xref: /freebsd/sys/dev/msk/if_msk.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /*
96  * Device driver for the Marvell Yukon II Ethernet controller.
97  * Due to lack of documentation, this driver is based on the code from
98  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
99  */
100 
101 #include <sys/cdefs.h>
102 __FBSDID("$FreeBSD$");
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 #include <sys/taskqueue.h>
117 
118 #include <net/bpf.h>
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_types.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 
133 #include <machine/bus.h>
134 #include <machine/resource.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 #include <dev/mii/brgphyreg.h>
140 
141 #include <dev/pci/pcireg.h>
142 #include <dev/pci/pcivar.h>
143 
144 #include <dev/msk/if_mskreg.h>
145 
146 MODULE_DEPEND(msk, pci, 1, 1, 1);
147 MODULE_DEPEND(msk, ether, 1, 1, 1);
148 MODULE_DEPEND(msk, miibus, 1, 1, 1);
149 
150 /* "device miibus" required.  See GENERIC if you get errors here. */
151 #include "miibus_if.h"
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
156 
157 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
158 
159 /*
160  * Devices supported by this driver.
161  */
162 static struct msk_product {
163 	uint16_t	msk_vendorid;
164 	uint16_t	msk_deviceid;
165 	const char	*msk_name;
166 } msk_products[] = {
167 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
168 	    "SK-9Sxx Gigabit Ethernet" },
169 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
170 	    "SK-9Exx Gigabit Ethernet"},
171 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
172 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
173 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
174 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
176 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
178 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
180 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
182 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
184 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
186 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
188 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
190 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
192 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
194 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
196 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
198 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
200 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
202 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
203 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
204 	    "D-Link 550SX Gigabit Ethernet" },
205 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
206 	    "D-Link 560T Gigabit Ethernet" }
207 };
208 
209 static const char *model_name[] = {
210 	"Yukon XL",
211         "Yukon EC Ultra",
212         "Yukon Unknown",
213         "Yukon EC",
214         "Yukon FE"
215 };
216 
217 static int mskc_probe(device_t);
218 static int mskc_attach(device_t);
219 static int mskc_detach(device_t);
220 static void mskc_shutdown(device_t);
221 static int mskc_setup_rambuffer(struct msk_softc *);
222 static int mskc_suspend(device_t);
223 static int mskc_resume(device_t);
224 static void mskc_reset(struct msk_softc *);
225 
226 static int msk_probe(device_t);
227 static int msk_attach(device_t);
228 static int msk_detach(device_t);
229 
230 static void msk_tick(void *);
231 static void msk_intr(void *);
232 static void msk_int_task(void *, int);
233 static void msk_intr_phy(struct msk_if_softc *);
234 static void msk_intr_gmac(struct msk_if_softc *);
235 static __inline void msk_rxput(struct msk_if_softc *);
236 static int msk_handle_events(struct msk_softc *);
237 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
238 static void msk_intr_hwerr(struct msk_softc *);
239 static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
240 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
241 static void msk_txeof(struct msk_if_softc *, int);
242 static struct mbuf *msk_defrag(struct mbuf *, int, int);
243 static int msk_encap(struct msk_if_softc *, struct mbuf **);
244 static void msk_tx_task(void *, int);
245 static void msk_start(struct ifnet *);
246 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
247 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
248 static void msk_set_rambuffer(struct msk_if_softc *);
249 static void msk_init(void *);
250 static void msk_init_locked(struct msk_if_softc *);
251 static void msk_stop(struct msk_if_softc *);
252 static void msk_watchdog(struct msk_if_softc *);
253 static int msk_mediachange(struct ifnet *);
254 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
255 static void msk_phy_power(struct msk_softc *, int);
256 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
257 static int msk_status_dma_alloc(struct msk_softc *);
258 static void msk_status_dma_free(struct msk_softc *);
259 static int msk_txrx_dma_alloc(struct msk_if_softc *);
260 static void msk_txrx_dma_free(struct msk_if_softc *);
261 static void *msk_jalloc(struct msk_if_softc *);
262 static void msk_jfree(void *, void *);
263 static int msk_init_rx_ring(struct msk_if_softc *);
264 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
265 static void msk_init_tx_ring(struct msk_if_softc *);
266 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
267 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
268 static int msk_newbuf(struct msk_if_softc *, int);
269 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
270 
271 static int msk_phy_readreg(struct msk_if_softc *, int, int);
272 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
273 static int msk_miibus_readreg(device_t, int, int);
274 static int msk_miibus_writereg(device_t, int, int, int);
275 static void msk_miibus_statchg(device_t);
276 static void msk_link_task(void *, int);
277 
278 static void msk_setmulti(struct msk_if_softc *);
279 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
280 static void msk_setpromisc(struct msk_if_softc *);
281 
282 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
283 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
284 
285 static device_method_t mskc_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		mskc_probe),
288 	DEVMETHOD(device_attach,	mskc_attach),
289 	DEVMETHOD(device_detach,	mskc_detach),
290 	DEVMETHOD(device_suspend,	mskc_suspend),
291 	DEVMETHOD(device_resume,	mskc_resume),
292 	DEVMETHOD(device_shutdown,	mskc_shutdown),
293 
294 	/* bus interface */
295 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
296 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
297 
298 	{ NULL, NULL }
299 };
300 
301 static driver_t mskc_driver = {
302 	"mskc",
303 	mskc_methods,
304 	sizeof(struct msk_softc)
305 };
306 
307 static devclass_t mskc_devclass;
308 
309 static device_method_t msk_methods[] = {
310 	/* Device interface */
311 	DEVMETHOD(device_probe,		msk_probe),
312 	DEVMETHOD(device_attach,	msk_attach),
313 	DEVMETHOD(device_detach,	msk_detach),
314 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
315 
316 	/* bus interface */
317 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
318 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
319 
320 	/* MII interface */
321 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
322 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
323 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
324 
325 	{ NULL, NULL }
326 };
327 
328 static driver_t msk_driver = {
329 	"msk",
330 	msk_methods,
331 	sizeof(struct msk_if_softc)
332 };
333 
334 static devclass_t msk_devclass;
335 
336 DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
337 DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
338 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
339 
340 static struct resource_spec msk_res_spec_io[] = {
341 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
342 	{ -1,			0,		0 }
343 };
344 
345 static struct resource_spec msk_res_spec_mem[] = {
346 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
347 	{ -1,			0,		0 }
348 };
349 
350 static struct resource_spec msk_irq_spec_legacy[] = {
351 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
352 	{ -1,			0,		0 }
353 };
354 
355 static struct resource_spec msk_irq_spec_msi[] = {
356 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
357 	{ SYS_RES_IRQ,		2,		RF_ACTIVE },
358 	{ -1,			0,		0 }
359 };
360 
361 static int
362 msk_miibus_readreg(device_t dev, int phy, int reg)
363 {
364 	struct msk_if_softc *sc_if;
365 
366 	sc_if = device_get_softc(dev);
367 
368 	return (msk_phy_readreg(sc_if, phy, reg));
369 }
370 
371 static int
372 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
373 {
374 	struct msk_softc *sc;
375 	int i, val;
376 
377 	sc = sc_if->msk_softc;
378 
379         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
380 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
381 
382 	for (i = 0; i < MSK_TIMEOUT; i++) {
383 		DELAY(1);
384 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
385 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
386 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
387 			break;
388 		}
389 	}
390 
391 	if (i == MSK_TIMEOUT) {
392 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
393 		val = 0;
394 	}
395 
396 	return (val);
397 }
398 
399 static int
400 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
401 {
402 	struct msk_if_softc *sc_if;
403 
404 	sc_if = device_get_softc(dev);
405 
406 	return (msk_phy_writereg(sc_if, phy, reg, val));
407 }
408 
409 static int
410 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
411 {
412 	struct msk_softc *sc;
413 	int i;
414 
415 	sc = sc_if->msk_softc;
416 
417 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
418         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
419 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
420 	for (i = 0; i < MSK_TIMEOUT; i++) {
421 		DELAY(1);
422 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
423 		    GM_SMI_CT_BUSY) == 0)
424 			break;
425 	}
426 	if (i == MSK_TIMEOUT)
427 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
428 
429 	return (0);
430 }
431 
432 static void
433 msk_miibus_statchg(device_t dev)
434 {
435 	struct msk_if_softc *sc_if;
436 
437 	sc_if = device_get_softc(dev);
438 	taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
439 }
440 
441 static void
442 msk_link_task(void *arg, int pending)
443 {
444 	struct msk_softc *sc;
445 	struct msk_if_softc *sc_if;
446 	struct mii_data *mii;
447 	struct ifnet *ifp;
448 	uint32_t gmac, ane;
449 
450 	sc_if = (struct msk_if_softc *)arg;
451 	sc = sc_if->msk_softc;
452 
453 	MSK_IF_LOCK(sc_if);
454 
455 	mii = device_get_softc(sc_if->msk_miibus);
456 	ifp = sc_if->msk_ifp;
457 	if (mii == NULL || ifp == NULL) {
458 		MSK_IF_UNLOCK(sc_if);
459 		return;
460 	}
461 
462 	if (mii->mii_media_status & IFM_ACTIVE) {
463 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
464 			sc_if->msk_link = 1;
465 	} else
466 		sc_if->msk_link = 0;
467 
468 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
469 	ane = 0;
470 	if (sc_if->msk_link != 0) {
471 		/* Enable Tx FIFO Underrun. */
472 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
473 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
474 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
475 		case IFM_AUTO:
476 			ane = 1;
477 			break;
478 		case IFM_1000_SX:
479 		case IFM_1000_T:
480 			gmac &= ~GM_GPCR_SPEED_100;
481 			gmac |= GM_GPCR_SPEED_1000;
482 			break;
483 		case IFM_100_TX:
484 			gmac |= GM_GPCR_SPEED_100;
485 			gmac &= ~GM_GPCR_SPEED_1000;
486 			break;
487 		case IFM_10_T:
488 			gmac &= ~(GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000);
489 			break;
490 		}
491 
492 		if (ane == 0)
493 			gmac |= GM_GPCR_AU_ALL_DIS;
494 		else
495 			gmac &= ~GM_GPCR_AU_ALL_DIS;
496 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
497 			gmac |= GM_GPCR_DUP_FULL;
498 		/* Enable Rx flow control. */
499 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0)
500 			gmac &= ~GM_GPCR_FC_RX_DIS;
501 		/* Enable Tx flow control. */
502 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0)
503 			gmac &= ~GM_GPCR_FC_TX_DIS;
504 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
505 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
506 		/* Read again to ensure writing. */
507 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
508 
509 		gmac = GMC_PAUSE_ON;
510 		if (((mii->mii_media_active & IFM_GMASK) &
511 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
512 			gmac = GMC_PAUSE_OFF;
513 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
514 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
515 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
516 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
517 			gmac = GMC_PAUSE_OFF;
518 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
519 
520 		/* Enable PHY interrupt for FIFO underrun/overflow. */
521 		if (sc->msk_marvell_phy)
522 			msk_phy_writereg(sc_if, PHY_ADDR_MARV,
523 			    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
524 	} else {
525 		/*
526 		 * Link state changed to down.
527 		 * Disable PHY interrupts.
