt |= EAGLE_TXD_CHW_20
3168 			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 ?
3169 			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3170 		}
3171 	} else {			/* legacy rate */
3172 		fmt |= EAGLE_TXD_FORMAT_LEGACY
3173 		    | SM(mwl_cvtlegacyrate(rate), EAGLE_TXD_RATE)
3174 		    | EAGLE_TXD_CHW_20
3175 		    /* XXX iv_flags & IEEE80211_F_SHPREAMBLE? */
3176 		    | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE ?
3177 			EAGLE_TXD_PREAMBLE_SHORT : EAGLE_TXD_PREAMBLE_LONG);
3178 	}
3179 	return fmt;
3180 }
3181 
3182 static int
3183 mwl_tx_start(struct mwl_softc *sc, struct ieee80211_node *ni, struct mwl_txbuf *bf,
3184     struct mbuf *m0)
3185 {
3186 #define	IEEE80211_DIR_DSTODS(wh) \
3187 	((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
3188 	struct ifnet *ifp = sc->sc_ifp;
3189 	struct ieee80211com *ic = ifp->if_l2com;
3190 	struct ieee80211vap *vap = ni->ni_vap;
3191 	int error, iswep, ismcast;
3192 	int hdrlen, copyhdrlen, pktlen;
3193 	struct mwl_txdesc *ds;
3194 	struct mwl_txq *txq;
3195 	struct ieee80211_frame *wh;
3196 	struct mwltxrec *tr;
3197 	struct mwl_node *mn;
3198 	uint16_t qos;
3199 #if MWL_TXDESC > 1
3200 	int i;
3201 #endif
3202 
3203 	wh = mtod(m0, struct ieee80211_frame *);
3204 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3205 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3206 	hdrlen = ieee80211_anyhdrsize(wh);
3207 	copyhdrlen = hdrlen;
3208 	pktlen = m0->m_pkthdr.len;
3209 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3210 		if (IEEE80211_DIR_DSTODS(wh)) {
3211 			qos = *(uint16_t *)
3212 			    (((struct ieee80211_qosframe_addr4 *) wh)->i_qos);
3213 			copyhdrlen -= sizeof(qos);
3214 		} else
3215 			qos = *(uint16_t *)
3216 			    (((struct ieee80211_qosframe *) wh)->i_qos);
3217 	} else
3218 		qos = 0;
3219 
3220 	if (iswep) {
3221 		const struct ieee80211_cipher *cip;
3222 		struct ieee80211_key *k;
3223 
3224 		/*
3225 		 * Construct the 802.11 header+trailer for an encrypted
3226 		 * frame. The only reason this can fail is because of an
3227 		 * unknown or unsupported cipher/key type.
3228 		 *
3229 		 * NB: we do this even though the firmware will ignore
3230 		 *     what we've done for WEP and TKIP as we need the
3231 		 *     ExtIV filled in for CCMP and this also adjusts
3232 		 *     the headers which simplifies our work below.
3233 		 */
3234 		k = ieee80211_crypto_encap(ni, m0);
3235 		if (k == NULL) {
3236 			/*
3237 			 * This can happen when the key is yanked after the
3238 			 * frame was queued.  Just discard the frame; the
3239 			 * 802.11 layer counts failures and provides
3240 			 * debugging/diagnostics.
3241 			 */
3242 			m_freem(m0);
3243 			return EIO;
3244 		}
3245 		/*
3246 		 * Adjust the packet length for the crypto additions
3247 		 * done during encap and any other bits that the f/w
3248 		 * will add later on.
3249 		 */
3250 		cip = k->wk_cipher;
3251 		pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer;
3252 
3253 		/* packet header may have moved, reset our local pointer */
3254 		wh = mtod(m0, struct ieee80211_frame *);
3255 	}
3256 
3257 	if (ieee80211_radiotap_active_vap(vap)) {
3258 		sc->sc_tx_th.wt_flags = 0;	/* XXX */
3259 		if (iswep)
3260 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3261 #if 0
3262 		sc->sc_tx_th.wt_rate = ds->DataRate;
3263 #endif
3264 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3265 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3266 
3267 		ieee80211_radiotap_tx(vap, m0);
3268 	}
3269 	/*
3270 	 * Copy up/down the 802.11 header; the firmware requires
3271 	 * we present a 2-byte payload length followed by a
3272 	 * 4-address header (w/o QoS), followed (optionally) by
3273 	 * any WEP/ExtIV header (but only filled in for CCMP).
3274 	 * We are assured the mbuf has sufficient headroom to
3275 	 * prepend in-place by the setup of ic_headroom in
3276 	 * mwl_attach.
3277 	 */
3278 	if (hdrlen < sizeof(struct mwltxrec)) {
3279 		const int space = sizeof(struct mwltxrec) - hdrlen;
3280 		if (M_LEADINGSPACE(m0) < space) {
3281 			/* NB: should never happen */
3282 			device_printf(sc->sc_dev,
3283 			    "not enough headroom, need %d found %zd, "
3284 			    "m_flags 0x%x m_len %d\n",
3285 			    space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len);
3286 			ieee80211_dump_pkt(ic,
3287 			    mtod(m0, const uint8_t *), m0->m_len, 0, -1);
3288 			m_freem(m0);
3289 			sc->sc_stats.mst_tx_noheadroom++;
3290 			return EIO;
3291 		}
3292 		M_PREPEND(m0, space, M_NOWAIT);
3293 	}
3294 	tr = mtod(m0, struct mwltxrec *);
3295 	if (wh != (struct ieee80211_frame *) &tr->wh)
3296 		ovbcopy(wh, &tr->wh, hdrlen);
3297 	/*
3298 	 * Note: the "firmware length" is actually the length
3299 	 * of the fully formed "802.11 payload".  That is, it's
3300 	 * everything except for the 802.11 header.  In particular
3301 	 * this includes all crypto material including the MIC!
3302 	 */
3303 	tr->fwlen = htole16(pktlen - hdrlen);
3304 
3305 	/*
3306 	 * Load the DMA map so any coalescing is done.  This
3307 	 * also calculates the number of descriptors we need.
3308 	 */
3309 	error = mwl_tx_dmasetup(sc, bf, m0);
3310 	if (error != 0) {
3311 		/* NB: stat collected in mwl_tx_dmasetup */
3312 		DPRINTF(sc, MWL_DEBUG_XMIT,
3313 		    "%s: unable to setup dma\n", __func__);
3314 		return error;
3315 	}
3316 	bf->bf_node = ni;			/* NB: held reference */
3317 	m0 = bf->bf_m;				/* NB: may have changed */
3318 	tr = mtod(m0, struct mwltxrec *);
3319 	wh = (struct ieee80211_frame *)&tr->wh;
3320 
3321 	/*
3322 	 * Formulate tx descriptor.
3323 	 */
3324 	ds = bf->bf_desc;
3325 	txq = bf->bf_txq;
3326 
3327 	ds->QosCtrl = qos;			/* NB: already little-endian */
3328 #if MWL_TXDESC == 1
3329 	/*
3330 	 * NB: multiframes should be zero because the descriptors
3331 	 *     are initialized to zero.  This should handle the case
3332 	 *     where the driver is built with MWL_TXDESC=1 but we are
3333 	 *     using firmware with multi-segment support.
3334 	 */
3335 	ds->PktPtr = htole32(bf->bf_segs[0].ds_addr);
3336 	ds->PktLen = htole16(bf->bf_segs[0].ds_len);
3337 #else
3338 	ds->multiframes = htole32(bf->bf_nseg);
3339 	ds->PktLen = htole16(m0->m_pkthdr.len);
3340 	for (i = 0; i < bf->bf_nseg; i++) {
3341 		ds->PktPtrArray[i] = htole32(bf->bf_segs[i].ds_addr);
3342 		ds->PktLenArray[i] = htole16(bf->bf_segs[i].ds_len);
3343 	}
3344 #endif
3345 	/* NB: pPhysNext, DataRate, and SapPktInfo setup once, don't touch */
3346 	ds->Format = 0;
3347 	ds->pad = 0;
3348 	ds->ack_wcb_addr = 0;
3349 
3350 	mn = MWL_NODE(ni);
3351 	/*
3352 	 * Select transmit rate.
3353 	 */
3354 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3355 	case IEEE80211_FC0_TYPE_MGT:
3356 		sc->sc_stats.mst_tx_mgmt++;
3357 		/* fall thru... */
3358 	case IEEE80211_FC0_TYPE_CTL:
3359 		/* NB: assign to BE q to avoid bursting */
3360 		ds->TxPriority = MWL_WME_AC_BE;
3361 		break;
3362 	case IEEE80211_FC0_TYPE_DATA:
3363 		if (!ismcast) {
3364 			const struct ieee80211_txparam *tp = ni->ni_txparms;
3365 			/*
3366 			 * EAPOL frames get forced to a fixed rate and w/o
3367 			 * aggregation; otherwise check for any fixed rate
3368 			 * for the client (may depend on association state).
