xref: /freebsd/sys/dev/mwl/if_mwl.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007-2008 Marvell Semiconductor, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
16  *    redistribution must be conditioned upon including a substantially
17  *    similar Disclaimer requirement for further binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
23  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
24  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
25  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
28  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGES.
31  */
32 
33 #include <sys/cdefs.h>
34 /*
35  * Driver for the Marvell 88W8363 Wireless LAN controller.
36  */
37 
38 #include "opt_inet.h"
39 #include "opt_mwl.h"
40 #include "opt_wlan.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/kernel.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/errno.h>
53 #include <sys/callout.h>
54 #include <sys/bus.h>
55 #include <sys/endian.h>
56 #include <sys/kthread.h>
57 #include <sys/taskqueue.h>
58 
59 #include <machine/bus.h>
60 
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_llc.h>
69 
70 #include <net/bpf.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_input.h>
74 #include <net80211/ieee80211_regdomain.h>
75 
76 #ifdef INET
77 #include <netinet/in.h>
78 #include <netinet/if_ether.h>
79 #endif /* INET */
80 
81 #include <dev/mwl/if_mwlvar.h>
82 #include <dev/mwl/mwldiag.h>
83 
84 static struct ieee80211vap *mwl_vap_create(struct ieee80211com *,
85 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
86 		    const uint8_t [IEEE80211_ADDR_LEN],
87 		    const uint8_t [IEEE80211_ADDR_LEN]);
88 static void	mwl_vap_delete(struct ieee80211vap *);
89 static int	mwl_setupdma(struct mwl_softc *);
90 static int	mwl_hal_reset(struct mwl_softc *sc);
91 static int	mwl_init(struct mwl_softc *);
92 static void	mwl_parent(struct ieee80211com *);
93 static int	mwl_reset(struct ieee80211vap *, u_long);
94 static void	mwl_stop(struct mwl_softc *);
95 static void	mwl_start(struct mwl_softc *);
96 static int	mwl_transmit(struct ieee80211com *, struct mbuf *);
97 static int	mwl_raw_xmit(struct ieee80211_node *, struct mbuf *,
98 			const struct ieee80211_bpf_params *);
99 static int	mwl_media_change(if_t);
100 static void	mwl_watchdog(void *);
101 static int	mwl_ioctl(struct ieee80211com *, u_long, void *);
102 static void	mwl_radar_proc(void *, int);
103 static void	mwl_chanswitch_proc(void *, int);
104 static void	mwl_bawatchdog_proc(void *, int);
105 static int	mwl_key_alloc(struct ieee80211vap *,
106 			struct ieee80211_key *,
107 			ieee80211_keyix *, ieee80211_keyix *);
108 static int	mwl_key_delete(struct ieee80211vap *,
109 			const struct ieee80211_key *);
110 static int	mwl_key_set(struct ieee80211vap *,
111 			const struct ieee80211_key *);
112 static int	_mwl_key_set(struct ieee80211vap *,
113 			const struct ieee80211_key *,
114 			const uint8_t mac[IEEE80211_ADDR_LEN]);
115 static int	mwl_mode_init(struct mwl_softc *);
116 static void	mwl_update_mcast(struct ieee80211com *);
117 static void	mwl_update_promisc(struct ieee80211com *);
118 static void	mwl_updateslot(struct ieee80211com *);
119 static int	mwl_beacon_setup(struct ieee80211vap *);
120 static void	mwl_beacon_update(struct ieee80211vap *, int);
121 #ifdef MWL_HOST_PS_SUPPORT
122 static void	mwl_update_ps(struct ieee80211vap *, int);
123 static int	mwl_set_tim(struct ieee80211_node *, int);
124 #endif
125 static int	mwl_dma_setup(struct mwl_softc *);
126 static void	mwl_dma_cleanup(struct mwl_softc *);
127 static struct ieee80211_node *mwl_node_alloc(struct ieee80211vap *,
128 		    const uint8_t [IEEE80211_ADDR_LEN]);
129 static void	mwl_node_cleanup(struct ieee80211_node *);
130 static void	mwl_node_drain(struct ieee80211_node *);
131 static void	mwl_node_getsignal(const struct ieee80211_node *,
132 			int8_t *, int8_t *);
133 static void	mwl_node_getmimoinfo(const struct ieee80211_node *,
134 			struct ieee80211_mimo_info *);
135 static int	mwl_rxbuf_init(struct mwl_softc *, struct mwl_rxbuf *);
136 static void	mwl_rx_proc(void *, int);
137 static void	mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *, int);
138 static int	mwl_tx_setup(struct mwl_softc *, int, int);
139 static int	mwl_wme_update(struct ieee80211com *);
140 static void	mwl_tx_cleanupq(struct mwl_softc *, struct mwl_txq *);
141 static void	mwl_tx_cleanup(struct mwl_softc *);
142 static uint16_t	mwl_calcformat(uint8_t rate, const struct ieee80211_node *);
143 static int	mwl_tx_start(struct mwl_softc *, struct ieee80211_node *,
144 			     struct mwl_txbuf *, struct mbuf *);
145 static void	mwl_tx_proc(void *, int);
146 static int	mwl_chan_set(struct mwl_softc *, struct ieee80211_channel *);
147 static void	mwl_draintxq(struct mwl_softc *);
148 static void	mwl_cleartxq(struct mwl_softc *, struct ieee80211vap *);
149 static int	mwl_recv_action(struct ieee80211_node *,
150 			const struct ieee80211_frame *,
151 			const uint8_t *, const uint8_t *);
152 static int	mwl_addba_request(struct ieee80211_node *,
153 			struct ieee80211_tx_ampdu *, int dialogtoken,
154 			int baparamset, int batimeout);
155 static int	mwl_addba_response(struct ieee80211_node *,
156 			struct ieee80211_tx_ampdu *, int status,
157 			int baparamset, int batimeout);
158 static void	mwl_addba_stop(struct ieee80211_node *,
159 			struct ieee80211_tx_ampdu *);
160 static int	mwl_startrecv(struct mwl_softc *);
161 static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *,
162 			struct ieee80211_channel *);
163 static int	mwl_setapmode(struct ieee80211vap *, struct ieee80211_channel*);
164 static void	mwl_scan_start(struct ieee80211com *);
165 static void	mwl_scan_end(struct ieee80211com *);
166 static void	mwl_set_channel(struct ieee80211com *);
167 static int	mwl_peerstadb(struct ieee80211_node *,
168 			int aid, int staid, MWL_HAL_PEERINFO *pi);
169 static int	mwl_localstadb(struct ieee80211vap *);
170 static int	mwl_newstate(struct ieee80211vap *, enum ieee80211_state, int);
171 static int	allocstaid(struct mwl_softc *sc, int aid);
172 static void	delstaid(struct mwl_softc *sc, int staid);
173 static void	mwl_newassoc(struct ieee80211_node *, int);
174 static void	mwl_agestations(void *);
175 static int	mwl_setregdomain(struct ieee80211com *,
176 			struct ieee80211_regdomain *, int,
177 			struct ieee80211_channel []);
178 static void	mwl_getradiocaps(struct ieee80211com *, int, int *,
179 			struct ieee80211_channel []);
180 static int	mwl_getchannels(struct mwl_softc *);
181 
182 static void	mwl_sysctlattach(struct mwl_softc *);
183 static void	mwl_announce(struct mwl_softc *);
184 
185 SYSCTL_NODE(_hw, OID_AUTO, mwl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
186     "Marvell driver parameters");
187 
188 static	int mwl_rxdesc = MWL_RXDESC;		/* # rx desc's to allocate */
189 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdesc, CTLFLAG_RW, &mwl_rxdesc,
190 	    0, "rx descriptors allocated");
191 static	int mwl_rxbuf = MWL_RXBUF;		/* # rx buffers to allocate */
192 SYSCTL_INT(_hw_mwl, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &mwl_rxbuf,
193 	    0, "rx buffers allocated");
194 static	int mwl_txbuf = MWL_TXBUF;		/* # tx buffers to allocate */
195 SYSCTL_INT(_hw_mwl, OID_AUTO, txbuf, CTLFLAG_RWTUN, &mwl_txbuf,
196 	    0, "tx buffers allocated");
197 static	int mwl_txcoalesce = 8;		/* # tx packets to q before poking f/w*/
198 SYSCTL_INT(_hw_mwl, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &mwl_txcoalesce,
199 	    0, "tx buffers to send at once");
200 static	int mwl_rxquota = MWL_RXBUF;		/* # max buffers to process */
201 SYSCTL_INT(_hw_mwl, OID_AUTO, rxquota, CTLFLAG_RWTUN, &mwl_rxquota,
202 	    0, "max rx buffers to process per interrupt");
203 static	int mwl_rxdmalow = 3;			/* # min buffers for wakeup */
204 SYSCTL_INT(_hw_mwl, OID_AUTO, rxdmalow, CTLFLAG_RWTUN, &mwl_rxdmalow,
205 	    0, "min free rx buffers before restarting traffic");
206 
207 #ifdef MWL_DEBUG
208 static	int mwl_debug = 0;
209 SYSCTL_INT(_hw_mwl, OID_AUTO, debug, CTLFLAG_RWTUN, &mwl_debug,
210 	    0, "control debugging printfs");
211 enum {
212 	MWL_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
213 	MWL_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
214 	MWL_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
215 	MWL_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
216 	MWL_DEBUG_RESET		= 0x00000010,	/* reset processing */
217 	MWL_DEBUG_BEACON 	= 0x00000020,	/* beacon handling */
218 	MWL_DEBUG_INTR		= 0x00000040,	/* ISR */
219 	MWL_DEBUG_TX_PROC	= 0x00000080,	/* tx ISR proc */
220 	MWL_DEBUG_RX_PROC	= 0x00000100,	/* rx ISR proc */
221 	MWL_DEBUG_KEYCACHE	= 0x00000200,	/* key cache management */
222 	MWL_DEBUG_STATE		= 0x00000400,	/* 802.11 state transitions */
223 	MWL_DEBUG_NODE		= 0x00000800,	/* node management */
224 	MWL_DEBUG_RECV_ALL	= 0x00001000,	/* trace all frames (beacons) */
225 	MWL_DEBUG_TSO		= 0x00002000,	/* TSO processing */
226 	MWL_DEBUG_AMPDU		= 0x00004000,	/* BA stream handling */
227 	MWL_DEBUG_ANY		= 0xffffffff
228 };
229 #define	IS_BEACON(wh) \
230     ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) == \
231 	 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON))
232 #define	IFF_DUMPPKTS_RECV(sc, wh) \
233     ((sc->sc_debug & MWL_DEBUG_RECV) && \
234       ((sc->sc_debug & MWL_DEBUG_RECV_ALL) || !IS_BEACON(wh)))
235 #define	IFF_DUMPPKTS_XMIT(sc) \
236 	(sc->sc_debug & MWL_DEBUG_XMIT)
237 
238 #define	DPRINTF(sc, m, fmt, ...) do {				\
239 	if (sc->sc_debug & (m))					\
240 		printf(fmt, __VA_ARGS__);			\
241 } while (0)
242 #define	KEYPRINTF(sc, hk, mac) do {				\
243 	if (sc->sc_debug & MWL_DEBUG_KEYCACHE)			\
244 		mwl_keyprint(sc, __func__, hk, mac);		\
245 } while (0)
246 static	void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix);
247 static	void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix);
248 #else
249 #define	IFF_DUMPPKTS_RECV(sc, wh)	0
250 #define	IFF_DUMPPKTS_XMIT(sc)		0
251 #define	DPRINTF(sc, m, fmt, ...)	do { (void )sc; } while (0)
252 #define	KEYPRINTF(sc, k, mac)		do { (void )sc; } while (0)
253 #endif
254 
255 static MALLOC_DEFINE(M_MWLDEV, "mwldev", "mwl driver dma buffers");
256 
257 /*
258  * Each packet has fixed front matter: a 2-byte length
259  * of the payload, followed by a 4-address 802.11 header
260  * (regardless of the actual header and always w/o any
261  * QoS header).  The payload then follows.
262  */
263 struct mwltxrec {
264 	uint16_t fwlen;
265 	struct ieee80211_frame_addr4 wh;
266 } __packed;
267 
268 /*
269  * Read/Write shorthands for accesses to BAR 0.  Note
270  * that all BAR 1 operations are done in the "hal" and
271  * there should be no reference to them here.
272  */
273 #ifdef MWL_DEBUG
274 static __inline uint32_t
275 RD4(struct mwl_softc *sc, bus_size_t off)
276 {
277 	return bus_space_read_4(sc->sc_io0t, sc->sc_io0h, off);
278 }
279 #endif
280 
281 static __inline void
282 WR4(struct mwl_softc *sc, bus_size_t off, uint32_t val)
283 {
284 	bus_space_write_4(sc->sc_io0t, sc->sc_io0h, off, val);
285 }
286 
287 int
288 mwl_attach(uint16_t devid, struct mwl_softc *sc)
289 {
290 	struct ieee80211com *ic = &sc->sc_ic;
291 	struct mwl_hal *mh;
292 	int error = 0;
293 
294 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
295 
296 	/*
297 	 * Setup the RX free list lock early, so it can be consistently
298 	 * removed.
299 	 */
300 	MWL_RXFREE_INIT(sc);
301 
302 	mh = mwl_hal_attach(sc->sc_dev, devid,
303 	    sc->sc_io1h, sc->sc_io1t, sc->sc_dmat);
304 	if (mh == NULL) {
305 		device_printf(sc->sc_dev, "unable to attach HAL\n");
306 		error = EIO;
307 		goto bad;
308 	}
309 	sc->sc_mh = mh;
310 	/*
311 	 * Load firmware so we can get setup.  We arbitrarily
312 	 * pick station firmware; we'll re-load firmware as
313 	 * needed so setting up the wrong mode isn't a big deal.
314 	 */
315 	if (mwl_hal_fwload(mh, NULL) != 0) {
316 		device_printf(sc->sc_dev, "unable to setup builtin firmware\n");
317 		error = EIO;
318 		goto bad1;
319 	}
320 	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
321 		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
322 		error = EIO;
323 		goto bad1;
324 	}
325 	error = mwl_getchannels(sc);
326 	if (error != 0)
327 		goto bad1;
328 
329 	sc->sc_txantenna = 0;		/* h/w default */
330 	sc->sc_rxantenna = 0;		/* h/w default */
331 	sc->sc_invalid = 0;		/* ready to go, enable int handling */
332 	sc->sc_ageinterval = MWL_AGEINTERVAL;
333 
334 	/*
335 	 * Allocate tx+rx descriptors and populate the lists.
336 	 * We immediately push the information to the firmware
337 	 * as otherwise it gets upset.
338 	 */
339 	error = mwl_dma_setup(sc);
340 	if (error != 0) {
341 		device_printf(sc->sc_dev, "failed to setup descriptors: %d\n",
342 		    error);
343 		goto bad1;
344 	}
345 	error = mwl_setupdma(sc);	/* push to firmware */
346 	if (error != 0)			/* NB: mwl_setupdma prints msg */
347 		goto bad1;
348 
349 	callout_init(&sc->sc_timer, 1);
350 	callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
351 	mbufq_init(&sc->sc_snd, ifqmaxlen);
352 
353 	sc->sc_tq = taskqueue_create("mwl_taskq", M_NOWAIT,
354 		taskqueue_thread_enqueue, &sc->sc_tq);
355 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
356 		"%s taskq", device_get_nameunit(sc->sc_dev));
357 
358 	NET_TASK_INIT(&sc->sc_rxtask, 0, mwl_rx_proc, sc);
359 	TASK_INIT(&sc->sc_radartask, 0, mwl_radar_proc, sc);
360 	TASK_INIT(&sc->sc_chanswitchtask, 0, mwl_chanswitch_proc, sc);
361 	TASK_INIT(&sc->sc_bawatchdogtask, 0, mwl_bawatchdog_proc, sc);
362 
363 	/* NB: insure BK queue is the lowest priority h/w queue */
364 	if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) {
365 		device_printf(sc->sc_dev,
366 		    "unable to setup xmit queue for %s traffic!\n",
367 		     ieee80211_wme_acnames[WME_AC_BK]);
368 		error = EIO;
369 		goto bad2;
370 	}
371 	if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) ||
372 	    !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) ||
373 	    !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) {
374 		/*
375 		 * Not enough hardware tx queues to properly do WME;
376 		 * just punt and assign them all to the same h/w queue.
377 		 * We could do a better job of this if, for example,
378 		 * we allocate queues when we switch from station to
379 		 * AP mode.
380 		 */
381 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
382 			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
383 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
384 			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
385 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
386 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
387 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
388 	}
389 	TASK_INIT(&sc->sc_txtask, 0, mwl_tx_proc, sc);
390 
391 	ic->ic_softc = sc;
392 	ic->ic_name = device_get_nameunit(sc->sc_dev);
393 	/* XXX not right but it's not used anywhere important */
394 	ic->ic_phytype = IEEE80211_T_OFDM;
395 	ic->ic_opmode = IEEE80211_M_STA;
396 	ic->ic_caps =
397 		  IEEE80211_C_STA		/* station mode supported */
398 		| IEEE80211_C_HOSTAP		/* hostap mode */
399 		| IEEE80211_C_MONITOR		/* monitor mode */
400 #if 0
401 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
402 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
403 #endif
404 		| IEEE80211_C_MBSS		/* mesh point link mode */
405 		| IEEE80211_C_WDS		/* WDS supported */
406 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
407 		| IEEE80211_C_SHSLOT		/* short slot time supported */
408 		| IEEE80211_C_WME		/* WME/WMM supported */
409 		| IEEE80211_C_BURST		/* xmit bursting supported */
410 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
411 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
412 		| IEEE80211_C_TXFRAG		/* handle tx frags */
413 		| IEEE80211_C_TXPMGT		/* capable of txpow mgt */
414 		| IEEE80211_C_DFS		/* DFS supported */
415 		;
416 
417 	ic->ic_htcaps =
418 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
419 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
420 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
421 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
422 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
423 #if MWL_AGGR_SIZE == 7935
424 		| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
425 #else
426 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
427 #endif
428 #if 0
429 		| IEEE80211_HTCAP_PSMP		/* PSMP supported */
430 		| IEEE80211_HTCAP_40INTOLERANT	/* 40MHz intolerant */
431 #endif
432 		/* s/w capabilities */
433 		| IEEE80211_HTC_HT		/* HT operation */
434 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
435 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
436 		| IEEE80211_HTC_SMPS		/* SMPS available */
437 		;
438 
439 	/*
440 	 * Mark h/w crypto support.
441 	 * XXX no way to query h/w support.
442 	 */
443 	ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP
444 			  |  IEEE80211_CRYPTO_AES_CCM
445 			  |  IEEE80211_CRYPTO_TKIP
446 			  |  IEEE80211_CRYPTO_TKIPMIC
447 			  ;
448 	/*
449 	 * Transmit requires space in the packet for a special
450 	 * format transmit record and optional padding between
451 	 * this record and the payload.  Ask the net80211 layer
452 	 * to arrange this when encapsulating packets so we can
453 	 * add it efficiently.
454 	 */
455 	ic->ic_headroom = sizeof(struct mwltxrec) -
456 		sizeof(struct ieee80211_frame);
457 
458 	IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->sc_hwspecs.macAddr);
459 
460 	/* call MI attach routine. */
461 	ieee80211_ifattach(ic);
462 	ic->ic_setregdomain = mwl_setregdomain;
463 	ic->ic_getradiocaps = mwl_getradiocaps;
464 	/* override default methods */
465 	ic->ic_raw_xmit = mwl_raw_xmit;
466 	ic->ic_newassoc = mwl_newassoc;
467 	ic->ic_updateslot = mwl_updateslot;
468 	ic->ic_update_mcast = mwl_update_mcast;
469 	ic->ic_update_promisc = mwl_update_promisc;
470 	ic->ic_wme.wme_update = mwl_wme_update;
471 	ic->ic_transmit = mwl_transmit;
472 	ic->ic_ioctl = mwl_ioctl;
473 	ic->ic_parent = mwl_parent;
474 
475 	ic->ic_node_alloc = mwl_node_alloc;
476 	sc->sc_node_cleanup = ic->ic_node_cleanup;
477 	ic->ic_node_cleanup = mwl_node_cleanup;
478 	sc->sc_node_drain = ic->ic_node_drain;
479 	ic->ic_node_drain = mwl_node_drain;
480 	ic->ic_node_getsignal = mwl_node_getsignal;
481 	ic->ic_node_getmimoinfo = mwl_node_getmimoinfo;
482 
483 	ic->ic_scan_start = mwl_scan_start;
484 	ic->ic_scan_end = mwl_scan_end;
485 	ic->ic_set_channel = mwl_set_channel;
486 
487 	sc->sc_recv_action = ic->ic_recv_action;
488 	ic->ic_recv_action = mwl_recv_action;
489 	sc->sc_addba_request = ic->ic_addba_request;
490 	ic->ic_addba_request = mwl_addba_request;
491 	sc->sc_addba_response = ic->ic_addba_response;
492 	ic->ic_addba_response = mwl_addba_response;
493 	sc->sc_addba_stop = ic->ic_addba_stop;
494 	ic->ic_addba_stop = mwl_addba_stop;
495 
496 	ic->ic_vap_create = mwl_vap_create;
497 	ic->ic_vap_delete = mwl_vap_delete;
498 
499 	ieee80211_radiotap_attach(ic,
500 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
501 		MWL_TX_RADIOTAP_PRESENT,
502 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
503 		MWL_RX_RADIOTAP_PRESENT);
504 	/*
505 	 * Setup dynamic sysctl's now that country code and
506 	 * regdomain are available from the hal.
507 	 */
508 	mwl_sysctlattach(sc);
509 
510 	if (bootverbose)
511 		ieee80211_announce(ic);
512 	mwl_announce(sc);
513 	return 0;
514 bad2:
515 	mwl_dma_cleanup(sc);
516 bad1:
517 	mwl_hal_detach(mh);
518 bad:
519 	MWL_RXFREE_DESTROY(sc);
520 	sc->sc_invalid = 1;
521 	return error;
522 }
523 
524 int
525 mwl_detach(struct mwl_softc *sc)
526 {
527 	struct ieee80211com *ic = &sc->sc_ic;
528 
529 	MWL_LOCK(sc);
530 	mwl_stop(sc);
531 	MWL_UNLOCK(sc);
532 	/*
533 	 * NB: the order of these is important:
534 	 * o call the 802.11 layer before detaching the hal to
535 	 *   insure callbacks into the driver to delete global
536 	 *   key cache entries can be handled
537 	 * o reclaim the tx queue data structures after calling
538 	 *   the 802.11 layer as we'll get called back to reclaim
539 	 *   node state and potentially want to use them
540 	 * o to cleanup the tx queues the hal is called, so detach
541 	 *   it last
542 	 * Other than that, it's straightforward...
543 	 */
544 	ieee80211_ifdetach(ic);
545 	callout_drain(&sc->sc_watchdog);
546 	mwl_dma_cleanup(sc);
547 	MWL_RXFREE_DESTROY(sc);
548 	mwl_tx_cleanup(sc);
549 	mwl_hal_detach(sc->sc_mh);
550 	mbufq_drain(&sc->sc_snd);
551 
552 	return 0;
553 }
554 
555 /*
556  * MAC address handling for multiple BSS on the same radio.
557  * The first vap uses the MAC address from the EEPROM.  For
558  * subsequent vap's we set the U/L bit (bit 1) in the MAC
559  * address and use the next six bits as an index.