528 		 */
529 		if (sc->msk_marvell_phy)
530 			msk_phy_writereg(sc_if, PHY_ADDR_MARV,
531 			    PHY_MARV_INT_MASK, 0);
532 		/* Disable Rx/Tx MAC. */
533 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
534 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
535 		/* Read again to ensure writing. */
536 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
537 	}
538 
539 	MSK_IF_UNLOCK(sc_if);
540 }
541 
542 static void
543 msk_setmulti(struct msk_if_softc *sc_if)
544 {
545 	struct msk_softc *sc;
546 	struct ifnet *ifp;
547 	struct ifmultiaddr *ifma;
548 	uint32_t mchash[2];
549 	uint32_t crc;
550 	uint16_t mode;
551 
552 	sc = sc_if->msk_softc;
553 
554 	MSK_IF_LOCK_ASSERT(sc_if);
555 
556 	ifp = sc_if->msk_ifp;
557 
558 	bzero(mchash, sizeof(mchash));
559 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
560 	mode |= GM_RXCR_UCF_ENA;
561 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
562 		if ((ifp->if_flags & IFF_PROMISC) != 0)
563 			mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
564 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
565 			mchash[0] = 0xffff;
566 			mchash[1] = 0xffff;
567 		}
568 	} else {
569 		IF_ADDR_LOCK(ifp);
570 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
571 			if (ifma->ifma_addr->sa_family != AF_LINK)
572 				continue;
573 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
574 			    ifma->ifma_addr), ETHER_ADDR_LEN);
575 			/* Just want the 6 least significant bits. */
576 			crc &= 0x3f;
577 			/* Set the corresponding bit in the hash table. */
578 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
579 		}
580 		IF_ADDR_UNLOCK(ifp);
581 		mode |= GM_RXCR_MCF_ENA;
582 	}
583 
584 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
585 	    mchash[0] & 0xffff);
586 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
587 	    (mchash[0] >> 16) & 0xffff);
588 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
589 	    mchash[1] & 0xffff);
590 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
591 	    (mchash[1] >> 16) & 0xffff);
592 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
593 }
594 
595 static void
596 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
597 {
598 	struct msk_softc *sc;
599 
600 	sc = sc_if->msk_softc;
601 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
602 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
603 		    RX_VLAN_STRIP_ON);
604 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
605 		    TX_VLAN_TAG_ON);
606 	} else {
607 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
608 		    RX_VLAN_STRIP_OFF);
609 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
610 		    TX_VLAN_TAG_OFF);
611 	}
612 }
613 
614 static void
615 msk_setpromisc(struct msk_if_softc *sc_if)
616 {
617 	struct msk_softc *sc;
618 	struct ifnet *ifp;
619 	uint16_t mode;
620 
621 	MSK_IF_LOCK_ASSERT(sc_if);
622 
623 	sc = sc_if->msk_softc;
624 	ifp = sc_if->msk_ifp;
625 
626 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
627 	if (ifp->if_flags & IFF_PROMISC)
628 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
629 	else
630 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
631 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
632 }
633 
634 static int
635 msk_init_rx_ring(struct msk_if_softc *sc_if)
636 {
637 	struct msk_ring_data *rd;
638 	struct msk_rxdesc *rxd;
639 	int i, prod;
640 
641 	MSK_IF_LOCK_ASSERT(sc_if);
642 
643 	sc_if->msk_cdata.msk_rx_cons = 0;
644 	sc_if->msk_cdata.msk_rx_prod = 0;
645 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
646 
647 	rd = &sc_if->msk_rdata;
648 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
649 	prod = sc_if->msk_cdata.msk_rx_prod;
650 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
651 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
652 		rxd->rx_m = NULL;
653 		rxd->rx_le = &rd->msk_rx_ring[prod];
654 		if (msk_newbuf(sc_if, prod) != 0)
655 			return (ENOBUFS);
656 		MSK_INC(prod, MSK_RX_RING_CNT);
657 	}
658 
659 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
660 	    sc_if->msk_cdata.msk_rx_ring_map,
661 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
662 
663 	/* Update prefetch unit. */
664 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
665 	CSR_WRITE_2(sc_if->msk_softc,
666 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
667 	    sc_if->msk_cdata.msk_rx_prod);
668 
669 	return (0);
670 }
671 
672 static int
673 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
674 {
675 	struct msk_ring_data *rd;
676 	struct msk_rxdesc *rxd;
677 	int i, prod;
678 
679 	MSK_IF_LOCK_ASSERT(sc_if);
680 
681 	sc_if->msk_cdata.msk_rx_cons = 0;
682 	sc_if->msk_cdata.msk_rx_prod = 0;
683 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
684 
685 	rd = &sc_if->msk_rdata;
686 	bzero(rd->msk_jumbo_rx_ring,
687 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
688 	prod = sc_if->msk_cdata.msk_rx_prod;
689 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
690 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
691 		rxd->rx_m = NULL;
692 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
693 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
694 			return (ENOBUFS);
695 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
696 	}
697 
698 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
699 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
700 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
701 
702 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
703 	CSR_WRITE_2(sc_if->msk_softc,
704 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
705 	    sc_if->msk_cdata.msk_rx_prod);
706 
707 	return (0);
708 }
709 
710 static void
711 msk_init_tx_ring(struct msk_if_softc *sc_if)
712 {
713 	struct msk_ring_data *rd;
714 	struct msk_txdesc *txd;
715 	int i;
716 
717 	sc_if->msk_cdata.msk_tso_mtu = 0;
718 	sc_if->msk_cdata.msk_tx_prod = 0;
719 	sc_if->msk_cdata.msk_tx_cons = 0;
720 	sc_if->msk_cdata.msk_tx_cnt = 0;
721 
722 	rd = &sc_if->msk_rdata;
723 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
724 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
725 		txd = &sc_if->msk_cdata.msk_txdesc[i];
726 		txd->tx_m = NULL;
727 		txd->tx_le = &rd->msk_tx_ring[i];
728 	}
729 
730 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
731 	    sc_if->msk_cdata.msk_tx_ring_map,
732 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
733 }
734 
735 static __inline void
736 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
737 {
738 	struct msk_rx_desc *rx_le;
739 	struct msk_rxdesc *rxd;
740 	struct mbuf *m;
741 
742 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
743 	m = rxd->rx_m;
744 	rx_le = rxd->rx_le;
745 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
746 }
747 
748 static __inline void
749 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
750 {
751 	struct msk_rx_desc *rx_le;
752 	struct msk_rxdesc *rxd;
753 	struct mbuf *m;
754 
755 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
756 	m = rxd->rx_m;
757 	rx_le = rxd->rx_le;
758 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
759 }
760 
761 static int
762 msk_newbuf(struct msk_if_softc *sc_if, int idx)
763 {
764 	struct msk_rx_desc *rx_le;
765 	struct msk_rxdesc *rxd;
766 	struct mbuf *m;
767 	bus_dma_segment_t segs[1];
768 	bus_dmamap_t map;
769 	int nsegs;
770 
771 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
772 	if (m == NULL)
773 		return (ENOBUFS);
774 
775 	m->m_len = m->m_pkthdr.len = MCLBYTES;
776 	m_adj(m, ETHER_ALIGN);
777 
778 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
779 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
780 	    BUS_DMA_NOWAIT) != 0) {
781 		m_freem(m);
782 		return (ENOBUFS);
783 	}
784 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
785 
786 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
787 	if (rxd->rx_m != NULL) {
788 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
789 		    BUS_DMASYNC_POSTREAD);
790 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
791 	}
792 	map = rxd->rx_dmamap;
793 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
794 	sc_if->msk_cdata.msk_rx_sparemap = map;
795 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
796 	    BUS_DMASYNC_PREREAD);
797 	rxd->rx_m = m;
798 	rx_le = rxd->rx_le;
799 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
800 	rx_le->msk_control =
801 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
802 
803 	return (0);
804 }
805 
806 static int
807 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
808 {
809 	struct msk_rx_desc *rx_le;
810 	struct msk_rxdesc *rxd;
811 	struct mbuf *m;
812 	bus_dma_segment_t segs[1];
813 	bus_dmamap_t map;
814 	int nsegs;
815 	void *buf;
816 
817 	MGETHDR(m, M_DONTWAIT, MT_DATA);
818 	if (m == NULL)
819 		return (ENOBUFS);
820 	buf = msk_jalloc(sc_if);
821 	if (buf == NULL) {
822 		m_freem(m);
823 		return (ENOBUFS);
824 	}
825 	/* Attach the buffer to the mbuf. */
826 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
827 	    EXT_NET_DRV);
828 	if ((m->m_flags & M_EXT) == 0) {
829 		m_freem(m);
830 		return (ENOBUFS);
831 	}
832 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
833 	m_adj(m, ETHER_ALIGN);
834 
835 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
836 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
837 	    BUS_DMA_NOWAIT) != 0) {
838 		m_freem(m);
839 		return (ENOBUFS);
840 	}
841 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
842 
843 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
844 	if (rxd->rx_m != NULL) {
845 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
846 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
847 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
848 		    rxd->rx_dmamap);
849 	}
850 	map = rxd->rx_dmamap;
851 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
852 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
853 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
854 	    BUS_DMASYNC_PREREAD);
855 	rxd->rx_m = m;
856 	rx_le = rxd->rx_le;
857 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
858 	rx_le->msk_control =
859 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
860 
861 	return (0);
862 }
863 
864 /*
865  * Set media options.
866  */
867 static int
868 msk_mediachange(struct ifnet *ifp)
869 {
870 	struct msk_if_softc *sc_if;
871 	struct mii_data	*mii;
872 
873 	sc_if = ifp->if_softc;
874 
875 	MSK_IF_LOCK(sc_if);
876 	mii = device_get_softc(sc_if->msk_miibus);
877 	mii_mediachg(mii);
878 	MSK_IF_UNLOCK(sc_if);
879 
880 	return (0);
881 }
882 
883 /*
884  * Report current media status.
885  */
886 static void
887 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
888 {
889 	struct msk_if_softc *sc_if;
890 	struct mii_data	*mii;
891 
892 	sc_if = ifp->if_softc;
893 	MSK_IF_LOCK(sc_if);
894 	mii = device_get_softc(sc_if->msk_miibus);
895 
896 	mii_pollstat(mii);
897 	MSK_IF_UNLOCK(sc_if);
898 	ifmr->ifm_active = mii->mii_media_active;
899 	ifmr->ifm_status = mii->mii_media_status;
900 }
901 
902 static int
903 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
904 {
905 	struct msk_if_softc *sc_if;
906 	struct ifreq *ifr;
907 	struct mii_data	*mii;
908 	int error, mask;
909 
910 	sc_if = ifp->if_softc;
911 	ifr = (struct ifreq *)data;
912 	error = 0;
913 
914 	switch(command) {
915 	case SIOCSIFMTU:
916 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
917 			error = EINVAL;
918 			break;
919 		}
920 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
921 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
922 			error = EINVAL;
923 			break;
924 		}
925 		MSK_IF_LOCK(sc_if);
926 		ifp->if_mtu = ifr->ifr_mtu;
927 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
928 			msk_init_locked(sc_if);
929 		MSK_IF_UNLOCK(sc_if);
930 		break;
931 	case SIOCSIFFLAGS:
932 		MSK_IF_LOCK(sc_if);
933 		if ((ifp->if_flags & IFF_UP) != 0) {
934 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
935 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
936 				    & IFF_PROMISC) != 0) {
937 					msk_setpromisc(sc_if);
938 					msk_setmulti(sc_if);
939 				}
940 			} else {
941 				if (sc_if->msk_detach == 0)
942 					msk_init_locked(sc_if);
943 			}
944 		} else {
945 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
946 				msk_stop(sc_if);
947 		}
948 		sc_if->msk_if_flags = ifp->if_flags;
949 		MSK_IF_UNLOCK(sc_if);
950 		break;
951 	case SIOCADDMULTI:
952 	case SIOCDELMULTI:
953 		MSK_IF_LOCK(sc_if);
954 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
955 			msk_setmulti(sc_if);
956 		MSK_IF_UNLOCK(sc_if);
957 		break;
958 	case SIOCGIFMEDIA:
959 	case SIOCSIFMEDIA:
960 		mii = device_get_softc(sc_if->msk_miibus);
961 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
962 		break;
963 	case SIOCSIFCAP:
964 		MSK_IF_LOCK(sc_if);
965 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
966 		if ((mask & IFCAP_TXCSUM) != 0) {
967 			ifp->if_capenable ^= IFCAP_TXCSUM;
968 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
969 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
970 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
971 			else
972 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
973 		}
974 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
975 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
976 			msk_setvlan(sc_if, ifp);
977 		}
978 
979 		if ((mask & IFCAP_TSO4) != 0) {
980 			ifp->if_capenable ^= IFCAP_TSO4;
981 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
982 			    (IFCAP_TSO4 & ifp->if_capabilities) != 0)
983 				ifp->if_hwassist |= CSUM_TSO;
984 			else
985 				ifp->if_hwassist &= ~CSUM_TSO;
986 		}
987 		VLAN_CAPABILITIES(ifp);
988 		MSK_IF_UNLOCK(sc_if);
989 		break;
990 	default:
991 		error = ether_ioctl(ifp, command, data);
992 		break;
993 	}
994 
995 	return (error);
996 }
997 
998 static int
999 mskc_probe(device_t dev)
1000 {
1001 	struct msk_product *mp;
1002 	uint16_t vendor, devid;
1003 	int i;
1004 
1005 	vendor = pci_get_vendor(dev);
1006 	devid = pci_get_device(dev);
1007 	mp = msk_products;
1008 	for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
1009 	    i++, mp++) {
1010 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1011 			device_set_desc(dev, mp->msk_name);
1012 			return (BUS_PROBE_DEFAULT);
1013 		}
1014 	}
1015 
1016 	return (ENXIO);
1017 }
1018 
1019 static int
1020 mskc_setup_rambuffer(struct msk_softc *sc)
1021 {
1022 	int totqsize, minqsize;
1023 	int avail, next;
1024 	int i;
1025 	uint8_t val;
1026 
1027 	/* Get adapter SRAM size. */
1028 	val = CSR_READ_1(sc, B2_E_0);
1029 	sc->msk_ramsize = (val == 0) ? 128 : val * 4;
1030 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE)
1031 		sc->msk_ramsize = 4 * 4;
1032 	if (bootverbose)
1033 		device_printf(sc->msk_dev,
1034 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1035 
1036 	totqsize = sc->msk_ramsize * sc->msk_num_port;
1037 	minqsize = MSK_MIN_RXQ_SIZE + MSK_MIN_TXQ_SIZE;
1038 	if (minqsize > sc->msk_ramsize)
1039 		minqsize = sc->msk_ramsize;
1040 
1041 	if (minqsize * sc->msk_num_port > totqsize) {
1042 		device_printf(sc->msk_dev,
1043 		    "not enough RAM buffer memory : %d/%dKB\n",
1044 		    minqsize * sc->msk_num_port, totqsize);
1045 		return (ENOSPC);
1046 	}
1047 
1048 	avail = totqsize;
1049 	if (sc->msk_num_port > 1) {
1050 		/*
1051 		 * Divide up the memory evenly so that everyone gets a
1052 		 * fair share for dual port adapters.
1053 		 */
1054 		avail = sc->msk_ramsize;
1055 	}
1056 
1057 	/* Take away the minimum memory for active queues. */
1058 	avail -= minqsize;
1059 	/* Rx queue gets the minimum + 80% of the rest. */
1060 	sc->msk_rxqsize =
1061 	    (avail * MSK_RAM_QUOTA_RX) / 100 + MSK_MIN_RXQ_SIZE;
1062 	avail -= (sc->msk_rxqsize - MSK_MIN_RXQ_SIZE);
1063 	sc->msk_txqsize = avail + MSK_MIN_TXQ_SIZE;
1064 
1065 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1066 		sc->msk_rxqstart[i] = next;
1067 		sc->msk_rxqend[i] = next + (sc->msk_rxqsize * 1024) - 1;
1068 		next = sc->msk_rxqend[i] + 1;
1069 		sc->msk_txqstart[i] = next;
1070 		sc->msk_txqend[i] = next + (sc->msk_txqsize * 1024) - 1;
1071 		next = sc->msk_txqend[i] + 1;
1072 		if (bootverbose) {
1073 			device_printf(sc->msk_dev,
1074 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1075 			    sc->msk_rxqsize, sc->msk_rxqstart[i],
1076 			    sc->msk_rxqend[i]);
1077 			device_printf(sc->msk_dev,
1078 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1079 			    sc->msk_txqsize, sc->msk_txqstart[i],
1080 			    sc->msk_txqend[i]);
1081 		}
1082 	}
1083 
1084 	return (0);
1085 }
1086 
1087 static void
1088 msk_phy_power(struct msk_softc *sc, int mode)
1089 {
1090 	uint32_t val;
1091 	int i;
1092 
1093 	switch (mode) {
1094 	case MSK_PHY_POWERUP:
1095 		/* Switch power to VCC (WA for VAUX problem). */
1096 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1097 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1098 		/* Disable Core Clock Division, set Clock Select to 0. */
1099 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1100 
1101 		val = 0;
1102 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1103 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1104 			/* Enable bits are inverted. */
1105 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1106 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1107 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1108 		}
1109 		/*
1110 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1111 		 */
1112 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1113 
1114 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1115 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1116 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1117 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1118 			/* Deassert Low Power for 1st PHY. */
1119 			val |= PCI_Y2_PHY1_COMA;
1120 			if (sc->msk_num_port > 1)
1121 				val |= PCI_Y2_PHY2_COMA;
1122 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1123 			uint32_t our;
1124 
1125 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1126 
1127 			/* Enable all clocks. */
1128 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1129 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1130 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1131 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1132 			/* Set all bits to 0 except bits 15..12. */
1133 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1134 			/* Set to default value. */
1135 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1136 		}
1137 		/* Release PHY from PowerDown/COMA mode. */
1138 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1139 		for (i = 0; i < sc->msk_num_port; i++) {
1140 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1141 			    GMLC_RST_SET);
1142 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1143 			    GMLC_RST_CLR);
1144 		}
1145 		break;
1146 	case MSK_PHY_POWERDOWN:
1147 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1148 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1149 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1150 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1151 			val &= ~PCI_Y2_PHY1_COMA;
1152 			if (sc->msk_num_port > 1)
1153 				val &= ~PCI_Y2_PHY2_COMA;
1154 		}
1155 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1156 
1157 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1158 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1159 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1160 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1161 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1162 			/* Enable bits are inverted. */
1163 			val = 0;
1164 		}
1165 		/*
1166 		 * Disable PCI & Core Clock, disable clock gating for
1167 		 * both Links.
