xref: /freebsd/sys/dev/msk/if_msk.c (revision e1e636193db45630c7881246d25902e57c43d24e)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * SPDX-License-Identifier: BSD-4-Clause AND BSD-3-Clause
50  *
51  * Copyright (c) 1997, 1998, 1999, 2000
52  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
53  *
54  * Redistribution and use in source and binary forms, with or without
55  * modification, are permitted provided that the following conditions
56  * are met:
57  * 1. Redistributions of source code must retain the above copyright
58  *    notice, this list of conditions and the following disclaimer.
59  * 2. Redistributions in binary form must reproduce the above copyright
60  *    notice, this list of conditions and the following disclaimer in the
61  *    documentation and/or other materials provided with the distribution.
62  * 3. All advertising materials mentioning features or use of this software
63  *    must display the following acknowledgement:
64  *	This product includes software developed by Bill Paul.
65  * 4. Neither the name of the author nor the names of any co-contributors
66  *    may be used to endorse or promote products derived from this software
67  *    without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
70  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
71  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
72  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
79  * THE POSSIBILITY OF SUCH DAMAGE.
80  */
81 /*-
82  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
83  *
84  * Permission to use, copy, modify, and distribute this software for any
85  * purpose with or without fee is hereby granted, provided that the above
86  * copyright notice and this permission notice appear in all copies.
87  *
88  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
89  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
90  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
91  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
92  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
93  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
94  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
95  */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/bus.h>
106 #include <sys/endian.h>
107 #include <sys/mbuf.h>
108 #include <sys/malloc.h>
109 #include <sys/kernel.h>
110 #include <sys/module.h>
111 #include <sys/socket.h>
112 #include <sys/sockio.h>
113 #include <sys/queue.h>
114 #include <sys/sysctl.h>
115 
116 #include <net/bpf.h>
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/if_var.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_types.h>
124 #include <net/if_vlan_var.h>
125 
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/tcp.h>
130 #include <netinet/udp.h>
131 
132 #include <machine/bus.h>
133 #include <machine/in_cksum.h>
134 #include <machine/resource.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 #include <dev/msk/if_mskreg.h>
144 
145 MODULE_DEPEND(msk, pci, 1, 1, 1);
146 MODULE_DEPEND(msk, ether, 1, 1, 1);
147 MODULE_DEPEND(msk, miibus, 1, 1, 1);
148 
149 /* "device miibus" required.  See GENERIC if you get errors here. */
150 #include "miibus_if.h"
151 
152 /* Tunables. */
153 static int msi_disable = 0;
154 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
155 static int legacy_intr = 0;
156 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
157 static int jumbo_disable = 0;
158 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
159 
160 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
161 
162 /*
163  * Devices supported by this driver.
164  */
165 static const struct msk_product {
166 	uint16_t	msk_vendorid;
167 	uint16_t	msk_deviceid;
168 	const char	*msk_name;
169 } msk_products[] = {
170 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
171 	    "SK-9Sxx Gigabit Ethernet" },
172 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
173 	    "SK-9Exx Gigabit Ethernet"},
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
175 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
177 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
179 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
181 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
183 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
185 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
187 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
189 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
190 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
191 	    "Marvell Yukon 88E8035 Fast Ethernet" },
192 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
193 	    "Marvell Yukon 88E8036 Fast Ethernet" },
194 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
195 	    "Marvell Yukon 88E8038 Fast Ethernet" },
196 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
197 	    "Marvell Yukon 88E8039 Fast Ethernet" },
198 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
199 	    "Marvell Yukon 88E8040 Fast Ethernet" },
200 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
201 	    "Marvell Yukon 88E8040T Fast Ethernet" },
202 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
203 	    "Marvell Yukon 88E8042 Fast Ethernet" },
204 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
205 	    "Marvell Yukon 88E8048 Fast Ethernet" },
206 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
207 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
208 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
209 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
210 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
211 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
212 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
213 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
214 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
215 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
216 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
217 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
218 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
219 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
220 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
221 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
222 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
223 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
224 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
225 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
226 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
227 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
228 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
229 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
230 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
231 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
232 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
233 	    "D-Link 550SX Gigabit Ethernet" },
234 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
235 	    "D-Link 560SX Gigabit Ethernet" },
236 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
237 	    "D-Link 560T Gigabit Ethernet" }
238 };
239 
240 static const char *model_name[] = {
241 	"Yukon XL",
242         "Yukon EC Ultra",
243         "Yukon EX",
244         "Yukon EC",
245         "Yukon FE",
246         "Yukon FE+",
247         "Yukon Supreme",
248         "Yukon Ultra 2",
249         "Yukon Unknown",
250         "Yukon Optima",
251 };
252 
253 static int mskc_probe(device_t);
254 static int mskc_attach(device_t);
255 static int mskc_detach(device_t);
256 static int mskc_shutdown(device_t);
257 static int mskc_setup_rambuffer(struct msk_softc *);
258 static int mskc_suspend(device_t);
259 static int mskc_resume(device_t);
260 static bus_dma_tag_t mskc_get_dma_tag(device_t, device_t);
261 static void mskc_reset(struct msk_softc *);
262 
263 static int msk_probe(device_t);
264 static int msk_attach(device_t);
265 static int msk_detach(device_t);
266 
267 static void msk_tick(void *);
268 static void msk_intr(void *);
269 static void msk_intr_phy(struct msk_if_softc *);
270 static void msk_intr_gmac(struct msk_if_softc *);
271 static __inline void msk_rxput(struct msk_if_softc *);
272 static int msk_handle_events(struct msk_softc *);
273 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
274 static void msk_intr_hwerr(struct msk_softc *);
275 #ifndef __NO_STRICT_ALIGNMENT
276 static __inline void msk_fixup_rx(struct mbuf *);
277 #endif
278 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
279 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
280 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
281 static void msk_txeof(struct msk_if_softc *, int);
282 static int msk_encap(struct msk_if_softc *, struct mbuf **);
283 static void msk_start(if_t);
284 static void msk_start_locked(if_t);
285 static int msk_ioctl(if_t, u_long, caddr_t);
286 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
287 static void msk_set_rambuffer(struct msk_if_softc *);
288 static void msk_set_tx_stfwd(struct msk_if_softc *);
289 static void msk_init(void *);
290 static void msk_init_locked(struct msk_if_softc *);
291 static void msk_stop(struct msk_if_softc *);
292 static void msk_watchdog(struct msk_if_softc *);
293 static int msk_mediachange(if_t);
294 static void msk_mediastatus(if_t, struct ifmediareq *);
295 static void msk_phy_power(struct msk_softc *, int);
296 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
297 static int msk_status_dma_alloc(struct msk_softc *);
298 static void msk_status_dma_free(struct msk_softc *);
299 static int msk_txrx_dma_alloc(struct msk_if_softc *);
300 static int msk_rx_dma_jalloc(struct msk_if_softc *);
301 static void msk_txrx_dma_free(struct msk_if_softc *);
302 static void msk_rx_dma_jfree(struct msk_if_softc *);
303 static int msk_rx_fill(struct msk_if_softc *, int);
304 static int msk_init_rx_ring(struct msk_if_softc *);
305 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
306 static void msk_init_tx_ring(struct msk_if_softc *);
307 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
308 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
309 static int msk_newbuf(struct msk_if_softc *, int);
310 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
311 
312 static int msk_phy_readreg(struct msk_if_softc *, int, int);
313 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
314 static int msk_miibus_readreg(device_t, int, int);
315 static int msk_miibus_writereg(device_t, int, int, int);
316 static void msk_miibus_statchg(device_t);
317 
318 static void msk_rxfilter(struct msk_if_softc *);
319 static void msk_setvlan(struct msk_if_softc *, if_t);
320 
321 static void msk_stats_clear(struct msk_if_softc *);
322 static void msk_stats_update(struct msk_if_softc *);
323 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
324 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
325 static void msk_sysctl_node(struct msk_if_softc *);
326 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
327 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
328 
329 static device_method_t mskc_methods[] = {
330 	/* Device interface */
331 	DEVMETHOD(device_probe,		mskc_probe),
332 	DEVMETHOD(device_attach,	mskc_attach),
333 	DEVMETHOD(device_detach,	mskc_detach),
334 	DEVMETHOD(device_suspend,	mskc_suspend),
335 	DEVMETHOD(device_resume,	mskc_resume),
336 	DEVMETHOD(device_shutdown,	mskc_shutdown),
337 
338 	DEVMETHOD(bus_get_dma_tag,	mskc_get_dma_tag),
339 
340 	DEVMETHOD_END
341 };
342 
343 static driver_t mskc_driver = {
344 	"mskc",
345 	mskc_methods,
346 	sizeof(struct msk_softc)
347 };
348 
349 static device_method_t msk_methods[] = {
350 	/* Device interface */
351 	DEVMETHOD(device_probe,		msk_probe),
352 	DEVMETHOD(device_attach,	msk_attach),
353 	DEVMETHOD(device_detach,	msk_detach),
354 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
355 
356 	/* MII interface */
357 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
358 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
359 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
360 
361 	DEVMETHOD_END
362 };
363 
364 static driver_t msk_driver = {
365 	"msk",
366 	msk_methods,
367 	sizeof(struct msk_if_softc)
368 };
369 
370 DRIVER_MODULE(mskc, pci, mskc_driver, NULL, NULL);
371 DRIVER_MODULE(msk, mskc, msk_driver, NULL, NULL);
372 DRIVER_MODULE(miibus, msk, miibus_driver, NULL, NULL);
373 
374 static struct resource_spec msk_res_spec_io[] = {
375 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
376 	{ -1,			0,		0 }
377 };
378 
379 static struct resource_spec msk_res_spec_mem[] = {
380 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
381 	{ -1,			0,		0 }
382 };
383 
384 static struct resource_spec msk_irq_spec_legacy[] = {
385 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
386 	{ -1,			0,		0 }
387 };
388 
389 static struct resource_spec msk_irq_spec_msi[] = {
390 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
391 	{ -1,			0,		0 }
392 };
393 
394 static int
395 msk_miibus_readreg(device_t dev, int phy, int reg)
396 {
397 	struct msk_if_softc *sc_if;
398 
399 	sc_if = device_get_softc(dev);
400 
401 	return (msk_phy_readreg(sc_if, phy, reg));
402 }
403 
404 static int
405 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
406 {
407 	struct msk_softc *sc;
408 	int i, val;
409 
410 	sc = sc_if->msk_softc;
411 
412         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
413 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
414 
415 	for (i = 0; i < MSK_TIMEOUT; i++) {
416 		DELAY(1);
417 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
418 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
419 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
420 			break;
421 		}
422 	}
423 
424 	if (i == MSK_TIMEOUT) {
425 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
426 		val = 0;
427 	}
428 
429 	return (val);
430 }
431 
432 static int
433 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
434 {
435 	struct msk_if_softc *sc_if;
436 
437 	sc_if = device_get_softc(dev);
438 
439 	return (msk_phy_writereg(sc_if, phy, reg, val));
440 }
441 
442 static int
443 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
444 {
445 	struct msk_softc *sc;
446 	int i;
447 
448 	sc = sc_if->msk_softc;
449 
450 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
451         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
452 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
453 	for (i = 0; i < MSK_TIMEOUT; i++) {
454 		DELAY(1);
455 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
456 		    GM_SMI_CT_BUSY) == 0)
457 			break;
458 	}
459 	if (i == MSK_TIMEOUT)
460 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
461 
462 	return (0);
463 }
464 
465 static void
466 msk_miibus_statchg(device_t dev)
467 {
468 	struct msk_softc *sc;
469 	struct msk_if_softc *sc_if;
470 	struct mii_data *mii;
471 	if_t ifp;
472 	uint32_t gmac;
473 
474 	sc_if = device_get_softc(dev);
475 	sc = sc_if->msk_softc;
476 
477 	MSK_IF_LOCK_ASSERT(sc_if);
478 
479 	mii = device_get_softc(sc_if->msk_miibus);
480 	ifp = sc_if->msk_ifp;
481 	if (mii == NULL || ifp == NULL ||
482 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
483 		return;
484 
485 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
486 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
487 	    (IFM_AVALID | IFM_ACTIVE)) {
488 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
489 		case IFM_10_T:
490 		case IFM_100_TX:
491 			sc_if->msk_flags |= MSK_FLAG_LINK;
492 			break;
493 		case IFM_1000_T:
494 		case IFM_1000_SX:
495 		case IFM_1000_LX:
496 		case IFM_1000_CX:
497 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
498 				sc_if->msk_flags |= MSK_FLAG_LINK;
499 			break;
500 		default:
501 			break;
502 		}
503 	}
504 
505 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
506 		/* Enable Tx FIFO Underrun. */
507 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
508 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
509 		/*
510 		 * Because mii(4) notify msk(4) that it detected link status
511 		 * change, there is no need to enable automatic
512 		 * speed/flow-control/duplex updates.
513 		 */
514 		gmac = GM_GPCR_AU_ALL_DIS;
515 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
516 		case IFM_1000_SX:
517 		case IFM_1000_T:
518 			gmac |= GM_GPCR_SPEED_1000;
519 			break;
520 		case IFM_100_TX:
521 			gmac |= GM_GPCR_SPEED_100;
522 			break;
523 		case IFM_10_T:
524 			break;
525 		}
526 
527 		if ((IFM_OPTIONS(mii->mii_media_active) &
528 		    IFM_ETH_RXPAUSE) == 0)
529 			gmac |= GM_GPCR_FC_RX_DIS;
530 		if ((IFM_OPTIONS(mii->mii_media_active) &
531 		     IFM_ETH_TXPAUSE) == 0)
532 			gmac |= GM_GPCR_FC_TX_DIS;
533 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
534 			gmac |= GM_GPCR_DUP_FULL;
535 		else
536 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
537 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
538 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
539 		/* Read again to ensure writing. */
540 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
541 		gmac = GMC_PAUSE_OFF;
542 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
543 			if ((IFM_OPTIONS(mii->mii_media_active) &
544 			    IFM_ETH_RXPAUSE) != 0)
545 				gmac = GMC_PAUSE_ON;
546 		}
547 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
548 
549 		/* Enable PHY interrupt for FIFO underrun/overflow. */
550 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
551 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
552 	} else {
553 		/*
554 		 * Link state changed to down.
555 		 * Disable PHY interrupts.
556 		 */
557 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
558 		/* Disable Rx/Tx MAC. */
559 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
560 		if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) {
561 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
562 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
563 			/* Read again to ensure writing. */
564 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
565 		}
566 	}
567 }
568 
569 static u_int
570 msk_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
571 {
572 	uint32_t *mchash = arg;
573 	uint32_t crc;
574 
575 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
576 	/* Just want the 6 least significant bits. */
577 	crc &= 0x3f;
578 	/* Set the corresponding bit in the hash table. */
579 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
580 
581 	return (1);
582 }
583 
584 static void
585 msk_rxfilter(struct msk_if_softc *sc_if)
586 {
587 	struct msk_softc *sc;
588 	if_t ifp;
589 	uint32_t mchash[2];
590 	uint16_t mode;
591 
592 	sc = sc_if->msk_softc;
593 
594 	MSK_IF_LOCK_ASSERT(sc_if);
595 
596 	ifp = sc_if->msk_ifp;
597 
598 	bzero(mchash, sizeof(mchash));
599 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
600 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
601 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
602 	else if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
603 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
604 		mchash[0] = 0xffff;
605 		mchash[1] = 0xffff;
606 	} else {
607 		mode |= GM_RXCR_UCF_ENA;
608 		if_foreach_llmaddr(ifp, msk_hash_maddr, mchash);
609 		if (mchash[0] != 0 || mchash[1] != 0)
610 			mode |= GM_RXCR_MCF_ENA;
611 	}
612 
613 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
614 	    mchash[0] & 0xffff);
615 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
616 	    (mchash[0] >> 16) & 0xffff);
617 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
618 	    mchash[1] & 0xffff);
619 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
620 	    (mchash[1] >> 16) & 0xffff);
621 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
622 }
623 
624 static void
625 msk_setvlan(struct msk_if_softc *sc_if, if_t ifp)
626 {
627 	struct msk_softc *sc;
628 
629 	sc = sc_if->msk_softc;
630 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
631 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
632 		    RX_VLAN_STRIP_ON);
633 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
634 		    TX_VLAN_TAG_ON);
635 	} else {
636 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
637 		    RX_VLAN_STRIP_OFF);
638 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
639 		    TX_VLAN_TAG_OFF);
640 	}
641 }
642 
643 static int
644 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
645 {
646 	uint16_t idx;
647 	int i;
648 
649 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
650 	    (if_getcapenable(sc_if->msk_ifp) & IFCAP_RXCSUM) != 0) {
651 		/* Wait until controller executes OP_TCPSTART command. */
652 		for (i = 100; i > 0; i--) {
653 			DELAY(100);
654 			idx = CSR_READ_2(sc_if->msk_softc,
655 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
656 			    PREF_UNIT_GET_IDX_REG));
657 			if (idx != 0)
658 				break;
659 		}
660 		if (i == 0) {
661 			device_printf(sc_if->msk_if_dev,
662 			    "prefetch unit stuck?\n");
663 			return (ETIMEDOUT);
664 		}
665 		/*
666 		 * Fill consumed LE with free buffer. This can be done
667 		 * in Rx handler but we don't want to add special code
668 		 * in fast handler.