560  */
561 static void
562 assign_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
563 {
564 	int i;
565 
566 	if (clone && mwl_hal_ismbsscapable(sc->sc_mh)) {
567 		/* NB: we only do this if h/w supports multiple bssid */
568 		for (i = 0; i < 32; i++)
569 			if ((sc->sc_bssidmask & (1<<i)) == 0)
570 				break;
571 		if (i != 0)
572 			mac[0] |= (i << 2)|0x2;
573 	} else
574 		i = 0;
575 	sc->sc_bssidmask |= 1<<i;
576 	if (i == 0)
577 		sc->sc_nbssid0++;
578 }
579 
580 static void
581 reclaim_address(struct mwl_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
582 {
583 	int i = mac[0] >> 2;
584 	if (i != 0 || --sc->sc_nbssid0 == 0)
585 		sc->sc_bssidmask &= ~(1<<i);
586 }
587 
588 static struct ieee80211vap *
589 mwl_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
590     enum ieee80211_opmode opmode, int flags,
591     const uint8_t bssid[IEEE80211_ADDR_LEN],
592     const uint8_t mac0[IEEE80211_ADDR_LEN])
593 {
594 	struct mwl_softc *sc = ic->ic_softc;
595 	struct mwl_hal *mh = sc->sc_mh;
596 	struct ieee80211vap *vap, *apvap;
597 	struct mwl_hal_vap *hvap;
598 	struct mwl_vap *mvp;
599 	uint8_t mac[IEEE80211_ADDR_LEN];
600 
601 	IEEE80211_ADDR_COPY(mac, mac0);
602 	switch (opmode) {
603 	case IEEE80211_M_HOSTAP:
604 	case IEEE80211_M_MBSS:
605 		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
606 			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
607 		hvap = mwl_hal_newvap(mh, MWL_HAL_AP, mac);
608 		if (hvap == NULL) {
609 			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
610 				reclaim_address(sc, mac);
611 			return NULL;
612 		}
613 		break;
614 	case IEEE80211_M_STA:
615 		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
616 			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
617 		hvap = mwl_hal_newvap(mh, MWL_HAL_STA, mac);
618 		if (hvap == NULL) {
619 			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
620 				reclaim_address(sc, mac);
621 			return NULL;
622 		}
623 		/* no h/w beacon miss support; always use s/w */
624 		flags |= IEEE80211_CLONE_NOBEACONS;
625 		break;
626 	case IEEE80211_M_WDS:
627 		hvap = NULL;		/* NB: we use associated AP vap */
628 		if (sc->sc_napvaps == 0)
629 			return NULL;	/* no existing AP vap */
630 		break;
631 	case IEEE80211_M_MONITOR:
632 		hvap = NULL;
633 		break;
634 	case IEEE80211_M_IBSS:
635 	case IEEE80211_M_AHDEMO:
636 	default:
637 		return NULL;
638 	}
639 
640 	mvp = malloc(sizeof(struct mwl_vap), M_80211_VAP, M_WAITOK | M_ZERO);
641 	mvp->mv_hvap = hvap;
642 	if (opmode == IEEE80211_M_WDS) {
643 		/*
644 		 * WDS vaps must have an associated AP vap; find one.
645 		 * XXX not right.
646 		 */
647 		TAILQ_FOREACH(apvap, &ic->ic_vaps, iv_next)
648 			if (apvap->iv_opmode == IEEE80211_M_HOSTAP) {
649 				mvp->mv_ap_hvap = MWL_VAP(apvap)->mv_hvap;
650 				break;
651 			}
652 		KASSERT(mvp->mv_ap_hvap != NULL, ("no ap vap"));
653 	}
654 	vap = &mvp->mv_vap;
655 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
656 	/* override with driver methods */
657 	mvp->mv_newstate = vap->iv_newstate;
658 	vap->iv_newstate = mwl_newstate;
659 	vap->iv_max_keyix = 0;	/* XXX */
660 	vap->iv_key_alloc = mwl_key_alloc;
661 	vap->iv_key_delete = mwl_key_delete;
662 	vap->iv_key_set = mwl_key_set;
663 #ifdef MWL_HOST_PS_SUPPORT
664 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
665 		vap->iv_update_ps = mwl_update_ps;
666 		mvp->mv_set_tim = vap->iv_set_tim;
667 		vap->iv_set_tim = mwl_set_tim;
668 	}
669 #endif
670 	vap->iv_reset = mwl_reset;
671 	vap->iv_update_beacon = mwl_beacon_update;
672 
673 	/* override max aid so sta's cannot assoc when we're out of sta id's */
674 	vap->iv_max_aid = MWL_MAXSTAID;
675 	/* override default A-MPDU rx parameters */
676 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
677 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4;
678 
679 	/* complete setup */
680 	ieee80211_vap_attach(vap, mwl_media_change, ieee80211_media_status,
681 	    mac);
682 
683 	switch (vap->iv_opmode) {
684 	case IEEE80211_M_HOSTAP:
685 	case IEEE80211_M_MBSS:
686 	case IEEE80211_M_STA:
687 		/*
688 		 * Setup sta db entry for local address.
689 		 */
690 		mwl_localstadb(vap);
691 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
692 		    vap->iv_opmode == IEEE80211_M_MBSS)
693 			sc->sc_napvaps++;
694 		else
695 			sc->sc_nstavaps++;
696 		break;
697 	case IEEE80211_M_WDS:
698 		sc->sc_nwdsvaps++;
699 		break;
700 	default:
701 		break;
702 	}
703 	/*
704 	 * Setup overall operating mode.
705 	 */
706 	if (sc->sc_napvaps)
707 		ic->ic_opmode = IEEE80211_M_HOSTAP;
708 	else if (sc->sc_nstavaps)
709 		ic->ic_opmode = IEEE80211_M_STA;
710 	else
711 		ic->ic_opmode = opmode;
712 
713 	return vap;
714 }
715 
716 static void
717 mwl_vap_delete(struct ieee80211vap *vap)
718 {
719 	struct mwl_vap *mvp = MWL_VAP(vap);
720 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
721 	struct mwl_hal *mh = sc->sc_mh;
722 	struct mwl_hal_vap *hvap = mvp->mv_hvap;
723 	enum ieee80211_opmode opmode = vap->iv_opmode;
724 
725 	/* XXX disallow ap vap delete if WDS still present */
726 	if (sc->sc_running) {
727 		/* quiesce h/w while we remove the vap */
728 		mwl_hal_intrset(mh, 0);		/* disable interrupts */
729 	}
730 	ieee80211_vap_detach(vap);
731 	switch (opmode) {
732 	case IEEE80211_M_HOSTAP:
733 	case IEEE80211_M_MBSS:
734 	case IEEE80211_M_STA:
735 		KASSERT(hvap != NULL, ("no hal vap handle"));
736 		(void) mwl_hal_delstation(hvap, vap->iv_myaddr);
737 		mwl_hal_delvap(hvap);
738 		if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS)
739 			sc->sc_napvaps--;
740 		else
741 			sc->sc_nstavaps--;
742 		/* XXX don't do it for IEEE80211_CLONE_MACADDR */
743 		reclaim_address(sc, vap->iv_myaddr);
744 		break;
745 	case IEEE80211_M_WDS:
746 		sc->sc_nwdsvaps--;
747 		break;
748 	default:
749 		break;
750 	}
751 	mwl_cleartxq(sc, vap);
752 	free(mvp, M_80211_VAP);
753 	if (sc->sc_running)
754 		mwl_hal_intrset(mh, sc->sc_imask);
755 }
756 
757 void
758 mwl_suspend(struct mwl_softc *sc)
759 {
760 
761 	MWL_LOCK(sc);
762 	mwl_stop(sc);
763 	MWL_UNLOCK(sc);
764 }
765 
766 void
767 mwl_resume(struct mwl_softc *sc)
768 {
769 	int error = EDOOFUS;
770 
771 	MWL_LOCK(sc);
772 	if (sc->sc_ic.ic_nrunning > 0)
773 		error = mwl_init(sc);
774 	MWL_UNLOCK(sc);
775 
776 	if (error == 0)
777 		ieee80211_start_all(&sc->sc_ic);	/* start all vap's */
778 }
779 
780 void
781 mwl_shutdown(void *arg)
782 {
783 	struct mwl_softc *sc = arg;
784 
785 	MWL_LOCK(sc);
786 	mwl_stop(sc);
787 	MWL_UNLOCK(sc);
788 }
789 
790 /*
791  * Interrupt handler.  Most of the actual processing is deferred.
792  */
793 void
794 mwl_intr(void *arg)
795 {
796 	struct mwl_softc *sc = arg;
797 	struct mwl_hal *mh = sc->sc_mh;
798 	uint32_t status;
799 
800 	if (sc->sc_invalid) {
801 		/*
802 		 * The hardware is not ready/present, don't touch anything.
803 		 * Note this can happen early on if the IRQ is shared.
804 		 */
805 		DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
806 		return;
807 	}
808 	/*
809 	 * Figure out the reason(s) for the interrupt.
810 	 */
811 	mwl_hal_getisr(mh, &status);		/* NB: clears ISR too */
812 	if (status == 0)			/* must be a shared irq */
813 		return;
814 
815 	DPRINTF(sc, MWL_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n",
816 	    __func__, status, sc->sc_imask);
817 	if (status & MACREG_A2HRIC_BIT_RX_RDY)
818 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
819 	if (status & MACREG_A2HRIC_BIT_TX_DONE)
820 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
821 	if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG)
822 		taskqueue_enqueue(sc->sc_tq, &sc->sc_bawatchdogtask);
823 	if (status & MACREG_A2HRIC_BIT_OPC_DONE)
824 		mwl_hal_cmddone(mh);
825 	if (status & MACREG_A2HRIC_BIT_MAC_EVENT) {
826 		;
827 	}
828 	if (status & MACREG_A2HRIC_BIT_ICV_ERROR) {
829 		/* TKIP ICV error */
830 		sc->sc_stats.mst_rx_badtkipicv++;
831 	}
832 	if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) {
833 		/* 11n aggregation queue is empty, re-fill */
834 		;
835 	}
836 	if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) {
837 		;
838 	}
839 	if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) {
840 		/* radar detected, process event */
841 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
842 	}
843 	if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) {
844 		/* DFS channel switch */
845 		taskqueue_enqueue(sc->sc_tq, &sc->sc_chanswitchtask);
846 	}
847 }
848 
849 static void
850 mwl_radar_proc(void *arg, int pending)
851 {
852 	struct mwl_softc *sc = arg;
853 	struct ieee80211com *ic = &sc->sc_ic;
854 
855 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: radar detected, pending %u\n",
856 	    __func__, pending);
857 
858 	sc->sc_stats.mst_radardetect++;
859 	/* XXX stop h/w BA streams? */
860 
861 	IEEE80211_LOCK(ic);
862 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
863 	IEEE80211_UNLOCK(ic);
864 }
865 
866 static void
867 mwl_chanswitch_proc(void *arg, int pending)
868 {
869 	struct mwl_softc *sc = arg;
870 	struct ieee80211com *ic = &sc->sc_ic;
871 
872 	DPRINTF(sc, MWL_DEBUG_ANY, "%s: channel switch notice, pending %u\n",
873 	    __func__, pending);
874 
875 	IEEE80211_LOCK(ic);
876 	sc->sc_csapending = 0;
877 	ieee80211_csa_completeswitch(ic);
878 	IEEE80211_UNLOCK(ic);
879 }
880 
881 static void
882 mwl_bawatchdog(const MWL_HAL_BASTREAM *sp)
883 {
884 	struct ieee80211_node *ni = sp->data[0];
885 
886 	/* send DELBA and drop the stream */
887 	ieee80211_ampdu_stop(ni, sp->data[1], IEEE80211_REASON_UNSPECIFIED);
888 }
889 
890 static void
891 mwl_bawatchdog_proc(void *arg, int pending)
892 {
893 	struct mwl_softc *sc = arg;
894 	struct mwl_hal *mh = sc->sc_mh;
895 	const MWL_HAL_BASTREAM *sp;
896 	uint8_t bitmap, n;
897 
898 	sc->sc_stats.mst_bawatchdog++;
899 
900 	if (mwl_hal_getwatchdogbitmap(mh, &bitmap) != 0) {
901 		DPRINTF(sc, MWL_DEBUG_AMPDU,
902 		    "%s: could not get bitmap\n", __func__);
903 		sc->sc_stats.mst_bawatchdog_failed++;
904 		return;
905 	}
906 	DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bitmap 0x%x\n", __func__, bitmap);
907 	if (bitmap == 0xff) {
908 		n = 0;
909 		/* disable all ba streams */
910 		for (bitmap = 0; bitmap < 8; bitmap++) {
911 			sp = mwl_hal_bastream_lookup(mh, bitmap);
912 			if (sp != NULL) {
913 				mwl_bawatchdog(sp);
914 				n++;
915 			}
916 		}
917 		if (n == 0) {
918 			DPRINTF(sc, MWL_DEBUG_AMPDU,
919 			    "%s: no BA streams found\n", __func__);
920 			sc->sc_stats.mst_bawatchdog_empty++;
921 		}
922 	} else if (bitmap != 0xaa) {
923 		/* disable a single ba stream */
924 		sp = mwl_hal_bastream_lookup(mh, bitmap);
925 		if (sp != NULL) {
926 			mwl_bawatchdog(sp);
927 		} else {
928 			DPRINTF(sc, MWL_DEBUG_AMPDU,
929 			    "%s: no BA stream %d\n", __func__, bitmap);
930 			sc->sc_stats.mst_bawatchdog_notfound++;
931 		}
932 	}
933 }
934 
935 /*
936  * Convert net80211 channel to a HAL channel.
937  */
938 static void
939 mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
940 {
941 	hc->channel = chan->ic_ieee;
942 
943 	*(uint32_t *)&hc->channelFlags = 0;
944 	if (IEEE80211_IS_CHAN_2GHZ(chan))
945 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ;
946 	else if (IEEE80211_IS_CHAN_5GHZ(chan))
947 		hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ;
948 	if (IEEE80211_IS_CHAN_HT40(chan)) {
949 		hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH;
950 		if (IEEE80211_IS_CHAN_HT40U(chan))
951 			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_ABOVE_CTRL_CH;
952 		else
953 			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_BELOW_CTRL_CH;
954 	} else
955 		hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH;
956 	/* XXX 10MHz channels */
957 }
958 
959 /*
960  * Inform firmware of our tx/rx dma setup.  The BAR 0
961  * writes below are for compatibility with older firmware.
962  * For current firmware we send this information with a
963  * cmd block via mwl_hal_sethwdma.
964  */
965 static int
966 mwl_setupdma(struct mwl_softc *sc)
967 {
968 	int error, i;
969 
970 	sc->sc_hwdma.rxDescRead = sc->sc_rxdma.dd_desc_paddr;
971 	WR4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead);
972 	WR4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead);
973 
974 	for (i = 0; i < MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; i++) {
975 		struct mwl_txq *txq = &sc->sc_txq[i];
976 		sc->sc_hwdma.wcbBase[i] = txq->dma.dd_desc_paddr;
977 		WR4(sc, sc->sc_hwspecs.wcbBase[i], sc->sc_hwdma.wcbBase[i]);
978 	}
979 	sc->sc_hwdma.maxNumTxWcb = mwl_txbuf;
980 	sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES;
981 
982 	error = mwl_hal_sethwdma(sc->sc_mh, &sc->sc_hwdma);
983 	if (error != 0) {
984 		device_printf(sc->sc_dev,
985 		    "unable to setup tx/rx dma; hal status %u\n", error);
986 		/* XXX */
987 	}
988 	return error;
989 }
990 
991 /*
992  * Inform firmware of tx rate parameters.
993  * Called after a channel change.
994  */
995 static int
996 mwl_setcurchanrates(struct mwl_softc *sc)
997 {
998 	struct ieee80211com *ic = &sc->sc_ic;
999 	const struct ieee80211_rateset *rs;
1000 	MWL_HAL_TXRATE rates;
1001 
1002 	memset(&rates, 0, sizeof(rates));
1003 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1004 	/* rate used to send management frames */
1005 	rates.MgtRate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
1006 	/* rate used to send multicast frames */
1007 	rates.McastRate = rates.MgtRate;
1008 
1009 	return mwl_hal_settxrate_auto(sc->sc_mh, &rates);
1010 }
1011 
1012 /*
1013  * Inform firmware of tx rate parameters.  Called whenever
1014  * user-settable params change and after a channel change.
1015  */
1016 static int
1017 mwl_setrates(struct ieee80211vap *vap)
1018 {
1019 	struct mwl_vap *mvp = MWL_VAP(vap);
1020 	struct ieee80211_node *ni = vap->iv_bss;
1021 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1022 	MWL_HAL_TXRATE rates;
1023 
1024 	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1025 
1026 	/*
1027 	 * Update the h/w rate map.
1028 	 * NB: 0x80 for MCS is passed through unchanged
1029 	 */
1030 	memset(&rates, 0, sizeof(rates));
1031 	/* rate used to send management frames */
1032 	rates.MgtRate = tp->mgmtrate;
1033 	/* rate used to send multicast frames */
1034 	rates.McastRate = tp->mcastrate;
1035 
1036 	/* while here calculate EAPOL fixed rate cookie */
1037 	mvp->mv_eapolformat = htole16(mwl_calcformat(rates.MgtRate, ni));
1038 
1039 	return mwl_hal_settxrate(mvp->mv_hvap,
1040 	    tp->ucastrate != IEEE80211_FIXED_RATE_NONE ?
1041 		RATE_FIXED : RATE_AUTO, &rates);
1042 }
1043 
1044 /*
1045  * Setup a fixed xmit rate cookie for EAPOL frames.
1046  */
1047 static void
1048 mwl_seteapolformat(struct ieee80211vap *vap)
1049 {
1050 	struct mwl_vap *mvp = MWL_VAP(vap);
1051 	struct ieee80211_node *ni = vap->iv_bss;
1052 	enum ieee80211_phymode mode;
1053 	uint8_t rate;
1054 
1055 	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1056 
1057 	mode = ieee80211_chan2mode(ni->ni_chan);
1058 	/*
1059 	 * Use legacy rates when operating a mixed HT+non-HT bss.
1060 	 * NB: this may violate POLA for sta and wds vap's.
1061 	 */
1062 	if (mode == IEEE80211_MODE_11NA &&
1063 	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1064 		rate = vap->iv_txparms[IEEE80211_MODE_11A].mgmtrate;
1065 	else if (mode == IEEE80211_MODE_11NG &&
1066 	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1067 		rate = vap->iv_txparms[IEEE80211_MODE_11G].mgmtrate;
1068 	else
1069 		rate = vap->iv_txparms[mode].mgmtrate;
1070 
1071 	mvp->mv_eapolformat = htole16(mwl_calcformat(rate, ni));
1072 }
1073 
1074 /*
1075  * Map SKU+country code to region code for radar bin'ing.
1076  */
1077 static int
1078 mwl_map2regioncode(const struct ieee80211_regdomain *rd)
1079 {
1080 	switch (rd->regdomain) {
1081 	case SKU_FCC:
1082 	case SKU_FCC3:
1083 		return DOMAIN_CODE_FCC;
1084 	case SKU_CA:
1085 		return DOMAIN_CODE_IC;
1086 	case SKU_ETSI:
1087 	case SKU_ETSI2:
1088 	case SKU_ETSI3:
1089 		if (rd->country == CTRY_SPAIN)
1090 			return DOMAIN_CODE_SPAIN;
1091 		if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2)
1092 			return DOMAIN_CODE_FRANCE;
1093 		/* XXX force 1.3.1 radar type */
1094 		return DOMAIN_CODE_ETSI_131;
1095 	case SKU_JAPAN:
1096 		return DOMAIN_CODE_MKK;
1097 	case SKU_ROW:
1098 		return DOMAIN_CODE_DGT;	/* Taiwan */
1099 	case SKU_APAC:
1100 	case SKU_APAC2:
1101 	case SKU_APAC3:
1102 		return DOMAIN_CODE_AUS;	/* Australia */
1103 	}
1104 	/* XXX KOREA? */
1105 	return DOMAIN_CODE_FCC;			/* XXX? */
1106 }
1107 
1108 static int
1109 mwl_hal_reset(struct mwl_softc *sc)
1110 {
1111 	struct ieee80211com *ic = &sc->sc_ic;
1112 	struct mwl_hal *mh = sc->sc_mh;
1113 
1114 	mwl_hal_setantenna(mh, WL_ANTENNATYPE_RX, sc->sc_rxantenna);
1115 	mwl_hal_setantenna(mh, WL_ANTENNATYPE_TX, sc->sc_txantenna);
1116 	mwl_hal_setradio(mh, 1, WL_AUTO_PREAMBLE);
1117 	mwl_hal_setwmm(sc->sc_mh, (ic->ic_flags & IEEE80211_F_WME) != 0);
1118 	mwl_chan_set(sc, ic->ic_curchan);
1119 	/* NB: RF/RA performance tuned for indoor mode */
1120 	mwl_hal_setrateadaptmode(mh, 0);
1121 	mwl_hal_setoptimizationlevel(mh,
1122 	    (ic->ic_flags & IEEE80211_F_BURST) != 0);
1123 
1124 	mwl_hal_setregioncode(mh, mwl_map2regioncode(&ic->ic_regdomain));
1125 
1126 	mwl_hal_setaggampduratemode(mh, 1, 80);		/* XXX */
1127 	mwl_hal_setcfend(mh, 0);			/* XXX */
1128 
1129 	return 1;
1130 }
1131 
1132 static int
1133 mwl_init(struct mwl_softc *sc)
1134 {
1135 	struct mwl_hal *mh = sc->sc_mh;
1136 	int error = 0;
1137 
1138 	MWL_LOCK_ASSERT(sc);
1139 
1140 	/*
1141 	 * Stop anything previously setup.  This is safe
1142 	 * whether this is the first time through or not.
1143 	 */
1144 	mwl_stop(sc);
1145 
1146 	/*
1147 	 * Push vap-independent state to the firmware.
1148 	 */
1149 	if (!mwl_hal_reset(sc)) {
1150 		device_printf(sc->sc_dev, "unable to reset hardware\n");
1151 		return EIO;
1152 	}
1153 
1154 	/*
1155 	 * Setup recv (once); transmit is already good to go.
1156 	 */
1157 	error = mwl_startrecv(sc);
1158 	if (error != 0) {
1159 		device_printf(sc->sc_dev, "unable to start recv logic\n");
1160 		return error;
1161 	}
1162 
1163 	/*
1164 	 * Enable interrupts.
1165 	 */
1166 	sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY
1167 		     | MACREG_A2HRIC_BIT_TX_DONE
1168 		     | MACREG_A2HRIC_BIT_OPC_DONE
1169 #if 0
1170 		     | MACREG_A2HRIC_BIT_MAC_EVENT
1171 #endif
1172 		     | MACREG_A2HRIC_BIT_ICV_ERROR
1173 		     | MACREG_A2HRIC_BIT_RADAR_DETECT
1174 		     | MACREG_A2HRIC_BIT_CHAN_SWITCH
1175 #if 0
1176 		     | MACREG_A2HRIC_BIT_QUEUE_EMPTY
1177 #endif
1178 		     | MACREG_A2HRIC_BIT_BA_WATCHDOG
1179 		     | MACREQ_A2HRIC_BIT_TX_ACK
1180 		     ;
1181 
1182 	sc->sc_running = 1;
1183 	mwl_hal_intrset(mh, sc->sc_imask);
1184 	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
1185 
1186 	return 0;
1187 }
1188 
1189 static void
1190 mwl_stop(struct mwl_softc *sc)
1191 {
1192 
1193 	MWL_LOCK_ASSERT(sc);
1194 	if (sc->sc_running) {
1195 		/*
1196 		 * Shutdown the hardware and driver.
1197 		 */
1198 		sc->sc_running = 0;
1199 		callout_stop(&sc->sc_watchdog);
1200 		sc->sc_tx_timer = 0;
1201 		mwl_draintxq(sc);
1202 	}
1203 }
1204 
1205 static int
1206 mwl_reset_vap(struct ieee80211vap *vap, int state)
1207 {
1208 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1209 	struct ieee80211com *ic = vap->iv_ic;
1210 
1211 	if (state == IEEE80211_S_RUN)
1212 		mwl_setrates(vap);
1213 	/* XXX off by 1? */
1214 	mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
1215 	/* XXX auto? 20/40 split? */
1216 	mwl_hal_sethtgi(hvap, (vap->iv_flags_ht &
1217 	    (IEEE80211_FHT_SHORTGI20|IEEE80211_FHT_SHORTGI40)) ? 1 : 0);
1218 	mwl_hal_setnprot(hvap, ic->ic_htprotmode == IEEE80211_PROT_NONE ?