1168 		 */
1169 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1170 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1171 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1172 		break;
1173 	default:
1174 		break;
1175 	}
1176 }
1177 
1178 static void
1179 mskc_reset(struct msk_softc *sc)
1180 {
1181 	bus_addr_t addr;
1182 	uint16_t status;
1183 	uint32_t val;
1184 	int i;
1185 
1186 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1187 
1188 	/* Disable ASF. */
1189 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1190 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1191 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1192 	}
1193 	/*
1194 	 * Since we disabled ASF, S/W reset is required for Power Management.
1195 	 */
1196 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1197 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1198 
1199 	/* Clear all error bits in the PCI status register. */
1200 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1201 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1202 
1203 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1204 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1205 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1206 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1207 
1208 	switch (sc->msk_bustype) {
1209 	case MSK_PEX_BUS:
1210 		/* Clear all PEX errors. */
1211 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1212 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1213 		if ((val & PEX_RX_OV) != 0) {
1214 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1215 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1216 		}
1217 		break;
1218 	case MSK_PCI_BUS:
1219 	case MSK_PCIX_BUS:
1220 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1221 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1222 		if (val == 0)
1223 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1224 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1225 			/* Set Cache Line Size opt. */
1226 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1227 			val |= PCI_CLS_OPT;
1228 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1229 		}
1230 		break;
1231 	}
1232 	/* Set PHY power state. */
1233 	msk_phy_power(sc, MSK_PHY_POWERUP);
1234 
1235 	/* Reset GPHY/GMAC Control */
1236 	for (i = 0; i < sc->msk_num_port; i++) {
1237 		/* GPHY Control reset. */
1238 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1239 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1240 		/* GMAC Control reset. */
1241 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1242 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1243 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1244 	}
1245 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1246 
1247 	/* LED On. */
1248 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1249 
1250 	/* Clear TWSI IRQ. */
1251 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1252 
1253 	/* Turn off hardware timer. */
1254 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1255 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1256 
1257 	/* Turn off descriptor polling. */
1258 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1259 
1260 	/* Turn off time stamps. */
1261 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1262 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1263 
1264 	/* Configure timeout values. */
1265 	for (i = 0; i < sc->msk_num_port; i++) {
1266 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1267 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1268 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1269 		    MSK_RI_TO_53);
1270 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1271 		    MSK_RI_TO_53);
1272 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1273 		    MSK_RI_TO_53);
1274 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1275 		    MSK_RI_TO_53);
1276 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1277 		    MSK_RI_TO_53);
1278 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1279 		    MSK_RI_TO_53);
1280 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1281 		    MSK_RI_TO_53);
1282 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1283 		    MSK_RI_TO_53);
1284 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1285 		    MSK_RI_TO_53);
1286 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1287 		    MSK_RI_TO_53);
1288 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1289 		    MSK_RI_TO_53);
1290 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1291 		    MSK_RI_TO_53);
1292 	}
1293 
1294 	/* Disable all interrupts. */
1295 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1296 	CSR_READ_4(sc, B0_HWE_IMSK);
1297 	CSR_WRITE_4(sc, B0_IMSK, 0);
1298 	CSR_READ_4(sc, B0_IMSK);
1299 
1300         /*
1301          * On dual port PCI-X card, there is an problem where status
1302          * can be received out of order due to split transactions.
1303          */
1304 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1305 		int pcix;
1306 		uint16_t pcix_cmd;
1307 
1308 		if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
1309 			pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1310 			/* Clear Max Outstanding Split Transactions. */
1311 			pcix_cmd &= ~0x70;
1312 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1313 			pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1314 			CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1315 		}
1316         }
1317 	if (sc->msk_bustype == MSK_PEX_BUS) {
1318 		uint16_t v, width;
1319 
1320 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1321 		/* Change Max. Read Request Size to 4096 bytes. */
1322 		v &= ~PEX_DC_MAX_RRS_MSK;
1323 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1324 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1325 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1326 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1327 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1328 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1329 		if (v != width)
1330 			device_printf(sc->msk_dev,
1331 			    "negotiated width of link(x%d) != "
1332 			    "max. width of link(x%d)\n", width, v);
1333 	}
1334 
1335 	/* Clear status list. */
1336 	bzero(sc->msk_stat_ring,
1337 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1338 	sc->msk_stat_cons = 0;
1339 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1340 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1341 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1342 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1343 	/* Set the status list base address. */
1344 	addr = sc->msk_stat_ring_paddr;
1345 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1346 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1347 	/* Set the status list last index. */
1348 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1349 	if (HW_FEATURE(sc, HWF_WA_DEV_43_418)) {
1350 		/* WA for dev. #4.3 */
1351 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1352 		/* WA for dev. #4.18 */
1353 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1354 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1355 	} else {
1356 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1357 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1358 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM,
1359 		    HW_FEATURE(sc, HWF_WA_DEV_4109) ? 0x10 : 0x04);
1360 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1361 	}
1362 	/*
1363 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1364 	 */
1365 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1366 
1367 	/* Enable status unit. */
1368 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1369 
1370 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1371 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1372 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1373 }
1374 
1375 static int
1376 msk_probe(device_t dev)
1377 {
1378 	struct msk_softc *sc;
1379 	char desc[100];
1380 
1381 	sc = device_get_softc(device_get_parent(dev));
1382 	/*
1383 	 * Not much to do here. We always know there will be
1384 	 * at least one GMAC present, and if there are two,
1385 	 * mskc_attach() will create a second device instance
1386 	 * for us.
1387 	 */
1388 	snprintf(desc, sizeof(desc),
1389 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1390 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1391 	    sc->msk_hw_rev);
1392 	device_set_desc_copy(dev, desc);
1393 
1394 	return (BUS_PROBE_DEFAULT);
1395 }
1396 
1397 static int
1398 msk_attach(device_t dev)
1399 {
1400 	struct msk_softc *sc;
1401 	struct msk_if_softc *sc_if;
1402 	struct ifnet *ifp;
1403 	int i, port, error;
1404 	uint8_t eaddr[6];
1405 
1406 	if (dev == NULL)
1407 		return (EINVAL);
1408 
1409 	error = 0;
1410 	sc_if = device_get_softc(dev);
1411 	sc = device_get_softc(device_get_parent(dev));
1412 	port = *(int *)device_get_ivars(dev);
1413 
1414 	sc_if->msk_if_dev = dev;
1415 	sc_if->msk_port = port;
1416 	sc_if->msk_softc = sc;
1417 	sc->msk_if[port] = sc_if;
1418 	/* Setup Tx/Rx queue register offsets. */
1419 	if (port == MSK_PORT_A) {
1420 		sc_if->msk_txq = Q_XA1;
1421 		sc_if->msk_txsq = Q_XS1;
1422 		sc_if->msk_rxq = Q_R1;
1423 	} else {
1424 		sc_if->msk_txq = Q_XA2;
1425 		sc_if->msk_txsq = Q_XS2;
1426 		sc_if->msk_rxq = Q_R2;
1427 	}
1428 
1429 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1430 	TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
1431 
1432 	if ((error = msk_txrx_dma_alloc(sc_if) != 0))
1433 		goto fail;
1434 
1435 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1436 	if (ifp == NULL) {
1437 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1438 		error = ENOSPC;
1439 		goto fail;
1440 	}
1441 	ifp->if_softc = sc_if;
1442 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1443 	ifp->if_mtu = ETHERMTU;
1444 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1445 	/*
1446 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1447 	 * has serious bug in Rx checksum offload for all Yukon II family
1448 	 * hardware. It seems there is a workaround to make it work somtimes.
1449 	 * However, the workaround also have to check OP code sequences to
1450 	 * verify whether the OP code is correct. Sometimes it should compute
1451 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1452 	 * checksum computed by hardware. If you have to compute checksum
1453 	 * with software to verify the hardware's checksum why have hardware
1454 	 * compute the checksum? I think there is no reason to spend time to
1455 	 * make Rx checksum offload work on Yukon II hardware.
1456 	 */
1457 	ifp->if_capabilities = IFCAP_TXCSUM;
1458 	ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1459 	if (sc->msk_hw_id != CHIP_ID_YUKON_EC_U) {
1460 		/* It seems Yukon EC Ultra doesn't support TSO. */
1461 		ifp->if_capabilities |= IFCAP_TSO4;
1462 		ifp->if_hwassist |= CSUM_TSO;
1463 	}
1464 	ifp->if_capenable = ifp->if_capabilities;
1465 	ifp->if_ioctl = msk_ioctl;
1466 	ifp->if_start = msk_start;
1467 	ifp->if_timer = 0;
1468 	ifp->if_watchdog = NULL;
1469 	ifp->if_init = msk_init;
1470 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1471 	ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1472 	IFQ_SET_READY(&ifp->if_snd);
1473 
1474 	TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
1475 
1476 	/*
1477 	 * Get station address for this interface. Note that
1478 	 * dual port cards actually come with three station
1479 	 * addresses: one for each port, plus an extra. The
1480 	 * extra one is used by the SysKonnect driver software
1481 	 * as a 'virtual' station address for when both ports
1482 	 * are operating in failover mode. Currently we don't
1483 	 * use this extra address.
1484 	 */
1485 	MSK_IF_LOCK(sc_if);
1486 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1487 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1488 
1489 	/*
1490 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1491 	 */
1492 	MSK_IF_UNLOCK(sc_if);
1493 	ether_ifattach(ifp, eaddr);
1494 	MSK_IF_LOCK(sc_if);
1495 
1496 	/* VLAN capability setup */
1497         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1498 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1499 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1500 	ifp->if_capenable = ifp->if_capabilities;
1501 
1502 	/*
1503 	 * Tell the upper layer(s) we support long frames.
1504 	 * Must appear after the call to ether_ifattach() because
1505 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1506 	 */
1507         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1508 
1509 	/*
1510 	 * Do miibus setup.
1511 	 */
1512 	MSK_IF_UNLOCK(sc_if);
1513 	error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
1514 	    msk_mediastatus);
1515 	if (error != 0) {
1516 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1517 		ether_ifdetach(ifp);
1518 		error = ENXIO;
1519 		goto fail;
1520 	}
1521 	/* Check whether PHY Id is MARVELL. */
1522 	if (msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_ID0)
1523 	    == PHY_MARV_ID0_VAL)
1524 		sc->msk_marvell_phy = 1;
1525 
1526 fail:
1527 	if (error != 0) {
1528 		/* Access should be ok even though lock has been dropped */
1529 		sc->msk_if[port] = NULL;
1530 		msk_detach(dev);
1531 	}
1532 
1533 	return (error);
1534 }
1535 
1536 /*
1537  * Attach the interface. Allocate softc structures, do ifmedia
1538  * setup and ethernet/BPF attach.
1539  */
1540 static int
1541 mskc_attach(device_t dev)
1542 {
1543 	struct msk_softc *sc;
1544 	int error, msic, *port, reg;
1545 
1546 	sc = device_get_softc(dev);
1547 	sc->msk_dev = dev;
1548 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1549 	    MTX_DEF);
1550 
1551 	/*
1552 	 * Map control/status registers.
1553 	 */
1554 	pci_enable_busmaster(dev);
1555 
1556 	/* Allocate I/O resource */
1557 #ifdef MSK_USEIOSPACE
1558 	sc->msk_res_spec = msk_res_spec_io;
1559 #else
1560 	sc->msk_res_spec = msk_res_spec_mem;
1561 #endif
1562 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1563 	if (error) {
1564 		if (sc->msk_res_spec == msk_res_spec_mem)
1565 			sc->msk_res_spec = msk_res_spec_io;
1566 		else
1567 			sc->msk_res_spec = msk_res_spec_mem;
1568 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1569 		if (error) {
1570 			device_printf(dev, "couldn't allocate %s resources\n",
1571 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1572 			    "I/O");
1573 			mtx_destroy(&sc->msk_mtx);
1574 			return (ENXIO);
1575 		}
1576 	}
1577 
1578 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1579 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1580 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1581 	/* Bail out if chip is not recognized. */
1582 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1583 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1584 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1585 		    sc->msk_hw_id, sc->msk_hw_rev);
1586 		error = ENXIO;
1587 		goto fail;
1588 	}
1589 
1590 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1591 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1592 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1593 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1594 	    "max number of Rx events to process");
1595 
1596 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1597 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1598 	    "process_limit", &sc->msk_process_limit);
1599 	if (error == 0) {
1600 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1601 		    sc->msk_process_limit > MSK_PROC_MAX) {
1602 			device_printf(dev, "process_limit value out of range; "
1603 			    "using default: %d\n", MSK_PROC_DEFAULT);
1604 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1605 		}
1606 	}
1607 
1608 	/* Soft reset. */
1609 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1610 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1611 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1612 	 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1613 		 sc->msk_coppertype = 0;
1614 	 else
1615 		 sc->msk_coppertype = 1;
1616 	/* Check number of MACs. */
1617 	sc->msk_num_port = 1;
1618 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1619 	    CFG_DUAL_MAC_MSK) {
1620 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1621 			sc->msk_num_port++;
1622 	}
1623 
1624 	/* Check bus type. */
1625 	if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
1626 		sc->msk_bustype = MSK_PEX_BUS;
1627 	else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
1628 		sc->msk_bustype = MSK_PCIX_BUS;
1629 	else
1630 		sc->msk_bustype = MSK_PCI_BUS;
1631 
1632 	/* Get H/W features(bugs). */
1633 	switch (sc->msk_hw_id) {
1634 	case CHIP_ID_YUKON_EC:
1635 		sc->msk_clock = 125;	/* 125 Mhz */
1636 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1637 			sc->msk_hw_feature =
1638 			    HWF_WA_DEV_42  | HWF_WA_DEV_46 | HWF_WA_DEV_43_418 |
1639 			    HWF_WA_DEV_420 | HWF_WA_DEV_423 |
1640 			    HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
1641 			    HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1642 			    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1643 		} else {
1644 			/* A2/A3 */
1645 			sc->msk_hw_feature =
1646 			    HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
1647 			    HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1648 			    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1649 		}
1650 		break;
1651 	case CHIP_ID_YUKON_EC_U:
1652 		sc->msk_clock = 125;	/* 125 Mhz */
1653 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
1654 			sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_483 |
1655 			    HWF_WA_DEV_4109;
1656 		} else if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1657 			uint16_t v;
1658 
1659 			sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
1660 			    HWF_WA_DEV_4185;
1661 			v = CSR_READ_2(sc, Q_ADDR(Q_XA1, Q_WM));
1662 			if (v == 0)
1663 				sc->msk_hw_feature |= HWF_WA_DEV_4185CS |
1664 				    HWF_WA_DEV_4200;
1665 		}
1666 		break;
1667 	case CHIP_ID_YUKON_FE:
1668 		sc->msk_clock = 100;	/* 100 Mhz */
1669 		sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
1670 		    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1671 		break;
1672 	case CHIP_ID_YUKON_XL:
1673 		sc->msk_clock = 156;	/* 156 Mhz */
1674 		switch (sc->msk_hw_rev) {
1675 		case CHIP_REV_YU_XL_A0:
1676 			sc->msk_hw_feature =
1677 			    HWF_WA_DEV_427 | HWF_WA_DEV_463 | HWF_WA_DEV_472 |
1678 			    HWF_WA_DEV_479 | HWF_WA_DEV_483 | HWF_WA_DEV_4115 |
1679 			    HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1680 			break;
1681 		case CHIP_REV_YU_XL_A1:
1682 			sc->msk_hw_feature =
1683 			    HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1684 			    HWF_WA_DEV_4115 | HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
1685 			break;
1686 		case CHIP_REV_YU_XL_A2:
1687 			sc->msk_hw_feature =
1688 			    HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1689 			    HWF_WA_DEV_4115 | HWF_WA_DEV_4167;
1690 			break;
1691 		case CHIP_REV_YU_XL_A3:
1692 			sc->msk_hw_feature =
1693 			    HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
1694 			    HWF_WA_DEV_4115;
1695 		}
1696 		break;
1697 	default:
1698 		sc->msk_clock = 156;	/* 156 Mhz */
1699 		sc->msk_hw_feature = 0;
1700 	}
1701 
1702 	/* Allocate IRQ resources. */
1703 	msic = pci_msi_count(dev);
1704 	if (bootverbose)
1705 		device_printf(dev, "MSI count : %d\n", msic);
1706 	/*
1707 	 * The Yukon II reports it can handle two messages, one for each
1708 	 * possible port.  We go ahead and allocate two messages and only
1709 	 * setup a handler for both if we have a dual port card.