3369 			 */
3370 			if (m0->m_flags & M_EAPOL) {
3371 				const struct mwl_vap *mvp = MWL_VAP_CONST(vap);
3372 				ds->Format = mvp->mv_eapolformat;
3373 				ds->pad = htole16(
3374 				    EAGLE_TXD_FIXED_RATE | EAGLE_TXD_DONT_AGGR);
3375 			} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3376 				/* XXX pre-calculate per node */
3377 				ds->Format = htole16(
3378 				    mwl_calcformat(tp->ucastrate, ni));
3379 				ds->pad = htole16(EAGLE_TXD_FIXED_RATE);
3380 			}
3381 			/* NB: EAPOL frames will never have qos set */
3382 			if (qos == 0)
3383 				ds->TxPriority = txq->qnum;
3384 #if MWL_MAXBA > 3
3385 			else if (mwl_bastream_match(&mn->mn_ba[3], qos))
3386 				ds->TxPriority = mn->mn_ba[3].txq;
3387 #endif
3388 #if MWL_MAXBA > 2
3389 			else if (mwl_bastream_match(&mn->mn_ba[2], qos))
3390 				ds->TxPriority = mn->mn_ba[2].txq;
3391 #endif
3392 #if MWL_MAXBA > 1
3393 			else if (mwl_bastream_match(&mn->mn_ba[1], qos))
3394 				ds->TxPriority = mn->mn_ba[1].txq;
3395 #endif
3396 #if MWL_MAXBA > 0
3397 			else if (mwl_bastream_match(&mn->mn_ba[0], qos))
3398 				ds->TxPriority = mn->mn_ba[0].txq;
3399 #endif
3400 			else
3401 				ds->TxPriority = txq->qnum;
3402 		} else
3403 			ds->TxPriority = txq->qnum;
3404 		break;
3405 	default:
3406 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3407 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3408 		sc->sc_stats.mst_tx_badframetype++;
3409 		m_freem(m0);
3410 		return EIO;
3411 	}
3412 
3413 	if (IFF_DUMPPKTS_XMIT(sc))
3414 		ieee80211_dump_pkt(ic,
3415 		    mtod(m0, const uint8_t *)+sizeof(uint16_t),
3416 		    m0->m_len - sizeof(uint16_t), ds->DataRate, -1);
3417 
3418 	MWL_TXQ_LOCK(txq);
3419 	ds->Status = htole32(EAGLE_TXD_STATUS_FW_OWNED);
3420 	STAILQ_INSERT_TAIL(&txq->active, bf, bf_list);
3421 	MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3422 
3423 	ifp->if_opackets++;
3424 	sc->sc_tx_timer = 5;
3425 	MWL_TXQ_UNLOCK(txq);
3426 
3427 	return 0;
3428 #undef	IEEE80211_DIR_DSTODS
3429 }
3430 
3431 static __inline int
3432 mwl_cvtlegacyrix(int rix)
3433 {
3434 #define	N(x)	(sizeof(x)/sizeof(x[0]))
3435 	static const int ieeerates[] =
3436 	    { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 };
3437 	return (rix < N(ieeerates) ? ieeerates[rix] : 0);
3438 #undef N
3439 }
3440 
3441 /*
3442  * Process completed xmit descriptors from the specified queue.
3443  */
3444 static int
3445 mwl_tx_processq(struct mwl_softc *sc, struct mwl_txq *txq)
3446 {
3447 #define	EAGLE_TXD_STATUS_MCAST \
3448 	(EAGLE_TXD_STATUS_MULTICAST_TX | EAGLE_TXD_STATUS_BROADCAST_TX)
3449 	struct ifnet *ifp = sc->sc_ifp;
3450 	struct ieee80211com *ic = ifp->if_l2com;
3451 	struct mwl_txbuf *bf;
3452 	struct mwl_txdesc *ds;
3453 	struct ieee80211_node *ni;
3454 	struct mwl_node *an;
3455 	int nreaped;
3456 	uint32_t status;
3457 
3458 	DPRINTF(sc, MWL_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum);
3459 	for (nreaped = 0;; nreaped++) {
3460 		MWL_TXQ_LOCK(txq);
3461 		bf = STAILQ_FIRST(&txq->active);
3462 		if (bf == NULL) {
3463 			MWL_TXQ_UNLOCK(txq);
3464 			break;
3465 		}
3466 		ds = bf->bf_desc;
3467 		MWL_TXDESC_SYNC(txq, ds,
3468 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3469 		if (ds->Status & htole32(EAGLE_TXD_STATUS_FW_OWNED)) {
3470 			MWL_TXQ_UNLOCK(txq);
3471 			break;
3472 		}
3473 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3474 		MWL_TXQ_UNLOCK(txq);
3475 
3476 #ifdef MWL_DEBUG
3477 		if (sc->sc_debug & MWL_DEBUG_XMIT_DESC)
3478 			mwl_printtxbuf(bf, txq->qnum, nreaped);
3479 #endif
3480 		ni = bf->bf_node;
3481 		if (ni != NULL) {
3482 			an = MWL_NODE(ni);
3483 			status = le32toh(ds->Status);
3484 			if (status & EAGLE_TXD_STATUS_OK) {
3485 				uint16_t Format = le16toh(ds->Format);
3486 				uint8_t txant = MS(Format, EAGLE_TXD_ANTENNA);
3487 
3488 				sc->sc_stats.mst_ant_tx[txant]++;
3489 				if (status & EAGLE_TXD_STATUS_OK_RETRY)
3490 					sc->sc_stats.mst_tx_retries++;
3491 				if (status & EAGLE_TXD_STATUS_OK_MORE_RETRY)
3492 					sc->sc_stats.mst_tx_mretries++;
3493 				if (txq->qnum >= MWL_WME_AC_VO)
3494 					ic->ic_wme.wme_hipri_traffic++;
3495 				ni->ni_txrate = MS(Format, EAGLE_TXD_RATE);
3496 				if ((Format & EAGLE_TXD_FORMAT_HT) == 0) {
3497 					ni->ni_txrate = mwl_cvtlegacyrix(
3498 					    ni->ni_txrate);
3499 				} else
3500 					ni->ni_txrate |= IEEE80211_RATE_MCS;
3501 				sc->sc_stats.mst_tx_rate = ni->ni_txrate;
3502 			} else {
3503 				if (status & EAGLE_TXD_STATUS_FAILED_LINK_ERROR)
3504 					sc->sc_stats.mst_tx_linkerror++;
3505 				if (status & EAGLE_TXD_STATUS_FAILED_XRETRY)
3506 					sc->sc_stats.mst_tx_xretries++;
3507 				if (status & EAGLE_TXD_STATUS_FAILED_AGING)
3508 					sc->sc_stats.mst_tx_aging++;
3509 				if (bf->bf_m->m_flags & M_FF)
3510 					sc->sc_stats.mst_ff_txerr++;
3511 			}
3512 			/*
3513 			 * Do any tx complete callback.  Note this must
3514 			 * be done before releasing the node reference.
3515 			 * XXX no way to figure out if frame was ACK'd
3516 			 */
3517 			if (bf->bf_m->m_flags & M_TXCB) {
3518 				/* XXX strip fw len in case header inspected */
3519 				m_adj(bf->bf_m, sizeof(uint16_t));
3520 				ieee80211_process_callback(ni, bf->bf_m,
3521 					(status & EAGLE_TXD_STATUS_OK) == 0);
3522 			}
3523 			/*
3524 			 * Reclaim reference to node.
3525 			 *
3526 			 * NB: the node may be reclaimed here if, for example
3527 			 *     this is a DEAUTH message that was sent and the
3528 			 *     node was timed out due to inactivity.
3529 			 */
3530 			ieee80211_free_node(ni);
3531 		}
3532 		ds->Status = htole32(EAGLE_TXD_STATUS_IDLE);
3533 
3534 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3535 		    BUS_DMASYNC_POSTWRITE);
3536 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3537 		m_freem(bf->bf_m);
3538 
3539 		mwl_puttxbuf_tail(txq, bf);
3540 	}
3541 	return nreaped;
3542 #undef EAGLE_TXD_STATUS_MCAST
3543 }
3544 
3545 /*
3546  * Deferred processing of transmit interrupt; special-cased
3547  * for four hardware queues, 0-3.
3548  */
3549 static void
3550 mwl_tx_proc(void *arg, int npending)
3551 {
3552 	struct mwl_softc *sc = arg;
3553 	struct ifnet *ifp = sc->sc_ifp;
3554 	int nreaped;
3555 
3556 	/*
3557 	 * Process each active queue.
3558 	 */
3559 	nreaped = 0;
3560 	if (!STAILQ_EMPTY(&sc->sc_txq[0].active))
3561 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[0]);
3562 	if (!STAILQ_EMPTY(&sc->sc_txq[1].active))
3563 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[1]);
3564 	if (!STAILQ_EMPTY(&sc->sc_txq[2].active))
3565 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[2]);
3566 	if (!STAILQ_EMPTY(&sc->sc_txq[3].active))
3567 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[3]);
3568 
3569 	if (nreaped != 0) {
3570 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3571 		sc->sc_tx_timer = 0;
3572 		if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
3573 			/* NB: kick fw; the tx thread may have been preempted */
3574 			mwl_hal_txstart(sc->sc_mh, 0);
3575 			mwl_start(ifp);
3576 		}
3577 	}
3578 }
3579 
3580 static void
3581 mwl_tx_draintxq(struct mwl_softc *sc, struct mwl_txq *txq)
3582 {
3583 	struct ieee80211_node *ni;
3584 	struct mwl_txbuf *bf;
3585 	u_int ix;
3586 
3587 	/*
3588 	 * NB: this assumes output has been stopped and
3589 	 *     we do not need to block mwl_tx_tasklet
3590 	 */
3591 	for (ix = 0;; ix++) {
3592 		MWL_TXQ_LOCK(txq);
3593 		bf = STAILQ_FIRST(&txq->active);
3594 		if (bf == NULL) {
3595 			MWL_TXQ_UNLOCK(txq);
3596 			break;
3597 		}
3598 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3599 		MWL_TXQ_UNLOCK(txq);
3600 #ifdef MWL_DEBUG
3601 		if (sc->sc_debug & MWL_DEBUG_RESET) {
3602 			struct ifnet *ifp = sc->sc_ifp;
3603 			struct ieee80211com *ic = ifp->if_l2com;
3604 			const struct mwltxrec *tr =
3605 			    mtod(bf->bf_m, const struct mwltxrec *);
3606 			mwl_printtxbuf(bf, txq->qnum, ix);
3607 			ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh,
3608 				bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1);
3609 		}
3610 #endif /* MWL_DEBUG */
3611 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3612 		ni = bf->bf_node;
3613 		if (ni != NULL) {
3614 			/*
3615 			 * Reclaim node reference.