1219 	    HTPROTECT_NONE : HTPROTECT_AUTO);
1220 	/* XXX txpower cap */
1221 
1222 	/* re-setup beacons */
1223 	if (state == IEEE80211_S_RUN &&
1224 	    (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1225 	     vap->iv_opmode == IEEE80211_M_MBSS ||
1226 	     vap->iv_opmode == IEEE80211_M_IBSS)) {
1227 		mwl_setapmode(vap, vap->iv_bss->ni_chan);
1228 		mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT(
1229 		    ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1230 		return mwl_beacon_setup(vap);
1231 	}
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Reset the hardware w/o losing operational state.
1237  * Used to reset or reload hardware state for a vap.
1238  */
1239 static int
1240 mwl_reset(struct ieee80211vap *vap, u_long cmd)
1241 {
1242 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1243 	int error = 0;
1244 
1245 	if (hvap != NULL) {			/* WDS, MONITOR, etc. */
1246 		struct ieee80211com *ic = vap->iv_ic;
1247 		struct mwl_softc *sc = ic->ic_softc;
1248 		struct mwl_hal *mh = sc->sc_mh;
1249 
1250 		/* XXX handle DWDS sta vap change */
1251 		/* XXX do we need to disable interrupts? */
1252 		mwl_hal_intrset(mh, 0);		/* disable interrupts */
1253 		error = mwl_reset_vap(vap, vap->iv_state);
1254 		mwl_hal_intrset(mh, sc->sc_imask);
1255 	}
1256 	return error;
1257 }
1258 
1259 /*
1260  * Allocate a tx buffer for sending a frame.  The
1261  * packet is assumed to have the WME AC stored so
1262  * we can use it to select the appropriate h/w queue.
1263  */
1264 static struct mwl_txbuf *
1265 mwl_gettxbuf(struct mwl_softc *sc, struct mwl_txq *txq)
1266 {
1267 	struct mwl_txbuf *bf;
1268 
1269 	/*
1270 	 * Grab a TX buffer and associated resources.
1271 	 */
1272 	MWL_TXQ_LOCK(txq);
1273 	bf = STAILQ_FIRST(&txq->free);
1274 	if (bf != NULL) {
1275 		STAILQ_REMOVE_HEAD(&txq->free, bf_list);
1276 		txq->nfree--;
1277 	}
1278 	MWL_TXQ_UNLOCK(txq);
1279 	if (bf == NULL)
1280 		DPRINTF(sc, MWL_DEBUG_XMIT,
1281 		    "%s: out of xmit buffers on q %d\n", __func__, txq->qnum);
1282 	return bf;
1283 }
1284 
1285 /*
1286  * Return a tx buffer to the queue it came from.  Note there
1287  * are two cases because we must preserve the order of buffers
1288  * as it reflects the fixed order of descriptors in memory
1289  * (the firmware pre-fetches descriptors so we cannot reorder).
1290  */
1291 static void
1292 mwl_puttxbuf_head(struct mwl_txq *txq, struct mwl_txbuf *bf)
1293 {
1294 	bf->bf_m = NULL;
1295 	bf->bf_node = NULL;
1296 	MWL_TXQ_LOCK(txq);
1297 	STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
1298 	txq->nfree++;
1299 	MWL_TXQ_UNLOCK(txq);
1300 }
1301 
1302 static void
1303 mwl_puttxbuf_tail(struct mwl_txq *txq, struct mwl_txbuf *bf)
1304 {
1305 	bf->bf_m = NULL;
1306 	bf->bf_node = NULL;
1307 	MWL_TXQ_LOCK(txq);
1308 	STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
1309 	txq->nfree++;
1310 	MWL_TXQ_UNLOCK(txq);
1311 }
1312 
1313 static int
1314 mwl_transmit(struct ieee80211com *ic, struct mbuf *m)
1315 {
1316 	struct mwl_softc *sc = ic->ic_softc;
1317 	int error;
1318 
1319 	MWL_LOCK(sc);
1320 	if (!sc->sc_running) {
1321 		MWL_UNLOCK(sc);
1322 		return (ENXIO);
1323 	}
1324 	error = mbufq_enqueue(&sc->sc_snd, m);
1325 	if (error) {
1326 		MWL_UNLOCK(sc);
1327 		return (error);
1328 	}
1329 	mwl_start(sc);
1330 	MWL_UNLOCK(sc);
1331 	return (0);
1332 }
1333 
1334 static void
1335 mwl_start(struct mwl_softc *sc)
1336 {
1337 	struct ieee80211_node *ni;
1338 	struct mwl_txbuf *bf;
1339 	struct mbuf *m;
1340 	struct mwl_txq *txq = NULL;	/* XXX silence gcc */
1341 	int nqueued;
1342 
1343 	MWL_LOCK_ASSERT(sc);
1344 	if (!sc->sc_running || sc->sc_invalid)
1345 		return;
1346 	nqueued = 0;
1347 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1348 		/*
1349 		 * Grab the node for the destination.
1350 		 */
1351 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1352 		KASSERT(ni != NULL, ("no node"));
1353 		m->m_pkthdr.rcvif = NULL;	/* committed, clear ref */
1354 		/*
1355 		 * Grab a TX buffer and associated resources.
1356 		 * We honor the classification by the 802.11 layer.
1357 		 */
1358 		txq = sc->sc_ac2q[M_WME_GETAC(m)];
1359 		bf = mwl_gettxbuf(sc, txq);
1360 		if (bf == NULL) {
1361 			m_freem(m);
1362 			ieee80211_free_node(ni);
1363 #ifdef MWL_TX_NODROP
1364 			sc->sc_stats.mst_tx_qstop++;
1365 			break;
1366 #else
1367 			DPRINTF(sc, MWL_DEBUG_XMIT,
1368 			    "%s: tail drop on q %d\n", __func__, txq->qnum);
1369 			sc->sc_stats.mst_tx_qdrop++;
1370 			continue;
1371 #endif /* MWL_TX_NODROP */
1372 		}
1373 
1374 		/*
1375 		 * Pass the frame to the h/w for transmission.
1376 		 */
1377 		if (mwl_tx_start(sc, ni, bf, m)) {
1378 			if_inc_counter(ni->ni_vap->iv_ifp,
1379 			    IFCOUNTER_OERRORS, 1);
1380 			mwl_puttxbuf_head(txq, bf);
1381 			ieee80211_free_node(ni);
1382 			continue;
1383 		}
1384 		nqueued++;
1385 		if (nqueued >= mwl_txcoalesce) {
1386 			/*
1387 			 * Poke the firmware to process queued frames;
1388 			 * see below about (lack of) locking.
1389 			 */
1390 			nqueued = 0;
1391 			mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1392 		}
1393 	}
1394 	if (nqueued) {
1395 		/*
1396 		 * NB: We don't need to lock against tx done because
1397 		 * this just prods the firmware to check the transmit
1398 		 * descriptors.  The firmware will also start fetching
1399 		 * descriptors by itself if it notices new ones are
1400 		 * present when it goes to deliver a tx done interrupt
1401 		 * to the host. So if we race with tx done processing
1402 		 * it's ok.  Delivering the kick here rather than in
1403 		 * mwl_tx_start is an optimization to avoid poking the
1404 		 * firmware for each packet.
1405 		 *
1406 		 * NB: the queue id isn't used so 0 is ok.
1407 		 */
1408 		mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1409 	}
1410 }
1411 
1412 static int
1413 mwl_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1414 	const struct ieee80211_bpf_params *params)
1415 {
1416 	struct ieee80211com *ic = ni->ni_ic;
1417 	struct mwl_softc *sc = ic->ic_softc;
1418 	struct mwl_txbuf *bf;
1419 	struct mwl_txq *txq;
1420 
1421 	if (!sc->sc_running || sc->sc_invalid) {
1422 		m_freem(m);
1423 		return ENETDOWN;
1424 	}
1425 	/*
1426 	 * Grab a TX buffer and associated resources.
1427 	 * Note that we depend on the classification
1428 	 * by the 802.11 layer to get to the right h/w
1429 	 * queue.  Management frames must ALWAYS go on
1430 	 * queue 1 but we cannot just force that here
1431 	 * because we may receive non-mgt frames.
1432 	 */
1433 	txq = sc->sc_ac2q[M_WME_GETAC(m)];
1434 	bf = mwl_gettxbuf(sc, txq);
1435 	if (bf == NULL) {
1436 		sc->sc_stats.mst_tx_qstop++;
1437 		m_freem(m);
1438 		return ENOBUFS;
1439 	}
1440 	/*
1441 	 * Pass the frame to the h/w for transmission.
1442 	 */
1443 	if (mwl_tx_start(sc, ni, bf, m)) {
1444 		mwl_puttxbuf_head(txq, bf);
1445 
1446 		return EIO;		/* XXX */
1447 	}
1448 	/*
1449 	 * NB: We don't need to lock against tx done because
1450 	 * this just prods the firmware to check the transmit
1451 	 * descriptors.  The firmware will also start fetching
1452 	 * descriptors by itself if it notices new ones are
1453 	 * present when it goes to deliver a tx done interrupt
1454 	 * to the host. So if we race with tx done processing
1455 	 * it's ok.  Delivering the kick here rather than in
1456 	 * mwl_tx_start is an optimization to avoid poking the
1457 	 * firmware for each packet.
1458 	 *
1459 	 * NB: the queue id isn't used so 0 is ok.
1460 	 */
1461 	mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1462 	return 0;
1463 }
1464 
1465 static int
1466 mwl_media_change(if_t ifp)
1467 {
1468 	struct ieee80211vap *vap;
1469 	int error;
1470 
1471 	/* NB: only the fixed rate can change and that doesn't need a reset */
1472 	error = ieee80211_media_change(ifp);
1473 	if (error != 0)
1474 		return (error);
1475 
1476 	vap = if_getsoftc(ifp);
1477 	mwl_setrates(vap);
1478 	return (0);
1479 }
1480 
1481 #ifdef MWL_DEBUG
1482 static void
1483 mwl_keyprint(struct mwl_softc *sc, const char *tag,
1484 	const MWL_HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1485 {
1486 	static const char *ciphers[] = {
1487 		"WEP",
1488 		"TKIP",
1489 		"AES-CCM",
1490 	};
1491 	int i, n;
1492 
1493 	printf("%s: [%u] %-7s", tag, hk->keyIndex, ciphers[hk->keyTypeId]);
1494 	for (i = 0, n = hk->keyLen; i < n; i++)
1495 		printf(" %02x", hk->key.aes[i]);
1496 	printf(" mac %s", ether_sprintf(mac));
1497 	if (hk->keyTypeId == KEY_TYPE_ID_TKIP) {
1498 		printf(" %s", "rxmic");
1499 		for (i = 0; i < sizeof(hk->key.tkip.rxMic); i++)
1500 			printf(" %02x", hk->key.tkip.rxMic[i]);
1501 		printf(" txmic");
1502 		for (i = 0; i < sizeof(hk->key.tkip.txMic); i++)
1503 			printf(" %02x", hk->key.tkip.txMic[i]);
1504 	}
1505 	printf(" flags 0x%x\n", hk->keyFlags);
1506 }
1507 #endif
1508 
1509 /*
1510  * Allocate a key cache slot for a unicast key.  The
1511  * firmware handles key allocation and every station is
1512  * guaranteed key space so we are always successful.
1513  */
1514 static int
1515 mwl_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
1516 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1517 {
1518 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1519 
1520 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||
1521 	    (k->wk_flags & IEEE80211_KEY_GROUP)) {
1522 		if (!(&vap->iv_nw_keys[0] <= k &&
1523 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
1524 			/* should not happen */
1525 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1526 				"%s: bogus group key\n", __func__);
1527 			return 0;
1528 		}
1529 		/* give the caller what they requested */
1530 		*keyix = *rxkeyix = ieee80211_crypto_get_key_wepidx(vap, k);
1531 	} else {
1532 		/*
1533 		 * Firmware handles key allocation.
1534 		 */
1535 		*keyix = *rxkeyix = 0;
1536 	}
1537 	return 1;
1538 }
1539 
1540 /*
1541  * Delete a key entry allocated by mwl_key_alloc.
1542  */
1543 static int
1544 mwl_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
1545 {
1546 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1547 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1548 	MWL_HAL_KEYVAL hk;
1549 	const uint8_t bcastaddr[IEEE80211_ADDR_LEN] =
1550 	    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1551 
1552 	if (hvap == NULL) {
1553 		if (vap->iv_opmode != IEEE80211_M_WDS) {
1554 			/* XXX monitor mode? */
1555 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1556 			    "%s: no hvap for opmode %d\n", __func__,
1557 			    vap->iv_opmode);
1558 			return 0;
1559 		}
1560 		hvap = MWL_VAP(vap)->mv_ap_hvap;
1561 	}
1562 
1563 	DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: delete key %u\n",
1564 	    __func__, k->wk_keyix);
1565 
1566 	memset(&hk, 0, sizeof(hk));
1567 	hk.keyIndex = k->wk_keyix;
1568 	switch (k->wk_cipher->ic_cipher) {
1569 	case IEEE80211_CIPHER_WEP:
1570 		hk.keyTypeId = KEY_TYPE_ID_WEP;
1571 		break;
1572 	case IEEE80211_CIPHER_TKIP:
1573 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1574 		break;
1575 	case IEEE80211_CIPHER_AES_CCM:
1576 		hk.keyTypeId = KEY_TYPE_ID_AES;
1577 		break;
1578 	default:
1579 		/* XXX should not happen */
1580 		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1581 		    __func__, k->wk_cipher->ic_cipher);
1582 		return 0;
1583 	}
1584 	return (mwl_hal_keyreset(hvap, &hk, bcastaddr) == 0);	/*XXX*/
1585 }
1586 
1587 static __inline int
1588 addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k)
1589 {
1590 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
1591 		if (k->wk_flags & IEEE80211_KEY_XMIT)
1592 			hk->keyFlags |= KEY_FLAG_TXGROUPKEY;
1593 		if (k->wk_flags & IEEE80211_KEY_RECV)
1594 			hk->keyFlags |= KEY_FLAG_RXGROUPKEY;
1595 		return 1;
1596 	} else
1597 		return 0;
1598 }
1599 
1600 /*
1601  * Set the key cache contents for the specified key.  Key cache
1602  * slot(s) must already have been allocated by mwl_key_alloc.
1603  */
1604 static int
1605 mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
1606 {
1607 	return (_mwl_key_set(vap, k, k->wk_macaddr));
1608 }
1609 
1610 static int
1611 _mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
1612 	const uint8_t mac[IEEE80211_ADDR_LEN])
1613 {
1614 #define	GRPXMIT	(IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP)
1615 /* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */
1616 #define	IEEE80211_IS_STATICKEY(k) \
1617 	(((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \
1618 	 (GRPXMIT|IEEE80211_KEY_RECV))
1619 	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1620 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1621 	const struct ieee80211_cipher *cip = k->wk_cipher;
1622 	const uint8_t *macaddr;
1623 	MWL_HAL_KEYVAL hk;
1624 
1625 	KASSERT((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0,
1626 		("s/w crypto set?"));
1627 
1628 	if (hvap == NULL) {
1629 		if (vap->iv_opmode != IEEE80211_M_WDS) {
1630 			/* XXX monitor mode? */
1631 			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1632 			    "%s: no hvap for opmode %d\n", __func__,
1633 			    vap->iv_opmode);
1634 			return 0;
1635 		}
1636 		hvap = MWL_VAP(vap)->mv_ap_hvap;
1637 	}
1638 	memset(&hk, 0, sizeof(hk));
1639 	hk.keyIndex = k->wk_keyix;
1640 	switch (cip->ic_cipher) {
1641 	case IEEE80211_CIPHER_WEP:
1642 		hk.keyTypeId = KEY_TYPE_ID_WEP;
1643 		hk.keyLen = k->wk_keylen;
1644 		if (k->wk_keyix == vap->iv_def_txkey)
1645 			hk.keyFlags = KEY_FLAG_WEP_TXKEY;
1646 		if (!IEEE80211_IS_STATICKEY(k)) {
1647 			/* NB: WEP is never used for the PTK */
1648 			(void) addgroupflags(&hk, k);
1649 		}
1650 		break;
1651 	case IEEE80211_CIPHER_TKIP:
1652 		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1653 		hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16);
1654 		hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc;
1655 		hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID;
1656 		hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE;
1657 		if (!addgroupflags(&hk, k))
1658 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1659 		break;
1660 	case IEEE80211_CIPHER_AES_CCM:
1661 		hk.keyTypeId = KEY_TYPE_ID_AES;
1662 		hk.keyLen = k->wk_keylen;
1663 		if (!addgroupflags(&hk, k))
1664 			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1665 		break;
1666 	default:
1667 		/* XXX should not happen */
1668 		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1669 		    __func__, k->wk_cipher->ic_cipher);
1670 		return 0;
1671 	}
1672 	/*
1673 	 * NB: tkip mic keys get copied here too; the layout
1674 	 *     just happens to match that in ieee80211_key.
1675 	 */
1676 	memcpy(hk.key.aes, k->wk_key, hk.keyLen);
1677 
1678 	/*
1679 	 * Locate address of sta db entry for writing key;
1680 	 * the convention unfortunately is somewhat different
1681 	 * than how net80211, hostapd, and wpa_supplicant think.
1682 	 */
1683 	if (vap->iv_opmode == IEEE80211_M_STA) {
1684 		/*
1685 		 * NB: keys plumbed before the sta reaches AUTH state
1686 		 * will be discarded or written to the wrong sta db
1687 		 * entry because iv_bss is meaningless.  This is ok
1688 		 * (right now) because we handle deferred plumbing of
1689 		 * WEP keys when the sta reaches AUTH state.
1690 		 */
1691 		macaddr = vap->iv_bss->ni_bssid;
1692 		if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0) {
1693 			/* XXX plumb to local sta db too for static key wep */
1694 			mwl_hal_keyset(hvap, &hk, vap->iv_myaddr);
1695 		}
1696 	} else if (vap->iv_opmode == IEEE80211_M_WDS &&
1697 	    vap->iv_state != IEEE80211_S_RUN) {
1698 		/*
1699 		 * Prior to RUN state a WDS vap will not it's BSS node
1700 		 * setup so we will plumb the key to the wrong mac
1701 		 * address (it'll be our local address).  Workaround
1702 		 * this for the moment by grabbing the correct address.
1703 		 */
1704 		macaddr = vap->iv_des_bssid;
1705 	} else if ((k->wk_flags & GRPXMIT) == GRPXMIT)
1706 		macaddr = vap->iv_myaddr;
1707 	else
1708 		macaddr = mac;
1709 	KEYPRINTF(sc, &hk, macaddr);
1710 	return (mwl_hal_keyset(hvap, &hk, macaddr) == 0);
1711 #undef IEEE80211_IS_STATICKEY
1712 #undef GRPXMIT
1713 }
1714 
1715 /*
1716  * Set the multicast filter contents into the hardware.
1717  * XXX f/w has no support; just defer to the os.
1718  */
1719 static void
1720 mwl_setmcastfilter(struct mwl_softc *sc)
1721 {
1722 #if 0
1723 	struct ether_multi *enm;
1724 	struct ether_multistep estep;
1725 	uint8_t macs[IEEE80211_ADDR_LEN*MWL_HAL_MCAST_MAX];/* XXX stack use */
1726 	uint8_t *mp;
1727 	int nmc;
1728 
1729 	mp = macs;
1730 	nmc = 0;
1731 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1732 	while (enm != NULL) {
1733 		/* XXX Punt on ranges. */
1734 		if (nmc == MWL_HAL_MCAST_MAX ||
1735 		    !IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1736 			if_setflagsbit(ifp, IFF_ALLMULTI, 0);
1737 			return;
1738 		}
1739 		IEEE80211_ADDR_COPY(mp, enm->enm_addrlo);
1740 		mp += IEEE80211_ADDR_LEN, nmc++;
1741 		ETHER_NEXT_MULTI(estep, enm);
1742 	}
1743 	if_setflagsbit(ifp, 0, IFF_ALLMULTI);
1744 	mwl_hal_setmcast(sc->sc_mh, nmc, macs);
1745 #endif
1746 }
1747 
1748 static int
1749 mwl_mode_init(struct mwl_softc *sc)
1750 {
1751 	struct ieee80211com *ic = &sc->sc_ic;
1752 	struct mwl_hal *mh = sc->sc_mh;
1753 
1754 	mwl_hal_setpromisc(mh, ic->ic_promisc > 0);
1755 	mwl_setmcastfilter(sc);
1756 
1757 	return 0;
1758 }
1759 
1760 /*
1761  * Callback from the 802.11 layer after a multicast state change.
1762  */
1763 static void
1764 mwl_update_mcast(struct ieee80211com *ic)
1765 {
1766 	struct mwl_softc *sc = ic->ic_softc;
1767 
1768 	mwl_setmcastfilter(sc);
1769 }
1770 
1771 /*
1772  * Callback from the 802.11 layer after a promiscuous mode change.
1773  * Note this interface does not check the operating mode as this
1774  * is an internal callback and we are expected to honor the current
1775  * state (e.g. this is used for setting the interface in promiscuous
1776  * mode when operating in hostap mode to do ACS).
1777  */
1778 static void
1779 mwl_update_promisc(struct ieee80211com *ic)
1780 {
1781 	struct mwl_softc *sc = ic->ic_softc;
1782 
1783 	mwl_hal_setpromisc(sc->sc_mh, ic->ic_promisc > 0);
1784 }
1785 
1786 /*
1787  * Callback from the 802.11 layer to update the slot time
1788  * based on the current setting.  We use it to notify the
1789  * firmware of ERP changes and the f/w takes care of things
1790  * like slot time and preamble.
1791  */
1792 static void
1793 mwl_updateslot(struct ieee80211com *ic)
1794 {
1795 	struct mwl_softc *sc = ic->ic_softc;
1796 	struct mwl_hal *mh = sc->sc_mh;
1797 	int prot;
1798 
1799 	/* NB: can be called early; suppress needless cmds */
1800 	if (!sc->sc_running)
1801 		return;
1802 
1803 	/*
1804 	 * Calculate the ERP flags.  The firwmare will use
1805 	 * this to carry out the appropriate measures.
1806 	 */
1807 	prot = 0;
1808 	if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
1809 		if ((ic->ic_flags & IEEE80211_F_SHSLOT) == 0)
1810 			prot |= IEEE80211_ERP_NON_ERP_PRESENT;
1811 		if (ic->ic_flags & IEEE80211_F_USEPROT)
1812 			prot |= IEEE80211_ERP_USE_PROTECTION;
1813 		if (ic->ic_flags & IEEE80211_F_USEBARKER)
1814 			prot |= IEEE80211_ERP_LONG_PREAMBLE;
1815 	}
1816 
1817 	DPRINTF(sc, MWL_DEBUG_RESET,
1818 	    "%s: chan %u MHz/flags 0x%x %s slot, (prot 0x%x ic_flags 0x%x)\n",
1819 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1820 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", prot,
1821 	    ic->ic_flags);
1822 
1823 	mwl_hal_setgprot(mh, prot);
1824 }
1825 
1826 /*
1827  * Setup the beacon frame.
1828  */
1829 static int
1830 mwl_beacon_setup(struct ieee80211vap *vap)
1831 {
1832 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1833 	struct ieee80211_node *ni = vap->iv_bss;
1834 	struct mbuf *m;
1835 
1836 	m = ieee80211_beacon_alloc(ni);
1837 	if (m == NULL)
1838 		return ENOBUFS;
1839 	mwl_hal_setbeacon(hvap, mtod(m, const void *), m->m_len);
1840 	m_free(m);
1841 
1842 	return 0;
1843 }
1844 
1845 /*
1846  * Update the beacon frame in response to a change.
