xref: /freebsd/sys/dev/mwl/if_mwl.c (revision 752c1d14e398faab8e6f19f99ee29df87ecb05e1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007-2008 Marvell Semiconductor, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
16  *    redistribution must be conditioned upon including a substantially
17  *    similar Disclaimer requirement for further binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
23  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
24  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
25  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
28  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGES.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * Driver for the Marvell 88W8363 Wireless LAN controller.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_mwl.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 
61 #include <machine/bus.h>
62 
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_llc.h>
71 
72 #include <net/bpf.h>
73 
74 #include <net80211/ieee80211_var.h>
75 #include <net80211/ieee80211_input.h>
76 #include <net80211/ieee80211_regdomain.h>
77 
78 #ifdef INET
79 #include <netinet/in.h>
80 #include <netinet/if_ether.h>
81 #endif /* INET */
82 
83 #include <dev/mwl/if_mwlvar.h>
84 #include <dev/mwl/mwldiag.h>
85 
86 static struct ieee80211vap *mwl_vap_create(struct ieee80211com *,
87 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
88 		    const uint8_t [IEEE80211_ADDR_LEN],
89 		    const uint8_t [IEEE80211_ADDR_LEN]);
90 static void	mwl_vap_delete(struct ieee80211vap *);
91 static int	mwl_setupdma(struct mwl_softc *);
92 static int	mwl_hal_reset(struct mwl_softc *sc);
93 static int	mwl_init(struct mwl_softc *);
94 static void	mwl_parent(struct ieee80211com *);
95 static int	mwl_reset(struct ieee80211vap *, u_long);
96 static void	mwl_stop(struct mwl_softc *);
97 static void	mwl_start(struct mwl_softc *);
98 static int	mwl_transmit(struct ieee80211com *, struct mbuf *);
99 static int	mwl_raw_xmit(struct ieee80211_node *, struct mbuf *,
100 			const struct ieee80211_bpf_params *);
101 static int	mwl_media_change(struct ifnet *);
102 static void	mwl_watchdog(void *);
103 static int	mwl_ioctl(struct ieee80211com *, u_long, void *);
104 static void	mwl_radar_proc(void *, int);
105 static void	mwl_chanswitch_proc(void *, int);
106 static void	mwl_bawatchdog_proc(void *, int);
107 static int	mwl_key_alloc(struct ieee80211vap *,
108 			struct ieee80211_key *,
109 			ieee80211_keyix *, ieee80211_keyix *);
110 static int	mwl_key_delete(struct ieee80211vap *,
111 			const struct ieee80211_key *);
112 static int	mwl_key_set(struct ieee80211vap *,
113 			const struct ieee80211_key *);
114 static int	_mwl_key_set(struct ieee80211vap *,
115 			const struct ieee80211_key *,
116 			const uint8_t mac[IEEE80211_ADDR_LEN]);
117 static int	mwl_mode_init(struct mwl_softc *);
118 static void	mwl_update_mcast(struct ieee80211com *);
119 static void	mwl_update_promisc(struct ieee80211com *);
120 static void	mwl_updateslot(struct ieee80211com *);
121 static int	mwl_beacon_setup(struct ieee80211vap *);
122 static void	mwl_beacon_update(struct ieee80211vap *, int);
123 #ifdef MWL_HOST_PS_SUPPORT
124 static void	mwl_update_ps(struct ieee80211vap *, int);
125 static int	mwl_set_tim(struct ieee80211_node *, int);
126 #endif
127 static int	mwl_dma_setup(struct mwl_softc *);
128 static void	mwl_dma_cleanup(struct mwl_softc *);
129 static struct ieee80211_node *mwl_node_alloc(struct ieee80211vap *,
130 		    const uint8_t [IEEE80211_ADDR_LEN]);
131 static void	mwl_node_cleanup(struct ieee80211_node *);
132 static void	mwl_node_drain(struct ieee80211_node *);
133 static void	mwl_node_getsignal(const struct ieee80211_node *,
134 			int8_t *, int8_t *);
135 static void	mwl_node_getmimoinfo(const struct ieee80211_node *,
136 			struct ieee80211_mimo_info *);
137 static int	mwl_rxbuf_init(struct mwl_softc *, struct mwl_rxbuf *);
138 static void	mwl_rx_proc(void *, int);
139 static void	mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *, int);
140 static int	mwl_tx_setup(struct mwl_softc *, int, int);
141 static int	mwl_wme_update(struct ieee80211com *);
142 static void	mwl_tx_cleanupq(struct mwl_softc *, struct mwl_txq *);
143 static void	mwl_tx_cleanup(struct mwl_softc *);
144 static uint16_t	mwl_calcformat(uint8_t rate, const struct ieee80211_node *);
145 static int	mwl_tx_start(struct mwl_softc *, struct ieee80211_node *,
146 			     struct mwl_txbuf *, struct mbuf *);
147 static void	mwl_tx_proc(void *, int);
148 static int	mwl_chan_set(struct mwl_softc *, struct ieee80211_channel *);
149 static void	mwl_draintxq(struct mwl_softc *);
150 static void	mwl_cleartxq(struct mwl_softc *, struct ieee80211vap *);
151 static int	mwl_recv_action(struct ieee80211_node *,
152 			const struct ieee80211_frame *,
153 			const uint8_t *, const uint8_t *);
154 static int	mwl_addba_request(struct ieee80211_node *,
155 			struct ieee80211_tx_ampdu *, int dialogtoken,
156 			int baparamset, int batimeout);
157 static int	mwl_addba_response(struct ieee80211_node *,
158 			struct ieee80211_tx_ampdu *, int status,
159 			int baparamset, int batimeout);
160 static void	mwl_addba_stop(struct ieee80211_node *,
161 			struct ieee80211_tx_ampdu *);
162 static int	mwl_startrecv(struct mwl_softc *);
163 static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *,
164 			struct ieee80211_channel *);
165 static int	mwl_setapmode(struct ieee80211vap *, struct ieee80211_channel*);
166 static void	mwl_scan_start(struct ieee80211com *);
167 static void	mwl_scan_end(struct ieee80211com *);
168 static void	mwl_set_channel(struct ieee80211com *);
169 static int	mwl_peerstadb(struct ieee80211_node *,
170 			int aid, int staid, MWL_HAL_PEERINFO *pi);
171 static int	mwl_localstadb(struct ieee80211vap *);
172 static int	mwl_newstate(struct ieee80211vap *, enum ieee80211_state, int);
173 static int	allocstaid(struct mwl_softc *sc, int aid);
174 static void	delstaid(struct mwl_softc *sc, int staid);
175 static void	mwl_newassoc(struct ieee80211_node *, int);
176 static void	mwl_agestations(void *);
177 static int	mwl_setregdomain(struct ieee80211com *,
178 			struct ieee80211_regdomain *, int,
179 			struct ieee80211_channel []);
180 static void	mwl_getradiocaps(struct ieee80211com *, int, int *,
181 			struct ieee80211_channel []);
182 static int	mwl_getchannels(struct mwl_softc *);
183 
184 static void	mwl_sysctlattach(struct mwl_softc *);
185 static void	mwl_announce(struct mwl_softc *);
186 
187 SYSCTL_NODE(_hw, OID_AUTO, mwl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
188     "Marvell driver parameters");
189 
190 static	int mwl_rxdesc = MWL_RXDESC;		/* # rx desc's to allocate */
191 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdesc, CTLFLAG_RW, &mwl_rxdesc,
192 	    0, "rx descriptors allocated");
193 static	int mwl_rxbuf = MWL_RXBUF;		/* # rx buffers to allocate */
194 SYSCTL_INT(_hw_mwl, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &mwl_rxbuf,
195 	    0, "rx buffers allocated");
196 static	int mwl_txbuf = MWL_TXBUF;		/* # tx buffers to allocate */
197 SYSCTL_INT(_hw_mwl, OID_AUTO, txbuf, CTLFLAG_RWTUN, &mwl_txbuf,
198 	    0, "tx buffers allocated");
199 static	int mwl_txcoalesce = 8;		/* # tx packets to q before poking f/w*/
200 SYSCTL_INT(_hw_mwl, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &mwl_txcoalesce,
201 	    0, "tx buffers to send at once");
202 static	int mwl_rxquota = MWL_RXBUF;		/* # max buffers to process */
203 SYSCTL_INT(_hw_mwl, OID_AUTO, rxquota, CTLFLAG_RWTUN, &mwl_rxquota,
204 	    0, "max rx buffers to process per interrupt");
205 static	int mwl_rxdmalow = 3;			/* # min buffers for wakeup */
206 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdmalow, CTLFLAG_RWTUN, &mwl_rxdmalow,
207 	    0, "min free rx buffers before restarting traffic");
208 
209 #ifdef MWL_DEBUG
210 static	int mwl_debug = 0;
211 SYSCTL_INT(_hw_mwl, OID_AUTO, debug, CTLFLAG_RWTUN, &mwl_debug,
212 	    0, "control debugging printfs");
213 enum {
214 	MWL_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
215 	MWL_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
216 	MWL_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
217 	MWL_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
218 	MWL_DEBUG_RESET		= 0x00000010,	/* reset processing */
219 	MWL_DEBUG_BEACON 	= 0x00000020,	/* beacon handling */
220 	MWL_DEBUG_INTR		= 0x00000040,	/* ISR */
221 	MWL_DEBUG_TX_PROC	= 0x00000080,	/* tx ISR proc */
222 	MWL_DEBUG_RX_PROC	= 0x00000100,	/* rx ISR proc */
223 	MWL_DEBUG_KEYCACHE	= 0x00000200,	/* key cache management */
224 	MWL_DEBUG_STATE		= 0x00000400,	/* 802.11 state transitions */
225 	MWL_DEBUG_NODE		= 0x00000800,	/* node management */
226 	MWL_DEBUG_RECV_ALL	= 0x00001000,	/* trace all frames (beacons) */
227 	MWL_DEBUG_TSO		= 0x00002000,	/* TSO processing */
228 	MWL_DEBUG_AMPDU		= 0x00004000,	/* BA stream handling */
229 	MWL_DEBUG_ANY		= 0xffffffff
230 };
231 #define	IS_BEACON(wh) \
232     ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) == \
233 	 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON))
234 #define	IFF_DUMPPKTS_RECV(sc, wh) \
235     ((sc->sc_debug & MWL_DEBUG_RECV) && \
236       ((sc->sc_debug & MWL_DEBUG_RECV_ALL) || !IS_BEACON(wh)))
237 #define	IFF_DUMPPKTS_XMIT(sc) \
238 	(sc->sc_debug & MWL_DEBUG_XMIT)
239 
240 #define	DPRINTF(sc, m, fmt, ...) do {				\
241 	if (sc->sc_debug & (m))					\
242 		printf(fmt, __VA_ARGS__);			\
243 } while (0)
244 #define	KEYPRINTF(sc, hk, mac) do {				\
245 	if (sc->sc_debug & MWL_DEBUG_KEYCACHE)			\
246 		mwl_keyprint(sc, __func__, hk, mac);		\
247 } while (0)
248 static	void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix);
249 static	void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix);
250 #else
251 #define	IFF_DUMPPKTS_RECV(sc, wh)	0
252 #define	IFF_DUMPPKTS_XMIT(sc)		0
253 #define	DPRINTF(sc, m, fmt, ...)	do { (void )sc; } while (0)
254 #define	KEYPRINTF(sc, k, mac)		do { (void )sc; } while (0)
255 #endif
256 
257 static MALLOC_DEFINE(M_MWLDEV, "mwldev", "mwl driver dma buffers");
258 
259 /*
260  * Each packet has fixed front matter: a 2-byte length
261  * of the payload, followed by a 4-address 802.11 header
262  * (regardless of the actual header and always w/o any
263  * QoS header).  The payload then follows.
264  */
265 struct mwltxrec {
266 	uint16_t fwlen;
267 	struct ieee80211_frame_addr4 wh;
268 } __packed;
269 
270 /*
271  * Read/Write shorthands for accesses to BAR 0.  Note
272  * that all BAR 1 operations are done in the "hal" and
273  * there should be no reference to them here.
274  */
275 #ifdef MWL_DEBUG
276 static __inline uint32_t
277 RD4(struct mwl_softc *sc, bus_size_t off)
278 {
279 	return bus_space_read_4(sc->sc_io0t, sc->sc_io0h, off);
280 }
281 #endif
282 
283 static __inline void
284 WR4(struct mwl_softc *sc, bus_size_t off, uint32_t val)
285 {
286 	bus_space_write_4(sc->sc_io0t, sc->sc_io0h, off, val);
287 }
288 
289 int
290 mwl_attach(uint16_t devid, struct mwl_softc *sc)
291 {
292 	struct ieee80211com *ic = &sc->sc_ic;
293 	struct mwl_hal *mh;
294 	int error = 0;
295 
296 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
297 
298 	/*
299 	 * Setup the RX free list lock early, so it can be consistently
300 	 * removed.
301 	 */
302 	MWL_RXFREE_INIT(sc);
303 
304 	mh = mwl_hal_attach(sc->sc_dev, devid,
305 	    sc->sc_io1h, sc->sc_io1t, sc->sc_dmat);
306 	if (mh == NULL) {
307 		device_printf(sc->sc_dev, "unable to attach HAL\n");
308 		error = EIO;
309 		goto bad;
310 	}
311 	sc->sc_mh = mh;
312 	/*
313 	 * Load firmware so we can get setup.  We arbitrarily
314 	 * pick station firmware; we'll re-load firmware as
315 	 * needed so setting up the wrong mode isn't a big deal.
316 	 */
317 	if (mwl_hal_fwload(mh, NULL) != 0) {
318 		device_printf(sc->sc_dev, "unable to setup builtin firmware\n");
319 		error = EIO;
320 		goto bad1;
321 	}
322 	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
323 		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
324 		error = EIO;
325 		goto bad1;
326 	}
327 	error = mwl_getchannels(sc);
328 	if (error != 0)
329 		goto bad1;
330 
331 	sc->sc_txantenna = 0;		/* h/w default */
332 	sc->sc_rxantenna = 0;		/* h/w default */
333 	sc->sc_invalid = 0;		/* ready to go, enable int handling */
334 	sc->sc_ageinterval = MWL_AGEINTERVAL;
335 
336 	/*
337 	 * Allocate tx+rx descriptors and populate the lists.
338 	 * We immediately push the information to the firmware
339 	 * as otherwise it gets upset.
340 	 */
341 	error = mwl_dma_setup(sc);
342 	if (error != 0) {
343 		device_printf(sc->sc_dev, "failed to setup descriptors: %d\n",
344 		    error);
345 		goto bad1;
346 	}
347 	error = mwl_setupdma(sc);	/* push to firmware */
348 	if (error != 0)			/* NB: mwl_setupdma prints msg */
349 		goto bad1;
350 
351 	callout_init(&sc->sc_timer, 1);
352 	callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
353 	mbufq_init(&sc->sc_snd, ifqmaxlen);
354 
355 	sc->sc_tq = taskqueue_create("mwl_taskq", M_NOWAIT,
356 		taskqueue_thread_enqueue, &sc->sc_tq);
357 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
358 		"%s taskq", device_get_nameunit(sc->sc_dev));
359 
360 	NET_TASK_INIT(&sc->sc_rxtask, 0, mwl_rx_proc, sc);
361 	TASK_INIT(&sc->sc_radartask, 0, mwl_radar_proc, sc);
362 	TASK_INIT(&sc->sc_chanswitchtask, 0, mwl_chanswitch_proc, sc);
363 	TASK_INIT(&sc->sc_bawatchdogtask, 0, mwl_bawatchdog_proc, sc);
364 
365 	/* NB: insure BK queue is the lowest priority h/w queue */
366 	if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) {
367 		device_printf(sc->sc_dev,
368 		    "unable to setup xmit queue for %s traffic!\n",
369 		     ieee80211_wme_acnames[WME_AC_BK]);
370 		error = EIO;
371 		goto bad2;
372 	}
373 	if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) ||
374 	    !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) ||
375 	    !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) {
376 		/*
377 		 * Not enough hardware tx queues to properly do WME;
378 		 * just punt and assign them all to the same h/w queue.
379 		 * We could do a better job of this if, for example,
380 		 * we allocate queues when we switch from station to
381 		 * AP mode.
382 		 */
383 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
384 			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
385 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
386 			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
387 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
388 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
389 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
390 	}
391 	TASK_INIT(&sc->sc_txtask, 0, mwl_tx_proc, sc);
392 
393 	ic->ic_softc = sc;
394 	ic->ic_name = device_get_nameunit(sc->sc_dev);
395 	/* XXX not right but it's not used anywhere important */
396 	ic->ic_phytype = IEEE80211_T_OFDM;
397 	ic->ic_opmode = IEEE80211_M_STA;
398 	ic->ic_caps =
399 		  IEEE80211_C_STA		/* station mode supported */
400 		| IEEE80211_C_HOSTAP		/* hostap mode */
401 		| IEEE80211_C_MONITOR		/* monitor mode */
402 #if 0
403 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
404 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
405 #endif
406 		| IEEE80211_C_MBSS		/* mesh point link mode */
407 		| IEEE80211_C_WDS		/* WDS supported */
408 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
409 		| IEEE80211_C_SHSLOT		/* short slot time supported */
410 		| IEEE80211_C_WME		/* WME/WMM supported */
411 		| IEEE80211_C_BURST		/* xmit bursting supported */
412 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
413 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
414 		| IEEE80211_C_TXFRAG		/* handle tx frags */
415 		| IEEE80211_C_TXPMGT		/* capable of txpow mgt */
416 		| IEEE80211_C_DFS		/* DFS supported */
417 		;
418 
419 	ic->ic_htcaps =
420 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
421 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
422 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
423 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
424 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
425 #if MWL_AGGR_SIZE == 7935
426 		| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
427 #else
428 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
429 #endif
430 #if 0
431 		| IEEE80211_HTCAP_PSMP		/* PSMP supported */
432 		| IEEE80211_HTCAP_40INTOLERANT	/* 40MHz intolerant */
433 #endif
434 		/* s/w capabilities */
435 		| IEEE80211_HTC_HT		/* HT operation */
436 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
437 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
438 		| IEEE80211_HTC_SMPS		/* SMPS available */
439 		;
440 
441 	/*
442 	 * Mark h/w crypto support.
443 	 * XXX no way to query h/w support.
444 	 */
445 	ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP
446 			  |  IEEE80211_CRYPTO_AES_CCM
447 			  |  IEEE80211_CRYPTO_TKIP
448 			  |  IEEE80211_CRYPTO_TKIPMIC
449 			  ;
450 	/*
451 	 * Transmit requires space in the packet for a special
452 	 * format transmit record and optional padding between
453 	 * this record and the payload.  Ask the net80211 layer
454 	 * to arrange this when encapsulating packets so we can
455 	 * add it efficiently.
456 	 */
457 	ic->ic_headroom = sizeof(struct mwltxrec) -
458 		sizeof(struct ieee80211_frame);
459 
460 	IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->sc_hwspecs.macAddr);
461 
462 	/* call MI attach routine. */
463 	ieee80211_ifattach(ic);
464 	ic->ic_setregdomain = mwl_setregdomain;
465 	ic->ic_getradiocaps = mwl_getradiocaps;
466 	/* override default methods */
467 	ic->ic_raw_xmit = mwl_raw_xmit;
468 	ic->ic_newassoc = mwl_newassoc;
469 	ic->ic_updateslot = mwl_updateslot;
470 	ic->ic_update_mcast = mwl_update_mcast;
471 	ic->ic_update_promisc = mwl_update_promisc;
472 	ic->ic_wme.wme_update = mwl_wme_update;
473 	ic->ic_transmit = mwl_transmit;
474 	ic->ic_ioctl = mwl_ioctl;
475 	ic->ic_parent = mwl_parent;
476 
477 	ic->ic_node_alloc = mwl_node_alloc;
478 	sc->sc_node_cleanup = ic->ic_node_cleanup;
479 	ic->ic_node_cleanup = mwl_node_cleanup;
480 	sc->sc_node_drain = ic->ic_node_drain;
481 	ic->ic_node_drain = mwl_node_drain;
482 	ic->ic_node_getsignal = mwl_node_getsignal;
483 	ic->ic_node_getmimoinfo = mwl_node_getmimoinfo;
484 
485 	ic->ic_scan_start = mwl_scan_start;
486 	ic->ic_scan_end = mwl_scan_end;
487 	ic->ic_set_channel = mwl_set_channel;
488 
489 	sc->sc_recv_action = ic->ic_recv_action;
490 	ic->ic_recv_action = mwl_recv_action;
491 	sc->sc_addba_request = ic->ic_addba_request;
492 	ic->ic_addba_request = mwl_addba_request;
493 	sc->sc_addba_response = ic->ic_addba_response;
494 	ic->ic_addba_response = mwl_addba_response;
495 	sc->sc_addba_stop = ic->ic_addba_stop;
496 	ic->ic_addba_stop = mwl_addba_stop;
497 
498 	ic->ic_vap_create = mwl_vap_create;
499 	ic->ic_vap_delete = mwl_vap_delete;
500 
501 	ieee80211_radiotap_attach(ic,
502 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
503 		MWL_TX_RADIOTAP_PRESENT,
504 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
505 		MWL_RX_RADIOTAP_PRESENT);
506 	/*
507 	 * Setup dynamic sysctl's now that country code and
508 	 * regdomain are available from the hal.
509 	 */
510 	mwl_sysctlattach(sc);
511 
512 	if (bootverbose)
513 		ieee80211_announce(ic);
514 	mwl_announce(sc);
515 	return 0;
516 bad2:
517 	mwl_dma_cleanup(sc);
518 bad1:
519 	mwl_hal_detach(mh);
520 bad:
521 	MWL_RXFREE_DESTROY(sc);
522 	sc->sc_invalid = 1;
523 	return error;
524 }
525 
526 int
527 mwl_detach(struct mwl_softc *sc)
528 {
529 	struct ieee80211com *ic = &sc->sc_ic;
530 
531 	MWL_LOCK(sc);
532 	mwl_stop(sc);
533 	MWL_UNLOCK(sc);
534 	/*
535 	 * NB: the order of these is important:
536 	 * o call the 802.11 layer before detaching the hal to
537 	 *   insure callbacks into the driver to delete global
538 	 *   key cache entries can be handled
539 	 * o reclaim the tx queue data structures after calling
540 	 *   the 802.11 layer as we'll get called back to reclaim
541 	 *   node state and potentially want to use them
542 	 * o to cleanup the tx queues the hal is called, so detach
543 	 *   it last
544 	 * Other than that, it's straightforward...
545 	 */
546 	ieee80211_ifdetach(ic);
547 	callout_drain(&sc->sc_watchdog);
548 	mwl_dma_cleanup(sc);
549 	MWL_RXFREE_DESTROY(sc);
550 	mwl_tx_cleanup(sc);
551 	mwl_hal_detach(sc->sc_mh);
552 	mbufq_drain(&sc->sc_snd);
553 
554 	return 0;
555 }
556 
557 /*
558  * MAC address handling for multiple BSS on the same radio.
559  * The first vap uses the MAC address from the EEPROM.  For
560  * subsequent vap's we set the U/L bit (bit 1) in the MAC
561  * address and use the next six bits as an index.