3616 			 */
3617 			ieee80211_free_node(ni);
3618 		}
3619 		m_freem(bf->bf_m);
3620 
3621 		mwl_puttxbuf_tail(txq, bf);
3622 	}
3623 }
3624 
3625 /*
3626  * Drain the transmit queues and reclaim resources.
3627  */
3628 static void
3629 mwl_draintxq(struct mwl_softc *sc)
3630 {
3631 	struct ifnet *ifp = sc->sc_ifp;
3632 	int i;
3633 
3634 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3635 		mwl_tx_draintxq(sc, &sc->sc_txq[i]);
3636 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3637 	sc->sc_tx_timer = 0;
3638 }
3639 
3640 #ifdef MWL_DIAGAPI
3641 /*
3642  * Reset the transmit queues to a pristine state after a fw download.
3643  */
3644 static void
3645 mwl_resettxq(struct mwl_softc *sc)
3646 {
3647 	int i;
3648 
3649 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3650 		mwl_txq_reset(sc, &sc->sc_txq[i]);
3651 }
3652 #endif /* MWL_DIAGAPI */
3653 
3654 /*
3655  * Clear the transmit queues of any frames submitted for the
3656  * specified vap.  This is done when the vap is deleted so we
3657  * don't potentially reference the vap after it is gone.
3658  * Note we cannot remove the frames; we only reclaim the node
3659  * reference.
3660  */
3661 static void
3662 mwl_cleartxq(struct mwl_softc *sc, struct ieee80211vap *vap)
3663 {
3664 	struct mwl_txq *txq;
3665 	struct mwl_txbuf *bf;
3666 	int i;
3667 
3668 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
3669 		txq = &sc->sc_txq[i];
3670 		MWL_TXQ_LOCK(txq);
3671 		STAILQ_FOREACH(bf, &txq->active, bf_list) {
3672 			struct ieee80211_node *ni = bf->bf_node;
3673 			if (ni != NULL && ni->ni_vap == vap) {
3674 				bf->bf_node = NULL;
3675 				ieee80211_free_node(ni);
3676 			}
3677 		}
3678 		MWL_TXQ_UNLOCK(txq);
3679 	}
3680 }
3681 
3682 static int
3683 mwl_recv_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
3684 	const uint8_t *frm, const uint8_t *efrm)
3685 {
3686 	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3687 	const struct ieee80211_action *ia;
3688 
3689 	ia = (const struct ieee80211_action *) frm;
3690 	if (ia->ia_category == IEEE80211_ACTION_CAT_HT &&
3691 	    ia->ia_action == IEEE80211_ACTION_HT_MIMOPWRSAVE) {
3692 		const struct ieee80211_action_ht_mimopowersave *mps =
3693 		    (const struct ieee80211_action_ht_mimopowersave *) ia;
3694 
3695 		mwl_hal_setmimops(sc->sc_mh, ni->ni_macaddr,
3696 		    mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA,
3697 		    MS(mps->am_control, IEEE80211_A_HT_MIMOPWRSAVE_MODE));
3698 		return 0;
3699 	} else
3700 		return sc->sc_recv_action(ni, wh, frm, efrm);
3701 }
3702 
3703 static int
3704 mwl_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3705 	int dialogtoken, int baparamset, int batimeout)
3706 {
3707 	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3708 	struct ieee80211vap *vap = ni->ni_vap;
3709 	struct mwl_node *mn = MWL_NODE(ni);
3710 	struct mwl_bastate *bas;
3711 
3712 	bas = tap->txa_private;
3713 	if (bas == NULL) {
3714 		const MWL_HAL_BASTREAM *sp;
3715 		/*
3716 		 * Check for a free BA stream slot.
3717 		 */
3718 #if MWL_MAXBA > 3
3719 		if (mn->mn_ba[3].bastream == NULL)
3720 			bas = &mn->mn_ba[3];
3721 		else
3722 #endif
3723 #if MWL_MAXBA > 2
3724 		if (mn->mn_ba[2].bastream == NULL)
3725 			bas = &mn->mn_ba[2];
3726 		else
3727 #endif
3728 #if MWL_MAXBA > 1
3729 		if (mn->mn_ba[1].bastream == NULL)
3730 			bas = &mn->mn_ba[1];
3731 		else
3732 #endif
3733 #if MWL_MAXBA > 0
3734 		if (mn->mn_ba[0].bastream == NULL)
3735 			bas = &mn->mn_ba[0];
3736 		else
3737 #endif
3738 		{
3739 			/* sta already has max BA streams */
3740 			/* XXX assign BA stream to highest priority tid */
3741 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3742 			    "%s: already has max bastreams\n", __func__);
3743 			sc->sc_stats.mst_ampdu_reject++;
3744 			return 0;
3745 		}
3746 		/* NB: no held reference to ni */
3747 		sp = mwl_hal_bastream_alloc(MWL_VAP(vap)->mv_hvap,
3748 		    (baparamset & IEEE80211_BAPS_POLICY_IMMEDIATE) != 0,
3749 		    ni->ni_macaddr, tap->txa_tid, ni->ni_htparam,
3750 		    ni, tap);
3751 		if (sp == NULL) {
3752 			/*
3753 			 * No available stream, return 0 so no
3754 			 * a-mpdu aggregation will be done.
3755 			 */
3756 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3757 			    "%s: no bastream available\n", __func__);
3758 			sc->sc_stats.mst_ampdu_nostream++;
3759 			return 0;
3760 		}
3761 		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: alloc bastream %p\n",
3762 		    __func__, sp);
3763 		/* NB: qos is left zero so we won't match in mwl_tx_start */
3764 		bas->bastream = sp;
3765 		tap->txa_private = bas;
3766 	}
3767 	/* fetch current seq# from the firmware; if available */
3768 	if (mwl_hal_bastream_get_seqno(sc->sc_mh, bas->bastream,
3769 	    vap->iv_opmode == IEEE80211_M_STA ? vap->iv_myaddr : ni->ni_macaddr,
3770 	    &tap->txa_start) != 0)
3771 		tap->txa_start = 0;
3772 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout);
3773 }
3774 
3775 static int
3776 mwl_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3777 	int code, int baparamset, int batimeout)
3778 {
3779 	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3780 	struct mwl_bastate *bas;
3781 
3782 	bas = tap->txa_private;
3783 	if (bas == NULL) {
3784 		/* XXX should not happen */
3785 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3786 		    "%s: no BA stream allocated, TID %d\n",
3787 		    __func__, tap->txa_tid);
3788 		sc->sc_stats.mst_addba_nostream++;
3789 		return 0;
3790 	}
3791 	if (code == IEEE80211_STATUS_SUCCESS) {
3792 		struct ieee80211vap *vap = ni->ni_vap;
3793 		int bufsiz, error;
3794 
3795 		/*
3796 		 * Tell the firmware to setup the BA stream;
3797 		 * we know resources are available because we
3798 		 * pre-allocated one before forming the request.
3799 		 */
3800 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
3801 		if (bufsiz == 0)
3802 			bufsiz = IEEE80211_AGGR_BAWMAX;
3803 		error = mwl_hal_bastream_create(MWL_VAP(vap)->mv_hvap,
3804 		    bas->bastream, bufsiz, bufsiz, tap->txa_start);
3805 		if (error != 0) {
3806 			/*
3807 			 * Setup failed, return immediately so no a-mpdu
3808 			 * aggregation will be done.
3809 			 */
3810 			mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3811 			mwl_bastream_free(bas);
3812 			tap->txa_private = NULL;
3813 
3814 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3815 			    "%s: create failed, error %d, bufsiz %d TID %d "
3816 			    "htparam 0x%x\n", __func__, error, bufsiz,
3817 			    tap->txa_tid, ni->ni_htparam);
3818 			sc->sc_stats.mst_bacreate_failed++;
3819 			return 0;
3820 		}
3821 		/* NB: cache txq to avoid ptr indirect */
3822 		mwl_bastream_setup(bas, tap->txa_tid, bas->bastream->txq);
3823 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3824 		    "%s: bastream %p assigned to txq %d TID %d bufsiz %d "
3825 		    "htparam 0x%x\n", __func__, bas->bastream,
3826 		    bas->txq, tap->txa_tid, bufsiz, ni->ni_htparam);
3827 	} else {
3828 		/*
3829 		 * Other side NAK'd us; return the resources.
3830 		 */
3831 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3832 		    "%s: request failed with code %d, destroy bastream %p\n",
3833 		    __func__, code, bas->bastream);
3834 		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3835 		mwl_bastream_free(bas);
3836 		tap->txa_private = NULL;
3837 	}
3838 	/* NB: firmware sends BAR so we don't need to */
3839 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
3840 }
3841 
3842 static void
3843 mwl_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3844 {
3845 	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3846 	struct mwl_bastate *bas;
3847 
3848 	bas = tap->txa_private;
3849 	if (bas != NULL) {
3850 		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: destroy bastream %p\n",
3851 		    __func__, bas->bastream);
3852 		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3853 		mwl_bastream_free(bas);
3854 		tap->txa_private = NULL;
3855 	}
3856 	sc->sc_addba_stop(ni, tap);
3857 }
3858 
3859 /*
3860  * Setup the rx data structures.  This should only be
3861  * done once or we may get out of sync with the firmware.