669 		 */
670 		if (jumbo > 0) {
671 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
672 				return (ENOBUFS);
673 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
674 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
675 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
676 		} else {
677 			if (msk_newbuf(sc_if, 0) != 0)
678 				return (ENOBUFS);
679 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
680 			    sc_if->msk_cdata.msk_rx_ring_map,
681 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
682 		}
683 		sc_if->msk_cdata.msk_rx_prod = 0;
684 		CSR_WRITE_2(sc_if->msk_softc,
685 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
686 		    sc_if->msk_cdata.msk_rx_prod);
687 	}
688 	return (0);
689 }
690 
691 static int
692 msk_init_rx_ring(struct msk_if_softc *sc_if)
693 {
694 	struct msk_ring_data *rd;
695 	struct msk_rxdesc *rxd;
696 	int i, nbuf, prod;
697 
698 	MSK_IF_LOCK_ASSERT(sc_if);
699 
700 	sc_if->msk_cdata.msk_rx_cons = 0;
701 	sc_if->msk_cdata.msk_rx_prod = 0;
702 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
703 
704 	rd = &sc_if->msk_rdata;
705 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
706 	for (i = prod = 0; i < MSK_RX_RING_CNT; i++) {
707 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
708 		rxd->rx_m = NULL;
709 		rxd->rx_le = &rd->msk_rx_ring[prod];
710 		MSK_INC(prod, MSK_RX_RING_CNT);
711 	}
712 	nbuf = MSK_RX_BUF_CNT;
713 	prod = 0;
714 	/* Have controller know how to compute Rx checksum. */
715 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
716 	    (if_getcapenable(sc_if->msk_ifp) & IFCAP_RXCSUM) != 0) {
717 #ifdef MSK_64BIT_DMA
718 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
719 		rxd->rx_m = NULL;
720 		rxd->rx_le = &rd->msk_rx_ring[prod];
721 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
722 		    ETHER_HDR_LEN);
723 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
724 		MSK_INC(prod, MSK_RX_RING_CNT);
725 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
726 #endif
727 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
728 		rxd->rx_m = NULL;
729 		rxd->rx_le = &rd->msk_rx_ring[prod];
730 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
731 		    ETHER_HDR_LEN);
732 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
733 		MSK_INC(prod, MSK_RX_RING_CNT);
734 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
735 		nbuf--;
736 	}
737 	for (i = 0; i < nbuf; i++) {
738 		if (msk_newbuf(sc_if, prod) != 0)
739 			return (ENOBUFS);
740 		MSK_RX_INC(prod, MSK_RX_RING_CNT);
741 	}
742 
743 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
744 	    sc_if->msk_cdata.msk_rx_ring_map,
745 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
746 
747 	/* Update prefetch unit. */
748 	sc_if->msk_cdata.msk_rx_prod = prod;
749 	CSR_WRITE_2(sc_if->msk_softc,
750 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
751 	    (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) %
752 	    MSK_RX_RING_CNT);
753 	if (msk_rx_fill(sc_if, 0) != 0)
754 		return (ENOBUFS);
755 	return (0);
756 }
757 
758 static int
759 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
760 {
761 	struct msk_ring_data *rd;
762 	struct msk_rxdesc *rxd;
763 	int i, nbuf, prod;
764 
765 	MSK_IF_LOCK_ASSERT(sc_if);
766 
767 	sc_if->msk_cdata.msk_rx_cons = 0;
768 	sc_if->msk_cdata.msk_rx_prod = 0;
769 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
770 
771 	rd = &sc_if->msk_rdata;
772 	bzero(rd->msk_jumbo_rx_ring,
773 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
774 	for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
775 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
776 		rxd->rx_m = NULL;
777 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
778 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
779 	}
780 	nbuf = MSK_RX_BUF_CNT;
781 	prod = 0;
782 	/* Have controller know how to compute Rx checksum. */
783 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
784 	    (if_getcapenable(sc_if->msk_ifp) & IFCAP_RXCSUM) != 0) {
785 #ifdef MSK_64BIT_DMA
786 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
787 		rxd->rx_m = NULL;
788 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
789 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
790 		    ETHER_HDR_LEN);
791 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
792 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
793 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
794 #endif
795 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
796 		rxd->rx_m = NULL;
797 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
798 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
799 		    ETHER_HDR_LEN);
800 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
801 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
802 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
803 		nbuf--;
804 	}
805 	for (i = 0; i < nbuf; i++) {
806 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
807 			return (ENOBUFS);
808 		MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT);
809 	}
810 
811 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
812 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
813 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
814 
815 	/* Update prefetch unit. */
816 	sc_if->msk_cdata.msk_rx_prod = prod;
817 	CSR_WRITE_2(sc_if->msk_softc,
818 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
819 	    (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) %
820 	    MSK_JUMBO_RX_RING_CNT);
821 	if (msk_rx_fill(sc_if, 1) != 0)
822 		return (ENOBUFS);
823 	return (0);
824 }
825 
826 static void
827 msk_init_tx_ring(struct msk_if_softc *sc_if)
828 {
829 	struct msk_ring_data *rd;
830 	struct msk_txdesc *txd;
831 	int i;
832 
833 	sc_if->msk_cdata.msk_tso_mtu = 0;
834 	sc_if->msk_cdata.msk_last_csum = 0;
835 	sc_if->msk_cdata.msk_tx_prod = 0;
836 	sc_if->msk_cdata.msk_tx_cons = 0;
837 	sc_if->msk_cdata.msk_tx_cnt = 0;
838 	sc_if->msk_cdata.msk_tx_high_addr = 0;
839 
840 	rd = &sc_if->msk_rdata;
841 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
842 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
843 		txd = &sc_if->msk_cdata.msk_txdesc[i];
844 		txd->tx_m = NULL;
845 		txd->tx_le = &rd->msk_tx_ring[i];
846 	}
847 
848 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
849 	    sc_if->msk_cdata.msk_tx_ring_map,
850 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
851 }
852 
853 static __inline void
854 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
855 {
856 	struct msk_rx_desc *rx_le;
857 	struct msk_rxdesc *rxd;
858 	struct mbuf *m;
859 
860 #ifdef MSK_64BIT_DMA
861 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
862 	rx_le = rxd->rx_le;
863 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
864 	MSK_INC(idx, MSK_RX_RING_CNT);
865 #endif
866 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
867 	m = rxd->rx_m;
868 	rx_le = rxd->rx_le;
869 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
870 }
871 
872 static __inline void
873 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
874 {
875 	struct msk_rx_desc *rx_le;
876 	struct msk_rxdesc *rxd;
877 	struct mbuf *m;
878 
879 #ifdef MSK_64BIT_DMA
880 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
881 	rx_le = rxd->rx_le;
882 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
883 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
884 #endif
885 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
886 	m = rxd->rx_m;
887 	rx_le = rxd->rx_le;
888 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
889 }
890 
891 static int
892 msk_newbuf(struct msk_if_softc *sc_if, int idx)
893 {
894 	struct msk_rx_desc *rx_le;
895 	struct msk_rxdesc *rxd;
896 	struct mbuf *m;
897 	bus_dma_segment_t segs[1];
898 	bus_dmamap_t map;
899 	int nsegs;
900 
901 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
902 	if (m == NULL)
903 		return (ENOBUFS);
904 
905 	m->m_len = m->m_pkthdr.len = MCLBYTES;
906 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
907 		m_adj(m, ETHER_ALIGN);
908 #ifndef __NO_STRICT_ALIGNMENT
909 	else
910 		m_adj(m, MSK_RX_BUF_ALIGN);
911 #endif
912 
913 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
914 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
915 	    BUS_DMA_NOWAIT) != 0) {
916 		m_freem(m);
917 		return (ENOBUFS);
918 	}
919 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
920 
921 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
922 #ifdef MSK_64BIT_DMA
923 	rx_le = rxd->rx_le;
924 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
925 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
926 	MSK_INC(idx, MSK_RX_RING_CNT);
927 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
928 #endif
929 	if (rxd->rx_m != NULL) {
930 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
931 		    BUS_DMASYNC_POSTREAD);
932 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
933 		rxd->rx_m = NULL;
934 	}
935 	map = rxd->rx_dmamap;
936 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
937 	sc_if->msk_cdata.msk_rx_sparemap = map;
938 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
939 	    BUS_DMASYNC_PREREAD);
940 	rxd->rx_m = m;
941 	rx_le = rxd->rx_le;
942 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
943 	rx_le->msk_control =
944 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
945 
946 	return (0);
947 }
948 
949 static int
950 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
951 {
952 	struct msk_rx_desc *rx_le;
953 	struct msk_rxdesc *rxd;
954 	struct mbuf *m;
955 	bus_dma_segment_t segs[1];
956 	bus_dmamap_t map;
957 	int nsegs;
958 
959 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
960 	if (m == NULL)
961 		return (ENOBUFS);
962 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
963 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
964 		m_adj(m, ETHER_ALIGN);
965 #ifndef __NO_STRICT_ALIGNMENT
966 	else
967 		m_adj(m, MSK_RX_BUF_ALIGN);
968 #endif
969 
970 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
971 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
972 	    BUS_DMA_NOWAIT) != 0) {
973 		m_freem(m);
974 		return (ENOBUFS);
975 	}
976 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
977 
978 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
979 #ifdef MSK_64BIT_DMA
980 	rx_le = rxd->rx_le;
981 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
982 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
983 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
984 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
985 #endif
986 	if (rxd->rx_m != NULL) {
987 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
988 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
989 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
990 		    rxd->rx_dmamap);
991 		rxd->rx_m = NULL;
992 	}
993 	map = rxd->rx_dmamap;
994 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
995 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
996 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
997 	    BUS_DMASYNC_PREREAD);
998 	rxd->rx_m = m;
999 	rx_le = rxd->rx_le;
1000 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
1001 	rx_le->msk_control =
1002 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
1003 
1004 	return (0);
1005 }
1006 
1007 /*
1008  * Set media options.
1009  */
1010 static int
1011 msk_mediachange(if_t ifp)
1012 {
1013 	struct msk_if_softc *sc_if;
1014 	struct mii_data	*mii;
1015 	int error;
1016 
1017 	sc_if = if_getsoftc(ifp);
1018 
1019 	MSK_IF_LOCK(sc_if);
1020 	mii = device_get_softc(sc_if->msk_miibus);
1021 	error = mii_mediachg(mii);
1022 	MSK_IF_UNLOCK(sc_if);
1023 
1024 	return (error);
1025 }
1026 
1027 /*
1028  * Report current media status.
1029  */
1030 static void
1031 msk_mediastatus(if_t ifp, struct ifmediareq *ifmr)
1032 {
1033 	struct msk_if_softc *sc_if;
1034 	struct mii_data	*mii;
1035 
1036 	sc_if = if_getsoftc(ifp);
1037 	MSK_IF_LOCK(sc_if);
1038 	if ((if_getflags(ifp) & IFF_UP) == 0) {
1039 		MSK_IF_UNLOCK(sc_if);
1040 		return;
1041 	}
1042 	mii = device_get_softc(sc_if->msk_miibus);
1043 
1044 	mii_pollstat(mii);
1045 	ifmr->ifm_active = mii->mii_media_active;
1046 	ifmr->ifm_status = mii->mii_media_status;
1047 	MSK_IF_UNLOCK(sc_if);
1048 }
1049 
1050 static int
1051 msk_ioctl(if_t ifp, u_long command, caddr_t data)
1052 {
1053 	struct msk_if_softc *sc_if;
1054 	struct ifreq *ifr;
1055 	struct mii_data	*mii;
1056 	int error, mask, reinit;
1057 
1058 	sc_if = if_getsoftc(ifp);
1059 	ifr = (struct ifreq *)data;
1060 	error = 0;
1061 
1062 	switch(command) {
1063 	case SIOCSIFMTU:
1064 		MSK_IF_LOCK(sc_if);
1065 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1066 			error = EINVAL;
1067 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1068 			if (ifr->ifr_mtu > ETHERMTU) {
1069 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1070 					error = EINVAL;
1071 					MSK_IF_UNLOCK(sc_if);
1072 					break;
1073 				}
1074 				if ((sc_if->msk_flags &
1075 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1076 					if_sethwassistbits(ifp, 0,
1077 					    MSK_CSUM_FEATURES | CSUM_TSO);
1078 					if_setcapenablebit(ifp, 0,
1079 					    IFCAP_TSO4 | IFCAP_TXCSUM);
1080 					VLAN_CAPABILITIES(ifp);
1081 				}
1082 			}
1083 			if_setmtu(ifp, ifr->ifr_mtu);
1084 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1085 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1086 				msk_init_locked(sc_if);
1087 			}
1088 		}
1089 		MSK_IF_UNLOCK(sc_if);
1090 		break;
1091 	case SIOCSIFFLAGS:
1092 		MSK_IF_LOCK(sc_if);
1093 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1094 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1095 			    ((if_getflags(ifp) ^ sc_if->msk_if_flags) &
1096 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1097 				msk_rxfilter(sc_if);
1098 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1099 				msk_init_locked(sc_if);
1100 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1101 			msk_stop(sc_if);
1102 		sc_if->msk_if_flags = if_getflags(ifp);
1103 		MSK_IF_UNLOCK(sc_if);
1104 		break;
1105 	case SIOCADDMULTI:
1106 	case SIOCDELMULTI:
1107 		MSK_IF_LOCK(sc_if);
1108 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1109 			msk_rxfilter(sc_if);
1110 		MSK_IF_UNLOCK(sc_if);
1111 		break;
1112 	case SIOCGIFMEDIA:
1113 	case SIOCSIFMEDIA:
1114 		mii = device_get_softc(sc_if->msk_miibus);
1115 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1116 		break;
1117 	case SIOCSIFCAP:
1118 		reinit = 0;
1119 		MSK_IF_LOCK(sc_if);
1120 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1121 		if ((mask & IFCAP_TXCSUM) != 0 &&
1122 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
1123 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1124 			if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
1125 				if_sethwassistbits(ifp, MSK_CSUM_FEATURES, 0);
1126 			else
1127 				if_sethwassistbits(ifp, 0, MSK_CSUM_FEATURES);
1128 		}
1129 		if ((mask & IFCAP_RXCSUM) != 0 &&
1130 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
1131 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1132 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1133 				reinit = 1;
1134 		}
1135 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1136 		    (IFCAP_VLAN_HWCSUM & if_getcapabilities(ifp)) != 0)
1137 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1138 		if ((mask & IFCAP_TSO4) != 0 &&
1139 		    (IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
1140 			if_togglecapenable(ifp, IFCAP_TSO4);
1141 			if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
1142 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1143 			else
1144 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1145 		}
1146 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1147 		    (IFCAP_VLAN_HWTSO & if_getcapabilities(ifp)) != 0)
1148 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1149 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1150 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
1151 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1152 			if ((IFCAP_VLAN_HWTAGGING & if_getcapenable(ifp)) == 0)
1153 				if_setcapenablebit(ifp, 0,
1154 				    IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1155 			msk_setvlan(sc_if, ifp);
1156 		}
1157 		if (if_getmtu(ifp) > ETHERMTU &&
1158 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1159 			if_sethwassistbits(ifp, 0, (MSK_CSUM_FEATURES | CSUM_TSO));
1160 			if_setcapenablebit(ifp, 0, (IFCAP_TSO4 | IFCAP_TXCSUM));
1161 		}
1162 		VLAN_CAPABILITIES(ifp);
1163 		if (reinit > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1164 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1165 			msk_init_locked(sc_if);
1166 		}
1167 		MSK_IF_UNLOCK(sc_if);
1168 		break;
1169 	default:
1170 		error = ether_ioctl(ifp, command, data);
1171 		break;
1172 	}
1173 
1174 	return (error);
1175 }
1176 
1177 static int
1178 mskc_probe(device_t dev)
1179 {
1180 	const struct msk_product *mp;
1181 	uint16_t vendor, devid;
1182 	int i;
1183 
1184 	vendor = pci_get_vendor(dev);
1185 	devid = pci_get_device(dev);
1186 	mp = msk_products;
1187 	for (i = 0; i < nitems(msk_products); i++, mp++) {
1188 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1189 			device_set_desc(dev, mp->msk_name);
1190 			return (BUS_PROBE_DEFAULT);
1191 		}
1192 	}
1193 
1194 	return (ENXIO);
1195 }
1196 
1197 static int
1198 mskc_setup_rambuffer(struct msk_softc *sc)
1199 {
1200 	int next;
1201 	int i;
1202 
1203 	/* Get adapter SRAM size. */
1204 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1205 	if (bootverbose)
1206 		device_printf(sc->msk_dev,
1207 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1208 	if (sc->msk_ramsize == 0)
1209 		return (0);
1210 
1211 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1212 	/*
1213 	 * Give receiver 2/3 of memory and round down to the multiple
1214 	 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple
1215 	 * of 1024.