562  */
563 static void
564 assign_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
565 {
566 	int i;
567 
568 	if (clone && mwl_hal_ismbsscapable(sc->sc_mh)) {
569 		/* NB: we only do this if h/w supports multiple bssid */
570 		for (i = 0; i < 32; i++)
571 			if ((sc->sc_bssidmask & (1<<i)) == 0)
572 				break;
573 		if (i != 0)
574 			mac[0] |= (i << 2)|0x2;
575 	} else
576 		i = 0;
577 	sc->sc_bssidmask |= 1<<i;
578 	if (i == 0)
579 		sc->sc_nbssid0++;
580 }
581 
582 static void
583 reclaim_address(struct mwl_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
584 {
585 	int i = mac[0] >> 2;
586 	if (i != 0 || --sc->sc_nbssid0 == 0)
587 		sc->sc_bssidmask &= ~(1<<i);
588 }
589 
590 static struct ieee80211vap *
591 mwl_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
592     enum ieee80211_opmode opmode, int flags,
593     const uint8_t bssid[IEEE80211_ADDR_LEN],
594     const uint8_t mac0[IEEE80211_ADDR_LEN])
595 {
596 	struct mwl_softc *sc = ic->ic_softc;
597 	struct mwl_hal *mh = sc->sc_mh;
598 	struct ieee80211vap *vap, *apvap;
599 	struct mwl_hal_vap *hvap;
600 	struct mwl_vap *mvp;
601 	uint8_t mac[IEEE80211_ADDR_LEN];
602 
603 	IEEE80211_ADDR_COPY(mac, mac0);
604 	switch (opmode) {
605 	case IEEE80211_M_HOSTAP:
606 	case IEEE80211_M_MBSS:
607 		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
608 			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
609 		hvap = mwl_hal_newvap(mh, MWL_HAL_AP, mac);
610 		if (hvap == NULL) {
611 			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
612 				reclaim_address(sc, mac);
613 			return NULL;
614 		}
615 		break;
616 	case IEEE80211_M_STA:
617 		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
618 			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
619 		hvap = mwl_hal_newvap(mh, MWL_HAL_STA, mac);
620 		if (hvap == NULL) {
621 			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
622 				reclaim_address(sc, mac);
623 			return NULL;
624 		}
625 		/* no h/w beacon miss support; always use s/w */
626 		flags |= IEEE80211_CLONE_NOBEACONS;
627 		break;
628 	case IEEE80211_M_WDS:
629 		hvap = NULL;		/* NB: we use associated AP vap */
630 		if (sc->sc_napvaps == 0)
631 			return NULL;	/* no existing AP vap */
632 		break;
633 	case IEEE80211_M_MONITOR:
634 		hvap = NULL;
635 		break;
636 	case IEEE80211_M_IBSS:
637 	case IEEE80211_M_AHDEMO:
638 	default:
639 		return NULL;
640 	}
641 
642 	mvp = malloc(sizeof(struct mwl_vap), M_80211_VAP, M_WAITOK | M_ZERO);
643 	mvp->mv_hvap = hvap;
644 	if (opmode == IEEE80211_M_WDS) {
645 		/*
646 		 * WDS vaps must have an associated AP vap; find one.
647 		 * XXX not right.
648 		 */
649 		TAILQ_FOREACH(apvap, &ic->ic_vaps, iv_next)
650 			if (apvap->iv_opmode == IEEE80211_M_HOSTAP) {
651 				mvp->mv_ap_hvap = MWL_VAP(apvap)->mv_hvap;
652 				break;
653 			}
654 		KASSERT(mvp->mv_ap_hvap != NULL, ("no ap vap"));
655 	}
656 	vap = &mvp->mv_vap;
657 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
658 	/* override with driver methods */
659 	mvp->mv_newstate = vap->iv_newstate;
660 	vap->iv_newstate = mwl_newstate;
661 	vap->iv_max_keyix = 0;	/* XXX */
662 	vap->iv_key_alloc = mwl_key_alloc;
663 	vap->iv_key_delete = mwl_key_delete;
664 	vap->iv_key_set = mwl_key_set;
665 #ifdef MWL_HOST_PS_SUPPORT
666 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
667 		vap->iv_update_ps = mwl_update_ps;
668 		mvp->mv_set_tim = vap->iv_set_tim;
669 		vap->iv_set_tim = mwl_set_tim;
670 	}
671 #endif
672 	vap->iv_reset = mwl_reset;
673 	vap->iv_update_beacon = mwl_beacon_update;
674 
675 	/* override max aid so sta's cannot assoc when we're out of sta id's */
676 	vap->iv_max_aid = MWL_MAXSTAID;
677 	/* override default A-MPDU rx parameters */
678 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
679 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4;
680 
681 	/* complete setup */
682 	ieee80211_vap_attach(vap, mwl_media_change, ieee80211_media_status,
683 	    mac);
684 
685 	switch (vap->iv_opmode) {
686 	case IEEE80211_M_HOSTAP:
687 	case IEEE80211_M_MBSS:
688 	case IEEE80211_M_STA:
689 		/*
690 		 * Setup sta db entry for local address.
691 		 */
692 		mwl_localstadb(vap);
693 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
694 		    vap->iv_opmode == IEEE80211_M_MBSS)
695 			sc->sc_napvaps++;
696 		else
697 			sc->sc_nstavaps++;
698 		break;
699 	case IEEE80211_M_WDS:
700 		sc->sc_nwdsvaps++;
701 		break;
702 	default:
703 		break;
704 	}
705 	/*
706 	 * Setup overall operating mode.
707 	 */
708 	if (sc->sc_napvaps)
709 		ic->ic_opmode = IEEE80211_M_HOSTAP;
710 	else if (sc->sc_nstavaps)
711 		ic->ic_opmode = IEEE80211_M_STA;
712 	else
713 		ic->ic_opmode = opmode;
714 
715 	return vap;
716 }
717 
718 static void
719 mwl_vap_delete(struct ieee80211vap *vap)
720 {
721 	struct mwl_vap *mvp = MWL_VAP(vap);
722 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
723 	struct mwl_hal *mh = sc->sc_mh;
724 	struct mwl_hal_vap *hvap = mvp->mv_hvap;
725 	enum ieee80211_opmode opmode = vap->iv_opmode;
726 
727 	/* XXX disallow ap vap delete if WDS still present */
728 	if (sc->sc_running) {
729 		/* quiesce h/w while we remove the vap */
730 		mwl_hal_intrset(mh, 0);		/* disable interrupts */
731 	}
732 	ieee80211_vap_detach(vap);
733 	switch (opmode) {
734 	case IEEE80211_M_HOSTAP:
735 	case IEEE80211_M_MBSS:
736 	case IEEE80211_M_STA:
737 		KASSERT(hvap != NULL, ("no hal vap handle"));
738 		(void) mwl_hal_delstation(hvap, vap->iv_myaddr);
739 		mwl_hal_delvap(hvap);
740 		if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS)
741 			sc->sc_napvaps--;
742 		else
743 			sc->sc_nstavaps--;
744 		/* XXX don't do it for IEEE80211_CLONE_MACADDR */
745 		reclaim_address(sc, vap->iv_myaddr);
746 		break;
747 	case IEEE80211_M_WDS:
748 		sc->sc_nwdsvaps--;
749 		break;
750 	default:
751 		break;
752 	}
753 	mwl_cleartxq(sc, vap);
754 	free(mvp, M_80211_VAP);
755 	if (sc->sc_running)
756 		mwl_hal_intrset(mh, sc->sc_imask);
757 }
758 
759 void
760 mwl_suspend(struct mwl_softc *sc)
761 {
762 
763 	MWL_LOCK(sc);
764 	mwl_stop(sc);
765 	MWL_UNLOCK(sc);
766 }
767 
768 void
769 mwl_resume(struct mwl_softc *sc)
770 {
771 	int error = EDOOFUS;
772 
773 	MWL_LOCK(sc);
774 	if (sc->sc_ic.ic_nrunning > 0)
775 		error = mwl_init(sc);
776 	MWL_UNLOCK(sc);
777 
778 	if (error == 0)
779 		ieee80211_start_all(&sc->sc_ic);	/* start all vap's */
780 }
781 
782 void
783 mwl_shutdown(void *arg)
784 {
785 	struct mwl_softc *sc = arg;
786 
787 	MWL_LOCK(sc);
788 	mwl_stop(sc);
789 	MWL_UNLOCK(sc);
790 }
791 
792 /*
793  * Interrupt handler.  Most of the actual processing is deferred.
794  */
795 void
796 mwl_intr(void *arg)
797 {
798 	struct mwl_softc *sc = arg;
799 	struct mwl_hal *mh = sc->sc_mh;
800 	uint32_t status;
801 
802 	if (sc->sc_invalid) {
803 		/*
804 		 * The hardware is not ready/present, don't touch anything.
805 		 * Note this can happen early on if the IRQ is shared.
806 		 */
807 		DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
808 		return;
809 	}
810 	/*
811 	 * Figure out the reason(s) for the interrupt.
812 	 */
813 	mwl_hal_getisr(mh, &status);		/* NB: clears ISR too */
814 	if (status == 0)			/* must be a shared irq */
815 		return;
816 
817 	DPRINTF(sc, MWL_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n",
818 	    __func__, status, sc->sc_imask);
819 	if (status & MACREG_A2HRIC_BIT_RX_RDY)
820 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
821 	if (status & MACREG_A2HRIC_BIT_TX_DONE)
822 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
823 	if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG)
824 		taskqueue_enqueue(sc->sc_tq, &sc->sc_bawatchdogtask);
825 	if (status & MACREG_A2HRIC_BIT_OPC_DONE)
826 		mwl_hal_cmddone(mh);
827 	if (status & MACREG_A2HRIC_BIT_MAC_EVENT) {
828 		;
829 	}
830 	if (status & MACREG_A2HRIC_BIT_ICV_ERROR) {
831 		/* TKIP ICV error */
832 		sc->sc_stats.mst_rx_badtkipicv++;
833 	}
834 	if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) {
835 		/* 11n aggregation queue is empty, re-fill */
836 		;
837 	}
838 	if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) {
839 		;
840 	}
841 	if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) {
842 		/* radar detected, process event */
843 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
844 	}
845 	if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) {
846 		/* DFS channel switch */
847 		taskqueue_enqueue(sc->sc_tq, &sc->sc_chanswitchtask);
848 	}
849 }
850 
851 static void
852 mwl_radar_proc(void *arg, int pending)
853 {
854 	struct mwl_softc *sc = arg;
855 	struct ieee80211com *ic = &sc->sc_ic;
856 
857 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: radar detected, pending %u\n",
858 	    __func__, pending);
859 
860 	sc->sc_stats.mst_radardetect++;
861 	/* XXX stop h/w BA streams? */
862 
863 	IEEE80211_LOCK(ic);
864 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
865 	IEEE80211_UNLOCK(ic);
866 }
867 
868 static void
869 mwl_chanswitch_proc(void *arg, int pending)
870 {
871 	struct mwl_softc *sc = arg;
872 	struct ieee80211com *ic = &sc->sc_ic;
873 
874 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: channel switch notice, pending %u\n",
875 	    __func__, pending);
876 
877 	IEEE80211_LOCK(ic);
878 	sc->sc_csapending = 0;
879 	ieee80211_csa_completeswitch(ic);
880 	IEEE80211_UNLOCK(ic);
881 }
882 
883 static void
884 mwl_bawatchdog(const MWL_HAL_BASTREAM *sp)
885 {
886 	struct ieee80211_node *ni = sp->data[0];
887 
888 	/* send DELBA and drop the stream */
889 	ieee80211_ampdu_stop(ni, sp->data[1], IEEE80211_REASON_UNSPECIFIED);
890 }
891 
892 static void
893 mwl_bawatchdog_proc(void *arg, int pending)
894 {
895 	struct mwl_softc *sc = arg;
896 	struct mwl_hal *mh = sc->sc_mh;
897 	const MWL_HAL_BASTREAM *sp;
898 	uint8_t bitmap, n;
899 
900 	sc->sc_stats.mst_bawatchdog++;
901 
902 	if (mwl_hal_getwatchdogbitmap(mh, &bitmap) != 0) {
903 		DPRINTF(sc, MWL_DEBUG_AMPDU,
904 		    "%s: could not get bitmap\n", __func__);
905 		sc->sc_stats.mst_bawatchdog_failed++;
906 		return;
907 	}
908 	DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bitmap 0x%x\n", __func__, bitmap);
909 	if (bitmap == 0xff) {
910 		n = 0;
911 		/* disable all ba streams */
912 		for (bitmap = 0; bitmap < 8; bitmap++) {
913 			sp = mwl_hal_bastream_lookup(mh, bitmap);
914 			if (sp != NULL) {
915 				mwl_bawatchdog(sp);
916 				n++;
917 			}
918 		}
919 		if (n == 0) {
920 			DPRINTF(sc, MWL_DEBUG_AMPDU,
921 			    "%s: no BA streams found\n", __func__);
922 			sc->sc_stats.mst_bawatchdog_empty++;
923 		}
924 	} else if (bitmap != 0xaa) {
925 		/* disable a single ba stream */
926 		sp = mwl_hal_bastream_lookup(mh, bitmap);
927 		if (sp != NULL) {
928 			mwl_bawatchdog(sp);
929 		} else {
930 			DPRINTF(sc, MWL_DEBUG_AMPDU,
931 			    "%s: no BA stream %d\n", __func__, bitmap);
932 			sc->sc_stats.mst_bawatchdog_notfound++;
933 		}
934 	}
935 }
936 
937 /*
938  * Convert net80211 channel to a HAL channel.
939  */
940 static void
941 mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
942 {
943 	hc->channel = chan->ic_ieee;
944 
945 	*(uint32_t *)&hc->channelFlags = 0;
946 	if (IEEE80211_IS_CHAN_2GHZ(chan))
947 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ;
948 	else if (IEEE80211_IS_CHAN_5GHZ(chan))
949 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ;
950 	if (IEEE80211_IS_CHAN_HT40(chan)) {
951 		hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH;
952 		if (IEEE80211_IS_CHAN_HT40U(chan))
953 			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_ABOVE_CTRL_CH;
954 		else
955 			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_BELOW_CTRL_CH;
956 	} else
957 		hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH;
958 	/* XXX 10MHz channels */
959 }
960 
961 /*
962  * Inform firmware of our tx/rx dma setup.  The BAR 0
963  * writes below are for compatibility with older firmware.
964  * For current firmware we send this information with a
965  * cmd block via mwl_hal_sethwdma.
966  */
967 static int
968 mwl_setupdma(struct mwl_softc *sc)
969 {
970 	int error, i;
971 
972 	sc->sc_hwdma.rxDescRead = sc->sc_rxdma.dd_desc_paddr;
973 	WR4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead);
974 	WR4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead);
975 
976 	for (i = 0; i < MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; i++) {
977 		struct mwl_txq *txq = &sc->sc_txq[i];
978 		sc->sc_hwdma.wcbBase[i] = txq->dma.dd_desc_paddr;
979 		WR4(sc, sc->sc_hwspecs.wcbBase[i], sc->sc_hwdma.wcbBase[i]);
980 	}
981 	sc->sc_hwdma.maxNumTxWcb = mwl_txbuf;
982 	sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES;
983 
984 	error = mwl_hal_sethwdma(sc->sc_mh, &sc->sc_hwdma);
985 	if (error != 0) {
986 		device_printf(sc->sc_dev,
987 		    "unable to setup tx/rx dma; hal status %u\n", error);
988 		/* XXX */
989 	}
990 	return error;
991 }
992 
993 /*
994  * Inform firmware of tx rate parameters.
995  * Called after a channel change.
996  */
997 static int
998 mwl_setcurchanrates(struct mwl_softc *sc)
999 {
1000 	struct ieee80211com *ic = &sc->sc_ic;
1001 	const struct ieee80211_rateset *rs;
1002 	MWL_HAL_TXRATE rates;
1003 
1004 	memset(&rates, 0, sizeof(rates));
1005 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1006 	/* rate used to send management frames */
1007 	rates.MgtRate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
1008 	/* rate used to send multicast frames */
1009 	rates.McastRate = rates.MgtRate;
1010 
1011 	return mwl_hal_settxrate_auto(sc->sc_mh, &rates);
1012 }
1013 
1014 /*
1015  * Inform firmware of tx rate parameters.  Called whenever
1016  * user-settable params change and after a channel change.
1017  */
1018 static int
1019 mwl_setrates(struct ieee80211vap *vap)
1020 {
1021 	struct mwl_vap *mvp = MWL_VAP(vap);
1022 	struct ieee80211_node *ni = vap->iv_bss;
1023 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1024 	MWL_HAL_TXRATE rates;
1025 
1026 	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1027 
1028 	/*
1029 	 * Update the h/w rate map.
1030 	 * NB: 0x80 for MCS is passed through unchanged
1031 	 */
1032 	memset(&rates, 0, sizeof(rates));
1033 	/* rate used to send management frames */
1034 	rates.MgtRate = tp->mgmtrate;
1035 	/* rate used to send multicast frames */
1036 	rates.McastRate = tp->mcastrate;
1037 
1038 	/* while here calculate EAPOL fixed rate cookie */
1039 	mvp->mv_eapolformat = htole16(mwl_calcformat(rates.MgtRate, ni));
1040 
1041 	return mwl_hal_settxrate(mvp->mv_hvap,
1042 	    tp->ucastrate != IEEE80211_FIXED_RATE_NONE ?
1043 		RATE_FIXED : RATE_AUTO, &rates);
1044 }
1045 
1046 /*
1047  * Setup a fixed xmit rate cookie for EAPOL frames.
1048  */
1049 static void
1050 mwl_seteapolformat(struct ieee80211vap *vap)
1051 {
1052 	struct mwl_vap *mvp = MWL_VAP(vap);
1053 	struct ieee80211_node *ni = vap->iv_bss;
1054 	enum ieee80211_phymode mode;
1055 	uint8_t rate;
1056 
1057 	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1058 
1059 	mode = ieee80211_chan2mode(ni->ni_chan);
1060 	/*
1061 	 * Use legacy rates when operating a mixed HT+non-HT bss.
1062 	 * NB: this may violate POLA for sta and wds vap's.
1063 	 */
1064 	if (mode == IEEE80211_MODE_11NA &&
1065 	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1066 		rate = vap->iv_txparms[IEEE80211_MODE_11A].mgmtrate;
1067 	else if (mode == IEEE80211_MODE_11NG &&
1068 	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1069 		rate = vap->iv_txparms[IEEE80211_MODE_11G].mgmtrate;
1070 	else
1071 		rate = vap->iv_txparms[mode].mgmtrate;
1072 
1073 	mvp->mv_eapolformat = htole16(mwl_calcformat(rate, ni));
1074 }
1075 
1076 /*
1077  * Map SKU+country code to region code for radar bin'ing.
1078  */
1079 static int
1080 mwl_map2regioncode(const struct ieee80211_regdomain *rd)
1081 {
1082 	switch (rd->regdomain) {
1083 	case SKU_FCC:
1084 	case SKU_FCC3:
1085 		return DOMAIN_CODE_FCC;
1086 	case SKU_CA:
1087 		return DOMAIN_CODE_IC;
1088 	case SKU_ETSI:
1089 	case SKU_ETSI2:
1090 	case SKU_ETSI3:
1091 		if (rd->country == CTRY_SPAIN)
1092 			return DOMAIN_CODE_SPAIN;
1093 		if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2)
1094 			return DOMAIN_CODE_FRANCE;
1095 		/* XXX force 1.3.1 radar type */
1096 		return DOMAIN_CODE_ETSI_131;
1097 	case SKU_JAPAN:
1098 		return DOMAIN_CODE_MKK;
1099 	case SKU_ROW:
1100 		return DOMAIN_CODE_DGT;	/* Taiwan */
1101 	case SKU_APAC:
1102 	case SKU_APAC2:
1103 	case SKU_APAC3:
1104 		return DOMAIN_CODE_AUS;	/* Australia */
1105 	}
1106 	/* XXX KOREA? */
1107 	return DOMAIN_CODE_FCC;			/* XXX? */
1108 }
1109 
1110 static int
1111 mwl_hal_reset(struct mwl_softc *sc)
1112 {
1113 	struct ieee80211com *ic = &sc->sc_ic;
1114 	struct mwl_hal *mh = sc->sc_mh;
1115 
1116 	mwl_hal_setantenna(mh, WL_ANTENNATYPE_RX, sc->sc_rxantenna);
1117 	mwl_hal_setantenna(mh, WL_ANTENNATYPE_TX, sc->sc_txantenna);
1118 	mwl_hal_setradio(mh, 1, WL_AUTO_PREAMBLE);
1119 	mwl_hal_setwmm(sc->sc_mh, (ic->ic_flags & IEEE80211_F_WME) != 0);
1120 	mwl_chan_set(sc, ic->ic_curchan);
1121 	/* NB: RF/RA performance tuned for indoor mode */
1122 	mwl_hal_setrateadaptmode(mh, 0);
1123 	mwl_hal_setoptimizationlevel(mh,
1124 	    (ic->ic_flags & IEEE80211_F_BURST) != 0);
1125 
1126 	mwl_hal_setregioncode(mh, mwl_map2regioncode(&ic->ic_regdomain));
1127 
1128 	mwl_hal_setaggampduratemode(mh, 1, 80);		/* XXX */
1129 	mwl_hal_setcfend(mh, 0);			/* XXX */
1130 
1131 	return 1;
1132 }
1133 
1134 static int
1135 mwl_init(struct mwl_softc *sc)
1136 {
1137 	struct mwl_hal *mh = sc->sc_mh;
1138 	int error = 0;
1139 
1140 	MWL_LOCK_ASSERT(sc);
1141 
1142 	/*
1143 	 * Stop anything previously setup.  This is safe
1144 	 * whether this is the first time through or not.
1145 	 */
1146 	mwl_stop(sc);
1147 
1148 	/*
1149 	 * Push vap-independent state to the firmware.
1150 	 */
1151 	if (!mwl_hal_reset(sc)) {
1152 		device_printf(sc->sc_dev, "unable to reset hardware\n");
1153 		return EIO;
1154 	}
1155 
1156 	/*
1157 	 * Setup recv (once); transmit is already good to go.
1158 	 */
1159 	error = mwl_startrecv(sc);
1160 	if (error != 0) {
1161 		device_printf(sc->sc_dev, "unable to start recv logic\n");
1162 		return error;
1163 	}
1164 
1165 	/*
1166 	 * Enable interrupts.
1167 	 */
1168 	sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY
1169 		     | MACREG_A2HRIC_BIT_TX_DONE
1170 		     | MACREG_A2HRIC_BIT_OPC_DONE
1171 #if 0
1172 		     | MACREG_A2HRIC_BIT_MAC_EVENT
1173 #endif
1174 		     | MACREG_A2HRIC_BIT_ICV_ERROR
1175 		     | MACREG_A2HRIC_BIT_RADAR_DETECT
1176 		     | MACREG_A2HRIC_BIT_CHAN_SWITCH
1177 #if 0
1178 		     | MACREG_A2HRIC_BIT_QUEUE_EMPTY
1179 #endif
1180 		     | MACREG_A2HRIC_BIT_BA_WATCHDOG
1181 		     | MACREQ_A2HRIC_BIT_TX_ACK
1182 		     ;
1183 
1184 	sc->sc_running = 1;
1185 	mwl_hal_intrset(mh, sc->sc_imask);
1186 	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
1187 
1188 	return 0;
1189 }
1190 
1191 static void
1192 mwl_stop(struct mwl_softc *sc)
1193 {
1194 
1195 	MWL_LOCK_ASSERT(sc);
1196 	if (sc->sc_running) {
1197 		/*
1198 		 * Shutdown the hardware and driver.
1199 		 */
1200 		sc->sc_running = 0;
1201 		callout_stop(&sc->sc_watchdog);
1202 		sc->sc_tx_timer = 0;
1203 		mwl_draintxq(sc);
1204 	}
1205 }
1206 
1207 static int
1208 mwl_reset_vap(struct ieee80211vap *vap, int state)
1209 {
1210 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1211 	struct ieee80211com *ic = vap->iv_ic;
1212 
1213 	if (state == IEEE80211_S_RUN)
1214 		mwl_setrates(vap);
1215 	/* XXX off by 1? */
1216 	mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
1217 	/* XXX auto? 20/40 split? */
1218 	mwl_hal_sethtgi(hvap, (vap->iv_flags_ht &
1219 	    (IEEE80211_FHT_SHORTGI20|IEEE80211_FHT_SHORTGI40)) ? 1 : 0);
1220 	mwl_hal_setnprot(hvap, ic->ic_htprotmode == IEEE80211_PROT_NONE ?