3862  */
3863 static int
3864 mwl_startrecv(struct mwl_softc *sc)
3865 {
3866 	if (!sc->sc_recvsetup) {
3867 		struct mwl_rxbuf *bf, *prev;
3868 		struct mwl_rxdesc *ds;
3869 
3870 		prev = NULL;
3871 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3872 			int error = mwl_rxbuf_init(sc, bf);
3873 			if (error != 0) {
3874 				DPRINTF(sc, MWL_DEBUG_RECV,
3875 					"%s: mwl_rxbuf_init failed %d\n",
3876 					__func__, error);
3877 				return error;
3878 			}
3879 			if (prev != NULL) {
3880 				ds = prev->bf_desc;
3881 				ds->pPhysNext = htole32(bf->bf_daddr);
3882 			}
3883 			prev = bf;
3884 		}
3885 		if (prev != NULL) {
3886 			ds = prev->bf_desc;
3887 			ds->pPhysNext =
3888 			    htole32(STAILQ_FIRST(&sc->sc_rxbuf)->bf_daddr);
3889 		}
3890 		sc->sc_recvsetup = 1;
3891 	}
3892 	mwl_mode_init(sc);		/* set filters, etc. */
3893 	return 0;
3894 }
3895 
3896 static MWL_HAL_APMODE
3897 mwl_getapmode(const struct ieee80211vap *vap, struct ieee80211_channel *chan)
3898 {
3899 	MWL_HAL_APMODE mode;
3900 
3901 	if (IEEE80211_IS_CHAN_HT(chan)) {
3902 		if (vap->iv_flags_ht & IEEE80211_FHT_PUREN)
3903 			mode = AP_MODE_N_ONLY;
3904 		else if (IEEE80211_IS_CHAN_5GHZ(chan))
3905 			mode = AP_MODE_AandN;
3906 		else if (vap->iv_flags & IEEE80211_F_PUREG)
3907 			mode = AP_MODE_GandN;
3908 		else
3909 			mode = AP_MODE_BandGandN;
3910 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3911 		if (vap->iv_flags & IEEE80211_F_PUREG)
3912 			mode = AP_MODE_G_ONLY;
3913 		else
3914 			mode = AP_MODE_MIXED;
3915 	} else if (IEEE80211_IS_CHAN_B(chan))
3916 		mode = AP_MODE_B_ONLY;
3917 	else if (IEEE80211_IS_CHAN_A(chan))
3918 		mode = AP_MODE_A_ONLY;
3919 	else
3920 		mode = AP_MODE_MIXED;		/* XXX should not happen? */
3921 	return mode;
3922 }
3923 
3924 static int
3925 mwl_setapmode(struct ieee80211vap *vap, struct ieee80211_channel *chan)
3926 {
3927 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
3928 	return mwl_hal_setapmode(hvap, mwl_getapmode(vap, chan));
3929 }
3930 
3931 /*
3932  * Set/change channels.
3933  */
3934 static int
3935 mwl_chan_set(struct mwl_softc *sc, struct ieee80211_channel *chan)
3936 {
3937 	struct mwl_hal *mh = sc->sc_mh;
3938 	struct ifnet *ifp = sc->sc_ifp;
3939 	struct ieee80211com *ic = ifp->if_l2com;
3940 	MWL_HAL_CHANNEL hchan;
3941 	int maxtxpow;
3942 
3943 	DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n",
3944 	    __func__, chan->ic_freq, chan->ic_flags);
3945 
3946 	/*
3947 	 * Convert to a HAL channel description with
3948 	 * the flags constrained to reflect the current
3949 	 * operating mode.
3950 	 */
3951 	mwl_mapchan(&hchan, chan);
3952 	mwl_hal_intrset(mh, 0);		/* disable interrupts */
3953 #if 0
3954 	mwl_draintxq(sc);		/* clear pending tx frames */
3955 #endif
3956 	mwl_hal_setchannel(mh, &hchan);
3957 	/*
3958 	 * Tx power is cap'd by the regulatory setting and
3959 	 * possibly a user-set limit.  We pass the min of
3960 	 * these to the hal to apply them to the cal data
3961 	 * for this channel.
3962 	 * XXX min bound?
3963 	 */
3964 	maxtxpow = 2*chan->ic_maxregpower;
3965 	if (maxtxpow > ic->ic_txpowlimit)
3966 		maxtxpow = ic->ic_txpowlimit;
3967 	mwl_hal_settxpower(mh, &hchan, maxtxpow / 2);
3968 	/* NB: potentially change mcast/mgt rates */
3969 	mwl_setcurchanrates(sc);
3970 
3971 	/*
3972 	 * Update internal state.
3973 	 */
3974 	sc->sc_tx_th.wt_chan_freq = htole16(chan->ic_freq);
3975 	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
3976 	if (IEEE80211_IS_CHAN_A(chan)) {
3977 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_A);
3978 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_A);
3979 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3980 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G);
3981 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G);
3982 	} else {
3983 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B);
3984 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B);
3985 	}
3986 	sc->sc_curchan = hchan;
3987 	mwl_hal_intrset(mh, sc->sc_imask);
3988 
3989 	return 0;
3990 }
3991 
3992 static void
3993 mwl_scan_start(struct ieee80211com *ic)
3994 {
3995 	struct ifnet *ifp = ic->ic_ifp;
3996 	struct mwl_softc *sc = ifp->if_softc;
3997 
3998 	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3999 }
4000 
4001 static void
4002 mwl_scan_end(struct ieee80211com *ic)
4003 {
4004 	struct ifnet *ifp = ic->ic_ifp;
4005 	struct mwl_softc *sc = ifp->if_softc;
4006 
4007 	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
4008 }
4009 
4010 static void
4011 mwl_set_channel(struct ieee80211com *ic)
4012 {
4013 	struct ifnet *ifp = ic->ic_ifp;
4014 	struct mwl_softc *sc = ifp->if_softc;
4015 
4016 	(void) mwl_chan_set(sc, ic->ic_curchan);
4017 }
4018 
4019 /*
4020  * Handle a channel switch request.  We inform the firmware
4021  * and mark the global state to suppress various actions.
4022  * NB: we issue only one request to the fw; we may be called
4023  * multiple times if there are multiple vap's.
4024  */
4025 static void
4026 mwl_startcsa(struct ieee80211vap *vap)
4027 {
4028 	struct ieee80211com *ic = vap->iv_ic;
4029 	struct mwl_softc *sc = ic->ic_ifp->if_softc;
4030 	MWL_HAL_CHANNEL hchan;
4031 
4032 	if (sc->sc_csapending)
4033 		return;
4034 
4035 	mwl_mapchan(&hchan, ic->ic_csa_newchan);
4036 	/* 1 =>'s quiet channel */
4037 	mwl_hal_setchannelswitchie(sc->sc_mh, &hchan, 1, ic->ic_csa_count);
4038 	sc->sc_csapending = 1;
4039 }
4040 
4041 /*
4042  * Plumb any static WEP key for the station.  This is
4043  * necessary as we must propagate the key from the
4044  * global key table of the vap to each sta db entry.
4045  */
4046 static void
4047 mwl_setanywepkey(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4048 {
4049 	if ((vap->iv_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) ==
4050 		IEEE80211_F_PRIVACY &&
4051 	    vap->iv_def_txkey != IEEE80211_KEYIX_NONE &&
4052 	    vap->iv_nw_keys[vap->iv_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE)
4053 		(void) mwl_key_set(vap, &vap->iv_nw_keys[vap->iv_def_txkey], mac);
4054 }
4055 
4056 static int
4057 mwl_peerstadb(struct ieee80211_node *ni, int aid, int staid, MWL_HAL_PEERINFO *pi)
4058 {
4059 #define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4060 	struct ieee80211vap *vap = ni->ni_vap;
4061 	struct mwl_hal_vap *hvap;
4062 	int error;
4063 
4064 	if (vap->iv_opmode == IEEE80211_M_WDS) {
4065 		/*
4066 		 * WDS vap's do not have a f/w vap; instead they piggyback
4067 		 * on an AP vap and we must install the sta db entry and
4068 		 * crypto state using that AP's handle (the WDS vap has none).
4069 		 */
4070 		hvap = MWL_VAP(vap)->mv_ap_hvap;
4071 	} else
4072 		hvap = MWL_VAP(vap)->mv_hvap;
4073 	error = mwl_hal_newstation(hvap, ni->ni_macaddr,
4074 	    aid, staid, pi,
4075 	    ni->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT),
4076 	    ni->ni_ies.wme_ie != NULL ? WME(ni->ni_ies.wme_ie)->wme_info : 0);
4077 	if (error == 0) {
4078 		/*
4079 		 * Setup security for this station.  For sta mode this is
4080 		 * needed even though do the same thing on transition to
4081 		 * AUTH state because the call to mwl_hal_newstation
4082 		 * clobbers the crypto state we setup.
4083 		 */
4084 		mwl_setanywepkey(vap, ni->ni_macaddr);
4085 	}
4086 	return error;
4087 #undef WME
4088 }
4089 
4090 static void
4091 mwl_setglobalkeys(struct ieee80211vap *vap)
4092 {
4093 	struct ieee80211_key *wk;
4094 
4095 	wk = &vap->iv_nw_keys[0];
4096 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; wk++)
4097 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4098 			(void) mwl_key_set(vap, wk, vap->iv_myaddr);
4099 }
4100 
4101 /*
4102  * Convert a legacy rate set to a firmware bitmask.