1710 	 *
1711 	 * XXX: I haven't untangled the interrupt handler to handle dual
1712 	 * port cards with separate MSI messages, so for now I disable MSI
1713 	 * on dual port cards.
1714 	 */
1715 	if (msic == 2 && msi_disable == 0 && sc->msk_num_port == 1 &&
1716 	    pci_alloc_msi(dev, &msic) == 0) {
1717 		if (msic == 2) {
1718 			sc->msk_msi = 1;
1719 			sc->msk_irq_spec = msk_irq_spec_msi;
1720 		} else {
1721 			pci_release_msi(dev);
1722 			sc->msk_irq_spec = msk_irq_spec_legacy;
1723 		}
1724 	}
1725 
1726 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1727 	if (error) {
1728 		device_printf(dev, "couldn't allocate IRQ resources\n");
1729 		goto fail;
1730 	}
1731 
1732 	if ((error = msk_status_dma_alloc(sc)) != 0)
1733 		goto fail;
1734 
1735 	/* Set base interrupt mask. */
1736 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1737 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1738 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1739 
1740 	/* Reset the adapter. */
1741 	mskc_reset(sc);
1742 
1743 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1744 		goto fail;
1745 
1746 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1747 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1748 		device_printf(dev, "failed to add child for PORT_A\n");
1749 		error = ENXIO;
1750 		goto fail;
1751 	}
1752 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1753 	if (port == NULL) {
1754 		device_printf(dev, "failed to allocate memory for "
1755 		    "ivars of PORT_A\n");
1756 		error = ENXIO;
1757 		goto fail;
1758 	}
1759 	*port = MSK_PORT_A;
1760 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1761 
1762 	if (sc->msk_num_port > 1) {
1763 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1764 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1765 			device_printf(dev, "failed to add child for PORT_B\n");
1766 			error = ENXIO;
1767 			goto fail;
1768 		}
1769 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1770 		if (port == NULL) {
1771 			device_printf(dev, "failed to allocate memory for "
1772 			    "ivars of PORT_B\n");
1773 			error = ENXIO;
1774 			goto fail;
1775 		}
1776 		*port = MSK_PORT_B;
1777 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1778 	}
1779 
1780 	error = bus_generic_attach(dev);
1781 	if (error) {
1782 		device_printf(dev, "failed to attach port(s)\n");
1783 		goto fail;
1784 	}
1785 
1786 	TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
1787 	sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
1788 	    taskqueue_thread_enqueue, &sc->msk_tq);
1789 	taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
1790 	    device_get_nameunit(sc->msk_dev));
1791 	/* Hook interrupt last to avoid having to lock softc. */
1792 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1793 	    INTR_MPSAFE | INTR_FAST, msk_intr, sc, &sc->msk_intrhand[0]);
1794 
1795 	if (error != 0) {
1796 		device_printf(dev, "couldn't set up interrupt handler\n");
1797 		taskqueue_free(sc->msk_tq);
1798 		sc->msk_tq = NULL;
1799 		goto fail;
1800 	}
1801 fail:
1802 	if (error != 0)
1803 		mskc_detach(dev);
1804 
1805 	return (error);
1806 }
1807 
1808 /*
1809  * Shutdown hardware and free up resources. This can be called any
1810  * time after the mutex has been initialized. It is called in both
1811  * the error case in attach and the normal detach case so it needs
1812  * to be careful about only freeing resources that have actually been
1813  * allocated.
1814  */
1815 static int
1816 msk_detach(device_t dev)
1817 {
1818 	struct msk_softc *sc;
1819 	struct msk_if_softc *sc_if;
1820 	struct ifnet *ifp;
1821 
1822 	sc_if = device_get_softc(dev);
1823 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
1824 	    ("msk mutex not initialized in msk_detach"));
1825 	MSK_IF_LOCK(sc_if);
1826 
1827 	ifp = sc_if->msk_ifp;
1828 	if (device_is_attached(dev)) {
1829 		/* XXX */
1830 		sc_if->msk_detach = 1;
1831 		msk_stop(sc_if);
1832 		/* Can't hold locks while calling detach. */
1833 		MSK_IF_UNLOCK(sc_if);
1834 		callout_drain(&sc_if->msk_tick_ch);
1835 		taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
1836 		taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
1837 		ether_ifdetach(ifp);
1838 		MSK_IF_LOCK(sc_if);
1839 	}
1840 
1841 	/*
1842 	 * We're generally called from mskc_detach() which is using
1843 	 * device_delete_child() to get to here. It's already trashed
1844 	 * miibus for us, so don't do it here or we'll panic.
1845 	 *
1846 	 * if (sc_if->msk_miibus != NULL) {
1847 	 * 	device_delete_child(dev, sc_if->msk_miibus);
1848 	 * 	sc_if->msk_miibus = NULL;
1849 	 * }
1850 	 */
1851 
1852 	msk_txrx_dma_free(sc_if);
1853 	bus_generic_detach(dev);
1854 
1855 	if (ifp)
1856 		if_free(ifp);
1857 	sc = sc_if->msk_softc;
1858 	sc->msk_if[sc_if->msk_port] = NULL;
1859 	MSK_IF_UNLOCK(sc_if);
1860 
1861 	return (0);
1862 }
1863 
1864 static int
1865 mskc_detach(device_t dev)
1866 {
1867 	struct msk_softc *sc;
1868 
1869 	sc = device_get_softc(dev);
1870 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
1871 
1872 	if (device_is_alive(dev)) {
1873 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
1874 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
1875 			    M_DEVBUF);
1876 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
1877 		}
1878 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
1879 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
1880 			    M_DEVBUF);
1881 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
1882 		}
1883 		bus_generic_detach(dev);
1884 	}
1885 
1886 	/* Disable all interrupts. */
1887 	CSR_WRITE_4(sc, B0_IMSK, 0);
1888 	CSR_READ_4(sc, B0_IMSK);
1889 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1890 	CSR_READ_4(sc, B0_HWE_IMSK);
1891 
1892 	/* LED Off. */
1893 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1894 
1895 	/* Put hardware reset. */
1896 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1897 
1898 	msk_status_dma_free(sc);
1899 
1900 	if (sc->msk_tq != NULL) {
1901 		taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
1902 		taskqueue_free(sc->msk_tq);
1903 		sc->msk_tq = NULL;
1904 	}
1905 	if (sc->msk_intrhand[0]) {
1906 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1907 		sc->msk_intrhand[0] = NULL;
1908 	}
1909 	if (sc->msk_intrhand[1]) {
1910 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
1911 		sc->msk_intrhand[1] = NULL;
1912 	}
1913 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1914 	if (sc->msk_msi)
1915 		pci_release_msi(dev);
1916 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
1917 	mtx_destroy(&sc->msk_mtx);
1918 
1919 	return (0);
1920 }
1921 
1922 struct msk_dmamap_arg {
1923 	bus_addr_t	msk_busaddr;
1924 };
1925 
1926 static void
1927 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1928 {
1929 	struct msk_dmamap_arg *ctx;
1930 
1931 	if (error != 0)
1932 		return;
1933 	ctx = arg;
1934 	ctx->msk_busaddr = segs[0].ds_addr;
1935 }
1936 
1937 /* Create status DMA region. */
1938 static int
1939 msk_status_dma_alloc(struct msk_softc *sc)
1940 {
1941 	struct msk_dmamap_arg ctx;
1942 	int error;
1943 
1944 	error = bus_dma_tag_create(
1945 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
1946 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1947 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1948 		    BUS_SPACE_MAXADDR,		/* highaddr */
1949 		    NULL, NULL,			/* filter, filterarg */
1950 		    MSK_STAT_RING_SZ,		/* maxsize */
1951 		    1,				/* nsegments */
1952 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1953 		    0,				/* flags */
1954 		    NULL, NULL,			/* lockfunc, lockarg */
1955 		    &sc->msk_stat_tag);
1956 	if (error != 0) {
1957 		device_printf(sc->msk_dev,
1958 		    "failed to create status DMA tag\n");
1959 		return (error);
1960 	}
1961 
1962 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1963 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1964 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
1965 	    BUS_DMA_ZERO, &sc->msk_stat_map);
1966 	if (error != 0) {
1967 		device_printf(sc->msk_dev,
1968 		    "failed to allocate DMA'able memory for status ring\n");
1969 		return (error);
1970 	}
1971 
1972 	ctx.msk_busaddr = 0;
1973 	error = bus_dmamap_load(sc->msk_stat_tag,
1974 	    sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
1975 	    msk_dmamap_cb, &ctx, 0);
1976 	if (error != 0) {
1977 		device_printf(sc->msk_dev,
1978 		    "failed to load DMA'able memory for status ring\n");
1979 		return (error);
1980 	}
1981 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
1982 
1983 	return (0);
1984 }
1985 
1986 static void
1987 msk_status_dma_free(struct msk_softc *sc)
1988 {
1989 
1990 	/* Destroy status block. */
1991 	if (sc->msk_stat_tag) {
1992 		if (sc->msk_stat_map) {
1993 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1994 			if (sc->msk_stat_ring) {
1995 				bus_dmamem_free(sc->msk_stat_tag,
1996 				    sc->msk_stat_ring, sc->msk_stat_map);
1997 				sc->msk_stat_ring = NULL;
1998 			}
1999 			sc->msk_stat_map = NULL;
2000 		}
2001 		bus_dma_tag_destroy(sc->msk_stat_tag);
2002 		sc->msk_stat_tag = NULL;
2003 	}
2004 }
2005 
2006 static int
2007 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2008 {
2009 	struct msk_dmamap_arg ctx;
2010 	struct msk_txdesc *txd;
2011 	struct msk_rxdesc *rxd;
2012 	struct msk_rxdesc *jrxd;
2013 	struct msk_jpool_entry *entry;
2014 	uint8_t *ptr;
2015 	int error, i;
2016 
2017 	mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF);
2018 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2019 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2020 
2021 	/* Create parent DMA tag. */
2022 	/*
2023 	 * XXX
2024 	 * It seems that Yukon II supports full 64bits DMA operations. But
2025 	 * it needs two descriptors(list elements) for 64bits DMA operations.
2026 	 * Since we don't know what DMA address mappings(32bits or 64bits)
2027 	 * would be used in advance for each mbufs, we limits its DMA space
2028 	 * to be in range of 32bits address space. Otherwise, we should check
2029 	 * what DMA address is used and chain another descriptor for the
2030 	 * 64bits DMA operation. This also means descriptor ring size is
2031 	 * variable. Limiting DMA address to be in 32bit address space greatly
2032 	 * simplyfies descriptor handling and possibly would increase
2033 	 * performance a bit due to efficient handling of descriptors.
2034 	 * Apart from harassing checksum offloading mechanisms, it seems
2035 	 * it's really bad idea to use a seperate descriptor for 64bit
2036 	 * DMA operation to save small descriptor memory. Anyway, I've
2037 	 * never seen these exotic scheme on ethernet interface hardware.