1221 	    HTPROTECT_NONE : HTPROTECT_AUTO);
1222 	/* XXX txpower cap */
1223 
1224 	/* re-setup beacons */
1225 	if (state == IEEE80211_S_RUN &&
1226 	    (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1227 	     vap->iv_opmode == IEEE80211_M_MBSS ||
1228 	     vap->iv_opmode == IEEE80211_M_IBSS)) {
1229 		mwl_setapmode(vap, vap->iv_bss->ni_chan);
1230 		mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT(
1231 		    ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1232 		return mwl_beacon_setup(vap);
1233 	}
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Reset the hardware w/o losing operational state.
1239  * Used to reset or reload hardware state for a vap.
1240  */
1241 static int
1242 mwl_reset(struct ieee80211vap *vap, u_long cmd)
1243 {
1244 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1245 	int error = 0;
1246 
1247 	if (hvap != NULL) {			/* WDS, MONITOR, etc. */
1248 		struct ieee80211com *ic = vap->iv_ic;
1249 		struct mwl_softc *sc = ic->ic_softc;
1250 		struct mwl_hal *mh = sc->sc_mh;
1251 
1252 		/* XXX handle DWDS sta vap change */
1253 		/* XXX do we need to disable interrupts? */
1254 		mwl_hal_intrset(mh, 0);		/* disable interrupts */
1255 		error = mwl_reset_vap(vap, vap->iv_state);
1256 		mwl_hal_intrset(mh, sc->sc_imask);
1257 	}
1258 	return error;
1259 }
1260 
1261 /*
1262  * Allocate a tx buffer for sending a frame.  The
1263  * packet is assumed to have the WME AC stored so
1264  * we can use it to select the appropriate h/w queue.
1265  */
1266 static struct mwl_txbuf *
1267 mwl_gettxbuf(struct mwl_softc *sc, struct mwl_txq *txq)
1268 {
1269 	struct mwl_txbuf *bf;
1270 
1271 	/*
1272 	 * Grab a TX buffer and associated resources.
1273 	 */
1274 	MWL_TXQ_LOCK(txq);
1275 	bf = STAILQ_FIRST(&txq->free);
1276 	if (bf != NULL) {
1277 		STAILQ_REMOVE_HEAD(&txq->free, bf_list);
1278 		txq->nfree--;
1279 	}
1280 	MWL_TXQ_UNLOCK(txq);
1281 	if (bf == NULL)
1282 		DPRINTF(sc, MWL_DEBUG_XMIT,
1283 		    "%s: out of xmit buffers on q %d\n", __func__, txq->qnum);
1284 	return bf;
1285 }
1286 
1287 /*
1288  * Return a tx buffer to the queue it came from.  Note there
1289  * are two cases because we must preserve the order of buffers
1290  * as it reflects the fixed order of descriptors in memory
1291  * (the firmware pre-fetches descriptors so we cannot reorder).
1292  */
1293 static void
1294 mwl_puttxbuf_head(struct mwl_txq *txq, struct mwl_txbuf *bf)
1295 {
1296 	bf->bf_m = NULL;
1297 	bf->bf_node = NULL;
1298 	MWL_TXQ_LOCK(txq);
1299 	STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
1300 	txq->nfree++;
1301 	MWL_TXQ_UNLOCK(txq);
1302 }
1303 
1304 static void
1305 mwl_puttxbuf_tail(struct mwl_txq *txq, struct mwl_txbuf *bf)
1306 {
1307 	bf->bf_m = NULL;
1308 	bf->bf_node = NULL;
1309 	MWL_TXQ_LOCK(txq);
1310 	STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
1311 	txq->nfree++;
1312 	MWL_TXQ_UNLOCK(txq);
1313 }
1314 
1315 static int
1316 mwl_transmit(struct ieee80211com *ic, struct mbuf *m)
1317 {
1318 	struct mwl_softc *sc = ic->ic_softc;
1319 	int error;
1320 
1321 	MWL_LOCK(sc);
1322 	if (!sc->sc_running) {
1323 		MWL_UNLOCK(sc);
1324 		return (ENXIO);
1325 	}
1326 	error = mbufq_enqueue(&sc->sc_snd, m);
1327 	if (error) {
1328 		MWL_UNLOCK(sc);
1329 		return (error);
1330 	}
1331 	mwl_start(sc);
1332 	MWL_UNLOCK(sc);
1333 	return (0);
1334 }
1335 
1336 static void
1337 mwl_start(struct mwl_softc *sc)
1338 {
1339 	struct ieee80211_node *ni;
1340 	struct mwl_txbuf *bf;
1341 	struct mbuf *m;
1342 	struct mwl_txq *txq = NULL;	/* XXX silence gcc */
1343 	int nqueued;
1344 
1345 	MWL_LOCK_ASSERT(sc);
1346 	if (!sc->sc_running || sc->sc_invalid)
1347 		return;
1348 	nqueued = 0;
1349 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1350 		/*
1351 		 * Grab the node for the destination.
1352 		 */
1353 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1354 		KASSERT(ni != NULL, ("no node"));
1355 		m->m_pkthdr.rcvif = NULL;	/* committed, clear ref */
1356 		/*
1357 		 * Grab a TX buffer and associated resources.
1358 		 * We honor the classification by the 802.11 layer.
1359 		 */
1360 		txq = sc->sc_ac2q[M_WME_GETAC(m)];
1361 		bf = mwl_gettxbuf(sc, txq);
1362 		if (bf == NULL) {
1363 			m_freem(m);
1364 			ieee80211_free_node(ni);
1365 #ifdef MWL_TX_NODROP
1366 			sc->sc_stats.mst_tx_qstop++;
1367 			break;
1368 #else
1369 			DPRINTF(sc, MWL_DEBUG_XMIT,
1370 			    "%s: tail drop on q %d\n", __func__, txq->qnum);
1371 			sc->sc_stats.mst_tx_qdrop++;
1372 			continue;
1373 #endif /* MWL_TX_NODROP */
1374 		}
1375 
1376 		/*
1377 		 * Pass the frame to the h/w for transmission.
1378 		 */
1379 		if (mwl_tx_start(sc, ni, bf, m)) {
1380 			if_inc_counter(ni->ni_vap->iv_ifp,
1381 			    IFCOUNTER_OERRORS, 1);
1382 			mwl_puttxbuf_head(txq, bf);
1383 			ieee80211_free_node(ni);
1384 			continue;
1385 		}
1386 		nqueued++;
1387 		if (nqueued >= mwl_txcoalesce) {
1388 			/*
1389 			 * Poke the firmware to process queued frames;
1390 			 * see below about (lack of) locking.
1391 			 */
1392 			nqueued = 0;
1393 			mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1394 		}
1395 	}
1396 	if (nqueued) {
1397 		/*
1398 		 * NB: We don't need to lock against tx done because
1399 		 * this just prods the firmware to check the transmit
1400 		 * descriptors.  The firmware will also start fetching
1401 		 * descriptors by itself if it notices new ones are
1402 		 * present when it goes to deliver a tx done interrupt
1403 		 * to the host. So if we race with tx done processing
1404 		 * it's ok.  Delivering the kick here rather than in
1405 		 * mwl_tx_start is an optimization to avoid poking the
1406 		 * firmware for each packet.
1407 		 *
1408 		 * NB: the queue id isn't used so 0 is ok.
1409 		 */
1410 		mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1411 	}
1412 }
1413 
1414 static int
1415 mwl_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1416 	const struct ieee80211_bpf_params *params)
1417 {
1418 	struct ieee80211com *ic = ni->ni_ic;
1419 	struct mwl_softc *sc = ic->ic_softc;
1420 	struct mwl_txbuf *bf;
1421 	struct mwl_txq *txq;
1422 
1423 	if (!sc->sc_running || sc->sc_invalid) {
1424 		m_freem(m);
1425 		return ENETDOWN;
1426 	}
1427 	/*
1428 	 * Grab a TX buffer and associated resources.
1429 	 * Note that we depend on the classification
1430 	 * by the 802.11 layer to get to the right h/w
1431 	 * queue.  Management frames must ALWAYS go on
1432 	 * queue 1 but we cannot just force that here
1433 	 * because we may receive non-mgt frames.
1434 	 */
1435 	txq = sc->sc_ac2q[M_WME_GETAC(m)];
1436 	bf = mwl_gettxbuf(sc, txq);
1437 	if (bf == NULL) {
1438 		sc->sc_stats.mst_tx_qstop++;
1439 		m_freem(m);
1440 		return ENOBUFS;
1441 	}
1442 	/*
1443 	 * Pass the frame to the h/w for transmission.
1444 	 */
1445 	if (mwl_tx_start(sc, ni, bf, m)) {
1446 		mwl_puttxbuf_head(txq, bf);
1447 
1448 		return EIO;		/* XXX */
1449 	}
1450 	/*
1451 	 * NB: We don't need to lock against tx done because
1452 	 * this just prods the firmware to check the transmit
1453 	 * descriptors.  The firmware will also start fetching
1454 	 * descriptors by itself if it notices new ones are
1455 	 * present when it goes to deliver a tx done interrupt
1456 	 * to the host. So if we race with tx done processing
1457 	 * it's ok.  Delivering the kick here rather than in
1458 	 * mwl_tx_start is an optimization to avoid poking the
1459 	 * firmware for each packet.
1460 	 *
1461 	 * NB: the queue id isn't used so 0 is ok.
1462 	 */
1463 	mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1464 	return 0;
1465 }
1466 
1467 static int
1468 mwl_media_change(struct ifnet *ifp)
1469 {
1470 	struct ieee80211vap *vap;
1471 	int error;
1472 
1473 	/* NB: only the fixed rate can change and that doesn't need a reset */
1474 	error = ieee80211_media_change(ifp);
1475 	if (error != 0)
1476 		return (error);
1477 
1478 	vap = ifp->if_softc;
1479 	mwl_setrates(vap);
1480 	return (0);
1481 }
1482 
1483 #ifdef MWL_DEBUG
1484 static void
1485 mwl_keyprint(struct mwl_softc *sc, const char *tag,
1486 	const MWL_HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1487 {
1488 	static const char *ciphers[] = {
1489 		"WEP",
1490 		"TKIP",
1491 		"AES-CCM",
1492 	};
1493 	int i, n;
1494 
1495 	printf("%s: [%u] %-7s", tag, hk->keyIndex, ciphers[hk->keyTypeId]);
1496 	for (i = 0, n = hk->keyLen; i < n; i++)
1497 		printf(" %02x", hk->key.aes[i]);
1498 	printf(" mac %s", ether_sprintf(mac));
1499 	if (hk->keyTypeId == KEY_TYPE_ID_TKIP) {
1500 		printf(" %s", "rxmic");
1501 		for (i = 0; i < sizeof(hk->key.tkip.rxMic); i++)
1502 			printf(" %02x", hk->key.tkip.rxMic[i]);
1503 		printf(" txmic");
1504 		for (i = 0; i < sizeof(hk->key.tkip.txMic); i++)
1505 			printf(" %02x", hk->key.tkip.txMic[i]);
1506 	}
1507 	printf(" flags 0x%x\n", hk->keyFlags);
1508 }
1509 #endif
1510 
1511 /*
1512  * Allocate a key cache slot for a unicast key.  The
1513  * firmware handles key allocation and every station is
1514  * guaranteed key space so we are always successful.
1515  */
1516 static int
1517 mwl_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
1518 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1519 {
1520 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1521 
1522 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||
1523 	    (k->wk_flags & IEEE80211_KEY_GROUP)) {
1524 		if (!(&vap->iv_nw_keys[0] <= k &&
1525 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
1526 			/* should not happen */
1527 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1528 				"%s: bogus group key\n", __func__);
1529 			return 0;
1530 		}
1531 		/* give the caller what they requested */
1532 		*keyix = *rxkeyix = ieee80211_crypto_get_key_wepidx(vap, k);
1533 	} else {
1534 		/*
1535 		 * Firmware handles key allocation.
1536 		 */
1537 		*keyix = *rxkeyix = 0;
1538 	}
1539 	return 1;
1540 }
1541 
1542 /*
1543  * Delete a key entry allocated by mwl_key_alloc.
1544  */
1545 static int
1546 mwl_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
1547 {
1548 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1549 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1550 	MWL_HAL_KEYVAL hk;
1551 	const uint8_t bcastaddr[IEEE80211_ADDR_LEN] =
1552 	    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1553 
1554 	if (hvap == NULL) {
1555 		if (vap->iv_opmode != IEEE80211_M_WDS) {
1556 			/* XXX monitor mode? */
1557 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1558 			    "%s: no hvap for opmode %d\n", __func__,
1559 			    vap->iv_opmode);
1560 			return 0;
1561 		}
1562 		hvap = MWL_VAP(vap)->mv_ap_hvap;
1563 	}
1564 
1565 	DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: delete key %u\n",
1566 	    __func__, k->wk_keyix);
1567 
1568 	memset(&hk, 0, sizeof(hk));
1569 	hk.keyIndex = k->wk_keyix;
1570 	switch (k->wk_cipher->ic_cipher) {
1571 	case IEEE80211_CIPHER_WEP:
1572 		hk.keyTypeId = KEY_TYPE_ID_WEP;
1573 		break;
1574 	case IEEE80211_CIPHER_TKIP:
1575 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1576 		break;
1577 	case IEEE80211_CIPHER_AES_CCM:
1578 		hk.keyTypeId = KEY_TYPE_ID_AES;
1579 		break;
1580 	default:
1581 		/* XXX should not happen */
1582 		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1583 		    __func__, k->wk_cipher->ic_cipher);
1584 		return 0;
1585 	}
1586 	return (mwl_hal_keyreset(hvap, &hk, bcastaddr) == 0);	/*XXX*/
1587 }
1588 
1589 static __inline int
1590 addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k)
1591 {
1592 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
1593 		if (k->wk_flags & IEEE80211_KEY_XMIT)
1594 			hk->keyFlags |= KEY_FLAG_TXGROUPKEY;
1595 		if (k->wk_flags & IEEE80211_KEY_RECV)
1596 			hk->keyFlags |= KEY_FLAG_RXGROUPKEY;
1597 		return 1;
1598 	} else
1599 		return 0;
1600 }
1601 
1602 /*
1603  * Set the key cache contents for the specified key.  Key cache
1604  * slot(s) must already have been allocated by mwl_key_alloc.
1605  */
1606 static int
1607 mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
1608 {
1609 	return (_mwl_key_set(vap, k, k->wk_macaddr));
1610 }
1611 
1612 static int
1613 _mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
1614 	const uint8_t mac[IEEE80211_ADDR_LEN])
1615 {
1616 #define	GRPXMIT	(IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP)
1617 /* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */
1618 #define	IEEE80211_IS_STATICKEY(k) \
1619 	(((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \
1620 	 (GRPXMIT|IEEE80211_KEY_RECV))
1621 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1622 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1623 	const struct ieee80211_cipher *cip = k->wk_cipher;
1624 	const uint8_t *macaddr;
1625 	MWL_HAL_KEYVAL hk;
1626 
1627 	KASSERT((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0,
1628 		("s/w crypto set?"));
1629 
1630 	if (hvap == NULL) {
1631 		if (vap->iv_opmode != IEEE80211_M_WDS) {
1632 			/* XXX monitor mode? */
1633 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1634 			    "%s: no hvap for opmode %d\n", __func__,
1635 			    vap->iv_opmode);
1636 			return 0;
1637 		}
1638 		hvap = MWL_VAP(vap)->mv_ap_hvap;
1639 	}
1640 	memset(&hk, 0, sizeof(hk));
1641 	hk.keyIndex = k->wk_keyix;
1642 	switch (cip->ic_cipher) {
1643 	case IEEE80211_CIPHER_WEP:
1644 		hk.keyTypeId = KEY_TYPE_ID_WEP;
1645 		hk.keyLen = k->wk_keylen;
1646 		if (k->wk_keyix == vap->iv_def_txkey)
1647 			hk.keyFlags = KEY_FLAG_WEP_TXKEY;
1648 		if (!IEEE80211_IS_STATICKEY(k)) {
1649 			/* NB: WEP is never used for the PTK */
1650 			(void) addgroupflags(&hk, k);
1651 		}
1652 		break;
1653 	case IEEE80211_CIPHER_TKIP:
1654 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1655 		hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16);
1656 		hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc;
1657 		hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID;
1658 		hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE;
1659 		if (!addgroupflags(&hk, k))
1660 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1661 		break;
1662 	case IEEE80211_CIPHER_AES_CCM:
1663 		hk.keyTypeId = KEY_TYPE_ID_AES;
1664 		hk.keyLen = k->wk_keylen;
1665 		if (!addgroupflags(&hk, k))
1666 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1667 		break;
1668 	default:
1669 		/* XXX should not happen */
1670 		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1671 		    __func__, k->wk_cipher->ic_cipher);
1672 		return 0;
1673 	}
1674 	/*
1675 	 * NB: tkip mic keys get copied here too; the layout
1676 	 *     just happens to match that in ieee80211_key.
1677 	 */
1678 	memcpy(hk.key.aes, k->wk_key, hk.keyLen);
1679 
1680 	/*
1681 	 * Locate address of sta db entry for writing key;
1682 	 * the convention unfortunately is somewhat different
1683 	 * than how net80211, hostapd, and wpa_supplicant think.
1684 	 */
1685 	if (vap->iv_opmode == IEEE80211_M_STA) {
1686 		/*
1687 		 * NB: keys plumbed before the sta reaches AUTH state
1688 		 * will be discarded or written to the wrong sta db
1689 		 * entry because iv_bss is meaningless.  This is ok
1690 		 * (right now) because we handle deferred plumbing of
1691 		 * WEP keys when the sta reaches AUTH state.
1692 		 */
1693 		macaddr = vap->iv_bss->ni_bssid;
1694 		if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0) {
1695 			/* XXX plumb to local sta db too for static key wep */
1696 			mwl_hal_keyset(hvap, &hk, vap->iv_myaddr);
1697 		}
1698 	} else if (vap->iv_opmode == IEEE80211_M_WDS &&
1699 	    vap->iv_state != IEEE80211_S_RUN) {
1700 		/*
1701 		 * Prior to RUN state a WDS vap will not it's BSS node
1702 		 * setup so we will plumb the key to the wrong mac
1703 		 * address (it'll be our local address).  Workaround
1704 		 * this for the moment by grabbing the correct address.
1705 		 */
1706 		macaddr = vap->iv_des_bssid;
1707 	} else if ((k->wk_flags & GRPXMIT) == GRPXMIT)
1708 		macaddr = vap->iv_myaddr;
1709 	else
1710 		macaddr = mac;
1711 	KEYPRINTF(sc, &hk, macaddr);
1712 	return (mwl_hal_keyset(hvap, &hk, macaddr) == 0);
1713 #undef IEEE80211_IS_STATICKEY
1714 #undef GRPXMIT
1715 }
1716 
1717 /*
1718  * Set the multicast filter contents into the hardware.
1719  * XXX f/w has no support; just defer to the os.
1720  */
1721 static void
1722 mwl_setmcastfilter(struct mwl_softc *sc)
1723 {
1724 #if 0
1725 	struct ether_multi *enm;
1726 	struct ether_multistep estep;
1727 	uint8_t macs[IEEE80211_ADDR_LEN*MWL_HAL_MCAST_MAX];/* XXX stack use */
1728 	uint8_t *mp;
1729 	int nmc;
1730 
1731 	mp = macs;
1732 	nmc = 0;
1733 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1734 	while (enm != NULL) {
1735 		/* XXX Punt on ranges. */
1736 		if (nmc == MWL_HAL_MCAST_MAX ||
1737 		    !IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1738 			ifp->if_flags |= IFF_ALLMULTI;
1739 			return;
1740 		}
1741 		IEEE80211_ADDR_COPY(mp, enm->enm_addrlo);
1742 		mp += IEEE80211_ADDR_LEN, nmc++;
1743 		ETHER_NEXT_MULTI(estep, enm);
1744 	}
1745 	ifp->if_flags &= ~IFF_ALLMULTI;
1746 	mwl_hal_setmcast(sc->sc_mh, nmc, macs);
1747 #endif
1748 }
1749 
1750 static int
1751 mwl_mode_init(struct mwl_softc *sc)
1752 {
1753 	struct ieee80211com *ic = &sc->sc_ic;
1754 	struct mwl_hal *mh = sc->sc_mh;
1755 
1756 	mwl_hal_setpromisc(mh, ic->ic_promisc > 0);
1757 	mwl_setmcastfilter(sc);
1758 
1759 	return 0;
1760 }
1761 
1762 /*
1763  * Callback from the 802.11 layer after a multicast state change.
1764  */
1765 static void
1766 mwl_update_mcast(struct ieee80211com *ic)
1767 {
1768 	struct mwl_softc *sc = ic->ic_softc;
1769 
1770 	mwl_setmcastfilter(sc);
1771 }
1772 
1773 /*
1774  * Callback from the 802.11 layer after a promiscuous mode change.
1775  * Note this interface does not check the operating mode as this
1776  * is an internal callback and we are expected to honor the current
1777  * state (e.g. this is used for setting the interface in promiscuous
1778  * mode when operating in hostap mode to do ACS).
1779  */
1780 static void
1781 mwl_update_promisc(struct ieee80211com *ic)
1782 {
1783 	struct mwl_softc *sc = ic->ic_softc;
1784 
1785 	mwl_hal_setpromisc(sc->sc_mh, ic->ic_promisc > 0);
1786 }
1787 
1788 /*
1789  * Callback from the 802.11 layer to update the slot time
1790  * based on the current setting.  We use it to notify the
1791  * firmware of ERP changes and the f/w takes care of things
1792  * like slot time and preamble.
1793  */
1794 static void
1795 mwl_updateslot(struct ieee80211com *ic)
1796 {
1797 	struct mwl_softc *sc = ic->ic_softc;
1798 	struct mwl_hal *mh = sc->sc_mh;
1799 	int prot;
1800 
1801 	/* NB: can be called early; suppress needless cmds */
1802 	if (!sc->sc_running)
1803 		return;
1804 
1805 	/*
1806 	 * Calculate the ERP flags.  The firwmare will use
1807 	 * this to carry out the appropriate measures.
1808 	 */
1809 	prot = 0;
1810 	if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
1811 		if ((ic->ic_flags & IEEE80211_F_SHSLOT) == 0)
1812 			prot |= IEEE80211_ERP_NON_ERP_PRESENT;
1813 		if (ic->ic_flags & IEEE80211_F_USEPROT)
1814 			prot |= IEEE80211_ERP_USE_PROTECTION;
1815 		if (ic->ic_flags & IEEE80211_F_USEBARKER)
1816 			prot |= IEEE80211_ERP_LONG_PREAMBLE;
1817 	}
1818 
1819 	DPRINTF(sc, MWL_DEBUG_RESET,
1820 	    "%s: chan %u MHz/flags 0x%x %s slot, (prot 0x%x ic_flags 0x%x)\n",
1821 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1822 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", prot,
1823 	    ic->ic_flags);
1824 
1825 	mwl_hal_setgprot(mh, prot);
1826 }
1827 
1828 /*
1829  * Setup the beacon frame.
1830  */
1831 static int
1832 mwl_beacon_setup(struct ieee80211vap *vap)
1833 {
1834 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1835 	struct ieee80211_node *ni = vap->iv_bss;
1836 	struct mbuf *m;
1837 
1838 	m = ieee80211_beacon_alloc(ni);
1839 	if (m == NULL)
1840 		return ENOBUFS;
1841 	mwl_hal_setbeacon(hvap, mtod(m, const void *), m->m_len);
1842 	m_free(m);
1843 
1844 	return 0;
1845 }
1846 
1847 /*
1848  * Update the beacon frame in response to a change.