1216 	 */
1217 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1218 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1219 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1220 		sc->msk_rxqstart[i] = next;
1221 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1222 		next = sc->msk_rxqend[i] + 1;
1223 		sc->msk_txqstart[i] = next;
1224 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1225 		next = sc->msk_txqend[i] + 1;
1226 		if (bootverbose) {
1227 			device_printf(sc->msk_dev,
1228 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1229 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1230 			    sc->msk_rxqend[i]);
1231 			device_printf(sc->msk_dev,
1232 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1233 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1234 			    sc->msk_txqend[i]);
1235 		}
1236 	}
1237 
1238 	return (0);
1239 }
1240 
1241 static void
1242 msk_phy_power(struct msk_softc *sc, int mode)
1243 {
1244 	uint32_t our, val;
1245 	int i;
1246 
1247 	switch (mode) {
1248 	case MSK_PHY_POWERUP:
1249 		/* Switch power to VCC (WA for VAUX problem). */
1250 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1251 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1252 		/* Disable Core Clock Division, set Clock Select to 0. */
1253 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1254 
1255 		val = 0;
1256 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1257 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1258 			/* Enable bits are inverted. */
1259 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1260 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1261 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1262 		}
1263 		/*
1264 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1265 		 */
1266 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1267 
1268 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1269 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1270 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1271 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1272 				/* Deassert Low Power for 1st PHY. */
1273 				our |= PCI_Y2_PHY1_COMA;
1274 				if (sc->msk_num_port > 1)
1275 					our |= PCI_Y2_PHY2_COMA;
1276 			}
1277 		}
1278 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1279 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1280 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1281 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1282 			val &= (PCI_FORCE_ASPM_REQUEST |
1283 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1284 			    PCI_ASPM_CLKRUN_REQUEST);
1285 			/* Set all bits to 0 except bits 15..12. */
1286 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1287 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1288 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1289 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1290 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1291 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1292 			/*
1293 			 * Disable status race, workaround for
1294 			 * Yukon EC Ultra & Yukon EX.
1295 			 */
1296 			val = CSR_READ_4(sc, B2_GP_IO);
1297 			val |= GLB_GPIO_STAT_RACE_DIS;
1298 			CSR_WRITE_4(sc, B2_GP_IO, val);
1299 			CSR_READ_4(sc, B2_GP_IO);
1300 		}
1301 		/* Release PHY from PowerDown/COMA mode. */
1302 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1303 
1304 		for (i = 0; i < sc->msk_num_port; i++) {
1305 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1306 			    GMLC_RST_SET);
1307 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1308 			    GMLC_RST_CLR);
1309 		}
1310 		break;
1311 	case MSK_PHY_POWERDOWN:
1312 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1313 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1314 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1315 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1316 			val &= ~PCI_Y2_PHY1_COMA;
1317 			if (sc->msk_num_port > 1)
1318 				val &= ~PCI_Y2_PHY2_COMA;
1319 		}
1320 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1321 
1322 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1323 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1324 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1325 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1326 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1327 			/* Enable bits are inverted. */
1328 			val = 0;
1329 		}
1330 		/*
1331 		 * Disable PCI & Core Clock, disable clock gating for
1332 		 * both Links.
1333 		 */
1334 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1335 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1336 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1337 		break;
1338 	default:
1339 		break;
1340 	}
1341 }
1342 
1343 static void
1344 mskc_reset(struct msk_softc *sc)
1345 {
1346 	bus_addr_t addr;
1347 	uint16_t status;
1348 	uint32_t val;
1349 	int i, initram;
1350 
1351 	/* Disable ASF. */
1352 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1353 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1354 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1355 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1356 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1357 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1358 			/* Clear AHB bridge & microcontroller reset. */
1359 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1360 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1361 			/* Clear ASF microcontroller state. */
1362 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1363 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1364 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1365 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1366 		} else
1367 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1368 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1369 		/*
1370 		 * Since we disabled ASF, S/W reset is required for
1371 		 * Power Management.
1372 		 */
1373 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1374 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1375 	}
1376 
1377 	/* Clear all error bits in the PCI status register. */
1378 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1379 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1380 
1381 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1382 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1383 	    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
1384 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1385 
1386 	switch (sc->msk_bustype) {
1387 	case MSK_PEX_BUS:
1388 		/* Clear all PEX errors. */
1389 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1390 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1391 		if ((val & PEX_RX_OV) != 0) {
1392 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1393 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1394 		}
1395 		break;
1396 	case MSK_PCI_BUS:
1397 	case MSK_PCIX_BUS:
1398 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1399 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1400 		if (val == 0)
1401 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1402 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1403 			/* Set Cache Line Size opt. */
1404 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1405 			val |= PCI_CLS_OPT;
1406 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1407 		}
1408 		break;
1409 	}
1410 	/* Set PHY power state. */
1411 	msk_phy_power(sc, MSK_PHY_POWERUP);
1412 
1413 	/* Reset GPHY/GMAC Control */
1414 	for (i = 0; i < sc->msk_num_port; i++) {
1415 		/* GPHY Control reset. */
1416 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1417 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1418 		/* GMAC Control reset. */
1419 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1420 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1421 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1422 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1423 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
1424 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1425 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1426 			    GMC_BYP_RETR_ON);
1427 	}
1428 
1429 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1430 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1431 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1432 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1433 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1434 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1435 	}
1436 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1437 
1438 	/* LED On. */
1439 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1440 
1441 	/* Clear TWSI IRQ. */
1442 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1443 
1444 	/* Turn off hardware timer. */
1445 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1446 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1447 
1448 	/* Turn off descriptor polling. */
1449 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1450 
1451 	/* Turn off time stamps. */
1452 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1453 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1454 
1455 	initram = 0;
1456 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1457 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1458 	    sc->msk_hw_id == CHIP_ID_YUKON_FE)
1459 		initram++;
1460 
1461 	/* Configure timeout values. */
1462 	for (i = 0; initram > 0 && i < sc->msk_num_port; i++) {
1463 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1464 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1465 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1466 		    MSK_RI_TO_53);
1467 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1468 		    MSK_RI_TO_53);
1469 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1470 		    MSK_RI_TO_53);
1471 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1472 		    MSK_RI_TO_53);
1473 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1474 		    MSK_RI_TO_53);
1475 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1476 		    MSK_RI_TO_53);
1477 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1478 		    MSK_RI_TO_53);
1479 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1480 		    MSK_RI_TO_53);
1481 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1482 		    MSK_RI_TO_53);
1483 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1484 		    MSK_RI_TO_53);
1485 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1486 		    MSK_RI_TO_53);
1487 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1488 		    MSK_RI_TO_53);
1489 	}
1490 
1491 	/* Disable all interrupts. */
1492 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1493 	CSR_READ_4(sc, B0_HWE_IMSK);
1494 	CSR_WRITE_4(sc, B0_IMSK, 0);
1495 	CSR_READ_4(sc, B0_IMSK);
1496 
1497         /*
1498          * On dual port PCI-X card, there is an problem where status
1499          * can be received out of order due to split transactions.
1500          */
1501 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1502 		uint16_t pcix_cmd;
1503 
1504 		pcix_cmd = pci_read_config(sc->msk_dev,
1505 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1506 		/* Clear Max Outstanding Split Transactions. */
1507 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1508 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1509 		pci_write_config(sc->msk_dev,
1510 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1511 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1512         }
1513 	if (sc->msk_expcap != 0) {
1514 		/* Change Max. Read Request Size to 2048 bytes. */
1515 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1516 			pci_set_max_read_req(sc->msk_dev, 2048);
1517 	}
1518 
1519 	/* Clear status list. */
1520 	bzero(sc->msk_stat_ring,
1521 	    sizeof(struct msk_stat_desc) * sc->msk_stat_count);
1522 	sc->msk_stat_cons = 0;
1523 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1524 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1525 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1526 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1527 	/* Set the status list base address. */
1528 	addr = sc->msk_stat_ring_paddr;
1529 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1530 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1531 	/* Set the status list last index. */
1532 	CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1);
1533 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1534 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1535 		/* WA for dev. #4.3 */
1536 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1537 		/* WA for dev. #4.18 */
1538 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1539 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1540 	} else {
1541 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1542 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1543 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1544 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1545 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1546 		else
1547 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1548 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1549 	}
1550 	/*
1551 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1552 	 */
1553 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1554 
1555 	/* Enable status unit. */
1556 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1557 
1558 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1559 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1560 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1561 }
1562 
1563 static int
1564 msk_probe(device_t dev)
1565 {
1566 	struct msk_softc *sc;
1567 	char desc[100];
1568 
1569 	sc = device_get_softc(device_get_parent(dev));
1570 	/*
1571 	 * Not much to do here. We always know there will be
1572 	 * at least one GMAC present, and if there are two,
1573 	 * mskc_attach() will create a second device instance
1574 	 * for us.
1575 	 */
1576 	snprintf(desc, sizeof(desc),
1577 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1578 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1579 	    sc->msk_hw_rev);
1580 	device_set_desc_copy(dev, desc);
1581 
1582 	return (BUS_PROBE_DEFAULT);
1583 }
1584 
1585 static int
1586 msk_attach(device_t dev)
1587 {
1588 	struct msk_softc *sc;
1589 	struct msk_if_softc *sc_if;
1590 	if_t ifp;
1591 	struct msk_mii_data *mmd;
1592 	int i, port, error;
1593 	uint8_t eaddr[6];
1594 
1595 	if (dev == NULL)
1596 		return (EINVAL);
1597 
1598 	error = 0;
1599 	sc_if = device_get_softc(dev);
1600 	sc = device_get_softc(device_get_parent(dev));
1601 	mmd = device_get_ivars(dev);
1602 	port = mmd->port;
1603 
1604 	sc_if->msk_if_dev = dev;
1605 	sc_if->msk_port = port;
1606 	sc_if->msk_softc = sc;
1607 	sc_if->msk_flags = sc->msk_pflags;
1608 	sc->msk_if[port] = sc_if;
1609 	/* Setup Tx/Rx queue register offsets. */
1610 	if (port == MSK_PORT_A) {
1611 		sc_if->msk_txq = Q_XA1;
1612 		sc_if->msk_txsq = Q_XS1;
1613 		sc_if->msk_rxq = Q_R1;
1614 	} else {
1615 		sc_if->msk_txq = Q_XA2;
1616 		sc_if->msk_txsq = Q_XS2;
1617 		sc_if->msk_rxq = Q_R2;
1618 	}
1619 
1620 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1621 	msk_sysctl_node(sc_if);
1622 
1623 	if ((error = msk_txrx_dma_alloc(sc_if)) != 0)
1624 		goto fail;
1625 	msk_rx_dma_jalloc(sc_if);
1626 
1627 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1628 	if (ifp == NULL) {
1629 		device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1630 		error = ENOSPC;
1631 		goto fail;
1632 	}
1633 	if_setsoftc(ifp, sc_if);
1634 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1635 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1636 	if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_TSO4);
1637 	/*
1638 	 * Enable Rx checksum offloading if controller supports
1639 	 * new descriptor formant and controller is not Yukon XL.
1640 	 */
1641 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1642 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1643 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
1644 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1645 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1646 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
1647 	if_sethwassist(ifp, MSK_CSUM_FEATURES | CSUM_TSO);
1648 	if_setcapenable(ifp, if_getcapabilities(ifp));
1649 	if_setioctlfn(ifp, msk_ioctl);
1650 	if_setstartfn(ifp, msk_start);
1651 	if_setinitfn(ifp, msk_init);
1652 	if_setsendqlen(ifp, MSK_TX_RING_CNT - 1);
1653 	if_setsendqready(ifp);
1654 	/*
1655 	 * Get station address for this interface. Note that
1656 	 * dual port cards actually come with three station
1657 	 * addresses: one for each port, plus an extra. The
1658 	 * extra one is used by the SysKonnect driver software
1659 	 * as a 'virtual' station address for when both ports
1660 	 * are operating in failover mode. Currently we don't
1661 	 * use this extra address.
1662 	 */
1663 	MSK_IF_LOCK(sc_if);
1664 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1665 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1666 
1667 	/*
1668 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1669 	 */
1670 	MSK_IF_UNLOCK(sc_if);
1671 	ether_ifattach(ifp, eaddr);
1672 	MSK_IF_LOCK(sc_if);
1673 
1674 	/* VLAN capability setup */
1675 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
1676 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1677 		/*
1678 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1679 		 * computes checksum for short frames. For VLAN tagged frames
1680 		 * this workaround does not work so disable checksum offload
1681 		 * for VLAN interface.
1682 		 */
1683 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO, 0);
1684 		/*
1685 		 * Enable Rx checksum offloading for VLAN tagged frames
1686 		 * if controller support new descriptor format.
1687 		 */
1688 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1689 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1690 			if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
1691 	}
1692 	if_setcapenable(ifp, if_getcapabilities(ifp));
1693 	/*
1694 	 * Disable RX checksum offloading on controllers that don't use
1695 	 * new descriptor format but give chance to enable it.
1696 	 */
1697 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1698 		if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
1699 
1700 	/*
1701 	 * Tell the upper layer(s) we support long frames.
1702 	 * Must appear after the call to ether_ifattach() because
1703 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1704 	 */
1705         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1706 
1707 	/*
1708 	 * Do miibus setup.
1709 	 */
1710 	MSK_IF_UNLOCK(sc_if);
1711 	error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange,
1712 	    msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY,
1713 	    mmd->mii_flags);
1714 	if (error != 0) {
1715 		device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n");
1716 		ether_ifdetach(ifp);
1717 		error = ENXIO;
1718 		goto fail;
1719 	}
1720 
1721 fail:
1722 	if (error != 0) {
1723 		/* Access should be ok even though lock has been dropped */
1724 		sc->msk_if[port] = NULL;
1725 		msk_detach(dev);
1726 	}
1727 
1728 	return (error);
1729 }
1730 
1731 /*
1732  * Attach the interface. Allocate softc structures, do ifmedia
1733  * setup and ethernet/BPF attach.
1734  */
1735 static int
1736 mskc_attach(device_t dev)
1737 {
1738 	struct msk_softc *sc;
1739 	struct msk_mii_data *mmd;
1740 	int error, msic, msir, reg;
1741 
1742 	sc = device_get_softc(dev);
1743 	sc->msk_dev = dev;
1744 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1745 	    MTX_DEF);
1746 
1747 	/*
1748 	 * Map control/status registers.
1749 	 */
1750 	pci_enable_busmaster(dev);
1751 
1752 	/* Allocate I/O resource */
1753 #ifdef MSK_USEIOSPACE
1754 	sc->msk_res_spec = msk_res_spec_io;
1755 #else
1756 	sc->msk_res_spec = msk_res_spec_mem;
1757 #endif
1758 	sc->msk_irq_spec = msk_irq_spec_legacy;
1759 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1760 	if (error) {
1761 		if (sc->msk_res_spec == msk_res_spec_mem)
1762 			sc->msk_res_spec = msk_res_spec_io;
1763 		else
1764 			sc->msk_res_spec = msk_res_spec_mem;
1765 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1766 		if (error) {
1767 			device_printf(dev, "couldn't allocate %s resources\n",
1768 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1769 			    "I/O");
1770 			mtx_destroy(&sc->msk_mtx);
1771 			return (ENXIO);
1772 		}
1773 	}
1774 
1775 	/* Enable all clocks before accessing any registers. */
1776 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1777 
1778 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1779 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1780 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1781 	/* Bail out if chip is not recognized. */
1782 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1783 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1784 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1785 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1786 		    sc->msk_hw_id, sc->msk_hw_rev);
1787 		mtx_destroy(&sc->msk_mtx);
1788 		return (ENXIO);
1789 	}
1790 
1791 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1792 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1793 	    OID_AUTO, "process_limit",
1794 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1795 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1796 	    "max number of Rx events to process");
1797 
1798 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1799 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1800 	    "process_limit", &sc->msk_process_limit);
1801 	if (error == 0) {
1802 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1803 		    sc->msk_process_limit > MSK_PROC_MAX) {
1804 			device_printf(dev, "process_limit value out of range; "
1805 			    "using default: %d\n", MSK_PROC_DEFAULT);
1806 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1807 		}
1808 	}
1809 
1810 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1811 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1812 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1813 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1814 	    "Maximum number of time to delay interrupts");
1815 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1816 	    "int_holdoff", &sc->msk_int_holdoff);
1817 
1818 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1819 	/* Check number of MACs. */
1820 	sc->msk_num_port = 1;
1821 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1822 	    CFG_DUAL_MAC_MSK) {
1823 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1824 			sc->msk_num_port++;
1825 	}
1826 
1827 	/* Check bus type. */
1828 	if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1829 		sc->msk_bustype = MSK_PEX_BUS;
1830 		sc->msk_expcap = reg;
1831 	} else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1832 		sc->msk_bustype = MSK_PCIX_BUS;
1833 		sc->msk_pcixcap = reg;
1834 	} else
1835 		sc->msk_bustype = MSK_PCI_BUS;
1836 
1837 	switch (sc->msk_hw_id) {
1838 	case CHIP_ID_YUKON_EC:
1839 		sc->msk_clock = 125;	/* 125 MHz */
1840 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1841 		break;
1842 	case CHIP_ID_YUKON_EC_U:
1843 		sc->msk_clock = 125;	/* 125 MHz */
1844 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1845 		break;
1846 	case CHIP_ID_YUKON_EX:
1847 		sc->msk_clock = 125;	/* 125 MHz */
1848 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1849 		    MSK_FLAG_AUTOTX_CSUM;
1850 		/*
1851 		 * Yukon Extreme seems to have silicon bug for
1852 		 * automatic Tx checksum calculation capability.