2038 	 */
2039 	error = bus_dma_tag_create(
2040 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2041 		    1, 0,			/* alignment, boundary */
2042 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2043 		    BUS_SPACE_MAXADDR,		/* highaddr */
2044 		    NULL, NULL,			/* filter, filterarg */
2045 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2046 		    0,				/* nsegments */
2047 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2048 		    0,				/* flags */
2049 		    NULL, NULL,			/* lockfunc, lockarg */
2050 		    &sc_if->msk_cdata.msk_parent_tag);
2051 	if (error != 0) {
2052 		device_printf(sc_if->msk_if_dev,
2053 		    "failed to create parent DMA tag\n");
2054 		goto fail;
2055 	}
2056 	/* Create tag for Tx ring. */
2057 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2058 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2059 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2060 		    BUS_SPACE_MAXADDR,		/* highaddr */
2061 		    NULL, NULL,			/* filter, filterarg */
2062 		    MSK_TX_RING_SZ,		/* maxsize */
2063 		    1,				/* nsegments */
2064 		    MSK_TX_RING_SZ,		/* maxsegsize */
2065 		    0,				/* flags */
2066 		    NULL, NULL,			/* lockfunc, lockarg */
2067 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2068 	if (error != 0) {
2069 		device_printf(sc_if->msk_if_dev,
2070 		    "failed to create Tx ring DMA tag\n");
2071 		goto fail;
2072 	}
2073 
2074 	/* Create tag for Rx ring. */
2075 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2076 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2077 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2078 		    BUS_SPACE_MAXADDR,		/* highaddr */
2079 		    NULL, NULL,			/* filter, filterarg */
2080 		    MSK_RX_RING_SZ,		/* maxsize */
2081 		    1,				/* nsegments */
2082 		    MSK_RX_RING_SZ,		/* maxsegsize */
2083 		    0,				/* flags */
2084 		    NULL, NULL,			/* lockfunc, lockarg */
2085 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2086 	if (error != 0) {
2087 		device_printf(sc_if->msk_if_dev,
2088 		    "failed to create Rx ring DMA tag\n");
2089 		goto fail;
2090 	}
2091 
2092 	/* Create tag for jumbo Rx ring. */
2093 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2094 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2095 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2096 		    BUS_SPACE_MAXADDR,		/* highaddr */
2097 		    NULL, NULL,			/* filter, filterarg */
2098 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2099 		    1,				/* nsegments */
2100 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2101 		    0,				/* flags */
2102 		    NULL, NULL,			/* lockfunc, lockarg */
2103 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2104 	if (error != 0) {
2105 		device_printf(sc_if->msk_if_dev,
2106 		    "failed to create jumbo Rx ring DMA tag\n");
2107 		goto fail;
2108 	}
2109 
2110 	/* Create tag for jumbo buffer blocks. */
2111 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2112 		    PAGE_SIZE, 0,		/* alignment, boundary */
2113 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2114 		    BUS_SPACE_MAXADDR,		/* highaddr */
2115 		    NULL, NULL,			/* filter, filterarg */
2116 		    MSK_JMEM,			/* maxsize */
2117 		    1,				/* nsegments */
2118 		    MSK_JMEM,			/* maxsegsize */
2119 		    0,				/* flags */
2120 		    NULL, NULL,			/* lockfunc, lockarg */
2121 		    &sc_if->msk_cdata.msk_jumbo_tag);
2122 	if (error != 0) {
2123 		device_printf(sc_if->msk_if_dev,
2124 		    "failed to create jumbo Rx buffer block DMA tag\n");
2125 		goto fail;
2126 	}
2127 
2128 	/* Create tag for Tx buffers. */
2129 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2130 		    1, 0,			/* alignment, boundary */
2131 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2132 		    BUS_SPACE_MAXADDR,		/* highaddr */
2133 		    NULL, NULL,			/* filter, filterarg */
2134 		    MCLBYTES * MSK_MAXTXSEGS,	/* maxsize */
2135 		    MSK_MAXTXSEGS,		/* nsegments */
2136 		    MCLBYTES,			/* maxsegsize */
2137 		    0,				/* flags */
2138 		    NULL, NULL,			/* lockfunc, lockarg */
2139 		    &sc_if->msk_cdata.msk_tx_tag);
2140 	if (error != 0) {
2141 		device_printf(sc_if->msk_if_dev,
2142 		    "failed to create Tx DMA tag\n");
2143 		goto fail;
2144 	}
2145 
2146 	/* Create tag for Rx buffers. */
2147 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2148 		    1, 0,			/* alignment, boundary */
2149 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2150 		    BUS_SPACE_MAXADDR,		/* highaddr */
2151 		    NULL, NULL,			/* filter, filterarg */
2152 		    MCLBYTES,			/* maxsize */
2153 		    1,				/* nsegments */
2154 		    MCLBYTES,			/* maxsegsize */
2155 		    0,				/* flags */
2156 		    NULL, NULL,			/* lockfunc, lockarg */
2157 		    &sc_if->msk_cdata.msk_rx_tag);
2158 	if (error != 0) {
2159 		device_printf(sc_if->msk_if_dev,
2160 		    "failed to create Rx DMA tag\n");
2161 		goto fail;
2162 	}
2163 
2164 	/* Create tag for jumbo Rx buffers. */
2165 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2166 		    PAGE_SIZE, 0,		/* alignment, boundary */
2167 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2168 		    BUS_SPACE_MAXADDR,		/* highaddr */
2169 		    NULL, NULL,			/* filter, filterarg */
2170 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2171 		    MSK_MAXRXSEGS,		/* nsegments */
2172 		    MSK_JLEN,			/* maxsegsize */
2173 		    0,				/* flags */
2174 		    NULL, NULL,			/* lockfunc, lockarg */
2175 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2176 	if (error != 0) {
2177 		device_printf(sc_if->msk_if_dev,
2178 		    "failed to create jumbo Rx DMA tag\n");
2179 		goto fail;
2180 	}
2181 
2182 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2183 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2184 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2185 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2186 	if (error != 0) {
2187 		device_printf(sc_if->msk_if_dev,
2188 		    "failed to allocate DMA'able memory for Tx ring\n");
2189 		goto fail;
2190 	}
2191 
2192 	ctx.msk_busaddr = 0;
2193 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2194 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2195 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2196 	if (error != 0) {
2197 		device_printf(sc_if->msk_if_dev,
2198 		    "failed to load DMA'able memory for Tx ring\n");
2199 		goto fail;
2200 	}
2201 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2202 
2203 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2204 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2205 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2206 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2207 	if (error != 0) {
2208 		device_printf(sc_if->msk_if_dev,
2209 		    "failed to allocate DMA'able memory for Rx ring\n");
2210 		goto fail;
2211 	}
2212 
2213 	ctx.msk_busaddr = 0;
2214 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2215 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2216 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
2217 	if (error != 0) {
2218 		device_printf(sc_if->msk_if_dev,
2219 		    "failed to load DMA'able memory for Rx ring\n");
2220 		goto fail;
2221 	}
2222 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2223 
2224 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2225 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2226 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2227 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2228 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2229 	if (error != 0) {
2230 		device_printf(sc_if->msk_if_dev,
2231 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2232 		goto fail;
2233 	}
2234 
2235 	ctx.msk_busaddr = 0;
2236 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2237 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2238 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2239 	    msk_dmamap_cb, &ctx, 0);
2240 	if (error != 0) {
2241 		device_printf(sc_if->msk_if_dev,
2242 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2243 		goto fail;
2244 	}
2245 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2246 
2247 	/* Create DMA maps for Tx buffers. */
2248 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2249 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2250 		txd->tx_m = NULL;
2251 		txd->tx_dmamap = NULL;
2252 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2253 		    &txd->tx_dmamap);
2254 		if (error != 0) {
2255 			device_printf(sc_if->msk_if_dev,
2256 			    "failed to create Tx dmamap\n");
2257 			goto fail;
2258 		}
2259 	}
2260 	/* Create DMA maps for Rx buffers. */
2261 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2262 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2263 		device_printf(sc_if->msk_if_dev,
2264 		    "failed to create spare Rx dmamap\n");
2265 		goto fail;
2266 	}
2267 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2268 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2269 		rxd->rx_m = NULL;
2270 		rxd->rx_dmamap = NULL;
2271 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2272 		    &rxd->rx_dmamap);
2273 		if (error != 0) {
2274 			device_printf(sc_if->msk_if_dev,
2275 			    "failed to create Rx dmamap\n");
2276 			goto fail;
2277 		}
2278 	}
2279 	/* Create DMA maps for jumbo Rx buffers. */
2280 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2281 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2282 		device_printf(sc_if->msk_if_dev,
2283 		    "failed to create spare jumbo Rx dmamap\n");
2284 		goto fail;
2285 	}
2286 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2287 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2288 		jrxd->rx_m = NULL;
2289 		jrxd->rx_dmamap = NULL;
2290 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2291 		    &jrxd->rx_dmamap);
2292 		if (error != 0) {
2293 			device_printf(sc_if->msk_if_dev,
2294 			    "failed to create jumbo Rx dmamap\n");
2295 			goto fail;
2296 		}
2297 	}
2298 
2299 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2300 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2301 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2302 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2303 	    &sc_if->msk_cdata.msk_jumbo_map);
2304 	if (error != 0) {
2305 		device_printf(sc_if->msk_if_dev,
2306 		    "failed to allocate DMA'able memory for jumbo buf\n");
2307 		goto fail;
2308 	}
2309 
2310 	ctx.msk_busaddr = 0;
2311 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2312 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2313 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2314 	if (error != 0) {
2315 		device_printf(sc_if->msk_if_dev,
2316 		    "failed to load DMA'able memory for jumbobuf\n");
2317 		goto fail;
2318 	}
2319 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2320 
2321 	/*
2322 	 * Now divide it up into 9K pieces and save the addresses
2323 	 * in an array.
2324 	 */
2325 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2326 	for (i = 0; i < MSK_JSLOTS; i++) {
2327 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2328 		ptr += MSK_JLEN;
2329 		entry = malloc(sizeof(struct msk_jpool_entry),
2330 		    M_DEVBUF, M_WAITOK);
2331 		if (entry == NULL) {
2332 			device_printf(sc_if->msk_if_dev,
2333 			    "no memory for jumbo buffers!\n");
2334 			error = ENOMEM;
2335 			goto fail;
2336 		}
2337 		entry->slot = i;
2338 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2339 		    jpool_entries);
2340 	}
2341 
2342 fail:
2343 	return (error);
2344 }
2345 
2346 static void
2347 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2348 {
2349 	struct msk_txdesc *txd;
2350 	struct msk_rxdesc *rxd;
2351 	struct msk_rxdesc *jrxd;
2352 	struct msk_jpool_entry *entry;
2353 	int i;
2354 
2355 	MSK_JLIST_LOCK(sc_if);
2356 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2357 		device_printf(sc_if->msk_if_dev,
2358 		    "asked to free buffer that is in use!\n");
2359 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2360 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2361 		    jpool_entries);
2362 	}
2363 
2364 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2365 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2366 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2367 		free(entry, M_DEVBUF);
2368 	}
2369 	MSK_JLIST_UNLOCK(sc_if);
2370 
2371 	/* Destroy jumbo buffer block. */
2372 	if (sc_if->msk_cdata.msk_jumbo_map)
2373 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2374 		    sc_if->msk_cdata.msk_jumbo_map);
2375 
2376 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2377 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2378 		    sc_if->msk_rdata.msk_jumbo_buf,
2379 		    sc_if->msk_cdata.msk_jumbo_map);
2380 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2381 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2382 	}
2383 
2384 	/* Tx ring. */
2385 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2386 		if (sc_if->msk_cdata.msk_tx_ring_map)
2387 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2388 			    sc_if->msk_cdata.msk_tx_ring_map);
2389 		if (sc_if->msk_cdata.msk_tx_ring_map &&
2390 		    sc_if->msk_rdata.msk_tx_ring)
2391 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2392 			    sc_if->msk_rdata.msk_tx_ring,
2393 			    sc_if->msk_cdata.msk_tx_ring_map);
2394 		sc_if->msk_rdata.msk_tx_ring = NULL;
2395 		sc_if->msk_cdata.msk_tx_ring_map = NULL;
2396 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2397 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2398 	}
2399 	/* Rx ring. */
2400 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2401 		if (sc_if->msk_cdata.msk_rx_ring_map)
2402 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2403 			    sc_if->msk_cdata.msk_rx_ring_map);
2404 		if (sc_if->msk_cdata.msk_rx_ring_map &&
2405 		    sc_if->msk_rdata.msk_rx_ring)
2406 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2407 			    sc_if->msk_rdata.msk_rx_ring,
2408 			    sc_if->msk_cdata.msk_rx_ring_map);
2409 		sc_if->msk_rdata.msk_rx_ring = NULL;
2410 		sc_if->msk_cdata.msk_rx_ring_map = NULL;
2411 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2412 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2413 	}
2414 	/* Jumbo Rx ring. */
2415 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2416 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2417 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2418 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2419 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2420 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2421 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2422 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2423 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2424 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2425 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2426 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2427 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2428 	}
2429 	/* Tx buffers. */
2430 	if (sc_if->msk_cdata.msk_tx_tag) {
2431 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2432 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2433 			if (txd->tx_dmamap) {
2434 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2435 				    txd->tx_dmamap);
2436 				txd->tx_dmamap = NULL;
2437 			}
2438 		}
2439 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2440 		sc_if->msk_cdata.msk_tx_tag = NULL;
2441 	}
2442 	/* Rx buffers. */
2443 	if (sc_if->msk_cdata.msk_rx_tag) {
2444 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2445 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2446 			if (rxd->rx_dmamap) {
2447 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2448 				    rxd->rx_dmamap);
2449 				rxd->rx_dmamap = NULL;
2450 			}
2451 		}
2452 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2453 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2454 			    sc_if->msk_cdata.msk_rx_sparemap);
2455 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2456 		}
2457 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2458 		sc_if->msk_cdata.msk_rx_tag = NULL;
2459 	}
2460 	/* Jumbo Rx buffers. */
2461 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2462 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2463 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2464 			if (jrxd->rx_dmamap) {
2465 				bus_dmamap_destroy(
2466 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2467 				    jrxd->rx_dmamap);
2468 				jrxd->rx_dmamap = NULL;
2469 			}
2470 		}
2471 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2472 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2473 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2474 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2475 		}
2476 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2477 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2478 	}
2479 
2480 	if (sc_if->msk_cdata.msk_parent_tag) {
2481 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2482 		sc_if->msk_cdata.msk_parent_tag = NULL;
2483 	}
2484 	mtx_destroy(&sc_if->msk_jlist_mtx);
2485 }
2486 
2487 /*
2488  * Allocate a jumbo buffer.
2489  */
2490 static void *
2491 msk_jalloc(struct msk_if_softc *sc_if)
2492 {
2493 	struct msk_jpool_entry *entry;
2494 
2495 	MSK_JLIST_LOCK(sc_if);
2496 
2497 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2498 
2499 	if (entry == NULL) {
2500 		MSK_JLIST_UNLOCK(sc_if);
2501 		return (NULL);
2502 	}
2503 
2504 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2505 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2506 
2507 	MSK_JLIST_UNLOCK(sc_if);
2508 
2509 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2510 }
2511 
2512 /*
2513  * Release a jumbo buffer.
2514  */
2515 static void
2516 msk_jfree(void *buf, void *args)
2517 {
2518 	struct msk_if_softc *sc_if;
2519 	struct msk_jpool_entry *entry;
2520 	int i;
2521 
2522 	/* Extract the softc struct pointer. */
2523 	sc_if = (struct msk_if_softc *)args;
2524 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2525 
2526 	MSK_JLIST_LOCK(sc_if);
2527 	/* Calculate the slot this buffer belongs to. */
2528 	i = ((vm_offset_t)buf
2529 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2530 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2531 	    ("%s: asked to free buffer that we don't manage!", __func__));
2532 
2533 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2534 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2535 	entry->slot = i;
2536 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2537 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2538 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2539 		wakeup(sc_if);
2540 
2541 	MSK_JLIST_UNLOCK(sc_if);
2542 }
2543 
2544 /*
2545  * It's copy of ath_defrag(ath(4)).
2546  *
2547  * Defragment an mbuf chain, returning at most maxfrags separate
2548  * mbufs+clusters.  If this is not possible NULL is returned and
2549  * the original mbuf chain is left in it's present (potentially
2550  * modified) state.  We use two techniques: collapsing consecutive
2551  * mbufs and replacing consecutive mbufs by a cluster.
2552  */
2553 static struct mbuf *
2554 msk_defrag(struct mbuf *m0, int how, int maxfrags)
2555 {
2556 	struct mbuf *m, *n, *n2, **prev;
2557 	u_int curfrags;
2558 
2559 	/*
2560 	 * Calculate the current number of frags.
2561 	 */
2562 	curfrags = 0;
2563 	for (m = m0; m != NULL; m = m->m_next)
2564 		curfrags++;
2565 	/*
2566 	 * First, try to collapse mbufs.  Note that we always collapse
2567 	 * towards the front so we don't need to deal with moving the
2568 	 * pkthdr.  This may be suboptimal if the first mbuf has much
2569 	 * less data than the following.