1847  */
1848 static void
1849 mwl_beacon_update(struct ieee80211vap *vap, int item)
1850 {
1851 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1852 	struct ieee80211com *ic = vap->iv_ic;
1853 
1854 	KASSERT(hvap != NULL, ("no beacon"));
1855 	switch (item) {
1856 	case IEEE80211_BEACON_ERP:
1857 		mwl_updateslot(ic);
1858 		break;
1859 	case IEEE80211_BEACON_HTINFO:
1860 		mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT(
1861 		    ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1862 		break;
1863 	case IEEE80211_BEACON_CAPS:
1864 	case IEEE80211_BEACON_WME:
1865 	case IEEE80211_BEACON_APPIE:
1866 	case IEEE80211_BEACON_CSA:
1867 		break;
1868 	case IEEE80211_BEACON_TIM:
1869 		/* NB: firmware always forms TIM */
1870 		return;
1871 	}
1872 	/* XXX retain beacon frame and update */
1873 	mwl_beacon_setup(vap);
1874 }
1875 
1876 static void
1877 mwl_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1878 {
1879 	bus_addr_t *paddr = (bus_addr_t*) arg;
1880 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
1881 	*paddr = segs->ds_addr;
1882 }
1883 
1884 #ifdef MWL_HOST_PS_SUPPORT
1885 /*
1886  * Handle power save station occupancy changes.
1887  */
1888 static void
1889 mwl_update_ps(struct ieee80211vap *vap, int nsta)
1890 {
1891 	struct mwl_vap *mvp = MWL_VAP(vap);
1892 
1893 	if (nsta == 0 || mvp->mv_last_ps_sta == 0)
1894 		mwl_hal_setpowersave_bss(mvp->mv_hvap, nsta);
1895 	mvp->mv_last_ps_sta = nsta;
1896 }
1897 
1898 /*
1899  * Handle associated station power save state changes.
1900  */
1901 static int
1902 mwl_set_tim(struct ieee80211_node *ni, int set)
1903 {
1904 	struct ieee80211vap *vap = ni->ni_vap;
1905 	struct mwl_vap *mvp = MWL_VAP(vap);
1906 
1907 	if (mvp->mv_set_tim(ni, set)) {		/* NB: state change */
1908 		mwl_hal_setpowersave_sta(mvp->mv_hvap,
1909 		    IEEE80211_AID(ni->ni_associd), set);
1910 		return 1;
1911 	} else
1912 		return 0;
1913 }
1914 #endif /* MWL_HOST_PS_SUPPORT */
1915 
1916 static int
1917 mwl_desc_setup(struct mwl_softc *sc, const char *name,
1918 	struct mwl_descdma *dd,
1919 	int nbuf, size_t bufsize, int ndesc, size_t descsize)
1920 {
1921 	uint8_t *ds;
1922 	int error;
1923 
1924 	DPRINTF(sc, MWL_DEBUG_RESET,
1925 	    "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n",
1926 	    __func__, name, nbuf, (uintmax_t) bufsize,
1927 	    ndesc, (uintmax_t) descsize);
1928 
1929 	dd->dd_name = name;
1930 	dd->dd_desc_len = nbuf * ndesc * descsize;
1931 
1932 	/*
1933 	 * Setup DMA descriptor area.
1934 	 */
1935 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1936 		       PAGE_SIZE, 0,		/* alignment, bounds */
1937 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1938 		       BUS_SPACE_MAXADDR,	/* highaddr */
1939 		       NULL, NULL,		/* filter, filterarg */
1940 		       dd->dd_desc_len,		/* maxsize */
1941 		       1,			/* nsegments */
1942 		       dd->dd_desc_len,		/* maxsegsize */
1943 		       BUS_DMA_ALLOCNOW,	/* flags */
1944 		       NULL,			/* lockfunc */
1945 		       NULL,			/* lockarg */
1946 		       &dd->dd_dmat);
1947 	if (error != 0) {
1948 		device_printf(sc->sc_dev, "cannot allocate %s DMA tag\n", dd->dd_name);
1949 		return error;
1950 	}
1951 
1952 	/* allocate descriptors */
1953 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
1954 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1955 				 &dd->dd_dmamap);
1956 	if (error != 0) {
1957 		device_printf(sc->sc_dev, "unable to alloc memory for %u %s descriptors, "
1958 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
1959 		goto fail1;
1960 	}
1961 
1962 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
1963 				dd->dd_desc, dd->dd_desc_len,
1964 				mwl_load_cb, &dd->dd_desc_paddr,
1965 				BUS_DMA_NOWAIT);
1966 	if (error != 0) {
1967 		device_printf(sc->sc_dev, "unable to map %s descriptors, error %u\n",
1968 			dd->dd_name, error);
1969 		goto fail2;
1970 	}
1971 
1972 	ds = dd->dd_desc;
1973 	memset(ds, 0, dd->dd_desc_len);
1974 	DPRINTF(sc, MWL_DEBUG_RESET,
1975 	    "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n",
1976 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
1977 	    (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
1978 
1979 	return 0;
1980 fail2:
1981 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
1982 fail1:
1983 	bus_dma_tag_destroy(dd->dd_dmat);
1984 	memset(dd, 0, sizeof(*dd));
1985 	return error;
1986 #undef DS2PHYS
1987 }
1988 
1989 static void
1990 mwl_desc_cleanup(struct mwl_softc *sc, struct mwl_descdma *dd)
1991 {
1992 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
1993 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
1994 	bus_dma_tag_destroy(dd->dd_dmat);
1995 
1996 	memset(dd, 0, sizeof(*dd));
1997 }
1998 
1999 /*
2000  * Construct a tx q's free list.  The order of entries on
2001  * the list must reflect the physical layout of tx descriptors
2002  * because the firmware pre-fetches descriptors.
2003  *
2004  * XXX might be better to use indices into the buffer array.
2005  */
2006 static void
2007 mwl_txq_reset(struct mwl_softc *sc, struct mwl_txq *txq)
2008 {
2009 	struct mwl_txbuf *bf;
2010 	int i;
2011 
2012 	bf = txq->dma.dd_bufptr;
2013 	STAILQ_INIT(&txq->free);
2014 	for (i = 0; i < mwl_txbuf; i++, bf++)
2015 		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
2016 	txq->nfree = i;
2017 }
2018 
2019 #define	DS2PHYS(_dd, _ds) \
2020 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2021 
2022 static int
2023 mwl_txdma_setup(struct mwl_softc *sc, struct mwl_txq *txq)
2024 {
2025 	int error, bsize, i;
2026 	struct mwl_txbuf *bf;
2027 	struct mwl_txdesc *ds;
2028 
2029 	error = mwl_desc_setup(sc, "tx", &txq->dma,
2030 			mwl_txbuf, sizeof(struct mwl_txbuf),
2031 			MWL_TXDESC, sizeof(struct mwl_txdesc));
2032 	if (error != 0)
2033 		return error;
2034 
2035 	/* allocate and setup tx buffers */
2036 	bsize = mwl_txbuf * sizeof(struct mwl_txbuf);
2037 	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2038 	if (bf == NULL) {
2039 		device_printf(sc->sc_dev, "malloc of %u tx buffers failed\n",
2040 			mwl_txbuf);
2041 		return ENOMEM;
2042 	}
2043 	txq->dma.dd_bufptr = bf;
2044 
2045 	ds = txq->dma.dd_desc;
2046 	for (i = 0; i < mwl_txbuf; i++, bf++, ds += MWL_TXDESC) {
2047 		bf->bf_desc = ds;
2048 		bf->bf_daddr = DS2PHYS(&txq->dma, ds);
2049 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2050 				&bf->bf_dmamap);
2051 		if (error != 0) {
2052 			device_printf(sc->sc_dev, "unable to create dmamap for tx "
2053 				"buffer %u, error %u\n", i, error);
2054 			return error;
2055 		}
2056 	}
2057 	mwl_txq_reset(sc, txq);
2058 	return 0;
2059 }
2060 
2061 static void
2062 mwl_txdma_cleanup(struct mwl_softc *sc, struct mwl_txq *txq)
2063 {
2064 	struct mwl_txbuf *bf;
2065 	int i;
2066 
2067 	bf = txq->dma.dd_bufptr;
2068 	for (i = 0; i < mwl_txbuf; i++, bf++) {
2069 		KASSERT(bf->bf_m == NULL, ("mbuf on free list"));
2070 		KASSERT(bf->bf_node == NULL, ("node on free list"));
2071 		if (bf->bf_dmamap != NULL)
2072 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2073 	}
2074 	STAILQ_INIT(&txq->free);
2075 	txq->nfree = 0;
2076 	if (txq->dma.dd_bufptr != NULL) {
2077 		free(txq->dma.dd_bufptr, M_MWLDEV);
2078 		txq->dma.dd_bufptr = NULL;
2079 	}
2080 	if (txq->dma.dd_desc_len != 0)
2081 		mwl_desc_cleanup(sc, &txq->dma);
2082 }
2083 
2084 static int
2085 mwl_rxdma_setup(struct mwl_softc *sc)
2086 {
2087 	int error, jumbosize, bsize, i;
2088 	struct mwl_rxbuf *bf;
2089 	struct mwl_jumbo *rbuf;
2090 	struct mwl_rxdesc *ds;
2091 	caddr_t data;
2092 
2093 	error = mwl_desc_setup(sc, "rx", &sc->sc_rxdma,
2094 			mwl_rxdesc, sizeof(struct mwl_rxbuf),
2095 			1, sizeof(struct mwl_rxdesc));
2096 	if (error != 0)
2097 		return error;
2098 
2099 	/*
2100 	 * Receive is done to a private pool of jumbo buffers.
2101 	 * This allows us to attach to mbuf's and avoid re-mapping
2102 	 * memory on each rx we post.  We allocate a large chunk
2103 	 * of memory and manage it in the driver.  The mbuf free
2104 	 * callback method is used to reclaim frames after sending
2105 	 * them up the stack.  By default we allocate 2x the number of
2106 	 * rx descriptors configured so we have some slop to hold
2107 	 * us while frames are processed.
2108 	 */
2109 	if (mwl_rxbuf < 2*mwl_rxdesc) {
2110 		device_printf(sc->sc_dev,
2111 		    "too few rx dma buffers (%d); increasing to %d\n",
2112 		    mwl_rxbuf, 2*mwl_rxdesc);
2113 		mwl_rxbuf = 2*mwl_rxdesc;
2114 	}
2115 	jumbosize = roundup(MWL_AGGR_SIZE, PAGE_SIZE);
2116 	sc->sc_rxmemsize = mwl_rxbuf*jumbosize;
2117 
2118 	error = bus_dma_tag_create(sc->sc_dmat,	/* parent */
2119 		       PAGE_SIZE, 0,		/* alignment, bounds */
2120 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2121 		       BUS_SPACE_MAXADDR,	/* highaddr */
2122 		       NULL, NULL,		/* filter, filterarg */
2123 		       sc->sc_rxmemsize,	/* maxsize */
2124 		       1,			/* nsegments */
2125 		       sc->sc_rxmemsize,	/* maxsegsize */
2126 		       BUS_DMA_ALLOCNOW,	/* flags */
2127 		       NULL,			/* lockfunc */
2128 		       NULL,			/* lockarg */
2129 		       &sc->sc_rxdmat);
2130 	if (error != 0) {
2131 		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
2132 		return error;
2133 	}
2134 
2135 	error = bus_dmamem_alloc(sc->sc_rxdmat, (void**) &sc->sc_rxmem,
2136 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2137 				 &sc->sc_rxmap);
2138 	if (error != 0) {
2139 		device_printf(sc->sc_dev, "could not alloc %ju bytes of rx DMA memory\n",
2140 		    (uintmax_t) sc->sc_rxmemsize);
2141 		return error;
2142 	}
2143 
2144 	error = bus_dmamap_load(sc->sc_rxdmat, sc->sc_rxmap,
2145 				sc->sc_rxmem, sc->sc_rxmemsize,
2146 				mwl_load_cb, &sc->sc_rxmem_paddr,
2147 				BUS_DMA_NOWAIT);
2148 	if (error != 0) {
2149 		device_printf(sc->sc_dev, "could not load rx DMA map\n");
2150 		return error;
2151 	}
2152 
2153 	/*
2154 	 * Allocate rx buffers and set them up.
2155 	 */
2156 	bsize = mwl_rxdesc * sizeof(struct mwl_rxbuf);
2157 	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2158 	if (bf == NULL) {
2159 		device_printf(sc->sc_dev, "malloc of %u rx buffers failed\n", bsize);
2160 		return error;
2161 	}
2162 	sc->sc_rxdma.dd_bufptr = bf;
2163 
2164 	STAILQ_INIT(&sc->sc_rxbuf);
2165 	ds = sc->sc_rxdma.dd_desc;
2166 	for (i = 0; i < mwl_rxdesc; i++, bf++, ds++) {
2167 		bf->bf_desc = ds;
2168 		bf->bf_daddr = DS2PHYS(&sc->sc_rxdma, ds);
2169 		/* pre-assign dma buffer */
2170 		bf->bf_data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2171 		/* NB: tail is intentional to preserve descriptor order */
2172 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2173 	}
2174 
2175 	/*
2176 	 * Place remainder of dma memory buffers on the free list.
2177 	 */
2178 	SLIST_INIT(&sc->sc_rxfree);
2179 	for (; i < mwl_rxbuf; i++) {
2180 		data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2181 		rbuf = MWL_JUMBO_DATA2BUF(data);
2182 		SLIST_INSERT_HEAD(&sc->sc_rxfree, rbuf, next);
2183 		sc->sc_nrxfree++;
2184 	}
2185 	return 0;
2186 }
2187 #undef DS2PHYS
2188 
2189 static void
2190 mwl_rxdma_cleanup(struct mwl_softc *sc)
2191 {
2192 	if (sc->sc_rxmem_paddr != 0) {
2193 		bus_dmamap_unload(sc->sc_rxdmat, sc->sc_rxmap);
2194 		sc->sc_rxmem_paddr = 0;
2195 	}
2196 	if (sc->sc_rxmem != NULL) {
2197 		bus_dmamem_free(sc->sc_rxdmat, sc->sc_rxmem, sc->sc_rxmap);
2198 		sc->sc_rxmem = NULL;
2199 	}
2200 	if (sc->sc_rxdma.dd_bufptr != NULL) {
2201 		free(sc->sc_rxdma.dd_bufptr, M_MWLDEV);
2202 		sc->sc_rxdma.dd_bufptr = NULL;
2203 	}
2204 	if (sc->sc_rxdma.dd_desc_len != 0)
2205 		mwl_desc_cleanup(sc, &sc->sc_rxdma);
2206 }
2207 
2208 static int
2209 mwl_dma_setup(struct mwl_softc *sc)
2210 {
2211 	int error, i;
2212 
2213 	error = mwl_rxdma_setup(sc);
2214 	if (error != 0) {
2215 		mwl_rxdma_cleanup(sc);
2216 		return error;
2217 	}
2218 
2219 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
2220 		error = mwl_txdma_setup(sc, &sc->sc_txq[i]);
2221 		if (error != 0) {
2222 			mwl_dma_cleanup(sc);
2223 			return error;
2224 		}
2225 	}
2226 	return 0;
2227 }
2228 
2229 static void
2230 mwl_dma_cleanup(struct mwl_softc *sc)
2231 {
2232 	int i;
2233 
2234 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2235 		mwl_txdma_cleanup(sc, &sc->sc_txq[i]);
2236 	mwl_rxdma_cleanup(sc);
2237 }
2238 
2239 static struct ieee80211_node *
2240 mwl_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2241 {
2242 	struct ieee80211com *ic = vap->iv_ic;
2243 	struct mwl_softc *sc = ic->ic_softc;
2244 	const size_t space = sizeof(struct mwl_node);
2245 	struct mwl_node *mn;
2246 
2247 	mn = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2248 	if (mn == NULL) {
2249 		/* XXX stat+msg */
2250 		return NULL;
2251 	}
2252 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mn %p\n", __func__, mn);
2253 	return &mn->mn_node;
2254 }
2255 
2256 static void
2257 mwl_node_cleanup(struct ieee80211_node *ni)
2258 {
2259 	struct ieee80211com *ic = ni->ni_ic;
2260         struct mwl_softc *sc = ic->ic_softc;
2261 	struct mwl_node *mn = MWL_NODE(ni);
2262 
2263 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p ic %p staid %d\n",
2264 	    __func__, ni, ni->ni_ic, mn->mn_staid);
2265 
2266 	if (mn->mn_staid != 0) {
2267 		struct ieee80211vap *vap = ni->ni_vap;
2268 
2269 		if (mn->mn_hvap != NULL) {
2270 			if (vap->iv_opmode == IEEE80211_M_STA)
2271 				mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr);
2272 			else
2273 				mwl_hal_delstation(mn->mn_hvap, ni->ni_macaddr);
2274 		}
2275 		/*
2276 		 * NB: legacy WDS peer sta db entry is installed using
2277 		 * the associate ap's hvap; use it again to delete it.
2278 		 * XXX can vap be NULL?
2279 		 */
2280 		else if (vap->iv_opmode == IEEE80211_M_WDS &&
2281 		    MWL_VAP(vap)->mv_ap_hvap != NULL)
2282 			mwl_hal_delstation(MWL_VAP(vap)->mv_ap_hvap,
2283 			    ni->ni_macaddr);
2284 		delstaid(sc, mn->mn_staid);
2285 		mn->mn_staid = 0;
2286 	}
2287 	sc->sc_node_cleanup(ni);
2288 }
2289 
2290 /*
2291  * Reclaim rx dma buffers from packets sitting on the ampdu
2292  * reorder queue for a station.  We replace buffers with a
2293  * system cluster (if available).
2294  */
2295 static void
2296 mwl_ampdu_rxdma_reclaim(struct ieee80211_rx_ampdu *rap)
2297 {
2298 #if 0
2299 	int i, n, off;
2300 	struct mbuf *m;
2301 	void *cl;
2302 
2303 	n = rap->rxa_qframes;
2304 	for (i = 0; i < rap->rxa_wnd && n > 0; i++) {
2305 		m = rap->rxa_m[i];
2306 		if (m == NULL)
2307 			continue;
2308 		n--;
2309 		/* our dma buffers have a well-known free routine */
2310 		if ((m->m_flags & M_EXT) == 0 ||
2311 		    m->m_ext.ext_free != mwl_ext_free)
2312 			continue;
2313 		/*
2314 		 * Try to allocate a cluster and move the data.
2315 		 */
2316 		off = m->m_data - m->m_ext.ext_buf;
2317 		if (off + m->m_pkthdr.len > MCLBYTES) {
2318 			/* XXX no AMSDU for now */
2319 			continue;
2320 		}
2321 		cl = pool_cache_get_paddr(&mclpool_cache, 0,
2322 		    &m->m_ext.ext_paddr);
2323 		if (cl != NULL) {
2324 			/*
2325 			 * Copy the existing data to the cluster, remove
2326 			 * the rx dma buffer, and attach the cluster in
2327 			 * its place.  Note we preserve the offset to the
2328 			 * data so frames being bridged can still prepend
2329 			 * their headers without adding another mbuf.
2330 			 */
2331 			memcpy((caddr_t) cl + off, m->m_data, m->m_pkthdr.len);
2332 			MEXTREMOVE(m);
2333 			MEXTADD(m, cl, MCLBYTES, 0, NULL, &mclpool_cache);
2334 			/* setup mbuf like _MCLGET does */
2335 			m->m_flags |= M_CLUSTER | M_EXT_RW;
2336 			_MOWNERREF(m, M_EXT | M_CLUSTER);
2337 			/* NB: m_data is clobbered by MEXTADDR, adjust */
2338 			m->m_data += off;
2339 		}
2340 	}
2341 #endif
2342 }
2343 
2344 /*
2345  * Callback to reclaim resources.  We first let the
2346  * net80211 layer do it's thing, then if we are still
2347  * blocked by a lack of rx dma buffers we walk the ampdu
2348  * reorder q's to reclaim buffers by copying to a system
2349  * cluster.
2350  */
2351 static void
2352 mwl_node_drain(struct ieee80211_node *ni)
2353 {
2354 	struct ieee80211com *ic = ni->ni_ic;
2355         struct mwl_softc *sc = ic->ic_softc;
2356 	struct mwl_node *mn = MWL_NODE(ni);
2357 
2358 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p vap %p staid %d\n",
2359 	    __func__, ni, ni->ni_vap, mn->mn_staid);
2360 
2361 	/* NB: call up first to age out ampdu q's */
2362 	sc->sc_node_drain(ni);
2363 
2364 	/* XXX better to not check low water mark? */
2365 	if (sc->sc_rxblocked && mn->mn_staid != 0 &&
2366 	    (ni->ni_flags & IEEE80211_NODE_HT)) {
2367 		uint8_t tid;
2368 		/*
2369 		 * Walk the reorder q and reclaim rx dma buffers by copying
2370 		 * the packet contents into clusters.
2371 		 */
2372 		for (tid = 0; tid < WME_NUM_TID; tid++) {
2373 			struct ieee80211_rx_ampdu *rap;
2374 
2375 			rap = &ni->ni_rx_ampdu[tid];
2376 			if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
2377 				continue;
2378 			if (rap->rxa_qframes)
2379 				mwl_ampdu_rxdma_reclaim(rap);
2380 		}
2381 	}
2382 }
2383 
2384 static void
2385 mwl_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2386 {
2387 	*rssi = ni->ni_ic->ic_node_getrssi(ni);
2388 #ifdef MWL_ANT_INFO_SUPPORT
2389 #if 0
2390 	/* XXX need to smooth data */
2391 	*noise = -MWL_NODE_CONST(ni)->mn_ai.nf;
2392 #else
2393 	*noise = -95;		/* XXX */
2394 #endif
2395 #else
2396 	*noise = -95;		/* XXX */
2397 #endif
2398 }
2399 
2400 /*
2401  * Convert Hardware per-antenna rssi info to common format:
2402  * Let a1, a2, a3 represent the amplitudes per chain
2403  * Let amax represent max[a1, a2, a3]
2404  * Rssi1_dBm = RSSI_dBm + 20*log10(a1/amax)
2405  * Rssi1_dBm = RSSI_dBm + 20*log10(a1) - 20*log10(amax)
2406  * We store a table that is 4*20*log10(idx) - the extra 4 is to store or
2407  * maintain some extra precision.
2408  *
2409  * Values are stored in .5 db format capped at 127.
2410  */
2411 static void
2412 mwl_node_getmimoinfo(const struct ieee80211_node *ni,
2413 	struct ieee80211_mimo_info *mi)
2414 {
2415 #define	CVT(_dst, _src) do {						\
2416 	(_dst) = rssi + ((logdbtbl[_src] - logdbtbl[rssi_max]) >> 2);	\
2417 	(_dst) = (_dst) > 64 ? 127 : ((_dst) << 1);			\
2418 } while (0)
2419 	static const int8_t logdbtbl[32] = {
2420 	       0,   0,  24,  38,  48,  56,  62,  68,
2421 	      72,  76,  80,  83,  86,  89,  92,  94,
2422 	      96,  98, 100, 102, 104, 106, 107, 109,
2423 	     110, 112, 113, 115, 116, 117, 118, 119
2424 	};
2425 	const struct mwl_node *mn = MWL_NODE_CONST(ni);
2426 	uint8_t rssi = mn->mn_ai.rsvd1/2;		/* XXX */
2427 	uint32_t rssi_max;
2428 
2429 	rssi_max = mn->mn_ai.rssi_a;
2430 	if (mn->mn_ai.rssi_b > rssi_max)
2431 		rssi_max = mn->mn_ai.rssi_b;
2432 	if (mn->mn_ai.rssi_c > rssi_max)
2433 		rssi_max = mn->mn_ai.rssi_c;
2434 
2435 	CVT(mi->ch[0].rssi[0], mn->mn_ai.rssi_a);
2436 	CVT(mi->ch[1].rssi[0], mn->mn_ai.rssi_b);
2437 	CVT(mi->ch[2].rssi[0], mn->mn_ai.rssi_c);
2438 
2439 	mi->ch[0].noise[0] = mn->mn_ai.nf_a;
2440 	mi->ch[1].noise[0] = mn->mn_ai.nf_b;
2441 	mi->ch[2].noise[0] = mn->mn_ai.nf_c;
2442 #undef CVT
2443 }
2444 
2445 static __inline void *
2446 mwl_getrxdma(struct mwl_softc *sc)
2447 {
2448 	struct mwl_jumbo *buf;
2449 	void *data;
2450 
2451 	/*
2452 	 * Allocate from jumbo pool.