1853 		 */
1854 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1855 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1856 		/*
1857 		 * Yukon Extreme A0 could not use store-and-forward
1858 		 * for jumbo frames, so disable Tx checksum
1859 		 * offloading for jumbo frames.
1860 		 */
1861 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1862 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1863 		break;
1864 	case CHIP_ID_YUKON_FE:
1865 		sc->msk_clock = 100;	/* 100 MHz */
1866 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1867 		break;
1868 	case CHIP_ID_YUKON_FE_P:
1869 		sc->msk_clock = 50;	/* 50 MHz */
1870 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1871 		    MSK_FLAG_AUTOTX_CSUM;
1872 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1873 			/*
1874 			 * XXX
1875 			 * FE+ A0 has status LE writeback bug so msk(4)
1876 			 * does not rely on status word of received frame
1877 			 * in msk_rxeof() which in turn disables all
1878 			 * hardware assistance bits reported by the status
1879 			 * word as well as validity of the received frame.
1880 			 * Just pass received frames to upper stack with
1881 			 * minimal test and let upper stack handle them.
1882 			 */
1883 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1884 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1885 		}
1886 		break;
1887 	case CHIP_ID_YUKON_XL:
1888 		sc->msk_clock = 156;	/* 156 MHz */
1889 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1890 		break;
1891 	case CHIP_ID_YUKON_SUPR:
1892 		sc->msk_clock = 125;	/* 125 MHz */
1893 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1894 		    MSK_FLAG_AUTOTX_CSUM;
1895 		break;
1896 	case CHIP_ID_YUKON_UL_2:
1897 		sc->msk_clock = 125;	/* 125 MHz */
1898 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1899 		break;
1900 	case CHIP_ID_YUKON_OPT:
1901 		sc->msk_clock = 125;	/* 125 MHz */
1902 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1903 		break;
1904 	default:
1905 		sc->msk_clock = 156;	/* 156 MHz */
1906 		break;
1907 	}
1908 
1909 	/* Allocate IRQ resources. */
1910 	msic = pci_msi_count(dev);
1911 	if (bootverbose)
1912 		device_printf(dev, "MSI count : %d\n", msic);
1913 	if (legacy_intr != 0)
1914 		msi_disable = 1;
1915 	if (msi_disable == 0 && msic > 0) {
1916 		msir = 1;
1917 		if (pci_alloc_msi(dev, &msir) == 0) {
1918 			if (msir == 1) {
1919 				sc->msk_pflags |= MSK_FLAG_MSI;
1920 				sc->msk_irq_spec = msk_irq_spec_msi;
1921 			} else
1922 				pci_release_msi(dev);
1923 		}
1924 	}
1925 
1926 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1927 	if (error) {
1928 		device_printf(dev, "couldn't allocate IRQ resources\n");
1929 		goto fail;
1930 	}
1931 
1932 	if ((error = msk_status_dma_alloc(sc)) != 0)
1933 		goto fail;
1934 
1935 	/* Set base interrupt mask. */
1936 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1937 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1938 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1939 
1940 	/* Reset the adapter. */
1941 	mskc_reset(sc);
1942 
1943 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1944 		goto fail;
1945 
1946 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1947 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1948 		device_printf(dev, "failed to add child for PORT_A\n");
1949 		error = ENXIO;
1950 		goto fail;
1951 	}
1952 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1953 	mmd->port = MSK_PORT_A;
1954 	mmd->pmd = sc->msk_pmd;
1955 	mmd->mii_flags |= MIIF_DOPAUSE;
1956 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1957 		mmd->mii_flags |= MIIF_HAVEFIBER;
1958 	if (sc->msk_pmd == 'P')
1959 		mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1960 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1961 
1962 	if (sc->msk_num_port > 1) {
1963 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1964 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1965 			device_printf(dev, "failed to add child for PORT_B\n");
1966 			error = ENXIO;
1967 			goto fail;
1968 		}
1969 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK |
1970 		    M_ZERO);
1971 		mmd->port = MSK_PORT_B;
1972 		mmd->pmd = sc->msk_pmd;
1973 		if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1974 			mmd->mii_flags |= MIIF_HAVEFIBER;
1975 		if (sc->msk_pmd == 'P')
1976 			mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1977 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1978 	}
1979 
1980 	error = bus_generic_attach(dev);
1981 	if (error) {
1982 		device_printf(dev, "failed to attach port(s)\n");
1983 		goto fail;
1984 	}
1985 
1986 	/* Hook interrupt last to avoid having to lock softc. */
1987 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1988 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1989 	if (error != 0) {
1990 		device_printf(dev, "couldn't set up interrupt handler\n");
1991 		goto fail;
1992 	}
1993 fail:
1994 	if (error != 0)
1995 		mskc_detach(dev);
1996 
1997 	return (error);
1998 }
1999 
2000 /*
2001  * Shutdown hardware and free up resources. This can be called any
2002  * time after the mutex has been initialized. It is called in both
2003  * the error case in attach and the normal detach case so it needs
2004  * to be careful about only freeing resources that have actually been
2005  * allocated.
2006  */
2007 static int
2008 msk_detach(device_t dev)
2009 {
2010 	struct msk_softc *sc;
2011 	struct msk_if_softc *sc_if;
2012 	if_t ifp;
2013 
2014 	sc_if = device_get_softc(dev);
2015 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
2016 	    ("msk mutex not initialized in msk_detach"));
2017 	MSK_IF_LOCK(sc_if);
2018 
2019 	ifp = sc_if->msk_ifp;
2020 	if (device_is_attached(dev)) {
2021 		/* XXX */
2022 		sc_if->msk_flags |= MSK_FLAG_DETACH;
2023 		msk_stop(sc_if);
2024 		/* Can't hold locks while calling detach. */
2025 		MSK_IF_UNLOCK(sc_if);
2026 		callout_drain(&sc_if->msk_tick_ch);
2027 		if (ifp)
2028 			ether_ifdetach(ifp);
2029 		MSK_IF_LOCK(sc_if);
2030 	}
2031 
2032 	/*
2033 	 * We're generally called from mskc_detach() which is using
2034 	 * device_delete_child() to get to here. It's already trashed
2035 	 * miibus for us, so don't do it here or we'll panic.
2036 	 *
2037 	 * if (sc_if->msk_miibus != NULL) {
2038 	 * 	device_delete_child(dev, sc_if->msk_miibus);
2039 	 * 	sc_if->msk_miibus = NULL;
2040 	 * }
2041 	 */
2042 
2043 	msk_rx_dma_jfree(sc_if);
2044 	msk_txrx_dma_free(sc_if);
2045 	bus_generic_detach(dev);
2046 
2047 	sc = sc_if->msk_softc;
2048 	sc->msk_if[sc_if->msk_port] = NULL;
2049 	MSK_IF_UNLOCK(sc_if);
2050 	if (ifp)
2051 		if_free(ifp);
2052 
2053 	return (0);
2054 }
2055 
2056 static int
2057 mskc_detach(device_t dev)
2058 {
2059 	struct msk_softc *sc;
2060 
2061 	sc = device_get_softc(dev);
2062 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2063 
2064 	if (device_is_alive(dev)) {
2065 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2066 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2067 			    M_DEVBUF);
2068 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2069 		}
2070 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2071 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2072 			    M_DEVBUF);
2073 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2074 		}
2075 		bus_generic_detach(dev);
2076 	}
2077 
2078 	/* Disable all interrupts. */
2079 	CSR_WRITE_4(sc, B0_IMSK, 0);
2080 	CSR_READ_4(sc, B0_IMSK);
2081 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2082 	CSR_READ_4(sc, B0_HWE_IMSK);
2083 
2084 	/* LED Off. */
2085 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2086 
2087 	/* Put hardware reset. */
2088 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2089 
2090 	msk_status_dma_free(sc);
2091 
2092 	if (sc->msk_intrhand) {
2093 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2094 		sc->msk_intrhand = NULL;
2095 	}
2096 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2097 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2098 		pci_release_msi(dev);
2099 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2100 	mtx_destroy(&sc->msk_mtx);
2101 
2102 	return (0);
2103 }
2104 
2105 static bus_dma_tag_t
2106 mskc_get_dma_tag(device_t bus, device_t child __unused)
2107 {
2108 
2109 	return (bus_get_dma_tag(bus));
2110 }
2111 
2112 struct msk_dmamap_arg {
2113 	bus_addr_t	msk_busaddr;
2114 };
2115 
2116 static void
2117 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2118 {
2119 	struct msk_dmamap_arg *ctx;
2120 
2121 	if (error != 0)
2122 		return;
2123 	ctx = arg;
2124 	ctx->msk_busaddr = segs[0].ds_addr;
2125 }
2126 
2127 /* Create status DMA region. */
2128 static int
2129 msk_status_dma_alloc(struct msk_softc *sc)
2130 {
2131 	struct msk_dmamap_arg ctx;
2132 	bus_size_t stat_sz;
2133 	int count, error;
2134 
2135 	/*
2136 	 * It seems controller requires number of status LE entries
2137 	 * is power of 2 and the maximum number of status LE entries
2138 	 * is 4096.  For dual-port controllers, the number of status
2139 	 * LE entries should be large enough to hold both port's
2140 	 * status updates.
2141 	 */
2142 	count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT;
2143 	count = imin(4096, roundup2(count, 1024));
2144 	sc->msk_stat_count = count;
2145 	stat_sz = count * sizeof(struct msk_stat_desc);
2146 	error = bus_dma_tag_create(
2147 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2148 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2149 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2150 		    BUS_SPACE_MAXADDR,		/* highaddr */
2151 		    NULL, NULL,			/* filter, filterarg */
2152 		    stat_sz,			/* maxsize */
2153 		    1,				/* nsegments */
2154 		    stat_sz,			/* maxsegsize */
2155 		    0,				/* flags */
2156 		    NULL, NULL,			/* lockfunc, lockarg */
2157 		    &sc->msk_stat_tag);
2158 	if (error != 0) {
2159 		device_printf(sc->msk_dev,
2160 		    "failed to create status DMA tag\n");
2161 		return (error);
2162 	}
2163 
2164 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2165 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2166 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2167 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2168 	if (error != 0) {
2169 		device_printf(sc->msk_dev,
2170 		    "failed to allocate DMA'able memory for status ring\n");
2171 		return (error);
2172 	}
2173 
2174 	ctx.msk_busaddr = 0;
2175 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
2176 	    sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2177 	if (error != 0) {
2178 		device_printf(sc->msk_dev,
2179 		    "failed to load DMA'able memory for status ring\n");
2180 		return (error);
2181 	}
2182 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2183 
2184 	return (0);
2185 }
2186 
2187 static void
2188 msk_status_dma_free(struct msk_softc *sc)
2189 {
2190 
2191 	/* Destroy status block. */
2192 	if (sc->msk_stat_tag) {
2193 		if (sc->msk_stat_ring_paddr) {
2194 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2195 			sc->msk_stat_ring_paddr = 0;
2196 		}
2197 		if (sc->msk_stat_ring) {
2198 			bus_dmamem_free(sc->msk_stat_tag,
2199 			    sc->msk_stat_ring, sc->msk_stat_map);
2200 			sc->msk_stat_ring = NULL;
2201 		}
2202 		bus_dma_tag_destroy(sc->msk_stat_tag);
2203 		sc->msk_stat_tag = NULL;
2204 	}
2205 }
2206 
2207 static int
2208 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2209 {
2210 	struct msk_dmamap_arg ctx;
2211 	struct msk_txdesc *txd;
2212 	struct msk_rxdesc *rxd;
2213 	bus_size_t rxalign;
2214 	int error, i;
2215 
2216 	/* Create parent DMA tag. */
2217 	error = bus_dma_tag_create(
2218 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2219 		    1, 0,			/* alignment, boundary */
2220 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2221 		    BUS_SPACE_MAXADDR,		/* highaddr */
2222 		    NULL, NULL,			/* filter, filterarg */
2223 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2224 		    0,				/* nsegments */
2225 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2226 		    0,				/* flags */
2227 		    NULL, NULL,			/* lockfunc, lockarg */
2228 		    &sc_if->msk_cdata.msk_parent_tag);
2229 	if (error != 0) {
2230 		device_printf(sc_if->msk_if_dev,
2231 		    "failed to create parent DMA tag\n");
2232 		goto fail;
2233 	}
2234 	/* Create tag for Tx ring. */
2235 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2236 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2237 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2238 		    BUS_SPACE_MAXADDR,		/* highaddr */
2239 		    NULL, NULL,			/* filter, filterarg */
2240 		    MSK_TX_RING_SZ,		/* maxsize */
2241 		    1,				/* nsegments */
2242 		    MSK_TX_RING_SZ,		/* maxsegsize */
2243 		    0,				/* flags */
2244 		    NULL, NULL,			/* lockfunc, lockarg */
2245 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2246 	if (error != 0) {
2247 		device_printf(sc_if->msk_if_dev,
2248 		    "failed to create Tx ring DMA tag\n");
2249 		goto fail;
2250 	}
2251 
2252 	/* Create tag for Rx ring. */
2253 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2254 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2255 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2256 		    BUS_SPACE_MAXADDR,		/* highaddr */
2257 		    NULL, NULL,			/* filter, filterarg */
2258 		    MSK_RX_RING_SZ,		/* maxsize */
2259 		    1,				/* nsegments */
2260 		    MSK_RX_RING_SZ,		/* maxsegsize */
2261 		    0,				/* flags */
2262 		    NULL, NULL,			/* lockfunc, lockarg */
2263 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2264 	if (error != 0) {
2265 		device_printf(sc_if->msk_if_dev,
2266 		    "failed to create Rx ring DMA tag\n");
2267 		goto fail;
2268 	}
2269 
2270 	/* Create tag for Tx buffers. */
2271 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2272 		    1, 0,			/* alignment, boundary */
2273 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2274 		    BUS_SPACE_MAXADDR,		/* highaddr */
2275 		    NULL, NULL,			/* filter, filterarg */
2276 		    MSK_TSO_MAXSIZE,		/* maxsize */
2277 		    MSK_MAXTXSEGS,		/* nsegments */
2278 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2279 		    0,				/* flags */
2280 		    NULL, NULL,			/* lockfunc, lockarg */
2281 		    &sc_if->msk_cdata.msk_tx_tag);
2282 	if (error != 0) {
2283 		device_printf(sc_if->msk_if_dev,
2284 		    "failed to create Tx DMA tag\n");
2285 		goto fail;
2286 	}
2287 
2288 	rxalign = 1;
2289 	/*
2290 	 * Workaround hardware hang which seems to happen when Rx buffer
2291 	 * is not aligned on multiple of FIFO word(8 bytes).