1849  */
1850 static void
1851 mwl_beacon_update(struct ieee80211vap *vap, int item)
1852 {
1853 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1854 	struct ieee80211com *ic = vap->iv_ic;
1855 
1856 	KASSERT(hvap != NULL, ("no beacon"));
1857 	switch (item) {
1858 	case IEEE80211_BEACON_ERP:
1859 		mwl_updateslot(ic);
1860 		break;
1861 	case IEEE80211_BEACON_HTINFO:
1862 		mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT(
1863 		    ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1864 		break;
1865 	case IEEE80211_BEACON_CAPS:
1866 	case IEEE80211_BEACON_WME:
1867 	case IEEE80211_BEACON_APPIE:
1868 	case IEEE80211_BEACON_CSA:
1869 		break;
1870 	case IEEE80211_BEACON_TIM:
1871 		/* NB: firmware always forms TIM */
1872 		return;
1873 	}
1874 	/* XXX retain beacon frame and update */
1875 	mwl_beacon_setup(vap);
1876 }
1877 
1878 static void
1879 mwl_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1880 {
1881 	bus_addr_t *paddr = (bus_addr_t*) arg;
1882 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
1883 	*paddr = segs->ds_addr;
1884 }
1885 
1886 #ifdef MWL_HOST_PS_SUPPORT
1887 /*
1888  * Handle power save station occupancy changes.
1889  */
1890 static void
1891 mwl_update_ps(struct ieee80211vap *vap, int nsta)
1892 {
1893 	struct mwl_vap *mvp = MWL_VAP(vap);
1894 
1895 	if (nsta == 0 || mvp->mv_last_ps_sta == 0)
1896 		mwl_hal_setpowersave_bss(mvp->mv_hvap, nsta);
1897 	mvp->mv_last_ps_sta = nsta;
1898 }
1899 
1900 /*
1901  * Handle associated station power save state changes.
1902  */
1903 static int
1904 mwl_set_tim(struct ieee80211_node *ni, int set)
1905 {
1906 	struct ieee80211vap *vap = ni->ni_vap;
1907 	struct mwl_vap *mvp = MWL_VAP(vap);
1908 
1909 	if (mvp->mv_set_tim(ni, set)) {		/* NB: state change */
1910 		mwl_hal_setpowersave_sta(mvp->mv_hvap,
1911 		    IEEE80211_AID(ni->ni_associd), set);
1912 		return 1;
1913 	} else
1914 		return 0;
1915 }
1916 #endif /* MWL_HOST_PS_SUPPORT */
1917 
1918 static int
1919 mwl_desc_setup(struct mwl_softc *sc, const char *name,
1920 	struct mwl_descdma *dd,
1921 	int nbuf, size_t bufsize, int ndesc, size_t descsize)
1922 {
1923 	uint8_t *ds;
1924 	int error;
1925 
1926 	DPRINTF(sc, MWL_DEBUG_RESET,
1927 	    "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n",
1928 	    __func__, name, nbuf, (uintmax_t) bufsize,
1929 	    ndesc, (uintmax_t) descsize);
1930 
1931 	dd->dd_name = name;
1932 	dd->dd_desc_len = nbuf * ndesc * descsize;
1933 
1934 	/*
1935 	 * Setup DMA descriptor area.
1936 	 */
1937 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1938 		       PAGE_SIZE, 0,		/* alignment, bounds */
1939 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1940 		       BUS_SPACE_MAXADDR,	/* highaddr */
1941 		       NULL, NULL,		/* filter, filterarg */
1942 		       dd->dd_desc_len,		/* maxsize */
1943 		       1,			/* nsegments */
1944 		       dd->dd_desc_len,		/* maxsegsize */
1945 		       BUS_DMA_ALLOCNOW,	/* flags */
1946 		       NULL,			/* lockfunc */
1947 		       NULL,			/* lockarg */
1948 		       &dd->dd_dmat);
1949 	if (error != 0) {
1950 		device_printf(sc->sc_dev, "cannot allocate %s DMA tag\n", dd->dd_name);
1951 		return error;
1952 	}
1953 
1954 	/* allocate descriptors */
1955 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
1956 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1957 				 &dd->dd_dmamap);
1958 	if (error != 0) {
1959 		device_printf(sc->sc_dev, "unable to alloc memory for %u %s descriptors, "
1960 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
1961 		goto fail1;
1962 	}
1963 
1964 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
1965 				dd->dd_desc, dd->dd_desc_len,
1966 				mwl_load_cb, &dd->dd_desc_paddr,
1967 				BUS_DMA_NOWAIT);
1968 	if (error != 0) {
1969 		device_printf(sc->sc_dev, "unable to map %s descriptors, error %u\n",
1970 			dd->dd_name, error);
1971 		goto fail2;
1972 	}
1973 
1974 	ds = dd->dd_desc;
1975 	memset(ds, 0, dd->dd_desc_len);
1976 	DPRINTF(sc, MWL_DEBUG_RESET,
1977 	    "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n",
1978 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
1979 	    (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
1980 
1981 	return 0;
1982 fail2:
1983 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
1984 fail1:
1985 	bus_dma_tag_destroy(dd->dd_dmat);
1986 	memset(dd, 0, sizeof(*dd));
1987 	return error;
1988 #undef DS2PHYS
1989 }
1990 
1991 static void
1992 mwl_desc_cleanup(struct mwl_softc *sc, struct mwl_descdma *dd)
1993 {
1994 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
1995 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
1996 	bus_dma_tag_destroy(dd->dd_dmat);
1997 
1998 	memset(dd, 0, sizeof(*dd));
1999 }
2000 
2001 /*
2002  * Construct a tx q's free list.  The order of entries on
2003  * the list must reflect the physical layout of tx descriptors
2004  * because the firmware pre-fetches descriptors.
2005  *
2006  * XXX might be better to use indices into the buffer array.
2007  */
2008 static void
2009 mwl_txq_reset(struct mwl_softc *sc, struct mwl_txq *txq)
2010 {
2011 	struct mwl_txbuf *bf;
2012 	int i;
2013 
2014 	bf = txq->dma.dd_bufptr;
2015 	STAILQ_INIT(&txq->free);
2016 	for (i = 0; i < mwl_txbuf; i++, bf++)
2017 		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
2018 	txq->nfree = i;
2019 }
2020 
2021 #define	DS2PHYS(_dd, _ds) \
2022 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2023 
2024 static int
2025 mwl_txdma_setup(struct mwl_softc *sc, struct mwl_txq *txq)
2026 {
2027 	int error, bsize, i;
2028 	struct mwl_txbuf *bf;
2029 	struct mwl_txdesc *ds;
2030 
2031 	error = mwl_desc_setup(sc, "tx", &txq->dma,
2032 			mwl_txbuf, sizeof(struct mwl_txbuf),
2033 			MWL_TXDESC, sizeof(struct mwl_txdesc));
2034 	if (error != 0)
2035 		return error;
2036 
2037 	/* allocate and setup tx buffers */
2038 	bsize = mwl_txbuf * sizeof(struct mwl_txbuf);
2039 	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2040 	if (bf == NULL) {
2041 		device_printf(sc->sc_dev, "malloc of %u tx buffers failed\n",
2042 			mwl_txbuf);
2043 		return ENOMEM;
2044 	}
2045 	txq->dma.dd_bufptr = bf;
2046 
2047 	ds = txq->dma.dd_desc;
2048 	for (i = 0; i < mwl_txbuf; i++, bf++, ds += MWL_TXDESC) {
2049 		bf->bf_desc = ds;
2050 		bf->bf_daddr = DS2PHYS(&txq->dma, ds);
2051 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2052 				&bf->bf_dmamap);
2053 		if (error != 0) {
2054 			device_printf(sc->sc_dev, "unable to create dmamap for tx "
2055 				"buffer %u, error %u\n", i, error);
2056 			return error;
2057 		}
2058 	}
2059 	mwl_txq_reset(sc, txq);
2060 	return 0;
2061 }
2062 
2063 static void
2064 mwl_txdma_cleanup(struct mwl_softc *sc, struct mwl_txq *txq)
2065 {
2066 	struct mwl_txbuf *bf;
2067 	int i;
2068 
2069 	bf = txq->dma.dd_bufptr;
2070 	for (i = 0; i < mwl_txbuf; i++, bf++) {
2071 		KASSERT(bf->bf_m == NULL, ("mbuf on free list"));
2072 		KASSERT(bf->bf_node == NULL, ("node on free list"));
2073 		if (bf->bf_dmamap != NULL)
2074 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2075 	}
2076 	STAILQ_INIT(&txq->free);
2077 	txq->nfree = 0;
2078 	if (txq->dma.dd_bufptr != NULL) {
2079 		free(txq->dma.dd_bufptr, M_MWLDEV);
2080 		txq->dma.dd_bufptr = NULL;
2081 	}
2082 	if (txq->dma.dd_desc_len != 0)
2083 		mwl_desc_cleanup(sc, &txq->dma);
2084 }
2085 
2086 static int
2087 mwl_rxdma_setup(struct mwl_softc *sc)
2088 {
2089 	int error, jumbosize, bsize, i;
2090 	struct mwl_rxbuf *bf;
2091 	struct mwl_jumbo *rbuf;
2092 	struct mwl_rxdesc *ds;
2093 	caddr_t data;
2094 
2095 	error = mwl_desc_setup(sc, "rx", &sc->sc_rxdma,
2096 			mwl_rxdesc, sizeof(struct mwl_rxbuf),
2097 			1, sizeof(struct mwl_rxdesc));
2098 	if (error != 0)
2099 		return error;
2100 
2101 	/*
2102 	 * Receive is done to a private pool of jumbo buffers.
2103 	 * This allows us to attach to mbuf's and avoid re-mapping
2104 	 * memory on each rx we post.  We allocate a large chunk
2105 	 * of memory and manage it in the driver.  The mbuf free
2106 	 * callback method is used to reclaim frames after sending
2107 	 * them up the stack.  By default we allocate 2x the number of
2108 	 * rx descriptors configured so we have some slop to hold
2109 	 * us while frames are processed.
2110 	 */
2111 	if (mwl_rxbuf < 2*mwl_rxdesc) {
2112 		device_printf(sc->sc_dev,
2113 		    "too few rx dma buffers (%d); increasing to %d\n",
2114 		    mwl_rxbuf, 2*mwl_rxdesc);
2115 		mwl_rxbuf = 2*mwl_rxdesc;
2116 	}
2117 	jumbosize = roundup(MWL_AGGR_SIZE, PAGE_SIZE);
2118 	sc->sc_rxmemsize = mwl_rxbuf*jumbosize;
2119 
2120 	error = bus_dma_tag_create(sc->sc_dmat,	/* parent */
2121 		       PAGE_SIZE, 0,		/* alignment, bounds */
2122 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2123 		       BUS_SPACE_MAXADDR,	/* highaddr */
2124 		       NULL, NULL,		/* filter, filterarg */
2125 		       sc->sc_rxmemsize,	/* maxsize */
2126 		       1,			/* nsegments */
2127 		       sc->sc_rxmemsize,	/* maxsegsize */
2128 		       BUS_DMA_ALLOCNOW,	/* flags */
2129 		       NULL,			/* lockfunc */
2130 		       NULL,			/* lockarg */
2131 		       &sc->sc_rxdmat);
2132 	if (error != 0) {
2133 		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
2134 		return error;
2135 	}
2136 
2137 	error = bus_dmamem_alloc(sc->sc_rxdmat, (void**) &sc->sc_rxmem,
2138 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2139 				 &sc->sc_rxmap);
2140 	if (error != 0) {
2141 		device_printf(sc->sc_dev, "could not alloc %ju bytes of rx DMA memory\n",
2142 		    (uintmax_t) sc->sc_rxmemsize);
2143 		return error;
2144 	}
2145 
2146 	error = bus_dmamap_load(sc->sc_rxdmat, sc->sc_rxmap,
2147 				sc->sc_rxmem, sc->sc_rxmemsize,
2148 				mwl_load_cb, &sc->sc_rxmem_paddr,
2149 				BUS_DMA_NOWAIT);
2150 	if (error != 0) {
2151 		device_printf(sc->sc_dev, "could not load rx DMA map\n");
2152 		return error;
2153 	}
2154 
2155 	/*
2156 	 * Allocate rx buffers and set them up.
2157 	 */
2158 	bsize = mwl_rxdesc * sizeof(struct mwl_rxbuf);
2159 	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2160 	if (bf == NULL) {
2161 		device_printf(sc->sc_dev, "malloc of %u rx buffers failed\n", bsize);
2162 		return error;
2163 	}
2164 	sc->sc_rxdma.dd_bufptr = bf;
2165 
2166 	STAILQ_INIT(&sc->sc_rxbuf);
2167 	ds = sc->sc_rxdma.dd_desc;
2168 	for (i = 0; i < mwl_rxdesc; i++, bf++, ds++) {
2169 		bf->bf_desc = ds;
2170 		bf->bf_daddr = DS2PHYS(&sc->sc_rxdma, ds);
2171 		/* pre-assign dma buffer */
2172 		bf->bf_data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2173 		/* NB: tail is intentional to preserve descriptor order */
2174 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2175 	}
2176 
2177 	/*
2178 	 * Place remainder of dma memory buffers on the free list.
2179 	 */
2180 	SLIST_INIT(&sc->sc_rxfree);
2181 	for (; i < mwl_rxbuf; i++) {
2182 		data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2183 		rbuf = MWL_JUMBO_DATA2BUF(data);
2184 		SLIST_INSERT_HEAD(&sc->sc_rxfree, rbuf, next);
2185 		sc->sc_nrxfree++;
2186 	}
2187 	return 0;
2188 }
2189 #undef DS2PHYS
2190 
2191 static void
2192 mwl_rxdma_cleanup(struct mwl_softc *sc)
2193 {
2194 	if (sc->sc_rxmem_paddr != 0) {
2195 		bus_dmamap_unload(sc->sc_rxdmat, sc->sc_rxmap);
2196 		sc->sc_rxmem_paddr = 0;
2197 	}
2198 	if (sc->sc_rxmem != NULL) {
2199 		bus_dmamem_free(sc->sc_rxdmat, sc->sc_rxmem, sc->sc_rxmap);
2200 		sc->sc_rxmem = NULL;
2201 	}
2202 	if (sc->sc_rxdma.dd_bufptr != NULL) {
2203 		free(sc->sc_rxdma.dd_bufptr, M_MWLDEV);
2204 		sc->sc_rxdma.dd_bufptr = NULL;
2205 	}
2206 	if (sc->sc_rxdma.dd_desc_len != 0)
2207 		mwl_desc_cleanup(sc, &sc->sc_rxdma);
2208 }
2209 
2210 static int
2211 mwl_dma_setup(struct mwl_softc *sc)
2212 {
2213 	int error, i;
2214 
2215 	error = mwl_rxdma_setup(sc);
2216 	if (error != 0) {
2217 		mwl_rxdma_cleanup(sc);
2218 		return error;
2219 	}
2220 
2221 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
2222 		error = mwl_txdma_setup(sc, &sc->sc_txq[i]);
2223 		if (error != 0) {
2224 			mwl_dma_cleanup(sc);
2225 			return error;
2226 		}
2227 	}
2228 	return 0;
2229 }
2230 
2231 static void
2232 mwl_dma_cleanup(struct mwl_softc *sc)
2233 {
2234 	int i;
2235 
2236 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2237 		mwl_txdma_cleanup(sc, &sc->sc_txq[i]);
2238 	mwl_rxdma_cleanup(sc);
2239 }
2240 
2241 static struct ieee80211_node *
2242 mwl_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2243 {
2244 	struct ieee80211com *ic = vap->iv_ic;
2245 	struct mwl_softc *sc = ic->ic_softc;
2246 	const size_t space = sizeof(struct mwl_node);
2247 	struct mwl_node *mn;
2248 
2249 	mn = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2250 	if (mn == NULL) {
2251 		/* XXX stat+msg */
2252 		return NULL;
2253 	}
2254 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mn %p\n", __func__, mn);
2255 	return &mn->mn_node;
2256 }
2257 
2258 static void
2259 mwl_node_cleanup(struct ieee80211_node *ni)
2260 {
2261 	struct ieee80211com *ic = ni->ni_ic;
2262         struct mwl_softc *sc = ic->ic_softc;
2263 	struct mwl_node *mn = MWL_NODE(ni);
2264 
2265 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p ic %p staid %d\n",
2266 	    __func__, ni, ni->ni_ic, mn->mn_staid);
2267 
2268 	if (mn->mn_staid != 0) {
2269 		struct ieee80211vap *vap = ni->ni_vap;
2270 
2271 		if (mn->mn_hvap != NULL) {
2272 			if (vap->iv_opmode == IEEE80211_M_STA)
2273 				mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr);
2274 			else
2275 				mwl_hal_delstation(mn->mn_hvap, ni->ni_macaddr);
2276 		}
2277 		/*
2278 		 * NB: legacy WDS peer sta db entry is installed using
2279 		 * the associate ap's hvap; use it again to delete it.
2280 		 * XXX can vap be NULL?
2281 		 */
2282 		else if (vap->iv_opmode == IEEE80211_M_WDS &&
2283 		    MWL_VAP(vap)->mv_ap_hvap != NULL)
2284 			mwl_hal_delstation(MWL_VAP(vap)->mv_ap_hvap,
2285 			    ni->ni_macaddr);
2286 		delstaid(sc, mn->mn_staid);
2287 		mn->mn_staid = 0;
2288 	}
2289 	sc->sc_node_cleanup(ni);
2290 }
2291 
2292 /*
2293  * Reclaim rx dma buffers from packets sitting on the ampdu
2294  * reorder queue for a station.  We replace buffers with a
2295  * system cluster (if available).
2296  */
2297 static void
2298 mwl_ampdu_rxdma_reclaim(struct ieee80211_rx_ampdu *rap)
2299 {
2300 #if 0
2301 	int i, n, off;
2302 	struct mbuf *m;
2303 	void *cl;
2304 
2305 	n = rap->rxa_qframes;
2306 	for (i = 0; i < rap->rxa_wnd && n > 0; i++) {
2307 		m = rap->rxa_m[i];
2308 		if (m == NULL)
2309 			continue;
2310 		n--;
2311 		/* our dma buffers have a well-known free routine */
2312 		if ((m->m_flags & M_EXT) == 0 ||
2313 		    m->m_ext.ext_free != mwl_ext_free)
2314 			continue;
2315 		/*
2316 		 * Try to allocate a cluster and move the data.
2317 		 */
2318 		off = m->m_data - m->m_ext.ext_buf;
2319 		if (off + m->m_pkthdr.len > MCLBYTES) {
2320 			/* XXX no AMSDU for now */
2321 			continue;
2322 		}
2323 		cl = pool_cache_get_paddr(&mclpool_cache, 0,
2324 		    &m->m_ext.ext_paddr);
2325 		if (cl != NULL) {
2326 			/*
2327 			 * Copy the existing data to the cluster, remove
2328 			 * the rx dma buffer, and attach the cluster in
2329 			 * its place.  Note we preserve the offset to the
2330 			 * data so frames being bridged can still prepend
2331 			 * their headers without adding another mbuf.
2332 			 */
2333 			memcpy((caddr_t) cl + off, m->m_data, m->m_pkthdr.len);
2334 			MEXTREMOVE(m);
2335 			MEXTADD(m, cl, MCLBYTES, 0, NULL, &mclpool_cache);
2336 			/* setup mbuf like _MCLGET does */
2337 			m->m_flags |= M_CLUSTER | M_EXT_RW;
2338 			_MOWNERREF(m, M_EXT | M_CLUSTER);
2339 			/* NB: m_data is clobbered by MEXTADDR, adjust */
2340 			m->m_data += off;
2341 		}
2342 	}
2343 #endif
2344 }
2345 
2346 /*
2347  * Callback to reclaim resources.  We first let the
2348  * net80211 layer do it's thing, then if we are still
2349  * blocked by a lack of rx dma buffers we walk the ampdu
2350  * reorder q's to reclaim buffers by copying to a system
2351  * cluster.
2352  */
2353 static void
2354 mwl_node_drain(struct ieee80211_node *ni)
2355 {
2356 	struct ieee80211com *ic = ni->ni_ic;
2357         struct mwl_softc *sc = ic->ic_softc;
2358 	struct mwl_node *mn = MWL_NODE(ni);
2359 
2360 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p vap %p staid %d\n",
2361 	    __func__, ni, ni->ni_vap, mn->mn_staid);
2362 
2363 	/* NB: call up first to age out ampdu q's */
2364 	sc->sc_node_drain(ni);
2365 
2366 	/* XXX better to not check low water mark? */
2367 	if (sc->sc_rxblocked && mn->mn_staid != 0 &&
2368 	    (ni->ni_flags & IEEE80211_NODE_HT)) {
2369 		uint8_t tid;
2370 		/*
2371 		 * Walk the reorder q and reclaim rx dma buffers by copying
2372 		 * the packet contents into clusters.
2373 		 */
2374 		for (tid = 0; tid < WME_NUM_TID; tid++) {
2375 			struct ieee80211_rx_ampdu *rap;
2376 
2377 			rap = &ni->ni_rx_ampdu[tid];
2378 			if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
2379 				continue;
2380 			if (rap->rxa_qframes)
2381 				mwl_ampdu_rxdma_reclaim(rap);
2382 		}
2383 	}
2384 }
2385 
2386 static void
2387 mwl_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2388 {
2389 	*rssi = ni->ni_ic->ic_node_getrssi(ni);
2390 #ifdef MWL_ANT_INFO_SUPPORT
2391 #if 0
2392 	/* XXX need to smooth data */
2393 	*noise = -MWL_NODE_CONST(ni)->mn_ai.nf;
2394 #else
2395 	*noise = -95;		/* XXX */
2396 #endif
2397 #else
2398 	*noise = -95;		/* XXX */
2399 #endif
2400 }
2401 
2402 /*
2403  * Convert Hardware per-antenna rssi info to common format:
2404  * Let a1, a2, a3 represent the amplitudes per chain
2405  * Let amax represent max[a1, a2, a3]
2406  * Rssi1_dBm = RSSI_dBm + 20*log10(a1/amax)
2407  * Rssi1_dBm = RSSI_dBm + 20*log10(a1) - 20*log10(amax)
2408  * We store a table that is 4*20*log10(idx) - the extra 4 is to store or
2409  * maintain some extra precision.
2410  *
2411  * Values are stored in .5 db format capped at 127.
2412  */
2413 static void
2414 mwl_node_getmimoinfo(const struct ieee80211_node *ni,
2415 	struct ieee80211_mimo_info *mi)
2416 {
2417 #define	CVT(_dst, _src) do {						\
2418 	(_dst) = rssi + ((logdbtbl[_src] - logdbtbl[rssi_max]) >> 2);	\
2419 	(_dst) = (_dst) > 64 ? 127 : ((_dst) << 1);			\
2420 } while (0)
2421 	static const int8_t logdbtbl[32] = {
2422 	       0,   0,  24,  38,  48,  56,  62,  68,
2423 	      72,  76,  80,  83,  86,  89,  92,  94,
2424 	      96,  98, 100, 102, 104, 106, 107, 109,
2425 	     110, 112, 113, 115, 116, 117, 118, 119
2426 	};
2427 	const struct mwl_node *mn = MWL_NODE_CONST(ni);
2428 	uint8_t rssi = mn->mn_ai.rsvd1/2;		/* XXX */
2429 	uint32_t rssi_max;
2430 
2431 	rssi_max = mn->mn_ai.rssi_a;
2432 	if (mn->mn_ai.rssi_b > rssi_max)
2433 		rssi_max = mn->mn_ai.rssi_b;
2434 	if (mn->mn_ai.rssi_c > rssi_max)
2435 		rssi_max = mn->mn_ai.rssi_c;
2436 
2437 	CVT(mi->ch[0].rssi[0], mn->mn_ai.rssi_a);
2438 	CVT(mi->ch[1].rssi[0], mn->mn_ai.rssi_b);
2439 	CVT(mi->ch[2].rssi[0], mn->mn_ai.rssi_c);
2440 
2441 	mi->ch[0].noise[0] = mn->mn_ai.nf_a;
2442 	mi->ch[1].noise[0] = mn->mn_ai.nf_b;
2443 	mi->ch[2].noise[0] = mn->mn_ai.nf_c;
2444 #undef CVT
2445 }
2446 
2447 static __inline void *
2448 mwl_getrxdma(struct mwl_softc *sc)
2449 {
2450 	struct mwl_jumbo *buf;
2451 	void *data;
2452 
2453 	/*
2454 	 * Allocate from jumbo pool.