4103  */
4104 static uint32_t
4105 get_rate_bitmap(const struct ieee80211_rateset *rs)
4106 {
4107 	uint32_t rates;
4108 	int i;
4109 
4110 	rates = 0;
4111 	for (i = 0; i < rs->rs_nrates; i++)
4112 		switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
4113 		case 2:	  rates |= 0x001; break;
4114 		case 4:	  rates |= 0x002; break;
4115 		case 11:  rates |= 0x004; break;
4116 		case 22:  rates |= 0x008; break;
4117 		case 44:  rates |= 0x010; break;
4118 		case 12:  rates |= 0x020; break;
4119 		case 18:  rates |= 0x040; break;
4120 		case 24:  rates |= 0x080; break;
4121 		case 36:  rates |= 0x100; break;
4122 		case 48:  rates |= 0x200; break;
4123 		case 72:  rates |= 0x400; break;
4124 		case 96:  rates |= 0x800; break;
4125 		case 108: rates |= 0x1000; break;
4126 		}
4127 	return rates;
4128 }
4129 
4130 /*
4131  * Construct an HT firmware bitmask from an HT rate set.
4132  */
4133 static uint32_t
4134 get_htrate_bitmap(const struct ieee80211_htrateset *rs)
4135 {
4136 	uint32_t rates;
4137 	int i;
4138 
4139 	rates = 0;
4140 	for (i = 0; i < rs->rs_nrates; i++) {
4141 		if (rs->rs_rates[i] < 16)
4142 			rates |= 1<<rs->rs_rates[i];
4143 	}
4144 	return rates;
4145 }
4146 
4147 /*
4148  * Craft station database entry for station.
4149  * NB: use host byte order here, the hal handles byte swapping.
4150  */
4151 static MWL_HAL_PEERINFO *
4152 mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni)
4153 {
4154 	const struct ieee80211vap *vap = ni->ni_vap;
4155 
4156 	memset(pi, 0, sizeof(*pi));
4157 	pi->LegacyRateBitMap = get_rate_bitmap(&ni->ni_rates);
4158 	pi->CapInfo = ni->ni_capinfo;
4159 	if (ni->ni_flags & IEEE80211_NODE_HT) {
4160 		/* HT capabilities, etc */
4161 		pi->HTCapabilitiesInfo = ni->ni_htcap;
4162 		/* XXX pi.HTCapabilitiesInfo */
4163 	        pi->MacHTParamInfo = ni->ni_htparam;
4164 		pi->HTRateBitMap = get_htrate_bitmap(&ni->ni_htrates);
4165 		pi->AddHtInfo.ControlChan = ni->ni_htctlchan;
4166 		pi->AddHtInfo.AddChan = ni->ni_ht2ndchan;
4167 		pi->AddHtInfo.OpMode = ni->ni_htopmode;
4168 		pi->AddHtInfo.stbc = ni->ni_htstbc;
4169 
4170 		/* constrain according to local configuration */
4171 		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0)
4172 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI40;
4173 		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
4174 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI20;
4175 		if (ni->ni_chw != 40)
4176 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_CHWIDTH40;
4177 	}
4178 	return pi;
4179 }
4180 
4181 /*
4182  * Re-create the local sta db entry for a vap to ensure
4183  * up to date WME state is pushed to the firmware.  Because
4184  * this resets crypto state this must be followed by a
4185  * reload of any keys in the global key table.
4186  */
4187 static int
4188 mwl_localstadb(struct ieee80211vap *vap)
4189 {
4190 #define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4191 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
4192 	struct ieee80211_node *bss;
4193 	MWL_HAL_PEERINFO pi;
4194 	int error;
4195 
4196 	switch (vap->iv_opmode) {
4197 	case IEEE80211_M_STA:
4198 		bss = vap->iv_bss;
4199 		error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0,
4200 		    vap->iv_state == IEEE80211_S_RUN ?
4201 			mkpeerinfo(&pi, bss) : NULL,
4202 		    (bss->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)),
4203 		    bss->ni_ies.wme_ie != NULL ?
4204 			WME(bss->ni_ies.wme_ie)->wme_info : 0);
4205 		if (error == 0)
4206 			mwl_setglobalkeys(vap);
4207 		break;
4208 	case IEEE80211_M_HOSTAP:
4209 	case IEEE80211_M_MBSS:
4210 		error = mwl_hal_newstation(hvap, vap->iv_myaddr,
4211 		    0, 0, NULL, vap->iv_flags & IEEE80211_F_WME, 0);
4212 		if (error == 0)
4213 			mwl_setglobalkeys(vap);
4214 		break;
4215 	default:
4216 		error = 0;
4217 		break;
4218 	}
4219 	return error;
4220 #undef WME
4221 }
4222 
4223 static int
4224 mwl_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4225 {
4226 	struct mwl_vap *mvp = MWL_VAP(vap);
4227 	struct mwl_hal_vap *hvap = mvp->mv_hvap;
4228 	struct ieee80211com *ic = vap->iv_ic;
4229 	struct ieee80211_node *ni = NULL;
4230 	struct ifnet *ifp = ic->ic_ifp;
4231 	struct mwl_softc *sc = ifp->if_softc;
4232 	struct mwl_hal *mh = sc->sc_mh;
4233 	enum ieee80211_state ostate = vap->iv_state;
4234 	int error;
4235 
4236 	DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: %s -> %s\n",
4237 	    vap->iv_ifp->if_xname, __func__,
4238 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
4239 
4240 	callout_stop(&sc->sc_timer);
4241 	/*
4242 	 * Clear current radar detection state.
4243 	 */
4244 	if (ostate == IEEE80211_S_CAC) {
4245 		/* stop quiet mode radar detection */
4246 		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_STOP);
4247 	} else if (sc->sc_radarena) {
4248 		/* stop in-service radar detection */
4249 		mwl_hal_setradardetection(mh, DR_DFS_DISABLE);
4250 		sc->sc_radarena = 0;
4251 	}
4252 	/*
4253 	 * Carry out per-state actions before doing net80211 work.
4254 	 */
4255 	if (nstate == IEEE80211_S_INIT) {
4256 		/* NB: only ap+sta vap's have a fw entity */
4257 		if (hvap != NULL)
4258 			mwl_hal_stop(hvap);
4259 	} else if (nstate == IEEE80211_S_SCAN) {
4260 		mwl_hal_start(hvap);
4261 		/* NB: this disables beacon frames */
4262 		mwl_hal_setinframode(hvap);
4263 	} else if (nstate == IEEE80211_S_AUTH) {
4264 		/*
4265 		 * Must create a sta db entry in case a WEP key needs to
4266 		 * be plumbed.  This entry will be overwritten if we
4267 		 * associate; otherwise it will be reclaimed on node free.
4268 		 */
4269 		ni = vap->iv_bss;
4270 		MWL_NODE(ni)->mn_hvap = hvap;
4271 		(void) mwl_peerstadb(ni, 0, 0, NULL);
4272 	} else if (nstate == IEEE80211_S_CSA) {
4273 		/* XXX move to below? */
4274 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
4275 		    vap->iv_opmode == IEEE80211_M_MBSS)
4276 			mwl_startcsa(vap);
4277 	} else if (nstate == IEEE80211_S_CAC) {
4278 		/* XXX move to below? */
4279 		/* stop ap xmit and enable quiet mode radar detection */
4280 		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_START);
4281 	}
4282 
4283 	/*
4284 	 * Invoke the parent method to do net80211 work.
4285 	 */
4286 	error = mvp->mv_newstate(vap, nstate, arg);
4287 
4288 	/*
4289 	 * Carry out work that must be done after net80211 runs;
4290 	 * this work requires up to date state (e.g. iv_bss).
4291 	 */
4292 	if (error == 0 && nstate == IEEE80211_S_RUN) {
4293 		/* NB: collect bss node again, it may have changed */
4294 		ni = vap->iv_bss;
4295 
4296 		DPRINTF(sc, MWL_DEBUG_STATE,
4297 		    "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4298 		    "capinfo 0x%04x chan %d\n",
4299 		    vap->iv_ifp->if_xname, __func__, vap->iv_flags,
4300 		    ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo,
4301 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
4302 
4303 		/*
4304 		 * Recreate local sta db entry to update WME/HT state.
4305 		 */
4306 		mwl_localstadb(vap);
4307 		switch (vap->iv_opmode) {
4308 		case IEEE80211_M_HOSTAP:
4309 		case IEEE80211_M_MBSS:
4310 			if (ostate == IEEE80211_S_CAC) {
4311 				/* enable in-service radar detection */
4312 				mwl_hal_setradardetection(mh,
4313 				    DR_IN_SERVICE_MONITOR_START);
4314 				sc->sc_radarena = 1;
4315 			}
4316 			/*
4317 			 * Allocate and setup the beacon frame
4318 			 * (and related state).
4319 			 */
4320 			error = mwl_reset_vap(vap, IEEE80211_S_RUN);
4321 			if (error != 0) {
4322 				DPRINTF(sc, MWL_DEBUG_STATE,
4323 				    "%s: beacon setup failed, error %d\n",
4324 				    __func__, error);
4325 				goto bad;
4326 			}
4327 			/* NB: must be after setting up beacon */
4328 			mwl_hal_start(hvap);
4329 			break;
4330 		case IEEE80211_M_STA:
4331 			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: aid 0x%x\n",
4332 			    vap->iv_ifp->if_xname, __func__, ni->ni_associd);
4333 			/*
4334 			 * Set state now that we're associated.