2292 	 */
2293 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2294 		rxalign = MSK_RX_BUF_ALIGN;
2295 	/* Create tag for Rx buffers. */
2296 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2297 		    rxalign, 0,			/* alignment, boundary */
2298 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2299 		    BUS_SPACE_MAXADDR,		/* highaddr */
2300 		    NULL, NULL,			/* filter, filterarg */
2301 		    MCLBYTES,			/* maxsize */
2302 		    1,				/* nsegments */
2303 		    MCLBYTES,			/* maxsegsize */
2304 		    0,				/* flags */
2305 		    NULL, NULL,			/* lockfunc, lockarg */
2306 		    &sc_if->msk_cdata.msk_rx_tag);
2307 	if (error != 0) {
2308 		device_printf(sc_if->msk_if_dev,
2309 		    "failed to create Rx DMA tag\n");
2310 		goto fail;
2311 	}
2312 
2313 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2314 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2315 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2316 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2317 	if (error != 0) {
2318 		device_printf(sc_if->msk_if_dev,
2319 		    "failed to allocate DMA'able memory for Tx ring\n");
2320 		goto fail;
2321 	}
2322 
2323 	ctx.msk_busaddr = 0;
2324 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2325 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2326 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2327 	if (error != 0) {
2328 		device_printf(sc_if->msk_if_dev,
2329 		    "failed to load DMA'able memory for Tx ring\n");
2330 		goto fail;
2331 	}
2332 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2333 
2334 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2335 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2336 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2337 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2338 	if (error != 0) {
2339 		device_printf(sc_if->msk_if_dev,
2340 		    "failed to allocate DMA'able memory for Rx ring\n");
2341 		goto fail;
2342 	}
2343 
2344 	ctx.msk_busaddr = 0;
2345 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2346 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2347 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2348 	if (error != 0) {
2349 		device_printf(sc_if->msk_if_dev,
2350 		    "failed to load DMA'able memory for Rx ring\n");
2351 		goto fail;
2352 	}
2353 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2354 
2355 	/* Create DMA maps for Tx buffers. */
2356 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2357 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2358 		txd->tx_m = NULL;
2359 		txd->tx_dmamap = NULL;
2360 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2361 		    &txd->tx_dmamap);
2362 		if (error != 0) {
2363 			device_printf(sc_if->msk_if_dev,
2364 			    "failed to create Tx dmamap\n");
2365 			goto fail;
2366 		}
2367 	}
2368 	/* Create DMA maps for Rx buffers. */
2369 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2370 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2371 		device_printf(sc_if->msk_if_dev,
2372 		    "failed to create spare Rx dmamap\n");
2373 		goto fail;
2374 	}
2375 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2376 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2377 		rxd->rx_m = NULL;
2378 		rxd->rx_dmamap = NULL;
2379 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2380 		    &rxd->rx_dmamap);
2381 		if (error != 0) {
2382 			device_printf(sc_if->msk_if_dev,
2383 			    "failed to create Rx dmamap\n");
2384 			goto fail;
2385 		}
2386 	}
2387 
2388 fail:
2389 	return (error);
2390 }
2391 
2392 static int
2393 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2394 {
2395 	struct msk_dmamap_arg ctx;
2396 	struct msk_rxdesc *jrxd;
2397 	bus_size_t rxalign;
2398 	int error, i;
2399 
2400 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2401 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2402 		device_printf(sc_if->msk_if_dev,
2403 		    "disabling jumbo frame support\n");
2404 		return (0);
2405 	}
2406 	/* Create tag for jumbo Rx ring. */
2407 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2408 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2409 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2410 		    BUS_SPACE_MAXADDR,		/* highaddr */
2411 		    NULL, NULL,			/* filter, filterarg */
2412 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2413 		    1,				/* nsegments */
2414 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2415 		    0,				/* flags */
2416 		    NULL, NULL,			/* lockfunc, lockarg */
2417 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2418 	if (error != 0) {
2419 		device_printf(sc_if->msk_if_dev,
2420 		    "failed to create jumbo Rx ring DMA tag\n");
2421 		goto jumbo_fail;
2422 	}
2423 
2424 	rxalign = 1;
2425 	/*
2426 	 * Workaround hardware hang which seems to happen when Rx buffer
2427 	 * is not aligned on multiple of FIFO word(8 bytes).
2428 	 */
2429 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2430 		rxalign = MSK_RX_BUF_ALIGN;
2431 	/* Create tag for jumbo Rx buffers. */
2432 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2433 		    rxalign, 0,			/* alignment, boundary */
2434 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2435 		    BUS_SPACE_MAXADDR,		/* highaddr */
2436 		    NULL, NULL,			/* filter, filterarg */
2437 		    MJUM9BYTES,			/* maxsize */
2438 		    1,				/* nsegments */
2439 		    MJUM9BYTES,			/* maxsegsize */
2440 		    0,				/* flags */
2441 		    NULL, NULL,			/* lockfunc, lockarg */
2442 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2443 	if (error != 0) {
2444 		device_printf(sc_if->msk_if_dev,
2445 		    "failed to create jumbo Rx DMA tag\n");
2446 		goto jumbo_fail;
2447 	}
2448 
2449 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2450 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2451 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2452 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2453 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2454 	if (error != 0) {
2455 		device_printf(sc_if->msk_if_dev,
2456 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2457 		goto jumbo_fail;
2458 	}
2459 
2460 	ctx.msk_busaddr = 0;
2461 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2462 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2463 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2464 	    msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2465 	if (error != 0) {
2466 		device_printf(sc_if->msk_if_dev,
2467 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2468 		goto jumbo_fail;
2469 	}
2470 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2471 
2472 	/* Create DMA maps for jumbo Rx buffers. */
2473 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2474 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2475 		device_printf(sc_if->msk_if_dev,
2476 		    "failed to create spare jumbo Rx dmamap\n");
2477 		goto jumbo_fail;
2478 	}
2479 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2480 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2481 		jrxd->rx_m = NULL;
2482 		jrxd->rx_dmamap = NULL;
2483 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2484 		    &jrxd->rx_dmamap);
2485 		if (error != 0) {
2486 			device_printf(sc_if->msk_if_dev,
2487 			    "failed to create jumbo Rx dmamap\n");
2488 			goto jumbo_fail;
2489 		}
2490 	}
2491 
2492 	return (0);
2493 
2494 jumbo_fail:
2495 	msk_rx_dma_jfree(sc_if);
2496 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2497 	    "due to resource shortage\n");
2498 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2499 	return (error);
2500 }
2501 
2502 static void
2503 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2504 {
2505 	struct msk_txdesc *txd;
2506 	struct msk_rxdesc *rxd;
2507 	int i;
2508 
2509 	/* Tx ring. */
2510 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2511 		if (sc_if->msk_rdata.msk_tx_ring_paddr)
2512 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2513 			    sc_if->msk_cdata.msk_tx_ring_map);
2514 		if (sc_if->msk_rdata.msk_tx_ring)
2515 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2516 			    sc_if->msk_rdata.msk_tx_ring,
2517 			    sc_if->msk_cdata.msk_tx_ring_map);
2518 		sc_if->msk_rdata.msk_tx_ring = NULL;
2519 		sc_if->msk_rdata.msk_tx_ring_paddr = 0;
2520 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2521 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2522 	}
2523 	/* Rx ring. */
2524 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2525 		if (sc_if->msk_rdata.msk_rx_ring_paddr)
2526 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2527 			    sc_if->msk_cdata.msk_rx_ring_map);
2528 		if (sc_if->msk_rdata.msk_rx_ring)
2529 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2530 			    sc_if->msk_rdata.msk_rx_ring,
2531 			    sc_if->msk_cdata.msk_rx_ring_map);
2532 		sc_if->msk_rdata.msk_rx_ring = NULL;
2533 		sc_if->msk_rdata.msk_rx_ring_paddr = 0;
2534 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2535 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2536 	}
2537 	/* Tx buffers. */
2538 	if (sc_if->msk_cdata.msk_tx_tag) {
2539 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2540 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2541 			if (txd->tx_dmamap) {
2542 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2543 				    txd->tx_dmamap);
2544 				txd->tx_dmamap = NULL;
2545 			}
2546 		}
2547 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2548 		sc_if->msk_cdata.msk_tx_tag = NULL;
2549 	}
2550 	/* Rx buffers. */
2551 	if (sc_if->msk_cdata.msk_rx_tag) {
2552 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2553 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2554 			if (rxd->rx_dmamap) {
2555 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2556 				    rxd->rx_dmamap);
2557 				rxd->rx_dmamap = NULL;
2558 			}
2559 		}
2560 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2561 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2562 			    sc_if->msk_cdata.msk_rx_sparemap);
2563 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2564 		}
2565 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2566 		sc_if->msk_cdata.msk_rx_tag = NULL;
2567 	}
2568 	if (sc_if->msk_cdata.msk_parent_tag) {
2569 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2570 		sc_if->msk_cdata.msk_parent_tag = NULL;
2571 	}
2572 }
2573 
2574 static void
2575 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2576 {
2577 	struct msk_rxdesc *jrxd;
2578 	int i;
2579 
2580 	/* Jumbo Rx ring. */
2581 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2582 		if (sc_if->msk_rdata.msk_jumbo_rx_ring_paddr)
2583 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2584 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2585 		if (sc_if->msk_rdata.msk_jumbo_rx_ring)
2586 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2587 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2588 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2589 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2590 		sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = 0;
2591 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2592 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2593 	}
2594 	/* Jumbo Rx buffers. */
2595 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2596 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2597 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2598 			if (jrxd->rx_dmamap) {
2599 				bus_dmamap_destroy(
2600 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2601 				    jrxd->rx_dmamap);
2602 				jrxd->rx_dmamap = NULL;
2603 			}
2604 		}
2605 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2606 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2607 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2608 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2609 		}
2610 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2611 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2612 	}
2613 }
2614 
2615 static int
2616 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2617 {
2618 	struct msk_txdesc *txd, *txd_last;
2619 	struct msk_tx_desc *tx_le;
2620 	struct mbuf *m;
2621 	bus_dmamap_t map;
2622 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2623 	uint32_t control, csum, prod, si;
2624 	uint16_t offset, tcp_offset, tso_mtu;
2625 	int error, i, nseg, tso;
2626 
2627 	MSK_IF_LOCK_ASSERT(sc_if);
2628 
2629 	tcp_offset = offset = 0;
2630 	m = *m_head;
2631 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2632 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2633 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2634 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2635 		/*
2636 		 * Since mbuf has no protocol specific structure information
2637 		 * in it we have to inspect protocol information here to
2638 		 * setup TSO and checksum offload. I don't know why Marvell
2639 		 * made a such decision in chip design because other GigE
2640 		 * hardwares normally takes care of all these chores in
2641 		 * hardware. However, TSO performance of Yukon II is very
2642 		 * good such that it's worth to implement it.
2643 		 */
2644 		struct ether_header *eh;
2645 		struct ip *ip;
2646 		struct tcphdr *tcp;
2647 
2648 		if (M_WRITABLE(m) == 0) {
2649 			/* Get a writable copy. */
2650 			m = m_dup(*m_head, M_NOWAIT);
2651 			m_freem(*m_head);
2652 			if (m == NULL) {
2653 				*m_head = NULL;
2654 				return (ENOBUFS);
2655 			}
2656 			*m_head = m;
2657 		}
2658 
2659 		offset = sizeof(struct ether_header);
2660 		m = m_pullup(m, offset);
2661 		if (m == NULL) {
2662 			*m_head = NULL;
2663 			return (ENOBUFS);
2664 		}
2665 		eh = mtod(m, struct ether_header *);
2666 		/* Check if hardware VLAN insertion is off. */
2667 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2668 			offset = sizeof(struct ether_vlan_header);
2669 			m = m_pullup(m, offset);
2670 			if (m == NULL) {
2671 				*m_head = NULL;
2672 				return (ENOBUFS);
2673 			}
2674 		}
2675 		m = m_pullup(m, offset + sizeof(struct ip));
2676 		if (m == NULL) {
2677 			*m_head = NULL;
2678 			return (ENOBUFS);
2679 		}
2680 		ip = (struct ip *)(mtod(m, char *) + offset);
2681 		offset += (ip->ip_hl << 2);
2682 		tcp_offset = offset;
2683 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2684 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2685 			if (m == NULL) {
2686 				*m_head = NULL;
2687 				return (ENOBUFS);
2688 			}
2689 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2690 			offset += (tcp->th_off << 2);
2691 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2692 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2693 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2694 			/*
2695 			 * It seems that Yukon II has Tx checksum offload bug
2696 			 * for small TCP packets that's less than 60 bytes in
2697 			 * size (e.g. TCP window probe packet, pure ACK packet).
2698 			 * Common work around like padding with zeros to make
2699 			 * the frame minimum ethernet frame size didn't work at
2700 			 * all.
2701 			 * Instead of disabling checksum offload completely we
2702 			 * resort to S/W checksum routine when we encounter
2703 			 * short TCP frames.
2704 			 * Short UDP packets appear to be handled correctly by
2705 			 * Yukon II. Also I assume this bug does not happen on
2706 			 * controllers that use newer descriptor format or
2707 			 * automatic Tx checksum calculation.
2708 			 */
2709 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2710 			if (m == NULL) {
2711 				*m_head = NULL;
2712 				return (ENOBUFS);
2713 			}
2714 			*(uint16_t *)(m->m_data + offset +
2715 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2716 			    m->m_pkthdr.len, offset);
2717 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2718 		}
2719 		*m_head = m;
2720 	}
2721 
2722 	prod = sc_if->msk_cdata.msk_tx_prod;
2723 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2724 	txd_last = txd;
2725 	map = txd->tx_dmamap;
2726 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2727 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2728 	if (error == EFBIG) {
2729 		m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS);
2730 		if (m == NULL) {
2731 			m_freem(*m_head);
2732 			*m_head = NULL;
2733 			return (ENOBUFS);
2734 		}
2735 		*m_head = m;
2736 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2737 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2738 		if (error != 0) {
2739 			m_freem(*m_head);
2740 			*m_head = NULL;
2741 			return (error);
2742 		}
2743 	} else if (error != 0)
2744 		return (error);
2745 	if (nseg == 0) {
2746 		m_freem(*m_head);
2747 		*m_head = NULL;
2748 		return (EIO);
2749 	}
2750 
2751 	/* Check number of available descriptors. */
2752 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2753 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2754 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2755 		return (ENOBUFS);
2756 	}
2757 
2758 	control = 0;
2759 	tso = 0;
2760 	tx_le = NULL;
2761 
2762 	/* Check TSO support. */
2763 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2764 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2765 			tso_mtu = m->m_pkthdr.tso_segsz;
2766 		else
2767 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2768 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2769 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2770 			tx_le->msk_addr = htole32(tso_mtu);
2771 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2772 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2773 			else
2774 				tx_le->msk_control =
2775 				    htole32(OP_LRGLEN | HW_OWNER);
2776 			sc_if->msk_cdata.msk_tx_cnt++;
2777 			MSK_INC(prod, MSK_TX_RING_CNT);
2778 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2779 		}
2780 		tso++;
2781 	}
2782 	/* Check if we have a VLAN tag to insert. */
2783 	if ((m->m_flags & M_VLANTAG) != 0) {
2784 		if (tx_le == NULL) {
2785 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2786 			tx_le->msk_addr = htole32(0);
2787 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2788 			    htons(m->m_pkthdr.ether_vtag));
2789 			sc_if->msk_cdata.msk_tx_cnt++;
2790 			MSK_INC(prod, MSK_TX_RING_CNT);
2791 		} else {
2792 			tx_le->msk_control |= htole32(OP_VLAN |
2793 			    htons(m->m_pkthdr.ether_vtag));
2794 		}
2795 		control |= INS_VLAN;
2796 	}
2797 	/* Check if we have to handle checksum offload. */
2798 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2799 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2800 			control |= CALSUM;
2801 		else {
2802 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2803 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2804 				control |= UDPTCP;
2805 			/* Checksum write position. */
2806 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2807 			/* Checksum start position. */
2808 			csum |= (uint32_t)tcp_offset << 16;
2809 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2810 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2811 				tx_le->msk_addr = htole32(csum);
2812 				tx_le->msk_control = htole32(1 << 16 |
2813 				    (OP_TCPLISW | HW_OWNER));
2814 				sc_if->msk_cdata.msk_tx_cnt++;
2815 				MSK_INC(prod, MSK_TX_RING_CNT);
2816 				sc_if->msk_cdata.msk_last_csum = csum;
2817 			}
2818 		}
2819 	}
2820 
2821 #ifdef MSK_64BIT_DMA
2822 	if (MSK_ADDR_HI(txsegs[0].ds_addr) !=
2823 	    sc_if->msk_cdata.msk_tx_high_addr) {
2824 		sc_if->msk_cdata.msk_tx_high_addr =
2825 		    MSK_ADDR_HI(txsegs[0].ds_addr);
2826 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2827 		tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr));
2828 		tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2829 		sc_if->msk_cdata.msk_tx_cnt++;
2830 		MSK_INC(prod, MSK_TX_RING_CNT);
2831 	}
2832 #endif
2833 	si = prod;
2834 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2835 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2836 	if (tso == 0)
2837 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2838 		    OP_PACKET);
2839 	else
2840 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2841 		    OP_LARGESEND);
2842 	sc_if->msk_cdata.msk_tx_cnt++;
2843 	MSK_INC(prod, MSK_TX_RING_CNT);
2844 
2845 	for (i = 1; i < nseg; i++) {
2846 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2847 #ifdef MSK_64BIT_DMA
2848 		if (MSK_ADDR_HI(txsegs[i].ds_addr) !=
2849 		    sc_if->msk_cdata.msk_tx_high_addr) {
2850 			sc_if->msk_cdata.msk_tx_high_addr =
2851 			    MSK_ADDR_HI(txsegs[i].ds_addr);
2852 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2853 			tx_le->msk_addr =
2854 			    htole32(MSK_ADDR_HI(txsegs[i].ds_addr));
2855 			tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2856 			sc_if->msk_cdata.msk_tx_cnt++;
2857 			MSK_INC(prod, MSK_TX_RING_CNT);
2858 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2859 		}
2860 #endif
2861 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2862 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2863 		    OP_BUFFER | HW_OWNER);
2864 		sc_if->msk_cdata.msk_tx_cnt++;
2865 		MSK_INC(prod, MSK_TX_RING_CNT);
2866 	}
2867 	/* Update producer index. */
2868 	sc_if->msk_cdata.msk_tx_prod = prod;
2869 
2870 	/* Set EOP on the last descriptor. */
2871 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2872 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2873 	tx_le->msk_control |= htole32(EOP);
2874 
2875 	/* Turn the first descriptor ownership to hardware. */
2876 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2877 	tx_le->msk_control |= htole32(HW_OWNER);
2878 
2879 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2880 	map = txd_last->tx_dmamap;
2881 	txd_last->tx_dmamap = txd->tx_dmamap;
2882 	txd->tx_dmamap = map;
2883 	txd->tx_m = m;
2884 
2885 	/* Sync descriptors. */
2886 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2887 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2888 	    sc_if->msk_cdata.msk_tx_ring_map,
2889 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2890 
2891 	return (0);
2892 }
2893 
2894 static void
2895 msk_start(if_t ifp)
2896 {
2897 	struct msk_if_softc *sc_if;
2898 
2899 	sc_if = if_getsoftc(ifp);
2900 	MSK_IF_LOCK(sc_if);
2901 	msk_start_locked(ifp);
2902 	MSK_IF_UNLOCK(sc_if);
2903 }
2904 
2905 static void
2906 msk_start_locked(if_t ifp)
2907 {
2908 	struct msk_if_softc *sc_if;
2909 	struct mbuf *m_head;
2910 	int enq;
2911 
2912 	sc_if = if_getsoftc(ifp);
2913 	MSK_IF_LOCK_ASSERT(sc_if);
2914 
2915 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2916 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2917 		return;
2918 
2919 	for (enq = 0; !if_sendq_empty(ifp) &&
2920 	    sc_if->msk_cdata.msk_tx_cnt <
2921 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2922 		m_head = if_dequeue(ifp);
2923 		if (m_head == NULL)
2924 			break;
2925 		/*
2926 		 * Pack the data into the transmit ring. If we
2927 		 * don't have room, set the OACTIVE flag and wait
2928 		 * for the NIC to drain the ring.