2455 	 */
2456 	MWL_RXFREE_LOCK(sc);
2457 	buf = SLIST_FIRST(&sc->sc_rxfree);
2458 	if (buf == NULL) {
2459 		DPRINTF(sc, MWL_DEBUG_ANY,
2460 		    "%s: out of rx dma buffers\n", __func__);
2461 		sc->sc_stats.mst_rx_nodmabuf++;
2462 		data = NULL;
2463 	} else {
2464 		SLIST_REMOVE_HEAD(&sc->sc_rxfree, next);
2465 		sc->sc_nrxfree--;
2466 		data = MWL_JUMBO_BUF2DATA(buf);
2467 	}
2468 	MWL_RXFREE_UNLOCK(sc);
2469 	return data;
2470 }
2471 
2472 static __inline void
2473 mwl_putrxdma(struct mwl_softc *sc, void *data)
2474 {
2475 	struct mwl_jumbo *buf;
2476 
2477 	/* XXX bounds check data */
2478 	MWL_RXFREE_LOCK(sc);
2479 	buf = MWL_JUMBO_DATA2BUF(data);
2480 	SLIST_INSERT_HEAD(&sc->sc_rxfree, buf, next);
2481 	sc->sc_nrxfree++;
2482 	MWL_RXFREE_UNLOCK(sc);
2483 }
2484 
2485 static int
2486 mwl_rxbuf_init(struct mwl_softc *sc, struct mwl_rxbuf *bf)
2487 {
2488 	struct mwl_rxdesc *ds;
2489 
2490 	ds = bf->bf_desc;
2491 	if (bf->bf_data == NULL) {
2492 		bf->bf_data = mwl_getrxdma(sc);
2493 		if (bf->bf_data == NULL) {
2494 			/* mark descriptor to be skipped */
2495 			ds->RxControl = EAGLE_RXD_CTRL_OS_OWN;
2496 			/* NB: don't need PREREAD */
2497 			MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE);
2498 			sc->sc_stats.mst_rxbuf_failed++;
2499 			return ENOMEM;
2500 		}
2501 	}
2502 	/*
2503 	 * NB: DMA buffer contents is known to be unmodified
2504 	 *     so there's no need to flush the data cache.
2505 	 */
2506 
2507 	/*
2508 	 * Setup descriptor.
2509 	 */
2510 	ds->QosCtrl = 0;
2511 	ds->RSSI = 0;
2512 	ds->Status = EAGLE_RXD_STATUS_IDLE;
2513 	ds->Channel = 0;
2514 	ds->PktLen = htole16(MWL_AGGR_SIZE);
2515 	ds->SQ2 = 0;
2516 	ds->pPhysBuffData = htole32(MWL_JUMBO_DMA_ADDR(sc, bf->bf_data));
2517 	/* NB: don't touch pPhysNext, set once */
2518 	ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
2519 	MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2520 
2521 	return 0;
2522 }
2523 
2524 static void
2525 mwl_ext_free(struct mbuf *m)
2526 {
2527 	struct mwl_softc *sc = m->m_ext.ext_arg1;
2528 
2529 	/* XXX bounds check data */
2530 	mwl_putrxdma(sc, m->m_ext.ext_buf);
2531 	/*
2532 	 * If we were previously blocked by a lack of rx dma buffers
2533 	 * check if we now have enough to restart rx interrupt handling.
2534 	 * NB: we know we are called at splvm which is above splnet.
2535 	 */
2536 	if (sc->sc_rxblocked && sc->sc_nrxfree > mwl_rxdmalow) {
2537 		sc->sc_rxblocked = 0;
2538 		mwl_hal_intrset(sc->sc_mh, sc->sc_imask);
2539 	}
2540 }
2541 
2542 struct mwl_frame_bar {
2543 	u_int8_t	i_fc[2];
2544 	u_int8_t	i_dur[2];
2545 	u_int8_t	i_ra[IEEE80211_ADDR_LEN];
2546 	u_int8_t	i_ta[IEEE80211_ADDR_LEN];
2547 	/* ctl, seq, FCS */
2548 } __packed;
2549 
2550 /*
2551  * Like ieee80211_anyhdrsize, but handles BAR frames
2552  * specially so the logic below to piece the 802.11
2553  * header together works.
2554  */
2555 static __inline int
2556 mwl_anyhdrsize(const void *data)
2557 {
2558 	const struct ieee80211_frame *wh = data;
2559 
2560 	if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2561 		switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) {
2562 		case IEEE80211_FC0_SUBTYPE_CTS:
2563 		case IEEE80211_FC0_SUBTYPE_ACK:
2564 			return sizeof(struct ieee80211_frame_ack);
2565 		case IEEE80211_FC0_SUBTYPE_BAR:
2566 			return sizeof(struct mwl_frame_bar);
2567 		}
2568 		return sizeof(struct ieee80211_frame_min);
2569 	} else
2570 		return ieee80211_hdrsize(data);
2571 }
2572 
2573 static void
2574 mwl_handlemicerror(struct ieee80211com *ic, const uint8_t *data)
2575 {
2576 	const struct ieee80211_frame *wh;
2577 	struct ieee80211_node *ni;
2578 
2579 	wh = (const struct ieee80211_frame *)(data + sizeof(uint16_t));
2580 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
2581 	if (ni != NULL) {
2582 		ieee80211_notify_michael_failure(ni->ni_vap, wh, 0);
2583 		ieee80211_free_node(ni);
2584 	}
2585 }
2586 
2587 /*
2588  * Convert hardware signal strength to rssi.  The value
2589  * provided by the device has the noise floor added in;
2590  * we need to compensate for this but we don't have that
2591  * so we use a fixed value.
2592  *
2593  * The offset of 8 is good for both 2.4 and 5GHz.  The LNA
2594  * offset is already set as part of the initial gain.  This
2595  * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz.
2596  */
2597 static __inline int
2598 cvtrssi(uint8_t ssi)
2599 {
2600 	int rssi = (int) ssi + 8;
2601 	/* XXX hack guess until we have a real noise floor */
2602 	rssi = 2*(87 - rssi);	/* NB: .5 dBm units */
2603 	return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi);
2604 }
2605 
2606 static void
2607 mwl_rx_proc(void *arg, int npending)
2608 {
2609 	struct epoch_tracker et;
2610 	struct mwl_softc *sc = arg;
2611 	struct ieee80211com *ic = &sc->sc_ic;
2612 	struct mwl_rxbuf *bf;
2613 	struct mwl_rxdesc *ds;
2614 	struct mbuf *m;
2615 	struct ieee80211_qosframe *wh;
2616 	struct ieee80211_node *ni;
2617 	struct mwl_node *mn;
2618 	int off, len, hdrlen, pktlen, rssi, ntodo;
2619 	uint8_t *data, status;
2620 	void *newdata;
2621 	int16_t nf;
2622 
2623 	DPRINTF(sc, MWL_DEBUG_RX_PROC, "%s: pending %u rdptr 0x%x wrptr 0x%x\n",
2624 	    __func__, npending, RD4(sc, sc->sc_hwspecs.rxDescRead),
2625 	    RD4(sc, sc->sc_hwspecs.rxDescWrite));
2626 	nf = -96;			/* XXX */
2627 	bf = sc->sc_rxnext;
2628 	for (ntodo = mwl_rxquota; ntodo > 0; ntodo--) {
2629 		if (bf == NULL)
2630 			bf = STAILQ_FIRST(&sc->sc_rxbuf);
2631 		ds = bf->bf_desc;
2632 		data = bf->bf_data;
2633 		if (data == NULL) {
2634 			/*
2635 			 * If data allocation failed previously there
2636 			 * will be no buffer; try again to re-populate it.
2637 			 * Note the firmware will not advance to the next
2638 			 * descriptor with a dma buffer so we must mimic
2639 			 * this or we'll get out of sync.
2640 			 */
2641 			DPRINTF(sc, MWL_DEBUG_ANY,
2642 			    "%s: rx buf w/o dma memory\n", __func__);
2643 			(void) mwl_rxbuf_init(sc, bf);
2644 			sc->sc_stats.mst_rx_dmabufmissing++;
2645 			break;
2646 		}
2647 		MWL_RXDESC_SYNC(sc, ds,
2648 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2649 		if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN)
2650 			break;
2651 #ifdef MWL_DEBUG
2652 		if (sc->sc_debug & MWL_DEBUG_RECV_DESC)
2653 			mwl_printrxbuf(bf, 0);
2654 #endif
2655 		status = ds->Status;
2656 		if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) {
2657 			counter_u64_add(ic->ic_ierrors, 1);
2658 			sc->sc_stats.mst_rx_crypto++;
2659 			/*
2660 			 * NB: Check EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR
2661 			 *     for backwards compatibility.
2662 			 */
2663 			if (status != EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR &&
2664 			    (status & EAGLE_RXD_STATUS_TKIP_MIC_DECRYPT_ERR)) {
2665 				/*
2666 				 * MIC error, notify upper layers.
2667 				 */
2668 				bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap,
2669 				    BUS_DMASYNC_POSTREAD);
2670 				mwl_handlemicerror(ic, data);
2671 				sc->sc_stats.mst_rx_tkipmic++;
2672 			}
2673 			/* XXX too painful to tap packets */
2674 			goto rx_next;
2675 		}
2676 		/*
2677 		 * Sync the data buffer.
2678 		 */
2679 		len = le16toh(ds->PktLen);
2680 		bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD);
2681 		/*
2682 		 * The 802.11 header is provided all or in part at the front;
2683 		 * use it to calculate the true size of the header that we'll
2684 		 * construct below.  We use this to figure out where to copy
2685 		 * payload prior to constructing the header.
2686 		 */
2687 		hdrlen = mwl_anyhdrsize(data + sizeof(uint16_t));
2688 		off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4);
2689 
2690 		/* calculate rssi early so we can re-use for each aggregate */
2691 		rssi = cvtrssi(ds->RSSI);
2692 
2693 		pktlen = hdrlen + (len - off);
2694 		/*
2695 		 * NB: we know our frame is at least as large as
2696 		 * IEEE80211_MIN_LEN because there is a 4-address
2697 		 * frame at the front.  Hence there's no need to
2698 		 * vet the packet length.  If the frame in fact
2699 		 * is too small it should be discarded at the
2700 		 * net80211 layer.
2701 		 */
2702 
2703 		/*
2704 		 * Attach dma buffer to an mbuf.  We tried
2705 		 * doing this based on the packet size (i.e.
2706 		 * copying small packets) but it turns out to
2707 		 * be a net loss.  The tradeoff might be system
2708 		 * dependent (cache architecture is important).
2709 		 */
2710 		MGETHDR(m, M_NOWAIT, MT_DATA);
2711 		if (m == NULL) {
2712 			DPRINTF(sc, MWL_DEBUG_ANY,
2713 			    "%s: no rx mbuf\n", __func__);
2714 			sc->sc_stats.mst_rx_nombuf++;
2715 			goto rx_next;
2716 		}
2717 		/*
2718 		 * Acquire the replacement dma buffer before
2719 		 * processing the frame.  If we're out of dma
2720 		 * buffers we disable rx interrupts and wait
2721 		 * for the free pool to reach mlw_rxdmalow buffers
2722 		 * before starting to do work again.  If the firmware
2723 		 * runs out of descriptors then it will toss frames
2724 		 * which is better than our doing it as that can
2725 		 * starve our processing.  It is also important that
2726 		 * we always process rx'd frames in case they are
2727 		 * A-MPDU as otherwise the host's view of the BA
2728 		 * window may get out of sync with the firmware.
2729 		 */
2730 		newdata = mwl_getrxdma(sc);
2731 		if (newdata == NULL) {
2732 			/* NB: stat+msg in mwl_getrxdma */
2733 			m_free(m);
2734 			/* disable RX interrupt and mark state */
2735 			mwl_hal_intrset(sc->sc_mh,
2736 			    sc->sc_imask &~ MACREG_A2HRIC_BIT_RX_RDY);
2737 			sc->sc_rxblocked = 1;
2738 			ieee80211_drain(ic);
2739 			/* XXX check rxblocked and immediately start again? */
2740 			goto rx_stop;
2741 		}
2742 		bf->bf_data = newdata;
2743 		/*
2744 		 * Attach the dma buffer to the mbuf;
2745 		 * mwl_rxbuf_init will re-setup the rx
2746 		 * descriptor using the replacement dma
2747 		 * buffer we just installed above.
2748 		 */
2749 		m_extadd(m, data, MWL_AGGR_SIZE, mwl_ext_free, sc, NULL, 0,
2750 		    EXT_NET_DRV);
2751 		m->m_data += off - hdrlen;
2752 		m->m_pkthdr.len = m->m_len = pktlen;
2753 		/* NB: dma buffer assumed read-only */
2754 
2755 		/*
2756 		 * Piece 802.11 header together.
2757 		 */
2758 		wh = mtod(m, struct ieee80211_qosframe *);
2759 		/* NB: don't need to do this sometimes but ... */
2760 		/* XXX special case so we can memcpy after m_devget? */
2761 		ovbcopy(data + sizeof(uint16_t), wh, hdrlen);
2762 		if (IEEE80211_QOS_HAS_SEQ(wh))
2763 			*(uint16_t *)ieee80211_getqos(wh) = ds->QosCtrl;
2764 		/*
2765 		 * The f/w strips WEP header but doesn't clear
2766 		 * the WEP bit; mark the packet with M_WEP so
2767 		 * net80211 will treat the data as decrypted.
2768 		 * While here also clear the PWR_MGT bit since
2769 		 * power save is handled by the firmware and
2770 		 * passing this up will potentially cause the
2771 		 * upper layer to put a station in power save
2772 		 * (except when configured with MWL_HOST_PS_SUPPORT).
2773 		 */
2774 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2775 			m->m_flags |= M_WEP;
2776 #ifdef MWL_HOST_PS_SUPPORT
2777 		wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
2778 #else
2779 		wh->i_fc[1] &= ~(IEEE80211_FC1_PROTECTED |
2780 		    IEEE80211_FC1_PWR_MGT);
2781 #endif
2782 
2783 		if (ieee80211_radiotap_active(ic)) {
2784 			struct mwl_rx_radiotap_header *tap = &sc->sc_rx_th;
2785 
2786 			tap->wr_flags = 0;
2787 			tap->wr_rate = ds->Rate;
2788 			tap->wr_antsignal = rssi + nf;
2789 			tap->wr_antnoise = nf;
2790 		}
2791 		if (IFF_DUMPPKTS_RECV(sc, wh)) {
2792 			ieee80211_dump_pkt(ic, mtod(m, caddr_t),
2793 			    len, ds->Rate, rssi);
2794 		}
2795 		/* dispatch */
2796 		ni = ieee80211_find_rxnode(ic,
2797 		    (const struct ieee80211_frame_min *) wh);
2798 
2799 		NET_EPOCH_ENTER(et);
2800 		if (ni != NULL) {
2801 			mn = MWL_NODE(ni);
2802 #ifdef MWL_ANT_INFO_SUPPORT
2803 			mn->mn_ai.rssi_a = ds->ai.rssi_a;
2804 			mn->mn_ai.rssi_b = ds->ai.rssi_b;
2805 			mn->mn_ai.rssi_c = ds->ai.rssi_c;
2806 			mn->mn_ai.rsvd1 = rssi;
2807 #endif
2808 			/* tag AMPDU aggregates for reorder processing */
2809 			if (ni->ni_flags & IEEE80211_NODE_HT)
2810 				m->m_flags |= M_AMPDU;
2811 			(void) ieee80211_input(ni, m, rssi, nf);
2812 			ieee80211_free_node(ni);
2813 		} else
2814 			(void) ieee80211_input_all(ic, m, rssi, nf);
2815 		NET_EPOCH_EXIT(et);
2816 rx_next:
2817 		/* NB: ignore ENOMEM so we process more descriptors */
2818 		(void) mwl_rxbuf_init(sc, bf);
2819 		bf = STAILQ_NEXT(bf, bf_list);
2820 	}
2821 rx_stop:
2822 	sc->sc_rxnext = bf;
2823 
2824 	if (mbufq_first(&sc->sc_snd) != NULL) {
2825 		/* NB: kick fw; the tx thread may have been preempted */
2826 		mwl_hal_txstart(sc->sc_mh, 0);
2827 		mwl_start(sc);
2828 	}
2829 }
2830 
2831 static void
2832 mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *txq, int qnum)
2833 {
2834 	struct mwl_txbuf *bf, *bn;
2835 	struct mwl_txdesc *ds;
2836 
2837 	MWL_TXQ_LOCK_INIT(sc, txq);
2838 	txq->qnum = qnum;
2839 	txq->txpri = 0;	/* XXX */
2840 #if 0
2841 	/* NB: q setup by mwl_txdma_setup XXX */
2842 	STAILQ_INIT(&txq->free);
2843 #endif
2844 	STAILQ_FOREACH(bf, &txq->free, bf_list) {
2845 		bf->bf_txq = txq;
2846 
2847 		ds = bf->bf_desc;
2848 		bn = STAILQ_NEXT(bf, bf_list);
2849 		if (bn == NULL)
2850 			bn = STAILQ_FIRST(&txq->free);
2851 		ds->pPhysNext = htole32(bn->bf_daddr);
2852 	}
2853 	STAILQ_INIT(&txq->active);
2854 }
2855 
2856 /*
2857  * Setup a hardware data transmit queue for the specified
2858  * access control.  We record the mapping from ac's
2859  * to h/w queues for use by mwl_tx_start.
2860  */
2861 static int
2862 mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype)
2863 {
2864 	struct mwl_txq *txq;
2865 
2866 	if (ac >= nitems(sc->sc_ac2q)) {
2867 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2868 			ac, nitems(sc->sc_ac2q));
2869 		return 0;
2870 	}
2871 	if (mvtype >= MWL_NUM_TX_QUEUES) {
2872 		device_printf(sc->sc_dev, "mvtype %u out of range, max %u!\n",
2873 			mvtype, MWL_NUM_TX_QUEUES);
2874 		return 0;
2875 	}
2876 	txq = &sc->sc_txq[mvtype];
2877 	mwl_txq_init(sc, txq, mvtype);
2878 	sc->sc_ac2q[ac] = txq;
2879 	return 1;
2880 }
2881 
2882 /*
2883  * Update WME parameters for a transmit queue.
2884  */
2885 static int
2886 mwl_txq_update(struct mwl_softc *sc, int ac)
2887 {
2888 #define	MWL_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2889 	struct ieee80211com *ic = &sc->sc_ic;
2890 	struct chanAccParams chp;
2891 	struct mwl_txq *txq = sc->sc_ac2q[ac];
2892 	struct wmeParams *wmep;
2893 	struct mwl_hal *mh = sc->sc_mh;
2894 	int aifs, cwmin, cwmax, txoplim;
2895 
2896 	ieee80211_wme_ic_getparams(ic, &chp);
2897 	wmep = &chp.cap_wmeParams[ac];
2898 
2899 	aifs = wmep->wmep_aifsn;
2900 	/* XXX in sta mode need to pass log values for cwmin/max */
2901 	cwmin = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2902 	cwmax = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2903 	txoplim = wmep->wmep_txopLimit;		/* NB: units of 32us */
2904 
2905 	if (mwl_hal_setedcaparams(mh, txq->qnum, cwmin, cwmax, aifs, txoplim)) {
2906 		device_printf(sc->sc_dev, "unable to update hardware queue "
2907 			"parameters for %s traffic!\n",
2908 			ieee80211_wme_acnames[ac]);
2909 		return 0;
2910 	}
2911 	return 1;
2912 #undef MWL_EXPONENT_TO_VALUE
2913 }
2914 
2915 /*
2916  * Callback from the 802.11 layer to update WME parameters.
2917  */
2918 static int
2919 mwl_wme_update(struct ieee80211com *ic)
2920 {
2921 	struct mwl_softc *sc = ic->ic_softc;
2922 
2923 	return !mwl_txq_update(sc, WME_AC_BE) ||
2924 	    !mwl_txq_update(sc, WME_AC_BK) ||
2925 	    !mwl_txq_update(sc, WME_AC_VI) ||
2926 	    !mwl_txq_update(sc, WME_AC_VO) ? EIO : 0;
2927 }
2928 
2929 /*
2930  * Reclaim resources for a setup queue.
2931  */
2932 static void
2933 mwl_tx_cleanupq(struct mwl_softc *sc, struct mwl_txq *txq)
2934 {
2935 	/* XXX hal work? */
2936 	MWL_TXQ_LOCK_DESTROY(txq);
2937 }
2938 
2939 /*
2940  * Reclaim all tx queue resources.
2941  */
2942 static void
2943 mwl_tx_cleanup(struct mwl_softc *sc)
2944 {
2945 	int i;
2946 
2947 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2948 		mwl_tx_cleanupq(sc, &sc->sc_txq[i]);
2949 }
2950 
2951 static int
2952 mwl_tx_dmasetup(struct mwl_softc *sc, struct mwl_txbuf *bf, struct mbuf *m0)
2953 {
2954 	struct mbuf *m;
2955 	int error;
2956 
2957 	/*
2958 	 * Load the DMA map so any coalescing is done.  This
2959 	 * also calculates the number of descriptors we need.
2960 	 */
2961 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2962 				     bf->bf_segs, &bf->bf_nseg,
2963 				     BUS_DMA_NOWAIT);
2964 	if (error == EFBIG) {
2965 		/* XXX packet requires too many descriptors */
2966 		bf->bf_nseg = MWL_TXDESC+1;
2967 	} else if (error != 0) {
2968 		sc->sc_stats.mst_tx_busdma++;
2969 		m_freem(m0);
2970 		return error;
2971 	}
2972 	/*
2973 	 * Discard null packets and check for packets that
2974 	 * require too many TX descriptors.  We try to convert
2975 	 * the latter to a cluster.
2976 	 */
2977 	if (error == EFBIG) {		/* too many desc's, linearize */
2978 		sc->sc_stats.mst_tx_linear++;
2979 #if MWL_TXDESC > 1
2980 		m = m_collapse(m0, M_NOWAIT, MWL_TXDESC);
2981 #else
2982 		m = m_defrag(m0, M_NOWAIT);
2983 #endif
2984 		if (m == NULL) {
2985 			m_freem(m0);
2986 			sc->sc_stats.mst_tx_nombuf++;
2987 			return ENOMEM;
2988 		}
2989 		m0 = m;
2990 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2991 					     bf->bf_segs, &bf->bf_nseg,
2992 					     BUS_DMA_NOWAIT);
2993 		if (error != 0) {
2994 			sc->sc_stats.mst_tx_busdma++;
2995 			m_freem(m0);
2996 			return error;
2997 		}
2998 		KASSERT(bf->bf_nseg <= MWL_TXDESC,
2999 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3000 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3001 		sc->sc_stats.mst_tx_nodata++;
3002 		m_freem(m0);
3003 		return EIO;
3004 	}
3005 	DPRINTF(sc, MWL_DEBUG_XMIT, "%s: m %p len %u\n",
3006 		__func__, m0, m0->m_pkthdr.len);
3007 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3008 	bf->bf_m = m0;
3009 
3010 	return 0;
3011 }
3012 
3013 static __inline int
3014 mwl_cvtlegacyrate(int rate)
3015 {
3016 	switch (rate) {
3017 	case 2:	 return 0;
3018 	case 4:	 return 1;
3019 	case 11: return 2;
3020 	case 22: return 3;
3021 	case 44: return 4;
3022 	case 12: return 5;
3023 	case 18: return 6;
3024 	case 24: return 7;
3025 	case 36: return 8;
3026 	case 48: return 9;
3027 	case 72: return 10;
3028 	case 96: return 11;
3029 	case 108:return 12;
3030 	}
3031 	return 0;
3032 }
3033 
3034 /*
3035  * Calculate fixed tx rate information per client state;
3036  * this value is suitable for writing to the Format field
3037  * of a tx descriptor.
3038  */
3039 static uint16_t
3040 mwl_calcformat(uint8_t rate, const struct ieee80211_node *ni)
3041 {
3042 	uint16_t fmt;
3043 
3044 	fmt = _IEEE80211_SHIFTMASK(3, EAGLE_TXD_ANTENNA)
3045 	    | (IEEE80211_IS_CHAN_HT40D(ni->ni_chan) ?