4335 			 */
4336 			mwl_hal_setassocid(hvap, ni->ni_bssid, ni->ni_associd);
4337 			mwl_setrates(vap);
4338 			mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
4339 			if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4340 			    sc->sc_ndwdsvaps++ == 0)
4341 				mwl_hal_setdwds(mh, 1);
4342 			break;
4343 		case IEEE80211_M_WDS:
4344 			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: bssid %s\n",
4345 			    vap->iv_ifp->if_xname, __func__,
4346 			    ether_sprintf(ni->ni_bssid));
4347 			mwl_seteapolformat(vap);
4348 			break;
4349 		default:
4350 			break;
4351 		}
4352 		/*
4353 		 * Set CS mode according to operating channel;
4354 		 * this mostly an optimization for 5GHz.
4355 		 *
4356 		 * NB: must follow mwl_hal_start which resets csmode
4357 		 */
4358 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
4359 			mwl_hal_setcsmode(mh, CSMODE_AGGRESSIVE);
4360 		else
4361 			mwl_hal_setcsmode(mh, CSMODE_AUTO_ENA);
4362 		/*
4363 		 * Start timer to prod firmware.
4364 		 */
4365 		if (sc->sc_ageinterval != 0)
4366 			callout_reset(&sc->sc_timer, sc->sc_ageinterval*hz,
4367 			    mwl_agestations, sc);
4368 	} else if (nstate == IEEE80211_S_SLEEP) {
4369 		/* XXX set chip in power save */
4370 	} else if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4371 	    --sc->sc_ndwdsvaps == 0)
4372 		mwl_hal_setdwds(mh, 0);
4373 bad:
4374 	return error;
4375 }
4376 
4377 /*
4378  * Manage station id's; these are separate from AID's
4379  * as AID's may have values out of the range of possible
4380  * station id's acceptable to the firmware.
4381  */
4382 static int
4383 allocstaid(struct mwl_softc *sc, int aid)
4384 {
4385 	int staid;
4386 
4387 	if (!(0 < aid && aid < MWL_MAXSTAID) || isset(sc->sc_staid, aid)) {
4388 		/* NB: don't use 0 */
4389 		for (staid = 1; staid < MWL_MAXSTAID; staid++)
4390 			if (isclr(sc->sc_staid, staid))
4391 				break;
4392 	} else
4393 		staid = aid;
4394 	setbit(sc->sc_staid, staid);
4395 	return staid;
4396 }
4397 
4398 static void
4399 delstaid(struct mwl_softc *sc, int staid)
4400 {
4401 	clrbit(sc->sc_staid, staid);
4402 }
4403 
4404 /*
4405  * Setup driver-specific state for a newly associated node.
4406  * Note that we're called also on a re-associate, the isnew
4407  * param tells us if this is the first time or not.
4408  */
4409 static void
4410 mwl_newassoc(struct ieee80211_node *ni, int isnew)
4411 {
4412 	struct ieee80211vap *vap = ni->ni_vap;
4413         struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4414 	struct mwl_node *mn = MWL_NODE(ni);
4415 	MWL_HAL_PEERINFO pi;
4416 	uint16_t aid;
4417 	int error;
4418 
4419 	aid = IEEE80211_AID(ni->ni_associd);
4420 	if (isnew) {
4421 		mn->mn_staid = allocstaid(sc, aid);
4422 		mn->mn_hvap = MWL_VAP(vap)->mv_hvap;
4423 	} else {
4424 		mn = MWL_NODE(ni);
4425 		/* XXX reset BA stream? */
4426 	}
4427 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mac %s isnew %d aid %d staid %d\n",
4428 	    __func__, ether_sprintf(ni->ni_macaddr), isnew, aid, mn->mn_staid);
4429 	error = mwl_peerstadb(ni, aid, mn->mn_staid, mkpeerinfo(&pi, ni));
4430 	if (error != 0) {
4431 		DPRINTF(sc, MWL_DEBUG_NODE,
4432 		    "%s: error %d creating sta db entry\n",
4433 		    __func__, error);
4434 		/* XXX how to deal with error? */
4435 	}
4436 }
4437 
4438 /*
4439  * Periodically poke the firmware to age out station state
4440  * (power save queues, pending tx aggregates).
4441  */
4442 static void
4443 mwl_agestations(void *arg)
4444 {
4445 	struct mwl_softc *sc = arg;
4446 
4447 	mwl_hal_setkeepalive(sc->sc_mh);
4448 	if (sc->sc_ageinterval != 0)		/* NB: catch dynamic changes */
4449 		callout_schedule(&sc->sc_timer, sc->sc_ageinterval*hz);
4450 }
4451 
4452 static const struct mwl_hal_channel *
4453 findhalchannel(const MWL_HAL_CHANNELINFO *ci, int ieee)
4454 {
4455 	int i;
4456 
4457 	for (i = 0; i < ci->nchannels; i++) {
4458 		const struct mwl_hal_channel *hc = &ci->channels[i];
4459 		if (hc->ieee == ieee)
4460 			return hc;
4461 	}
4462 	return NULL;
4463 }
4464 
4465 static int
4466 mwl_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
4467 	int nchan, struct ieee80211_channel chans[])
4468 {
4469 	struct mwl_softc *sc = ic->ic_ifp->if_softc;
4470 	struct mwl_hal *mh = sc->sc_mh;
4471 	const MWL_HAL_CHANNELINFO *ci;
4472 	int i;
4473 
4474 	for (i = 0; i < nchan; i++) {
4475 		struct ieee80211_channel *c = &chans[i];
4476 		const struct mwl_hal_channel *hc;
4477 
4478 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4479 			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_2DOT4GHZ,
4480 			    IEEE80211_IS_CHAN_HT40(c) ?
4481 				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4482 		} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4483 			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_5GHZ,
4484 			    IEEE80211_IS_CHAN_HT40(c) ?
4485 				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4486 		} else {
4487 			if_printf(ic->ic_ifp,
4488 			    "%s: channel %u freq %u/0x%x not 2.4/5GHz\n",
4489 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
4490 			return EINVAL;
4491 		}
4492 		/*
4493 		 * Verify channel has cal data and cap tx power.
4494 		 */
4495 		hc = findhalchannel(ci, c->ic_ieee);
4496 		if (hc != NULL) {
4497 			if (c->ic_maxpower > 2*hc->maxTxPow)
4498 				c->ic_maxpower = 2*hc->maxTxPow;
4499 			goto next;
4500 		}
4501 		if (IEEE80211_IS_CHAN_HT40(c)) {
4502 			/*
4503 			 * Look for the extension channel since the
4504 			 * hal table only has the primary channel.
4505 			 */
4506 			hc = findhalchannel(ci, c->ic_extieee);
4507 			if (hc != NULL) {
4508 				if (c->ic_maxpower > 2*hc->maxTxPow)
4509 					c->ic_maxpower = 2*hc->maxTxPow;
4510 				goto next;
4511 			}
4512 		}
4513 		if_printf(ic->ic_ifp,
4514 		    "%s: no cal data for channel %u ext %u freq %u/0x%x\n",
4515 		    __func__, c->ic_ieee, c->ic_extieee,
4516 		    c->ic_freq, c->ic_flags);
4517 		return EINVAL;
4518 	next:
4519 		;
4520 	}
4521 	return 0;
4522 }
4523 
4524 #define	IEEE80211_CHAN_HTG	(IEEE80211_CHAN_HT|IEEE80211_CHAN_G)
4525 #define	IEEE80211_CHAN_HTA	(IEEE80211_CHAN_HT|IEEE80211_CHAN_A)
4526 
4527 static void
4528 addchan(struct ieee80211_channel *c, int freq, int flags, int ieee, int txpow)
4529 {
4530 	c->ic_freq = freq;
4531 	c->ic_flags = flags;
4532 	c->ic_ieee = ieee;
4533 	c->ic_minpower = 0;
4534 	c->ic_maxpower = 2*txpow;
4535 	c->ic_maxregpower = txpow;
4536 }
4537 
4538 static const struct ieee80211_channel *
4539 findchannel(const struct ieee80211_channel chans[], int nchans,
4540 	int freq, int flags)
4541 {
4542 	const struct ieee80211_channel *c;
4543 	int i;
4544 
4545 	for (i = 0; i < nchans; i++) {
4546 		c = &chans[i];
4547 		if (c->ic_freq == freq && c->ic_flags == flags)
4548 			return c;
4549 	}
4550 	return NULL;
4551 }
4552 
4553 static void
4554 addht40channels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4555 	const MWL_HAL_CHANNELINFO *ci, int flags)
4556 {
4557 	struct ieee80211_channel *c;
4558 	const struct ieee80211_channel *extc;
4559 	const struct mwl_hal_channel *hc;
4560 	int i;
4561 
4562 	c = &chans[*nchans];
4563 
4564 	flags &= ~IEEE80211_CHAN_HT;
4565 	for (i = 0; i < ci->nchannels; i++) {
4566 		/*
4567 		 * Each entry defines an HT40 channel pair; find the
4568 		 * extension channel above and the insert the pair.