2929 		 */
2930 		if (msk_encap(sc_if, &m_head) != 0) {
2931 			if (m_head == NULL)
2932 				break;
2933 			if_sendq_prepend(ifp, m_head);
2934 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2935 			break;
2936 		}
2937 
2938 		enq++;
2939 		/*
2940 		 * If there's a BPF listener, bounce a copy of this frame
2941 		 * to him.
2942 		 */
2943 		ETHER_BPF_MTAP(ifp, m_head);
2944 	}
2945 
2946 	if (enq > 0) {
2947 		/* Transmit */
2948 		CSR_WRITE_2(sc_if->msk_softc,
2949 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2950 		    sc_if->msk_cdata.msk_tx_prod);
2951 
2952 		/* Set a timeout in case the chip goes out to lunch. */
2953 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2954 	}
2955 }
2956 
2957 static void
2958 msk_watchdog(struct msk_if_softc *sc_if)
2959 {
2960 	if_t ifp;
2961 
2962 	MSK_IF_LOCK_ASSERT(sc_if);
2963 
2964 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2965 		return;
2966 	ifp = sc_if->msk_ifp;
2967 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2968 		if (bootverbose)
2969 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2970 			   "(missed link)\n");
2971 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2972 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2973 		msk_init_locked(sc_if);
2974 		return;
2975 	}
2976 
2977 	if_printf(ifp, "watchdog timeout\n");
2978 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2979 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2980 	msk_init_locked(sc_if);
2981 	if (!if_sendq_empty(ifp))
2982 		msk_start_locked(ifp);
2983 }
2984 
2985 static int
2986 mskc_shutdown(device_t dev)
2987 {
2988 	struct msk_softc *sc;
2989 	int i;
2990 
2991 	sc = device_get_softc(dev);
2992 	MSK_LOCK(sc);
2993 	for (i = 0; i < sc->msk_num_port; i++) {
2994 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2995 		    ((if_getdrvflags(sc->msk_if[i]->msk_ifp) &
2996 		    IFF_DRV_RUNNING) != 0))
2997 			msk_stop(sc->msk_if[i]);
2998 	}
2999 	MSK_UNLOCK(sc);
3000 
3001 	/* Put hardware reset. */
3002 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3003 	return (0);
3004 }
3005 
3006 static int
3007 mskc_suspend(device_t dev)
3008 {
3009 	struct msk_softc *sc;
3010 	int i;
3011 
3012 	sc = device_get_softc(dev);
3013 
3014 	MSK_LOCK(sc);
3015 
3016 	for (i = 0; i < sc->msk_num_port; i++) {
3017 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3018 		    ((if_getdrvflags(sc->msk_if[i]->msk_ifp) &
3019 		    IFF_DRV_RUNNING) != 0))
3020 			msk_stop(sc->msk_if[i]);
3021 	}
3022 
3023 	/* Disable all interrupts. */
3024 	CSR_WRITE_4(sc, B0_IMSK, 0);
3025 	CSR_READ_4(sc, B0_IMSK);
3026 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3027 	CSR_READ_4(sc, B0_HWE_IMSK);
3028 
3029 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
3030 
3031 	/* Put hardware reset. */
3032 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3033 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
3034 
3035 	MSK_UNLOCK(sc);
3036 
3037 	return (0);
3038 }
3039 
3040 static int
3041 mskc_resume(device_t dev)
3042 {
3043 	struct msk_softc *sc;
3044 	int i;
3045 
3046 	sc = device_get_softc(dev);
3047 
3048 	MSK_LOCK(sc);
3049 
3050 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
3051 	mskc_reset(sc);
3052 	for (i = 0; i < sc->msk_num_port; i++) {
3053 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3054 		    ((if_getflags(sc->msk_if[i]->msk_ifp) & IFF_UP) != 0)) {
3055 			if_setdrvflagbits(sc->msk_if[i]->msk_ifp, 0,
3056 			    IFF_DRV_RUNNING);
3057 			msk_init_locked(sc->msk_if[i]);
3058 		}
3059 	}
3060 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
3061 
3062 	MSK_UNLOCK(sc);
3063 
3064 	return (0);
3065 }
3066 
3067 #ifndef __NO_STRICT_ALIGNMENT
3068 static __inline void
3069 msk_fixup_rx(struct mbuf *m)
3070 {
3071         int i;
3072         uint16_t *src, *dst;
3073 
3074 	src = mtod(m, uint16_t *);
3075 	dst = src - 3;
3076 
3077 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
3078 		*dst++ = *src++;
3079 
3080 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
3081 }
3082 #endif
3083 
3084 static __inline void
3085 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3086 {
3087 	struct ether_header *eh;
3088 	struct ip *ip;
3089 	struct udphdr *uh;
3090 	int32_t hlen, len, pktlen, temp32;
3091 	uint16_t csum, *opts;
3092 
3093 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3094 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3095 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3096 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3097 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3098 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3099 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3100 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3101 				    CSUM_PSEUDO_HDR;
3102 				m->m_pkthdr.csum_data = 0xffff;
3103 			}
3104 		}
3105 		return;
3106 	}
3107 	/*
3108 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3109 	 * to have various Rx checksum offloading bugs. These
3110 	 * controllers can be configured to compute simple checksum
3111 	 * at two different positions. So we can compute IP and TCP/UDP
3112 	 * checksum at the same time. We intentionally have controller
3113 	 * compute TCP/UDP checksum twice by specifying the same
3114 	 * checksum start position and compare the result. If the value
3115 	 * is different it would indicate the hardware logic was wrong.
3116 	 */
3117 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3118 		if (bootverbose)
3119 			device_printf(sc_if->msk_if_dev,
3120 			    "Rx checksum value mismatch!\n");
3121 		return;
3122 	}
3123 	pktlen = m->m_pkthdr.len;
3124 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3125 		return;
3126 	eh = mtod(m, struct ether_header *);
3127 	if (eh->ether_type != htons(ETHERTYPE_IP))
3128 		return;
3129 	ip = (struct ip *)(eh + 1);
3130 	if (ip->ip_v != IPVERSION)
3131 		return;
3132 
3133 	hlen = ip->ip_hl << 2;
3134 	pktlen -= sizeof(struct ether_header);
3135 	if (hlen < sizeof(struct ip))
3136 		return;
3137 	if (ntohs(ip->ip_len) < hlen)
3138 		return;
3139 	if (ntohs(ip->ip_len) != pktlen)
3140 		return;
3141 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3142 		return;	/* can't handle fragmented packet. */
3143 
3144 	switch (ip->ip_p) {
3145 	case IPPROTO_TCP:
3146 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3147 			return;
3148 		break;
3149 	case IPPROTO_UDP:
3150 		if (pktlen < (hlen + sizeof(struct udphdr)))
3151 			return;
3152 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3153 		if (uh->uh_sum == 0)
3154 			return; /* no checksum */
3155 		break;
3156 	default:
3157 		return;
3158 	}
3159 	csum = bswap16(sc_if->msk_csum & 0xFFFF);
3160 	/* Checksum fixup for IP options. */
3161 	len = hlen - sizeof(struct ip);
3162 	if (len > 0) {
3163 		opts = (uint16_t *)(ip + 1);
3164 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3165 			temp32 = csum - *opts;
3166 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3167 			csum = temp32 & 65535;
3168 		}
3169 	}
3170 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3171 	m->m_pkthdr.csum_data = csum;
3172 }
3173 
3174 static void
3175 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3176     int len)
3177 {
3178 	struct mbuf *m;
3179 	if_t ifp;
3180 	struct msk_rxdesc *rxd;
3181 	int cons, rxlen;
3182 
3183 	ifp = sc_if->msk_ifp;
3184 
3185 	MSK_IF_LOCK_ASSERT(sc_if);
3186 
3187 	cons = sc_if->msk_cdata.msk_rx_cons;
3188 	do {
3189 		rxlen = status >> 16;
3190 		if ((status & GMR_FS_VLAN) != 0 &&
3191 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3192 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3193 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3194 			/*
3195 			 * For controllers that returns bogus status code
3196 			 * just do minimal check and let upper stack
3197 			 * handle this frame.
3198 			 */
3199 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3200 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3201 				msk_discard_rxbuf(sc_if, cons);
3202 				break;
3203 			}
3204 		} else if (len > sc_if->msk_framesize ||
3205 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3206 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3207 			/* Don't count flow-control packet as errors. */
3208 			if ((status & GMR_FS_GOOD_FC) == 0)
3209 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3210 			msk_discard_rxbuf(sc_if, cons);
3211 			break;
3212 		}
3213 #ifdef MSK_64BIT_DMA
3214 		rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) %
3215 		    MSK_RX_RING_CNT];
3216 #else
3217 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3218 #endif
3219 		m = rxd->rx_m;
3220 		if (msk_newbuf(sc_if, cons) != 0) {
3221 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3222 			/* Reuse old buffer. */
3223 			msk_discard_rxbuf(sc_if, cons);
3224 			break;
3225 		}
3226 		m->m_pkthdr.rcvif = ifp;
3227 		m->m_pkthdr.len = m->m_len = len;
3228 #ifndef __NO_STRICT_ALIGNMENT
3229 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3230 			msk_fixup_rx(m);
3231 #endif
3232 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3233 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
3234 			msk_rxcsum(sc_if, control, m);
3235 		/* Check for VLAN tagged packets. */
3236 		if ((status & GMR_FS_VLAN) != 0 &&
3237 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
3238 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3239 			m->m_flags |= M_VLANTAG;
3240 		}
3241 		MSK_IF_UNLOCK(sc_if);
3242 		if_input(ifp, m);
3243 		MSK_IF_LOCK(sc_if);
3244 	} while (0);
3245 
3246 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3247 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3248 }
3249 
3250 static void
3251 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3252     int len)
3253 {
3254 	struct mbuf *m;
3255 	if_t ifp;
3256 	struct msk_rxdesc *jrxd;
3257 	int cons, rxlen;
3258 
3259 	ifp = sc_if->msk_ifp;
3260 
3261 	MSK_IF_LOCK_ASSERT(sc_if);
3262 
3263 	cons = sc_if->msk_cdata.msk_rx_cons;
3264 	do {
3265 		rxlen = status >> 16;
3266 		if ((status & GMR_FS_VLAN) != 0 &&
3267 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3268 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3269 		if (len > sc_if->msk_framesize ||
3270 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3271 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3272 			/* Don't count flow-control packet as errors. */
3273 			if ((status & GMR_FS_GOOD_FC) == 0)
3274 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3275 			msk_discard_jumbo_rxbuf(sc_if, cons);
3276 			break;
3277 		}
3278 #ifdef MSK_64BIT_DMA
3279 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) %
3280 		    MSK_JUMBO_RX_RING_CNT];
3281 #else
3282 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3283 #endif
3284 		m = jrxd->rx_m;
3285 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3286 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3287 			/* Reuse old buffer. */
3288 			msk_discard_jumbo_rxbuf(sc_if, cons);
3289 			break;
3290 		}
3291 		m->m_pkthdr.rcvif = ifp;
3292 		m->m_pkthdr.len = m->m_len = len;
3293 #ifndef __NO_STRICT_ALIGNMENT
3294 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3295 			msk_fixup_rx(m);
3296 #endif
3297 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3298 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
3299 			msk_rxcsum(sc_if, control, m);
3300 		/* Check for VLAN tagged packets. */
3301 		if ((status & GMR_FS_VLAN) != 0 &&
3302 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
3303 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3304 			m->m_flags |= M_VLANTAG;
3305 		}
3306 		MSK_IF_UNLOCK(sc_if);
3307 		if_input(ifp, m);
3308 		MSK_IF_LOCK(sc_if);
3309 	} while (0);
3310 
3311 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3312 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3313 }
3314 
3315 static void
3316 msk_txeof(struct msk_if_softc *sc_if, int idx)
3317 {
3318 	struct msk_txdesc *txd;
3319 	struct msk_tx_desc *cur_tx;
3320 	if_t ifp;
3321 	uint32_t control;
3322 	int cons, prog;
3323 
3324 	MSK_IF_LOCK_ASSERT(sc_if);
3325 
3326 	ifp = sc_if->msk_ifp;
3327 
3328 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3329 	    sc_if->msk_cdata.msk_tx_ring_map,
3330 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3331 	/*
3332 	 * Go through our tx ring and free mbufs for those
3333 	 * frames that have been sent.
3334 	 */
3335 	cons = sc_if->msk_cdata.msk_tx_cons;
3336 	prog = 0;
3337 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3338 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3339 			break;
3340 		prog++;
3341 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3342 		control = le32toh(cur_tx->msk_control);
3343 		sc_if->msk_cdata.msk_tx_cnt--;
3344 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3345 		if ((control & EOP) == 0)
3346 			continue;
3347 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3348 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3349 		    BUS_DMASYNC_POSTWRITE);
3350 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3351 
3352 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3353 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3354 		    __func__));
3355 		m_freem(txd->tx_m);
3356 		txd->tx_m = NULL;
3357 	}
3358 
3359 	if (prog > 0) {
3360 		sc_if->msk_cdata.msk_tx_cons = cons;
3361 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3362 			sc_if->msk_watchdog_timer = 0;
3363 		/* No need to sync LEs as we didn't update LEs. */
3364 	}
3365 }
3366 
3367 static void
3368 msk_tick(void *xsc_if)
3369 {
3370 	struct epoch_tracker et;
3371 	struct msk_if_softc *sc_if;
3372 	struct mii_data *mii;
3373 
3374 	sc_if = xsc_if;
3375 
3376 	MSK_IF_LOCK_ASSERT(sc_if);
3377 
3378 	mii = device_get_softc(sc_if->msk_miibus);
3379 
3380 	mii_tick(mii);
3381 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3382 		msk_miibus_statchg(sc_if->msk_if_dev);
3383 	NET_EPOCH_ENTER(et);
3384 	msk_handle_events(sc_if->msk_softc);
3385 	NET_EPOCH_EXIT(et);
3386 	msk_watchdog(sc_if);
3387 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3388 }
3389 
3390 static void
3391 msk_intr_phy(struct msk_if_softc *sc_if)
3392 {
3393 	uint16_t status;
3394 
3395 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3396 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3397 	/* Handle FIFO Underrun/Overflow? */
3398 	if ((status & PHY_M_IS_FIFO_ERROR))
3399 		device_printf(sc_if->msk_if_dev,
3400 		    "PHY FIFO underrun/overflow.\n");
3401 }
3402 
3403 static void
3404 msk_intr_gmac(struct msk_if_softc *sc_if)
3405 {
3406 	struct msk_softc *sc;
3407 	uint8_t status;
3408 
3409 	sc = sc_if->msk_softc;
3410 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3411 
3412 	/* GMAC Rx FIFO overrun. */
3413 	if ((status & GM_IS_RX_FF_OR) != 0)
3414 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3415 		    GMF_CLI_RX_FO);
3416 	/* GMAC Tx FIFO underrun. */
3417 	if ((status & GM_IS_TX_FF_UR) != 0) {
3418 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3419 		    GMF_CLI_TX_FU);
3420 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3421 		/*
3422 		 * XXX
3423 		 * In case of Tx underrun, we may need to flush/reset
3424 		 * Tx MAC but that would also require resynchronization
3425 		 * with status LEs. Reinitializing status LEs would
3426 		 * affect other port in dual MAC configuration so it
3427 		 * should be avoided as possible as we can.
3428 		 * Due to lack of documentation it's all vague guess but
3429 		 * it needs more investigation.