2570 	 */
2571 	m = m0;
2572 again:
2573 	for (;;) {
2574 		n = m->m_next;
2575 		if (n == NULL)
2576 			break;
2577 		if ((m->m_flags & M_RDONLY) == 0 &&
2578 		    n->m_len < M_TRAILINGSPACE(m)) {
2579 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2580 				n->m_len);
2581 			m->m_len += n->m_len;
2582 			m->m_next = n->m_next;
2583 			m_free(n);
2584 			if (--curfrags <= maxfrags)
2585 				return (m0);
2586 		} else
2587 			m = n;
2588 	}
2589 	KASSERT(maxfrags > 1,
2590 		("maxfrags %u, but normal collapse failed", maxfrags));
2591 	/*
2592 	 * Collapse consecutive mbufs to a cluster.
2593 	 */
2594 	prev = &m0->m_next;		/* NB: not the first mbuf */
2595 	while ((n = *prev) != NULL) {
2596 		if ((n2 = n->m_next) != NULL &&
2597 		    n->m_len + n2->m_len < MCLBYTES) {
2598 			m = m_getcl(how, MT_DATA, 0);
2599 			if (m == NULL)
2600 				goto bad;
2601 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
2602 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
2603 				n2->m_len);
2604 			m->m_len = n->m_len + n2->m_len;
2605 			m->m_next = n2->m_next;
2606 			*prev = m;
2607 			m_free(n);
2608 			m_free(n2);
2609 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
2610 				return m0;
2611 			/*
2612 			 * Still not there, try the normal collapse
2613 			 * again before we allocate another cluster.
2614 			 */
2615 			goto again;
2616 		}
2617 		prev = &n->m_next;
2618 	}
2619 	/*
2620 	 * No place where we can collapse to a cluster; punt.
2621 	 * This can occur if, for example, you request 2 frags
2622 	 * but the packet requires that both be clusters (we
2623 	 * never reallocate the first mbuf to avoid moving the
2624 	 * packet header).
2625 	 */
2626 bad:
2627 	return (NULL);
2628 }
2629 
2630 static int
2631 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2632 {
2633 	struct msk_txdesc *txd, *txd_last;
2634 	struct msk_tx_desc *tx_le;
2635 	struct mbuf *m;
2636 	bus_dmamap_t map;
2637 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2638 	uint32_t control, prod, si;
2639 	uint16_t offset, tcp_offset, tso_mtu;
2640 	int error, i, nseg, tso;
2641 
2642 	MSK_IF_LOCK_ASSERT(sc_if);
2643 
2644 	tcp_offset = offset = 0;
2645 	m = *m_head;
2646 	if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
2647 		/*
2648 		 * Since mbuf has no protocol specific structure information
2649 		 * in it we have to inspect protocol information here to
2650 		 * setup TSO and checksum offload. I don't know why Marvell
2651 		 * made a such decision in chip design because other GigE
2652 		 * hardwares normally takes care of all these chores in
2653 		 * hardware. However, TSO performance of Yukon II is very
2654 		 * good such that it's worth to implement it.
2655 		 */
2656 		struct ether_vlan_header *evh;
2657 		struct ether_header *eh;
2658 		struct ip *ip;
2659 		struct tcphdr *tcp;
2660 
2661 		/* TODO check for M_WRITABLE(m) */
2662 
2663 		offset = sizeof(struct ether_header);
2664 		m = m_pullup(m, offset);
2665 		if (m == NULL) {
2666 			*m_head = NULL;
2667 			return (ENOBUFS);
2668 		}
2669 		eh = mtod(m, struct ether_header *);
2670 		/* Check if hardware VLAN insertion is off. */
2671 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2672 			offset = sizeof(struct ether_vlan_header);
2673 			m = m_pullup(m, offset);
2674 			if (m == NULL) {
2675 				*m_head = NULL;
2676 				return (ENOBUFS);
2677 			}
2678 			evh = mtod(m, struct ether_vlan_header *);
2679 			ip = (struct ip *)(evh + 1);
2680 		} else
2681 			ip = (struct ip *)(eh + 1);
2682 		m = m_pullup(m, offset + sizeof(struct ip));
2683 		if (m == NULL) {
2684 			*m_head = NULL;
2685 			return (ENOBUFS);
2686 		}
2687 		offset += (ip->ip_hl << 2);
2688 		tcp_offset = offset;
2689 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2690 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2691 			if (m == NULL) {
2692 				*m_head = NULL;
2693 				return (ENOBUFS);
2694 			}
2695 			tcp = mtod(m, struct tcphdr *);
2696 			offset += (tcp->th_off << 2);
2697 		}
2698 		*m_head = m;
2699 	}
2700 
2701 	prod = sc_if->msk_cdata.msk_tx_prod;
2702 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2703 	txd_last = txd;
2704 	map = txd->tx_dmamap;
2705 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2706 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2707 	if (error == EFBIG) {
2708 		m = msk_defrag(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
2709 		if (m == NULL) {
2710 			m_freem(*m_head);
2711 			*m_head = NULL;
2712 			return (ENOBUFS);
2713 		}
2714 		*m_head = m;
2715 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2716 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2717 		if (error != 0) {
2718 			m_freem(*m_head);
2719 			*m_head = NULL;
2720 			return (error);
2721 		}
2722 	} else if (error != 0)
2723 		return (error);
2724 	if (nseg == 0) {
2725 		m_freem(*m_head);
2726 		*m_head = NULL;
2727 		return (EIO);
2728 	}
2729 
2730 	/* Check number of available descriptors. */
2731 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2732 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2733 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2734 		return (ENOBUFS);
2735 	}
2736 
2737 	control = 0;
2738 	tso = 0;
2739 	tx_le = NULL;
2740 
2741 	/* Check TSO support. */
2742 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2743 		tso_mtu = offset + m->m_pkthdr.tso_segsz;
2744 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2745 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2746 			tx_le->msk_addr = htole32(tso_mtu);
2747 			tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
2748 			sc_if->msk_cdata.msk_tx_cnt++;
2749 			MSK_INC(prod, MSK_TX_RING_CNT);
2750 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2751 		}
2752 		tso++;
2753 	}
2754 	/* Check if we have a VLAN tag to insert. */
2755 	if ((m->m_flags & M_VLANTAG) != 0) {
2756 		if (tso == 0) {
2757 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2758 			tx_le->msk_addr = htole32(0);
2759 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2760 			    htons(m->m_pkthdr.ether_vtag));
2761 			sc_if->msk_cdata.msk_tx_cnt++;
2762 			MSK_INC(prod, MSK_TX_RING_CNT);
2763 		} else {
2764 			tx_le->msk_control |= htole32(OP_VLAN |
2765 			    htons(m->m_pkthdr.ether_vtag));
2766 		}
2767 		control |= INS_VLAN;
2768 	}
2769 	/* Check if we have to handle checksum offload. */
2770 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2771 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2772 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2773 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2774 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2775 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2776 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2777 			control |= UDPTCP;
2778 		sc_if->msk_cdata.msk_tx_cnt++;
2779 		MSK_INC(prod, MSK_TX_RING_CNT);
2780 	}
2781 
2782 	si = prod;
2783 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2784 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2785 	if (tso == 0)
2786 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2787 		    OP_PACKET);
2788 	else
2789 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2790 		    OP_LARGESEND);
2791 	sc_if->msk_cdata.msk_tx_cnt++;
2792 	MSK_INC(prod, MSK_TX_RING_CNT);
2793 
2794 	for (i = 1; i < nseg; i++) {
2795 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2796 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2797 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2798 		    OP_BUFFER | HW_OWNER);
2799 		sc_if->msk_cdata.msk_tx_cnt++;
2800 		MSK_INC(prod, MSK_TX_RING_CNT);
2801 	}
2802 	/* Update producer index. */
2803 	sc_if->msk_cdata.msk_tx_prod = prod;
2804 
2805 	/* Set EOP on the last desciptor. */
2806 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2807 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2808 	tx_le->msk_control |= htole32(EOP);
2809 
2810 	/* Turn the first descriptor ownership to hardware. */
2811 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2812 	tx_le->msk_control |= htole32(HW_OWNER);
2813 
2814 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2815 	map = txd_last->tx_dmamap;
2816 	txd_last->tx_dmamap = txd->tx_dmamap;
2817 	txd->tx_dmamap = map;
2818 	txd->tx_m = m;
2819 
2820 	/* Sync descriptors. */
2821 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2822 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2823 	    sc_if->msk_cdata.msk_tx_ring_map,
2824 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2825 
2826 	return (0);
2827 }
2828 
2829 static void
2830 msk_tx_task(void *arg, int pending)
2831 {
2832 	struct ifnet *ifp;
2833 
2834 	ifp = arg;
2835 	msk_start(ifp);
2836 }
2837 
2838 static void
2839 msk_start(struct ifnet *ifp)
2840 {
2841         struct msk_if_softc *sc_if;
2842         struct mbuf *m_head;
2843 	int enq;
2844 
2845 	sc_if = ifp->if_softc;
2846 
2847 	MSK_IF_LOCK(sc_if);
2848 
2849 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2850 	    IFF_DRV_RUNNING || sc_if->msk_link == 0) {
2851 		MSK_IF_UNLOCK(sc_if);
2852 		return;
2853 	}
2854 
2855 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2856 	    sc_if->msk_cdata.msk_tx_cnt <
2857 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2858 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2859 		if (m_head == NULL)
2860 			break;
2861 		/*
2862 		 * Pack the data into the transmit ring. If we
2863 		 * don't have room, set the OACTIVE flag and wait
2864 		 * for the NIC to drain the ring.
2865 		 */
2866 		if (msk_encap(sc_if, &m_head) != 0) {
2867 			if (m_head == NULL)
2868 				break;
2869 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2870 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2871 			break;
2872 		}
2873 
2874 		enq++;
2875 		/*
2876 		 * If there's a BPF listener, bounce a copy of this frame
2877 		 * to him.
2878 		 */
2879 		BPF_MTAP(ifp, m_head);
2880 	}
2881 
2882 	if (enq > 0) {
2883 		/* Transmit */
2884 		CSR_WRITE_2(sc_if->msk_softc,
2885 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2886 		    sc_if->msk_cdata.msk_tx_prod);
2887 
2888 		/* Set a timeout in case the chip goes out to lunch. */
2889 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2890 	}
2891 
2892 	MSK_IF_UNLOCK(sc_if);
2893 }
2894 
2895 static void
2896 msk_watchdog(struct msk_if_softc *sc_if)
2897 {
2898 	struct ifnet *ifp;
2899 	uint32_t ridx;
2900 	int idx;
2901 
2902 	MSK_IF_LOCK_ASSERT(sc_if);
2903 
2904 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2905 		return;
2906 	ifp = sc_if->msk_ifp;
2907 	if (sc_if->msk_link == 0) {
2908 		if (bootverbose)
2909 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2910 			   "(missed link)\n");
2911 		ifp->if_oerrors++;
2912 		msk_init_locked(sc_if);
2913 		return;
2914 	}
2915 
2916 	/*
2917 	 * Reclaim first as there is a possibility of losing Tx completion
2918 	 * interrupts.
2919 	 */
2920 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2921 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2922 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2923 		msk_txeof(sc_if, idx);
2924 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2925 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2926 			    "-- recovering\n");
2927 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2928 				taskqueue_enqueue(taskqueue_fast,
2929 				    &sc_if->msk_tx_task);
2930 			return;
2931 		}
2932 	}
2933 
2934 	if_printf(ifp, "watchdog timeout\n");
2935 	ifp->if_oerrors++;
2936 	msk_init_locked(sc_if);
2937 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2938 		taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
2939 }
2940 
2941 static void
2942 mskc_shutdown(device_t dev)
2943 {
2944 	struct msk_softc *sc;
2945 	int i;
2946 
2947 	sc = device_get_softc(dev);
2948 	MSK_LOCK(sc);
2949 	for (i = 0; i < sc->msk_num_port; i++) {
2950 		if (sc->msk_if[i] != NULL)
2951 			msk_stop(sc->msk_if[i]);
2952 	}
2953 
2954 	/* Disable all interrupts. */
2955 	CSR_WRITE_4(sc, B0_IMSK, 0);
2956 	CSR_READ_4(sc, B0_IMSK);
2957 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2958 	CSR_READ_4(sc, B0_HWE_IMSK);
2959 
2960 	/* Put hardware reset. */
2961 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2962 
2963 	MSK_UNLOCK(sc);
2964 }
2965 
2966 static int
2967 mskc_suspend(device_t dev)
2968 {
2969 	struct msk_softc *sc;
2970 	int i;
2971 
2972 	sc = device_get_softc(dev);
2973 
2974 	MSK_LOCK(sc);
2975 
2976 	for (i = 0; i < sc->msk_num_port; i++) {
2977 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2978 		    ((sc->msk_if[i]->msk_ifp->if_drv_flags &
2979 		    IFF_DRV_RUNNING) != 0))
2980 			msk_stop(sc->msk_if[i]);
2981 	}
2982 
2983 	/* Disable all interrupts. */
2984 	CSR_WRITE_4(sc, B0_IMSK, 0);
2985 	CSR_READ_4(sc, B0_IMSK);
2986 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2987 	CSR_READ_4(sc, B0_HWE_IMSK);
2988 
2989 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
2990 
2991 	/* Put hardware reset. */
2992 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2993 	sc->msk_suspended = 1;
2994 
2995 	MSK_UNLOCK(sc);
2996 
2997 	return (0);
2998 }
2999 
3000 static int
3001 mskc_resume(device_t dev)
3002 {
3003 	struct msk_softc *sc;
3004 	int i;
3005 
3006 	sc = device_get_softc(dev);
3007 
3008 	MSK_LOCK(sc);
3009 
3010 	mskc_reset(sc);
3011 	for (i = 0; i < sc->msk_num_port; i++) {
3012 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3013 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
3014 			msk_init_locked(sc->msk_if[i]);
3015 	}
3016 	sc->msk_suspended = 0;
3017 
3018 	MSK_UNLOCK(sc);
3019 
3020 	return (0);
3021 }
3022 
3023 static void
3024 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
3025 {
3026 	struct mbuf *m;
3027 	struct ifnet *ifp;
3028 	struct msk_rxdesc *rxd;
3029 	int cons, rxlen;
3030 
3031 	ifp = sc_if->msk_ifp;
3032 
3033 	MSK_IF_LOCK_ASSERT(sc_if);
3034 
3035 	cons = sc_if->msk_cdata.msk_rx_cons;
3036 	do {
3037 		rxlen = status >> 16;
3038 		if ((status & GMR_FS_VLAN) != 0)
3039 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3040 		if (len > sc_if->msk_framesize ||
3041 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3042 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3043 			/* Don't count flow-control packet as errors. */
3044 			if ((status & GMR_FS_GOOD_FC) == 0)
3045 				ifp->if_ierrors++;
3046 			msk_discard_rxbuf(sc_if, cons);
3047 			break;
3048 		}
3049 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3050 		m = rxd->rx_m;
3051 		if (msk_newbuf(sc_if, cons) != 0) {
3052 			ifp->if_iqdrops++;
3053 			/* Reuse old buffer. */
3054 			msk_discard_rxbuf(sc_if, cons);
3055 			break;
3056 		}
3057 		m->m_pkthdr.rcvif = ifp;
3058 		m->m_pkthdr.len = m->m_len = len;
3059 		ifp->if_ipackets++;
3060 		/* Check for VLAN tagged packets. */
3061 		if ((status & GMR_FS_VLAN) != 0 &&
3062 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3063 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3064 			m->m_flags |= M_VLANTAG;
3065 		}
3066 		MSK_IF_UNLOCK(sc_if);
3067 		(*ifp->if_input)(ifp, m);
3068 		MSK_IF_LOCK(sc_if);
3069 	} while (0);
3070 
3071 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3072 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3073 }
3074 
3075 static void
3076 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
3077 {
3078 	struct mbuf *m;
3079 	struct ifnet *ifp;
3080 	struct msk_rxdesc *jrxd;
3081 	int cons, rxlen;
3082 
3083 	ifp = sc_if->msk_ifp;
3084 
3085 	MSK_IF_LOCK_ASSERT(sc_if);
3086 
3087 	cons = sc_if->msk_cdata.msk_rx_cons;
3088 	do {
3089 		rxlen = status >> 16;
3090 		if ((status & GMR_FS_VLAN) != 0)
3091 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3092 		if (len > sc_if->msk_framesize ||
3093 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3094 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3095 			/* Don't count flow-control packet as errors. */
3096 			if ((status & GMR_FS_GOOD_FC) == 0)
3097 				ifp->if_ierrors++;
3098 			msk_discard_jumbo_rxbuf(sc_if, cons);
3099 			break;
3100 		}
3101 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3102 		m = jrxd->rx_m;
3103 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3104 			ifp->if_iqdrops++;
3105 			/* Reuse old buffer. */
3106 			msk_discard_jumbo_rxbuf(sc_if, cons);
3107 			break;
3108 		}
3109 		m->m_pkthdr.rcvif = ifp;
3110 		m->m_pkthdr.len = m->m_len = len;
3111 		ifp->if_ipackets++;
3112 		/* Check for VLAN tagged packets. */
3113 		if ((status & GMR_FS_VLAN) != 0 &&
3114 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3115 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3116 			m->m_flags |= M_VLANTAG;
3117 		}
3118 		MSK_IF_UNLOCK(sc_if);
3119 		(*ifp->if_input)(ifp, m);
3120 		MSK_IF_LOCK(sc_if);
3121 	} while (0);
3122 
3123 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3124 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3125 }
3126 
3127 static void
3128 msk_txeof(struct msk_if_softc *sc_if, int idx)
3129 {
3130 	struct msk_txdesc *txd;
3131 	struct msk_tx_desc *cur_tx;
3132 	struct ifnet *ifp;
3133 	uint32_t control;
3134 	int cons, prog;
3135 
3136 	MSK_IF_LOCK_ASSERT(sc_if);
3137 
3138 	ifp = sc_if->msk_ifp;
3139 
3140 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3141 	    sc_if->msk_cdata.msk_tx_ring_map,
3142 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3143 	/*
3144 	 * Go through our tx ring and free mbufs for those
3145 	 * frames that have been sent.