3046 		EAGLE_TXD_EXTCHAN_LO : EAGLE_TXD_EXTCHAN_HI);
3047 	if (rate & IEEE80211_RATE_MCS) {	/* HT MCS */
3048 		fmt |= EAGLE_TXD_FORMAT_HT
3049 		    /* NB: 0x80 implicitly stripped from ucastrate */
3050 		    | _IEEE80211_SHIFTMASK(rate, EAGLE_TXD_RATE);
3051 		/* XXX short/long GI may be wrong; re-check */
3052 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
3053 			fmt |= EAGLE_TXD_CHW_40
3054 			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 ?
3055 			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3056 		} else {
3057 			fmt |= EAGLE_TXD_CHW_20
3058 			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 ?
3059 			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3060 		}
3061 	} else {			/* legacy rate */
3062 		fmt |= EAGLE_TXD_FORMAT_LEGACY
3063 		    | _IEEE80211_SHIFTMASK(mwl_cvtlegacyrate(rate),
3064 			EAGLE_TXD_RATE)
3065 		    | EAGLE_TXD_CHW_20
3066 		    /* XXX iv_flags & IEEE80211_F_SHPREAMBLE? */
3067 		    | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE ?
3068 			EAGLE_TXD_PREAMBLE_SHORT : EAGLE_TXD_PREAMBLE_LONG);
3069 	}
3070 	return fmt;
3071 }
3072 
3073 static int
3074 mwl_tx_start(struct mwl_softc *sc, struct ieee80211_node *ni, struct mwl_txbuf *bf,
3075     struct mbuf *m0)
3076 {
3077 	struct ieee80211com *ic = &sc->sc_ic;
3078 	struct ieee80211vap *vap = ni->ni_vap;
3079 	int error, iswep, ismcast;
3080 	int hdrlen, copyhdrlen, pktlen;
3081 	struct mwl_txdesc *ds;
3082 	struct mwl_txq *txq;
3083 	struct ieee80211_frame *wh;
3084 	struct mwltxrec *tr;
3085 	struct mwl_node *mn;
3086 	uint16_t qos;
3087 #if MWL_TXDESC > 1
3088 	int i;
3089 #endif
3090 
3091 	wh = mtod(m0, struct ieee80211_frame *);
3092 	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
3093 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3094 	hdrlen = ieee80211_anyhdrsize(wh);
3095 	copyhdrlen = hdrlen;
3096 	pktlen = m0->m_pkthdr.len;
3097 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3098 		qos = *(uint16_t *)ieee80211_getqos(wh);
3099 		if (IEEE80211_IS_DSTODS(wh))
3100 			copyhdrlen -= sizeof(qos);
3101 	} else
3102 		qos = 0;
3103 
3104 	if (iswep) {
3105 		const struct ieee80211_cipher *cip;
3106 		struct ieee80211_key *k;
3107 
3108 		/*
3109 		 * Construct the 802.11 header+trailer for an encrypted
3110 		 * frame. The only reason this can fail is because of an
3111 		 * unknown or unsupported cipher/key type.
3112 		 *
3113 		 * NB: we do this even though the firmware will ignore
3114 		 *     what we've done for WEP and TKIP as we need the
3115 		 *     ExtIV filled in for CCMP and this also adjusts
3116 		 *     the headers which simplifies our work below.
3117 		 */
3118 		k = ieee80211_crypto_encap(ni, m0);
3119 		if (k == NULL) {
3120 			/*
3121 			 * This can happen when the key is yanked after the
3122 			 * frame was queued.  Just discard the frame; the
3123 			 * 802.11 layer counts failures and provides
3124 			 * debugging/diagnostics.
3125 			 */
3126 			m_freem(m0);
3127 			return EIO;
3128 		}
3129 		/*
3130 		 * Adjust the packet length for the crypto additions
3131 		 * done during encap and any other bits that the f/w
3132 		 * will add later on.
3133 		 */
3134 		cip = k->wk_cipher;
3135 		pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer;
3136 
3137 		/* packet header may have moved, reset our local pointer */
3138 		wh = mtod(m0, struct ieee80211_frame *);
3139 	}
3140 
3141 	if (ieee80211_radiotap_active_vap(vap)) {
3142 		sc->sc_tx_th.wt_flags = 0;	/* XXX */
3143 		if (iswep)
3144 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3145 #if 0
3146 		sc->sc_tx_th.wt_rate = ds->DataRate;
3147 #endif
3148 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3149 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3150 
3151 		ieee80211_radiotap_tx(vap, m0);
3152 	}
3153 	/*
3154 	 * Copy up/down the 802.11 header; the firmware requires
3155 	 * we present a 2-byte payload length followed by a
3156 	 * 4-address header (w/o QoS), followed (optionally) by
3157 	 * any WEP/ExtIV header (but only filled in for CCMP).
3158 	 * We are assured the mbuf has sufficient headroom to
3159 	 * prepend in-place by the setup of ic_headroom in
3160 	 * mwl_attach.
3161 	 */
3162 	if (hdrlen < sizeof(struct mwltxrec)) {
3163 		const int space = sizeof(struct mwltxrec) - hdrlen;
3164 		if (M_LEADINGSPACE(m0) < space) {
3165 			/* NB: should never happen */
3166 			device_printf(sc->sc_dev,
3167 			    "not enough headroom, need %d found %zd, "
3168 			    "m_flags 0x%x m_len %d\n",
3169 			    space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len);
3170 			ieee80211_dump_pkt(ic,
3171 			    mtod(m0, const uint8_t *), m0->m_len, 0, -1);
3172 			m_freem(m0);
3173 			sc->sc_stats.mst_tx_noheadroom++;
3174 			return EIO;
3175 		}
3176 		M_PREPEND(m0, space, M_NOWAIT);
3177 	}
3178 	tr = mtod(m0, struct mwltxrec *);
3179 	if (wh != (struct ieee80211_frame *) &tr->wh)
3180 		ovbcopy(wh, &tr->wh, hdrlen);
3181 	/*
3182 	 * Note: the "firmware length" is actually the length
3183 	 * of the fully formed "802.11 payload".  That is, it's
3184 	 * everything except for the 802.11 header.  In particular
3185 	 * this includes all crypto material including the MIC!
3186 	 */
3187 	tr->fwlen = htole16(pktlen - hdrlen);
3188 
3189 	/*
3190 	 * Load the DMA map so any coalescing is done.  This
3191 	 * also calculates the number of descriptors we need.
3192 	 */
3193 	error = mwl_tx_dmasetup(sc, bf, m0);
3194 	if (error != 0) {
3195 		/* NB: stat collected in mwl_tx_dmasetup */
3196 		DPRINTF(sc, MWL_DEBUG_XMIT,
3197 		    "%s: unable to setup dma\n", __func__);
3198 		return error;
3199 	}
3200 	bf->bf_node = ni;			/* NB: held reference */
3201 	m0 = bf->bf_m;				/* NB: may have changed */
3202 	tr = mtod(m0, struct mwltxrec *);
3203 	wh = (struct ieee80211_frame *)&tr->wh;
3204 
3205 	/*
3206 	 * Formulate tx descriptor.
3207 	 */
3208 	ds = bf->bf_desc;
3209 	txq = bf->bf_txq;
3210 
3211 	ds->QosCtrl = qos;			/* NB: already little-endian */
3212 #if MWL_TXDESC == 1
3213 	/*
3214 	 * NB: multiframes should be zero because the descriptors
3215 	 *     are initialized to zero.  This should handle the case
3216 	 *     where the driver is built with MWL_TXDESC=1 but we are
3217 	 *     using firmware with multi-segment support.
3218 	 */
3219 	ds->PktPtr = htole32(bf->bf_segs[0].ds_addr);
3220 	ds->PktLen = htole16(bf->bf_segs[0].ds_len);
3221 #else
3222 	ds->multiframes = htole32(bf->bf_nseg);
3223 	ds->PktLen = htole16(m0->m_pkthdr.len);
3224 	for (i = 0; i < bf->bf_nseg; i++) {
3225 		ds->PktPtrArray[i] = htole32(bf->bf_segs[i].ds_addr);
3226 		ds->PktLenArray[i] = htole16(bf->bf_segs[i].ds_len);
3227 	}
3228 #endif
3229 	/* NB: pPhysNext, DataRate, and SapPktInfo setup once, don't touch */
3230 	ds->Format = 0;
3231 	ds->pad = 0;
3232 	ds->ack_wcb_addr = 0;
3233 
3234 	mn = MWL_NODE(ni);
3235 	/*
3236 	 * Select transmit rate.
3237 	 */
3238 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3239 	case IEEE80211_FC0_TYPE_MGT:
3240 		sc->sc_stats.mst_tx_mgmt++;
3241 		/* fall thru... */
3242 	case IEEE80211_FC0_TYPE_CTL:
3243 		/* NB: assign to BE q to avoid bursting */
3244 		ds->TxPriority = MWL_WME_AC_BE;
3245 		break;
3246 	case IEEE80211_FC0_TYPE_DATA:
3247 		if (!ismcast) {
3248 			const struct ieee80211_txparam *tp = ni->ni_txparms;
3249 			/*
3250 			 * EAPOL frames get forced to a fixed rate and w/o
3251 			 * aggregation; otherwise check for any fixed rate
3252 			 * for the client (may depend on association state).
3253 			 */
3254 			if (m0->m_flags & M_EAPOL) {
3255 				const struct mwl_vap *mvp = MWL_VAP_CONST(vap);
3256 				ds->Format = mvp->mv_eapolformat;
3257 				ds->pad = htole16(
3258 				    EAGLE_TXD_FIXED_RATE | EAGLE_TXD_DONT_AGGR);
3259 			} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3260 				/* XXX pre-calculate per node */
3261 				ds->Format = htole16(
3262 				    mwl_calcformat(tp->ucastrate, ni));
3263 				ds->pad = htole16(EAGLE_TXD_FIXED_RATE);
3264 			}
3265 			/* NB: EAPOL frames will never have qos set */
3266 			if (qos == 0)
3267 				ds->TxPriority = txq->qnum;
3268 #if MWL_MAXBA > 3
3269 			else if (mwl_bastream_match(&mn->mn_ba[3], qos))
3270 				ds->TxPriority = mn->mn_ba[3].txq;
3271 #endif
3272 #if MWL_MAXBA > 2
3273 			else if (mwl_bastream_match(&mn->mn_ba[2], qos))
3274 				ds->TxPriority = mn->mn_ba[2].txq;
3275 #endif
3276 #if MWL_MAXBA > 1
3277 			else if (mwl_bastream_match(&mn->mn_ba[1], qos))
3278 				ds->TxPriority = mn->mn_ba[1].txq;
3279 #endif
3280 #if MWL_MAXBA > 0
3281 			else if (mwl_bastream_match(&mn->mn_ba[0], qos))
3282 				ds->TxPriority = mn->mn_ba[0].txq;
3283 #endif
3284 			else
3285 				ds->TxPriority = txq->qnum;
3286 		} else
3287 			ds->TxPriority = txq->qnum;
3288 		break;
3289 	default:
3290 		device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
3291 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3292 		sc->sc_stats.mst_tx_badframetype++;
3293 		m_freem(m0);
3294 		return EIO;
3295 	}
3296 
3297 	if (IFF_DUMPPKTS_XMIT(sc))
3298 		ieee80211_dump_pkt(ic,
3299 		    mtod(m0, const uint8_t *)+sizeof(uint16_t),
3300 		    m0->m_len - sizeof(uint16_t), ds->DataRate, -1);
3301 
3302 	MWL_TXQ_LOCK(txq);
3303 	ds->Status = htole32(EAGLE_TXD_STATUS_FW_OWNED);
3304 	STAILQ_INSERT_TAIL(&txq->active, bf, bf_list);
3305 	MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3306 
3307 	sc->sc_tx_timer = 5;
3308 	MWL_TXQ_UNLOCK(txq);
3309 
3310 	return 0;
3311 }
3312 
3313 static __inline int
3314 mwl_cvtlegacyrix(int rix)
3315 {
3316 	static const int ieeerates[] =
3317 	    { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 };
3318 	return (rix < nitems(ieeerates) ? ieeerates[rix] : 0);
3319 }
3320 
3321 /*
3322  * Process completed xmit descriptors from the specified queue.
3323  */
3324 static int
3325 mwl_tx_processq(struct mwl_softc *sc, struct mwl_txq *txq)
3326 {
3327 #define	EAGLE_TXD_STATUS_MCAST \
3328 	(EAGLE_TXD_STATUS_MULTICAST_TX | EAGLE_TXD_STATUS_BROADCAST_TX)
3329 	struct ieee80211com *ic = &sc->sc_ic;
3330 	struct mwl_txbuf *bf;
3331 	struct mwl_txdesc *ds;
3332 	struct ieee80211_node *ni;
3333 	struct mwl_node *an;
3334 	int nreaped;
3335 	uint32_t status;
3336 
3337 	DPRINTF(sc, MWL_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum);
3338 	for (nreaped = 0;; nreaped++) {
3339 		MWL_TXQ_LOCK(txq);
3340 		bf = STAILQ_FIRST(&txq->active);
3341 		if (bf == NULL) {
3342 			MWL_TXQ_UNLOCK(txq);
3343 			break;
3344 		}
3345 		ds = bf->bf_desc;
3346 		MWL_TXDESC_SYNC(txq, ds,
3347 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3348 		if (ds->Status & htole32(EAGLE_TXD_STATUS_FW_OWNED)) {
3349 			MWL_TXQ_UNLOCK(txq);
3350 			break;
3351 		}
3352 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3353 		MWL_TXQ_UNLOCK(txq);
3354 
3355 #ifdef MWL_DEBUG
3356 		if (sc->sc_debug & MWL_DEBUG_XMIT_DESC)
3357 			mwl_printtxbuf(bf, txq->qnum, nreaped);
3358 #endif
3359 		ni = bf->bf_node;
3360 		if (ni != NULL) {
3361 			an = MWL_NODE(ni);
3362 			status = le32toh(ds->Status);
3363 			if (status & EAGLE_TXD_STATUS_OK) {
3364 				uint16_t Format = le16toh(ds->Format);
3365 				uint8_t txant = _IEEE80211_MASKSHIFT(Format,
3366 				    EAGLE_TXD_ANTENNA);
3367 
3368 				sc->sc_stats.mst_ant_tx[txant]++;
3369 				if (status & EAGLE_TXD_STATUS_OK_RETRY)
3370 					sc->sc_stats.mst_tx_retries++;
3371 				if (status & EAGLE_TXD_STATUS_OK_MORE_RETRY)
3372 					sc->sc_stats.mst_tx_mretries++;
3373 				if (txq->qnum >= MWL_WME_AC_VO)
3374 					ic->ic_wme.wme_hipri_traffic++;
3375 				ni->ni_txrate = _IEEE80211_MASKSHIFT(Format,
3376 				    EAGLE_TXD_RATE);
3377 				if ((Format & EAGLE_TXD_FORMAT_HT) == 0) {
3378 					ni->ni_txrate = mwl_cvtlegacyrix(
3379 					    ni->ni_txrate);
3380 				} else
3381 					ni->ni_txrate |= IEEE80211_RATE_MCS;
3382 				sc->sc_stats.mst_tx_rate = ni->ni_txrate;
3383 			} else {
3384 				if (status & EAGLE_TXD_STATUS_FAILED_LINK_ERROR)
3385 					sc->sc_stats.mst_tx_linkerror++;
3386 				if (status & EAGLE_TXD_STATUS_FAILED_XRETRY)
3387 					sc->sc_stats.mst_tx_xretries++;
3388 				if (status & EAGLE_TXD_STATUS_FAILED_AGING)
3389 					sc->sc_stats.mst_tx_aging++;
3390 				if (bf->bf_m->m_flags & M_FF)
3391 					sc->sc_stats.mst_ff_txerr++;
3392 			}
3393 			if (bf->bf_m->m_flags & M_TXCB)
3394 				/* XXX strip fw len in case header inspected */
3395 				m_adj(bf->bf_m, sizeof(uint16_t));
3396 			ieee80211_tx_complete(ni, bf->bf_m,
3397 			    (status & EAGLE_TXD_STATUS_OK) == 0);
3398 		} else
3399 			m_freem(bf->bf_m);
3400 		ds->Status = htole32(EAGLE_TXD_STATUS_IDLE);
3401 
3402 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3403 		    BUS_DMASYNC_POSTWRITE);
3404 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3405 
3406 		mwl_puttxbuf_tail(txq, bf);
3407 	}
3408 	return nreaped;
3409 #undef EAGLE_TXD_STATUS_MCAST
3410 }
3411 
3412 /*
3413  * Deferred processing of transmit interrupt; special-cased
3414  * for four hardware queues, 0-3.
3415  */
3416 static void
3417 mwl_tx_proc(void *arg, int npending)
3418 {
3419 	struct mwl_softc *sc = arg;
3420 	int nreaped;
3421 
3422 	/*
3423 	 * Process each active queue.
3424 	 */
3425 	nreaped = 0;
3426 	if (!STAILQ_EMPTY(&sc->sc_txq[0].active))
3427 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[0]);
3428 	if (!STAILQ_EMPTY(&sc->sc_txq[1].active))
3429 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[1]);
3430 	if (!STAILQ_EMPTY(&sc->sc_txq[2].active))
3431 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[2]);
3432 	if (!STAILQ_EMPTY(&sc->sc_txq[3].active))
3433 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[3]);
3434 
3435 	if (nreaped != 0) {
3436 		sc->sc_tx_timer = 0;
3437 		if (mbufq_first(&sc->sc_snd) != NULL) {
3438 			/* NB: kick fw; the tx thread may have been preempted */
3439 			mwl_hal_txstart(sc->sc_mh, 0);
3440 			mwl_start(sc);
3441 		}
3442 	}
3443 }
3444 
3445 static void
3446 mwl_tx_draintxq(struct mwl_softc *sc, struct mwl_txq *txq)
3447 {
3448 	struct ieee80211_node *ni;
3449 	struct mwl_txbuf *bf;
3450 	u_int ix;
3451 
3452 	/*
3453 	 * NB: this assumes output has been stopped and
3454 	 *     we do not need to block mwl_tx_tasklet
3455 	 */
3456 	for (ix = 0;; ix++) {
3457 		MWL_TXQ_LOCK(txq);
3458 		bf = STAILQ_FIRST(&txq->active);
3459 		if (bf == NULL) {
3460 			MWL_TXQ_UNLOCK(txq);
3461 			break;
3462 		}
3463 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3464 		MWL_TXQ_UNLOCK(txq);
3465 #ifdef MWL_DEBUG
3466 		if (sc->sc_debug & MWL_DEBUG_RESET) {
3467 			struct ieee80211com *ic = &sc->sc_ic;
3468 			const struct mwltxrec *tr =
3469 			    mtod(bf->bf_m, const struct mwltxrec *);
3470 			mwl_printtxbuf(bf, txq->qnum, ix);
3471 			ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh,
3472 				bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1);
3473 		}
3474 #endif /* MWL_DEBUG */
3475 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3476 		ni = bf->bf_node;
3477 		if (ni != NULL) {
3478 			/*
3479 			 * Reclaim node reference.
3480 			 */
3481 			ieee80211_free_node(ni);
3482 		}
3483 		m_freem(bf->bf_m);
3484 
3485 		mwl_puttxbuf_tail(txq, bf);
3486 	}
3487 }
3488 
3489 /*
3490  * Drain the transmit queues and reclaim resources.
3491  */
3492 static void
3493 mwl_draintxq(struct mwl_softc *sc)
3494 {
3495 	int i;
3496 
3497 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3498 		mwl_tx_draintxq(sc, &sc->sc_txq[i]);
3499 	sc->sc_tx_timer = 0;
3500 }
3501 
3502 #ifdef MWL_DIAGAPI
3503 /*
3504  * Reset the transmit queues to a pristine state after a fw download.
3505  */
3506 static void
3507 mwl_resettxq(struct mwl_softc *sc)
3508 {
3509 	int i;
3510 
3511 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3512 		mwl_txq_reset(sc, &sc->sc_txq[i]);
3513 }
3514 #endif /* MWL_DIAGAPI */
3515 
3516 /*
3517  * Clear the transmit queues of any frames submitted for the
3518  * specified vap.  This is done when the vap is deleted so we
3519  * don't potentially reference the vap after it is gone.
3520  * Note we cannot remove the frames; we only reclaim the node
3521  * reference.
3522  */
3523 static void
3524 mwl_cleartxq(struct mwl_softc *sc, struct ieee80211vap *vap)
3525 {
3526 	struct mwl_txq *txq;
3527 	struct mwl_txbuf *bf;
3528 	int i;
3529 
3530 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
3531 		txq = &sc->sc_txq[i];
3532 		MWL_TXQ_LOCK(txq);
3533 		STAILQ_FOREACH(bf, &txq->active, bf_list) {
3534 			struct ieee80211_node *ni = bf->bf_node;
3535 			if (ni != NULL && ni->ni_vap == vap) {
3536 				bf->bf_node = NULL;
3537 				ieee80211_free_node(ni);
3538 			}
3539 		}
3540 		MWL_TXQ_UNLOCK(txq);
3541 	}
3542 }
3543 
3544 static int
3545 mwl_recv_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
3546 	const uint8_t *frm, const uint8_t *efrm)
3547 {
3548 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3549 	const struct ieee80211_action *ia;
3550 
3551 	ia = (const struct ieee80211_action *) frm;
3552 	if (ia->ia_category == IEEE80211_ACTION_CAT_HT &&
3553 	    ia->ia_action == IEEE80211_ACTION_HT_MIMOPWRSAVE) {
3554 		const struct ieee80211_action_ht_mimopowersave *mps =
3555 		    (const struct ieee80211_action_ht_mimopowersave *) ia;
3556 
3557 		mwl_hal_setmimops(sc->sc_mh, ni->ni_macaddr,
3558 		    mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA,
3559 		    _IEEE80211_MASKSHIFT(mps->am_control,
3560 			IEEE80211_A_HT_MIMOPWRSAVE_MODE));
3561 		return 0;
3562 	} else
3563 		return sc->sc_recv_action(ni, wh, frm, efrm);
3564 }
3565 
3566 static int
3567 mwl_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3568 	int dialogtoken, int baparamset, int batimeout)
3569 {
3570 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3571 	struct ieee80211vap *vap = ni->ni_vap;
3572 	struct mwl_node *mn = MWL_NODE(ni);
3573 	struct mwl_bastate *bas;
3574 
3575 	bas = tap->txa_private;
3576 	if (bas == NULL) {
3577 		const MWL_HAL_BASTREAM *sp;
3578 		/*
3579 		 * Check for a free BA stream slot.
3580 		 */
3581 #if MWL_MAXBA > 3
3582 		if (mn->mn_ba[3].bastream == NULL)
3583 			bas = &mn->mn_ba[3];
3584 		else
3585 #endif
3586 #if MWL_MAXBA > 2
3587 		if (mn->mn_ba[2].bastream == NULL)
3588 			bas = &mn->mn_ba[2];
3589 		else
3590 #endif
3591 #if MWL_MAXBA > 1
3592 		if (mn->mn_ba[1].bastream == NULL)
3593 			bas = &mn->mn_ba[1];
3594 		else
3595 #endif
3596 #if MWL_MAXBA > 0
3597 		if (mn->mn_ba[0].bastream == NULL)
3598 			bas = &mn->mn_ba[0];
3599 		else
3600 #endif
3601 		{
3602 			/* sta already has max BA streams */
3603 			/* XXX assign BA stream to highest priority tid */
3604 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3605 			    "%s: already has max bastreams\n", __func__);
3606 			sc->sc_stats.mst_ampdu_reject++;
3607 			return 0;
3608 		}
3609 		/* NB: no held reference to ni */
3610 		sp = mwl_hal_bastream_alloc(MWL_VAP(vap)->mv_hvap,
3611 		    (baparamset & IEEE80211_BAPS_POLICY_IMMEDIATE) != 0,
3612 		    ni->ni_macaddr, tap->txa_tid, ni->ni_htparam,
3613 		    ni, tap);
3614 		if (sp == NULL) {
3615 			/*
3616 			 * No available stream, return 0 so no
3617 			 * a-mpdu aggregation will be done.