2453 	 */
2454 	MWL_RXFREE_LOCK(sc);
2455 	buf = SLIST_FIRST(&sc->sc_rxfree);
2456 	if (buf == NULL) {
2457 		DPRINTF(sc, MWL_DEBUG_ANY,
2458 		    "%s: out of rx dma buffers\n", __func__);
2459 		sc->sc_stats.mst_rx_nodmabuf++;
2460 		data = NULL;
2461 	} else {
2462 		SLIST_REMOVE_HEAD(&sc->sc_rxfree, next);
2463 		sc->sc_nrxfree--;
2464 		data = MWL_JUMBO_BUF2DATA(buf);
2465 	}
2466 	MWL_RXFREE_UNLOCK(sc);
2467 	return data;
2468 }
2469 
2470 static __inline void
2471 mwl_putrxdma(struct mwl_softc *sc, void *data)
2472 {
2473 	struct mwl_jumbo *buf;
2474 
2475 	/* XXX bounds check data */
2476 	MWL_RXFREE_LOCK(sc);
2477 	buf = MWL_JUMBO_DATA2BUF(data);
2478 	SLIST_INSERT_HEAD(&sc->sc_rxfree, buf, next);
2479 	sc->sc_nrxfree++;
2480 	MWL_RXFREE_UNLOCK(sc);
2481 }
2482 
2483 static int
2484 mwl_rxbuf_init(struct mwl_softc *sc, struct mwl_rxbuf *bf)
2485 {
2486 	struct mwl_rxdesc *ds;
2487 
2488 	ds = bf->bf_desc;
2489 	if (bf->bf_data == NULL) {
2490 		bf->bf_data = mwl_getrxdma(sc);
2491 		if (bf->bf_data == NULL) {
2492 			/* mark descriptor to be skipped */
2493 			ds->RxControl = EAGLE_RXD_CTRL_OS_OWN;
2494 			/* NB: don't need PREREAD */
2495 			MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE);
2496 			sc->sc_stats.mst_rxbuf_failed++;
2497 			return ENOMEM;
2498 		}
2499 	}
2500 	/*
2501 	 * NB: DMA buffer contents is known to be unmodified
2502 	 *     so there's no need to flush the data cache.
2503 	 */
2504 
2505 	/*
2506 	 * Setup descriptor.
2507 	 */
2508 	ds->QosCtrl = 0;
2509 	ds->RSSI = 0;
2510 	ds->Status = EAGLE_RXD_STATUS_IDLE;
2511 	ds->Channel = 0;
2512 	ds->PktLen = htole16(MWL_AGGR_SIZE);
2513 	ds->SQ2 = 0;
2514 	ds->pPhysBuffData = htole32(MWL_JUMBO_DMA_ADDR(sc, bf->bf_data));
2515 	/* NB: don't touch pPhysNext, set once */
2516 	ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
2517 	MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2518 
2519 	return 0;
2520 }
2521 
2522 static void
2523 mwl_ext_free(struct mbuf *m)
2524 {
2525 	struct mwl_softc *sc = m->m_ext.ext_arg1;
2526 
2527 	/* XXX bounds check data */
2528 	mwl_putrxdma(sc, m->m_ext.ext_buf);
2529 	/*
2530 	 * If we were previously blocked by a lack of rx dma buffers
2531 	 * check if we now have enough to restart rx interrupt handling.
2532 	 */
2533 	if (sc->sc_rxblocked && sc->sc_nrxfree > mwl_rxdmalow) {
2534 		sc->sc_rxblocked = 0;
2535 		mwl_hal_intrset(sc->sc_mh, sc->sc_imask);
2536 	}
2537 }
2538 
2539 struct mwl_frame_bar {
2540 	u_int8_t	i_fc[2];
2541 	u_int8_t	i_dur[2];
2542 	u_int8_t	i_ra[IEEE80211_ADDR_LEN];
2543 	u_int8_t	i_ta[IEEE80211_ADDR_LEN];
2544 	/* ctl, seq, FCS */
2545 } __packed;
2546 
2547 /*
2548  * Like ieee80211_anyhdrsize, but handles BAR frames
2549  * specially so the logic below to piece the 802.11
2550  * header together works.
2551  */
2552 static __inline int
2553 mwl_anyhdrsize(const void *data)
2554 {
2555 	const struct ieee80211_frame *wh = data;
2556 
2557 	if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2558 		switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) {
2559 		case IEEE80211_FC0_SUBTYPE_CTS:
2560 		case IEEE80211_FC0_SUBTYPE_ACK:
2561 			return sizeof(struct ieee80211_frame_ack);
2562 		case IEEE80211_FC0_SUBTYPE_BAR:
2563 			return sizeof(struct mwl_frame_bar);
2564 		}
2565 		return sizeof(struct ieee80211_frame_min);
2566 	} else
2567 		return ieee80211_hdrsize(data);
2568 }
2569 
2570 static void
2571 mwl_handlemicerror(struct ieee80211com *ic, const uint8_t *data)
2572 {
2573 	const struct ieee80211_frame *wh;
2574 	struct ieee80211_node *ni;
2575 
2576 	wh = (const struct ieee80211_frame *)(data + sizeof(uint16_t));
2577 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
2578 	if (ni != NULL) {
2579 		ieee80211_notify_michael_failure(ni->ni_vap, wh, 0);
2580 		ieee80211_free_node(ni);
2581 	}
2582 }
2583 
2584 /*
2585  * Convert hardware signal strength to rssi.  The value
2586  * provided by the device has the noise floor added in;
2587  * we need to compensate for this but we don't have that
2588  * so we use a fixed value.
2589  *
2590  * The offset of 8 is good for both 2.4 and 5GHz.  The LNA
2591  * offset is already set as part of the initial gain.  This
2592  * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz.
2593  */
2594 static __inline int
2595 cvtrssi(uint8_t ssi)
2596 {
2597 	int rssi = (int) ssi + 8;
2598 	/* XXX hack guess until we have a real noise floor */
2599 	rssi = 2*(87 - rssi);	/* NB: .5 dBm units */
2600 	return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi);
2601 }
2602 
2603 static void
2604 mwl_rx_proc(void *arg, int npending)
2605 {
2606 	struct mwl_softc *sc = arg;
2607 	struct ieee80211com *ic = &sc->sc_ic;
2608 	struct mwl_rxbuf *bf;
2609 	struct mwl_rxdesc *ds;
2610 	struct mbuf *m;
2611 	struct ieee80211_qosframe *wh;
2612 	struct ieee80211_node *ni;
2613 	struct mwl_node *mn;
2614 	int off, len, hdrlen, pktlen, rssi, ntodo;
2615 	uint8_t *data, status;
2616 	void *newdata;
2617 	int16_t nf;
2618 
2619 	DPRINTF(sc, MWL_DEBUG_RX_PROC, "%s: pending %u rdptr 0x%x wrptr 0x%x\n",
2620 	    __func__, npending, RD4(sc, sc->sc_hwspecs.rxDescRead),
2621 	    RD4(sc, sc->sc_hwspecs.rxDescWrite));
2622 	nf = -96;			/* XXX */
2623 	bf = sc->sc_rxnext;
2624 	for (ntodo = mwl_rxquota; ntodo > 0; ntodo--) {
2625 		if (bf == NULL)
2626 			bf = STAILQ_FIRST(&sc->sc_rxbuf);
2627 		ds = bf->bf_desc;
2628 		data = bf->bf_data;
2629 		if (data == NULL) {
2630 			/*
2631 			 * If data allocation failed previously there
2632 			 * will be no buffer; try again to re-populate it.
2633 			 * Note the firmware will not advance to the next
2634 			 * descriptor with a dma buffer so we must mimic
2635 			 * this or we'll get out of sync.
2636 			 */
2637 			DPRINTF(sc, MWL_DEBUG_ANY,
2638 			    "%s: rx buf w/o dma memory\n", __func__);
2639 			(void) mwl_rxbuf_init(sc, bf);
2640 			sc->sc_stats.mst_rx_dmabufmissing++;
2641 			break;
2642 		}
2643 		MWL_RXDESC_SYNC(sc, ds,
2644 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2645 		if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN)
2646 			break;
2647 #ifdef MWL_DEBUG
2648 		if (sc->sc_debug & MWL_DEBUG_RECV_DESC)
2649 			mwl_printrxbuf(bf, 0);
2650 #endif
2651 		status = ds->Status;
2652 		if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) {
2653 			counter_u64_add(ic->ic_ierrors, 1);
2654 			sc->sc_stats.mst_rx_crypto++;
2655 			/*
2656 			 * NB: Check EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR
2657 			 *     for backwards compatibility.
2658 			 */
2659 			if (status != EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR &&
2660 			    (status & EAGLE_RXD_STATUS_TKIP_MIC_DECRYPT_ERR)) {
2661 				/*
2662 				 * MIC error, notify upper layers.
2663 				 */
2664 				bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap,
2665 				    BUS_DMASYNC_POSTREAD);
2666 				mwl_handlemicerror(ic, data);
2667 				sc->sc_stats.mst_rx_tkipmic++;
2668 			}
2669 			/* XXX too painful to tap packets */
2670 			goto rx_next;
2671 		}
2672 		/*
2673 		 * Sync the data buffer.
2674 		 */
2675 		len = le16toh(ds->PktLen);
2676 		bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD);
2677 		/*
2678 		 * The 802.11 header is provided all or in part at the front;
2679 		 * use it to calculate the true size of the header that we'll
2680 		 * construct below.  We use this to figure out where to copy
2681 		 * payload prior to constructing the header.
2682 		 */
2683 		hdrlen = mwl_anyhdrsize(data + sizeof(uint16_t));
2684 		off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4);
2685 
2686 		/* calculate rssi early so we can re-use for each aggregate */
2687 		rssi = cvtrssi(ds->RSSI);
2688 
2689 		pktlen = hdrlen + (len - off);
2690 		/*
2691 		 * NB: we know our frame is at least as large as
2692 		 * IEEE80211_MIN_LEN because there is a 4-address
2693 		 * frame at the front.  Hence there's no need to
2694 		 * vet the packet length.  If the frame in fact
2695 		 * is too small it should be discarded at the
2696 		 * net80211 layer.
2697 		 */
2698 
2699 		/*
2700 		 * Attach dma buffer to an mbuf.  We tried
2701 		 * doing this based on the packet size (i.e.
2702 		 * copying small packets) but it turns out to
2703 		 * be a net loss.  The tradeoff might be system
2704 		 * dependent (cache architecture is important).
2705 		 */
2706 		MGETHDR(m, M_NOWAIT, MT_DATA);
2707 		if (m == NULL) {
2708 			DPRINTF(sc, MWL_DEBUG_ANY,
2709 			    "%s: no rx mbuf\n", __func__);
2710 			sc->sc_stats.mst_rx_nombuf++;
2711 			goto rx_next;
2712 		}
2713 		/*
2714 		 * Acquire the replacement dma buffer before
2715 		 * processing the frame.  If we're out of dma
2716 		 * buffers we disable rx interrupts and wait
2717 		 * for the free pool to reach mlw_rxdmalow buffers
2718 		 * before starting to do work again.  If the firmware
2719 		 * runs out of descriptors then it will toss frames
2720 		 * which is better than our doing it as that can
2721 		 * starve our processing.  It is also important that
2722 		 * we always process rx'd frames in case they are
2723 		 * A-MPDU as otherwise the host's view of the BA
2724 		 * window may get out of sync with the firmware.
2725 		 */
2726 		newdata = mwl_getrxdma(sc);
2727 		if (newdata == NULL) {
2728 			/* NB: stat+msg in mwl_getrxdma */
2729 			m_free(m);
2730 			/* disable RX interrupt and mark state */
2731 			mwl_hal_intrset(sc->sc_mh,
2732 			    sc->sc_imask &~ MACREG_A2HRIC_BIT_RX_RDY);
2733 			sc->sc_rxblocked = 1;
2734 			ieee80211_drain(ic);
2735 			/* XXX check rxblocked and immediately start again? */
2736 			goto rx_stop;
2737 		}
2738 		bf->bf_data = newdata;
2739 		/*
2740 		 * Attach the dma buffer to the mbuf;
2741 		 * mwl_rxbuf_init will re-setup the rx
2742 		 * descriptor using the replacement dma
2743 		 * buffer we just installed above.
2744 		 */
2745 		m_extadd(m, data, MWL_AGGR_SIZE, mwl_ext_free, sc, NULL, 0,
2746 		    EXT_NET_DRV);
2747 		m->m_data += off - hdrlen;
2748 		m->m_pkthdr.len = m->m_len = pktlen;
2749 		/* NB: dma buffer assumed read-only */
2750 
2751 		/*
2752 		 * Piece 802.11 header together.
2753 		 */
2754 		wh = mtod(m, struct ieee80211_qosframe *);
2755 		/* NB: don't need to do this sometimes but ... */
2756 		/* XXX special case so we can memcpy after m_devget? */
2757 		ovbcopy(data + sizeof(uint16_t), wh, hdrlen);
2758 		if (IEEE80211_QOS_HAS_SEQ(wh))
2759 			*(uint16_t *)ieee80211_getqos(wh) = ds->QosCtrl;
2760 		/*
2761 		 * The f/w strips WEP header but doesn't clear
2762 		 * the WEP bit; mark the packet with M_WEP so
2763 		 * net80211 will treat the data as decrypted.
2764 		 * While here also clear the PWR_MGT bit since
2765 		 * power save is handled by the firmware and
2766 		 * passing this up will potentially cause the
2767 		 * upper layer to put a station in power save
2768 		 * (except when configured with MWL_HOST_PS_SUPPORT).
2769 		 */
2770 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2771 			m->m_flags |= M_WEP;
2772 #ifdef MWL_HOST_PS_SUPPORT
2773 		wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
2774 #else
2775 		wh->i_fc[1] &= ~(IEEE80211_FC1_PROTECTED |
2776 		    IEEE80211_FC1_PWR_MGT);
2777 #endif
2778 
2779 		if (ieee80211_radiotap_active(ic)) {
2780 			struct mwl_rx_radiotap_header *tap = &sc->sc_rx_th;
2781 
2782 			tap->wr_flags = 0;
2783 			tap->wr_rate = ds->Rate;
2784 			tap->wr_antsignal = rssi + nf;
2785 			tap->wr_antnoise = nf;
2786 		}
2787 		if (IFF_DUMPPKTS_RECV(sc, wh)) {
2788 			ieee80211_dump_pkt(ic, mtod(m, caddr_t),
2789 			    len, ds->Rate, rssi);
2790 		}
2791 		/* dispatch */
2792 		ni = ieee80211_find_rxnode(ic,
2793 		    (const struct ieee80211_frame_min *) wh);
2794 		if (ni != NULL) {
2795 			mn = MWL_NODE(ni);
2796 #ifdef MWL_ANT_INFO_SUPPORT
2797 			mn->mn_ai.rssi_a = ds->ai.rssi_a;
2798 			mn->mn_ai.rssi_b = ds->ai.rssi_b;
2799 			mn->mn_ai.rssi_c = ds->ai.rssi_c;
2800 			mn->mn_ai.rsvd1 = rssi;
2801 #endif
2802 			/* tag AMPDU aggregates for reorder processing */
2803 			if (ni->ni_flags & IEEE80211_NODE_HT)
2804 				m->m_flags |= M_AMPDU;
2805 			(void) ieee80211_input(ni, m, rssi, nf);
2806 			ieee80211_free_node(ni);
2807 		} else
2808 			(void) ieee80211_input_all(ic, m, rssi, nf);
2809 rx_next:
2810 		/* NB: ignore ENOMEM so we process more descriptors */
2811 		(void) mwl_rxbuf_init(sc, bf);
2812 		bf = STAILQ_NEXT(bf, bf_list);
2813 	}
2814 rx_stop:
2815 	sc->sc_rxnext = bf;
2816 
2817 	if (mbufq_first(&sc->sc_snd) != NULL) {
2818 		/* NB: kick fw; the tx thread may have been preempted */
2819 		mwl_hal_txstart(sc->sc_mh, 0);
2820 		mwl_start(sc);
2821 	}
2822 }
2823 
2824 static void
2825 mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *txq, int qnum)
2826 {
2827 	struct mwl_txbuf *bf, *bn;
2828 	struct mwl_txdesc *ds;
2829 
2830 	MWL_TXQ_LOCK_INIT(sc, txq);
2831 	txq->qnum = qnum;
2832 	txq->txpri = 0;	/* XXX */
2833 #if 0
2834 	/* NB: q setup by mwl_txdma_setup XXX */
2835 	STAILQ_INIT(&txq->free);
2836 #endif
2837 	STAILQ_FOREACH(bf, &txq->free, bf_list) {
2838 		bf->bf_txq = txq;
2839 
2840 		ds = bf->bf_desc;
2841 		bn = STAILQ_NEXT(bf, bf_list);
2842 		if (bn == NULL)
2843 			bn = STAILQ_FIRST(&txq->free);
2844 		ds->pPhysNext = htole32(bn->bf_daddr);
2845 	}
2846 	STAILQ_INIT(&txq->active);
2847 }
2848 
2849 /*
2850  * Setup a hardware data transmit queue for the specified
2851  * access control.  We record the mapping from ac's
2852  * to h/w queues for use by mwl_tx_start.
2853  */
2854 static int
2855 mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype)
2856 {
2857 	struct mwl_txq *txq;
2858 
2859 	if (ac >= nitems(sc->sc_ac2q)) {
2860 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2861 			ac, nitems(sc->sc_ac2q));
2862 		return 0;
2863 	}
2864 	if (mvtype >= MWL_NUM_TX_QUEUES) {
2865 		device_printf(sc->sc_dev, "mvtype %u out of range, max %u!\n",
2866 			mvtype, MWL_NUM_TX_QUEUES);
2867 		return 0;
2868 	}
2869 	txq = &sc->sc_txq[mvtype];
2870 	mwl_txq_init(sc, txq, mvtype);
2871 	sc->sc_ac2q[ac] = txq;
2872 	return 1;
2873 }
2874 
2875 /*
2876  * Update WME parameters for a transmit queue.
2877  */
2878 static int
2879 mwl_txq_update(struct mwl_softc *sc, int ac)
2880 {
2881 #define	MWL_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2882 	struct ieee80211com *ic = &sc->sc_ic;
2883 	struct chanAccParams chp;
2884 	struct mwl_txq *txq = sc->sc_ac2q[ac];
2885 	struct wmeParams *wmep;
2886 	struct mwl_hal *mh = sc->sc_mh;
2887 	int aifs, cwmin, cwmax, txoplim;
2888 
2889 	ieee80211_wme_ic_getparams(ic, &chp);
2890 	wmep = &chp.cap_wmeParams[ac];
2891 
2892 	aifs = wmep->wmep_aifsn;
2893 	/* XXX in sta mode need to pass log values for cwmin/max */
2894 	cwmin = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2895 	cwmax = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2896 	txoplim = wmep->wmep_txopLimit;		/* NB: units of 32us */
2897 
2898 	if (mwl_hal_setedcaparams(mh, txq->qnum, cwmin, cwmax, aifs, txoplim)) {
2899 		device_printf(sc->sc_dev, "unable to update hardware queue "
2900 			"parameters for %s traffic!\n",
2901 			ieee80211_wme_acnames[ac]);
2902 		return 0;
2903 	}
2904 	return 1;
2905 #undef MWL_EXPONENT_TO_VALUE
2906 }
2907 
2908 /*
2909  * Callback from the 802.11 layer to update WME parameters.
2910  */
2911 static int
2912 mwl_wme_update(struct ieee80211com *ic)
2913 {
2914 	struct mwl_softc *sc = ic->ic_softc;
2915 
2916 	return !mwl_txq_update(sc, WME_AC_BE) ||
2917 	    !mwl_txq_update(sc, WME_AC_BK) ||
2918 	    !mwl_txq_update(sc, WME_AC_VI) ||
2919 	    !mwl_txq_update(sc, WME_AC_VO) ? EIO : 0;
2920 }
2921 
2922 /*
2923  * Reclaim resources for a setup queue.
2924  */
2925 static void
2926 mwl_tx_cleanupq(struct mwl_softc *sc, struct mwl_txq *txq)
2927 {
2928 	/* XXX hal work? */
2929 	MWL_TXQ_LOCK_DESTROY(txq);
2930 }
2931 
2932 /*
2933  * Reclaim all tx queue resources.
2934  */
2935 static void
2936 mwl_tx_cleanup(struct mwl_softc *sc)
2937 {
2938 	int i;
2939 
2940 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2941 		mwl_tx_cleanupq(sc, &sc->sc_txq[i]);
2942 }
2943 
2944 static int
2945 mwl_tx_dmasetup(struct mwl_softc *sc, struct mwl_txbuf *bf, struct mbuf *m0)
2946 {
2947 	struct mbuf *m;
2948 	int error;
2949 
2950 	/*
2951 	 * Load the DMA map so any coalescing is done.  This
2952 	 * also calculates the number of descriptors we need.
2953 	 */
2954 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2955 				     bf->bf_segs, &bf->bf_nseg,
2956 				     BUS_DMA_NOWAIT);
2957 	if (error == EFBIG) {
2958 		/* XXX packet requires too many descriptors */
2959 		bf->bf_nseg = MWL_TXDESC+1;
2960 	} else if (error != 0) {
2961 		sc->sc_stats.mst_tx_busdma++;
2962 		m_freem(m0);
2963 		return error;
2964 	}
2965 	/*
2966 	 * Discard null packets and check for packets that
2967 	 * require too many TX descriptors.  We try to convert
2968 	 * the latter to a cluster.
2969 	 */
2970 	if (error == EFBIG) {		/* too many desc's, linearize */
2971 		sc->sc_stats.mst_tx_linear++;
2972 #if MWL_TXDESC > 1
2973 		m = m_collapse(m0, M_NOWAIT, MWL_TXDESC);
2974 #else
2975 		m = m_defrag(m0, M_NOWAIT);
2976 #endif
2977 		if (m == NULL) {
2978 			m_freem(m0);
2979 			sc->sc_stats.mst_tx_nombuf++;
2980 			return ENOMEM;
2981 		}
2982 		m0 = m;
2983 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2984 					     bf->bf_segs, &bf->bf_nseg,
2985 					     BUS_DMA_NOWAIT);
2986 		if (error != 0) {
2987 			sc->sc_stats.mst_tx_busdma++;
2988 			m_freem(m0);
2989 			return error;
2990 		}
2991 		KASSERT(bf->bf_nseg <= MWL_TXDESC,
2992 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
2993 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
2994 		sc->sc_stats.mst_tx_nodata++;
2995 		m_freem(m0);
2996 		return EIO;
2997 	}
2998 	DPRINTF(sc, MWL_DEBUG_XMIT, "%s: m %p len %u\n",
2999 		__func__, m0, m0->m_pkthdr.len);
3000 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3001 	bf->bf_m = m0;
3002 
3003 	return 0;
3004 }
3005 
3006 static __inline int
3007 mwl_cvtlegacyrate(int rate)
3008 {
3009 	switch (rate) {
3010 	case 2:	 return 0;
3011 	case 4:	 return 1;
3012 	case 11: return 2;
3013 	case 22: return 3;
3014 	case 44: return 4;
3015 	case 12: return 5;
3016 	case 18: return 6;
3017 	case 24: return 7;
3018 	case 36: return 8;
3019 	case 48: return 9;
3020 	case 72: return 10;
3021 	case 96: return 11;
3022 	case 108:return 12;
3023 	}
3024 	return 0;
3025 }
3026 
3027 /*
3028  * Calculate fixed tx rate information per client state;
3029  * this value is suitable for writing to the Format field
3030  * of a tx descriptor.
3031  */
3032 static uint16_t
3033 mwl_calcformat(uint8_t rate, const struct ieee80211_node *ni)
3034 {
3035 	uint16_t fmt;
3036 
3037 	fmt = _IEEE80211_SHIFTMASK(3, EAGLE_TXD_ANTENNA)
3038 	    | (IEEE80211_IS_CHAN_HT40D(ni->ni_chan) ?