3146 	 */
3147 	cons = sc_if->msk_cdata.msk_tx_cons;
3148 	prog = 0;
3149 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3150 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3151 			break;
3152 		prog++;
3153 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3154 		control = le32toh(cur_tx->msk_control);
3155 		sc_if->msk_cdata.msk_tx_cnt--;
3156 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3157 		if ((control & EOP) == 0)
3158 			continue;
3159 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3160 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3161 		    BUS_DMASYNC_POSTWRITE);
3162 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3163 
3164 		ifp->if_opackets++;
3165 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3166 		    __func__));
3167 		m_freem(txd->tx_m);
3168 		txd->tx_m = NULL;
3169 	}
3170 
3171 	if (prog > 0) {
3172 		sc_if->msk_cdata.msk_tx_cons = cons;
3173 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3174 			sc_if->msk_watchdog_timer = 0;
3175 		/* No need to sync LEs as we didn't update LEs. */
3176 	}
3177 }
3178 
3179 static void
3180 msk_tick(void *xsc_if)
3181 {
3182 	struct msk_if_softc *sc_if;
3183 	struct mii_data *mii;
3184 
3185 	sc_if = xsc_if;
3186 
3187 	MSK_IF_LOCK_ASSERT(sc_if);
3188 
3189 	mii = device_get_softc(sc_if->msk_miibus);
3190 
3191 	mii_tick(mii);
3192 	msk_watchdog(sc_if);
3193 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3194 }
3195 
3196 static void
3197 msk_intr_phy(struct msk_if_softc *sc_if)
3198 {
3199 	uint16_t status;
3200 
3201 	if (sc_if->msk_softc->msk_marvell_phy) {
3202 		msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3203 		status = msk_phy_readreg(sc_if, PHY_ADDR_MARV,
3204 		    PHY_MARV_INT_STAT);
3205 		/* Handle FIFO Underrun/Overflow? */
3206 		if ((status & PHY_M_IS_FIFO_ERROR))
3207 			device_printf(sc_if->msk_if_dev,
3208 			    "PHY FIFO underrun/overflow.\n");
3209 	}
3210 }
3211 
3212 static void
3213 msk_intr_gmac(struct msk_if_softc *sc_if)
3214 {
3215 	struct msk_softc *sc;
3216 	uint8_t status;
3217 
3218 	sc = sc_if->msk_softc;
3219 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3220 
3221 	/* GMAC Rx FIFO overrun. */
3222 	if ((status & GM_IS_RX_FF_OR) != 0) {
3223 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3224 		    GMF_CLI_RX_FO);
3225 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3226 	}
3227 	/* GMAC Tx FIFO underrun. */
3228 	if ((status & GM_IS_TX_FF_UR) != 0) {
3229 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3230 		    GMF_CLI_TX_FU);
3231 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3232 		/*
3233 		 * XXX
3234 		 * In case of Tx underrun, we may need to flush/reset
3235 		 * Tx MAC but that would also require resynchronization
3236 		 * with status LEs. Reintializing status LEs would
3237 		 * affect other port in dual MAC configuration so it
3238 		 * should be avoided as possible as we can.
3239 		 * Due to lack of documentation it's all vague guess but
3240 		 * it needs more investigation.
3241 		 */
3242 	}
3243 }
3244 
3245 static void
3246 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3247 {
3248 	struct msk_softc *sc;
3249 
3250 	sc = sc_if->msk_softc;
3251 	if ((status & Y2_IS_PAR_RD1) != 0) {
3252 		device_printf(sc_if->msk_if_dev,
3253 		    "RAM buffer read parity error\n");
3254 		/* Clear IRQ. */
3255 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3256 		    RI_CLR_RD_PERR);
3257 	}
3258 	if ((status & Y2_IS_PAR_WR1) != 0) {
3259 		device_printf(sc_if->msk_if_dev,
3260 		    "RAM buffer write parity error\n");
3261 		/* Clear IRQ. */
3262 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3263 		    RI_CLR_WR_PERR);
3264 	}
3265 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3266 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3267 		/* Clear IRQ. */
3268 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3269 		    GMF_CLI_TX_PE);
3270 	}
3271 	if ((status & Y2_IS_PAR_RX1) != 0) {
3272 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3273 		/* Clear IRQ. */
3274 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3275 	}
3276 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3277 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3278 		/* Clear IRQ. */
3279 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3280 	}
3281 }
3282 
3283 static void
3284 msk_intr_hwerr(struct msk_softc *sc)
3285 {
3286 	uint32_t status;
3287 	uint32_t tlphead[4];
3288 
3289 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3290 	/* Time Stamp timer overflow. */
3291 	if ((status & Y2_IS_TIST_OV) != 0)
3292 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3293 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3294 		/*
3295 		 * PCI Express Error occured which is not described in PEX
3296 		 * spec.
3297 		 * This error is also mapped either to Master Abort(
3298 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3299 		 * can only be cleared there.
3300                  */
3301 		device_printf(sc->msk_dev,
3302 		    "PCI Express protocol violation error\n");
3303 	}
3304 
3305 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3306 		uint16_t v16;
3307 
3308 		if ((status & Y2_IS_MST_ERR) != 0)
3309 			device_printf(sc->msk_dev,
3310 			    "unexpected IRQ Status error\n");
3311 		else
3312 			device_printf(sc->msk_dev,
3313 			    "unexpected IRQ Master error\n");
3314 		/* Reset all bits in the PCI status register. */
3315 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3316 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3317 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3318 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3319 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3320 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3321 	}
3322 
3323 	/* Check for PCI Express Uncorrectable Error. */
3324 	if ((status & Y2_IS_PCI_EXP) != 0) {
3325 		uint32_t v32;
3326 
3327 		/*
3328 		 * On PCI Express bus bridges are called root complexes (RC).
3329 		 * PCI Express errors are recognized by the root complex too,
3330 		 * which requests the system to handle the problem. After
3331 		 * error occurence it may be that no access to the adapter
3332 		 * may be performed any longer.
3333 		 */
3334 
3335 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3336 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3337 			/* Ignore unsupported request error. */
3338 			device_printf(sc->msk_dev,
3339 			    "Uncorrectable PCI Express error\n");
3340 		}
3341 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3342 			int i;
3343 
3344 			/* Get TLP header form Log Registers. */
3345 			for (i = 0; i < 4; i++)
3346 				tlphead[i] = CSR_PCI_READ_4(sc,
3347 				    PEX_HEADER_LOG + i * 4);
3348 			/* Check for vendor defined broadcast message. */
3349 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3350 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3351 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3352 				    sc->msk_intrhwemask);
3353 				CSR_READ_4(sc, B0_HWE_IMSK);
3354 			}
3355 		}
3356 		/* Clear the interrupt. */
3357 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3358 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3359 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3360 	}
3361 
3362 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3363 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3364 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3365 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3366 }
3367 
3368 static __inline void
3369 msk_rxput(struct msk_if_softc *sc_if)
3370 {
3371 	struct msk_softc *sc;
3372 
3373 	sc = sc_if->msk_softc;
3374 	if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN))
3375 		bus_dmamap_sync(
3376 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3377 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3378 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3379 	else
3380 		bus_dmamap_sync(
3381 		    sc_if->msk_cdata.msk_rx_ring_tag,
3382 		    sc_if->msk_cdata.msk_rx_ring_map,
3383 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3384 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3385 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3386 }
3387 
3388 static int
3389 msk_handle_events(struct msk_softc *sc)
3390 {
3391 	struct msk_if_softc *sc_if;
3392 	int rxput[2];
3393 	struct msk_stat_desc *sd;
3394 	uint32_t control, status;
3395 	int cons, idx, len, port, rxprog;
3396 
3397 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3398 	if (idx == sc->msk_stat_cons)
3399 		return (0);
3400 
3401 	/* Sync status LEs. */
3402 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3403 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3404 	/* XXX Sync Rx LEs here. */
3405 
3406 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3407 
3408 	rxprog = 0;
3409 	for (cons = sc->msk_stat_cons; cons != idx;) {
3410 		sd = &sc->msk_stat_ring[cons];
3411 		control = le32toh(sd->msk_control);
3412 		if ((control & HW_OWNER) == 0)
3413 			break;
3414 		/*
3415 		 * Marvell's FreeBSD driver updates status LE after clearing
3416 		 * HW_OWNER. However we don't have a way to sync single LE
3417 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3418 		 * an entire DMA map. So don't sync LE until we have a better
3419 		 * way to sync LEs.
3420 		 */
3421 		control &= ~HW_OWNER;
3422 		sd->msk_control = htole32(control);
3423 		status = le32toh(sd->msk_status);
3424 		len = control & STLE_LEN_MASK;
3425 		port = (control >> 16) & 0x01;
3426 		sc_if = sc->msk_if[port];
3427 		if (sc_if == NULL) {
3428 			device_printf(sc->msk_dev, "invalid port opcode "
3429 			    "0x%08x\n", control & STLE_OP_MASK);
3430 			continue;
3431 		}
3432 
3433 		switch (control & STLE_OP_MASK) {
3434 		case OP_RXVLAN:
3435 			sc_if->msk_vtag = ntohs(len);
3436 			break;
3437 		case OP_RXCHKSVLAN:
3438 			sc_if->msk_vtag = ntohs(len);
3439 			break;
3440 		case OP_RXSTAT:
3441 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3442 				msk_jumbo_rxeof(sc_if, status, len);
3443 			else
3444 				msk_rxeof(sc_if, status, len);
3445 			rxprog++;
3446 			/*
3447 			 * Because there is no way to sync single Rx LE
3448 			 * put the DMA sync operation off until the end of
3449 			 * event processing.