3430 		 */
3431 	}
3432 }
3433 
3434 static void
3435 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3436 {
3437 	struct msk_softc *sc;
3438 
3439 	sc = sc_if->msk_softc;
3440 	if ((status & Y2_IS_PAR_RD1) != 0) {
3441 		device_printf(sc_if->msk_if_dev,
3442 		    "RAM buffer read parity error\n");
3443 		/* Clear IRQ. */
3444 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3445 		    RI_CLR_RD_PERR);
3446 	}
3447 	if ((status & Y2_IS_PAR_WR1) != 0) {
3448 		device_printf(sc_if->msk_if_dev,
3449 		    "RAM buffer write parity error\n");
3450 		/* Clear IRQ. */
3451 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3452 		    RI_CLR_WR_PERR);
3453 	}
3454 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3455 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3456 		/* Clear IRQ. */
3457 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3458 		    GMF_CLI_TX_PE);
3459 	}
3460 	if ((status & Y2_IS_PAR_RX1) != 0) {
3461 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3462 		/* Clear IRQ. */
3463 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3464 	}
3465 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3466 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3467 		/* Clear IRQ. */
3468 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3469 	}
3470 }
3471 
3472 static void
3473 msk_intr_hwerr(struct msk_softc *sc)
3474 {
3475 	uint32_t status;
3476 	uint32_t tlphead[4];
3477 
3478 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3479 	/* Time Stamp timer overflow. */
3480 	if ((status & Y2_IS_TIST_OV) != 0)
3481 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3482 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3483 		/*
3484 		 * PCI Express Error occurred which is not described in PEX
3485 		 * spec.
3486 		 * This error is also mapped either to Master Abort(
3487 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3488 		 * can only be cleared there.
3489                  */
3490 		device_printf(sc->msk_dev,
3491 		    "PCI Express protocol violation error\n");
3492 	}
3493 
3494 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3495 		uint16_t v16;
3496 
3497 		if ((status & Y2_IS_MST_ERR) != 0)
3498 			device_printf(sc->msk_dev,
3499 			    "unexpected IRQ Status error\n");
3500 		else
3501 			device_printf(sc->msk_dev,
3502 			    "unexpected IRQ Master error\n");
3503 		/* Reset all bits in the PCI status register. */
3504 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3505 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3506 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3507 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3508 		    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
3509 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3510 	}
3511 
3512 	/* Check for PCI Express Uncorrectable Error. */
3513 	if ((status & Y2_IS_PCI_EXP) != 0) {
3514 		uint32_t v32;
3515 
3516 		/*
3517 		 * On PCI Express bus bridges are called root complexes (RC).
3518 		 * PCI Express errors are recognized by the root complex too,
3519 		 * which requests the system to handle the problem. After
3520 		 * error occurrence it may be that no access to the adapter
3521 		 * may be performed any longer.
3522 		 */
3523 
3524 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3525 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3526 			/* Ignore unsupported request error. */
3527 			device_printf(sc->msk_dev,
3528 			    "Uncorrectable PCI Express error\n");
3529 		}
3530 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3531 			int i;
3532 
3533 			/* Get TLP header form Log Registers. */
3534 			for (i = 0; i < 4; i++)
3535 				tlphead[i] = CSR_PCI_READ_4(sc,
3536 				    PEX_HEADER_LOG + i * 4);
3537 			/* Check for vendor defined broadcast message. */
3538 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3539 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3540 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3541 				    sc->msk_intrhwemask);
3542 				CSR_READ_4(sc, B0_HWE_IMSK);
3543 			}
3544 		}
3545 		/* Clear the interrupt. */
3546 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3547 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3548 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3549 	}
3550 
3551 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3552 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3553 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3554 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3555 }
3556 
3557 static __inline void
3558 msk_rxput(struct msk_if_softc *sc_if)
3559 {
3560 	struct msk_softc *sc;
3561 
3562 	sc = sc_if->msk_softc;
3563 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3564 		bus_dmamap_sync(
3565 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3566 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3567 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3568 	else
3569 		bus_dmamap_sync(
3570 		    sc_if->msk_cdata.msk_rx_ring_tag,
3571 		    sc_if->msk_cdata.msk_rx_ring_map,
3572 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3573 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3574 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3575 }
3576 
3577 static int
3578 msk_handle_events(struct msk_softc *sc)
3579 {
3580 	struct msk_if_softc *sc_if;
3581 	int rxput[2];
3582 	struct msk_stat_desc *sd;
3583 	uint32_t control, status;
3584 	int cons, len, port, rxprog;
3585 
3586 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3587 		return (0);
3588 
3589 	/* Sync status LEs. */
3590 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3591 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3592 
3593 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3594 	rxprog = 0;
3595 	cons = sc->msk_stat_cons;
3596 	for (;;) {
3597 		sd = &sc->msk_stat_ring[cons];
3598 		control = le32toh(sd->msk_control);
3599 		if ((control & HW_OWNER) == 0)
3600 			break;
3601 		control &= ~HW_OWNER;
3602 		sd->msk_control = htole32(control);
3603 		status = le32toh(sd->msk_status);
3604 		len = control & STLE_LEN_MASK;
3605 		port = (control >> 16) & 0x01;
3606 		sc_if = sc->msk_if[port];
3607 		if (sc_if == NULL) {
3608 			device_printf(sc->msk_dev, "invalid port opcode "
3609 			    "0x%08x\n", control & STLE_OP_MASK);
3610 			continue;
3611 		}
3612 
3613 		switch (control & STLE_OP_MASK) {
3614 		case OP_RXVLAN:
3615 			sc_if->msk_vtag = ntohs(len);
3616 			break;
3617 		case OP_RXCHKSVLAN:
3618 			sc_if->msk_vtag = ntohs(len);
3619 			/* FALLTHROUGH */
3620 		case OP_RXCHKS:
3621 			sc_if->msk_csum = status;
3622 			break;
3623 		case OP_RXSTAT:
3624 			if (!(if_getdrvflags(sc_if->msk_ifp) & IFF_DRV_RUNNING))
3625 				break;
3626 			if (sc_if->msk_framesize >
3627 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3628 				msk_jumbo_rxeof(sc_if, status, control, len);
3629 			else
3630 				msk_rxeof(sc_if, status, control, len);
3631 			rxprog++;
3632 			/*
3633 			 * Because there is no way to sync single Rx LE
3634 			 * put the DMA sync operation off until the end of
3635 			 * event processing.
3636 			 */
3637 			rxput[port]++;
3638 			/* Update prefetch unit if we've passed water mark. */
3639 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3640 				msk_rxput(sc_if);
3641 				rxput[port] = 0;
3642 			}
3643 			break;
3644 		case OP_TXINDEXLE:
3645 			if (sc->msk_if[MSK_PORT_A] != NULL)
3646 				msk_txeof(sc->msk_if[MSK_PORT_A],
3647 				    status & STLE_TXA1_MSKL);
3648 			if (sc->msk_if[MSK_PORT_B] != NULL)
3649 				msk_txeof(sc->msk_if[MSK_PORT_B],
3650 				    ((status & STLE_TXA2_MSKL) >>
3651 				    STLE_TXA2_SHIFTL) |
3652 				    ((len & STLE_TXA2_MSKH) <<
3653 				    STLE_TXA2_SHIFTH));
3654 			break;
3655 		default:
3656 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3657 			    control & STLE_OP_MASK);
3658 			break;
3659 		}
3660 		MSK_INC(cons, sc->msk_stat_count);
3661 		if (rxprog > sc->msk_process_limit)
3662 			break;
3663 	}
3664 
3665 	sc->msk_stat_cons = cons;
3666 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3667 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3668 
3669 	if (rxput[MSK_PORT_A] > 0)
3670 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3671 	if (rxput[MSK_PORT_B] > 0)
3672 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3673 
3674 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3675 }
3676 
3677 static void
3678 msk_intr(void *xsc)
3679 {
3680 	struct msk_softc *sc;
3681 	struct msk_if_softc *sc_if0, *sc_if1;
3682 	if_t ifp0, ifp1;
3683 	uint32_t status;
3684 	int domore;
3685 
3686 	sc = xsc;
3687 	MSK_LOCK(sc);
3688 
3689 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3690 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3691 	if (status == 0 || status == 0xffffffff ||
3692 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3693 	    (status & sc->msk_intrmask) == 0) {
3694 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3695 		MSK_UNLOCK(sc);
3696 		return;
3697 	}
3698 
3699 	sc_if0 = sc->msk_if[MSK_PORT_A];
3700 	sc_if1 = sc->msk_if[MSK_PORT_B];
3701 	ifp0 = ifp1 = NULL;
3702 	if (sc_if0 != NULL)
3703 		ifp0 = sc_if0->msk_ifp;
3704 	if (sc_if1 != NULL)
3705 		ifp1 = sc_if1->msk_ifp;
3706 
3707 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3708 		msk_intr_phy(sc_if0);
3709 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3710 		msk_intr_phy(sc_if1);
3711 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3712 		msk_intr_gmac(sc_if0);
3713 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3714 		msk_intr_gmac(sc_if1);
3715 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3716 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3717 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3718 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3719 		CSR_READ_4(sc, B0_IMSK);
3720 	}
3721         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3722 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3723 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3724 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3725 		CSR_READ_4(sc, B0_IMSK);
3726 	}
3727 	if ((status & Y2_IS_HW_ERR) != 0)
3728 		msk_intr_hwerr(sc);
3729 
3730 	domore = msk_handle_events(sc);
3731 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3732 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3733 
3734 	/* Reenable interrupts. */
3735 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3736 
3737 	if (ifp0 != NULL && (if_getdrvflags(ifp0) & IFF_DRV_RUNNING) != 0 &&
3738 	    !if_sendq_empty(ifp0))
3739 		msk_start_locked(ifp0);
3740 	if (ifp1 != NULL && (if_getdrvflags(ifp1) & IFF_DRV_RUNNING) != 0 &&
3741 	    !if_sendq_empty(ifp1))
3742 		msk_start_locked(ifp1);
3743 
3744 	MSK_UNLOCK(sc);
3745 }
3746 
3747 static void
3748 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3749 {
3750 	struct msk_softc *sc;
3751 	if_t ifp;
3752 
3753 	ifp = sc_if->msk_ifp;
3754 	sc = sc_if->msk_softc;
3755 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3756 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3757 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3758 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3759 		    TX_STFW_ENA);
3760 	} else {
3761 		if (if_getmtu(ifp) > ETHERMTU) {
3762 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3763 			CSR_WRITE_4(sc,
3764 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3765 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3766 			/* Disable Store & Forward mode for Tx. */
3767 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3768 			    TX_STFW_DIS);
3769 		} else {
3770 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3771 			    TX_STFW_ENA);
3772 		}
3773 	}
3774 }
3775 
3776 static void
3777 msk_init(void *xsc)
3778 {
3779 	struct msk_if_softc *sc_if = xsc;
3780 
3781 	MSK_IF_LOCK(sc_if);
3782 	msk_init_locked(sc_if);
3783 	MSK_IF_UNLOCK(sc_if);
3784 }
3785 
3786 static void
3787 msk_init_locked(struct msk_if_softc *sc_if)
3788 {
3789 	struct msk_softc *sc;
3790 	if_t ifp;
3791 	struct mii_data	 *mii;
3792 	uint8_t *eaddr;
3793 	uint16_t gmac;
3794 	uint32_t reg;
3795 	int error;
3796 
3797 	MSK_IF_LOCK_ASSERT(sc_if);
3798 
3799 	ifp = sc_if->msk_ifp;
3800 	sc = sc_if->msk_softc;
3801 	mii = device_get_softc(sc_if->msk_miibus);
3802 
3803 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3804 		return;
3805 
3806 	error = 0;
3807 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3808 	msk_stop(sc_if);
3809 
3810 	if (if_getmtu(ifp) < ETHERMTU)
3811 		sc_if->msk_framesize = ETHERMTU;
3812 	else
3813 		sc_if->msk_framesize = if_getmtu(ifp);
3814 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3815 	if (if_getmtu(ifp) > ETHERMTU &&
3816 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3817 		if_sethwassistbits(ifp, 0, (MSK_CSUM_FEATURES | CSUM_TSO));
3818 		if_setcapenablebit(ifp, 0, (IFCAP_TSO4 | IFCAP_TXCSUM));
3819 	}
3820 
3821 	/* GMAC Control reset. */
3822 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3823 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3824 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3825 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3826 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
3827 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3828 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3829 		    GMC_BYP_RETR_ON);
3830 
3831 	/*
3832 	 * Initialize GMAC first such that speed/duplex/flow-control
3833 	 * parameters are renegotiated when interface is brought up.
3834 	 */
3835 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3836 
3837 	/* Dummy read the Interrupt Source Register. */
3838 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3839 
3840 	/* Clear MIB stats. */
3841 	msk_stats_clear(sc_if);
3842 
3843 	/* Disable FCS. */
3844 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3845 
3846 	/* Setup Transmit Control Register. */
3847 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3848 
3849 	/* Setup Transmit Flow Control Register. */
3850 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3851 
3852 	/* Setup Transmit Parameter Register. */
3853 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3854 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3855 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3856 
3857 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3858 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3859 
3860 	if (if_getmtu(ifp) > ETHERMTU)
3861 		gmac |= GM_SMOD_JUMBO_ENA;
3862 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3863 
3864 	/* Set station address. */
3865 	eaddr = if_getlladdr(ifp);
3866 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3867 	    eaddr[0] | (eaddr[1] << 8));
3868 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3869 	    eaddr[2] | (eaddr[3] << 8));
3870 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3871 	    eaddr[4] | (eaddr[5] << 8));
3872 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3873 	    eaddr[0] | (eaddr[1] << 8));
3874 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3875 	    eaddr[2] | (eaddr[3] << 8));
3876 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3877 	    eaddr[4] | (eaddr[5] << 8));
3878 
3879 	/* Disable interrupts for counter overflows. */
3880 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3881 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3882 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3883 
3884 	/* Configure Rx MAC FIFO. */
3885 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3886 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3887 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3888 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3889 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3890 		reg |= GMF_RX_OVER_ON;
3891 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3892 
3893 	/* Set receive filter. */
3894 	msk_rxfilter(sc_if);
3895 
3896 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3897 		/* Clear flush mask - HW bug. */
3898 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3899 	} else {
3900 		/* Flush Rx MAC FIFO on any flow control or error. */
3901 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3902 		    GMR_FS_ANY_ERR);
3903 	}
3904 
3905 	/*
3906 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3907 	 * due to hardware hang on receipt of pause frames.
3908 	 */
3909 	reg = RX_GMF_FL_THR_DEF + 1;
3910 	/* Another magic for Yukon FE+ - From Linux. */
3911 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3912 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3913 		reg = 0x178;
3914 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3915 
3916 	/* Configure Tx MAC FIFO. */
3917 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3918 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3919 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3920 
3921 	/* Configure hardware VLAN tag insertion/stripping. */
3922 	msk_setvlan(sc_if, ifp);
3923 
3924 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3925 		/* Set Rx Pause threshold. */
3926 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3927 		    MSK_ECU_LLPP);
3928 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3929 		    MSK_ECU_ULPP);
3930 		/* Configure store-and-forward for Tx. */
3931 		msk_set_tx_stfwd(sc_if);
3932 	}
3933 
3934 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3935 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3936 		/* Disable dynamic watermark - from Linux. */
3937 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3938 		reg &= ~0x03;
3939 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3940 	}
3941 
3942 	/*
3943 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3944 	 * arbiter as we don't use Sync Tx queue.
3945 	 */
3946 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3947 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3948 	/* Enable the RAM Interface Arbiter. */
3949 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3950 
3951 	/* Setup RAM buffer. */
3952 	msk_set_rambuffer(sc_if);
3953 
3954 	/* Disable Tx sync Queue. */
3955 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3956 
3957 	/* Setup Tx Queue Bus Memory Interface. */
3958 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3959 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3960 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3961 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3962 	switch (sc->msk_hw_id) {
3963 	case CHIP_ID_YUKON_EC_U:
3964 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3965 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3966 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3967 			    MSK_ECU_TXFF_LEV);
3968 		}
3969 		break;
3970 	case CHIP_ID_YUKON_EX:
3971 		/*
3972 		 * Yukon Extreme seems to have silicon bug for
3973 		 * automatic Tx checksum calculation capability.