3039 		EAGLE_TXD_EXTCHAN_LO : EAGLE_TXD_EXTCHAN_HI);
3040 	if (rate & IEEE80211_RATE_MCS) {	/* HT MCS */
3041 		fmt |= EAGLE_TXD_FORMAT_HT
3042 		    /* NB: 0x80 implicitly stripped from ucastrate */
3043 		    | _IEEE80211_SHIFTMASK(rate, EAGLE_TXD_RATE);
3044 		/* XXX short/long GI may be wrong; re-check */
3045 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
3046 			fmt |= EAGLE_TXD_CHW_40
3047 			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 ?
3048 			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3049 		} else {
3050 			fmt |= EAGLE_TXD_CHW_20
3051 			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 ?
3052 			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3053 		}
3054 	} else {			/* legacy rate */
3055 		fmt |= EAGLE_TXD_FORMAT_LEGACY
3056 		    | _IEEE80211_SHIFTMASK(mwl_cvtlegacyrate(rate),
3057 			EAGLE_TXD_RATE)
3058 		    | EAGLE_TXD_CHW_20
3059 		    /* XXX iv_flags & IEEE80211_F_SHPREAMBLE? */
3060 		    | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE ?
3061 			EAGLE_TXD_PREAMBLE_SHORT : EAGLE_TXD_PREAMBLE_LONG);
3062 	}
3063 	return fmt;
3064 }
3065 
3066 static int
3067 mwl_tx_start(struct mwl_softc *sc, struct ieee80211_node *ni, struct mwl_txbuf *bf,
3068     struct mbuf *m0)
3069 {
3070 	struct ieee80211com *ic = &sc->sc_ic;
3071 	struct ieee80211vap *vap = ni->ni_vap;
3072 	int error, iswep, ismcast;
3073 	int hdrlen, pktlen;
3074 	struct mwl_txdesc *ds;
3075 	struct mwl_txq *txq;
3076 	struct ieee80211_frame *wh;
3077 	struct mwltxrec *tr;
3078 	struct mwl_node *mn;
3079 	uint16_t qos;
3080 #if MWL_TXDESC > 1
3081 	int i;
3082 #endif
3083 
3084 	wh = mtod(m0, struct ieee80211_frame *);
3085 	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
3086 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3087 	hdrlen = ieee80211_anyhdrsize(wh);
3088 	pktlen = m0->m_pkthdr.len;
3089 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3090 		qos = *(uint16_t *)ieee80211_getqos(wh);
3091 	} else
3092 		qos = 0;
3093 
3094 	if (iswep) {
3095 		const struct ieee80211_cipher *cip;
3096 		struct ieee80211_key *k;
3097 
3098 		/*
3099 		 * Construct the 802.11 header+trailer for an encrypted
3100 		 * frame. The only reason this can fail is because of an
3101 		 * unknown or unsupported cipher/key type.
3102 		 *
3103 		 * NB: we do this even though the firmware will ignore
3104 		 *     what we've done for WEP and TKIP as we need the
3105 		 *     ExtIV filled in for CCMP and this also adjusts
3106 		 *     the headers which simplifies our work below.
3107 		 */
3108 		k = ieee80211_crypto_encap(ni, m0);
3109 		if (k == NULL) {
3110 			/*
3111 			 * This can happen when the key is yanked after the
3112 			 * frame was queued.  Just discard the frame; the
3113 			 * 802.11 layer counts failures and provides
3114 			 * debugging/diagnostics.
3115 			 */
3116 			m_freem(m0);
3117 			return EIO;
3118 		}
3119 		/*
3120 		 * Adjust the packet length for the crypto additions
3121 		 * done during encap and any other bits that the f/w
3122 		 * will add later on.
3123 		 */
3124 		cip = k->wk_cipher;
3125 		pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer;
3126 
3127 		/* packet header may have moved, reset our local pointer */
3128 		wh = mtod(m0, struct ieee80211_frame *);
3129 	}
3130 
3131 	if (ieee80211_radiotap_active_vap(vap)) {
3132 		sc->sc_tx_th.wt_flags = 0;	/* XXX */
3133 		if (iswep)
3134 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3135 #if 0
3136 		sc->sc_tx_th.wt_rate = ds->DataRate;
3137 #endif
3138 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3139 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3140 
3141 		ieee80211_radiotap_tx(vap, m0);
3142 	}
3143 	/*
3144 	 * Copy up/down the 802.11 header; the firmware requires
3145 	 * we present a 2-byte payload length followed by a
3146 	 * 4-address header (w/o QoS), followed (optionally) by
3147 	 * any WEP/ExtIV header (but only filled in for CCMP).
3148 	 * We are assured the mbuf has sufficient headroom to
3149 	 * prepend in-place by the setup of ic_headroom in
3150 	 * mwl_attach.
3151 	 */
3152 	if (hdrlen < sizeof(struct mwltxrec)) {
3153 		const int space = sizeof(struct mwltxrec) - hdrlen;
3154 		if (M_LEADINGSPACE(m0) < space) {
3155 			/* NB: should never happen */
3156 			device_printf(sc->sc_dev,
3157 			    "not enough headroom, need %d found %zd, "
3158 			    "m_flags 0x%x m_len %d\n",
3159 			    space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len);
3160 			ieee80211_dump_pkt(ic,
3161 			    mtod(m0, const uint8_t *), m0->m_len, 0, -1);
3162 			m_freem(m0);
3163 			sc->sc_stats.mst_tx_noheadroom++;
3164 			return EIO;
3165 		}
3166 		M_PREPEND(m0, space, M_NOWAIT);
3167 	}
3168 	tr = mtod(m0, struct mwltxrec *);
3169 	if (wh != (struct ieee80211_frame *) &tr->wh)
3170 		ovbcopy(wh, &tr->wh, hdrlen);
3171 	/*
3172 	 * Note: the "firmware length" is actually the length
3173 	 * of the fully formed "802.11 payload".  That is, it's
3174 	 * everything except for the 802.11 header.  In particular
3175 	 * this includes all crypto material including the MIC!
3176 	 */
3177 	tr->fwlen = htole16(pktlen - hdrlen);
3178 
3179 	/*
3180 	 * Load the DMA map so any coalescing is done.  This
3181 	 * also calculates the number of descriptors we need.
3182 	 */
3183 	error = mwl_tx_dmasetup(sc, bf, m0);
3184 	if (error != 0) {
3185 		/* NB: stat collected in mwl_tx_dmasetup */
3186 		DPRINTF(sc, MWL_DEBUG_XMIT,
3187 		    "%s: unable to setup dma\n", __func__);
3188 		return error;
3189 	}
3190 	bf->bf_node = ni;			/* NB: held reference */
3191 	m0 = bf->bf_m;				/* NB: may have changed */
3192 	tr = mtod(m0, struct mwltxrec *);
3193 	wh = (struct ieee80211_frame *)&tr->wh;
3194 
3195 	/*
3196 	 * Formulate tx descriptor.
3197 	 */
3198 	ds = bf->bf_desc;
3199 	txq = bf->bf_txq;
3200 
3201 	ds->QosCtrl = qos;			/* NB: already little-endian */
3202 #if MWL_TXDESC == 1
3203 	/*
3204 	 * NB: multiframes should be zero because the descriptors
3205 	 *     are initialized to zero.  This should handle the case
3206 	 *     where the driver is built with MWL_TXDESC=1 but we are
3207 	 *     using firmware with multi-segment support.
3208 	 */
3209 	ds->PktPtr = htole32(bf->bf_segs[0].ds_addr);
3210 	ds->PktLen = htole16(bf->bf_segs[0].ds_len);
3211 #else
3212 	ds->multiframes = htole32(bf->bf_nseg);
3213 	ds->PktLen = htole16(m0->m_pkthdr.len);
3214 	for (i = 0; i < bf->bf_nseg; i++) {
3215 		ds->PktPtrArray[i] = htole32(bf->bf_segs[i].ds_addr);
3216 		ds->PktLenArray[i] = htole16(bf->bf_segs[i].ds_len);
3217 	}
3218 #endif
3219 	/* NB: pPhysNext, DataRate, and SapPktInfo setup once, don't touch */
3220 	ds->Format = 0;
3221 	ds->pad = 0;
3222 	ds->ack_wcb_addr = 0;
3223 
3224 	mn = MWL_NODE(ni);
3225 	/*
3226 	 * Select transmit rate.
3227 	 */
3228 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3229 	case IEEE80211_FC0_TYPE_MGT:
3230 		sc->sc_stats.mst_tx_mgmt++;
3231 		/* fall thru... */
3232 	case IEEE80211_FC0_TYPE_CTL:
3233 		/* NB: assign to BE q to avoid bursting */
3234 		ds->TxPriority = MWL_WME_AC_BE;
3235 		break;
3236 	case IEEE80211_FC0_TYPE_DATA:
3237 		if (!ismcast) {
3238 			const struct ieee80211_txparam *tp = ni->ni_txparms;
3239 			/*
3240 			 * EAPOL frames get forced to a fixed rate and w/o
3241 			 * aggregation; otherwise check for any fixed rate
3242 			 * for the client (may depend on association state).
3243 			 */
3244 			if (m0->m_flags & M_EAPOL) {
3245 				const struct mwl_vap *mvp = MWL_VAP_CONST(vap);
3246 				ds->Format = mvp->mv_eapolformat;
3247 				ds->pad = htole16(
3248 				    EAGLE_TXD_FIXED_RATE | EAGLE_TXD_DONT_AGGR);
3249 			} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3250 				/* XXX pre-calculate per node */
3251 				ds->Format = htole16(
3252 				    mwl_calcformat(tp->ucastrate, ni));
3253 				ds->pad = htole16(EAGLE_TXD_FIXED_RATE);
3254 			}
3255 			/* NB: EAPOL frames will never have qos set */
3256 			if (qos == 0)
3257 				ds->TxPriority = txq->qnum;
3258 #if MWL_MAXBA > 3
3259 			else if (mwl_bastream_match(&mn->mn_ba[3], qos))
3260 				ds->TxPriority = mn->mn_ba[3].txq;
3261 #endif
3262 #if MWL_MAXBA > 2
3263 			else if (mwl_bastream_match(&mn->mn_ba[2], qos))
3264 				ds->TxPriority = mn->mn_ba[2].txq;
3265 #endif
3266 #if MWL_MAXBA > 1
3267 			else if (mwl_bastream_match(&mn->mn_ba[1], qos))
3268 				ds->TxPriority = mn->mn_ba[1].txq;
3269 #endif
3270 #if MWL_MAXBA > 0
3271 			else if (mwl_bastream_match(&mn->mn_ba[0], qos))
3272 				ds->TxPriority = mn->mn_ba[0].txq;
3273 #endif
3274 			else
3275 				ds->TxPriority = txq->qnum;
3276 		} else
3277 			ds->TxPriority = txq->qnum;
3278 		break;
3279 	default:
3280 		device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
3281 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3282 		sc->sc_stats.mst_tx_badframetype++;
3283 		m_freem(m0);
3284 		return EIO;
3285 	}
3286 
3287 	if (IFF_DUMPPKTS_XMIT(sc))
3288 		ieee80211_dump_pkt(ic,
3289 		    mtod(m0, const uint8_t *)+sizeof(uint16_t),
3290 		    m0->m_len - sizeof(uint16_t), ds->DataRate, -1);
3291 
3292 	MWL_TXQ_LOCK(txq);
3293 	ds->Status = htole32(EAGLE_TXD_STATUS_FW_OWNED);
3294 	STAILQ_INSERT_TAIL(&txq->active, bf, bf_list);
3295 	MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3296 
3297 	sc->sc_tx_timer = 5;
3298 	MWL_TXQ_UNLOCK(txq);
3299 
3300 	return 0;
3301 }
3302 
3303 static __inline int
3304 mwl_cvtlegacyrix(int rix)
3305 {
3306 	static const int ieeerates[] =
3307 	    { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 };
3308 	return (rix < nitems(ieeerates) ? ieeerates[rix] : 0);
3309 }
3310 
3311 /*
3312  * Process completed xmit descriptors from the specified queue.
3313  */
3314 static int
3315 mwl_tx_processq(struct mwl_softc *sc, struct mwl_txq *txq)
3316 {
3317 #define	EAGLE_TXD_STATUS_MCAST \
3318 	(EAGLE_TXD_STATUS_MULTICAST_TX | EAGLE_TXD_STATUS_BROADCAST_TX)
3319 	struct ieee80211com *ic = &sc->sc_ic;
3320 	struct mwl_txbuf *bf;
3321 	struct mwl_txdesc *ds;
3322 	struct ieee80211_node *ni;
3323 	int nreaped;
3324 	uint32_t status;
3325 
3326 	DPRINTF(sc, MWL_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum);
3327 	for (nreaped = 0;; nreaped++) {
3328 		MWL_TXQ_LOCK(txq);
3329 		bf = STAILQ_FIRST(&txq->active);
3330 		if (bf == NULL) {
3331 			MWL_TXQ_UNLOCK(txq);
3332 			break;
3333 		}
3334 		ds = bf->bf_desc;
3335 		MWL_TXDESC_SYNC(txq, ds,
3336 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3337 		if (ds->Status & htole32(EAGLE_TXD_STATUS_FW_OWNED)) {
3338 			MWL_TXQ_UNLOCK(txq);
3339 			break;
3340 		}
3341 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3342 		MWL_TXQ_UNLOCK(txq);
3343 
3344 #ifdef MWL_DEBUG
3345 		if (sc->sc_debug & MWL_DEBUG_XMIT_DESC)
3346 			mwl_printtxbuf(bf, txq->qnum, nreaped);
3347 #endif
3348 		ni = bf->bf_node;
3349 		if (ni != NULL) {
3350 			status = le32toh(ds->Status);
3351 			if (status & EAGLE_TXD_STATUS_OK) {
3352 				uint16_t Format = le16toh(ds->Format);
3353 				uint8_t txant = _IEEE80211_MASKSHIFT(Format,
3354 				    EAGLE_TXD_ANTENNA);
3355 
3356 				sc->sc_stats.mst_ant_tx[txant]++;
3357 				if (status & EAGLE_TXD_STATUS_OK_RETRY)
3358 					sc->sc_stats.mst_tx_retries++;
3359 				if (status & EAGLE_TXD_STATUS_OK_MORE_RETRY)
3360 					sc->sc_stats.mst_tx_mretries++;
3361 				if (txq->qnum >= MWL_WME_AC_VO)
3362 					ic->ic_wme.wme_hipri_traffic++;
3363 				ni->ni_txrate = _IEEE80211_MASKSHIFT(Format,
3364 				    EAGLE_TXD_RATE);
3365 				if ((Format & EAGLE_TXD_FORMAT_HT) == 0) {
3366 					ni->ni_txrate = mwl_cvtlegacyrix(
3367 					    ni->ni_txrate);
3368 				} else
3369 					ni->ni_txrate |= IEEE80211_RATE_MCS;
3370 				sc->sc_stats.mst_tx_rate = ni->ni_txrate;
3371 			} else {
3372 				if (status & EAGLE_TXD_STATUS_FAILED_LINK_ERROR)
3373 					sc->sc_stats.mst_tx_linkerror++;
3374 				if (status & EAGLE_TXD_STATUS_FAILED_XRETRY)
3375 					sc->sc_stats.mst_tx_xretries++;
3376 				if (status & EAGLE_TXD_STATUS_FAILED_AGING)
3377 					sc->sc_stats.mst_tx_aging++;
3378 				if (bf->bf_m->m_flags & M_FF)
3379 					sc->sc_stats.mst_ff_txerr++;
3380 			}
3381 			if (bf->bf_m->m_flags & M_TXCB)
3382 				/* XXX strip fw len in case header inspected */
3383 				m_adj(bf->bf_m, sizeof(uint16_t));
3384 			ieee80211_tx_complete(ni, bf->bf_m,
3385 			    (status & EAGLE_TXD_STATUS_OK) == 0);
3386 		} else
3387 			m_freem(bf->bf_m);
3388 		ds->Status = htole32(EAGLE_TXD_STATUS_IDLE);
3389 
3390 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3391 		    BUS_DMASYNC_POSTWRITE);
3392 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3393 
3394 		mwl_puttxbuf_tail(txq, bf);
3395 	}
3396 	return nreaped;
3397 #undef EAGLE_TXD_STATUS_MCAST
3398 }
3399 
3400 /*
3401  * Deferred processing of transmit interrupt; special-cased
3402  * for four hardware queues, 0-3.
3403  */
3404 static void
3405 mwl_tx_proc(void *arg, int npending)
3406 {
3407 	struct mwl_softc *sc = arg;
3408 	int nreaped;
3409 
3410 	/*
3411 	 * Process each active queue.
3412 	 */
3413 	nreaped = 0;
3414 	if (!STAILQ_EMPTY(&sc->sc_txq[0].active))
3415 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[0]);
3416 	if (!STAILQ_EMPTY(&sc->sc_txq[1].active))
3417 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[1]);
3418 	if (!STAILQ_EMPTY(&sc->sc_txq[2].active))
3419 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[2]);
3420 	if (!STAILQ_EMPTY(&sc->sc_txq[3].active))
3421 		nreaped += mwl_tx_processq(sc, &sc->sc_txq[3]);
3422 
3423 	if (nreaped != 0) {
3424 		sc->sc_tx_timer = 0;
3425 		if (mbufq_first(&sc->sc_snd) != NULL) {
3426 			/* NB: kick fw; the tx thread may have been preempted */
3427 			mwl_hal_txstart(sc->sc_mh, 0);
3428 			mwl_start(sc);
3429 		}
3430 	}
3431 }
3432 
3433 static void
3434 mwl_tx_draintxq(struct mwl_softc *sc, struct mwl_txq *txq)
3435 {
3436 	struct ieee80211_node *ni;
3437 	struct mwl_txbuf *bf;
3438 	u_int ix __unused;
3439 
3440 	/*
3441 	 * NB: this assumes output has been stopped and
3442 	 *     we do not need to block mwl_tx_tasklet
3443 	 */
3444 	for (ix = 0;; ix++) {
3445 		MWL_TXQ_LOCK(txq);
3446 		bf = STAILQ_FIRST(&txq->active);
3447 		if (bf == NULL) {
3448 			MWL_TXQ_UNLOCK(txq);
3449 			break;
3450 		}
3451 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3452 		MWL_TXQ_UNLOCK(txq);
3453 #ifdef MWL_DEBUG
3454 		if (sc->sc_debug & MWL_DEBUG_RESET) {
3455 			struct ieee80211com *ic = &sc->sc_ic;
3456 			const struct mwltxrec *tr =
3457 			    mtod(bf->bf_m, const struct mwltxrec *);
3458 			mwl_printtxbuf(bf, txq->qnum, ix);
3459 			ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh,
3460 				bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1);
3461 		}
3462 #endif /* MWL_DEBUG */
3463 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3464 		ni = bf->bf_node;
3465 		if (ni != NULL) {
3466 			/*
3467 			 * Reclaim node reference.
3468 			 */
3469 			ieee80211_free_node(ni);
3470 		}
3471 		m_freem(bf->bf_m);
3472 
3473 		mwl_puttxbuf_tail(txq, bf);
3474 	}
3475 }
3476 
3477 /*
3478  * Drain the transmit queues and reclaim resources.
3479  */
3480 static void
3481 mwl_draintxq(struct mwl_softc *sc)
3482 {
3483 	int i;
3484 
3485 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3486 		mwl_tx_draintxq(sc, &sc->sc_txq[i]);
3487 	sc->sc_tx_timer = 0;
3488 }
3489 
3490 #ifdef MWL_DIAGAPI
3491 /*
3492  * Reset the transmit queues to a pristine state after a fw download.
3493  */
3494 static void
3495 mwl_resettxq(struct mwl_softc *sc)
3496 {
3497 	int i;
3498 
3499 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3500 		mwl_txq_reset(sc, &sc->sc_txq[i]);
3501 }
3502 #endif /* MWL_DIAGAPI */
3503 
3504 /*
3505  * Clear the transmit queues of any frames submitted for the
3506  * specified vap.  This is done when the vap is deleted so we
3507  * don't potentially reference the vap after it is gone.
3508  * Note we cannot remove the frames; we only reclaim the node
3509  * reference.
3510  */
3511 static void
3512 mwl_cleartxq(struct mwl_softc *sc, struct ieee80211vap *vap)
3513 {
3514 	struct mwl_txq *txq;
3515 	struct mwl_txbuf *bf;
3516 	int i;
3517 
3518 	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
3519 		txq = &sc->sc_txq[i];
3520 		MWL_TXQ_LOCK(txq);
3521 		STAILQ_FOREACH(bf, &txq->active, bf_list) {
3522 			struct ieee80211_node *ni = bf->bf_node;
3523 			if (ni != NULL && ni->ni_vap == vap) {
3524 				bf->bf_node = NULL;
3525 				ieee80211_free_node(ni);
3526 			}
3527 		}
3528 		MWL_TXQ_UNLOCK(txq);
3529 	}
3530 }
3531 
3532 static int
3533 mwl_recv_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
3534 	const uint8_t *frm, const uint8_t *efrm)
3535 {
3536 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3537 	const struct ieee80211_action *ia;
3538 
3539 	ia = (const struct ieee80211_action *) frm;
3540 	if (ia->ia_category == IEEE80211_ACTION_CAT_HT &&
3541 	    ia->ia_action == IEEE80211_ACTION_HT_MIMOPWRSAVE) {
3542 		const struct ieee80211_action_ht_mimopowersave *mps =
3543 		    (const struct ieee80211_action_ht_mimopowersave *) ia;
3544 
3545 		mwl_hal_setmimops(sc->sc_mh, ni->ni_macaddr,
3546 		    mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA,
3547 		    _IEEE80211_MASKSHIFT(mps->am_control,
3548 			IEEE80211_A_HT_MIMOPWRSAVE_MODE));
3549 		return 0;
3550 	} else
3551 		return sc->sc_recv_action(ni, wh, frm, efrm);
3552 }
3553 
3554 static int
3555 mwl_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3556 	int dialogtoken, int baparamset, int batimeout)
3557 {
3558 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3559 	struct ieee80211vap *vap = ni->ni_vap;
3560 	struct mwl_node *mn = MWL_NODE(ni);
3561 	struct mwl_bastate *bas;
3562 
3563 	bas = tap->txa_private;
3564 	if (bas == NULL) {
3565 		const MWL_HAL_BASTREAM *sp;
3566 		/*
3567 		 * Check for a free BA stream slot.
3568 		 */
3569 #if MWL_MAXBA > 3
3570 		if (mn->mn_ba[3].bastream == NULL)
3571 			bas = &mn->mn_ba[3];
3572 		else
3573 #endif
3574 #if MWL_MAXBA > 2
3575 		if (mn->mn_ba[2].bastream == NULL)
3576 			bas = &mn->mn_ba[2];
3577 		else
3578 #endif
3579 #if MWL_MAXBA > 1
3580 		if (mn->mn_ba[1].bastream == NULL)
3581 			bas = &mn->mn_ba[1];
3582 		else
3583 #endif
3584 #if MWL_MAXBA > 0
3585 		if (mn->mn_ba[0].bastream == NULL)
3586 			bas = &mn->mn_ba[0];
3587 		else
3588 #endif
3589 		{
3590 			/* sta already has max BA streams */
3591 			/* XXX assign BA stream to highest priority tid */
3592 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3593 			    "%s: already has max bastreams\n", __func__);
3594 			sc->sc_stats.mst_ampdu_reject++;
3595 			return 0;
3596 		}
3597 		/* NB: no held reference to ni */
3598 		sp = mwl_hal_bastream_alloc(MWL_VAP(vap)->mv_hvap,
3599 		    (baparamset & IEEE80211_BAPS_POLICY_IMMEDIATE) != 0,
3600 		    ni->ni_macaddr, tap->txa_tid, ni->ni_htparam,
3601 		    ni, tap);
3602 		if (sp == NULL) {
3603 			/*
3604 			 * No available stream, return 0 so no
3605 			 * a-mpdu aggregation will be done.