3618 			 */
3619 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3620 			    "%s: no bastream available\n", __func__);
3621 			sc->sc_stats.mst_ampdu_nostream++;
3622 			return 0;
3623 		}
3624 		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: alloc bastream %p\n",
3625 		    __func__, sp);
3626 		/* NB: qos is left zero so we won't match in mwl_tx_start */
3627 		bas->bastream = sp;
3628 		tap->txa_private = bas;
3629 	}
3630 	/* fetch current seq# from the firmware; if available */
3631 	if (mwl_hal_bastream_get_seqno(sc->sc_mh, bas->bastream,
3632 	    vap->iv_opmode == IEEE80211_M_STA ? vap->iv_myaddr : ni->ni_macaddr,
3633 	    &tap->txa_start) != 0)
3634 		tap->txa_start = 0;
3635 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout);
3636 }
3637 
3638 static int
3639 mwl_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3640 	int code, int baparamset, int batimeout)
3641 {
3642 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3643 	struct mwl_bastate *bas;
3644 
3645 	bas = tap->txa_private;
3646 	if (bas == NULL) {
3647 		/* XXX should not happen */
3648 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3649 		    "%s: no BA stream allocated, TID %d\n",
3650 		    __func__, tap->txa_tid);
3651 		sc->sc_stats.mst_addba_nostream++;
3652 		return 0;
3653 	}
3654 	if (code == IEEE80211_STATUS_SUCCESS) {
3655 		struct ieee80211vap *vap = ni->ni_vap;
3656 		int bufsiz, error;
3657 
3658 		/*
3659 		 * Tell the firmware to setup the BA stream;
3660 		 * we know resources are available because we
3661 		 * pre-allocated one before forming the request.
3662 		 */
3663 		bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
3664 		if (bufsiz == 0)
3665 			bufsiz = IEEE80211_AGGR_BAWMAX;
3666 		error = mwl_hal_bastream_create(MWL_VAP(vap)->mv_hvap,
3667 		    bas->bastream, bufsiz, bufsiz, tap->txa_start);
3668 		if (error != 0) {
3669 			/*
3670 			 * Setup failed, return immediately so no a-mpdu
3671 			 * aggregation will be done.
3672 			 */
3673 			mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3674 			mwl_bastream_free(bas);
3675 			tap->txa_private = NULL;
3676 
3677 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3678 			    "%s: create failed, error %d, bufsiz %d TID %d "
3679 			    "htparam 0x%x\n", __func__, error, bufsiz,
3680 			    tap->txa_tid, ni->ni_htparam);
3681 			sc->sc_stats.mst_bacreate_failed++;
3682 			return 0;
3683 		}
3684 		/* NB: cache txq to avoid ptr indirect */
3685 		mwl_bastream_setup(bas, tap->txa_tid, bas->bastream->txq);
3686 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3687 		    "%s: bastream %p assigned to txq %d TID %d bufsiz %d "
3688 		    "htparam 0x%x\n", __func__, bas->bastream,
3689 		    bas->txq, tap->txa_tid, bufsiz, ni->ni_htparam);
3690 	} else {
3691 		/*
3692 		 * Other side NAK'd us; return the resources.
3693 		 */
3694 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3695 		    "%s: request failed with code %d, destroy bastream %p\n",
3696 		    __func__, code, bas->bastream);
3697 		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3698 		mwl_bastream_free(bas);
3699 		tap->txa_private = NULL;
3700 	}
3701 	/* NB: firmware sends BAR so we don't need to */
3702 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
3703 }
3704 
3705 static void
3706 mwl_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3707 {
3708 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3709 	struct mwl_bastate *bas;
3710 
3711 	bas = tap->txa_private;
3712 	if (bas != NULL) {
3713 		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: destroy bastream %p\n",
3714 		    __func__, bas->bastream);
3715 		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3716 		mwl_bastream_free(bas);
3717 		tap->txa_private = NULL;
3718 	}
3719 	sc->sc_addba_stop(ni, tap);
3720 }
3721 
3722 /*
3723  * Setup the rx data structures.  This should only be
3724  * done once or we may get out of sync with the firmware.
3725  */
3726 static int
3727 mwl_startrecv(struct mwl_softc *sc)
3728 {
3729 	if (!sc->sc_recvsetup) {
3730 		struct mwl_rxbuf *bf, *prev;
3731 		struct mwl_rxdesc *ds;
3732 
3733 		prev = NULL;
3734 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3735 			int error = mwl_rxbuf_init(sc, bf);
3736 			if (error != 0) {
3737 				DPRINTF(sc, MWL_DEBUG_RECV,
3738 					"%s: mwl_rxbuf_init failed %d\n",
3739 					__func__, error);
3740 				return error;
3741 			}
3742 			if (prev != NULL) {
3743 				ds = prev->bf_desc;
3744 				ds->pPhysNext = htole32(bf->bf_daddr);
3745 			}
3746 			prev = bf;
3747 		}
3748 		if (prev != NULL) {
3749 			ds = prev->bf_desc;
3750 			ds->pPhysNext =
3751 			    htole32(STAILQ_FIRST(&sc->sc_rxbuf)->bf_daddr);
3752 		}
3753 		sc->sc_recvsetup = 1;
3754 	}
3755 	mwl_mode_init(sc);		/* set filters, etc. */
3756 	return 0;
3757 }
3758 
3759 static MWL_HAL_APMODE
3760 mwl_getapmode(const struct ieee80211vap *vap, struct ieee80211_channel *chan)
3761 {
3762 	MWL_HAL_APMODE mode;
3763 
3764 	if (IEEE80211_IS_CHAN_HT(chan)) {
3765 		if (vap->iv_flags_ht & IEEE80211_FHT_PUREN)
3766 			mode = AP_MODE_N_ONLY;
3767 		else if (IEEE80211_IS_CHAN_5GHZ(chan))
3768 			mode = AP_MODE_AandN;
3769 		else if (vap->iv_flags & IEEE80211_F_PUREG)
3770 			mode = AP_MODE_GandN;
3771 		else
3772 			mode = AP_MODE_BandGandN;
3773 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3774 		if (vap->iv_flags & IEEE80211_F_PUREG)
3775 			mode = AP_MODE_G_ONLY;
3776 		else
3777 			mode = AP_MODE_MIXED;
3778 	} else if (IEEE80211_IS_CHAN_B(chan))
3779 		mode = AP_MODE_B_ONLY;
3780 	else if (IEEE80211_IS_CHAN_A(chan))
3781 		mode = AP_MODE_A_ONLY;
3782 	else
3783 		mode = AP_MODE_MIXED;		/* XXX should not happen? */
3784 	return mode;
3785 }
3786 
3787 static int
3788 mwl_setapmode(struct ieee80211vap *vap, struct ieee80211_channel *chan)
3789 {
3790 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
3791 	return mwl_hal_setapmode(hvap, mwl_getapmode(vap, chan));
3792 }
3793 
3794 /*
3795  * Set/change channels.
3796  */
3797 static int
3798 mwl_chan_set(struct mwl_softc *sc, struct ieee80211_channel *chan)
3799 {
3800 	struct mwl_hal *mh = sc->sc_mh;
3801 	struct ieee80211com *ic = &sc->sc_ic;
3802 	MWL_HAL_CHANNEL hchan;
3803 	int maxtxpow;
3804 
3805 	DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n",
3806 	    __func__, chan->ic_freq, chan->ic_flags);
3807 
3808 	/*
3809 	 * Convert to a HAL channel description with
3810 	 * the flags constrained to reflect the current
3811 	 * operating mode.
3812 	 */
3813 	mwl_mapchan(&hchan, chan);
3814 	mwl_hal_intrset(mh, 0);		/* disable interrupts */
3815 #if 0
3816 	mwl_draintxq(sc);		/* clear pending tx frames */
3817 #endif
3818 	mwl_hal_setchannel(mh, &hchan);
3819 	/*
3820 	 * Tx power is cap'd by the regulatory setting and
3821 	 * possibly a user-set limit.  We pass the min of
3822 	 * these to the hal to apply them to the cal data
3823 	 * for this channel.
3824 	 * XXX min bound?
3825 	 */
3826 	maxtxpow = 2*chan->ic_maxregpower;
3827 	if (maxtxpow > ic->ic_txpowlimit)
3828 		maxtxpow = ic->ic_txpowlimit;
3829 	mwl_hal_settxpower(mh, &hchan, maxtxpow / 2);
3830 	/* NB: potentially change mcast/mgt rates */
3831 	mwl_setcurchanrates(sc);
3832 
3833 	/*
3834 	 * Update internal state.
3835 	 */
3836 	sc->sc_tx_th.wt_chan_freq = htole16(chan->ic_freq);
3837 	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
3838 	if (IEEE80211_IS_CHAN_A(chan)) {
3839 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_A);
3840 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_A);
3841 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3842 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G);
3843 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G);
3844 	} else {
3845 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B);
3846 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B);
3847 	}
3848 	sc->sc_curchan = hchan;
3849 	mwl_hal_intrset(mh, sc->sc_imask);
3850 
3851 	return 0;
3852 }
3853 
3854 static void
3855 mwl_scan_start(struct ieee80211com *ic)
3856 {
3857 	struct mwl_softc *sc = ic->ic_softc;
3858 
3859 	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3860 }
3861 
3862 static void
3863 mwl_scan_end(struct ieee80211com *ic)
3864 {
3865 	struct mwl_softc *sc = ic->ic_softc;
3866 
3867 	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3868 }
3869 
3870 static void
3871 mwl_set_channel(struct ieee80211com *ic)
3872 {
3873 	struct mwl_softc *sc = ic->ic_softc;
3874 
3875 	(void) mwl_chan_set(sc, ic->ic_curchan);
3876 }
3877 
3878 /*
3879  * Handle a channel switch request.  We inform the firmware
3880  * and mark the global state to suppress various actions.
3881  * NB: we issue only one request to the fw; we may be called
3882  * multiple times if there are multiple vap's.
3883  */
3884 static void
3885 mwl_startcsa(struct ieee80211vap *vap)
3886 {
3887 	struct ieee80211com *ic = vap->iv_ic;
3888 	struct mwl_softc *sc = ic->ic_softc;
3889 	MWL_HAL_CHANNEL hchan;
3890 
3891 	if (sc->sc_csapending)
3892 		return;
3893 
3894 	mwl_mapchan(&hchan, ic->ic_csa_newchan);
3895 	/* 1 =>'s quiet channel */
3896 	mwl_hal_setchannelswitchie(sc->sc_mh, &hchan, 1, ic->ic_csa_count);
3897 	sc->sc_csapending = 1;
3898 }
3899 
3900 /*
3901  * Plumb any static WEP key for the station.  This is
3902  * necessary as we must propagate the key from the
3903  * global key table of the vap to each sta db entry.
3904  */
3905 static void
3906 mwl_setanywepkey(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3907 {
3908 	if ((vap->iv_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) ==
3909 		IEEE80211_F_PRIVACY &&
3910 	    vap->iv_def_txkey != IEEE80211_KEYIX_NONE &&
3911 	    vap->iv_nw_keys[vap->iv_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE)
3912 		(void) _mwl_key_set(vap, &vap->iv_nw_keys[vap->iv_def_txkey],
3913 				    mac);
3914 }
3915 
3916 static int
3917 mwl_peerstadb(struct ieee80211_node *ni, int aid, int staid, MWL_HAL_PEERINFO *pi)
3918 {
3919 #define	WME(ie) ((const struct ieee80211_wme_info *) ie)
3920 	struct ieee80211vap *vap = ni->ni_vap;
3921 	struct mwl_hal_vap *hvap;
3922 	int error;
3923 
3924 	if (vap->iv_opmode == IEEE80211_M_WDS) {
3925 		/*
3926 		 * WDS vap's do not have a f/w vap; instead they piggyback
3927 		 * on an AP vap and we must install the sta db entry and
3928 		 * crypto state using that AP's handle (the WDS vap has none).
3929 		 */
3930 		hvap = MWL_VAP(vap)->mv_ap_hvap;
3931 	} else
3932 		hvap = MWL_VAP(vap)->mv_hvap;
3933 	error = mwl_hal_newstation(hvap, ni->ni_macaddr,
3934 	    aid, staid, pi,
3935 	    ni->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT),
3936 	    ni->ni_ies.wme_ie != NULL ? WME(ni->ni_ies.wme_ie)->wme_info : 0);
3937 	if (error == 0) {
3938 		/*
3939 		 * Setup security for this station.  For sta mode this is
3940 		 * needed even though do the same thing on transition to
3941 		 * AUTH state because the call to mwl_hal_newstation
3942 		 * clobbers the crypto state we setup.
3943 		 */
3944 		mwl_setanywepkey(vap, ni->ni_macaddr);
3945 	}
3946 	return error;
3947 #undef WME
3948 }
3949 
3950 static void
3951 mwl_setglobalkeys(struct ieee80211vap *vap)
3952 {
3953 	struct ieee80211_key *wk;
3954 
3955 	wk = &vap->iv_nw_keys[0];
3956 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; wk++)
3957 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
3958 			(void) _mwl_key_set(vap, wk, vap->iv_myaddr);
3959 }
3960 
3961 /*
3962  * Convert a legacy rate set to a firmware bitmask.
3963  */
3964 static uint32_t
3965 get_rate_bitmap(const struct ieee80211_rateset *rs)
3966 {
3967 	uint32_t rates;
3968 	int i;
3969 
3970 	rates = 0;
3971 	for (i = 0; i < rs->rs_nrates; i++)
3972 		switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
3973 		case 2:	  rates |= 0x001; break;
3974 		case 4:	  rates |= 0x002; break;
3975 		case 11:  rates |= 0x004; break;
3976 		case 22:  rates |= 0x008; break;
3977 		case 44:  rates |= 0x010; break;
3978 		case 12:  rates |= 0x020; break;
3979 		case 18:  rates |= 0x040; break;
3980 		case 24:  rates |= 0x080; break;
3981 		case 36:  rates |= 0x100; break;
3982 		case 48:  rates |= 0x200; break;
3983 		case 72:  rates |= 0x400; break;
3984 		case 96:  rates |= 0x800; break;
3985 		case 108: rates |= 0x1000; break;
3986 		}
3987 	return rates;
3988 }
3989 
3990 /*
3991  * Construct an HT firmware bitmask from an HT rate set.
3992  */
3993 static uint32_t
3994 get_htrate_bitmap(const struct ieee80211_htrateset *rs)
3995 {
3996 	uint32_t rates;
3997 	int i;
3998 
3999 	rates = 0;
4000 	for (i = 0; i < rs->rs_nrates; i++) {
4001 		if (rs->rs_rates[i] < 16)
4002 			rates |= 1<<rs->rs_rates[i];
4003 	}
4004 	return rates;
4005 }
4006 
4007 /*
4008  * Craft station database entry for station.
4009  * NB: use host byte order here, the hal handles byte swapping.
4010  */
4011 static MWL_HAL_PEERINFO *
4012 mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni)
4013 {
4014 	const struct ieee80211vap *vap = ni->ni_vap;
4015 
4016 	memset(pi, 0, sizeof(*pi));
4017 	pi->LegacyRateBitMap = get_rate_bitmap(&ni->ni_rates);
4018 	pi->CapInfo = ni->ni_capinfo;
4019 	if (ni->ni_flags & IEEE80211_NODE_HT) {
4020 		/* HT capabilities, etc */
4021 		pi->HTCapabilitiesInfo = ni->ni_htcap;
4022 		/* XXX pi.HTCapabilitiesInfo */
4023 	        pi->MacHTParamInfo = ni->ni_htparam;
4024 		pi->HTRateBitMap = get_htrate_bitmap(&ni->ni_htrates);
4025 		pi->AddHtInfo.ControlChan = ni->ni_htctlchan;
4026 		pi->AddHtInfo.AddChan = ni->ni_ht2ndchan;
4027 		pi->AddHtInfo.OpMode = ni->ni_htopmode;
4028 		pi->AddHtInfo.stbc = ni->ni_htstbc;
4029 
4030 		/* constrain according to local configuration */
4031 		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0)
4032 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI40;
4033 		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
4034 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI20;
4035 		if (ni->ni_chw != 40)
4036 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_CHWIDTH40;
4037 	}
4038 	return pi;
4039 }
4040 
4041 /*
4042  * Re-create the local sta db entry for a vap to ensure
4043  * up to date WME state is pushed to the firmware.  Because
4044  * this resets crypto state this must be followed by a
4045  * reload of any keys in the global key table.
4046  */
4047 static int
4048 mwl_localstadb(struct ieee80211vap *vap)
4049 {
4050 #define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4051 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
4052 	struct ieee80211_node *bss;
4053 	MWL_HAL_PEERINFO pi;
4054 	int error;
4055 
4056 	switch (vap->iv_opmode) {
4057 	case IEEE80211_M_STA:
4058 		bss = vap->iv_bss;
4059 		error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0,
4060 		    vap->iv_state == IEEE80211_S_RUN ?
4061 			mkpeerinfo(&pi, bss) : NULL,
4062 		    (bss->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)),
4063 		    bss->ni_ies.wme_ie != NULL ?
4064 			WME(bss->ni_ies.wme_ie)->wme_info : 0);
4065 		if (error == 0)
4066 			mwl_setglobalkeys(vap);
4067 		break;
4068 	case IEEE80211_M_HOSTAP:
4069 	case IEEE80211_M_MBSS:
4070 		error = mwl_hal_newstation(hvap, vap->iv_myaddr,
4071 		    0, 0, NULL, vap->iv_flags & IEEE80211_F_WME, 0);
4072 		if (error == 0)
4073 			mwl_setglobalkeys(vap);
4074 		break;
4075 	default:
4076 		error = 0;
4077 		break;
4078 	}
4079 	return error;
4080 #undef WME
4081 }
4082 
4083 static int
4084 mwl_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4085 {
4086 	struct mwl_vap *mvp = MWL_VAP(vap);
4087 	struct mwl_hal_vap *hvap = mvp->mv_hvap;
4088 	struct ieee80211com *ic = vap->iv_ic;
4089 	struct ieee80211_node *ni = NULL;
4090 	struct mwl_softc *sc = ic->ic_softc;
4091 	struct mwl_hal *mh = sc->sc_mh;
4092 	enum ieee80211_state ostate = vap->iv_state;
4093 	int error;
4094 
4095 	DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: %s -> %s\n",
4096 	    vap->iv_ifp->if_xname, __func__,
4097 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
4098 
4099 	callout_stop(&sc->sc_timer);
4100 	/*
4101 	 * Clear current radar detection state.
4102 	 */
4103 	if (ostate == IEEE80211_S_CAC) {
4104 		/* stop quiet mode radar detection */
4105 		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_STOP);
4106 	} else if (sc->sc_radarena) {
4107 		/* stop in-service radar detection */
4108 		mwl_hal_setradardetection(mh, DR_DFS_DISABLE);
4109 		sc->sc_radarena = 0;
4110 	}
4111 	/*
4112 	 * Carry out per-state actions before doing net80211 work.
4113 	 */
4114 	if (nstate == IEEE80211_S_INIT) {
4115 		/* NB: only ap+sta vap's have a fw entity */
4116 		if (hvap != NULL)
4117 			mwl_hal_stop(hvap);
4118 	} else if (nstate == IEEE80211_S_SCAN) {
4119 		mwl_hal_start(hvap);
4120 		/* NB: this disables beacon frames */
4121 		mwl_hal_setinframode(hvap);
4122 	} else if (nstate == IEEE80211_S_AUTH) {
4123 		/*
4124 		 * Must create a sta db entry in case a WEP key needs to
4125 		 * be plumbed.  This entry will be overwritten if we
4126 		 * associate; otherwise it will be reclaimed on node free.
4127 		 */
4128 		ni = vap->iv_bss;
4129 		MWL_NODE(ni)->mn_hvap = hvap;
4130 		(void) mwl_peerstadb(ni, 0, 0, NULL);
4131 	} else if (nstate == IEEE80211_S_CSA) {
4132 		/* XXX move to below? */
4133 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
4134 		    vap->iv_opmode == IEEE80211_M_MBSS)
4135 			mwl_startcsa(vap);
4136 	} else if (nstate == IEEE80211_S_CAC) {
4137 		/* XXX move to below? */
4138 		/* stop ap xmit and enable quiet mode radar detection */
4139 		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_START);
4140 	}
4141 
4142 	/*
4143 	 * Invoke the parent method to do net80211 work.
4144 	 */
4145 	error = mvp->mv_newstate(vap, nstate, arg);
4146 
4147 	/*
4148 	 * Carry out work that must be done after net80211 runs;
4149 	 * this work requires up to date state (e.g. iv_bss).
4150 	 */
4151 	if (error == 0 && nstate == IEEE80211_S_RUN) {
4152 		/* NB: collect bss node again, it may have changed */
4153 		ni = vap->iv_bss;
4154 
4155 		DPRINTF(sc, MWL_DEBUG_STATE,
4156 		    "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4157 		    "capinfo 0x%04x chan %d\n",
4158 		    vap->iv_ifp->if_xname, __func__, vap->iv_flags,
4159 		    ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo,
4160 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
4161 
4162 		/*
4163 		 * Recreate local sta db entry to update WME/HT state.
4164 		 */
4165 		mwl_localstadb(vap);
4166 		switch (vap->iv_opmode) {
4167 		case IEEE80211_M_HOSTAP:
4168 		case IEEE80211_M_MBSS:
4169 			if (ostate == IEEE80211_S_CAC) {
4170 				/* enable in-service radar detection */
4171 				mwl_hal_setradardetection(mh,
4172 				    DR_IN_SERVICE_MONITOR_START);
4173 				sc->sc_radarena = 1;
4174 			}
4175 			/*
4176 			 * Allocate and setup the beacon frame
4177 			 * (and related state).
4178 			 */
4179 			error = mwl_reset_vap(vap, IEEE80211_S_RUN);
4180 			if (error != 0) {
4181 				DPRINTF(sc, MWL_DEBUG_STATE,
4182 				    "%s: beacon setup failed, error %d\n",
4183 				    __func__, error);
4184 				goto bad;
4185 			}
4186 			/* NB: must be after setting up beacon */
4187 			mwl_hal_start(hvap);
4188 			break;
4189 		case IEEE80211_M_STA:
4190 			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: aid 0x%x\n",
4191 			    vap->iv_ifp->if_xname, __func__, ni->ni_associd);
4192 			/*
4193 			 * Set state now that we're associated.
4194 			 */
4195 			mwl_hal_setassocid(hvap, ni->ni_bssid, ni->ni_associd);
4196 			mwl_setrates(vap);
4197 			mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
4198 			if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4199 			    sc->sc_ndwdsvaps++ == 0)
4200 				mwl_hal_setdwds(mh, 1);
4201 			break;
4202 		case IEEE80211_M_WDS:
4203 			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: bssid %s\n",
4204 			    vap->iv_ifp->if_xname, __func__,
4205 			    ether_sprintf(ni->ni_bssid));
4206 			mwl_seteapolformat(vap);
4207 			break;
4208 		default:
4209 			break;
4210 		}
4211 		/*
4212 		 * Set CS mode according to operating channel;
4213 		 * this mostly an optimization for 5GHz.
4214 		 *
4215 		 * NB: must follow mwl_hal_start which resets csmode
4216 		 */
4217 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
4218 			mwl_hal_setcsmode(mh, CSMODE_AGGRESSIVE);
4219 		else
4220 			mwl_hal_setcsmode(mh, CSMODE_AUTO_ENA);
4221 		/*
4222 		 * Start timer to prod firmware.