3974 		 */
3975 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3976 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3977 			    F_TX_CHK_AUTO_OFF);
3978 		break;
3979 	}
3980 
3981 	/* Setup Rx Queue Bus Memory Interface. */
3982 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3983 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3984 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3985 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3986         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3987 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3988 		/* MAC Rx RAM Read is controlled by hardware. */
3989                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3990 	}
3991 
3992 	msk_set_prefetch(sc, sc_if->msk_txq,
3993 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3994 	msk_init_tx_ring(sc_if);
3995 
3996 	/* Disable Rx checksum offload and RSS hash. */
3997 	reg = BMU_DIS_RX_RSS_HASH;
3998 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
3999 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
4000 		reg |= BMU_ENA_RX_CHKSUM;
4001 	else
4002 		reg |= BMU_DIS_RX_CHKSUM;
4003 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
4004 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
4005 		msk_set_prefetch(sc, sc_if->msk_rxq,
4006 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
4007 		    MSK_JUMBO_RX_RING_CNT - 1);
4008 		error = msk_init_jumbo_rx_ring(sc_if);
4009 	 } else {
4010 		msk_set_prefetch(sc, sc_if->msk_rxq,
4011 		    sc_if->msk_rdata.msk_rx_ring_paddr,
4012 		    MSK_RX_RING_CNT - 1);
4013 		error = msk_init_rx_ring(sc_if);
4014 	}
4015 	if (error != 0) {
4016 		device_printf(sc_if->msk_if_dev,
4017 		    "initialization failed: no memory for Rx buffers\n");
4018 		msk_stop(sc_if);
4019 		return;
4020 	}
4021 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
4022 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
4023 		/* Disable flushing of non-ASF packets. */
4024 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
4025 		    GMF_RX_MACSEC_FLUSH_OFF);
4026 	}
4027 
4028 	/* Configure interrupt handling. */
4029 	if (sc_if->msk_port == MSK_PORT_A) {
4030 		sc->msk_intrmask |= Y2_IS_PORT_A;
4031 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
4032 	} else {
4033 		sc->msk_intrmask |= Y2_IS_PORT_B;
4034 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
4035 	}
4036 	/* Configure IRQ moderation mask. */
4037 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
4038 	if (sc->msk_int_holdoff > 0) {
4039 		/* Configure initial IRQ moderation timer value. */
4040 		CSR_WRITE_4(sc, B2_IRQM_INI,
4041 		    MSK_USECS(sc, sc->msk_int_holdoff));
4042 		CSR_WRITE_4(sc, B2_IRQM_VAL,
4043 		    MSK_USECS(sc, sc->msk_int_holdoff));
4044 		/* Start IRQ moderation. */
4045 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
4046 	}
4047 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4048 	CSR_READ_4(sc, B0_HWE_IMSK);
4049 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4050 	CSR_READ_4(sc, B0_IMSK);
4051 
4052 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
4053 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4054 
4055 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4056 	mii_mediachg(mii);
4057 
4058 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
4059 }
4060 
4061 static void
4062 msk_set_rambuffer(struct msk_if_softc *sc_if)
4063 {
4064 	struct msk_softc *sc;
4065 	int ltpp, utpp;
4066 
4067 	sc = sc_if->msk_softc;
4068 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
4069 		return;
4070 
4071 	/* Setup Rx Queue. */
4072 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
4073 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
4074 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4075 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
4076 	    sc->msk_rxqend[sc_if->msk_port] / 8);
4077 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
4078 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4079 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
4080 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4081 
4082 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4083 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
4084 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4085 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
4086 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
4087 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4088 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4089 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4090 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4091 
4092 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4093 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4094 
4095 	/* Setup Tx Queue. */
4096 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4097 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4098 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4099 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4100 	    sc->msk_txqend[sc_if->msk_port] / 8);
4101 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4102 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4103 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4104 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4105 	/* Enable Store & Forward for Tx side. */
4106 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4107 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4108 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4109 }
4110 
4111 static void
4112 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4113     uint32_t count)
4114 {
4115 
4116 	/* Reset the prefetch unit. */
4117 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4118 	    PREF_UNIT_RST_SET);
4119 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4120 	    PREF_UNIT_RST_CLR);
4121 	/* Set LE base address. */
4122 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4123 	    MSK_ADDR_LO(addr));
4124 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4125 	    MSK_ADDR_HI(addr));
4126 	/* Set the list last index. */
4127 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4128 	    count);
4129 	/* Turn on prefetch unit. */
4130 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4131 	    PREF_UNIT_OP_ON);
4132 	/* Dummy read to ensure write. */
4133 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4134 }
4135 
4136 static void
4137 msk_stop(struct msk_if_softc *sc_if)
4138 {
4139 	struct msk_softc *sc;
4140 	struct msk_txdesc *txd;
4141 	struct msk_rxdesc *rxd;
4142 	struct msk_rxdesc *jrxd;
4143 	if_t ifp;
4144 	uint32_t val;
4145 	int i;
4146 
4147 	MSK_IF_LOCK_ASSERT(sc_if);
4148 	sc = sc_if->msk_softc;
4149 	ifp = sc_if->msk_ifp;
4150 
4151 	callout_stop(&sc_if->msk_tick_ch);
4152 	sc_if->msk_watchdog_timer = 0;
4153 
4154 	/* Disable interrupts. */
4155 	if (sc_if->msk_port == MSK_PORT_A) {
4156 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4157 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4158 	} else {
4159 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4160 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4161 	}
4162 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4163 	CSR_READ_4(sc, B0_HWE_IMSK);
4164 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4165 	CSR_READ_4(sc, B0_IMSK);
4166 
4167 	/* Disable Tx/Rx MAC. */
4168 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4169 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4170 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4171 	/* Read again to ensure writing. */
4172 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4173 	/* Update stats and clear counters. */
4174 	msk_stats_update(sc_if);
4175 
4176 	/* Stop Tx BMU. */
4177 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4178 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4179 	for (i = 0; i < MSK_TIMEOUT; i++) {
4180 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4181 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4182 			    BMU_STOP);
4183 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4184 		} else
4185 			break;
4186 		DELAY(1);
4187 	}
4188 	if (i == MSK_TIMEOUT)
4189 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4190 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4191 	    RB_RST_SET | RB_DIS_OP_MD);
4192 
4193 	/* Disable all GMAC interrupt. */
4194 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4195 	/* Disable PHY interrupt. */
4196 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4197 
4198 	/* Disable the RAM Interface Arbiter. */
4199 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4200 
4201 	/* Reset the PCI FIFO of the async Tx queue */
4202 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4203 	    BMU_RST_SET | BMU_FIFO_RST);
4204 
4205 	/* Reset the Tx prefetch units. */
4206 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4207 	    PREF_UNIT_RST_SET);
4208 
4209 	/* Reset the RAM Buffer async Tx queue. */
4210 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4211 
4212 	/* Reset Tx MAC FIFO. */
4213 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4214 	/* Set Pause Off. */
4215 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4216 
4217 	/*
4218 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4219 	 * reach the end of packet and since we can't make sure that we have
4220 	 * incoming data, we must reset the BMU while it is not during a DMA
4221 	 * transfer. Since it is possible that the Rx path is still active,
4222 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4223 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4224 	 * BMU is polled until any DMA in progress is ended and only then it
4225 	 * will be reset.
4226 	 */
4227 
4228 	/* Disable the RAM Buffer receive queue. */
4229 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4230 	for (i = 0; i < MSK_TIMEOUT; i++) {
4231 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4232 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4233 			break;
4234 		DELAY(1);
4235 	}
4236 	if (i == MSK_TIMEOUT)
4237 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4238 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4239 	    BMU_RST_SET | BMU_FIFO_RST);
4240 	/* Reset the Rx prefetch unit. */
4241 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4242 	    PREF_UNIT_RST_SET);
4243 	/* Reset the RAM Buffer receive queue. */
4244 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4245 	/* Reset Rx MAC FIFO. */
4246 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4247 
4248 	/* Free Rx and Tx mbufs still in the queues. */
4249 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4250 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4251 		if (rxd->rx_m != NULL) {
4252 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4253 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4254 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4255 			    rxd->rx_dmamap);
4256 			m_freem(rxd->rx_m);
4257 			rxd->rx_m = NULL;
4258 		}
4259 	}
4260 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4261 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4262 		if (jrxd->rx_m != NULL) {
4263 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4264 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4265 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4266 			    jrxd->rx_dmamap);
4267 			m_freem(jrxd->rx_m);
4268 			jrxd->rx_m = NULL;
4269 		}
4270 	}
4271 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4272 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4273 		if (txd->tx_m != NULL) {
4274 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4275 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4276 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4277 			    txd->tx_dmamap);
4278 			m_freem(txd->tx_m);
4279 			txd->tx_m = NULL;
4280 		}
4281 	}
4282 
4283 	/*
4284 	 * Mark the interface down.
4285 	 */
4286 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
4287 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4288 }
4289 
4290 /*
4291  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4292  * counter clears high 16 bits of the counter such that accessing
4293  * lower 16 bits should be the last operation.
4294  */
4295 #define	MSK_READ_MIB32(x, y)					\
4296 	((((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4297 	(uint32_t)GMAC_READ_2(sc, x, y))
4298 #define	MSK_READ_MIB64(x, y)					\
4299 	((((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4300 	(uint64_t)MSK_READ_MIB32(x, y))
4301 
4302 static void
4303 msk_stats_clear(struct msk_if_softc *sc_if)
4304 {
4305 	struct msk_softc *sc;
4306 	uint16_t gmac;
4307 	int i;
4308 
4309 	MSK_IF_LOCK_ASSERT(sc_if);
4310 
4311 	sc = sc_if->msk_softc;
4312 	/* Set MIB Clear Counter Mode. */
4313 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4314 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4315 	/* Read all MIB Counters with Clear Mode set. */
4316 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4317 		(void)MSK_READ_MIB32(sc_if->msk_port, i);
4318 	/* Clear MIB Clear Counter Mode. */
4319 	gmac &= ~GM_PAR_MIB_CLR;
4320 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4321 }
4322 
4323 static void
4324 msk_stats_update(struct msk_if_softc *sc_if)
4325 {
4326 	struct msk_softc *sc;
4327 	if_t ifp;
4328 	struct msk_hw_stats *stats;
4329 	uint16_t gmac;
4330 
4331 	MSK_IF_LOCK_ASSERT(sc_if);
4332 
4333 	ifp = sc_if->msk_ifp;
4334 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
4335 		return;
4336 	sc = sc_if->msk_softc;
4337 	stats = &sc_if->msk_stats;
4338 	/* Set MIB Clear Counter Mode. */
4339 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4340 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4341 
4342 	/* Rx stats. */
4343 	stats->rx_ucast_frames +=
4344 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4345 	stats->rx_bcast_frames +=
4346 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4347 	stats->rx_pause_frames +=
4348 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4349 	stats->rx_mcast_frames +=
4350 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4351 	stats->rx_crc_errs +=
4352 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4353 	stats->rx_good_octets +=
4354 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4355 	stats->rx_bad_octets +=
4356 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4357 	stats->rx_runts +=
4358 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4359 	stats->rx_runt_errs +=
4360 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4361 	stats->rx_pkts_64 +=
4362 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4363 	stats->rx_pkts_65_127 +=
4364 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4365 	stats->rx_pkts_128_255 +=
4366 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4367 	stats->rx_pkts_256_511 +=
4368 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4369 	stats->rx_pkts_512_1023 +=
4370 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4371 	stats->rx_pkts_1024_1518 +=
4372 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4373 	stats->rx_pkts_1519_max +=
4374 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4375 	stats->rx_pkts_too_long +=
4376 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4377 	stats->rx_pkts_jabbers +=
4378 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4379 	stats->rx_fifo_oflows +=
4380 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4381 
4382 	/* Tx stats. */
4383 	stats->tx_ucast_frames +=
4384 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4385 	stats->tx_bcast_frames +=
4386 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4387 	stats->tx_pause_frames +=
4388 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4389 	stats->tx_mcast_frames +=
4390 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4391 	stats->tx_octets +=
4392 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4393 	stats->tx_pkts_64 +=
4394 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4395 	stats->tx_pkts_65_127 +=
4396 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4397 	stats->tx_pkts_128_255 +=
4398 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4399 	stats->tx_pkts_256_511 +=
4400 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4401 	stats->tx_pkts_512_1023 +=
4402 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4403 	stats->tx_pkts_1024_1518 +=
4404 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4405 	stats->tx_pkts_1519_max +=
4406 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4407 	stats->tx_colls +=
4408 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4409 	stats->tx_late_colls +=
4410 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4411 	stats->tx_excess_colls +=
4412 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4413 	stats->tx_multi_colls +=
4414 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4415 	stats->tx_single_colls +=
4416 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4417 	stats->tx_underflows +=
4418 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4419 	/* Clear MIB Clear Counter Mode. */
4420 	gmac &= ~GM_PAR_MIB_CLR;
4421 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4422 }
4423 
4424 static int
4425 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4426 {
4427 	struct msk_softc *sc;
4428 	struct msk_if_softc *sc_if;
4429 	uint32_t result, *stat;
4430 	int off;
4431 
4432 	sc_if = (struct msk_if_softc *)arg1;
4433 	sc = sc_if->msk_softc;
4434 	off = arg2;
4435 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4436 
4437 	MSK_IF_LOCK(sc_if);
4438 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4439 	result += *stat;
4440 	MSK_IF_UNLOCK(sc_if);
4441 
4442 	return (sysctl_handle_int(oidp, &result, 0, req));
4443 }
4444 
4445 static int
4446 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4447 {
4448 	struct msk_softc *sc;
4449 	struct msk_if_softc *sc_if;
4450 	uint64_t result, *stat;
4451 	int off;
4452 
4453 	sc_if = (struct msk_if_softc *)arg1;
4454 	sc = sc_if->msk_softc;
4455 	off = arg2;
4456 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4457 
4458 	MSK_IF_LOCK(sc_if);
4459 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4460 	result += *stat;
4461 	MSK_IF_UNLOCK(sc_if);
4462 
4463 	return (sysctl_handle_64(oidp, &result, 0, req));
4464 }
4465 
4466 #undef MSK_READ_MIB32
4467 #undef MSK_READ_MIB64
4468 
4469 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4470 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o,				\
4471 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,	 	\
4472 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4473 	    "IU", d)
4474 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4475 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o,				\
4476 	    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,	 	\
4477 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4478 	    "QU", d)
4479 
4480 static void
4481 msk_sysctl_node(struct msk_if_softc *sc_if)
4482 {
4483 	struct sysctl_ctx_list *ctx;
4484 	struct sysctl_oid_list *child, *schild;
4485 	struct sysctl_oid *tree;
4486 
4487 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4488 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4489 
4490 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
4491 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK Statistics");
4492 	schild = SYSCTL_CHILDREN(tree);
4493 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx",
4494 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK RX Statistics");
4495 	child = SYSCTL_CHILDREN(tree);
4496 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4497 	    child, rx_ucast_frames, "Good unicast frames");
4498 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4499 	    child, rx_bcast_frames, "Good broadcast frames");
4500 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4501 	    child, rx_pause_frames, "Pause frames");
4502 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4503 	    child, rx_mcast_frames, "Multicast frames");
4504 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4505 	    child, rx_crc_errs, "CRC errors");
4506 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4507 	    child, rx_good_octets, "Good octets");
4508 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4509 	    child, rx_bad_octets, "Bad octets");
4510 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4511 	    child, rx_pkts_64, "64 bytes frames");
4512 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4513 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4514 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4515 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4516 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4517 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4518 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4519 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4520 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4521 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4522 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4523 	    child, rx_pkts_1519_max, "1519 to max frames");
4524 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4525 	    child, rx_pkts_too_long, "frames too long");
4526 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4527 	    child, rx_pkts_jabbers, "Jabber errors");
4528 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4529 	    child, rx_fifo_oflows, "FIFO overflows");
4530 
4531 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx",
4532 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK TX Statistics");
4533 	child = SYSCTL_CHILDREN(tree);
4534 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4535 	    child, tx_ucast_frames, "Unicast frames");
4536 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4537 	    child, tx_bcast_frames, "Broadcast frames");
4538 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4539 	    child, tx_pause_frames, "Pause frames");
4540 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4541 	    child, tx_mcast_frames, "Multicast frames");
4542 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4543 	    child, tx_octets, "Octets");
4544 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4545 	    child, tx_pkts_64, "64 bytes frames");
4546 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4547 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4548 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4549 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4550 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4551 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4552 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4553 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4554 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4555 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4556 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4557 	    child, tx_pkts_1519_max, "1519 to max frames");
4558 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4559 	    child, tx_colls, "Collisions");
4560 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4561 	    child, tx_late_colls, "Late collisions");
4562 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4563 	    child, tx_excess_colls, "Excessive collisions");
4564 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4565 	    child, tx_multi_colls, "Multiple collisions");
4566 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4567 	    child, tx_single_colls, "Single collisions");
4568 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4569 	    child, tx_underflows, "FIFO underflows");
4570 }
4571 
4572 #undef MSK_SYSCTL_STAT32
4573 #undef MSK_SYSCTL_STAT64
4574 
4575 static int
4576 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4577 {
4578 	int error, value;
4579 
4580 	if (!arg1)
4581 		return (EINVAL);
4582 	value = *(int *)arg1;
4583 	error = sysctl_handle_int(oidp, &value, 0, req);
4584 	if (error || !req->newptr)
4585 		return (error);
4586 	if (value < low || value > high)
4587 		return (EINVAL);
4588 	*(int *)arg1 = value;
4589 
4590 	return (0);
4591 }
4592 
4593 static int
4594 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4595 {
4596 
4597 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4598 	    MSK_PROC_MAX));
4599 }
4600