3606 			 */
3607 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3608 			    "%s: no bastream available\n", __func__);
3609 			sc->sc_stats.mst_ampdu_nostream++;
3610 			return 0;
3611 		}
3612 		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: alloc bastream %p\n",
3613 		    __func__, sp);
3614 		/* NB: qos is left zero so we won't match in mwl_tx_start */
3615 		bas->bastream = sp;
3616 		tap->txa_private = bas;
3617 	}
3618 	/* fetch current seq# from the firmware; if available */
3619 	if (mwl_hal_bastream_get_seqno(sc->sc_mh, bas->bastream,
3620 	    vap->iv_opmode == IEEE80211_M_STA ? vap->iv_myaddr : ni->ni_macaddr,
3621 	    &tap->txa_start) != 0)
3622 		tap->txa_start = 0;
3623 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout);
3624 }
3625 
3626 static int
3627 mwl_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3628 	int code, int baparamset, int batimeout)
3629 {
3630 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3631 	struct mwl_bastate *bas;
3632 
3633 	bas = tap->txa_private;
3634 	if (bas == NULL) {
3635 		/* XXX should not happen */
3636 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3637 		    "%s: no BA stream allocated, TID %d\n",
3638 		    __func__, tap->txa_tid);
3639 		sc->sc_stats.mst_addba_nostream++;
3640 		return 0;
3641 	}
3642 	if (code == IEEE80211_STATUS_SUCCESS) {
3643 		struct ieee80211vap *vap = ni->ni_vap;
3644 		int bufsiz, error;
3645 
3646 		/*
3647 		 * Tell the firmware to setup the BA stream;
3648 		 * we know resources are available because we
3649 		 * pre-allocated one before forming the request.
3650 		 */
3651 		bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
3652 		if (bufsiz == 0)
3653 			bufsiz = IEEE80211_AGGR_BAWMAX;
3654 		error = mwl_hal_bastream_create(MWL_VAP(vap)->mv_hvap,
3655 		    bas->bastream, bufsiz, bufsiz, tap->txa_start);
3656 		if (error != 0) {
3657 			/*
3658 			 * Setup failed, return immediately so no a-mpdu
3659 			 * aggregation will be done.
3660 			 */
3661 			mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3662 			mwl_bastream_free(bas);
3663 			tap->txa_private = NULL;
3664 
3665 			DPRINTF(sc, MWL_DEBUG_AMPDU,
3666 			    "%s: create failed, error %d, bufsiz %d TID %d "
3667 			    "htparam 0x%x\n", __func__, error, bufsiz,
3668 			    tap->txa_tid, ni->ni_htparam);
3669 			sc->sc_stats.mst_bacreate_failed++;
3670 			return 0;
3671 		}
3672 		/* NB: cache txq to avoid ptr indirect */
3673 		mwl_bastream_setup(bas, tap->txa_tid, bas->bastream->txq);
3674 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3675 		    "%s: bastream %p assigned to txq %d TID %d bufsiz %d "
3676 		    "htparam 0x%x\n", __func__, bas->bastream,
3677 		    bas->txq, tap->txa_tid, bufsiz, ni->ni_htparam);
3678 	} else {
3679 		/*
3680 		 * Other side NAK'd us; return the resources.
3681 		 */
3682 		DPRINTF(sc, MWL_DEBUG_AMPDU,
3683 		    "%s: request failed with code %d, destroy bastream %p\n",
3684 		    __func__, code, bas->bastream);
3685 		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3686 		mwl_bastream_free(bas);
3687 		tap->txa_private = NULL;
3688 	}
3689 	/* NB: firmware sends BAR so we don't need to */
3690 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
3691 }
3692 
3693 static void
3694 mwl_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3695 {
3696 	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3697 	struct mwl_bastate *bas;
3698 
3699 	bas = tap->txa_private;
3700 	if (bas != NULL) {
3701 		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: destroy bastream %p\n",
3702 		    __func__, bas->bastream);
3703 		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3704 		mwl_bastream_free(bas);
3705 		tap->txa_private = NULL;
3706 	}
3707 	sc->sc_addba_stop(ni, tap);
3708 }
3709 
3710 /*
3711  * Setup the rx data structures.  This should only be
3712  * done once or we may get out of sync with the firmware.
3713  */
3714 static int
3715 mwl_startrecv(struct mwl_softc *sc)
3716 {
3717 	if (!sc->sc_recvsetup) {
3718 		struct mwl_rxbuf *bf, *prev;
3719 		struct mwl_rxdesc *ds;
3720 
3721 		prev = NULL;
3722 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3723 			int error = mwl_rxbuf_init(sc, bf);
3724 			if (error != 0) {
3725 				DPRINTF(sc, MWL_DEBUG_RECV,
3726 					"%s: mwl_rxbuf_init failed %d\n",
3727 					__func__, error);
3728 				return error;
3729 			}
3730 			if (prev != NULL) {
3731 				ds = prev->bf_desc;
3732 				ds->pPhysNext = htole32(bf->bf_daddr);
3733 			}
3734 			prev = bf;
3735 		}
3736 		if (prev != NULL) {
3737 			ds = prev->bf_desc;
3738 			ds->pPhysNext =
3739 			    htole32(STAILQ_FIRST(&sc->sc_rxbuf)->bf_daddr);
3740 		}
3741 		sc->sc_recvsetup = 1;
3742 	}
3743 	mwl_mode_init(sc);		/* set filters, etc. */
3744 	return 0;
3745 }
3746 
3747 static MWL_HAL_APMODE
3748 mwl_getapmode(const struct ieee80211vap *vap, struct ieee80211_channel *chan)
3749 {
3750 	MWL_HAL_APMODE mode;
3751 
3752 	if (IEEE80211_IS_CHAN_HT(chan)) {
3753 		if (vap->iv_flags_ht & IEEE80211_FHT_PUREN)
3754 			mode = AP_MODE_N_ONLY;
3755 		else if (IEEE80211_IS_CHAN_5GHZ(chan))
3756 			mode = AP_MODE_AandN;
3757 		else if (vap->iv_flags & IEEE80211_F_PUREG)
3758 			mode = AP_MODE_GandN;
3759 		else
3760 			mode = AP_MODE_BandGandN;
3761 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3762 		if (vap->iv_flags & IEEE80211_F_PUREG)
3763 			mode = AP_MODE_G_ONLY;
3764 		else
3765 			mode = AP_MODE_MIXED;
3766 	} else if (IEEE80211_IS_CHAN_B(chan))
3767 		mode = AP_MODE_B_ONLY;
3768 	else if (IEEE80211_IS_CHAN_A(chan))
3769 		mode = AP_MODE_A_ONLY;
3770 	else
3771 		mode = AP_MODE_MIXED;		/* XXX should not happen? */
3772 	return mode;
3773 }
3774 
3775 static int
3776 mwl_setapmode(struct ieee80211vap *vap, struct ieee80211_channel *chan)
3777 {
3778 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
3779 	return mwl_hal_setapmode(hvap, mwl_getapmode(vap, chan));
3780 }
3781 
3782 /*
3783  * Set/change channels.
3784  */
3785 static int
3786 mwl_chan_set(struct mwl_softc *sc, struct ieee80211_channel *chan)
3787 {
3788 	struct mwl_hal *mh = sc->sc_mh;
3789 	struct ieee80211com *ic = &sc->sc_ic;
3790 	MWL_HAL_CHANNEL hchan;
3791 	int maxtxpow;
3792 
3793 	DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n",
3794 	    __func__, chan->ic_freq, chan->ic_flags);
3795 
3796 	/*
3797 	 * Convert to a HAL channel description with
3798 	 * the flags constrained to reflect the current
3799 	 * operating mode.
3800 	 */
3801 	mwl_mapchan(&hchan, chan);
3802 	mwl_hal_intrset(mh, 0);		/* disable interrupts */
3803 #if 0
3804 	mwl_draintxq(sc);		/* clear pending tx frames */
3805 #endif
3806 	mwl_hal_setchannel(mh, &hchan);
3807 	/*
3808 	 * Tx power is cap'd by the regulatory setting and
3809 	 * possibly a user-set limit.  We pass the min of
3810 	 * these to the hal to apply them to the cal data
3811 	 * for this channel.
3812 	 * XXX min bound?
3813 	 */
3814 	maxtxpow = 2*chan->ic_maxregpower;
3815 	if (maxtxpow > ic->ic_txpowlimit)
3816 		maxtxpow = ic->ic_txpowlimit;
3817 	mwl_hal_settxpower(mh, &hchan, maxtxpow / 2);
3818 	/* NB: potentially change mcast/mgt rates */
3819 	mwl_setcurchanrates(sc);
3820 
3821 	/*
3822 	 * Update internal state.
3823 	 */
3824 	sc->sc_tx_th.wt_chan_freq = htole16(chan->ic_freq);
3825 	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
3826 	if (IEEE80211_IS_CHAN_A(chan)) {
3827 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_A);
3828 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_A);
3829 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3830 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G);
3831 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G);
3832 	} else {
3833 		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B);
3834 		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B);
3835 	}
3836 	sc->sc_curchan = hchan;
3837 	mwl_hal_intrset(mh, sc->sc_imask);
3838 
3839 	return 0;
3840 }
3841 
3842 static void
3843 mwl_scan_start(struct ieee80211com *ic)
3844 {
3845 	struct mwl_softc *sc = ic->ic_softc;
3846 
3847 	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3848 }
3849 
3850 static void
3851 mwl_scan_end(struct ieee80211com *ic)
3852 {
3853 	struct mwl_softc *sc = ic->ic_softc;
3854 
3855 	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3856 }
3857 
3858 static void
3859 mwl_set_channel(struct ieee80211com *ic)
3860 {
3861 	struct mwl_softc *sc = ic->ic_softc;
3862 
3863 	(void) mwl_chan_set(sc, ic->ic_curchan);
3864 }
3865 
3866 /*
3867  * Handle a channel switch request.  We inform the firmware
3868  * and mark the global state to suppress various actions.
3869  * NB: we issue only one request to the fw; we may be called
3870  * multiple times if there are multiple vap's.
3871  */
3872 static void
3873 mwl_startcsa(struct ieee80211vap *vap)
3874 {
3875 	struct ieee80211com *ic = vap->iv_ic;
3876 	struct mwl_softc *sc = ic->ic_softc;
3877 	MWL_HAL_CHANNEL hchan;
3878 
3879 	if (sc->sc_csapending)
3880 		return;
3881 
3882 	mwl_mapchan(&hchan, ic->ic_csa_newchan);
3883 	/* 1 =>'s quiet channel */
3884 	mwl_hal_setchannelswitchie(sc->sc_mh, &hchan, 1, ic->ic_csa_count);
3885 	sc->sc_csapending = 1;
3886 }
3887 
3888 /*
3889  * Plumb any static WEP key for the station.  This is
3890  * necessary as we must propagate the key from the
3891  * global key table of the vap to each sta db entry.
3892  */
3893 static void
3894 mwl_setanywepkey(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3895 {
3896 	if ((vap->iv_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) ==
3897 		IEEE80211_F_PRIVACY &&
3898 	    vap->iv_def_txkey != IEEE80211_KEYIX_NONE &&
3899 	    vap->iv_nw_keys[vap->iv_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE)
3900 		(void) _mwl_key_set(vap, &vap->iv_nw_keys[vap->iv_def_txkey],
3901 				    mac);
3902 }
3903 
3904 static int
3905 mwl_peerstadb(struct ieee80211_node *ni, int aid, int staid, MWL_HAL_PEERINFO *pi)
3906 {
3907 #define	WME(ie) ((const struct ieee80211_wme_info *) ie)
3908 	struct ieee80211vap *vap = ni->ni_vap;
3909 	struct mwl_hal_vap *hvap;
3910 	int error;
3911 
3912 	if (vap->iv_opmode == IEEE80211_M_WDS) {
3913 		/*
3914 		 * WDS vap's do not have a f/w vap; instead they piggyback
3915 		 * on an AP vap and we must install the sta db entry and
3916 		 * crypto state using that AP's handle (the WDS vap has none).
3917 		 */
3918 		hvap = MWL_VAP(vap)->mv_ap_hvap;
3919 	} else
3920 		hvap = MWL_VAP(vap)->mv_hvap;
3921 	error = mwl_hal_newstation(hvap, ni->ni_macaddr,
3922 	    aid, staid, pi,
3923 	    ni->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT),
3924 	    ni->ni_ies.wme_ie != NULL ? WME(ni->ni_ies.wme_ie)->wme_info : 0);
3925 	if (error == 0) {
3926 		/*
3927 		 * Setup security for this station.  For sta mode this is
3928 		 * needed even though do the same thing on transition to
3929 		 * AUTH state because the call to mwl_hal_newstation
3930 		 * clobbers the crypto state we setup.
3931 		 */
3932 		mwl_setanywepkey(vap, ni->ni_macaddr);
3933 	}
3934 	return error;
3935 #undef WME
3936 }
3937 
3938 static void
3939 mwl_setglobalkeys(struct ieee80211vap *vap)
3940 {
3941 	struct ieee80211_key *wk;
3942 
3943 	wk = &vap->iv_nw_keys[0];
3944 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; wk++)
3945 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
3946 			(void) _mwl_key_set(vap, wk, vap->iv_myaddr);
3947 }
3948 
3949 /*
3950  * Convert a legacy rate set to a firmware bitmask.
3951  */
3952 static uint32_t
3953 get_rate_bitmap(const struct ieee80211_rateset *rs)
3954 {
3955 	uint32_t rates;
3956 	int i;
3957 
3958 	rates = 0;
3959 	for (i = 0; i < rs->rs_nrates; i++)
3960 		switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
3961 		case 2:	  rates |= 0x001; break;
3962 		case 4:	  rates |= 0x002; break;
3963 		case 11:  rates |= 0x004; break;
3964 		case 22:  rates |= 0x008; break;
3965 		case 44:  rates |= 0x010; break;
3966 		case 12:  rates |= 0x020; break;
3967 		case 18:  rates |= 0x040; break;
3968 		case 24:  rates |= 0x080; break;
3969 		case 36:  rates |= 0x100; break;
3970 		case 48:  rates |= 0x200; break;
3971 		case 72:  rates |= 0x400; break;
3972 		case 96:  rates |= 0x800; break;
3973 		case 108: rates |= 0x1000; break;
3974 		}
3975 	return rates;
3976 }
3977 
3978 /*
3979  * Construct an HT firmware bitmask from an HT rate set.
3980  */
3981 static uint32_t
3982 get_htrate_bitmap(const struct ieee80211_htrateset *rs)
3983 {
3984 	uint32_t rates;
3985 	int i;
3986 
3987 	rates = 0;
3988 	for (i = 0; i < rs->rs_nrates; i++) {
3989 		if (rs->rs_rates[i] < 16)
3990 			rates |= 1<<rs->rs_rates[i];
3991 	}
3992 	return rates;
3993 }
3994 
3995 /*
3996  * Craft station database entry for station.
3997  * NB: use host byte order here, the hal handles byte swapping.
3998  */
3999 static MWL_HAL_PEERINFO *
4000 mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni)
4001 {
4002 	const struct ieee80211vap *vap = ni->ni_vap;
4003 
4004 	memset(pi, 0, sizeof(*pi));
4005 	pi->LegacyRateBitMap = get_rate_bitmap(&ni->ni_rates);
4006 	pi->CapInfo = ni->ni_capinfo;
4007 	if (ni->ni_flags & IEEE80211_NODE_HT) {
4008 		/* HT capabilities, etc */
4009 		pi->HTCapabilitiesInfo = ni->ni_htcap;
4010 		/* XXX pi.HTCapabilitiesInfo */
4011 	        pi->MacHTParamInfo = ni->ni_htparam;
4012 		pi->HTRateBitMap = get_htrate_bitmap(&ni->ni_htrates);
4013 		pi->AddHtInfo.ControlChan = ni->ni_htctlchan;
4014 		pi->AddHtInfo.AddChan = ni->ni_ht2ndchan;
4015 		pi->AddHtInfo.OpMode = ni->ni_htopmode;
4016 		pi->AddHtInfo.stbc = ni->ni_htstbc;
4017 
4018 		/* constrain according to local configuration */
4019 		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0)
4020 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI40;
4021 		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
4022 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI20;
4023 		if (ni->ni_chw != 40)
4024 			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_CHWIDTH40;
4025 	}
4026 	return pi;
4027 }
4028 
4029 /*
4030  * Re-create the local sta db entry for a vap to ensure
4031  * up to date WME state is pushed to the firmware.  Because
4032  * this resets crypto state this must be followed by a
4033  * reload of any keys in the global key table.
4034  */
4035 static int
4036 mwl_localstadb(struct ieee80211vap *vap)
4037 {
4038 #define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4039 	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
4040 	struct ieee80211_node *bss;
4041 	MWL_HAL_PEERINFO pi;
4042 	int error;
4043 
4044 	switch (vap->iv_opmode) {
4045 	case IEEE80211_M_STA:
4046 		bss = vap->iv_bss;
4047 		error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0,
4048 		    vap->iv_state == IEEE80211_S_RUN ?
4049 			mkpeerinfo(&pi, bss) : NULL,
4050 		    (bss->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)),
4051 		    bss->ni_ies.wme_ie != NULL ?
4052 			WME(bss->ni_ies.wme_ie)->wme_info : 0);
4053 		if (error == 0)
4054 			mwl_setglobalkeys(vap);
4055 		break;
4056 	case IEEE80211_M_HOSTAP:
4057 	case IEEE80211_M_MBSS:
4058 		error = mwl_hal_newstation(hvap, vap->iv_myaddr,
4059 		    0, 0, NULL, vap->iv_flags & IEEE80211_F_WME, 0);
4060 		if (error == 0)
4061 			mwl_setglobalkeys(vap);
4062 		break;
4063 	default:
4064 		error = 0;
4065 		break;
4066 	}
4067 	return error;
4068 #undef WME
4069 }
4070 
4071 static int
4072 mwl_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4073 {
4074 	struct mwl_vap *mvp = MWL_VAP(vap);
4075 	struct mwl_hal_vap *hvap = mvp->mv_hvap;
4076 	struct ieee80211com *ic = vap->iv_ic;
4077 	struct ieee80211_node *ni = NULL;
4078 	struct mwl_softc *sc = ic->ic_softc;
4079 	struct mwl_hal *mh = sc->sc_mh;
4080 	enum ieee80211_state ostate = vap->iv_state;
4081 	int error;
4082 
4083 	DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: %s -> %s\n",
4084 	    if_name(vap->iv_ifp), __func__,
4085 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
4086 
4087 	callout_stop(&sc->sc_timer);
4088 	/*
4089 	 * Clear current radar detection state.
4090 	 */
4091 	if (ostate == IEEE80211_S_CAC) {
4092 		/* stop quiet mode radar detection */
4093 		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_STOP);
4094 	} else if (sc->sc_radarena) {
4095 		/* stop in-service radar detection */
4096 		mwl_hal_setradardetection(mh, DR_DFS_DISABLE);
4097 		sc->sc_radarena = 0;
4098 	}
4099 	/*
4100 	 * Carry out per-state actions before doing net80211 work.
4101 	 */
4102 	if (nstate == IEEE80211_S_INIT) {
4103 		/* NB: only ap+sta vap's have a fw entity */
4104 		if (hvap != NULL)
4105 			mwl_hal_stop(hvap);
4106 	} else if (nstate == IEEE80211_S_SCAN) {
4107 		mwl_hal_start(hvap);
4108 		/* NB: this disables beacon frames */
4109 		mwl_hal_setinframode(hvap);
4110 	} else if (nstate == IEEE80211_S_AUTH) {
4111 		/*
4112 		 * Must create a sta db entry in case a WEP key needs to
4113 		 * be plumbed.  This entry will be overwritten if we
4114 		 * associate; otherwise it will be reclaimed on node free.
4115 		 */
4116 		ni = vap->iv_bss;
4117 		MWL_NODE(ni)->mn_hvap = hvap;
4118 		(void) mwl_peerstadb(ni, 0, 0, NULL);
4119 	} else if (nstate == IEEE80211_S_CSA) {
4120 		/* XXX move to below? */
4121 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
4122 		    vap->iv_opmode == IEEE80211_M_MBSS)
4123 			mwl_startcsa(vap);
4124 	} else if (nstate == IEEE80211_S_CAC) {
4125 		/* XXX move to below? */
4126 		/* stop ap xmit and enable quiet mode radar detection */
4127 		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_START);
4128 	}
4129 
4130 	/*
4131 	 * Invoke the parent method to do net80211 work.
4132 	 */
4133 	error = mvp->mv_newstate(vap, nstate, arg);
4134 
4135 	/*
4136 	 * Carry out work that must be done after net80211 runs;
4137 	 * this work requires up to date state (e.g. iv_bss).
4138 	 */
4139 	if (error == 0 && nstate == IEEE80211_S_RUN) {
4140 		/* NB: collect bss node again, it may have changed */
4141 		ni = vap->iv_bss;
4142 
4143 		DPRINTF(sc, MWL_DEBUG_STATE,
4144 		    "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4145 		    "capinfo 0x%04x chan %d\n",
4146 		    if_name(vap->iv_ifp), __func__, vap->iv_flags,
4147 		    ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo,
4148 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
4149 
4150 		/*
4151 		 * Recreate local sta db entry to update WME/HT state.
4152 		 */
4153 		mwl_localstadb(vap);
4154 		switch (vap->iv_opmode) {
4155 		case IEEE80211_M_HOSTAP:
4156 		case IEEE80211_M_MBSS:
4157 			if (ostate == IEEE80211_S_CAC) {
4158 				/* enable in-service radar detection */
4159 				mwl_hal_setradardetection(mh,
4160 				    DR_IN_SERVICE_MONITOR_START);
4161 				sc->sc_radarena = 1;
4162 			}
4163 			/*
4164 			 * Allocate and setup the beacon frame
4165 			 * (and related state).
4166 			 */
4167 			error = mwl_reset_vap(vap, IEEE80211_S_RUN);
4168 			if (error != 0) {
4169 				DPRINTF(sc, MWL_DEBUG_STATE,
4170 				    "%s: beacon setup failed, error %d\n",
4171 				    __func__, error);
4172 				goto bad;
4173 			}
4174 			/* NB: must be after setting up beacon */
4175 			mwl_hal_start(hvap);
4176 			break;
4177 		case IEEE80211_M_STA:
4178 			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: aid 0x%x\n",
4179 			    if_name(vap->iv_ifp), __func__, ni->ni_associd);
4180 			/*
4181 			 * Set state now that we're associated.
4182 			 */
4183 			mwl_hal_setassocid(hvap, ni->ni_bssid, ni->ni_associd);
4184 			mwl_setrates(vap);
4185 			mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
4186 			if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4187 			    sc->sc_ndwdsvaps++ == 0)
4188 				mwl_hal_setdwds(mh, 1);
4189 			break;
4190 		case IEEE80211_M_WDS:
4191 			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: bssid %s\n",
4192 			    if_name(vap->iv_ifp), __func__,
4193 			    ether_sprintf(ni->ni_bssid));
4194 			mwl_seteapolformat(vap);
4195 			break;
4196 		default:
4197 			break;
4198 		}
4199 		/*
4200 		 * Set CS mode according to operating channel;
4201 		 * this mostly an optimization for 5GHz.
4202 		 *
4203 		 * NB: must follow mwl_hal_start which resets csmode
4204 		 */
4205 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
4206 			mwl_hal_setcsmode(mh, CSMODE_AGGRESSIVE);
4207 		else
4208 			mwl_hal_setcsmode(mh, CSMODE_AUTO_ENA);
4209 		/*
4210 		 * Start timer to prod firmware.
4211 		 */
4212 		if (sc->sc_ageinterval != 0)
4213 			callout_reset(&sc->sc_timer, sc->sc_ageinterval*hz,
4214 			    mwl_agestations, sc);
4215 	} else if (nstate == IEEE80211_S_SLEEP) {
4216 		/* XXX set chip in power save */
4217 	} else if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4218 	    --sc->sc_ndwdsvaps == 0)
4219 		mwl_hal_setdwds(mh, 0);
4220 bad:
4221 	return error;
4222 }
4223 
4224 /*
4225  * Manage station id's; these are separate from AID's
4226  * as AID's may have values out of the range of possible
4227  * station id's acceptable to the firmware.