3450 			 */
3451 			rxput[port]++;
3452 			/* Update prefetch unit if we've passed water mark. */
3453 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3454 				msk_rxput(sc_if);
3455 				rxput[port] = 0;
3456 			}
3457 			break;
3458 		case OP_TXINDEXLE:
3459 			if (sc->msk_if[MSK_PORT_A] != NULL)
3460 				msk_txeof(sc->msk_if[MSK_PORT_A],
3461 				    status & STLE_TXA1_MSKL);
3462 			if (sc->msk_if[MSK_PORT_B] != NULL)
3463 				msk_txeof(sc->msk_if[MSK_PORT_B],
3464 				    ((status & STLE_TXA2_MSKL) >>
3465 				    STLE_TXA2_SHIFTL) |
3466 				    ((len & STLE_TXA2_MSKH) <<
3467 				    STLE_TXA2_SHIFTH));
3468 			break;
3469 		default:
3470 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3471 			    control & STLE_OP_MASK);
3472 			break;
3473 		}
3474 		MSK_INC(cons, MSK_STAT_RING_CNT);
3475 		if (rxprog > sc->msk_process_limit)
3476 			break;
3477 	}
3478 
3479 	sc->msk_stat_cons = cons;
3480 	/* XXX We should sync status LEs here. See above notes. */
3481 
3482 	if (rxput[MSK_PORT_A] > 0)
3483 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3484 	if (rxput[MSK_PORT_B] > 0)
3485 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3486 
3487 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3488 }
3489 
3490 static void
3491 msk_intr(void *xsc)
3492 {
3493 	struct msk_softc *sc;
3494 	uint32_t status;
3495 
3496 	sc = xsc;
3497 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3498 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3499 	if (status == 0 || status == 0xffffffff) {
3500 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3501 		return;
3502 	}
3503 
3504 	taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3505 }
3506 
3507 static void
3508 msk_int_task(void *arg, int pending)
3509 {
3510 	struct msk_softc *sc;
3511 	struct msk_if_softc *sc_if0, *sc_if1;
3512 	struct ifnet *ifp0, *ifp1;
3513 	uint32_t status;
3514 	int domore;
3515 
3516 	sc = arg;
3517 	MSK_LOCK(sc);
3518 
3519 	/* Get interrupt source. */
3520 	status = CSR_READ_4(sc, B0_ISRC);
3521 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3522 	    (status & sc->msk_intrmask) == 0)
3523 		goto done;
3524 
3525 	sc_if0 = sc->msk_if[MSK_PORT_A];
3526 	sc_if1 = sc->msk_if[MSK_PORT_B];
3527 	ifp0 = ifp1 = NULL;
3528 	if (sc_if0 != NULL)
3529 		ifp0 = sc_if0->msk_ifp;
3530 	if (sc_if1 != NULL)
3531 		ifp1 = sc_if1->msk_ifp;
3532 
3533 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3534 		msk_intr_phy(sc_if0);
3535 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3536 		msk_intr_phy(sc_if1);
3537 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3538 		msk_intr_gmac(sc_if0);
3539 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3540 		msk_intr_gmac(sc_if1);
3541 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3542 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3543 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3544 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3545 		CSR_READ_4(sc, B0_IMSK);
3546 	}
3547         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3548 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3549 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3550 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3551 		CSR_READ_4(sc, B0_IMSK);
3552 	}
3553 	if ((status & Y2_IS_HW_ERR) != 0)
3554 		msk_intr_hwerr(sc);
3555 
3556 	domore = msk_handle_events(sc);
3557 	if ((status & Y2_IS_STAT_BMU) != 0)
3558 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3559 
3560 	if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3561 	    !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3562 		taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
3563 	if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3564 	    !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3565 		taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
3566 
3567 	if (domore > 0) {
3568 		taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
3569 		MSK_UNLOCK(sc);
3570 		return;
3571 	}
3572 done:
3573 	MSK_UNLOCK(sc);
3574 
3575 	/* Reenable interrupts. */
3576 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3577 }
3578 
3579 static void
3580 msk_init(void *xsc)
3581 {
3582 	struct msk_if_softc *sc_if = xsc;
3583 
3584 	MSK_IF_LOCK(sc_if);
3585 	msk_init_locked(sc_if);
3586 	MSK_IF_UNLOCK(sc_if);
3587 }
3588 
3589 static void
3590 msk_init_locked(struct msk_if_softc *sc_if)
3591 {
3592 	struct msk_softc *sc;
3593 	struct ifnet *ifp;
3594 	struct mii_data	 *mii;
3595 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3596 	uint16_t gmac;
3597 	int error, i;
3598 
3599 	MSK_IF_LOCK_ASSERT(sc_if);
3600 
3601 	ifp = sc_if->msk_ifp;
3602 	sc = sc_if->msk_softc;
3603 	mii = device_get_softc(sc_if->msk_miibus);
3604 
3605 	error = 0;
3606 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3607 	msk_stop(sc_if);
3608 
3609 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN +
3610 	    ETHER_VLAN_ENCAP_LEN;
3611 
3612 	/*
3613 	 * Initialize GMAC first.
3614 	 * Without this initialization, Rx MAC did not work as expected
3615 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3616 	 * or duplicated frame delivery which in turn showed very poor
3617 	 * Rx performance.(I had to write a packet analysis code that
3618 	 * could be embeded in driver to diagnose this issue.)
3619 	 * I've spent almost 2 months to fix this issue. If I have had
3620 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3621 	 */
3622 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3623 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3624 
3625 	/* Dummy read the Interrupt Source Register. */
3626 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3627 
3628 	/* Set MIB Clear Counter Mode. */
3629 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3630 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3631 	/* Read all MIB Counters with Clear Mode set. */
3632 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3633 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3634 	/* Clear MIB Clear Counter Mode. */
3635 	gmac &= ~GM_PAR_MIB_CLR;
3636 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3637 
3638 	/* Disable FCS. */
3639 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3640 
3641 	/* Setup Transmit Control Register. */
3642 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3643 
3644 	/* Setup Transmit Flow Control Register. */
3645 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3646 
3647 	/* Setup Transmit Parameter Register. */
3648 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3649 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3650 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3651 
3652 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3653 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3654 
3655 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3656 		gmac |= GM_SMOD_JUMBO_ENA;
3657 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3658 
3659 	/* Set station address. */
3660         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3661         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3662 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3663 		    eaddr[i]);
3664         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3665 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3666 		    eaddr[i]);
3667 
3668 	/* Disable interrupts for counter overflows. */
3669 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3670 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3671 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3672 
3673 	/* Configure Rx MAC FIFO. */
3674 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3675 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3676 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3677 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3678 
3679 	/* Set promiscuous mode. */
3680 	msk_setpromisc(sc_if);
3681 
3682 	/* Set multicast filter. */
3683 	msk_setmulti(sc_if);
3684 
3685 	/* Flush Rx MAC FIFO on any flow control or error. */
3686 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3687 	    GMR_FS_ANY_ERR);
3688 
3689 	/* Set Rx FIFO flush threshold to 64 bytes. */
3690 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3691 	    RX_GMF_FL_THR_DEF);
3692 
3693 	/* Configure Tx MAC FIFO. */
3694 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3695 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3696 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3697 
3698 	/* Configure hardware VLAN tag insertion/stripping. */
3699 	msk_setvlan(sc_if, ifp);
3700 
3701 	/* XXX It seems STFW is requried for all cases. */
3702 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_ENA);
3703 
3704 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3705 		/* Set Rx Pause threshould. */
3706 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3707 		    MSK_ECU_LLPP);
3708 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3709 		    MSK_ECU_ULPP);
3710 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
3711 			/*
3712 			 * Can't sure the following code is needed as Yukon
3713 			 * Yukon EC Ultra may not support jumbo frames.
3714 			 *
3715 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3716 			 */
3717 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3718 			    MSK_ECU_AE_THR);
3719 			/* Disable Store & Forward mode for Tx. */
3720 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3721 			    TX_STFW_DIS);
3722 		}
3723 	}
3724 
3725 	/*
3726 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3727 	 * arbiter as we don't use Sync Tx queue.
3728 	 */
3729 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3730 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3731 	/* Enable the RAM Interface Arbiter. */
3732 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3733 
3734 	/* Setup RAM buffer. */
3735 	msk_set_rambuffer(sc_if);
3736 
3737 	/* Disable Tx sync Queue. */
3738 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3739 
3740 	/* Setup Tx Queue Bus Memory Interface. */
3741 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3742 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3743 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3744 	/* Increase IPID when hardware generates IP packets in TSO. */
3745 	if ((ifp->if_hwassist & CSUM_TSO) != 0)
3746 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3747 		    BMU_TX_IPIDINCR_ON);
3748 	else
3749 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3750 		    BMU_TX_IPIDINCR_OFF);
3751 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3752 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3753 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3754 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3755 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3756 	}
3757 
3758 	/* Setup Rx Queue Bus Memory Interface. */
3759 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3760 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3761 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3762 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3763         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3764 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3765 		/* MAC Rx RAM Read is controlled by hardware. */
3766                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3767 	}
3768 
3769 	msk_set_prefetch(sc, sc_if->msk_txq,
3770 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3771 	msk_init_tx_ring(sc_if);
3772 
3773 	/* Disable Rx checksum offload and RSS hash. */
3774 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3775 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3776 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3777 		msk_set_prefetch(sc, sc_if->msk_rxq,
3778 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3779 		    MSK_JUMBO_RX_RING_CNT - 1);
3780 		error = msk_init_jumbo_rx_ring(sc_if);
3781 	 } else {
3782 		msk_set_prefetch(sc, sc_if->msk_rxq,
3783 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3784 		    MSK_RX_RING_CNT - 1);
3785 		error = msk_init_rx_ring(sc_if);
3786 	}
3787 	if (error != 0) {
3788 		device_printf(sc_if->msk_if_dev,
3789 		    "initialization failed: no memory for Rx buffers\n");
3790 		msk_stop(sc_if);
3791 		return;
3792 	}
3793 
3794 	/* Configure interrupt handling. */
3795 	if (sc_if->msk_port == MSK_PORT_A) {
3796 		sc->msk_intrmask |= Y2_IS_PORT_A;
3797 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3798 	} else {
3799 		sc->msk_intrmask |= Y2_IS_PORT_B;
3800 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3801 	}
3802 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3803 	CSR_READ_4(sc, B0_HWE_IMSK);
3804 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3805 	CSR_READ_4(sc, B0_IMSK);
3806 
3807 	sc_if->msk_link = 0;
3808 	mii_mediachg(mii);
3809 
3810 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3811 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3812 
3813 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3814 }
3815 
3816 static void
3817 msk_set_rambuffer(struct msk_if_softc *sc_if)
3818 {
3819 	struct msk_softc *sc;
3820 	int ltpp, utpp;
3821 
3822 	sc = sc_if->msk_softc;
3823 
3824 	/* Setup Rx Queue. */
3825 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3826 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3827 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3828 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3829 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3830 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3831 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3832 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3833 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3834 
3835 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3836 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3837 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3838 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3839 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3840 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3841 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3842 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3843 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3844 
3845 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3846 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3847 
3848 	/* Setup Tx Queue. */
3849 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3850 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3851 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3852 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3853 	    sc->msk_txqend[sc_if->msk_port] / 8);
3854 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3855 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3856 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3857 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3858 	/* Enable Store & Forward for Tx side. */
3859 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3860 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3861 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3862 }
3863 
3864 static void
3865 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3866     uint32_t count)
3867 {
3868 
3869 	/* Reset the prefetch unit. */
3870 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3871 	    PREF_UNIT_RST_SET);
3872 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3873 	    PREF_UNIT_RST_CLR);
3874 	/* Set LE base address. */
3875 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3876 	    MSK_ADDR_LO(addr));
3877 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3878 	    MSK_ADDR_HI(addr));
3879 	/* Set the list last index. */
3880 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3881 	    count);
3882 	/* Turn on prefetch unit. */
3883 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3884 	    PREF_UNIT_OP_ON);
3885 	/* Dummy read to ensure write. */
3886 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3887 }
3888 
3889 static void
3890 msk_stop(struct msk_if_softc *sc_if)
3891 {
3892 	struct msk_softc *sc;
3893 	struct msk_txdesc *txd;
3894 	struct msk_rxdesc *rxd;
3895 	struct msk_rxdesc *jrxd;
3896 	struct ifnet *ifp;
3897 	uint32_t val;
3898 	int i;
3899 
3900 	MSK_IF_LOCK_ASSERT(sc_if);
3901 	sc = sc_if->msk_softc;
3902 	ifp = sc_if->msk_ifp;
3903 
3904 	callout_stop(&sc_if->msk_tick_ch);
3905 	sc_if->msk_watchdog_timer = 0;
3906 
3907 	/* Disable interrupts. */
3908 	if (sc_if->msk_port == MSK_PORT_A) {
3909 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3910 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3911 	} else {
3912 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3913 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3914 	}
3915 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3916 	CSR_READ_4(sc, B0_HWE_IMSK);
3917 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3918 	CSR_READ_4(sc, B0_IMSK);
3919 
3920 	/* Disable Tx/Rx MAC. */
3921 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3922 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3923 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3924 	/* Read again to ensure writing. */
3925 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3926 
3927 	/* Stop Tx BMU. */
3928 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3929 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3930 	for (i = 0; i < MSK_TIMEOUT; i++) {
3931 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3932 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3933 			    BMU_STOP);
3934 			CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3935 		} else
3936 			break;
3937 		DELAY(1);
3938 	}
3939 	if (i == MSK_TIMEOUT)
3940 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3941 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3942 	    RB_RST_SET | RB_DIS_OP_MD);
3943 
3944 	/* Disable all GMAC interrupt. */
3945 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3946 	/* Disable PHY interrupt. */
3947 	if (sc->msk_marvell_phy)
3948 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3949 
3950 	/* Disable the RAM Interface Arbiter. */
3951 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3952 
3953 	/* Reset the PCI FIFO of the async Tx queue */
3954 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3955 	    BMU_RST_SET | BMU_FIFO_RST);
3956 
3957 	/* Reset the Tx prefetch units. */
3958 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3959 	    PREF_UNIT_RST_SET);
3960 
3961 	/* Reset the RAM Buffer async Tx queue. */
3962 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3963 
3964 	/* Reset Tx MAC FIFO. */
3965 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3966 	/* Set Pause Off. */
3967 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3968 
3969 	/*
3970 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3971 	 * reach the end of packet and since we can't make sure that we have
3972 	 * incoming data, we must reset the BMU while it is not during a DMA
3973 	 * transfer. Since it is possible that the Rx path is still active,
3974 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3975 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3976 	 * BMU is polled until any DMA in progress is ended and only then it
3977 	 * will be reset.
3978 	 */
3979 
3980 	/* Disable the RAM Buffer receive queue. */
3981 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3982 	for (i = 0; i < MSK_TIMEOUT; i++) {
3983 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3984 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3985 			break;
3986 		DELAY(1);
3987 	}
3988 	if (i == MSK_TIMEOUT)
3989 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3990 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3991 	    BMU_RST_SET | BMU_FIFO_RST);
3992 	/* Reset the Rx prefetch unit. */
3993 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3994 	    PREF_UNIT_RST_SET);
3995 	/* Reset the RAM Buffer receive queue. */
3996 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3997 	/* Reset Rx MAC FIFO. */
3998 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3999 
4000 	/* Free Rx and Tx mbufs still in the queues. */
4001 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4002 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4003 		if (rxd->rx_m != NULL) {
4004 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4005 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4006 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4007 			    rxd->rx_dmamap);
4008 			m_freem(rxd->rx_m);
4009 			rxd->rx_m = NULL;
4010 		}
4011 	}
4012 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4013 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4014 		if (jrxd->rx_m != NULL) {
4015 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4016 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4017 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4018 			    jrxd->rx_dmamap);
4019 			m_freem(jrxd->rx_m);
4020 			jrxd->rx_m = NULL;
4021 		}
4022 	}
4023 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4024 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4025 		if (txd->tx_m != NULL) {
4026 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4027 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4028 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4029 			    txd->tx_dmamap);
4030 			m_freem(txd->tx_m);
4031 			txd->tx_m = NULL;
4032 		}
4033 	}
4034 
4035 	/*
4036 	 * Mark the interface down.
4037 	 */
4038 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4039 	sc_if->msk_link = 0;
4040 }
4041 
4042 static int
4043 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4044 {
4045 	int error, value;
4046 
4047 	if (!arg1)
4048 		return (EINVAL);
4049 	value = *(int *)arg1;
4050 	error = sysctl_handle_int(oidp, &value, 0, req);
4051 	if (error || !req->newptr)
4052 		return (error);
4053 	if (value < low || value > high)
4054 		return (EINVAL);
4055 	*(int *)arg1 = value;
4056 
4057 	return (0);
4058 }
4059 
4060 static int
4061 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4062 {
4063 
4064 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4065 	    MSK_PROC_MAX));
4066 }
4067