4569 		 */
4570 		hc = &ci->channels[i];
4571 		extc = findchannel(chans, *nchans, hc->freq+20,
4572 		    flags | IEEE80211_CHAN_HT20);
4573 		if (extc != NULL) {
4574 			if (*nchans >= maxchans)
4575 				break;
4576 			addchan(c, hc->freq, flags | IEEE80211_CHAN_HT40U,
4577 			    hc->ieee, hc->maxTxPow);
4578 			c->ic_extieee = extc->ic_ieee;
4579 			c++, (*nchans)++;
4580 			if (*nchans >= maxchans)
4581 				break;
4582 			addchan(c, extc->ic_freq, flags | IEEE80211_CHAN_HT40D,
4583 			    extc->ic_ieee, hc->maxTxPow);
4584 			c->ic_extieee = hc->ieee;
4585 			c++, (*nchans)++;
4586 		}
4587 	}
4588 }
4589 
4590 static void
4591 addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4592 	const MWL_HAL_CHANNELINFO *ci, int flags)
4593 {
4594 	struct ieee80211_channel *c;
4595 	int i;
4596 
4597 	c = &chans[*nchans];
4598 
4599 	for (i = 0; i < ci->nchannels; i++) {
4600 		const struct mwl_hal_channel *hc;
4601 
4602 		hc = &ci->channels[i];
4603 		if (*nchans >= maxchans)
4604 			break;
4605 		addchan(c, hc->freq, flags, hc->ieee, hc->maxTxPow);
4606 		c++, (*nchans)++;
4607 		if (flags == IEEE80211_CHAN_G || flags == IEEE80211_CHAN_HTG) {
4608 			/* g channel have a separate b-only entry */
4609 			if (*nchans >= maxchans)
4610 				break;
4611 			c[0] = c[-1];
4612 			c[-1].ic_flags = IEEE80211_CHAN_B;
4613 			c++, (*nchans)++;
4614 		}
4615 		if (flags == IEEE80211_CHAN_HTG) {
4616 			/* HT g channel have a separate g-only entry */
4617 			if (*nchans >= maxchans)
4618 				break;
4619 			c[-1].ic_flags = IEEE80211_CHAN_G;
4620 			c[0] = c[-1];
4621 			c[0].ic_flags &= ~IEEE80211_CHAN_HT;
4622 			c[0].ic_flags |= IEEE80211_CHAN_HT20;	/* HT20 */
4623 			c++, (*nchans)++;
4624 		}
4625 		if (flags == IEEE80211_CHAN_HTA) {
4626 			/* HT a channel have a separate a-only entry */
4627 			if (*nchans >= maxchans)
4628 				break;
4629 			c[-1].ic_flags = IEEE80211_CHAN_A;
4630 			c[0] = c[-1];
4631 			c[0].ic_flags &= ~IEEE80211_CHAN_HT;
4632 			c[0].ic_flags |= IEEE80211_CHAN_HT20;	/* HT20 */
4633 			c++, (*nchans)++;
4634 		}
4635 	}
4636 }
4637 
4638 static void
4639 getchannels(struct mwl_softc *sc, int maxchans, int *nchans,
4640 	struct ieee80211_channel chans[])
4641 {
4642 	const MWL_HAL_CHANNELINFO *ci;
4643 
4644 	/*
4645 	 * Use the channel info from the hal to craft the
4646 	 * channel list.  Note that we pass back an unsorted
4647 	 * list; the caller is required to sort it for us
4648 	 * (if desired).
4649 	 */
4650 	*nchans = 0;
4651 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4652 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
4653 		addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4654 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4655 	    MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
4656 		addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4657 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4658 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4659 		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4660 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4661 	    MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4662 		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4663 }
4664 
4665 static void
4666 mwl_getradiocaps(struct ieee80211com *ic,
4667 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4668 {
4669 	struct mwl_softc *sc = ic->ic_ifp->if_softc;
4670 
4671 	getchannels(sc, maxchans, nchans, chans);
4672 }
4673 
4674 static int
4675 mwl_getchannels(struct mwl_softc *sc)
4676 {
4677 	struct ifnet *ifp = sc->sc_ifp;
4678 	struct ieee80211com *ic = ifp->if_l2com;
4679 
4680 	/*
4681 	 * Use the channel info from the hal to craft the
4682 	 * channel list for net80211.  Note that we pass up
4683 	 * an unsorted list; net80211 will sort it for us.
4684 	 */
4685 	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
4686 	ic->ic_nchans = 0;
4687 	getchannels(sc, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels);
4688 
4689 	ic->ic_regdomain.regdomain = SKU_DEBUG;
4690 	ic->ic_regdomain.country = CTRY_DEFAULT;
4691 	ic->ic_regdomain.location = 'I';
4692 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX? */
4693 	ic->ic_regdomain.isocc[1] = ' ';
4694 	return (ic->ic_nchans == 0 ? EIO : 0);
4695 }
4696 #undef IEEE80211_CHAN_HTA
4697 #undef IEEE80211_CHAN_HTG
4698 
4699 #ifdef MWL_DEBUG
4700 static void
4701 mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix)
4702 {
4703 	const struct mwl_rxdesc *ds = bf->bf_desc;
4704 	uint32_t status = le32toh(ds->Status);
4705 
4706 	printf("R[%2u] (DS.V:%p DS.P:%p) NEXT:%08x DATA:%08x RC:%02x%s\n"
4707 	       "      STAT:%02x LEN:%04x RSSI:%02x CHAN:%02x RATE:%02x QOS:%04x HT:%04x\n",
4708 	    ix, ds, (const struct mwl_desc *)bf->bf_daddr,
4709 	    le32toh(ds->pPhysNext), le32toh(ds->pPhysBuffData),
4710 	    ds->RxControl,
4711 	    ds->RxControl != EAGLE_RXD_CTRL_DRIVER_OWN ?
4712 	        "" : (status & EAGLE_RXD_STATUS_OK) ? " *" : " !",
4713 	    ds->Status, le16toh(ds->PktLen), ds->RSSI, ds->Channel,
4714 	    ds->Rate, le16toh(ds->QosCtrl), le16toh(ds->HtSig2));
4715 }
4716 
4717 static void
4718 mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix)
4719 {
4720 	const struct mwl_txdesc *ds = bf->bf_desc;
4721 	uint32_t status = le32toh(ds->Status);
4722 
4723 	printf("Q%u[%3u]", qnum, ix);
4724 	printf(" (DS.V:%p DS.P:%p)\n",
4725 	    ds, (const struct mwl_txdesc *)bf->bf_daddr);
4726 	printf("    NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n",
4727 	    le32toh(ds->pPhysNext),
4728 	    le32toh(ds->PktPtr), le16toh(ds->PktLen), status,
4729 	    status & EAGLE_TXD_STATUS_USED ?
4730 		"" : (status & 3) != 0 ? " *" : " !");
4731 	printf("    RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n",
4732 	    ds->DataRate, ds->TxPriority, le16toh(ds->QosCtrl),
4733 	    le32toh(ds->SapPktInfo), le16toh(ds->Format));
4734 #if MWL_TXDESC > 1
4735 	printf("    MULTIFRAMES:%u LEN:%04x %04x %04x %04x %04x %04x\n"
4736 	    , le32toh(ds->multiframes)
4737 	    , le16toh(ds->PktLenArray[0]), le16toh(ds->PktLenArray[1])
4738 	    , le16toh(ds->PktLenArray[2]), le16toh(ds->PktLenArray[3])
4739 	    , le16toh(ds->PktLenArray[4]), le16toh(ds->PktLenArray[5])
4740 	);
4741 	printf("    DATA:%08x %08x %08x %08x %08x %08x\n"
4742 	    , le32toh(ds->PktPtrArray[0]), le32toh(ds->PktPtrArray[1])
4743 	    , le32toh(ds->PktPtrArray[2]), le32toh(ds->PktPtrArray[3])
4744 	    , le32toh(ds->PktPtrArray[4]), le32toh(ds->PktPtrArray[5])
4745 	);
4746 #endif
4747 #if 0
4748 { const uint8_t *cp = (const uint8_t *) ds;
4749   int i;
4750   for (i = 0; i < sizeof(struct mwl_txdesc); i++) {
4751 	printf("%02x ", cp[i]);
4752 	if (((i+1) % 16) == 0)
4753 		printf("\n");
4754   }
4755   printf("\n");
4756 }
4757 #endif
4758 }
4759 #endif /* MWL_DEBUG */
4760 
4761 #if 0
4762 static void
4763 mwl_txq_dump(struct mwl_txq *txq)
4764 {
4765 	struct mwl_txbuf *bf;
4766 	int i = 0;
4767 
4768 	MWL_TXQ_LOCK(txq);
4769 	STAILQ_FOREACH(bf, &txq->active, bf_list) {
4770 		struct mwl_txdesc *ds = bf->bf_desc;
4771 		MWL_TXDESC_SYNC(txq, ds,
4772 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4773 #ifdef MWL_DEBUG
4774 		mwl_printtxbuf(bf, txq->qnum, i);
4775 #endif
4776 		i++;
4777 	}
4778 	MWL_TXQ_UNLOCK(txq);
4779 }
4780 #endif
4781 
4782 static void
4783 mwl_watchdog(void *arg)
4784 {
4785 	struct mwl_softc *sc;
4786 	struct ifnet *ifp;
4787 
4788 	sc = arg;
4789 	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
4790 	if (sc->sc_tx_timer == 0 || --sc->sc_tx_timer > 0)
4791 		return;
4792 
4793 	ifp = sc->sc_ifp;
4794 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
4795 		if (mwl_hal_setkeepalive(sc->sc_mh))
4796 			if_printf(ifp, "transmit timeout (firmware hung?)\n");
4797 		else
4798 			if_printf(ifp, "transmit timeout\n");
4799 #if 0
4800 		mwl_reset(ifp);
4801 mwl_txq_dump(&sc->sc_txq[0]);/*XXX*/
4802 #endif
4803 		ifp->if_oerrors++;
4804 		sc->sc_stats.mst_watchdog++;
4805 	}
4806 }
4807 
4808 #ifdef MWL_DIAGAPI
4809 /*
4810  * Diagnostic interface to the HAL.  This is used by various
4811  * tools to do things like retrieve register contents for
4812  * debugging.  The mechanism is intentionally opaque so that
4813  * it can change frequently w/o concern for compatiblity.