4228  */
4229 static int
4230 allocstaid(struct mwl_softc *sc, int aid)
4231 {
4232 	int staid;
4233 
4234 	if (!(0 < aid && aid < MWL_MAXSTAID) || isset(sc->sc_staid, aid)) {
4235 		/* NB: don't use 0 */
4236 		for (staid = 1; staid < MWL_MAXSTAID; staid++)
4237 			if (isclr(sc->sc_staid, staid))
4238 				break;
4239 	} else
4240 		staid = aid;
4241 	setbit(sc->sc_staid, staid);
4242 	return staid;
4243 }
4244 
4245 static void
4246 delstaid(struct mwl_softc *sc, int staid)
4247 {
4248 	clrbit(sc->sc_staid, staid);
4249 }
4250 
4251 /*
4252  * Setup driver-specific state for a newly associated node.
4253  * Note that we're called also on a re-associate, the isnew
4254  * param tells us if this is the first time or not.
4255  */
4256 static void
4257 mwl_newassoc(struct ieee80211_node *ni, int isnew)
4258 {
4259 	struct ieee80211vap *vap = ni->ni_vap;
4260         struct mwl_softc *sc = vap->iv_ic->ic_softc;
4261 	struct mwl_node *mn = MWL_NODE(ni);
4262 	MWL_HAL_PEERINFO pi;
4263 	uint16_t aid;
4264 	int error;
4265 
4266 	aid = IEEE80211_AID(ni->ni_associd);
4267 	if (isnew) {
4268 		mn->mn_staid = allocstaid(sc, aid);
4269 		mn->mn_hvap = MWL_VAP(vap)->mv_hvap;
4270 	} else {
4271 		mn = MWL_NODE(ni);
4272 		/* XXX reset BA stream? */
4273 	}
4274 	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mac %s isnew %d aid %d staid %d\n",
4275 	    __func__, ether_sprintf(ni->ni_macaddr), isnew, aid, mn->mn_staid);
4276 	error = mwl_peerstadb(ni, aid, mn->mn_staid, mkpeerinfo(&pi, ni));
4277 	if (error != 0) {
4278 		DPRINTF(sc, MWL_DEBUG_NODE,
4279 		    "%s: error %d creating sta db entry\n",
4280 		    __func__, error);
4281 		/* XXX how to deal with error? */
4282 	}
4283 }
4284 
4285 /*
4286  * Periodically poke the firmware to age out station state
4287  * (power save queues, pending tx aggregates).
4288  */
4289 static void
4290 mwl_agestations(void *arg)
4291 {
4292 	struct mwl_softc *sc = arg;
4293 
4294 	mwl_hal_setkeepalive(sc->sc_mh);
4295 	if (sc->sc_ageinterval != 0)		/* NB: catch dynamic changes */
4296 		callout_schedule(&sc->sc_timer, sc->sc_ageinterval*hz);
4297 }
4298 
4299 static const struct mwl_hal_channel *
4300 findhalchannel(const MWL_HAL_CHANNELINFO *ci, int ieee)
4301 {
4302 	int i;
4303 
4304 	for (i = 0; i < ci->nchannels; i++) {
4305 		const struct mwl_hal_channel *hc = &ci->channels[i];
4306 		if (hc->ieee == ieee)
4307 			return hc;
4308 	}
4309 	return NULL;
4310 }
4311 
4312 static int
4313 mwl_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
4314 	int nchan, struct ieee80211_channel chans[])
4315 {
4316 	struct mwl_softc *sc = ic->ic_softc;
4317 	struct mwl_hal *mh = sc->sc_mh;
4318 	const MWL_HAL_CHANNELINFO *ci;
4319 	int i;
4320 
4321 	for (i = 0; i < nchan; i++) {
4322 		struct ieee80211_channel *c = &chans[i];
4323 		const struct mwl_hal_channel *hc;
4324 
4325 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4326 			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_2DOT4GHZ,
4327 			    IEEE80211_IS_CHAN_HT40(c) ?
4328 				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4329 		} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4330 			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_5GHZ,
4331 			    IEEE80211_IS_CHAN_HT40(c) ?
4332 				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4333 		} else {
4334 			device_printf(sc->sc_dev,
4335 			    "%s: channel %u freq %u/0x%x not 2.4/5GHz\n",
4336 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
4337 			return EINVAL;
4338 		}
4339 		/*
4340 		 * Verify channel has cal data and cap tx power.
4341 		 */
4342 		hc = findhalchannel(ci, c->ic_ieee);
4343 		if (hc != NULL) {
4344 			if (c->ic_maxpower > 2*hc->maxTxPow)
4345 				c->ic_maxpower = 2*hc->maxTxPow;
4346 			goto next;
4347 		}
4348 		if (IEEE80211_IS_CHAN_HT40(c)) {
4349 			/*
4350 			 * Look for the extension channel since the
4351 			 * hal table only has the primary channel.
4352 			 */
4353 			hc = findhalchannel(ci, c->ic_extieee);
4354 			if (hc != NULL) {
4355 				if (c->ic_maxpower > 2*hc->maxTxPow)
4356 					c->ic_maxpower = 2*hc->maxTxPow;
4357 				goto next;
4358 			}
4359 		}
4360 		device_printf(sc->sc_dev,
4361 		    "%s: no cal data for channel %u ext %u freq %u/0x%x\n",
4362 		    __func__, c->ic_ieee, c->ic_extieee,
4363 		    c->ic_freq, c->ic_flags);
4364 		return EINVAL;
4365 	next:
4366 		;
4367 	}
4368 	return 0;
4369 }
4370 
4371 #define	IEEE80211_CHAN_HTG	(IEEE80211_CHAN_HT|IEEE80211_CHAN_G)
4372 #define	IEEE80211_CHAN_HTA	(IEEE80211_CHAN_HT|IEEE80211_CHAN_A)
4373 
4374 static void
4375 addht40channels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4376 	const MWL_HAL_CHANNELINFO *ci, int flags)
4377 {
4378 	int i, error;
4379 
4380 	for (i = 0; i < ci->nchannels; i++) {
4381 		const struct mwl_hal_channel *hc = &ci->channels[i];
4382 
4383 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
4384 		    hc->ieee, hc->maxTxPow, flags);
4385 		if (error != 0 && error != ENOENT)
4386 			break;
4387 	}
4388 }
4389 
4390 static void
4391 addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4392 	const MWL_HAL_CHANNELINFO *ci, const uint8_t bands[])
4393 {
4394 	int i, error;
4395 
4396 	error = 0;
4397 	for (i = 0; i < ci->nchannels && error == 0; i++) {
4398 		const struct mwl_hal_channel *hc = &ci->channels[i];
4399 
4400 		error = ieee80211_add_channel(chans, maxchans, nchans,
4401 		    hc->ieee, hc->freq, hc->maxTxPow, 0, bands);
4402 	}
4403 }
4404 
4405 static void
4406 getchannels(struct mwl_softc *sc, int maxchans, int *nchans,
4407 	struct ieee80211_channel chans[])
4408 {
4409 	const MWL_HAL_CHANNELINFO *ci;
4410 	uint8_t bands[IEEE80211_MODE_BYTES];
4411 
4412 	/*
4413 	 * Use the channel info from the hal to craft the
4414 	 * channel list.  Note that we pass back an unsorted
4415 	 * list; the caller is required to sort it for us
4416 	 * (if desired).
4417 	 */
4418 	*nchans = 0;
4419 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4420 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) {
4421 		memset(bands, 0, sizeof(bands));
4422 		setbit(bands, IEEE80211_MODE_11B);
4423 		setbit(bands, IEEE80211_MODE_11G);
4424 		setbit(bands, IEEE80211_MODE_11NG);
4425 		addchannels(chans, maxchans, nchans, ci, bands);
4426 	}
4427 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4428 	    MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) {
4429 		memset(bands, 0, sizeof(bands));
4430 		setbit(bands, IEEE80211_MODE_11A);
4431 		setbit(bands, IEEE80211_MODE_11NA);
4432 		addchannels(chans, maxchans, nchans, ci, bands);
4433 	}
4434 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4435 	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4436 		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4437 	if (mwl_hal_getchannelinfo(sc->sc_mh,
4438 	    MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4439 		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4440 }
4441 
4442 static void
4443 mwl_getradiocaps(struct ieee80211com *ic,
4444 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4445 {
4446 	struct mwl_softc *sc = ic->ic_softc;
4447 
4448 	getchannels(sc, maxchans, nchans, chans);
4449 }
4450 
4451 static int
4452 mwl_getchannels(struct mwl_softc *sc)
4453 {
4454 	struct ieee80211com *ic = &sc->sc_ic;
4455 
4456 	/*
4457 	 * Use the channel info from the hal to craft the
4458 	 * channel list for net80211.  Note that we pass up
4459 	 * an unsorted list; net80211 will sort it for us.
4460 	 */
4461 	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
4462 	ic->ic_nchans = 0;
4463 	getchannels(sc, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels);
4464 
4465 	ic->ic_regdomain.regdomain = SKU_DEBUG;
4466 	ic->ic_regdomain.country = CTRY_DEFAULT;
4467 	ic->ic_regdomain.location = 'I';
4468 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX? */
4469 	ic->ic_regdomain.isocc[1] = ' ';
4470 	return (ic->ic_nchans == 0 ? EIO : 0);
4471 }
4472 #undef IEEE80211_CHAN_HTA
4473 #undef IEEE80211_CHAN_HTG
4474 
4475 #ifdef MWL_DEBUG
4476 static void
4477 mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix)
4478 {
4479 	const struct mwl_rxdesc *ds = bf->bf_desc;
4480 	uint32_t status = le32toh(ds->Status);
4481 
4482 	printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n"
4483 	       "      STAT:%02x LEN:%04x RSSI:%02x CHAN:%02x RATE:%02x QOS:%04x HT:%04x\n",
4484 	    ix, ds, (uintmax_t)bf->bf_daddr, le32toh(ds->pPhysNext),
4485 	    le32toh(ds->pPhysBuffData), ds->RxControl,
4486 	    ds->RxControl != EAGLE_RXD_CTRL_DRIVER_OWN ?
4487 	        "" : (status & EAGLE_RXD_STATUS_OK) ? " *" : " !",
4488 	    ds->Status, le16toh(ds->PktLen), ds->RSSI, ds->Channel,
4489 	    ds->Rate, le16toh(ds->QosCtrl), le16toh(ds->HtSig2));
4490 }
4491 
4492 static void
4493 mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix)
4494 {
4495 	const struct mwl_txdesc *ds = bf->bf_desc;
4496 	uint32_t status = le32toh(ds->Status);
4497 
4498 	printf("Q%u[%3u]", qnum, ix);
4499 	printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr);
4500 	printf("    NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n",
4501 	    le32toh(ds->pPhysNext),
4502 	    le32toh(ds->PktPtr), le16toh(ds->PktLen), status,
4503 	    status & EAGLE_TXD_STATUS_USED ?
4504 		"" : (status & 3) != 0 ? " *" : " !");
4505 	printf("    RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n",
4506 	    ds->DataRate, ds->TxPriority, le16toh(ds->QosCtrl),
4507 	    le32toh(ds->SapPktInfo), le16toh(ds->Format));
4508 #if MWL_TXDESC > 1
4509 	printf("    MULTIFRAMES:%u LEN:%04x %04x %04x %04x %04x %04x\n"
4510 	    , le32toh(ds->multiframes)
4511 	    , le16toh(ds->PktLenArray[0]), le16toh(ds->PktLenArray[1])
4512 	    , le16toh(ds->PktLenArray[2]), le16toh(ds->PktLenArray[3])
4513 	    , le16toh(ds->PktLenArray[4]), le16toh(ds->PktLenArray[5])
4514 	);
4515 	printf("    DATA:%08x %08x %08x %08x %08x %08x\n"
4516 	    , le32toh(ds->PktPtrArray[0]), le32toh(ds->PktPtrArray[1])
4517 	    , le32toh(ds->PktPtrArray[2]), le32toh(ds->PktPtrArray[3])
4518 	    , le32toh(ds->PktPtrArray[4]), le32toh(ds->PktPtrArray[5])
4519 	);
4520 #endif
4521 #if 0
4522 { const uint8_t *cp = (const uint8_t *) ds;
4523   int i;
4524   for (i = 0; i < sizeof(struct mwl_txdesc); i++) {
4525 	printf("%02x ", cp[i]);
4526 	if (((i+1) % 16) == 0)
4527 		printf("\n");
4528   }
4529   printf("\n");
4530 }
4531 #endif
4532 }
4533 #endif /* MWL_DEBUG */
4534 
4535 #if 0
4536 static void
4537 mwl_txq_dump(struct mwl_txq *txq)
4538 {
4539 	struct mwl_txbuf *bf;
4540 	int i = 0;
4541 
4542 	MWL_TXQ_LOCK(txq);
4543 	STAILQ_FOREACH(bf, &txq->active, bf_list) {
4544 		struct mwl_txdesc *ds = bf->bf_desc;
4545 		MWL_TXDESC_SYNC(txq, ds,
4546 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4547 #ifdef MWL_DEBUG
4548 		mwl_printtxbuf(bf, txq->qnum, i);
4549 #endif
4550 		i++;
4551 	}
4552 	MWL_TXQ_UNLOCK(txq);
4553 }
4554 #endif
4555 
4556 static void
4557 mwl_watchdog(void *arg)
4558 {
4559 	struct mwl_softc *sc = arg;
4560 
4561 	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
4562 	if (sc->sc_tx_timer == 0 || --sc->sc_tx_timer > 0)
4563 		return;
4564 
4565 	if (sc->sc_running && !sc->sc_invalid) {
4566 		if (mwl_hal_setkeepalive(sc->sc_mh))
4567 			device_printf(sc->sc_dev,
4568 			    "transmit timeout (firmware hung?)\n");
4569 		else
4570 			device_printf(sc->sc_dev,
4571 			    "transmit timeout\n");
4572 #if 0
4573 		mwl_reset(sc);
4574 mwl_txq_dump(&sc->sc_txq[0]);/*XXX*/
4575 #endif
4576 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4577 		sc->sc_stats.mst_watchdog++;
4578 	}
4579 }
4580 
4581 #ifdef MWL_DIAGAPI
4582 /*
4583  * Diagnostic interface to the HAL.  This is used by various
4584  * tools to do things like retrieve register contents for
4585  * debugging.  The mechanism is intentionally opaque so that
4586  * it can change frequently w/o concern for compatibility.
4587  */
4588 static int
4589 mwl_ioctl_diag(struct mwl_softc *sc, struct mwl_diag *md)
4590 {
4591 	struct mwl_hal *mh = sc->sc_mh;
4592 	u_int id = md->md_id & MWL_DIAG_ID;
4593 	void *indata = NULL;
4594 	void *outdata = NULL;
4595 	u_int32_t insize = md->md_in_size;
4596 	u_int32_t outsize = md->md_out_size;
4597 	int error = 0;
4598 
4599 	if (md->md_id & MWL_DIAG_IN) {
4600 		/*
4601 		 * Copy in data.
4602 		 */
4603 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4604 		if (indata == NULL) {
4605 			error = ENOMEM;
4606 			goto bad;
4607 		}
4608 		error = copyin(md->md_in_data, indata, insize);
4609 		if (error)
4610 			goto bad;
4611 	}
4612 	if (md->md_id & MWL_DIAG_DYN) {
4613 		/*
4614 		 * Allocate a buffer for the results (otherwise the HAL
4615 		 * returns a pointer to a buffer where we can read the
4616 		 * results).  Note that we depend on the HAL leaving this
4617 		 * pointer for us to use below in reclaiming the buffer;
4618 		 * may want to be more defensive.
4619 		 */
4620 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4621 		if (outdata == NULL) {
4622 			error = ENOMEM;
4623 			goto bad;
4624 		}
4625 	}
4626 	if (mwl_hal_getdiagstate(mh, id, indata, insize, &outdata, &outsize)) {
4627 		if (outsize < md->md_out_size)
4628 			md->md_out_size = outsize;
4629 		if (outdata != NULL)
4630 			error = copyout(outdata, md->md_out_data,
4631 					md->md_out_size);
4632 	} else {
4633 		error = EINVAL;
4634 	}
4635 bad:
4636 	if ((md->md_id & MWL_DIAG_IN) && indata != NULL)
4637 		free(indata, M_TEMP);
4638 	if ((md->md_id & MWL_DIAG_DYN) && outdata != NULL)
4639 		free(outdata, M_TEMP);
4640 	return error;
4641 }
4642 
4643 static int
4644 mwl_ioctl_reset(struct mwl_softc *sc, struct mwl_diag *md)
4645 {
4646 	struct mwl_hal *mh = sc->sc_mh;
4647 	int error;
4648 
4649 	MWL_LOCK_ASSERT(sc);
4650 
4651 	if (md->md_id == 0 && mwl_hal_fwload(mh, NULL) != 0) {
4652 		device_printf(sc->sc_dev, "unable to load firmware\n");
4653 		return EIO;
4654 	}
4655 	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
4656 		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
4657 		return EIO;
4658 	}
4659 	error = mwl_setupdma(sc);
4660 	if (error != 0) {
4661 		/* NB: mwl_setupdma prints a msg */
4662 		return error;
4663 	}
4664 	/*
4665 	 * Reset tx/rx data structures; after reload we must
4666 	 * re-start the driver's notion of the next xmit/recv.
4667 	 */
4668 	mwl_draintxq(sc);		/* clear pending frames */
4669 	mwl_resettxq(sc);		/* rebuild tx q lists */
4670 	sc->sc_rxnext = NULL;		/* force rx to start at the list head */
4671 	return 0;
4672 }
4673 #endif /* MWL_DIAGAPI */
4674 
4675 static void
4676 mwl_parent(struct ieee80211com *ic)
4677 {
4678 	struct mwl_softc *sc = ic->ic_softc;
4679 	int startall = 0;
4680 
4681 	MWL_LOCK(sc);
4682 	if (ic->ic_nrunning > 0) {
4683 		if (sc->sc_running) {
4684 			/*
4685 			 * To avoid rescanning another access point,
4686 			 * do not call mwl_init() here.  Instead,
4687 			 * only reflect promisc mode settings.
4688 			 */
4689 			mwl_mode_init(sc);
4690 		} else {
4691 			/*
4692 			 * Beware of being called during attach/detach
4693 			 * to reset promiscuous mode.  In that case we
4694 			 * will still be marked UP but not RUNNING.
4695 			 * However trying to re-init the interface
4696 			 * is the wrong thing to do as we've already
4697 			 * torn down much of our state.  There's
4698 			 * probably a better way to deal with this.
4699 			 */
4700 			if (!sc->sc_invalid) {
4701 				mwl_init(sc);	/* XXX lose error */
4702 				startall = 1;
4703 			}
4704 		}
4705 	} else
4706 		mwl_stop(sc);
4707 	MWL_UNLOCK(sc);
4708 	if (startall)
4709 		ieee80211_start_all(ic);
4710 }
4711 
4712 static int
4713 mwl_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
4714 {
4715 	struct mwl_softc *sc = ic->ic_softc;
4716 	struct ifreq *ifr = data;
4717 	int error = 0;
4718 
4719 	switch (cmd) {
4720 	case SIOCGMVSTATS:
4721 		mwl_hal_gethwstats(sc->sc_mh, &sc->sc_stats.hw_stats);
4722 #if 0
4723 		/* NB: embed these numbers to get a consistent view */
4724 		sc->sc_stats.mst_tx_packets =
4725 		    if_get_counter(ifp, IFCOUNTER_OPACKETS);
4726 		sc->sc_stats.mst_rx_packets =
4727 		    if_get_counter(ifp, IFCOUNTER_IPACKETS);
4728 #endif
4729 		/*
4730 		 * NB: Drop the softc lock in case of a page fault;
4731 		 * we'll accept any potential inconsisentcy in the
4732 		 * statistics.  The alternative is to copy the data
4733 		 * to a local structure.
4734 		 */
4735 		return (copyout(&sc->sc_stats, ifr_data_get_ptr(ifr),
4736 		    sizeof (sc->sc_stats)));
4737 #ifdef MWL_DIAGAPI
4738 	case SIOCGMVDIAG:
4739 		/* XXX check privs */
4740 		return mwl_ioctl_diag(sc, (struct mwl_diag *) ifr);
4741 	case SIOCGMVRESET:
4742 		/* XXX check privs */
4743 		MWL_LOCK(sc);
4744 		error = mwl_ioctl_reset(sc,(struct mwl_diag *) ifr);
4745 		MWL_UNLOCK(sc);
4746 		break;
4747 #endif /* MWL_DIAGAPI */
4748 	default:
4749 		error = ENOTTY;
4750 		break;
4751 	}
4752 	return (error);
4753 }
4754 
4755 #ifdef	MWL_DEBUG
4756 static int
4757 mwl_sysctl_debug(SYSCTL_HANDLER_ARGS)
4758 {
4759 	struct mwl_softc *sc = arg1;
4760 	int debug, error;
4761 
4762 	debug = sc->sc_debug | (mwl_hal_getdebug(sc->sc_mh) << 24);
4763 	error = sysctl_handle_int(oidp, &debug, 0, req);
4764 	if (error || !req->newptr)
4765 		return error;
4766 	mwl_hal_setdebug(sc->sc_mh, debug >> 24);
4767 	sc->sc_debug = debug & 0x00ffffff;
4768 	return 0;
4769 }
4770 #endif /* MWL_DEBUG */
4771 
4772 static void
4773 mwl_sysctlattach(struct mwl_softc *sc)
4774 {
4775 #ifdef	MWL_DEBUG
4776 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4777 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4778 
4779 	sc->sc_debug = mwl_debug;
4780 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug",
4781 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
4782 	    mwl_sysctl_debug, "I", "control debugging printfs");
4783 #endif
4784 }
4785 
4786 /*
4787  * Announce various information on device/driver attach.
4788  */
4789 static void
4790 mwl_announce(struct mwl_softc *sc)
4791 {
4792 
4793 	device_printf(sc->sc_dev, "Rev A%d hardware, v%d.%d.%d.%d firmware (regioncode %d)\n",
4794 		sc->sc_hwspecs.hwVersion,
4795 		(sc->sc_hwspecs.fwReleaseNumber>>24) & 0xff,
4796 		(sc->sc_hwspecs.fwReleaseNumber>>16) & 0xff,
4797 		(sc->sc_hwspecs.fwReleaseNumber>>8) & 0xff,
4798 		(sc->sc_hwspecs.fwReleaseNumber>>0) & 0xff,
4799 		sc->sc_hwspecs.regionCode);
4800 	sc->sc_fwrelease = sc->sc_hwspecs.fwReleaseNumber;
4801 
4802 	if (bootverbose) {
4803 		int i;
4804 		for (i = 0; i <= WME_AC_VO; i++) {
4805 			struct mwl_txq *txq = sc->sc_ac2q[i];
4806 			device_printf(sc->sc_dev, "Use hw queue %u for %s traffic\n",
4807 				txq->qnum, ieee80211_wme_acnames[i]);
4808 		}
4809 	}
4810 	if (bootverbose || mwl_rxdesc != MWL_RXDESC)
4811 		device_printf(sc->sc_dev, "using %u rx descriptors\n", mwl_rxdesc);
4812 	if (bootverbose || mwl_rxbuf != MWL_RXBUF)
4813 		device_printf(sc->sc_dev, "using %u rx buffers\n", mwl_rxbuf);
4814 	if (bootverbose || mwl_txbuf != MWL_TXBUF)
4815 		device_printf(sc->sc_dev, "using %u tx buffers\n", mwl_txbuf);
4816 	if (bootverbose && mwl_hal_ismbsscapable(sc->sc_mh))
4817 		device_printf(sc->sc_dev, "multi-bss support\n");
4818 #ifdef MWL_TX_NODROP
4819 	if (bootverbose)
4820 		device_printf(sc->sc_dev, "no tx drop\n");
4821 #endif
4822 }
4823