4223 		 */
4224 		if (sc->sc_ageinterval != 0)
4225 			callout_reset(&sc->sc_timer, sc->sc_ageinterval*hz,
4226 			    mwl_agestations, sc);
4227 	} else if (nstate == IEEE80211_S_SLEEP) {
4228 		/* XXX set chip in power save */
4229 	} else if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4230 	    --sc->sc_ndwdsvaps == 0)
4231 		mwl_hal_setdwds(mh, 0);
4232 bad:
4233 	return error;
4234 }
4235 
4236 /*
4237  * Manage station id's; these are separate from AID's
4238  * as AID's may have values out of the range of possible
4239  * station id's acceptable to the firmware.
4240  */
4241 static int
4242 allocstaid(struct mwl_softc *sc, int aid)
4243 {
4244 	int staid;
4245 
4246 	if (!(0 < aid && aid < MWL_MAXSTAID) || isset(sc->sc_staid, aid)) {
4247 		/* NB: don't use 0 */
4248 		for (staid = 1; staid < MWL_MAXSTAID; staid++)
4249 			if (isclr(sc->sc_staid, staid))
4250 				break;
4251 	} else
4252 		staid = aid;
4253 	setbit(sc->sc_staid, staid);
4254 	return staid;
4255 }
4256 
4257 static void
4258 delstaid(struct mwl_softc *sc, int staid)
4259 {
4260 	clrbit(sc->sc_staid, staid);
4261 }
4262 
4263 /*
4264  * Setup driver-specific state for a newly associated node.
4265  * Note that we're called also on a re-associate, the isnew
4266  * param tells us if this is the first time or not.
4267  */
4268 static void
4269 mwl_newassoc(struct ieee80211_node *ni, int isnew)
4270 {
4271 	struct ieee80211vap *vap = ni->ni_vap;
4272         struct mwl_softc *sc = vap->iv_ic->ic_softc;
4273 	struct mwl_node *mn = MWL_NODE(ni);
4274 	MWL_HAL_PEERINFO pi;
4275 	uint16_t aid;
4276 	int error;
4277 
4278 	aid = IEEE80211_AID(ni->ni_associd);
4279 	if (isnew) {
4280 		mn->mn_staid = allocstaid(sc, aid);
4281 		mn->mn_hvap = MWL_VAP(vap)->mv_hvap;
4282 	} else {
4283 		mn = MWL_NODE(ni);
4284 		/* XXX reset BA stream? */
4285 	}
4286 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mac %s isnew %d aid %d staid %d\n",
4287 	    __func__, ether_sprintf(ni->ni_macaddr), isnew, aid, mn->mn_staid);
4288 	error = mwl_peerstadb(ni, aid, mn->mn_staid, mkpeerinfo(&pi, ni));
4289 	if (error != 0) {
4290 		DPRINTF(sc, MWL_DEBUG_NODE,
4291 		    "%s: error %d creating sta db entry\n",
4292 		    __func__, error);
4293 		/* XXX how to deal with error? */
4294 	}
4295 }
4296 
4297 /*
4298  * Periodically poke the firmware to age out station state
4299  * (power save queues, pending tx aggregates).
4300  */
4301 static void
4302 mwl_agestations(void *arg)
4303 {
4304 	struct mwl_softc *sc = arg;
4305 
4306 	mwl_hal_setkeepalive(sc->sc_mh);
4307 	if (sc->sc_ageinterval != 0)		/* NB: catch dynamic changes */
4308 		callout_schedule(&sc->sc_timer, sc->sc_ageinterval*hz);
4309 }
4310 
4311 static const struct mwl_hal_channel *
4312 findhalchannel(const MWL_HAL_CHANNELINFO *ci, int ieee)
4313 {
4314 	int i;
4315 
4316 	for (i = 0; i < ci->nchannels; i++) {
4317 		const struct mwl_hal_channel *hc = &ci->channels[i];
4318 		if (hc->ieee == ieee)
4319 			return hc;
4320 	}
4321 	return NULL;
4322 }
4323 
4324 static int
4325 mwl_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
4326 	int nchan, struct ieee80211_channel chans[])
4327 {
4328 	struct mwl_softc *sc = ic->ic_softc;
4329 	struct mwl_hal *mh = sc->sc_mh;
4330 	const MWL_HAL_CHANNELINFO *ci;
4331 	int i;
4332 
4333 	for (i = 0; i < nchan; i++) {
4334 		struct ieee80211_channel *c = &chans[i];
4335 		const struct mwl_hal_channel *hc;
4336 
4337 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4338 			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_2DOT4GHZ,
4339 			    IEEE80211_IS_CHAN_HT40(c) ?
4340 				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4341 		} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4342 			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_5GHZ,
4343 			    IEEE80211_IS_CHAN_HT40(c) ?
4344 				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4345 		} else {
4346 			device_printf(sc->sc_dev,
4347 			    "%s: channel %u freq %u/0x%x not 2.4/5GHz\n",
4348 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
4349 			return EINVAL;
4350 		}
4351 		/*
4352 		 * Verify channel has cal data and cap tx power.
4353 		 */
4354 		hc = findhalchannel(ci, c->ic_ieee);
4355 		if (hc != NULL) {
4356 			if (c->ic_maxpower > 2*hc->maxTxPow)
4357 				c->ic_maxpower = 2*hc->maxTxPow;
4358 			goto next;
4359 		}
4360 		if (IEEE80211_IS_CHAN_HT40(c)) {
4361 			/*
4362 			 * Look for the extension channel since the
4363 			 * hal table only has the primary channel.
4364 			 */
4365 			hc = findhalchannel(ci, c->ic_extieee);
4366 			if (hc != NULL) {
4367 				if (c->ic_maxpower > 2*hc->maxTxPow)
4368 					c->ic_maxpower = 2*hc->maxTxPow;
4369 				goto next;
4370 			}
4371 		}
4372 		device_printf(sc->sc_dev,
4373 		    "%s: no cal data for channel %u ext %u freq %u/0x%x\n",
4374 		    __func__, c->ic_ieee, c->ic_extieee,
4375 		    c->ic_freq, c->ic_flags);
4376 		return EINVAL;
4377 	next:
4378 		;
4379 	}
4380 	return 0;
4381 }
4382 
4383 #define	IEEE80211_CHAN_HTG	(IEEE80211_CHAN_HT|IEEE80211_CHAN_G)
4384 #define	IEEE80211_CHAN_HTA	(IEEE80211_CHAN_HT|IEEE80211_CHAN_A)
4385 
4386 static void
4387 addht40channels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4388 	const MWL_HAL_CHANNELINFO *ci, int flags)
4389 {
4390 	int i, error;
4391 
4392 	for (i = 0; i < ci->nchannels; i++) {
4393 		const struct mwl_hal_channel *hc = &ci->channels[i];
4394 
4395 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
4396 		    hc->ieee, hc->maxTxPow, flags);
4397 		if (error != 0 && error != ENOENT)
4398 			break;
4399 	}
4400 }
4401 
4402 static void
4403 addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4404 	const MWL_HAL_CHANNELINFO *ci, const uint8_t bands[])
4405 {
4406 	int i, error;
4407 
4408 	error = 0;
4409 	for (i = 0; i < ci->nchannels && error == 0; i++) {
4410 		const struct mwl_hal_channel *hc = &ci->channels[i];
4411 
4412 		error = ieee80211_add_channel(chans, maxchans, nchans,
4413 		    hc->ieee, hc->freq, hc->maxTxPow, 0, bands);
4414 	}
4415 }
4416 
4417 static void
4418 getchannels(struct mwl_softc *sc, int maxchans, int *nchans,
4419 	struct ieee80211_channel chans[])
4420 {
4421 	const MWL_HAL_CHANNELINFO *ci;
4422 	uint8_t bands[IEEE80211_MODE_BYTES];
4423 
4424 	/*
4425 	 * Use the channel info from the hal to craft the
4426 	 * channel list.  Note that we pass back an unsorted
4427 	 * list; the caller is required to sort it for us
4428 	 * (if desired).
4429 	 */
4430 	*nchans = 0;
4431 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4432 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) {
4433 		memset(bands, 0, sizeof(bands));
4434 		setbit(bands, IEEE80211_MODE_11B);
4435 		setbit(bands, IEEE80211_MODE_11G);
4436 		setbit(bands, IEEE80211_MODE_11NG);
4437 		addchannels(chans, maxchans, nchans, ci, bands);
4438 	}
4439 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4440 	    MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) {
4441 		memset(bands, 0, sizeof(bands));
4442 		setbit(bands, IEEE80211_MODE_11A);
4443 		setbit(bands, IEEE80211_MODE_11NA);
4444 		addchannels(chans, maxchans, nchans, ci, bands);
4445 	}
4446 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4447 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4448 		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4449 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4450 	    MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4451 		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4452 }
4453 
4454 static void
4455 mwl_getradiocaps(struct ieee80211com *ic,
4456 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4457 {
4458 	struct mwl_softc *sc = ic->ic_softc;
4459 
4460 	getchannels(sc, maxchans, nchans, chans);
4461 }
4462 
4463 static int
4464 mwl_getchannels(struct mwl_softc *sc)
4465 {
4466 	struct ieee80211com *ic = &sc->sc_ic;
4467 
4468 	/*
4469 	 * Use the channel info from the hal to craft the
4470 	 * channel list for net80211.  Note that we pass up
4471 	 * an unsorted list; net80211 will sort it for us.
4472 	 */
4473 	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
4474 	ic->ic_nchans = 0;
4475 	getchannels(sc, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels);
4476 
4477 	ic->ic_regdomain.regdomain = SKU_DEBUG;
4478 	ic->ic_regdomain.country = CTRY_DEFAULT;
4479 	ic->ic_regdomain.location = 'I';
4480 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX? */
4481 	ic->ic_regdomain.isocc[1] = ' ';
4482 	return (ic->ic_nchans == 0 ? EIO : 0);
4483 }
4484 #undef IEEE80211_CHAN_HTA
4485 #undef IEEE80211_CHAN_HTG
4486 
4487 #ifdef MWL_DEBUG
4488 static void
4489 mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix)
4490 {
4491 	const struct mwl_rxdesc *ds = bf->bf_desc;
4492 	uint32_t status = le32toh(ds->Status);
4493 
4494 	printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n"
4495 	       "      STAT:%02x LEN:%04x RSSI:%02x CHAN:%02x RATE:%02x QOS:%04x HT:%04x\n",
4496 	    ix, ds, (uintmax_t)bf->bf_daddr, le32toh(ds->pPhysNext),
4497 	    le32toh(ds->pPhysBuffData), ds->RxControl,
4498 	    ds->RxControl != EAGLE_RXD_CTRL_DRIVER_OWN ?
4499 	        "" : (status & EAGLE_RXD_STATUS_OK) ? " *" : " !",
4500 	    ds->Status, le16toh(ds->PktLen), ds->RSSI, ds->Channel,
4501 	    ds->Rate, le16toh(ds->QosCtrl), le16toh(ds->HtSig2));
4502 }
4503 
4504 static void
4505 mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix)
4506 {
4507 	const struct mwl_txdesc *ds = bf->bf_desc;
4508 	uint32_t status = le32toh(ds->Status);
4509 
4510 	printf("Q%u[%3u]", qnum, ix);
4511 	printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr);
4512 	printf("    NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n",
4513 	    le32toh(ds->pPhysNext),
4514 	    le32toh(ds->PktPtr), le16toh(ds->PktLen), status,
4515 	    status & EAGLE_TXD_STATUS_USED ?
4516 		"" : (status & 3) != 0 ? " *" : " !");
4517 	printf("    RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n",
4518 	    ds->DataRate, ds->TxPriority, le16toh(ds->QosCtrl),
4519 	    le32toh(ds->SapPktInfo), le16toh(ds->Format));
4520 #if MWL_TXDESC > 1
4521 	printf("    MULTIFRAMES:%u LEN:%04x %04x %04x %04x %04x %04x\n"
4522 	    , le32toh(ds->multiframes)
4523 	    , le16toh(ds->PktLenArray[0]), le16toh(ds->PktLenArray[1])
4524 	    , le16toh(ds->PktLenArray[2]), le16toh(ds->PktLenArray[3])
4525 	    , le16toh(ds->PktLenArray[4]), le16toh(ds->PktLenArray[5])
4526 	);
4527 	printf("    DATA:%08x %08x %08x %08x %08x %08x\n"
4528 	    , le32toh(ds->PktPtrArray[0]), le32toh(ds->PktPtrArray[1])
4529 	    , le32toh(ds->PktPtrArray[2]), le32toh(ds->PktPtrArray[3])
4530 	    , le32toh(ds->PktPtrArray[4]), le32toh(ds->PktPtrArray[5])
4531 	);
4532 #endif
4533 #if 0
4534 { const uint8_t *cp = (const uint8_t *) ds;
4535   int i;
4536   for (i = 0; i < sizeof(struct mwl_txdesc); i++) {
4537 	printf("%02x ", cp[i]);
4538 	if (((i+1) % 16) == 0)
4539 		printf("\n");
4540   }
4541   printf("\n");
4542 }
4543 #endif
4544 }
4545 #endif /* MWL_DEBUG */
4546 
4547 #if 0
4548 static void
4549 mwl_txq_dump(struct mwl_txq *txq)
4550 {
4551 	struct mwl_txbuf *bf;
4552 	int i = 0;
4553 
4554 	MWL_TXQ_LOCK(txq);
4555 	STAILQ_FOREACH(bf, &txq->active, bf_list) {
4556 		struct mwl_txdesc *ds = bf->bf_desc;
4557 		MWL_TXDESC_SYNC(txq, ds,
4558 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4559 #ifdef MWL_DEBUG
4560 		mwl_printtxbuf(bf, txq->qnum, i);
4561 #endif
4562 		i++;
4563 	}
4564 	MWL_TXQ_UNLOCK(txq);
4565 }
4566 #endif
4567 
4568 static void
4569 mwl_watchdog(void *arg)
4570 {
4571 	struct mwl_softc *sc = arg;
4572 
4573 	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
4574 	if (sc->sc_tx_timer == 0 || --sc->sc_tx_timer > 0)
4575 		return;
4576 
4577 	if (sc->sc_running && !sc->sc_invalid) {
4578 		if (mwl_hal_setkeepalive(sc->sc_mh))
4579 			device_printf(sc->sc_dev,
4580 			    "transmit timeout (firmware hung?)\n");
4581 		else
4582 			device_printf(sc->sc_dev,
4583 			    "transmit timeout\n");
4584 #if 0
4585 		mwl_reset(sc);
4586 mwl_txq_dump(&sc->sc_txq[0]);/*XXX*/
4587 #endif
4588 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4589 		sc->sc_stats.mst_watchdog++;
4590 	}
4591 }
4592 
4593 #ifdef MWL_DIAGAPI
4594 /*
4595  * Diagnostic interface to the HAL.  This is used by various
4596  * tools to do things like retrieve register contents for
4597  * debugging.  The mechanism is intentionally opaque so that
4598  * it can change frequently w/o concern for compatibility.
4599  */
4600 static int
4601 mwl_ioctl_diag(struct mwl_softc *sc, struct mwl_diag *md)
4602 {
4603 	struct mwl_hal *mh = sc->sc_mh;
4604 	u_int id = md->md_id & MWL_DIAG_ID;
4605 	void *indata = NULL;
4606 	void *outdata = NULL;
4607 	u_int32_t insize = md->md_in_size;
4608 	u_int32_t outsize = md->md_out_size;
4609 	int error = 0;
4610 
4611 	if (md->md_id & MWL_DIAG_IN) {
4612 		/*
4613 		 * Copy in data.
4614 		 */
4615 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4616 		if (indata == NULL) {
4617 			error = ENOMEM;
4618 			goto bad;
4619 		}
4620 		error = copyin(md->md_in_data, indata, insize);
4621 		if (error)
4622 			goto bad;
4623 	}
4624 	if (md->md_id & MWL_DIAG_DYN) {
4625 		/*
4626 		 * Allocate a buffer for the results (otherwise the HAL
4627 		 * returns a pointer to a buffer where we can read the
4628 		 * results).  Note that we depend on the HAL leaving this
4629 		 * pointer for us to use below in reclaiming the buffer;
4630 		 * may want to be more defensive.
4631 		 */
4632 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4633 		if (outdata == NULL) {
4634 			error = ENOMEM;
4635 			goto bad;
4636 		}
4637 	}
4638 	if (mwl_hal_getdiagstate(mh, id, indata, insize, &outdata, &outsize)) {
4639 		if (outsize < md->md_out_size)
4640 			md->md_out_size = outsize;
4641 		if (outdata != NULL)
4642 			error = copyout(outdata, md->md_out_data,
4643 					md->md_out_size);
4644 	} else {
4645 		error = EINVAL;
4646 	}
4647 bad:
4648 	if ((md->md_id & MWL_DIAG_IN) && indata != NULL)
4649 		free(indata, M_TEMP);
4650 	if ((md->md_id & MWL_DIAG_DYN) && outdata != NULL)
4651 		free(outdata, M_TEMP);
4652 	return error;
4653 }
4654 
4655 static int
4656 mwl_ioctl_reset(struct mwl_softc *sc, struct mwl_diag *md)
4657 {
4658 	struct mwl_hal *mh = sc->sc_mh;
4659 	int error;
4660 
4661 	MWL_LOCK_ASSERT(sc);
4662 
4663 	if (md->md_id == 0 && mwl_hal_fwload(mh, NULL) != 0) {
4664 		device_printf(sc->sc_dev, "unable to load firmware\n");
4665 		return EIO;
4666 	}
4667 	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
4668 		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
4669 		return EIO;
4670 	}
4671 	error = mwl_setupdma(sc);
4672 	if (error != 0) {
4673 		/* NB: mwl_setupdma prints a msg */
4674 		return error;
4675 	}
4676 	/*
4677 	 * Reset tx/rx data structures; after reload we must
4678 	 * re-start the driver's notion of the next xmit/recv.
4679 	 */
4680 	mwl_draintxq(sc);		/* clear pending frames */
4681 	mwl_resettxq(sc);		/* rebuild tx q lists */
4682 	sc->sc_rxnext = NULL;		/* force rx to start at the list head */
4683 	return 0;
4684 }
4685 #endif /* MWL_DIAGAPI */
4686 
4687 static void
4688 mwl_parent(struct ieee80211com *ic)
4689 {
4690 	struct mwl_softc *sc = ic->ic_softc;
4691 	int startall = 0;
4692 
4693 	MWL_LOCK(sc);
4694 	if (ic->ic_nrunning > 0) {
4695 		if (sc->sc_running) {
4696 			/*
4697 			 * To avoid rescanning another access point,
4698 			 * do not call mwl_init() here.  Instead,
4699 			 * only reflect promisc mode settings.
4700 			 */
4701 			mwl_mode_init(sc);
4702 		} else {
4703 			/*
4704 			 * Beware of being called during attach/detach
4705 			 * to reset promiscuous mode.  In that case we
4706 			 * will still be marked UP but not RUNNING.
4707 			 * However trying to re-init the interface
4708 			 * is the wrong thing to do as we've already
4709 			 * torn down much of our state.  There's
4710 			 * probably a better way to deal with this.
4711 			 */
4712 			if (!sc->sc_invalid) {
4713 				mwl_init(sc);	/* XXX lose error */
4714 				startall = 1;
4715 			}
4716 		}
4717 	} else
4718 		mwl_stop(sc);
4719 	MWL_UNLOCK(sc);
4720 	if (startall)
4721 		ieee80211_start_all(ic);
4722 }
4723 
4724 static int
4725 mwl_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
4726 {
4727 	struct mwl_softc *sc = ic->ic_softc;
4728 	struct ifreq *ifr = data;
4729 	int error = 0;
4730 
4731 	switch (cmd) {
4732 	case SIOCGMVSTATS:
4733 		mwl_hal_gethwstats(sc->sc_mh, &sc->sc_stats.hw_stats);
4734 #if 0
4735 		/* NB: embed these numbers to get a consistent view */
4736 		sc->sc_stats.mst_tx_packets =
4737 		    ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
4738 		sc->sc_stats.mst_rx_packets =
4739 		    ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
4740 #endif
4741 		/*
4742 		 * NB: Drop the softc lock in case of a page fault;
4743 		 * we'll accept any potential inconsisentcy in the
4744 		 * statistics.  The alternative is to copy the data
4745 		 * to a local structure.
4746 		 */
4747 		return (copyout(&sc->sc_stats, ifr_data_get_ptr(ifr),
4748 		    sizeof (sc->sc_stats)));
4749 #ifdef MWL_DIAGAPI
4750 	case SIOCGMVDIAG:
4751 		/* XXX check privs */
4752 		return mwl_ioctl_diag(sc, (struct mwl_diag *) ifr);
4753 	case SIOCGMVRESET:
4754 		/* XXX check privs */
4755 		MWL_LOCK(sc);
4756 		error = mwl_ioctl_reset(sc,(struct mwl_diag *) ifr);
4757 		MWL_UNLOCK(sc);
4758 		break;
4759 #endif /* MWL_DIAGAPI */
4760 	default:
4761 		error = ENOTTY;
4762 		break;
4763 	}
4764 	return (error);
4765 }
4766 
4767 #ifdef	MWL_DEBUG
4768 static int
4769 mwl_sysctl_debug(SYSCTL_HANDLER_ARGS)
4770 {
4771 	struct mwl_softc *sc = arg1;
4772 	int debug, error;
4773 
4774 	debug = sc->sc_debug | (mwl_hal_getdebug(sc->sc_mh) << 24);
4775 	error = sysctl_handle_int(oidp, &debug, 0, req);
4776 	if (error || !req->newptr)
4777 		return error;
4778 	mwl_hal_setdebug(sc->sc_mh, debug >> 24);
4779 	sc->sc_debug = debug & 0x00ffffff;
4780 	return 0;
4781 }
4782 #endif /* MWL_DEBUG */
4783 
4784 static void
4785 mwl_sysctlattach(struct mwl_softc *sc)
4786 {
4787 #ifdef	MWL_DEBUG
4788 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4789 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4790 
4791 	sc->sc_debug = mwl_debug;
4792 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug",
4793 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
4794 	    mwl_sysctl_debug, "I", "control debugging printfs");
4795 #endif
4796 }
4797 
4798 /*
4799  * Announce various information on device/driver attach.
4800  */
4801 static void
4802 mwl_announce(struct mwl_softc *sc)
4803 {
4804 
4805 	device_printf(sc->sc_dev, "Rev A%d hardware, v%d.%d.%d.%d firmware (regioncode %d)\n",
4806 		sc->sc_hwspecs.hwVersion,
4807 		(sc->sc_hwspecs.fwReleaseNumber>>24) & 0xff,
4808 		(sc->sc_hwspecs.fwReleaseNumber>>16) & 0xff,
4809 		(sc->sc_hwspecs.fwReleaseNumber>>8) & 0xff,
4810 		(sc->sc_hwspecs.fwReleaseNumber>>0) & 0xff,
4811 		sc->sc_hwspecs.regionCode);
4812 	sc->sc_fwrelease = sc->sc_hwspecs.fwReleaseNumber;
4813 
4814 	if (bootverbose) {
4815 		int i;
4816 		for (i = 0; i <= WME_AC_VO; i++) {
4817 			struct mwl_txq *txq = sc->sc_ac2q[i];
4818 			device_printf(sc->sc_dev, "Use hw queue %u for %s traffic\n",
4819 				txq->qnum, ieee80211_wme_acnames[i]);
4820 		}
4821 	}
4822 	if (bootverbose || mwl_rxdesc != MWL_RXDESC)
4823 		device_printf(sc->sc_dev, "using %u rx descriptors\n", mwl_rxdesc);
4824 	if (bootverbose || mwl_rxbuf != MWL_RXBUF)
4825 		device_printf(sc->sc_dev, "using %u rx buffers\n", mwl_rxbuf);
4826 	if (bootverbose || mwl_txbuf != MWL_TXBUF)
4827 		device_printf(sc->sc_dev, "using %u tx buffers\n", mwl_txbuf);
4828 	if (bootverbose && mwl_hal_ismbsscapable(sc->sc_mh))
4829 		device_printf(sc->sc_dev, "multi-bss support\n");
4830 #ifdef MWL_TX_NODROP
4831 	if (bootverbose)
4832 		device_printf(sc->sc_dev, "no tx drop\n");
4833 #endif
4834 }
4835