4814  */
4815 static int
4816 mwl_ioctl_diag(struct mwl_softc *sc, struct mwl_diag *md)
4817 {
4818 	struct mwl_hal *mh = sc->sc_mh;
4819 	u_int id = md->md_id & MWL_DIAG_ID;
4820 	void *indata = NULL;
4821 	void *outdata = NULL;
4822 	u_int32_t insize = md->md_in_size;
4823 	u_int32_t outsize = md->md_out_size;
4824 	int error = 0;
4825 
4826 	if (md->md_id & MWL_DIAG_IN) {
4827 		/*
4828 		 * Copy in data.
4829 		 */
4830 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4831 		if (indata == NULL) {
4832 			error = ENOMEM;
4833 			goto bad;
4834 		}
4835 		error = copyin(md->md_in_data, indata, insize);
4836 		if (error)
4837 			goto bad;
4838 	}
4839 	if (md->md_id & MWL_DIAG_DYN) {
4840 		/*
4841 		 * Allocate a buffer for the results (otherwise the HAL
4842 		 * returns a pointer to a buffer where we can read the
4843 		 * results).  Note that we depend on the HAL leaving this
4844 		 * pointer for us to use below in reclaiming the buffer;
4845 		 * may want to be more defensive.
4846 		 */
4847 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4848 		if (outdata == NULL) {
4849 			error = ENOMEM;
4850 			goto bad;
4851 		}
4852 	}
4853 	if (mwl_hal_getdiagstate(mh, id, indata, insize, &outdata, &outsize)) {
4854 		if (outsize < md->md_out_size)
4855 			md->md_out_size = outsize;
4856 		if (outdata != NULL)
4857 			error = copyout(outdata, md->md_out_data,
4858 					md->md_out_size);
4859 	} else {
4860 		error = EINVAL;
4861 	}
4862 bad:
4863 	if ((md->md_id & MWL_DIAG_IN) && indata != NULL)
4864 		free(indata, M_TEMP);
4865 	if ((md->md_id & MWL_DIAG_DYN) && outdata != NULL)
4866 		free(outdata, M_TEMP);
4867 	return error;
4868 }
4869 
4870 static int
4871 mwl_ioctl_reset(struct mwl_softc *sc, struct mwl_diag *md)
4872 {
4873 	struct mwl_hal *mh = sc->sc_mh;
4874 	int error;
4875 
4876 	MWL_LOCK_ASSERT(sc);
4877 
4878 	if (md->md_id == 0 && mwl_hal_fwload(mh, NULL) != 0) {
4879 		device_printf(sc->sc_dev, "unable to load firmware\n");
4880 		return EIO;
4881 	}
4882 	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
4883 		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
4884 		return EIO;
4885 	}
4886 	error = mwl_setupdma(sc);
4887 	if (error != 0) {
4888 		/* NB: mwl_setupdma prints a msg */
4889 		return error;
4890 	}
4891 	/*
4892 	 * Reset tx/rx data structures; after reload we must
4893 	 * re-start the driver's notion of the next xmit/recv.
4894 	 */
4895 	mwl_draintxq(sc);		/* clear pending frames */
4896 	mwl_resettxq(sc);		/* rebuild tx q lists */
4897 	sc->sc_rxnext = NULL;		/* force rx to start at the list head */
4898 	return 0;
4899 }
4900 #endif /* MWL_DIAGAPI */
4901 
4902 static int
4903 mwl_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4904 {
4905 #define	IS_RUNNING(ifp) \
4906 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4907 	struct mwl_softc *sc = ifp->if_softc;
4908 	struct ieee80211com *ic = ifp->if_l2com;
4909 	struct ifreq *ifr = (struct ifreq *)data;
4910 	int error = 0, startall;
4911 
4912 	switch (cmd) {
4913 	case SIOCSIFFLAGS:
4914 		MWL_LOCK(sc);
4915 		startall = 0;
4916 		if (IS_RUNNING(ifp)) {
4917 			/*
4918 			 * To avoid rescanning another access point,
4919 			 * do not call mwl_init() here.  Instead,
4920 			 * only reflect promisc mode settings.
4921 			 */
4922 			mwl_mode_init(sc);
4923 		} else if (ifp->if_flags & IFF_UP) {
4924 			/*
4925 			 * Beware of being called during attach/detach
4926 			 * to reset promiscuous mode.  In that case we
4927 			 * will still be marked UP but not RUNNING.
4928 			 * However trying to re-init the interface
4929 			 * is the wrong thing to do as we've already
4930 			 * torn down much of our state.  There's
4931 			 * probably a better way to deal with this.
4932 			 */
4933 			if (!sc->sc_invalid) {
4934 				mwl_init_locked(sc);	/* XXX lose error */
4935 				startall = 1;
4936 			}
4937 		} else
4938 			mwl_stop_locked(ifp, 1);
4939 		MWL_UNLOCK(sc);
4940 		if (startall)
4941 			ieee80211_start_all(ic);
4942 		break;
4943 	case SIOCGMVSTATS:
4944 		mwl_hal_gethwstats(sc->sc_mh, &sc->sc_stats.hw_stats);
4945 		/* NB: embed these numbers to get a consistent view */
4946 		sc->sc_stats.mst_tx_packets = ifp->if_opackets;
4947 		sc->sc_stats.mst_rx_packets = ifp->if_ipackets;
4948 		/*
4949 		 * NB: Drop the softc lock in case of a page fault;
4950 		 * we'll accept any potential inconsisentcy in the
4951 		 * statistics.  The alternative is to copy the data
4952 		 * to a local structure.
4953 		 */
4954 		return copyout(&sc->sc_stats,
4955 				ifr->ifr_data, sizeof (sc->sc_stats));
4956 #ifdef MWL_DIAGAPI
4957 	case SIOCGMVDIAG:
4958 		/* XXX check privs */
4959 		return mwl_ioctl_diag(sc, (struct mwl_diag *) ifr);
4960 	case SIOCGMVRESET:
4961 		/* XXX check privs */
4962 		MWL_LOCK(sc);
4963 		error = mwl_ioctl_reset(sc,(struct mwl_diag *) ifr);
4964 		MWL_UNLOCK(sc);
4965 		break;
4966 #endif /* MWL_DIAGAPI */
4967 	case SIOCGIFMEDIA:
4968 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4969 		break;
4970 	case SIOCGIFADDR:
4971 		error = ether_ioctl(ifp, cmd, data);
4972 		break;
4973 	default:
4974 		error = EINVAL;
4975 		break;
4976 	}
4977 	return error;
4978 #undef IS_RUNNING
4979 }
4980 
4981 #ifdef	MWL_DEBUG
4982 static int
4983 mwl_sysctl_debug(SYSCTL_HANDLER_ARGS)
4984 {
4985 	struct mwl_softc *sc = arg1;
4986 	int debug, error;
4987 
4988 	debug = sc->sc_debug | (mwl_hal_getdebug(sc->sc_mh) << 24);
4989 	error = sysctl_handle_int(oidp, &debug, 0, req);
4990 	if (error || !req->newptr)
4991 		return error;
4992 	mwl_hal_setdebug(sc->sc_mh, debug >> 24);
4993 	sc->sc_debug = debug & 0x00ffffff;
4994 	return 0;
4995 }
4996 #endif /* MWL_DEBUG */
4997 
4998 static void
4999 mwl_sysctlattach(struct mwl_softc *sc)
5000 {
5001 #ifdef	MWL_DEBUG
5002 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
5003 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
5004 
5005 	sc->sc_debug = mwl_debug;
5006 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5007 		"debug", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5008 		mwl_sysctl_debug, "I", "control debugging printfs");
5009 #endif
5010 }
5011 
5012 /*
5013  * Announce various information on device/driver attach.
5014  */
5015 static void
5016 mwl_announce(struct mwl_softc *sc)
5017 {
5018 	struct ifnet *ifp = sc->sc_ifp;
5019 
5020 	if_printf(ifp, "Rev A%d hardware, v%d.%d.%d.%d firmware (regioncode %d)\n",
5021 		sc->sc_hwspecs.hwVersion,
5022 		(sc->sc_hwspecs.fwReleaseNumber>>24) & 0xff,
5023 		(sc->sc_hwspecs.fwReleaseNumber>>16) & 0xff,
5024 		(sc->sc_hwspecs.fwReleaseNumber>>8) & 0xff,
5025 		(sc->sc_hwspecs.fwReleaseNumber>>0) & 0xff,
5026 		sc->sc_hwspecs.regionCode);
5027 	sc->sc_fwrelease = sc->sc_hwspecs.fwReleaseNumber;
5028 
5029 	if (bootverbose) {
5030 		int i;
5031 		for (i = 0; i <= WME_AC_VO; i++) {
5032 			struct mwl_txq *txq = sc->sc_ac2q[i];
5033 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5034 				txq->qnum, ieee80211_wme_acnames[i]);
5035 		}
5036 	}
5037 	if (bootverbose || mwl_rxdesc != MWL_RXDESC)
5038 		if_printf(ifp, "using %u rx descriptors\n", mwl_rxdesc);
5039 	if (bootverbose || mwl_rxbuf != MWL_RXBUF)
5040 		if_printf(ifp, "using %u rx buffers\n", mwl_rxbuf);
5041 	if (bootverbose || mwl_txbuf != MWL_TXBUF)
5042 		if_printf(ifp, "using %u tx buffers\n", mwl_txbuf);
5043 	if (bootverbose && mwl_hal_ismbsscapable(sc->sc_mh))
5044 		if_printf(ifp, "multi-bss support\n");
5045 #ifdef MWL_TX_NODROP
5046 	if (bootverbose)
5047 		if_printf(ifp, "no tx drop\n");
5048 #endif
5049 }
5050